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General introduction

The discovery of phononic crystals and metamaterials is one of the most exciting achievements in

modern scientific research [1–13]. The significance of those artificial materials is that they show

exotic abilities in wave control that greatly compensate those missing by the conventional ma-

terials. Due to their extraordinary abilities in the control of acoustic/elastic wave propagation,

many exotic phenomena that are impossible for the nature materials now can be achieved, such

as negative reflection [6,7], energy band gap [8,9], acoustic filter [10,11], acoustic cloaking [12],

acoustic diode [13], etc.

In the last 10 years, the study of phononic crystals and metamaterials has been extended

to discrete granular systems [14–23]. The concept of granular phononinc crystals or granular

crystals has been widely introduced in those systems. In general, granular crystals are spatially

periodic structures of particles, most often spherical homogeneous elastic beads, arranged in

crystal lattices. In granular crystals, the beads are linked by interconnections, which are of much

smaller dimensions and weights than the beads themselves. The interactions between beads take

place predominantly via interparticles contact stiffness, e.g. normal and transverse rigidities of

these elastic interconnections. These unique features lead to the propagation of elastic waves

in granular structures at significantly slower velocities than in the individual grains [16–18].

In addition, due to the existence of non-central shear forces between the particles, rotations

of individual grains can be initiated, resulting in the propagation of purely rotational and/or

coupled rotational-translational waves in granular crystals [19–23]. Those fascinating properties

make granular crystals excellent media to study fundamental wave physics phenomena.

In parallel to the scientific activities in phononic crystals and metamaterials, in recent years

the study of the topology in materials has also attracted a lot of attention [24–29]. The to-

pologically protected wave propagation is demonstrated in many different research fields in-

cluding condensed matter physics [24], optics [25, 26], acoustics [27] and elasticity [28, 29]. In

the topological non-trivial materials/structures, the bulk of the materials is insulating for wave

propagation, while the edge is metallic, supporting the transport of unidirectional edge waves.

The edge waves are topologically protected in a sense that they are immune to backscattering

in the presence of imperfections and disorders. Interestingly, topological wave phenomena could

be potentially found in granular crystals. As a peculiar type of phononic crystals for elastic

wave, granular crystals not only exhibit those common properties such as allowed bands and

forbidden gaps, but also show special advantages in other aspects such as the study of rotational

1



General introduction

waves, slow waves, etc. It is believed that the successful discovery of topological wave behaviour

in granular crystals may pave the way to their practical applications in elastic wave devices and

vibration isolation and confinement.

In this manuscript, we theoretically study the wave dynamics in two-dimensional granular

crystals or granular membranes. The phononic properties in granular crystals are investigated

[30], including the existence of Dirac points, zero-frequency modes, zero-group-velocity modes

and their transformation into slow propagating phononic modes due to weak bending and tor-

sional intergrain interactions. Furthermore, the wave dynamics on the edges/boundaries is also

analyzed [31]. In the presence of edges/boundaries, zero-frequency and extremely slow elastic

edge waves can be predicted in mechanical granular honeycomb crystals (granular graphene)

when the torsional or/and bending rigidities are weak/vanishing. In addition, we found that

by a proper design of the structure, the critical topological phase transition can take place in

granular crystals. Topological properties of rotational edge waves in a granular graphene are

theoretically demonstrated [32].

The organization of the manuscript is as follows: a brief review on the study of phononic

crystals and metamaterials, granular crystals as well as the topological wave propagation is

presented in the first Chapter. To begin with, we provide some fundamental concepts that

are helpful for the understanding of wave dynamics in granular crystals. This includes the

Brillouin zone, reciprocal space, lattice, band structure, contact mechanics and rotational degree

of freedom. Some basic notions for the topological wave transport are also presented in the last

two sections of Chapter 1.

In the second Chapter, we theoretically study the dispersion properties of elastic waves

in hexagonal and honeycomb monolayer granular membranes with either out-of-plane or in-

plane particle motion. The existence of zero-frequency modes, zero-group-velocity modes and

their transformation into slow propagating phononic modes due to weak bending and torsional

intergrain interactions are investigated. We also study the formation and manipulation of Dirac

cones and multiple degenerate modes. This could motivate variety of potential applications in

elastic waves control by manipulating the contact rigidities in granular phononic crystals.

In the third Chapter, we report the theoretical description and analysis of edge elastic waves

in a semi-infinite mechanical granular graphene structure. The dispersion curves of the edge

waves are theoretically derived and analyzed for two configurations of boundary. Quasi-flat

edge mode dispersion curves with near zero frequency are observed. These quasi-flat dispersion

curves, supporting the propagation of waves with extremely slow group velocity, show a tend-

ency to be perfect zero-frequency modes for zero torsional rigidity or vanish for zero bending

rigidity, indicating that weak bending and torsional interbead interactions are critical in the

transformation of zero-frequency modes into extremely slow propagating modes.

In the last Chapter, we theoretically demonstrate the topological properties of these mechan-

ical rotational waves in a granular graphene, a two-dimensional monolayer honeycomb granular

crystal with Dirac dispersion at the center of Brillouin zone. Around the Dirac point, effective

2



General introduction

spin, helicity and effective spin-orbit coupling are illustrated in the mechanical granular system.

Finally, quasi-topological transport, where the rotational edge waves are nearly topological pro-

tected, is observed on the interface.
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1.1 Introduction

1.1 Introduction

In the last decades, the study of phononic crystals and metamaterials has become one of the

most active research topics. Phononic crystals are usually constructed by scatterers arranged

in periodic structures. The study of these periodic structures are actually motivated by the ac-

cumulated knowledge and advances in solid state physics. In the long-term study of solid state

physics, researchers found that periodic structures can strongly influence/modulate the propaga-

tion of electrons. In 1987, these modulation effects were first extended to electromagnetic waves

in periodic structures, which are called photonic crystals in analogy with the periodic structures

of atoms (crystals) for propagation of electrons [23, 34]. The period of the spatial distribution

of the scatterers in photonic crystals is comparable to the wavelength of the electromagnetic

waves.

In parallel to the development of photonic crystals, the idea to control the propagation

of acoustic waves by phononic crystals was also proposed [35, 36]. Similar to the electromag-

netic waves, acoustic waves are classical waves closely related to our daily life. Because of

their important role in voice devices, communication, underwater detection, ultrasonic test-

ing, seismic exploration, noise control, etc, effective manipulation/control of the propagation of

acoustic waves has very strategic and practical significances. With the development of research

in photonic/phononic crystals, the concept of metamaterials has also been proposed. Despite

the fact that metamaterials are often designed as periodic structures, usually their properties

do not depend on periodicity, but on local resonances of the individual scatterers. Metama-

terials can be more efficient in influencing on wave propagation than the periodic structures.

Owing to their periodicity and/or local resonances, many exotic effects have been achieved with

phononic crystals and metamaterials. For example, frequency band gaps [5–8, 37], negative

refraction [6, 7, 38], gradient-index lens [5], superlens [6], subwavelength imaging [39], cloak-

ing [40, 41], zero-reflective-index [42, 43], etc. The discovery of these artificial materials greatly

complements the shortcomings of conventional materials.

In the latest few years, there exists another significant activity in evaluation of acoustic

properties of granular phononic crystals, such as 1D chains [44–46], 2D membranes and packings

[14–19], and 3D assemblages of grains [20–23]. Different from most of the phononic crystals, these

granular materials have extraordinary ability to support the propagation of rotational waves in

addition to common shear and longitudinal waves. These structures host extra acoustic modes,

which do not exist in the absence of the rotational degrees of freedom. The rotational modes

and their couplings to other modes, in particular to shear ones, could provide more flexibility

and additional functionalities in control of the acoustic wave propagation. Specifically, the

metamaterials based on granular phononic structures are expected to be advantageous in the

monitoring of bulk shear and surface Rayleigh acoustic waves. This could be important for

various applications, such as anti-seismic protection, attenuation and cloaking of ground noise,

and signal processing with surface acoustic waves, for example.
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Chapter 1: Wave propagation in periodic structures and metamaterials

Figure 1.1: (a) Schematics of phononic crystal of different dimensionalities. (b) An example of phonon band
structure. The orange area marks the forbidden band gap. (c) Examples of phononic crystals efficient at different
wavelength scales. The phononic crystal for hypersound is constructed of air holes in an epoxy matrix with the
lattice periodicity a = 1.36 µm and the one for heat is in a silicon matrix of air holes with a = 34 nm. [57]

Recently, inspired by quantum systems, the study of topological phenomena in materials

and metamaterials has also attracted increasing interest for scientific investigation. The devel-

opments include solid state physics [47–49], optics [50, 51], acoustics [52, 53], mechanical sys-

tems [54–56], etc. The topological properties of the band structure of waves can be exploited to

achieve unique and exciting functionalities, such as the existence of edge waves that are immune

to backscattering in the presence of imperfections and impurities, e.g. localized defects and

corners. This concept can pave the way to structural configurations which may find practical

application in acoustic waveguiding or vibrations isolation and confinement.

In this chapter, we firstly introduce some basic concepts of phononic crystals and metamater-

ials. In addition, fundamental theories and the developments in elasticity/acoustics of granular

phononic crystals are demonstrated. Finally, basic topological phenomena in wave propagation

are discussed.

1.2 Phononic crystals and metamaterials

In this section, we introduce the basic characteristics, classification and research progress in

phononic crystals and metamaterials.
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1.2 Phononic crystals and metamaterials

1.2.1 Phononic crystals

Phononic crystals are periodic composites or structures where the acoustic waves are exhibiting

several dispersion/energy bands resulting from efficient multiple wave scattering. In particular,

different bands can be separated by the energy/frequency gaps, where the propagation of the

waves is forbidden. Fig. 1.1(a) shows the schematics of phononic crystals of different dimen-

sionality [57]. The concept of phononic crystal was proposed the first time quasi-simultanously

by M. S. Kushwaha, et al. and Sigalas et al. in 1993 [36, 58]. They showed the existence of

phonon band gap in a two-dimensional periodic elastic composite. In 1995, R. Martinez-Sala et

al, carried out the first experimental demonstration of phononic crystal properties (left panel of

Fig. 1.1(c)) on a minimalist sculpture in Madrid, proving the existence of phonon band gap [59].

Since then, the study of phononic crystal began to attract worldwide attention. Fig. 1.1(b) shows

a typical band structure of a phononic crystal. Lines label the propagating branches of phonon

modes, while the frequency ranges where the modes are absent correspond to phonon band gaps.

The orange area in Fig. 1.1(b) marks a complete band gap. In general, wave propagation in the

band gap is suppressed, but in the pass band waves can be transmitted without attenuation.

It is the period of the structure which, through the condition of the Bragg scattering, controls

the wavelength of the acoustic wave that is most influenced by the structure. Fig. 1.1(c) shows

Figure 1.2: Phononic crystal and band structure due to local resonance. [60] (a) Cross section of a coated lead
sphere that forms the basic structure unit. (b) Schematics of the phononic crystals. (c) Calculated (solid line)
and measured (circles) amplitude transmission coefficient. (d) Band structure.

8



Chapter 1: Wave propagation in periodic structures and metamaterials

three phononic crystals corresponding to different frequency domains of acoustic waves.

In 2000, another mechanism leading to the existence of band gap in phononic crystals has

been introduced by Z. Y. Liu et al [60], see Fig. 1.2. The phononic crystal has a simple mi-

crostructure unit consisting of a solid core material with relatively high density and a coating

of elastically soft material. The highly contrast in the parameters of the two materials of the

unit cell can lead to strong local resonances in the unit cell. The frequency of a local resonance

can be much lower than the frequencies exhibiting Bragg scattering and, as a consequence, the

band gaps could be realized for the acoustic wavelengths exceeding the lattice period by two

orders of magnitude. Different from Bragg scattering mechanism where the modulation is due

to non-resonant multiple scattering, in these phononic crystals the interaction of the wave with

the near-resonant oscillation of the individual elastic elements of the unit cell is the origin for

the existence of band gap. Thus in the phononic crystals studied in Ref. [60], the band gaps at

lowest frequencies are due to their metamaterial properties (see Section 1.2.2) and not due to

their phononic properties, i.e., spatial periodicity.

In addition to the band gap effect, phononic crystals also possess special wave guiding phe-

nomena in the pass bands, for example, negative refraction [6, 7, 38] (Fig. 1.3(a)), negative

bi-refraction [38] (Fig. 1.3(b)), focusing [6, 7, 38, 39] (Fig. 1.3(c)), surface wave trapping and

guiding [8–11], zero-refractive-index [42,43,61], etc.

Figure 1.3: (a) Negative refraction. (b) Negative bi-refraction. (c) Focusing. [38]

1.2.2 Metamaterials

Metamaterials are artificial or engineered materials where the propagation of the waves is

controlled by their interaction/hybridization with the spatially distributed resonant oscillat-

ors (“artificial atoms”). In the case of disordered distribution of the oscillators in space the

dispersion/energy relations for the waves are mostly influenced near the resonance frequencies

of the individual oscillators. In the case of the periodic distribution of the artificial atoms, the

phononic effects related to Bragg scattering coexist with the interactions between the waves and

artificial atoms. The modes of the phononic crystal can interact/hybridize with the oscillations

of the artificial atoms. Thus, the single artificial atom not only can provide local resonance,

but also can interact with the Bragg scattering caused by lattice periodicity, leading to much

richer flexibilities in wave controlling. Thus, metamaterials, which consist of artificial atoms

9



1.2 Phononic crystals and metamaterials

Figure 1.4: (a) A schematic drawing of a membrane-type artificial atom to achieve negative effective mass density.
(b) Effective mass density as a function of frequency. [54]

in complex structures, have more features and advantages than phononic crystals composed of

simple scatterers. A lot of novel effects can be achieved by metamaterials including acoustic

hyperlens [62], acoustic diodes [63, 64], cloaking [40,41,65–67], etc.

In the scientific research, the design of the artificial atom becomes the key issue that research-

ers need to solve for addressing a specific application of a metamaterial for wave control. In the

early studies, a lot of attention was paid to the construction of the (meta)materials with effective

negative material parameters, such as effective negative mass density [4] and effective negative

bulk modulus [43]. As an example, a membrane-type artificial atom is shown in Fig. 1.4(a),

where a flexible elastic membrane is fixed on a rigid rim [68,69]. A rigid disk is attached to the

center of the membrane. The resonance frequencies of this artificial atom can be controled by

changing the dimensions of the membrane, the mass of the disk and the rigidity of the membrane

(by prestress), for example. The plate including these artificial atoms (metaplate) can display

effective mass negativity over certain frequency ranges, as shown in Fig. 1.4(b).

As the development of the study on metameterials, many novel wave phenomena can be

realized by metameterials. For example, in electronics, a diode is a device that allows current

to pass in one direction but not in the opposite one. This concept can be exploited in acoustic

systems. The first idea for demonstration of acoustic asymetric propagation was to couple

a one-dimensional (1D) phononic crystal made of alternating layers of glass and water to a

nonlinear acoustic medium [63], as depicted in Fig. 1.5. A sound wave incident from the left,

with frequency ω inside the band gap of the phononic crystal, is partially converted within the

nonlinear medium to a secondary wave with frequency 2ω. Because ω lies in the band gap, the

wave at frequency ω is reflected backward, but the secondary wave with frequency 2ω outside

the band gap can freely pass through the structure. On the other hand, if the sound wave is

incident from the right, the wave is completely reflected in the backward direction because ω

lies inside the band gap. As a result, acoustic energy can pass through the system only from

left to right, providing unidirectional sound transmission.

In recent years, the study of metamaterials has been extended to many different systems for

different wavelengths. Many sophisticated designs have been implemented to achieve different
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Chapter 1: Wave propagation in periodic structures and metamaterials

Figure 1.5: Acoustic asymetric propagation based on non-linear effect [63].

novel phenomena, such as optical/acoustic black hole for absorption [70,71], zero refractive index

materials for impedance matching [72], metamaterials for topological transport of waves [52],

etc. At the same time, with the increasing interest of phononic crystals and metamaterials for

surface/interface acoustic waves, it is believed that acoustic metamaterials with more exciting

effects in different fields will continue to emerge.

1.3 Granular phononic crystals

Granular materials are conglomerations of discrete solid macroscopic particles, which can be

made of different materials, size and shape. An example is a pile of sand, rice, coffee or corn

flakes, etc. This kind of materials is commercially and academically important in applications

as diverse as pharmaceutical industry, agriculture, energy production, geophysics, etc. The

dynamics in granular materials is very complex, as they can behave as solids, liquids and gases

[73–75]. By assembling the particles in a periodic structure and defining the parameters (shape,

size, elasticity...) of the particles, the granular materials which are called granular crystals can

be created and studied. On one hand, due to the periodicity, granular crystals exhibit phonon

band diagrams for elastic wave propagation as phononic crystals for acoustic waves. On the

other hand, since the solid particles interact by forces and momenta applied to their geometrical

contacts, granular materials also exhibit properties which are rather unique, such as rotational

degrees of freedom [14–23] and strong nonlinearity [76, 77].

1.3.1 Contacts between particles

In granular crystals, the interactions between elastic particles take place via their contacts. In

order to study the wave dynamics in granular crystals, a description of the contact between two

elastic beads is essential. The original work in contact mechanics by Heinrich Hertz dates back

to 1881 [78]. Hertz was attempting to understand the optical interference fringes (Newton’s

rings) between two lenses exhibiting an elastic deformation due to their contact interaction

under pressure. Hertzian contact stress refers to the localized stresses that are developed as two
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1.3 Granular phononic crystals

Figure 1.6: Schematics of contact between
two elastic spheres.

curved surfaces come in contact and deform slightly un-

der the imposed load. The deformations of the lenses

near their contact depend on the moduli of elasticity of

the material in contact. This theory was then extended

by Mindlin who formulated a similar theory taking into

account the tangential forces in addition to the normal

forces between the two spheres [79, 80].

In the Hertz-Mindlin theory, the contact area

between two elastic spheres is small compared to the

radius of the particles and planar which makes it pos-

sible to decouple the normal force-displacement rela-

tions from the tangential relations. In general, the con-

tact area is elliptical.

Figure 1.6 shows a schematics of contact between two particles. Consider the normal forces

FN , the radius of the contact surface is written as,

δ =

(
3R∗FN

4E∗

)1/3

, (1.1a)

with,
1

R∗
=

1

R1
+

1

R2
,
1

E∗
=

1− ν21
E1

+
1− ν22
E2

, (1.1b)

where 1 and 2 represent the two particles. R is the radius of the particle, ν is the Poisson’s

ratio, and E is the Young’s modulus of the particle. From Eqs. (1.1), the relation between the

normal force FN and the deformation h of the particles is given by,

h =

(
3FN

4E∗
√
R∗

)2/3

. (1.2)

Equation (1.2) reveals that the deformation h is proportional to the 2/3 order of the normal

force FN . The nonlinearity of the stress/strain relationship comes from the spherical geometry

of the contacting particles and diminishes with the compressive force applied to the particles.

If a tangential force is applied to particles in additional to the normal force, deformation still

happens in the vicinity of the contact surface. Considering that the normal force-displacement

relation is decoupled from the tangential one, according to Coulomb’s law, as long as the tangen-

tial force FT < µfFN (µf is the friction coefficient), there is no sliding on the contact surface.

While beyond this limit, slide can happen on the contact surface. The relation between the

relative tangential displacement s and the tangential force FT is written as,

s =
3µfFN

4δG∗

[
1−

(
1− FT

µfFN

)2/3
]
, (1.3a)
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with,
1

G∗
=

2− ν21
4G1

+
2− ν22
4G2

, (1.3b)

whereG1,2 = E1,2/[2(1+ν1,2)] are the shear modulus of each particle. The relation in Eq. (1.3)(a)

is also nonlinear.

In the case of a system in equilibrium, each contact can be considered as two springs, the

first spring describing the normal interactions and the second characterising the transverse

interactions. Considering the case when the two particles are identical, the normal rigidity

is given by,

ξn =

(
3RFN

4

)1/3

E2/3(1− ν2)−2/3, (1.4)

and the transverse rigidity (shear rigidity) is written, under the condition FT ≪ µfFN , as,

ξs = (6RFN )1/3E2/3 (1− ν21)
1/3

(2− ν)(1 + ν)
. (1.5)

1.3.2 Rotational degrees of freedom

When researchers study the elastic wave propagation in continuum media or in mechanical

systems modelled by distribution of masses connected by the springs, usually rotational degrees

of freedom are not taken into account. However, for discrete mechanical systems, the existence of

Figure 1.7: (a) Schematics of a hexagonal granular crys-
tal. (b) Shear coupling on the contact between two elastic
spheres. (c) Band structure of the granular crystal. [16]

rotational motion of the constituting elements

can dramatically modify the elastic wave be-

haviour in the systems [14–23, 81]. The idea

to consider these additional degrees of free-

dom in the description of elastic wave in ma-

terials were first proposed in 1909 by Cosserat

brothers [82]. They develop a theory, called

the Cosserat theory of elasticity or theory of

micropolar elasticity, to describe the propaga-

tion of waves in microstructured materials. In

their theory, not only the displacements but

also the rotations of the infinitisimal elements

composing elastic continuum were taken into

account. This idea later has been applied to

many mechanical materials/structures includ-

ing granular media [83–85], beam lattices [86],

auxetic materials [87] and some chiral struc-

tures [88].

In granular crystals, one important feature

is that interactions between elastic particles can take place via shear forces. In contrast to
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1.3 Granular phononic crystals

Figure 1.8: (a) Experimental setup of and the three-dimensional granular crystal. (b) Dispersion curves. (b)
Experimental results from a shear transducer (left) and a longitudinal one (right). [23]

normal forces, which are central forces in most of the spring-mass systems, in granular crystals

the shear forces due to transverse rigidity of the contacts are non-central and can initiate the

rotation of the beads. Thus the rotational degrees of freedom of the individual beads, the particle

dimensions and the interactions through non-central forces can not be neglected when analyzing

the propagation of waves in granular crystals.

There exists a number of theoretical and experimental works investigating the elastic waves

in granular crystals accounting for rotational degrees of freedom of individual particles [16–19,

23,30,31,81]. As one of the examples, the rotational modes have been theoretically studied in a

hexagonal monolayer granular crystals [16], as shown in Fig. 1.7(a). The predicted propagating

modes involve an out-of-plane displacement and two rotations with axes in the crystal plane.

Shear coupling at the contact is demonstrated in Fig. 1.7(b). The pure rotational (red curves)

and rotation-translation coupled modes (yellow and blue curves) are predicted in the dispersion

relations, Fig. 1.7(c).

The first experimental observation of the propagation of coupled rotational-translational

elastic waves due to rotational degrees of freedom was achieved in a three-dimensional hexagonal

closely packed granular crystal [23], as shown in Fig. 1.8(a). The dispersion relations evaluated

including the rotational degrees of freedom are described in Fig. 1.8(b). The experimental results

are depicted in Fig. 1.8(c), where coupled rotational-translational (TR/RT ) modes are observed.

This work also proves that the Cosserat theory fails to predict correctly the dispersion of the

elastic modes in granular crystals even in the long-wavelength limit.

Recently, the significance of rotations has been revealed experimentally for coupled rotational-

translational waves in colloidal-based metamaterials [89]. The sample is shown in Fig. 1.9(a),

where a microscale granular crystal is composed of a two-dimensional monolayer of micro-sized

spheres on a solid substrate. The experimental setup is presented in Fig. 1.9(b). The measure-

ments of the resonant attenuation of laser-generated surface acoustic waves (SAWs) reveal three

collective vibrational modes that involve displacements and rotations of the microspheres, as

well as interparticle and particle-substrate interactions. To identify the modes, the authors tune

the interparticle stiffness, which shifts the frequency of the rotational resonances while leaving

the vertical normal resonance unaffected. From the measured contact resonance frequencies,
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Figure 1.9: (a) Microscope image of the interface between the part of the surface covered by a monolayer of beads
and uncovered part of the surface. The scale bar is 10 µm. (b) Schematic of the laser ultrasonic experimental setup.
(c) Transmission spectra for SAWs propagating across the interface between the surface and the metasurface. [89]

they determine both interparticle and particle-substrate contact stiffnesses and find that the

former is an order of magnitude larger than the latter. They found good agreement between

experiment and theory.

In addition, there are other works studying elastic wave propagation in granular crystals

and taking the rotational degrees of freedom into account [30,31,90,91]. Extra modes involving

rotations are predicted, including rotational zero-frequency modes [30], rotational edge waves

and rotational surface waves [31, 91], etc.

1.3.3 Tunability and nonlinearity

In granular crystals, due to the Hertzian contact interactions between elastic particles, the

dynamic vibration response of these structures is tunable from nearly linear to strongly nonlinear

dynamical regimes by changing the ratio of static to dynamic interparticle displacements [90,92].

Recently, the tunability of wave dynamics in granular crystals has been theoretically and ex-

perimentally studied in a one-dimensional magneto-granular chain, which is composed of spher-

ical steel beads inside a properly designed magnetic field [92]. This field is induced by an array

of permanent magnets, located in a holder at a given distance from the chain, Fig. 1.10(a). By

changing the strength of the magnetic field (changing the magnets B1 to B2, Fig 1.10(b)), the

contacts between particles are modified. Consequently, the dynamic response of the granular

chain is tuned. The authors use the experimental setup in Fig. 1.10(c) to observe and evaluate

elastic wave propagation in the chain. Experimental evidence of transverse-rotational modes of

propagation is presented in Fig. 1.10(d), where band structure tunability is observed by changing

the magnet B1 (red curves) to B2 (black curves).

The nonlinear effects in granular crystals have also been reported. In Ref. [93], the propaga-

tion of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-

hanged magnetic beads is theoretically and experimentally studied. As predicted by contact

mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. Con-

sidering a single contact between two spheres in a nonlinear resonance experiment as depicted in

Fig. 1.11(d), the nonlinear hysteretic effect can be characterized at the contact. In Fig. 1.11(a),
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1.3 Granular phononic crystals

Figure 1.10: (a) Schematics of the magneto-granular chain. (b) Two different magnets in experiments. (c)
Schematics of the laser experimental setup. (d) Linear spectrum of the velocity signal received for a chain of 15
beads under B1 (red) and B2 (black) permanent magnets. [92]

the experimental ratio between acceleration signals at bead 0 and bead 1 is shown as a function

of normalized frequency Ω. With increasing amplitude of the oscillations, a downward resonance

frequency shift is observed as well as a nonlinear attenuation process. The relative resonance

frequency shift is shown to scale linearly with the detected resonance amplitude in Fig. 1.11(c),

which is consistent with quadratic hysteresis. For comparison, the theoretical transfer function

is plotted in Fig. 1.11(b). Quantitative agreements are obtained for both the theoretical and

experimental resonance curves and resonance frequency shifts.

Figure 1.11: Magnitude of the acceleration transfer function (detected acceleration A1 at bead 1 over the
acceleration A0 at bead 0) of a “two-beads–one-contact” system for different excitation levels, experiment (a) and
theory (b). (c) Relative resonance frequency shift as a function of the detected resonance amplitude. (d) Setup
for the single contact characterization in torsion. [93]

The tunablity of their dynamics from linear to strongly nonlinear make granular crystals

a perfect medium for studying fundamental wave phenomena and engineering applications, in-
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cluding solitary waves [94, 95], discrete breathers [96], tunable vibration filters [97], acoustic

diodes [98], acoustic rectifiers [99] and tunable functional switches [100,101].

1.4 Lattice and band theory

Granular crystals are fabricated not from atoms or molecules but from macroscopic grains, which

can be regarded as macroscopic analogues of atoms in a crystalline solid [102]. Those similarities

determine that the wave dynamics in granular crystals can be described by a similar method as

in the atomic crystals in solid state physics [103, 104]. In this section, we introduce some basic

concepts in solid state physics which are also suitable for granular crystals.

1.4.1 Unit cell and lattice

An ideal crystal is a repetition of identical structural units in space. The periodicity is described

by a lattice, which is the mathematical points at specific coordinates in space. The identical

structural units (or base of the crystal) are placed at every lattice point. One can identify

structural fragments that form the smallest repeating units. One can think of the smallest

repeating unit as being inside a box. Such a box is called a unit cell. By stacking of the boxes

in three dimensions a complete description of the structure of the solid material is obtained.

The unit cell contains one atom or more, depending on different crystal structures. In granular

crystals, the atoms are the elastic spheres. The choice of a unit cell could be different, the most

commonly used is the Wigner-Seitz primitive cell. Considering a lattice point is chosen, lines

are drawn to all its nearest lattice points. At the midpoint of each line, another line is drawn

normal to each of the first set of lines. The smallest area (or volume) enclosed by the lines

is called the Wigner–Seitz primitive cell. Under this definition, a crystal is constructed by its

primitive cells arranged in its lattice.

All possible lattices can be described by a set of three linearly independent vectors a1, a2,

and a3, the unit vectors of the lattice. We can define a vector Rn for the lattice,

Rn = n1a1 + n2a2 + n3a3 (1.6)

where n1, n2, and n3 are integers. Eq. (1.6) implies the periodicity of the lattice. For a given

lattice point, we could set it to be the original point with the coordinate (0, 0, 0), then any lattice

point (n1, n2, n3) can be reached by translation. Rn is called the Bravais lattice.

In addition to the periodicity, crystals also exhibit symmetries, that is, crystals could main-

tain their structure after some symmetry operations such as, for example, identity, rotation,

inversion, reflection. Those symmetries can be described by the point group of the lattice, and

the crystal structures are classified according to their symmetry. For example, in two dimensions

there are 5 distinct types of lattices as shown in Fig. 1.12. The lattice with the lowest symmetry

is an oblique lattice, if |a1| 6= |a2| and the angle γ between a1 and a2 is not a rational fraction of π.
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1.4 Lattice and band theory

Table 1.1: Two-dimensional lattice

crystal family Bravais lattice

Monoclinic Oblique

Orthorhombic Rectangular, Centered

Tetragonal Square

Hexagonal Hexagonal

Notice that it is invariant only under rotation

of π and 2π. Four other lattices, shown in

Fig. 1.12, of higher symmetry are also pos-

sible, and called special lattice types (square,

rectangular, centered, hexagonal). A Bravais

lattice Rn is the common name for a distinct

lattice type. Note that, in two dimensions,

the 5 Bravais lattices can be grouped into 4

crystals families [106], see in Table 1.1. The centered lattice is special since it may also be

considered as two sets of rectangular lattices packed together (shown with a dashed green and

black rectangles in Fig. 1.12). More information about the lattices can be found in Ref. [103]

Figure 1.12: Two dimensional Bravais lattices of different symmetry. [103]

1.4.2 Reciprocal space and band structure

In crystals, any quantity, e.g. the electronic density in an atomic crystal, can be written as a

periodic function,

f(r) = f(r +Rn), (1.7)

where Rn is the Bravais lattice in the real space. Due to this periodicity, f(r) is possible to

write in form of Fourier expansion,

f(r) =
∑

h

fh(Gh)e
iGhr. (1.8)

Substituting into Eq. (1.7), we arrive at,

Gh ·Rn = 2πN. (1.9)
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where N is integer and the lattice constructed by Gh is the reciprocal lattice. For the primitive

vectors, (a1, a2, a3), its reciprocal lattice vectors can be determined,

Gh = h1 · b1 + h2 · b2 + h3 · b3, (1.10)

with

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (1.11a)

b2 = 2π
a3 × a1

a2 · (a3 × a1)
, (1.11b)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
, (1.11c)

where h1, h2 and h3 are integers. As Rn is the Bravais lattice in the real space, Gh is the

Bravais lattice in the reciprocal space, which is also known as momentum space (or k−space).

The Wigner-Seitz primitive cell of the reciprocal lattice is called the first Brillioun zone. The

importance of the Brillouin zone stems from the description of waves in a periodic medium, in

which it is found that the solutions can be completely characterized by their behavior in a single

Brillouin zone.

Figure 1.13: Schematics of a one-dimensional diatomic granular chain.

Let us consider the vibrations in a one-dimensional diatomic granular chain. As shown in

the red dash box in Fig. 1.13, the unit cell of the one dimensional (1D) diatomic granular chain

contains two particles with different masses M (green) and m (black). The distance between

two identical particles is 2a (lattice constant). Suppose the dynamics in the chain is linear and

the particles displace only along the chain, which means that only normal forces exist in the

chain. The normal rigidity of the contact between the particles is charaterized by an effective

sping constant ξn. The displacement of each bead is ui, thus the equations of motion for the 2n

and 2n+ 1 particles are given by,

Mü2n = ξn(u2n+1 + u2n−1 − 2u2n), (1.12a)

mü2n+1 = ξn(u2n+2 + u2n − 2u2n+1). (1.12b)

Due to periodicity of the structure, we are looking for the solution of the form,

u2n = Aeiωt−ik(2n)a, (1.13a)
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1.5 Topologically protected wave propagation

u2n+1 = Beiωt−ik(2n+1)a, (1.13b)

where ω is the cyclic frequency, and k is the wave number. A and B are the amplitudes of the

particle displacements. Substituting Eqs. (1.13) into Eqs. (1.12), the following relations can be

obtained, [
2ξn −mω2 −2ξn cos ka

−2ξn cos ka 2ξn −Mω2

][
A

B

]
= 0 (1.14)

For non-zero solutions, the determinant of Eq. (1.14) should be zero,

∣∣∣∣∣
2ξn −mω2 −2ξn cos ka

−2ξn cos ka 2ξn −Mω2

∣∣∣∣∣ = 0. (1.15)

From Eq. (1.15), the dispersion relations (ω − k relations) can be derived,

w2 = 1± 1

m+M
(m2 +M2 + 2mM cos 2ka)1/2. (1.16)

where w = ω/ωc is the normalized frequency with ωc = (m + M)ξn/mM . It predicts that

there exist two branches of the elastic waves. The band structure (or dispersion curves) of the

diatomic chain, revealing the ω − k relations, is shown in Fig. 1.14. Since the lattice constant

is 2a, the first Brillouin zone (BZ) is [−π/2a, π/2a], which is exactly the range of k in the band

structure. Actually, the dispersion curves are symmetric, even in k space. Thus, we only need to

plot the part of k in the range [0, π/2a], then the band structure of the first BZ is known due to

its symmetry. The corresponding range [0, π/2a] is called the irreducible Brillouin zone, which

is the smallest area by reducing all the symmetries of the first BZ. In Fig. 1.14, two branches

(blue and red curves) supporting the propagation of elastic modes along the chain are observed.

Note that, there is a grey zone without any branches in it. This grey zone is a band gap for the

elastic modes. It suggests that in this frequency range, waves can not propagate in the diatomic

chain.

1.5 Topologically protected wave propagation

The band theory predicts that propagation of waves in a periodic structure leads to the allowed

bands and forbidden gaps. Those predictions in solid state physics and in particular studying

the electronic properties of materials give rise to a simple explanation of materials to be metals,

semiconductors or insulators [104]. In 1980, the discovery of the quantum Hall effect had shown

that the simple division into band insulators and metals is not the end of the story, not even in

band theory [106–108]. In the quantum Hall effect, a strong magnetic field confines the motion of

electrons in the bulk, but the same field forces them into delocalized edge states on the surface.

A two-dimensional metal in strong magnetic field is thus an insulator in the bulk, but conducts

along the surface, via a discrete number of edge states. The number of edge states was linked

20



Chapter 1: Wave propagation in periodic structures and metamaterials

Figure 1.14: Dispersion curves of vibrational modes in the diatomic chain when M/m = 2.

to the so-called Chern number, a topological invariant of the occupied bands. These materials

are called Chern insulators [109–111].

Over the last 20 years, theoretical progress over artificial systems has shown that the external

magnetic field is not necessary for an insulator to have robust conducting edge states: instead,

the nontrivial topology of the occupied bands is the crucial ingredient. The name topological

insulator was coined for such systems, and their study became a blossoming branch of solid state

physics. Since that time, the exploration of topological properties in materials and metamaterials

has become an active area of research. The concept of topological insulators has also been

extended to many other fields including optics [50, 51], acoustics [52], optomechanics [53, 54],

and elastic systems [55,56].

Systems supporting topologically protected wave propagation can be divided into two broad

categories. The first one, analogous to the quantum Hall effect, relies on breaking time reversal

symmetry (TRS) to produce chiral edge modes, that is edge waves in one dispersion branch

only go one way and in the other branch go the other way [112–115]. Generally this requires

active components or the application of external fields. A second category, in analogy with the

quantum spin Hall effect, preserves TRS in the system but exhibits a pair of helical edge modes

on the boundaries or interfaces, that is the electrons on the edge are spin-polarized and their

transport is unidirectional [47, 49].

1.5.1 Time reversal symmetry breaking

The systems with non-zero Chern numbers belong to the first topological class with explicitly

broken time reversal symmetry. Similar to the quantum Hall (QH) effect, in those systems, the

bulk of the systems is insulating, and the transport of waves takes place only along the edge.

The flow of the edge waves is unidirectional and robust against defects. To achieve similarity

to QH effect, the challenge is to efficiently break the TRS and induce non-zero Chern numbers
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Figure 1.15: (a) Experimental setup for measuring the one-way edge state. The inset is a picture of the photonic
crystal. (b) The band structure of the gapless edge state (red) between the second and third bands of non-zero
Chern numbers. (c) Simulation of the one-way mode and its robustness against a defect. (d) Experimental
transmission of edge wave. [119]

to the bands. Note that, there are publications showing that even if TRS is preserved, QH

effect (anomalous QH effect) still can be achieved [116–118]. For example, in Ref. [118] coupled

resonators supporting degenerate clockwise and counter-clockwise modes are needed in order to

induce phase shifts for the degenerate modes and synthesize an effective magnetic field. We will

discuss below only the case when TRS is broken.

The topologically protected wave propagation by breaking TRS has been demonstrated in

different systems. The first experimental observation in photonic system was reported in 2009

by Wang et al [119]. In their experiment, a 2D photonic crystal is constructed by arranging

gyromagnetic ferrite rods in a square lattice, Fig. 1.15(a). A uniform magnetic field is applied to

break TRS. Two metallic plates and a metal wall are added to prevent radiation loss into air. In

the presence of the magnetic field, a complete band gap appears between the second and third

bands, which both have non-zero Chern numbers, Fig. 1.15(b). In addition, a gapless dispersion

curve in red is observed. It supports the propagation of edge state inside the second band gap,

which has only positive group velocity. The simulation of edge wave propagation on the edge

with time is shown in Fig. 1.15(c), where the topologically protected edge mode can travel in

only one direction and is very robust against reflections even when a large metallic scatterer

is placed in the path of the propagation. Fig. 1.15(d) shows the transmission data of the edge
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waves for the forward and backward (red) cases, indicating that edge wave can not propagate

in the backward direction. In general, the gyromagnetic response of materials is very weak in

the optical regime. Thus, realization of topological propagation at optical frequencies remains

a challenge [120].

Figure 1.16: (a) A schematics of the phononic crystal with circulating fluid. (b) The band structure of the gapless
edge state (red). (c) Simulation of the edge waves against different defects. (d) Simulation of the unidirectional
property of the edge waves with different angular velocities of the circulating fluid. [121]

In 2015, topological edge states in an acoustic structure containing circulating fluids were

reported by Z. Yang et al [121]. In their work, the acoustic structure is composed of a honey-

comb phononic crystal, where the rigid solid cylinders are surrounded by the circulating fluids,

Fig. 1.16(a). Due to the existence of the circulating fluids, TRS is broken, leading to a non-

trivial band gap, and the existence of topologically protected acoustic edge waves (red curves

in Fig. 1.16(b)). To verify the robustness of the edge waves, different defects are introduced in

the path of wave propagation in the simulations, including a cavity, a Z-shape and a 180-deg

bend, Fig. 1.16(c) top to bottom. The unidirectional property of the edge waves is shown in

Fig. 1.16(d), where a point sound source with the midgap frequency of the band gap is placed

near the upper boundary. It shows that waves propagate to the left along the interface when

the fluid is circulating with positive angular velocity. Changing the value of the angular velocity

(Fig. 1.16(d) bottom) does not affect the unidirectional property of the edge wave. This is an

example of acoustic analogue of the electronic edge states occurring in the QH effect.

Recently, topological edge waves in a different mechanical system with TRS breaking have

been demonstrated [122, 123]. As shown in Fig. 1.17 (a) and (b), the designed structure is a

hexagonal phononic crystal where the mass on the lattice point is connected to a gyroscope
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Figure 1.17: (a) A schematics of the hexagonal lattice. (b) A schematics of a gyroscope with the top tip pinned
to a mass in the lattice. (c) Band structure of the gyroscope phononic crystal with the Chern numbers labeled on
the bulk bands. (d) 1D band structure with bulk bands (black dots) and edge bands (color lines). (e) Snapshots
of displacement field of the edge wave at different time. [122]

[122]. Due to the gyroscopic inertial effects, TRS of the system is broken, and the mechanical

analogue of the electronic QH effect is realized. The band structure of the gyroscopic phononic

crystal is shown in Fig. 1.17(c), where bands of non-zero Chern number are exhibited. The

dispersion curves of edge wave in the bulk gaps are shown in Fig. 1.17(d) by the color lines.

The robustness of those edge states is confirmed by the simulation in Fig. 1.17(e), where the

edge modes circumvent both the sharp corner and the line defect without any reflection. The

experimental observation of the topological edge wave in the gyroscopic phononic crystal was

later reported by L. M. Nash et al [123].

1.5.2 Time reversal symmetry invariance

In 2005, Kane and Mele considered the spin orbit coupling in graphene [124,125]. At sufficently

low energy, they found that a single plane of graphene exhibits a quantum spin Hall (QSH) effect.

The QSH phase is a time reversal invariant electronic state with a bulk band gap that supports

the transport of charge and spin in gapless edge states. They introduced a Z2 topological index

to characterize the system. In their work, the QSH phase exhibits a bulk energy gap with a

pair of gapless spin polarized edge states in it. Since TRS invariant prevents the flip of spin

states, those edge states are robust against small perturbations. However, because the spin-orbit

coupling is extremely small, it is very difficult to observe the QSH effect in graphene.

Around the same year, B. A. Bernevig, T. L. Hughes and S. -C. Zhang proposed that the

QSH effect can be realized in CdTe/HgTe semiconductor quantum wells (BHZ model) [126]. The

CdTe layer has a normal type of band structure, while the HgTe layer has inverted bulk bands.

By controlling the thickness of the well layer (HgTe), a critical phase transition happens tuning

a conventional insulating phase to a topological one, leading to QSH effect in the quantum

well. Later, König et al experimentally confirmed that a thin layer of HgTe is a topological

insulator [127]. Since then, a new topological class of materials exhibiting QSH effect are widely

studied. Analogues of electronic QSH effect to achieve topological transport hence have been
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Chapter 1: Wave propagation in periodic structures and metamaterials

Figure 1.18: (a) Time reversal pair. (b) The bi-anisotropic photonic crystal. (c) Band structure with and
without the bi-anisotropy of the cylinders in (b). (d) A pair of spin-polarized helical edge states in the gap. (e)
Unidirectional property and the robustness of edge waves against defects. [128]

extended to many other research fields. To achieve topological wave propagation with TRS, the

key point is to construct the time reversal pair, for example, the spin-up and spin-down states

in electronic systems.

The first photonic analogy of the QSH effect with TRS invariant was proposed in 2013 by

A. B. Khanikaev et al [128]. In their work, the time reversal pair is constructed by linear

combinations of light with different polarizations: the TE+TM modes refers to as the spin

‘+’ state, and the the TE−TM modes correspond to the spin ‘−’ state, Fig. 1.18(a). Those

modes can be achieved by metamaterials containing the split-ring resonators, Fig. 1.18(b). By

arranging resonators in a honeycomb lattice, Dirac dispersion at K points is obtained, and lifted

by inducing the bi-anisotropy to mimic the effective spin-orbit coupling, Fig. 1.18(c). On the

interfaces of the metacrystals, a pair of spin polarized helical edge states is observed, Fig. 1.18(d).

This pair of edge states supports the one-way propagation of photons and robust against different

kinds of disorder, Fig. 1.18(e). Later in 2014, this proposal of photonic topological insulator was

experimentally realized by C. T. Chan’s team [129].

In 2015, X. Hu’s team proposed other way to achieve the spin analogy: the doubly degenerate

Bloch modes due to the C6 symmetry of the system [130]. By deforming a honeycomb lattice of

cylinders into a triangular lattice of cylinder hexagons, a double Dirac cone can be obtained and

lifted at Gamma point by adjusting the lattice, leading to a band inversion and the topological

phase transition. Later in 2016, H. Cheng et al demonstrated experimentally this design in

acoustics [131], see Fig. 1.19.

There are other designs of the spin analogy in photonic systems, in addition to using linear

combinations of TE/TM modes [128, 129, 132], for example, using the left circular polarization

and right circular polarization of light to be the pseudo-spin states [133]. A pair of topological

edge waves also can be observed in those systems.

In mechanical system, topological edge waves under TRS have also been reported. A dual-

scale phononic crystal slab as an elastic analogy of the QSH effect was demonstrated by S. H.
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1.5 Topologically protected wave propagation

Figure 1.19: Experimental observation of acoustic analogue QSH effect. [131] (a) Sample of the acoustic metama-
terial with interfaces. (b) Simulation of spin “−′′ state incident from port 1. (c) Simulation of spin “+′′ state
incident from port 2. (d) The measured data on each port of (b). (e) The measured data on each port of (c).

Mousavi et al in 2015 [134], Fig. 1.20. Two types of elastic modes are used to be the effective

spins for phonons, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry

in z−direction. Thus topological gap is observed which supports the propagation of a pair of

edge waves in it. In the same year, a mechanical topological insulator exhibiting QSH effect was

experimentally demonstrated, Fig. 1.21. The mechanical system comprises of 1D pendula [135].

By carefully introducing couplings between pendula, the system exhibits Z2 topological order

and supports the topologically protected propagation of edge wave.

Figure 1.20: (a) Perspective view of the phononic crystal with broken z−mirror symmetry. (b) Band structure
showing a topological gap. (c) Eigenmodes at the K point. [134]

During the recent studies of the topological effect in materials, many other topological

phenomena have also been reported [136–142], such as metamaterials with Weyl point [125],
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Figure 1.21: (a) Illustration of two one-dimensional pendula. Each pendulum has three springs from the top to
the bottom labeled by different colors. The top views of the unit cell are shown in the right of (a). The couplings
between those springs from the top to the bottom are also depicted. (b) and (c) Steady states with a sequence of
removed sites illustrating the stability of the edge states against boundary roughness. Steady states are displayed
by colored disks representing pendula’s polarization. The radius of the circle corresponds to their mean deflection;
the black line indicates the position of the pendulum at a given fixed time. It shows that the motions are mostly
confined on the edges. [135]

analogues of valleytronic effect [139, 140], topological crystalline insulator [141], topological su-

perconductor [142], etc. In addition, topological transition has been observed also in isostatic

lattices [143, 144] and auxetic materials [145, 146]. We believe that more and more phenomena

associated with topology will continue to appear.

1.6 Topological band theory

As the classical band theory fails in prediction of the topological insulators, topological band

theory has been exploited [147,148]. In this section, we will provide the foundations of topological

band theory and explain how it can be used to characterize the topological phenomena.

1.6.1 Topological invariant

To describe the unique properties of wave propagation in topological non-trivial systems, topo-

logy has emerged as another essential degree of freedom. Mathematically, topology is introduced

to classify different geometrical objects. Different topologies can be mathematically character-

ized by topological invariants, quantities that remain constant under arbitrary continuous de-

formations. For example, as shown in Fig. 1.22(a), the six objects have different geometries, but

there are only three different topologies. The sphere can be smoothly deformed into the spoon

without creating any hole. Topologically, they are equivalent. The torus and coffee cup are also

topologically equivalent, so are the double torus and tea pot. For the above closed surfaces,

the topological invariant is its genus, which corresponds to the number of holes within a closed

surface. Objects with the same topological invariant are topologically equivalent; that is, they

are in the same topological phase. Only when a hole is created or removed in the object does
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1.6 Topological band theory

Figure 1.22: (a) Geometric objects divided into into three different topologies. (b) Two interfaces formed by
different (right) and same (left) topological materials. (c) Frequency bands of the structures. A topological phase
transition takes place on the right, but not on the left. (d) Band structures of edge states for different interfaces.
∆C is the change in Chern number between the corresponding bulk bands on the right and left of the materials.
The magnitude of ∆C equals the number of gapless edge modes. [120]

the topological invariant change. This process is known as a topological phase transition.

The most fascinating and peculiar phenomena take place on the interface between two to-

pological insulators with different topological invariants. The interface formed by these two

topological insulators (Fig. 1.22(b), right) is topologically distinct from an ordinary interface,

which is formed between topologically equivalent materials (Fig. 1.22(b), left). The difference

lies in the dispersion spectra of the edge modes inside the bulk gap. On the left of Fig. 1.22c,

the two bulk bands both have zero Chern numbers, so they can directly connect across the

interface without closing the frequency gap. However, when the two materials have different

Chern numbers, topology does not allow them to connect to each other directly. A topological

phase transition must take place on the interface: this requires the closing of the frequency gap,

neutralizing the Chern numbers, then reopening the gap. This phase transition (Fig. 1.22(c),

right), ensures gapless edge states on the interface, edge states at all frequencies within the

gap of the bulk. The gapless dispersion relations of the edge states are topologically protected,
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that is, their existence is guaranteed by the difference of the topologies of the bulk materials on

the two sides. In general, the number of gapless edge modes equals the difference of the bulk

topological invariants across the interface. This is known as the bulk-edge correspondence.

The topological protection of edge waves can be understood in reciprocal space. Fig. 1.22(d)

shows the dispersion diagrams of both ordinary (left) and gapless (right) interfaces. On the left,

the dispersion of the edge wave of the ordinary interface is disconnected from the bulk bands and

can be continuously moved out of the frequency gap into the bulk bands by smoothly modifying

the positions of the bulk bands. On the right, however, the gapless dispersion connects the bulk

bands above and below the gap. It cannot be removed out of the gap by modifying the position

of the lower and upper bulk bands. The only way to alter these connectivities is through a

topological phase transition, that is, closing and reopening the bulk gaps.

The unidirectional property of the protected edge modes can also be explained from the slopes

(group velocities) of the edge dispersions. An ordinary interface (Fig. 1.22(d), left) supports edge

modes along both directions because it can be back-scattered (the same mode can be excited

with opposite sign of wavevector). In contrast, a protected gapless edge mode on the topological

interface (Fig. 1.22(d), right) is unidirectional as it has only positive (or only negative) group

velocities (this mode can not be excited when the sign of the wavevector is opposite). It is

obvious that there are no counter-propagating modes at the same frequencies for the one-way

edge modes. This enables wave to flow around imperfections without backscattering since the

wave can go only forward.

1.6.2 Berry phase and Chern number

Mathematically, the geometrical objects, undergoing smooth deformations into different shapes,

are topologically equivalent unless holes are created in the deformation process. This notion can

be extended to the topological classification of insulators [149,150]. Suppose that the geometrical

objects now are insulators, the smooth deformations correspond to the slow changes of the

Hamiltonian, which is an adiabatic process. As long as the systems remain in the ground state,

that is, no energy gap closing and reopening takes place, the insulators maintain topological

equivalence in this process.

As we have discussed, the dynamical equation of a periodic structure usually can be expressed

as an eigenvalue problem,

D(k)v(k) = Ωv(k), (1.17)

where D(k) is the dynamical matrix of the system. In electronic system, D(k) is the Hamiltonian,

Ω is the energy and v(k) is the state of the system. The classical band theory cares only about

the eigenvalues, Ω, which identify the band structure of the system. However, the information

in the eigenvector v(k) is ignored. Eventually, it turns out that the topological property of

the bands has close relations to the eigenvectors. To classify the topological invariant of bands,

Berry phase plays a key role in topological band theory. The first work about Berry phase
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1.6 Topological band theory

was published in 1984 by Michael Berry, when he was studying the adiabatic evolution of an

eigenenergy state in a slowly changing quantum system. This notion can be extended to the

band theory [97]. Due to the periodicity in the crystals, under translation the Bloch states

become,

v(k) → eiΘ(k)v(k). (1.18)

Θ(k) is a phase due to translation. According to the Bloch’s theorem, Bloch states are invariant

under the transformation in Eq. (1.18). We can define the Berry connection in this process,

A = i〈v(k)|∇k|v(k)〉. (1.19)

Under Eq. (1.18), it transforms as, A → A +∇kΘ(k). It is clear that A, depending on Θ(k),

is not gauge invariant. It is useful to define a gauge invariant vector, the Berry curvature, as

B = ∇k ×A. Then, the Berry phase is defined,

ΓC =

∮

C
dk ·A =

∫

S
dS ·B, (1.20)

where C represents the close path of the BZ, and S is the surface of the BZ enclosed by the

path C. Apparently, the Berry phase is gauge invariant.

To see the physical meaning of the Berry phase, let us consider a two-level system as an

example [149,150]. The Hamiltonian of the system can be given by

H(k) = e(k) · σ =

[
ez ex − iey

ex + iey −ez

]
, (1.21)

where e(k) = (ex, ey, ez) and σ represent the Pauli matrices,

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
. (1.22)

The corresponding eigenstates with the energy ±|e| are obtained,

v+ =



cos

θ

2
e−iφ

sin
θ

2


 , v− =



sin

θ

2
e−iφ

− cos
θ

2


 , (1.23)

where θ ∈ [0, 2π] is the azimuthal angle of e(k) and φ ∈ [0, π] is the polar angle. In these

coordinates,

ex = |e| sin θ cosφ, ey = |e| sin θ sinφ, ez = |e| cos θ. (1.24)

Let us consider the v− mode. According to Eq. (1.19), the Berry connection is given by,

Aθ = i〈v−|∂θv−〉 = 0, (1.25a)
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Aφ = i〈v−|∂φv−〉 = sin2
θ

2
, (1.25b)

and the Berry curvature of v− mode in the spherical coordinates is,

B−
θφ = (∂θAφ − ∂φAθ)ê =

1

2
sin θê. (1.26)

where ê = e/|e| is a unit vector and can be identified by a point on the sphere S2. According

to Eq. (1.20), the Berry phase for this system reads,

ΓC =
1

2

∫

S
sin θêdθdφ =

1

2

∫

S

e

|e|3dS. (1.27)

Eq. (1.27) shows that the Berry curvatureB = e/2|e|3 can be regarded as a gauge field generated

by a monopole at the origin point e = 0, which acts as source and drain of the Berry curvature

flux. We find that the integral of the Berry curvature over a closed 2D space S,

1

2π

∫

S
dθdφB−

θφ = 1. (1.28)

It shows that the Berry curvature integrated over a closed manifold S is a multiple of 2π that is

equal to the net number of monopoles inside. This number defines a topological invariant called

the Chern number,

C =
1

2π

∫

S
B · dS. (1.29)

For 2D crystals, the closed surface S is the 2D BZ. The topological band theory indicates that

the eigenvectors need also to be computed and can indeed have a remarkable effect on the band

structure.

1.7 Conclusion

As a new kind of artificial and functional materials/structures, phononic crystals and metama-

terials exhibit fascinating abilities in wave control. Many novel phenomena can be achieved

based on those functional materials/structures. In the recent years, the studies of granular crys-

tals and metamaterials also show excellent abilities in the controlling of elastic waves [14–23].

In addition, due to interactions taking place via their interparticle contacts, they exhibit some

advantages in the study of rotational waves [14,15,19] and nonlinear waves [90,92]. In this work,

we continue to exploit the linear wave dynamics in the two-dimensional (2D) granular crystals.

Propagation of slow waves, zero-frequency modes and edge waves are studied in Chapters 2 and

3 [30,31]. In addition, in Chapter 4 topological wave propagation phenomena are demonstrated

in granular crystals for rotational waves [32].
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2.1 Introduction

2.1 Introduction

There has been a growing interest in investigating the propagation of elastic/acoustic waves in

phononic crystals in the last decade [1–12, 57–60]. Owing to Bragg scattering in spatially peri-

odic media, phononic crystals possess exotic dispersion characteristics including, for example,

frequency band gaps [37], negative refraction [38], subwavelength imaging [39] etc. Although

studies of phononic crystals involving elastic behaviors have been reported in all dimensions,

from 1D to 3D [60, 81, 151], most of the recent studies are focusing on different types of two-

dimensional lattice that support bulk or edge modes [152–154]. For instance, in the nearly

isostatic square/kagome lattices, by accounting for only the nearest neighbor central-force in-

teractions, soft modes and zero-frequency bulk modes have been predicted [155, 156]. More

interestingly, when the kagome lattices are twisted, negative Poisson ratio and zero-frequency

edge states could be achieved [143,144]. Other fascinating elastic properties, such as topological

soft modes and topological edge modes, have also been reported in the kagome and honeycomb

systems [56,122].

In non-consolidated granular crystals, the interactions between individual grains take place

via local contacts, which are much smaller in size than the dimensions of the individual grains

and inherently much softer than the grains [13, 16–22, 45], e.g., Hertzian contacts. Even when

granular crystals are consolidated via their curing, like opals, or by grain-connecting ligands, like

in nanocrystal superlattices, the elastic links between the grains keep being significantly smaller

and softer than the grains themselves. This induces propagation of elastic waves in granular

structures at significantly slower velocities than in the individual grains [157–159] even if the

rotational degrees of freedom of the individual beads are not strongly involved. In contrast to

normal forces, which are central forces in most of the spring-mass systems [56, 122, 143, 144],

in granular crystals the shear forces due to transverse rigidity of the contacts are non-central

and can initiate the rotation of the beads. Thus the rotational degrees of freedom of the indi-

vidual beads, the particle dimensions and the interactions through non-central forces should be

taken into consideration. It was theoretically predicted [16–22, 81] and experimentally demon-

strated [23,45] that, due to the rotational degrees of freedom of the particles, additional coupled

rotational/transverse and pure rotational modes can propagate in granular crystals, while the

pure transverse modes, predicted for the theoretical case of the frozen grain rotations, are modi-

fied into coupled transverse/rotational ones. Interestingly, accounting for the rotational degrees

of freedom, in addition to translational ones, can also lead to the existence of zero-frequency

(zero-energy) modes [160–162]. The additional rotational degrees of freedom provide extra flex-

ibilities to dispersion engineering of phononic crystals and to the control of the propagation of

elastic waves.

It should be mentioned that, a general theoretical approach for the analysis of acoustic

waves in phononic crystals is known already for quite a long time [1–5], and the Cosserat

continuum theory for the description of the long-wavelength acoustic wave propagating in the
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micropolar media with rotational degrees of freedom exists for more than a century [163–165].

In contrast, the analytical discretized models that study the rotational modes and their coupling

to other modes, in particular to shear ones, have started to attract increasing interest only in

recent years [16–22, 81, 160, 166]. In this Chapter, we exploit the Lagrangian method [167] to

evaluate the intergrain interactions of granular phononic membranes. An important advantage

of the method is that it is possible to find analytical solutions for modes at high symmetry

points, like Γ, M and K. The analytical formulas are very useful by giving clear guidelines on

how to control the phonons spectra and to design suitable phononic crystals. In particular,

we theoretically study the dispersion relations of elastic waves in hexagonal and honeycomb

monolayer granular membranes for both out-of plane and in-plane motion. We also demonstrate

that rotational modes and their coupling to translational modes can provide more flexibilities

and additional functionalities in the control of the elastic wave propagation. Specifically, the

granular phononic structures are expected to be advantageous in the monitoring of bulk shear

and surface Rayleigh acoustic waves [19, 91]. Besides, the detailed analysis of zero-frequency

modes is reported. In the honeycomb lattices, we demonstrate the existence of zero-group-

velocity rotational modes with non-zero-frequency, the propagation of which can be initiated

by weak bending and torsional interactions between the beads. We also study how the number

and parameters of these modes are changing in transition from hexagonal to honeycomb lattice.

Finally, we predict the degenerated modes at Γ and K points that can be realized for particular

values of bending and torsional rigidities. For example, when the bending/torsional rigidities

have special values, the Dirac-like cones, triple degenerated points and even the double Dirac

cones can be obtained. As reported in many previous publications, manipulation of Dirac

cones could lead to many interesting effects [168–171]. For instance, by breaking the symmetry

of the system, the opening of the gap in the Dirac K point in acoustic/elastic systems can

give rise to the topological edge states propagating only along some particular directions [28,

52, 121]. Even for the Dirac cone at Γ point, one could expect to observe the pseudospin-

resolved Berry curvatures of photonic bands and helical edge states characterized by Poynting

vectors [130, 135]. The analytical predictions of Dirac cones and double Dirac cones in this

Chapter could largely facilitate the study of the topological properties of elastic waves in more

complex granular membranes with modified/broken symmetries. The study of these types of

membranes is motivated by potential applications of the unidirectional waves propagating with

reduced/avoided attenuation/scattering. In general, we believe that our theoretical analysis of

the elastic waves in mechanically free membranes would be useful also in the studies of the

interaction of the granular layers with the elastic substrates [172–175].

This Chapter is constructed as follows: in Sec. 2.2, the structures of the studied membranes

and the interactions between beads are analyzed. The theoretical calculation and analysis of

the modes in hexagonal monolayer membranes with out-of-plane motion is presented in Sec. 2.3.

This analysis includes the phonon spectra, the zero-frequency modes, the degenerated modes

and the Dirac cones at the high symmetry points. Then we are focusing on in-plane motion in
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hexagonal monolayer membrane in Sec. 2.4. In Sec. 2.5 and Sec. 2.6, we turn our attention to

the honeycomb monolayer membranes for both the cases of out-of-plane and in-plane motions.

In Sec. 2.7, we present the conclusions of this chapter.

2.2 Interactions and dynamics in granular crystals

In this section, we discuss the individual movements of particle and the possible interactions

between beads in two-dimensional infinite monolayer granular crystals. The equations of motion

of hexagonal and honeycomb structures are derived.

2.2.1 Individual grain movements and intergrain interactions

Figure 2.1: Possible movements of individual particle. (a) Out-of-plane motion is accompanied by two in-
plane rotations ϕ, φ and one out-of-plane displacement u. (b) In-plane motion is accompanied by two in-plane
translations ux, uy and one out-of-plane rotation ϕ.

In two-dimensional infinite monolayer granular crystals, since rotation and translation of

beads can take place, each individual particle possesses 6 degrees of freedom (DOF). However,

when proper motions are imposed to the system, not all of them contribute to the elastic wave

propagation. In this Chapter, we consider two different types of motion in granular structures

as depicted in Fig. 2.1. (1) Out-of-plane motion. As shown in Fig. 2.1(a), the beads in the

granular structures exhibit out-of-plane translation (u) along z−axis and in-plane rotational

angles ϕ and φ (ϕ-rotation with the axis in the x−direction and φ-rotation with the axis in

the y−direction). (2) In-plane motion. As presented in Fig. 2.1(b), the beads possess out-of-

plane rotation (ϕ) along z−axis and in-plane translations ux and uy along x−axis and y−axis,

respectively. The movements of individual particles lead to the following forces and/or moments

(see Fig. 2.2): (1) Shear forces, which are characterized by an effective shear rigidity (Fig. 2.2(a)).

These forces are activated in the granular crystals due to a resistance of the contact to relative

displacement of the beads in the direction transversal to the axis connecting their centers and

due to in-phase rotation of the beads relative to the direction normal to the axis connecting their

centers. (2) Torsional moments, which are characterized by an effective torsional (spin) rigidity
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Figure 2.2: Schematic presentation of shear and torsional interactions by resistance to relative motion of the
beads of (a) a single central shear spring and (b) two separated non-central shear springs. Schematic presentation
of normal and bending interactions by resistance to relative motion of the beads of (c) two separated non-central
normal springs and (d) a single central normal spring.

(Fig. 2.2(b)). The shear resistance of the contact to relative rotation of the beads along the axis

connecting their centers can initiate these moments. (3) Normal forces at the contact between

two adjacent particles described by normal rigidity (Fig. 2.2(d)). This type of interaction can be

excited when there is relative displacement between two adjacent beads along the axis connecting

their centers. (4) Bending moments, which are characterized by an effective bending rigidity

(Fig. 2.2(c)) resulting from the distribution of the normal forces at the contact, when the beads

are rotated relative to the axis parallel to the contact. They originate from the resistance of the

contact of beads to rolling. For the out-of-plane motion, the motions of beads in the membranes

lead to the shear, torsional and bending interactions, while the normal forces are not initiated.

For the in-plane motion, the normal, shear and bending interactions are activated, while the

torsional interactions are not.

In Fig. 2.2(a) the effective shear rigidity of the contact is represented by a single spring of

an effective rigidity ξs and the energy of interaction can be evaluated because the relative mac-

roscopic displacements of the neighbor beads are known. The interaction energy is proportional

to the product of the effective shear rigidity and the square of the relative displacement which

is equal to the elongation of the effective spring. However, one should keep in mind that the

shear interactions are in fact distributed at the complete surface of the contact. To appreciate

the role of the finite dimensions of the contact, we present the distributed shear interaction at
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the contact, caused by the relative rotations of the grains, as one supported by two separated

springs of half rigidity separated spatially not only themselves but also from the center of the

contact. The characteristic distance of the separation is of the order of the contact radius δ.

This presentation of the shear interaction between the contact faces does not change the mag-

nitude of shear interaction, which will be the same as presented in Fig. 2.2(a), because the sum

of these two forces is equal to zero. However, it reveals the existence of the torsional rigidity of

the contact. From Fig. 2.2(b) it is clear that, when the neighbor beads exhibit unequal rotations

relative to the axis connecting their centers, one of the springs elongates while the other shrinks.

Thus, it is the induced forces acting on the beads that are totally compensated being combined

destructively, but not the moments. The moments due to the deformation of two beads will be

added constructively, introducing resistance to torsional motion, which we describe as torsional

interaction (Fig. 2.2(b)). It is worth noting that the elastic energy stored in shear interaction,

presented in Fig. 2.2(a), is ∼ ξs(u2 − u1)
2. The elastic energy stored in shear interaction caused

by the rotations in Fig. 2.2(a) is ∼ ξs[R(ψ2 + ψ1)]
2, where ψi (i=1, 2) is the rotational angle

shown in Fig. 2.2(a). Thus, it is the product of the bead radius and the angle that plays the role

of the effective coordinate when we characterize the elongation of the effective springs caused

by rotations. Then, the torsional elastic energy stored in the motion presented in Fig. 2.2(b),

i.e., ∼ ξs[δ(ψ2 −ψ1)]
2, should be presented as ∼ ξs(δ/R)

2[R(ψ2 −ψ1)]
2, demonstrating that the

effective torsional rigidity of the contact is related to its shear rigidity by ξt ∼ ξs(δ/R)
2. Thus

for contact areas with small radius in comparison with the beads radius R, the effective torsional

rigidity is much weaker than the effective shear rigidity. From the physics point of view, this is

a manifestation that torsional interactions (and also bending interactions described below) take

place via the moments of forces and not through the forces. The moments can be small even

for high amplitude forces if these are applied too close to the axis of rotation. In Fig. 2.2(c),

in order to reveal the existence of bending interaction, we have splitted the normal rigidity of

the contact (presented in Fig. 2.2(d)) into two separated normal springs of half rigidity. The

elastic energy of the normal interactions is the same for both cases, i.e., those schematically

illustrated in Fig. 2.2(c) and (d). However, the spatially separated springs in Fig. 2.2(c) activate

additionally the bending interaction as they counteract the rotation of the beads in opposite

direction relative to the direction normal to the axis connecting their centers. Arguments similar

to those presented above, where shear and torsional effective rigidities are compared, lead to

the following relation between the effective bending and normal rigidities, ξb ∼ ξn(δ/R)
2. The

above derived estimates indicate that torsional and bending rigidities could be much smaller

than shear and normal rigidities, respectively, i.e., ξt ≪ ξs and ξb ≪ ξn, in non-consolidated

granular crystals, where commonly δ ≪ R and also if these small contacts are consolidated for

example by curing. However, potentially it is possible to create interbead contacts with effect-

ive dimensions comparable to the dimensions of the beads by linking the beads with chemical

ligands at micro/nano scale or by elastic rods at macro scale. Thus the granular crystals with

ξt > ξs and ξb > ξn cannot be a priori excluded from the theoretical analysis. Because commonly
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Chapter 2: Bulk wave propagation in granular crystals

normal rigidity is comparable with shear rigidity, i.e., ξn > ξs, then the granular crystals with

ξb > ξt cannot be excluded from the theoretical analysis either.

2.2.2 Lagrangian formalism in granular crystals

The interactions in granular crystals can be theoretically analysed by the Lagrangian formalism

[155]. In general, there are connections only between beads with their nearest neighbors, thus

we only consider the nearest couplings in granular crystals. The Lagrangian of beads can be

written as,

L = Ek − Ep, (2.1)

where the kinetic energy Ek and the potential energy Ep read,

Ek =
1

2

∑

j

Mjχ̇
2
j , (2.2)

Ep =
1

2

∑

l,i

ξl∆l
2
i . (2.3)

where j = x, y, z is the coordinate index, l = s, n, b, t is the coupling index denoting the

shear/normal/bending/torsional coupling, and i is the neighbor index of the particle labelling its

i−th neighbor particle. Mj is the mass/inertia of bead. χj represents the movement component.

ξl is the rigidity of the effective spring. ∆li corresponds to the elongation of the effective spring

ξl between beads and their i−th neighbor. The Lagrange equation is,

∂L

∂χ
− d

dt

(
∂L

∂χ̇

)
= 0. (2.4)

Figure 2.3: Definitions of the unit vectors.

where χ denotes the generalized coordinates and χ̇ the

time-derivative of these coordinates. From the Lag-

range equation in Eq. (2.4), the equations of motion can

be obtained. Regardless of the granular structure, the

effective elongations of different types of the effective

springs are important in order to obtain the equations

of motion. We discuss below separately the out-of-plane

and the in-plane motions of the granular crystals.

• Out-of-plane motion

In this case, shown in Fig. 2.2, the shear, torsional and

bending interactions take place in the granular crystals.

Firstly, we define several unit vectors as depicted in

Fig. 2.3, where ei is the unit vector in the direction from the center of beads to the center

of their i−th neighbor. ex, ey and ez represent the unit vectors along x−, y− and z−axis,
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2.2 Interactions and dynamics in granular crystals

respectively. di is an unit vector in the direction normal to ei and ez. Thus, di takes the form,

di = ez × ei. Under the definitions, the effective elongations ∆li of those three types of springs

are given by,

∆si = (ui − u)− a

2
(ϕi + ϕ)ex · di −

a

2
(ψi + ψ)ey · di, (2.5a)

∆bi =
a

2
(ϕi − ϕ)ex · di +

a

2
(ψi − ψ)ey · di, (2.5b)

∆ti =
a

2
(ϕi − ϕ)ex · ei +

a

2
(ψi − ψ)ey · ei, (2.5c)

where ∆si, ∆bi and ∆ti correspond to the effective elongations of the effective springs accounting

for the shear, bending and torsional contact interactions between beads with their i−th neighbor.

• In-plane motion

In this case, shown in Fig. 2.2, the normal, shear, and bending interactions are activated in the

granular crystals. the effective elongations ∆li of those three types of springs are given by,

∆ni = (uxi − ux)ex · ei + (uyi − uy)ey · ei, (2.6a)

∆si = (uxi − ux)ex · di + (uyi − uy)ey · di −
a

2
(ϕi + ϕ), (2.6b)

∆bi =
a

2
(ϕi − ϕ), (2.6c)

where ∆ni, ∆si and ∆bi correspond to the effective elongations of the effective springs accounting

for the normal, shear, and bending contact interactions between beads.

As long as the structure of the granular crystal is given, the elongations of springs and the

equations of motion can be obtained. In the next, we analyse separately the hexagonal and

honeycomb structures with both out-of-plane and in-plane motions.

2.2.3 Equations of motion of hexagonal granular crystals

Figure 2.4: Structures of a hexagonal granular membrane and its Brillouin zone.

A hexagonal granular membrane, a two-dimensional infinite monolayer granular crystal, is

shown in Fig. 2.4, where periodically ordered spherical particles with radius R are arranged
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in a hexagonal lattice. The structure is characterized by the lattice constant a = 2R for the

hexagonal lattice. The corresponding first Brillouin zones is also depicted in Fig. 2.4.

Considering the particle number “0” in Fig. 2.4, it has 6 nearest neighbors labeled by “1” to

“6”. Next, we discuss the cases of out-of-plane and in-plane motions, respectively.

• Out-of-plane motion

According to Eqs. (2.1) − (2.4), the equations of motion are derived as,

Iϕ̈0 = R
6∑

i=1

(ξs∆siex · di + ξb∆biex · di + ξt∆tiex · ei), (2.7a)

Iφ̈0 = R
6∑

i=1

(ξs∆siey · di + ξb∆biey · di + ξt∆tiey · ei), (2.7b)

Mü0 =

6∑

i=1

ξs∆si. (2.7c)

• In-plane motion

Similarly, the equations of motion are given by,

Müx0 =
6∑

i=1

(ξn∆niex · ei + ξs∆siex · di), (2.8a)

Müy0 =

6∑

i=1

(ξn∆niey · ei + ξs∆siey · di), (2.8b)

Iϕ̈0 = R
6∑

i=1

(ξs∆si + ξb∆bi). (2.8c)

In Eqs. (2.7) and (2.8), we need to calculate the inner produces of ex,y with ei and di. Table

2.1 shows the results for the hexagonal structure. Thus, the elongations of effective springs and

the explicit forms of equations of motion can be obtained.

Table 2.1: Hexagonal granular membrane

i−th 1 2 3 4 5 6

ex · ei 1/2 1 1/2 -1/2 -1 -1/2

ey · ei −
√
3/2 0

√
3/2

√
3/2 0 −

√
3/2

ex · di
√
3/2 0 −

√
3/2 −

√
3/2 0

√
3/2

ey · di 1/2 1 1/2 -1/2 -1 -1/2

2.2.4 Equations of motion of honeycomb granular membranes

A honeycomb granular membrane, a two-dimensional infinite monolayer honecomb granular

crystal, is shown in Fig. 2.5. The lattice constant of the honeycomb structure is a = 2
√
3R. The

corresponding first Brillouin zones is also shown in Fig. 2.5.
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2.2 Interactions and dynamics in granular crystals

Figure 2.5: Structures of a honeycomb granular membrane and its Brillouin zone. The red box marks one unit
cell of the structure.

One should notice that, in the honeycomb structure, there are particles in two different

positions marked as A and B. For example, as presented in Fig. 2.5, particles number “0”, “2”

and “4” belong to particles in position A, while particles number “1”, “3” and “5” are particles

in position B. The unit cell of the honeycomb structure can be chosen as shown in the red box

in Fig. 2.5. Considering the particle “0” and “1”, each of them has three nearest neighbors.

To obtain the equations of motion, we analyse the cases of out-of-plane and in-plane motions,

respectively.

• Out-of-plane motion

Since there are two particles in one unit cell, for example, particles 0 and 1, we need to analyse

all interactions including at least one of these particles. According to Eqs. (2.1) − (2.4), the

equations of motion are derived as,

Iϕ̈0 = R
∑

i=1,3,5

(ξs∆siex · di + ξb∆biex · di + ξt∆tiex · ei), (2.9a)

Iφ̈0 = R
∑

i=1,3,5

(ξs∆siey · di + ξb∆biey · di + ξt∆tiey · ei), (2.9b)

Mü0 =
∑

i=1,3,5

ξs∆si, (2.9c)

Iϕ̈1 = R
∑

i=0,2,4

(ξs∆siex · di + ξb∆biex · di + ξt∆tiex · ei), (2.9d)

Iφ̈1 = R
∑

i=0,2,4

(ξs∆siey · di + ξb∆biey · di + ξt∆tiey · ei), (2.9e)

Mü1 =
∑

i=0,2,4

ξs∆si. (2.9f)

• In-plane motion

Similarly, the equations of motion of honeycomb structures for in-plane motion are given by,
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Müx0 =
∑

i=1,3,5

(ξn∆niex · ei + ξs∆siex · di), (2.10a)

Müy0 =
∑

i=1,3,5

(ξn∆niey · ei + ξs∆siey · di), (2.10b)

Iϕ̈0 = R
∑

i=1,3,5

(ξs∆si + ξb∆bi), (2.10c)

Müx1 =
∑

i=0,2,4

(ξn∆niex · ei + ξs∆siex · di), (2.10d)

Müy1 =
∑

i=0,2,4

(ξn∆niey · ei + ξs∆siey · di), (2.10e)

Iϕ̈1 = R
∑

i=0,2,4

(ξs∆si + ξb∆bi). (2.10f)

The inner produces of ex,y with ei and di in Eqs. (2.9) and (2.10) can also be calculated.

Table 2.2 shows the results for the honeycomb structures.

Table 2.2: Honeycomb granular membrane

(a) Particle “0”

i−th 1 3 5

ex · ei 1 -1/2 -1/2

ey · ei 0
√
3/2 −

√
3/2

ex · di 0 −
√
3/2

√
3/2

ey · di 1 -1/2 -1/2

(b) Particle “1”

i−th 0 2 4

ex · ei -1 1/2 1/2

ey · ei 0 −
√
3/2

√
3/2

ex · di 0
√
3/2 −

√
3/2

ey · di -1 1/2 1/2

2.3 Hexagonal monolayer membrane with out-of-plane motion

In this section, the out-of-plane motion is considered in the hexagonal granular membrane. The

bulk wave properties are discussed.

2.3.1 Dispersion curves and complete band gaps

To analyze the out-of-plane motion in hexagonal membrane, the equations of motion are given

in Eqs. (2.7). Suppose the solution of the equations of motion has a plane wave form,

v(t, x, y) = voute
iωt−ikxx−ikyy, (2.11)

where vout = [u; Φ;Ψ] is a vector of the motion component with Φ = Rϕ and Ψ = Rφ (R the

radius of the particle), ω is the cyclic frequency, kx and ky are the wave vectors along x− and
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2.3 Hexagonal monolayer membrane with out-of-plane motion

y− directions, respectively. According to Eqs. (2.7), the dynamical equation can be obtained,

Soutvout = Ω2vout, (2.12)

where Ω = ω
√
M/ξs is the normalized frequency, M is the mass of beads, and Sout is a 3 × 3

dynamical matrix, whose elements are of the following forms,

S1,1
out = sin2 2qx + sin2 2q+ + sin2 2q−, (2.13a)

S1,2
out =

√
3i

4
(sin 2q+ − sin 2q−), (2.13b)

S1,3
out = − i

4
(2 sin 4qx + sin 2q+ + sin 2q−), (2.13c)

S2,2
out =

3P

2
− 3− 3ηb − ηt

4
P(sin2 2q+ + sin2 2q−) + ηtP sin2 2qx, (2.13d)

S2,3
out =

√
3P

4
(1− ηb + ηt)(cos

2 2q− − cos2 2q+), (2.13e)

S3,3
out =

3P

2
− 1− ηb − 3ηt

4
P(sin2 2q+ + sin2 2q−)− (1− ηb)P sin2 2qx, (2.13f)

S2,1
out = −PS1,2

out, (2.13g)

S3,1
out = −PS1,3

out, (2.13h)

S3,2
out = S2,3

out. (2.13i)

Above, qx = kxa/4 and qy =
√
3kya/4 are the normalized wave vectors, and q± = qx ± qy.

P = MR2/I with I the moment of inertia of particle. nb,t = ξb,t/ξs is the bending/torsional

rigidity normalized to the shear one. The solution of this eigenvalue problem gives the Ω − k
dispersion curves, which highly depends on the values of ηb and ηt.

In Fig. 2.6, the Ω−k dispersion curves for different values of the ratios ηb and ηt are derived.

It will be shown that it is possible to create a complete band gap by a fine tuning of the contact

rigidities. Without losing of generality, in Fig. 2.6 we show the dispersion curves, following the

path KΓMK of the first Brillouin zone (see Fig. 2.4), for the case of a fixed ηb = 0.1 and varying

the ηt. Each of the eigenmodes consists of three components, the displacement u, and the ro-

tations Φ, Ψ. The nature of the modes is labeled in different colors. Red curves correspond to

the pure rotation modes, blue curves represent the coupled translational/rotational modes with

a predominance of translation, while yellow curves depict the coupled translational/rotational

modes with a predominance of rotation. All the modes at the high symmetry points Γ, M and K

are decoupled into pure modes and they can be described analytically by the dynamical matrix.

The frequencies of some of those are marked in the dispersion curves. Concerning the propaga-

tion along y−axis (ΓM segment), the eigenfrequency of the pure displacement u mode at M point

is fixed at Ωu =
√
2, while there is also a pure rotational Φ mode at ΩΦ =

√
5(3ηb + ηt)/2. Since

the latter depends on ηb and ηt, a forbidden band gap along this direction can exist and be tuned.

In particular, as long as 3ηb + ηt 6 8/5, this band gap exists at
√

5(3ηb + ηt)/2 6 Ω 6
√
2 (see

Figs. 2.6(a) and (b)). In the particular case of 3ηb + ηt = 8/5, the gap disappears (Fig. 2.6(c)),
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Figure 2.6: Dispersion curves of the hexagonal membrane with out-of-plane motion when ηb = 0.1 while ηt
is varying. Red lines represent purely rotational modes. Blue (yellow) curves correspond to coupled transla-
tional/rotational modes with the predominance of translation (rotation). A complete band gap appears above
Ω = 3/2 when 3ηb + ηt > 9/5. Its width stabilizes at 3/2 6 Ω 6

√
15/2 when 3ηb + ηt > 3.

while for 8/5 6 3ηb + ηt 6 3, it reappears at
√
2 6

√
5(3ηb + ηt)/2 (Figs. 2.6(d) and (e)), and it

stabilizes at
√
2 6

√
15/2 when 3ηb+ ηt > 3 (Fig. 2.6(f)). Now, for waves propagating along the

x−direction (ΓK segment), the eigenfrequency of the two degenerated modes at K point is noted

at Ω =
√

15(1 + 3ηb + 3ηt)/4 (a pure Φ mode degenerates with a pure ψ mode). Since this mode

also depends on the values of ηb and ηt, a forbidden band gap along this direction can exist and

be tuned. In particular, for ηb + ηt > 7/15 as shown in Figs. 2.6(e) and (f), the band gap is

located at 3/2 6 Ω 6
√
15(1 + 3ηb + 3ηt)/4. This gap has maximum width 3/2 6 Ω 6

√
15/2

when the values of ηb and ηt are large (3ηb + ηt > 3). Finally, for waves propagating in the

MK direction, a forbidden gap appears at 3/2 6 Ω 6
√
5(3ηb + ηt)/2 when 3ηb + ηt > 9/5.

Combining the information on modes at the Γ, M and K points, a complete band gap can be

predicted, for example, in Figs. 2.6(e) and (f), above Ω = 3/2 for 3ηb + ηt > 9/5. Its width

reaches a maximum value 3/2 6 Ω 6
√
15/2 when 3ηb + ηt > 3.

2.3.2 Zero-frequency modes

For the extreme case where the impacts of bending and torsional forces are ignored (ηb = ηt = 0),

for example, assuming (δ/R)2 ≪ 1, the dynamical matrix Sout reduces to,




3

2
− cos 2qx cos 2qy −

1

2
cos4qx

√
3i

2
cos 2qx sin 2qy

i

2
(sin 2qx cos 2qy + sin 4qx)

−
√
3iP

2
cos 2qx sin 2qy

3P

4
(cos 2qx cos 2qy − 1) −

√
3P

4
sin 2qx sin 2qy

− iP
2
(sin 2qx cos 2qy + sin 4qx) −

√
3P

4
sin 2qx sin 2qy

P

4
(cos 2qx cos 2qy − 1 + 4 cos2 2qx)




(2.14)
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2.3 Hexagonal monolayer membrane with out-of-plane motion

Figure 2.7: (a) The zero-frequency mode along ΓM, propagating in y−direction, in hexagonal membrane with
out-of-plane motion and corresponding movements of the beads at three different points. (b) Γ point: kx = ky = 0;
(c) The point of half ΓM: kx = 0, ky = π/4R; (d) M point: kx = 0, ky = π/2R.

The dispersion curve is presented in Fig. 2.7(a). In the case of waves propagating along the

y−direction, a band of zero-frequency modes is noted along the ΓM (qx = 0, 0 < qy < π/2)

direction. The dynamical matrix Sout along this direction is reduced further to the form,

Sout =




2 sin2 qy

√
3i

2
sin 2qy 0

−
√
3iP

2
sin 2qy

3P

2
cos2 qy 0

0 0
P

2
(cos2 qy + 2)



. (2.15)

Eq. (2.15) predicts a pure Ψ mode at Ω =
√

5(cos2 qy + 2)/2 and two u+Φ coupled modes at

Ω = 0 and Ω =
√

15− 7 sin2 qy/2. Thus, the zero-frequency modes are u+Φ modes, i.e., coupled

translational/ rotational modes with zero group velocity (non-propagative modes). Although

it has been predicted before in many systems, the physical explanation of the existence of the

zero-frequency mode in granular crystal has seldom been discussed. Figs. 2.7(b), (c) and (d)

demonstrate the movements of beads in three different positions along the ΓM direction. At

Γ point, beads do not rotate while their displacements in z-axis are the same. It suggests

that although beads could displace from their original places, the relative displacements of the

neighbor beads are absent. Consequently, the displacements of the beads do not lead to the

loading of the contacts. Thus the system has the same energy as the one with zero displacement

and zero rotation. For the case of the point in the middle of ΓM, some beads rotate, others
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have only displacements, which implies that there could be loadings of the contacts between

two adjacent layers. However, the rotations are compensated by the translations in a sense

that the displacements along z-axis of the opposite sides of the interparticle contact are equal,

even though the displacement of one side is the result of purely translational motion while the

displacement of the other side is due to purely rotational motion. Thus, the contact remains

unstrained. In the M point, the motion is dominated by rotations, where beads have the same

translations with small amplitude and the contacts between the subsequent layers of beads in

y-direction are unstrained because the subsequent layers of beads exhibit equal rotations but

in opposite directions. For the other wave vectors along the y-axis the situation is similar,

i.e., there is a combination of rotations and translations which keep the contacts between the

particles unstrained and the energy of the system unmodified. Thus, to create this type of motion

costs zero energy, i.e., zero-energy modes. In reality, in the considered granular membrane, it is

the bending/torsional rigidities of the contacts that counteract the zero energy combinations of

translations and rotations. Although the bending and torsional rigidities play negligible role in

the description of modes whose propagation is mainly controlled by the shear rigidity of contacts,

they play crucial role in activating the propagation of zero-energy modes where the interparticle

contacts are unsheared due to the described above compensation of the translations and rotations

(compare Fig. 2.7(a) to Fig. 2.6). It should be mentioned that the bending/torsional interactions,

as shown in the following, can also initiate the propagation of modes with non-zero frequency

which are non-propagating in their absence.

2.3.3 Degenerate modes and Dirac cone

Due to symmetry [176, 177], two bands are intersecting at K point forming a Dirac cone where

the dispersion curves become linear around K point. Dirac cones have been reported in many

systems and the wave physics around them has explained a lot of interesting acoustic effects [35-

44]. At K point, namely by setting qx = π/6 and qy = π/2, the dynamical matrix in Eqs. (2.13)

give: (1) an u mode at Ωu = 3/2, (2) a Φ mode at ΩΦ =
√

15(1 + ηb + ηt)/4, and (3) a Ψ

mode at ΩΨ =
√

15(1 + ηb + ηt)/4. Thus, this Dirac cone originates from the degeneracy of

two rotational modes at frequency Ω =
√

15(1 + ηb + ηt)/4. Basically, as shown in Figs. 2.8(a)

and (b), the variation of the values of ηb and ηt cannot break the Dirac cone, but can only

change its position in the dispersion diagram. As depicted in Figs. 2.8(c) and (d), by controlling

ηb and ηt, the u mode could perfectly degenerate with the rotational modes when the relation

ηb + ηt = 7/15 is satisfied, contributing to a triple degenerated mode at the K point.

2.4 Hexagonal monolayer membrane with in-plane motion

In this section, the in-plane motion is considered in the hexagonal granular membrane. The

bulk wave dispersion, zero-frequency modes, degenerate modes are discussed.

47



2.4 Hexagonal monolayer membrane with in-plane motion

Figure 2.8: Dispersion curves in hexagonal membrane with out-of-plane motion for different values of the nor-
malized bending and torsional rigidities. Dirac cones and triple degenerated modes at the K point are noted by
green arrows. The existence of Dirac cone cannot be broken by modifying the values of bending and torsional
rigidities as shown in (a) and (b). Different combinations of bending and torsional rigidities can lead to triple
degenerate modes as shown in (c) and (d).

2.4.1 Dispersion curves and complete band gaps

By analysing the in-plane motion in hexagonal membrane, the equations of motion are given in

Eqs. (2.8). We still consider the plane wave solution for the equations of motion,

v(t, x, y) = vine
iωt−ikxx−ikyy, (2.16)

where vin = [ux;uy; Φ] is a vector of the moment component. Substituting into Eqs. (2.8), the

dynamical equation for the in-plane motion can be found,

Sinvin = Ω2vin, (2.17)

where vin = [ux;uy; Φ], and Sin is a 3×3 dynamical matrix, whose elements are of the following

forms,

S1,1
in =

ηn + 3

4
(1− cos 2qx cos 2qy) +

ηn
2
(1− cos 4qx), (2.18a)

S1,2
in =

√
3(ηn − 1)

4
sin 2qx sin 2qy, (2.18b)

S1,3
in = −

√
3i

2
cos 2qx sin 2qy, (2.18c)

S2,2
in =

3ηn + 1

4
(1− cos 2qx cos 2qy) +

1

2
(1− cos 4qx), (2.18d)
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S2,3
in = − i

2
sin 2qx(2 cos 2qx + cos 2qy), (2.18e)

S3,3
in =

1− ηb
2

P(3 + cos 4qx + 2 cos 2qx cos 2qy) + 3ηbP, (2.18f)

S2,1
in = S1,2

in , (2.18g)

S3,1
in = −PS1,3

in , (2.18h)

S3,2
in = −PS2,3

in . (2.18i)

Above, ηn = ξn/ξs is the normal rigidity normalized to the shear one. Solving the eigenvalue

problem of Eq. (2.18), the Ω− k dispersion curves for the in-plane motion can be obtained.

To demonstrate the influence of rotations, Fig. 2.9 presents the dispersion curves when ξn = 1

while the value of ξb is increasing from 0 to 1.5. For the in-plane motion, the eigenmodes contain

three components: two in-plane displacements ux and uy and one rotation Φ. The natures of

modes are labelled in different colors accordingly. Blue curves correspond to the pure displace-

ment modes, red curves to the coupled translational/rotational modes with a predominance of

rotation while yellow curves to the coupled translational/rotational modes with a predominance

of translation. Based on the dynamical matrix Sin, all the modes at the high symmetry points

Γ, M and K can be studied analytically. At the Γ point, the eigenmodes of displacement are

fixed at Ωu = 0 and the Φ mode appears at ΩΦ =
√

15/2. For the case of M point, the eigenfre-

quencies of two u modes are degenerated at Ωu =
√
2, while the Φ mode at ΩΦ =

√
5(1 + 2ηb)/2

depends on ηb, which determines the width of the forbidden gap along the ΓM direction. For

ηb > 0, the forbidden gap
√
2 6 Ω 6

√
5(1 + 2ηb)/2 grows with increasing bending rigidity. It

stabilizes at
√
2 6 Ω 6

√
15/2 when ηb > 1. For waves propagating along the ΓK direction,

Figure 2.9: The dispersion curves of hexagonal membrane with in-plane motion when ηn = 1 and ηb is increasing
from 0 to 1.5. Blue lines represent purely displacement modes. Red (yellow) curves correspond to coupled
displacement-rotation modes with the pre-dominance of rotation (displacement). For 0 6 ηb 6 1/15, there is no
complete band gap. For 1/15 6 ηb 6 1, the complete forbidden gap appears and its width grows with the increase
of ηb. It stabilizes at 3/2 6 Ω 6

√

15/2 when ηb > 1.
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2.4 Hexagonal monolayer membrane with in-plane motion

since the eigenfrequency of the Φ mode at Ω =
√

15(3ηb + 1)/8 depends on the values of ηb,

changing the value of ηb could open a forbidden band gap in this direction. For example, when

ηb > 1/15, there exists a forbidden band gap for 3/2 6 Ω 6
√
15(1 + 3ηb)/8. Similarly, for

waves propagating in the MK direction, the forbidden band gap 3/2 6 Ω 6
√

15(1 + 3ηb)/8

opens when ηb > 1/15. Combining the information on the modes at Γ, M and K points, it can

be predicted that a complete band gap appears above Ω > 3/2 for ηb > 1/15. Its width grows

up to a maximum value 3/2 6 Ω 6
√

15/2 when ηb > 1. Note that, as shown in Fig. 2.9, the

zero-frequency modes do not exist in this case even when the bending rigidity comes to zero.

Although, for compactness, we have analyzed above only the case of equal normal and shear

rigidities, the dispersion curves can be obtained for their arbitrary ratio, when necessary.

2.4.2 Degenerate modes and Dirac cone

The Dirac cone can be found at the K point, noted by green arrows in Fig. 2.10, but the nature

of this Dirac cone is different from the case of out-of-plane motion. According to the dynamical

matrix Sin at the K point, three modes exist: (1) an ux mode at Ωx =
√

9(ηn + 1)/8, (2) an uy

mode at Ωy =
√
9(ηn + 1)/8, and (3) a Φ mode at ΩΦ =

√
15(3ηb + 1)/8. Different from the

case of out-of-plane motion, the Dirac cone in this case is the result of the degeneracy of two

translational modes. By setting the eigenfrequencies equal to each other, namely by assuming

3ηn−15ηb = 2, the displacement modes degenerate with the rotational mode, exhibiting a triple

degenerated mode at K points, as depicted in Fig. 2.10(c) and (b).

Figure 2.10: Dispersion curves in hexagonal membrane with in-plane motion. Dirac cones and triple degenerated
modes at K points are noted by green arrows. In (a) and (b), changing bending/normal rigidities can modify
the position of Dirac cone. Triple degenerated modes induced by different combinations of bending and normal
rigidities in (c) and (d).
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Chapter 2: Bulk wave propagation in granular crystals

2.5 Honeycomb monolayer membrane with out-of-plane motion

In this section, the out-of-plane motion is considered in the honeycomb granular membrane.

The bulk wave dispersion, zero-group-velocity, zero-frequency modes and degenerate points are

discussed.

2.5.1 Dispersion curves

The honeycomb monolayer membrane and its corresponding first BZ are shown in Fig. 2.5. The

calculation of the dispersion curves is similar to the case of the hexagonal membrane with out-of-

plane motion, but now the unit cell contains two sublattices A and B. According to Eqs. (2.9),

one could finally get the dynamical equation by looking for plane wave solutions:

S ′
outv

′
out = Ω2v′out, (2.19)

with the eigenvector v′out = [uA; ΦA; ΨA;uB; ΦB; ΨB]. S ′
out is a 6 × 6 dynamical matrix, which

is of the following form,

S ′
out =

[
Q G

N Q

]
, (2.20)

where Q, G and N are 3× 3 matrices of the forms,

Q =




3 0 0

0
3P(1 + ηb + ηt)

2
0

0 0
3P(1 + ηb + ηt)

2


 , (2.21a)

G =




−ε− 2ζ
√
3i̺ ε− ζ

−
√
3iP̺

3− 3ηb − ηt
2

Pζ − ηtPε −
√
3(1− ηb + ηt)

2
iP̺

−P(ε− ζ) −
√
3(1− ηb + ηt)

2
iP̺

1− ηb − 3ηt
2

Pζ + (1− ηb)Pε



, (2.21b)

N =




−ε∗ − 2ζ∗
√
3i̺∗ −ε∗ + ζ∗

−
√
3iP̺∗

3− 3ηb − ηt
2

Pζ∗ − ηtPε
∗

√
3(1− ηb + ηt)

2
iP̺∗

P(ε∗ − ζ∗)

√
3(1− ηb + ηt)

2
iP̺∗

1− ηb − 3ηt
2

Pζ∗ + (1− ηb)Pε
∗



, (2.21c)

where ε = e−2iqx , ζ = eiqx cos qy and ̺ = eiqx sin qy. The dispersion curves when ηt = 0 while ηb

is changing are shown in Figs. 2.11(a), (b) and (c), where a complete forbidden band gap can

exist for a particular domain of values of ηb. For 0 < ηb < 0.8, the width of the complete band

gap
√

15(ηb + ηt)/2 6 Ω 6
√
6 decreases when ηb is increased. For ηb = 0.8, i.e. Fig. 2.11(b), the

Φ modes and Ψ modes (Ω =
√

15(ηb + ηt)/2) degenerate with the u modes (Ω =
√
6), forming

the triple degeneracy at Γ point, and the complete band gap disappears. For 0.8 < ηb < 1, a

complete band gap reappears, and its width grows when ηb is increased. When ηb > 1, the width
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2.5 Honeycomb monolayer membrane with out-of-plane motion

Figure 2.11: Band structures for the out-of-plane motion of the honeycomb membrane with different torsional
ηt and bending ηb rigidities. Red lines represent purely rotational modes. Blue (yellow) curves correspond to
coupled displacement-rotation modes with the pre-dominance of displacement (rotation). In (a), (b) and (c), we
set ηt = 0 and modify ηb. For ηb 6= 0.8, there is always a complete forbidden gap. When ηb = 0.8, two rotational
modes degenerate with the u mode and the band gap disappears. In (d), (e) and (f), the zero-frequency mode
exists when ηb = 0. The width of the lower complete band gap grows when increasing ηt while the band gap
around Ω = 2 (blue rectangular in (d)) disappears when ηt > 0.8.

of this gap stabilizes at
√
6 6 Ω 6

√
15/2, e.g. Fig. 2.11(c). In Figs. 2.11(d), (e) and (f), where

ηb = 0 while ηt is changing, the second band gap disappears when ηt > 0.8, e.g. Figs. 2.11(e)

and (f). Nevertheless, when ηb = 0, a flat band, which supports the zero-frequency mode having

zero group velocity as well, could be noticed.

2.5.2 Zero-group-velocity and zero-frequency modes

We note that two flat bands with zero-group-velocity appear in Figs. 2.11(a), (b) and (c). As

labelled in colors in the dispersion diagrams, the nature of these bands is purely rotational mo-

tion. In the absence of torsional rigidity, according to Eq. (2.19), the eifenfrequencies of the

flat bands can be calculated. (1) The first flat band has the eigenfrequency at Ω =
√

15ηb/2.

Changing the value of ηb would only shift the position of the flat band, while the propagation

of this zero-group-velocity mode cannot be initiated. For simplicity, the motion of Γ point is

analyzed by setting Ω =
√
15ηb/2 in the dynamical matrix Sin. The eigenvectors are given

by: uA = uB = 0, ΦA = −ΦB and ΨA = −ΨB. It implies that beads in two sub-lattices

have only rotational motion with the same amplitudes but in opposite directions. As plotted

in Fig. 2.2(c), beads rotating in opposite direction can activate only the bending interactions,

without inducing normal interactions, thus the system exhibits non-zero oscillations and the

eigenfrequency of the oscillation is determined only by bending rigidity. However we should

notice that torsional rigidity, currently neglected, is expected to influence the considered oscil-

lations, because the contacting beads are rotating in opposite directions. (2) The second flat

band has the eigenfrequency at Ω =
√
15/2. We note that the position of this band keeps

unchanged in the phonon spectra, when the bending rigidity is changing. By analyzing the
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eigenvectors for the fixed eigenfrequency Ω =
√

15/2 at Γ point, the following relations are

expected: uA = uB = 0, ΦA = ΦB and ΨA = ΨB. This shows that beads have the same rota-

tions in two sublattices. As plotted in Fig. 2.2(b), beads with the same rotations elongate the

shear spring, thus the eigenfrequency relies on shear rigidity. Neither the bending interactions

nor the currently neglected torsional interactions are involved because the contacting beads are

rotating in the same direction. Analysis for other wavevectors can also be done by setting the

flat bands frequencies in the dynamical matrix. One can acquire similar results where for the

first flat band (Ω =
√

15ηb/2), contacting beads, i.e., belonging to different sublattices A and

B, have rotations with the same amplitude but in opposite direction, resulting in eigenfrequency

controlled by bending rigidity; while for the second flat band (Ω =
√
15/2), all the beads exhibit

the same rotations, leading to eigenfrequency depending only on shear rigidity. In both cases,

propagation of wave is forbidden. The fact that the constant frequency modes are composed of

either collinear or anti-collinear rotations of the two sublattices A and B , with one mode con-

trolled by bending rigidity only and another by shear only, can be proved in the general case of

an arbitrary propagating wave vector and not only along the symmetry direction. However, the

excitation of these non-propagating modes depends heavily on the torsional interaction. Even

for weak torsional interaction, the zero-group-velocity modes could start to be transformed into

modes propagating with slow velocity.

When ηb = 0, zero-frequency modes exist for non-zero torsional rigidity. As shown in

Fig. 2.12(a), for the case when both bending and torsional rigidities are ignored, the optical

bands (three highest frequency bands) would transform into two propagative bands and one

zero-group-velocity band, while the acoustical bands (three lowest frequency bands) collapse into

the flat bands that only support zero-frequency modes. As expected, the constant frequency

mode/oscillation is a purely rotational mode, non-propagative due to the lack of bending and

torsional rigidities. For the case of ηb 6= 0 only, shown in Fig. 2.12(b), the lower triple degener-

acy bands are destroyed by transforming into two slow waves and another zero-group-velocity

oscillation. As explained above, since torsional interaction is zero, the constant frequency bands

are not transformed into propagating ones by controlling the bending rigidity only. When only

ηt 6= 0, Fig. 2.12(c), the upper zero-group velocity oscillation is transformed into slow mode and

two of the triple degeneracy bands will be transformed into slow modes and only a zero-frequency

oscillation left. As depicted in Fig. 2.12(d), when both ηb 6= 0 and ηt 6= 0, all non-propagating

modes in Fig. 2.12(a) are transformed into slow modes. Intuitively, the beads in the honeycomb

membrane interact with the three neighbor beads only. Compared with the ones in hexagonal

membrane where each bead has six nearest neighbors, they undergo less constraints. Ignor-

ing one of the rotation-induced interactions (bending/torsion) would further release the bead

from constraints. In the absence of bending and shear rigidity, ηb = ηt = 0, beads reach the

maximum freedom, thus the number of non-propagating modes is maximum. Since there are

more constraints to the beads in hexagonal membrane, one could expect less flat bands and less

zero-frequency modes as shown in Fig. 2.8(a).
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2.5 Honeycomb monolayer membrane with out-of-plane motion

Figure 2.12: Dispersion curves of honeycomb lattices in the case of out-of-plane motion. (a) In the absence of
bending and shear rigidity, ηb = ηt = 0, there are three degenerated zero-frequency modes and one constant
frequency mode/oscillation. (b) Only ηb 6= 0 destroys triple degeneracy by inducing two slow waves and trans-
forming zero-frequency (zero-energy) mode into non-propagating oscillation of finite non-zero frequency. (c) Only
ηt 6= 0 transforms zero-group-velocity oscillation in slow mode and destroys triple degeneracy by inducing two
slow modes and keeping a single zero frequency mode. (d) Both ηb 6= 0 and ηt 6= 0 transform all non-propagating
modes represented in (a) into slow modes.

The movements of beads in three different positions along ΓM when are depicted in Figs. 2.13

(b)-(d). Similar to the case in Sec. 2.3.2, at Γ point beads just translate in z-direction with zero

displacement relative to their neighbors, leading to contacts kept unstrained. For the waves

with nonzero wave vectors along the x axis, the rotations and translations of the beads at each

side of the interparticle contacts are combined in such a way that the resulting displacements

of the opposite sides of the contact are equal and the contact is kept unstrained, as it has been

discussed already in Sec. 2.3.2. In Fig. 2.13, we illustrate this general situation just by two

particular examples. In the middle point of the ΓM (Fig. 2.13(c)), one could see non-equal

translational motion of some neighboring beads in one direction. This could be compensated (in

the sense of keeping the contact unstrained) by the rotation of one of the beads in the absence of

the rotations of the other. In the M point (Fig. 2.13(d)), if the neighboring beads are rotating in

the same direction, then they are exhibiting translational motion in the opposite directions and

vice versa. In an arbitrary point along the ΓM direction all the beads are in general exhibiting

both translations and rotations, but there are combinations in the amplitudes of these two

motions that are keeping the intergrain contacts unstrained, thus creating the configurations

supporting the zero-energy modes.
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Chapter 2: Bulk wave propagation in granular crystals

Figure 2.13: The zero-frequency mode along ΓM in honeycomb membrane with out-of-plane motion and corres-
ponding movements of beads at three different points. (b) Γ point: kx = ky = 0; (c) The point in the middle of
ΓM: kx = π/3a, ky = 0; (d) M point: kx = 2π/3a, ky = 0.

2.5.3 Degenerate modes and Dirac cone

Similar to the case of hexagonal membrane, we observe the Dirac cones and triple degenerated

modes at K point. The difference is that in honeycomb membrane, there are two Dirac cones,

one for the acoustical type modes the other for optical type modes. Principally, two Dirac cones,

which are based on rotational modes, lead to two possible ways for the triple degenerated modes:

(1) the acoustical Dirac cone degenerates with the translational mode (u mode); (2) the optical

one degenerates with another u mode. Fig. 2.14(a) and (b) show the results of these cases,

respectively. Since it is impossible for the two Dirac cones to intersect together, double Dirac

cone cannot be found at the K point.

By carefully controlling ηb and ηt, one could expect that there could be accidentally triple

degenerated modes with linear dispersions at Γ point. Analytically, to get a triple degeneracy

(Dirac-like cone) at the center of BZ, the only possible solution is that two rotational modes of

the eigenfrequency Ω =
√
15(ηb + ηt)/2 degenerate with the fixed u mode at Ω =

√
6, giving the

condition of ηb + ηt = 0.8 (see Fig. 2.14(c)). More interestingly, when ηb and ηt perfectly satisfy

ηb + ηt = 1, a double Dirac cone (the degeneracy of four rotational modes), could be expected

at the center of BZ in Fig. 2.14(d). Recently, it was reported that the dispersion in the vicinity

of accidentally triple degeneracy at Γ point could lead to the zero-refractive-index in the photon

and phonon systems [36]. A phononic crystal with the dispersion exhibiting double Dirac cone
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2.6 Honeycomb monolayer membrane with in-plane motion

Figure 2.14: In (a) and (b), triple degenerated modes in honeycomb membrane with out-of-plane motion are
induced by different combinations of bending and torsional rigidities. (c) Triple degenerate modes. (d) Double
Dirac cone at Γ point.

gives rise to the Talbot effect and the phenomenon of propagating waves becomes insensitive

to defects [37]. Our theoretical results presented above indicate that the granular membranes,

under conditions of some particular modifications, could support similar phenomena.

2.6 Honeycomb monolayer membrane with in-plane motion

In this section, the in-plane motion is taken into account in the honeycomb granular membrane.

The bulk wave properties, such as dispersion curves, zero-group-velocity and zero-frequency

modes and degenerate points, are investigated.

2.6.1 Dispersion curves

The structure of the membrane and the corresponding first BZ is shown in Fig. 2.5. The

calculation of the dispersion curves is similar to the case of hexagonal membrane with in-plane

motion, but for two coupled sublattices A and B. According to Eqs. (2.10), the dynamical

equation has the following form:

S ′
inv

′
in = Ω2v′in, (2.22)

with the eigenvector v′in = [uxA;uyA; ΦA;uxB;uyB; ΦB]. S ′
in is a 6× 6 dynamical matrix, which

takes the following form,

S ′
out =

[
Q′ G′

N′ Q′

]
, (2.23)
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where Q′, G′ and N′ are 3× 3 matrices of the forms,

Q′ =




3(1 + ηn)

2
0 0

0
3(1 + ηn)

2
0

0 0 3P(1 + ηb)


 , (2.24a)

G′ =




−3 + ηn
2

ζ − ηnε −
√
3(ηn − 1)

2
i̺ −

√
3i̺

−
√
3(ηn − 1)

2
i̺ −(

1 + 3ηn
2

ζ + ε) −(ε− ζ)
√
3iP̺ P(ε− ζ) (1− ηb)P(2ζ + ε)



, (2.24b)

N′ =




−3 + ηn
2

ζ∗ − ηnε
∗

√
3(ηn − 1)

2
i̺∗ −

√
3i̺∗

√
3(ηn − 1)

2
i̺∗ −(

1 + 3ηn
2

ζ∗ + ε∗) (ε∗ − ζ∗)
√
3iP̺∗ −P(ε∗ − ζ∗) (1− ηb)P(2ζ

∗ + ε∗)



. (2.24c)

From Eq. (2.22), the dispersion curves for ηb = 0 are shown in Figs. 2.15(a), (b) and (c), where

a complete forbidden band gap could exist for a particular range of values of ηn, the ratio of the

normal to shear rigidity of the contact. For ηn < 1, the width of the complete band gap Ω 6
√
3

shrinks when increasing ηn. For ηn > 1, the complete band gap disappears. We note that the

zero-frequency mode exists only in ΓM direction. Changing the value of ηn cannot initiate the

propagation of this mode. For the case when ηn = 1 and ηb 6= 0 illustrated in Figs. 2.15(d),

(e) and (f), the first band gap appears when ηb > 2/15. For ηb > 0.4, the second band gap is

opened, and its width stabilizes at
√
6 6 Ω 6

√
15 when ηb > 1.

Figure 2.15: Band structures for in-plane motion of honeycomb membrane with different normal ηn and bending
rigidities ηb. (a), (b) and (c) are the cases of absence of bending rigidity. By changing ηn, the complete forbidden
gap disappears when ηn > 1. In (d), (e) and (f), ηn is fixed at 1 while ηb is increasing. The first complete
forbidden band gap appears when ηb > 2/15. For ηb > 0.4, the second band gap is observed.
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2.6 Honeycomb monolayer membrane with in-plane motion

2.6.2 Zero-frequency modes and degenerate modes

As shown in Figs. 2.15(a), (b) and (c), the zero-frequency mode for in-plane motion in honeycomb

membrane exists only in the absence of bending rigidity. Different from the case of out-of-plane

motion where zero-frequency modes could be expected in all directions, here a zero-frequency

mode exists only in a single particular direction (ΓM). As we have described for the out-of-plane

cases, motion of rotational type plays a major role for the formation of non-propagating modes.

For in-plane motion, only one rotational degree of freedom, i.e., rotation along z axis, exists

for the beads, thus only bending interaction can be activated. The absence of bending rigidity

can still lead to zero-frequency mode, but only in ΓM because for other directions the motion

in the system is dominated by translations so that rotations are too weak to compensate them

and keep all the contacts unstrained. In addition, compared with the dispersions in hexagonal

system for the in-plane motion (see Fig. 2.9), a zero-frequency mode could be found only in the

honeycomb lattice. This is expected because the beads in the hexagonal membrane have more

constrains than those in the honeycomb lattice.

Figure 2.16: Band diagrams for honeycomb membrane with in-plane motion, (a) and (b) Triple degenerate modes
induced in the K point by different combinations of bending and torsional rigidities. (c) Triple degenerate mode
at the Γ point. (d) Double Dirac cone at Γ points.

As displayed in Fig. 2.16(a) and (b), one also could observe Dirac cones and triple degenerated

modes at the K point. The natures of the Dirac cones are translational modes, and the triple

degeneracy is the consequence of the degeneration of the Dirac cone with the third mode (Φ

mode). By carefully choosing the combination of ηb and ηn accidentally triple degenerated modes

with linear dispersions could be found at Γ point. Analytically, this triple degeneracy (Dirac-like

cone) is formed by the degeneracy of the rotational mode (ΩΦ =
√
15 or ΩΦ =

√
15ηb) with two

u modes (Ωu =
√
3ηn + 3), giving the condition of ηn = 4 or ηb = (ηn + 1)/5. When ηn = 4 and

ηb = 1 a double Dirac cone, i.e., the degeneracy of two Dirac cones, is observed at the center of
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BZ.

2.7 Conclusion

To conclude, the analytical and numerical evaluations of both the out-of-plane and in-plane mo-

tions for the hexagonal/honeycomb monolayer membranes have been presented. Above a critical

value of the ratio of normal/bending/torsional rigidities to shear rigidity of the interparticle con-

tacts, a complete forbidden band gap for the elastic wave propagation exists. By introducing

the rotational degrees of freedom, one could manipulate the dispersion of the phononic crystal

in a flexible way. In the absence of bending/torsional rigidities, the non-propagating modes are

observed in the honeycomb membranes or the hexagonal membranes for the case of out-of-plane

motion. Rotational degrees of freedom are crucial for the existence of non-propagating modes.

When torsional rigidity is ignored, the zero-group-velocity mode, whose nature is purely ro-

tational, exists in the membrane by activating only the shearing or bending interactions. For

the zero-frequency mode, at Brillouin center (zero wave vector), the relative translations of ad-

jacent beads are zero. Thus, the contacts remain unloaded and the system does not modify

its zero energy. For non-zero wave vectors, unequal translations, in particular those of the

same amplitude but opposite direction, could be compensated by the rotations of contacting

beads in the same direction. This keeps the contacts between the particles unstrained and

the energy of the system unmodified. We revealed the conditions under which the considered

membranes non-propagating modes at finite (non-zero) frequencies could also exist. These non-

propagating modes have been identified as pure rotational oscillations. We demonstrated that

even weak bending/torsional rigidities of the contacts can, under some conditions, transform

the non-propagating zero-frequency modes and rotational oscillation into propagating modes of

membrane. Thus the study of the non-propagating modes is useful for the design of the granular

phononic crystals supporting the controllable propagation of the slowest waves. Based on the

analytical derivations, we also discussed the formation and manipulation of the degenerated

modes and Dirac cones. This could provide variety of possibilities for potential applications of

granular membranes in the control of the elastic waves. In the next Chapter, we will discuss the

propagation of edge wave in granular crystals.
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3.1 Introduction

3.1 Introduction

In the previous Chapter, we have discussed the dispersion properties of elastic waves in hexagonal

and honeycomb monolayer granular membranes with either out-of-plane or in-plane particle

motion. When rotational degrees of freedom (DOF) are taken into account, the bending and

torsional rigidities of the intergrain contacts can control some of the phononic modes. The zero-

frequency modes, zero-group-velocity modes and their transformation into slow propagating

phononic modes were predicted. We also studied the formation and manipulation of Dirac cones

and multiple degenerate modes.

In the last two decades, graphene, a monolayer of carbon atoms arranged in a 2D honeycomb

lattice, has become one of the most fascinating objects in material sciences and condensed-matter

physics [178–180]. Owing to its specific crystal symmetry, unusual energy band structure for

charge carriers can be formed. An interesting consequence of a rich electronic spectrum is that

the edge states may exist when boundaries are present. The existence of boundary, on one hand,

breaks the crystal symmetry on the edges, but on the other hand, preserves some properties

of the bulk, leading to the edge states having distinct propagation properties from the bulk

modes and hence playing important roles in transport of electronic excitations [181–183]. For

example, the zero modes (zero-frequency edge states) were theoretically and experimentally

studied in graphene ribbons [184–191]. More interestingly, the quantum Hall (QH) effect and

quantum spin Hall (QSH) effect, where the topologically protected gapless edge states are robust

channels for electronic transport, have been demonstrated [111,113,114,125].

Analogous to the above electron systems, the existence of edge state can emerge in com-

pletely different physical systems [28, 52, 121, 122, 192–200]. In the photonic/phononic analog

of graphene, novel phenomena, such as zero-energy mode on the edge [195] and topological

one-way edge states [52, 111, 196, 197], have also been reported. However, in granular crystals,

where most of the previous work addressed the structures of infinite size, only a few work have

considered the influence of a boundary. For instance, in 1D semi-infinite monatomic granular

chains, the existence of localized modes have been theoretically demonstrated [81]. In 3D cubic

granular crystals, the Rayleigh-type surface acoustic waves (SAWs) and shear-horizontal-type

SAWs have been theoretically analyzed, and the existence of ZGV SAWs of Rayleigh-type has

been predicted [91]. Motivated by these recent results, the study of SAWs (or edge states)

in 2D granular graphenes shows an interest as a necessary step towards their applications for

elastic wave control, e.g. through the design of artificially modified granular graphenes (granular

meta-graphenes) with non-trivial topological properties.

In this Chapter, we theoretically study the existence of edge states at the free boundaries of

a semi-infinite mechanical granular graphene (GG), which is a 2D homogeneous monolayer of

elastic beads packed into a honeycomb lattice of lattice constant a = 2
√
3R as shown in Fig. 3.1.

An out-of-plane motion is imposed to the considered granular graphene with the zigzag (blue

beads in Fig. 3.1) and armchair (orange beads in Fig. 3.1) boundaries. Consequently, each
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Chapter 3: Edge wave propagation in mechanical granular graphene

individual bead possesses one out-of-plane translational and two in-plane rotational DOFs, i.e.

Fig. 2.1(a), and the mechanical interactions between the beads are provided by linear shear,

bending and torsional rigidities, as depicted in Fig. 2.2(a)−(c), respectively. The dispersion

curves of edge modes for varying bending/torsional rigidities are studied. Similar to the previous

conclusions for the bulk mode [18, 148], due to the rotational DOFs, the dispersion branches

of edge modes can be modified by tuning the bending and torsional rigidities. On the other

hand, we demonstrate that nearly zero-frequency modes may appear on both the zigzag and

armchair edges when bending/torsional rigidities are weak. This result is different from the cases

in electronic/photonic systems where zero-frequency modes do not exist on the armchair edge

when the sublattices A and B are the same [16–18, 201]. The physical origin of zero-frequency

modes in the 2D granular monolayer honeycomb crystals has been interpreted in Ref. [30], where

the zero-frequency mode results from the zero bending/torsional rigidities. In this Chapter, we

show that the existence of zero-frequency edge modes is also intimately related to the weakness

of bending/torsional intergrain couplings.

The organization of this Chapter is as follows. In Sec. 3.2 the mechanical granular graphene

is presented and the analytical model is described. The boundary conditions on the zigzag edge

are introduced in Sec. 3.3, where the spectra of edge states and the zero-frequency modes are also

evaluated, presented and discussed. For the armchair type of boundary, the boundary conditions,

the existence of edge states and zero-frequency edge modes are systematically examined in

Sec. 3.4. Finally, we present the conclusions of this work in Sec. 3.5.

3.2 Elastic structure and energy band projection

In this section, we show the structure of a granular graphene and discuss another band diagram,

which is useful for the edge waves.

3.2.1 Granular graphene

The mechanical granular graphene presented in Fig. 3.1 exhibits two types of edges, zigzag and

armchair, indicated in Fig. 3.1 by beads labeled in blue and orange, respectively. As discussed

in Sec. 2.2, for the out-of-plane motion, each individual bead in the granular graphene exhibits

the out-of-plane displacement (u) and the in-plane rotational angles ϕ and φ (Fig. 2.1(a)).

The dynamics and the couplings of these mechanical motions are controlled by the following

forces and/or moments: (1) Shear forces (Fig. 2.2(a)). (2) Torsional moments (Fig. 2.2(b)). (3)

Bending moments (Fig. 2.2(c)). Here, we would like to emphasise that the granular graphene is

semi-infinite exhibiting a zigzag or an armchair edge configuration. These two boundaries are

analyzed below separately.

To begin, we label the sublattice A (B) in a normalized coordinate (m,n) by Am,n (Bm,n),

as shown in Fig. 3.1, where m and n are both integers. For the unit cell on site (m,n), the
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3.2 Elastic structure and energy band projection

Figure 3.1: Structure of the granular graphene. Beads in deep blue label the zigzag edge and beads in orange for
the armchair edge.

dynamical equation of bulk mode in Eq. (2.19) can be rewritten in the matrix form,

[
Q′ G′

N′ Q′

][
vA

vB

]
= Ω2

[
vA

vB

]
, (3.1)

where vA = [uA; ΦA; ΨA] and vB = [uB; ΦB; ΨB] are the motion components of particle A and

B, respectively. Q′, G′ and N′ are the 3 × 3 matrices given by Eqs. (2.21). The dynamical

equation in Eq. (3.1) leads to the relations,

vA = Q′−1(−G′)vB = SAvB, (3.2a)

(N ′SA +Q′)vB = SBvB = 0̂, (3.2b)

where SA and SB are 3 × 3 matrices. Eqs. (3.2) suggest that, vA and vB are not independent.

Knowing one, the other can be simultaneously obtained from Eqs. (3.2). Let us consider that

the displacement and rotations of particles A and B take the plane wave forms of solution,

vA = [uA; ΦA; ΨA] = K[αA;βA; γA]ei(ωt−mqx−nqy), (3.3a)

vB = [uB; ΦB; ΨB] = K[αB;βB; γB]ei(ωt−mqx−nqy). (3.3b)

where K is a constant, α, β and γ are the coefficients of the motion components u, Φ and Ψ,

respectively. The coefficients and their corresponding motion components satisfy the following

relation,
u

α
=

Φ

β
=

Ψ

γ
= K. (3.4)
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Chapter 3: Edge wave propagation in mechanical granular graphene

As long as the coefficients are given, the three motion components of an eigenmode can be

settled. Since vA and vB are coupled by the interaction of the sublattices, we can substitute vB

into Eq. (3.2), then the relations between those coefficients can be obtained,

αB = S
(3,3)
B S

(2,2)
B − S

(3,2)
B S

(2,3)
B , (3.5a)

βB = S
(3,1)
B S

(2,3)
B − S

(3,3)
B S

(2,1)
B , (3.5b)

γB = S
(3,2)
B S

(2,1)
B − S

(3,1)
B S

(2,2)
B , (3.5c)

[
αA;βA; γA

]
= SA ·

[
αB;βB; γB

]
. (3.5d)

In Eqs. (3.5), the coefficients are given by SA and SB, which depend only on the normalized

frequency Ω and wave vectors qx and qy. Consequently, an eigenmode of the system can be

determined if Ω, qx and qy are known.

However, one should notice that, Ω is not independent from qx and qy. Their relation can be

obtained from the dynamical equation shown in Eq. (2.19). For non-trivial solutions, Eq. (2.19)

leads to the following condition,

det |S ′
out − Ω2I6| = 0. (3.6)

where I6 is a 6× 6 identity matrix. For the three variables Ω, qx and qy in Eq. (3.6), if the two

of them are known, then the third one can be obtained. Note that, in this work, we analyze

the granular system in which there is no loss or gain of energy, therefore Ω should be pure real.

Then the values of qx and qy determine the modes in the granular graphene to be propagative

or evanescent.

For the propagating bulk modes, qx and qy are both real, leading to the pass bands for

elastic wave in the structure. However, when modes are not in the pass band, i.e. in the band

gap, the complex wave number reveals the fact that the amplitudes of modes are decaying when

they penetrate into the structure. If the system has boundaries, there are possibilities for the

existence of some special eigemodes that are localized near the boundaries [81]. Those modes

support the edge waves which are propagating along the boundary but decaying into the bulk.

For example, suppose that an edge mode is propagating along the edge in y−direction, while

decaying into the bulk. In this case, qy should be real, but qx must contain imaginary part so

that edge wave is evanescent in the direction orthogonal to the surface. We will further discuss

the edge solution in Sec. 3.3.

3.2.2 Projection of bulk modes on a particular direction

So far, we have only used a type of band diagram, e.g. Fig. 3.2(b). This band diagram shows the

Ω− k relations along the KΓMK directions, which are exactly the edges of the irreductible BZ

highlighted by the gray triangle in Fig. 3.2(a). The red and green lines in Fig. 3.2(a) correspond

to the symmetry directions of the BZ. Apparently, the band structure in Fig. 3.2(b) reveals only

bulk modes propagating in the symmetry directions. If all the wave vectors in the BZ including
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3.2 Elastic structure and energy band projection

Figure 3.2: (a) The first Brillouin zone (BZ) of the granular graphene. The color lines mark different symmetric
directions of the BZ. (b) A two-dimensional dispersion curves of the granular graphene. The color lines correspond
to bulk modes along the symmetric directions in (a). (c) A three-dimensional band structure of the granular
structure. The color lines mark the symmetric directions in (a). (d) Projection of the three-dimensional band
structure in (c) to the y−direction.

those in the non-symmetry directions are taken into consideration, all the possible Ω−k curves

can be obtained and their combination in the k space would become the dispersion surfaces as

shown in Fig. 3.2(c) by blue and gray surfaces. By displaying the eigenfrequency in the direction

perpendicular to qx and qy plane, the three-dimensional (3D) band diagram is constructed, e.g.

Fig. 3.2(c). In the 3D band diagram, all the propagating bulk modes which possess real qx and

qy are included in the dispersion surfaces. However, actually the 3D band diagram is not very

popular when the study is aiming at bulk wave dynamics of the system. Instead, the 2D band

structure is more widely used since it is sufficient to predict the allowed bands and the forbidden

bands for the bulk modes.

When studying the edge waves in the system, the 3D band diagram becomes a necessary step

to obtain the projected band diagram, which is very efficient in determination of the regions in

the Ω−k space where the propagating edge waves could potentially exist. In the projected band

structure, all the propagating modes in the 3D band diagram are projected into a particular

direction along which the existence of the edge waves is studied. For example, suppose that the

boundary we are interested in is the zigzag edge in a granular graphene as shown in Fig. 3.1.

In this case, the edge waves are propagating along the zigzag edge in y−direction, but their

amplitudes are decaying when waves penetrate into the bulk. Physically, it implies that the

wave vector qy of edge waves is real but qx is complex in such a way that edge waves can
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Chapter 3: Edge wave propagation in mechanical granular graphene

propagate along the edge, meanwhile being localized near the boundary. The projected band

structure of the zigzag edge is obtained by projecting the modes in the 3D band diagram onto

the qy direction as presented in Fig. 3.2(d). After the projection, the dispersion surfaces in the

3D band diagram are collapsed onto the blue and gray regions, in which the bulk modes could

transport the energy from the edge into the bulk. The powerful advantages of the projected

band structure can be exhibited through the scenario that all the possible edge modes must

lie in the blank spaces of the projected band diagram. As depicted in Fig. 3.2(d), it reveals

the dispersion relations between Ω and qy. For any point in the projected band structure, it

corresponds to a real Ω and a real qy, indicating potential solutions for waves propagating along

y−direction. Since the projected band (blue and gray areas) implies the existence of propagating

bulk modes (qx is real), the existence of edge wave is only possible in the blank areas where qx

is complex. When the boundary condition is also taken into account, the relation of Ω and qy

can be derived, leading to the edge wave dispersion.

We can see that, although the band structure, e.g. Fig. 3.2(b), gives consistent definitions

of the band gaps, the projected band diagram, e.g. Fig. 3.2(d), is much more insightful when

boundaries are considered. In fact, it is necessary to use the projected diagram for the analysis

of possible edge waves, because the edge waves solutions cannot overlap with propagative waves

and should be located between them. Otherwise edge wave will emit bulk modes and will not

be evanescent [81, 91].

3.3 Zigzag edge

In this Section, the waves dynamics on a free zigzag edge is discussed. The boundary condition,

dispersion of the edge modes, and slow edge waves are analyzed.

3.3.1 Boundary condition

To get the edge wave dispersion, the boundary condition of the mechanically free zigzag edge of

the granular graphene, as highlighted by blue beads in Fig. 3.1(a), has to be derived. Assuming

the zigzag edge is introduced on site (0, n) by removing the beads A0,n and those withm < 0, the

boundary conditions are derived from the cancellation of the interactions between the removed

grains A0,n and the edge grains B0,n. For example, on site (0, 0) the interactions between

sublattice A0,0 and B0,0 should be zero, thus the boundary conditions are written as,

uA0,0 − uB0,0 + (ΨA
0,0 +ΨB

0,0) = 0, (3.7a)

ηt(Φ
A
0,0 − ΦB

0,0) = 0, (3.7b)

ηb(Ψ
A
0,0 −ΨB

0,0) = 0. (3.7c)

where [u0,0; Φ0,0; Ψ0,0] can be regarded as the motion components of the edge mode. If the

relations between the edge wave components are given, the edge wave dispersion can be obtained
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3.3 Zigzag edge

by using Eqs. (3.7). For an edge solution with known Ω and qy, its evanescent properties into

the bulk are determined by qx, which is governed by the bulk dispersion relation. As discussed

in Sec. 3.2.1, when Ω and qy are given, possible values of qx can be calculated by Eq. (3.6).

Numerically, for fixed values Ω and qy, there are six solutions of qx. Considering that edge

waves should be evanescent into the bulk, qx can not be real. This leads to qx having three

solutions with negative imaginary part and other three with positive imaginary part. Under the

zigzag edge configuration in Fig. 3.1, physically solutions with positive imaginary part can not

exist in the system, otherwise the amplitudes of the corresponding eigenmodes are increasing

into the bulk, which is definitely forbidden for edge waves. Therefore, for known Ω and qy,

there are three corresponding evanescent eigenmodes in the bulk. They all contribute to the

localization of the edge mode at the free boundary m = 0. Consequently, the solution of edge

wave can be written in the following form which is the superpositions of the three evanescent

bulk modes,

(uA; ΦA; ΨA)zig =
3∑

j=1

Kj(α
A
j ;β

A
j ; γ

A
j )e

i(ωt−mqxj−nqy), (3.8a)

(uB; ΦB; ΨB)zig =

3∑

j=1

Kj(α
B
j ;β

B
j ; γBj )ei(ωt−mqxj−nqy), (3.8b)

where j is an index denoting different evanescent bulk modes, αj , βj and γj are given by Eq. (3.5).

Substituting Eqs. (3.8) into the boundary conditions in Eqs. (3.7), we arrive at,

3∑

j=1

(
αA
j − αB

j + γAj + γBj
)
Kj = 0, (3.9a)

3∑

j=1

(
βAj − βBj

)
Kj = 0, (3.9b)

3∑

j=1

(
γAj − γBj

)
Kj = 0, (3.9c)

which can be rewritten in the following form,

Szig(qx, qy)Kzig = 0, (3.10)

where Kzig = (K1,K2,K3) is the eigenvector of the boundary matrix, and Szig(qx, qy) is the

boundary condition matrix of zigzag edge, which is of the form,

Szig(qx, qy) =




αA
1 − αB

1 + γA1 + γB1 αA
2 − αB

2 + γA2 + γB2 αA
3 − αB

3 + γA1 + γB3

βA1 − βB1 βA2 − βB2 βA3 − βB3

γA1 − γB1 γA2 − γB2 γA3 − γB3


 . (3.11)
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Chapter 3: Edge wave propagation in mechanical granular graphene

For the existence of the nontrivial solutions, the following equation must be satisfied,

det |Szig(qx, qy)| = 0. (3.12)

Combining Eq. (3.6) with Eq. (3.12), qx can be eliminated, leading to the edge wave solution

and Ω− qy dispersion curves of edge wave in the blank regions of the projected band diagram.

3.3.2 Edge modes

Following the theory above, the dispersion curves of the edge waves for different values of the

ratios ηb and ηt are numerically derived in this part. Without loss of generality, in Fig. 3.2

we present the projected band structures, where the bulk modes of the first BZ (in blue color)

have been projected to the qy direction, for the case of a fixed ηt = 0.1 and a varying ηb. As

Figure 3.3: The projected band structures along qy direction of the graphene for ηt = 0.1 and ηb = 0.1 (a),
ηb = 0.15 (b) and ηb = 0.2 (c). The blue areas represent the projected bulk bands along y-direction, and the
dash-dot red curves represent the edge states. The amplitudes of three components u, Φ and Ψ of the edge state
at point qy = π/3 (labeled by circles in (a)-(c)) as a function of beads position along x-direction are shown for
ηt = 0.1 and ηb = 0.1 (d), ηb = 0.15 (e) and ηb = 0.2 (f). The blue curves correspond to sublattice A and the red
dash curves to sublattice B.

shown in Fig. 3.3, the bulk modes are concentrated mainly in two separated areas. The low

frequency area, containing the three lowest bulk bands, is defined as lower-frequency phonon

area (LPA) and the high frequency area, composed of three highest bulk bands, is noted as

higher-frequency phonon area (HPA). There exists a large band gap between the LPA and HPA

due to the fact that bending/torsional rigidities are much smaller than shear rigidities. For
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3.3 Zigzag edge

increasing bending/torsional rigidities, this band gap is squeezed. Dirac cones are observed at

qy = ±π/3 in the LPA and HPA as shown in Fig. 3.3(a)−(c). In general, four branches of

edge modes are obtained, labeled as red dash-dot lines in Fig. 3.3(a)−(c), three of which are

located in the LPA and another one in the HPA. Tuning the bending and torsional rigidities of

contact is possible to control the propagation properties of the edge modes. For example, in the

case of ηb = 0.1 and ηt = 0.1, the edge band below the first propagative bulk band is located

very close to the bulk band, leading to edge modes possessing properties similar to those of the

bulk modes. The amplitudes of the three components u, Φ and Ψ for wave vector qy = π/3

highlighted in Fig. 3.3(a) are shown as a function of bead position along the bulk direction, as

shown in Fig. 3.3(d), where the blue curves correspond to beads A and the red dash curves to

beads B. It implies that the edge mode exhibits weak in-depth localization as the oscillations

of the beads spread into the bulk for a rather long distance. When increasing ηb to 0.15, as

shown in Fig. 3.3(b), the edge mode of the wave vector qy = π/3 is easier to distinguish from the

bulk modes than in the case of ηb = 0.1 in the projected diagram, thus the edge state becomes

more localized and its penetration depth into the bulk is shorter (Fig. 3.3(e)). For ηb = 0.2

in Fig. 3.3(c), the edge mode with qy = π/3 has very distinct properties from the bulk mode,

leading to the motion of beads localized only on a few layers near the free boundary as shown

in Fig. 3.3(f). These controllable properties of edge state suggest that the bending/torsional

couplings are crucial in the propagation of elastic edge waves belonging to the LPA.

It should be reminded that, as discussed in Sec. 2.2 the interactions between the grains

through the bending and torsional moments usually are orders of magnitudes weaker than their

interactions through the normal and shear forces (ξb,t ≪ ξn,s), leading to the possible existence of

extremely slow waves in granular crystals. To further uncover the slow wave nature, we continue

modelling the granular crystals as spring-mass systems, Fig. 2.2. When rotational DOFs are

ignored, the spherical masses interact through forces transmitted by shear and normal springs

with rigidties ξs and ξn respectively (see Fig. 2.2(a) and (d)). The characteristic spatial scale

in the granular crystal is of the order of grain radius, R, while characteristic frequencies of the

vibrations can be estimated as being an order of ∼
√
ξs,n/M . Thus the velocities of bulk waves

are of the order, ∼ R
√
ξs,n/M . As it has been explained above, because of the weakness of

contact rigidities ξs and ξn, those bulk waves are much slower than the shear and longitudinal

waves in the material composing the beads. When the rotational DOFs are taken into account,

the rotations should be predominantly induced by shear forces, Fig. 2.2(a), which have the

maximal possible arm equal to R for creating the grain-rotating moment. However, this is not

always the case because under some circumstances simultaneous displacements and rotations

of the grains could keep the shear springs unstrained [25]. In these situations, the interactions

between the beads through the bending and torsional moments, which are much weaker than

the characteristic shear moments, could play an important role. As it is qualitatively illustrated

in Fig. 2.2(b) and (c), the existence of both those moments is due to non-vanishing lateral size,

δ 6= 0, of the contacts/links between the grains. The shear and normal forces distributed in
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Chapter 3: Edge wave propagation in mechanical granular graphene

the cross-section of the contact/link provide the resistance to rotation of the beads in opposite

directions relative to the axis connecting their centers (Fig. 2.2(b)) and relative to the axis

normal to the centers connecting axis (Fig. 2.2(c)), respectively. However, both shear and

normal forces distributed across the contact have very small arms, ∼ δ ≪ R, for creating bead-

rotating moments. The torsional and bending moments induced by the distributions of shear and

normal forces, respectively, appear to be much smaller than the nominal moment that could be

created by the shear spring in Fig. 2.2(a). For the estimates, the interactions through torsional

and bending moments could be characterized by the corresponding characteristic torsional and

bending rigidities, ξt ∼ ξs(δ/R)
2 and ξb ∼ ξn(δ/R)

2 (see Sec. 2.2), respectively. Thus the

waves, which propagation is due to torsional/bending moment-type interaction between the

neighbor grains, will have the velocities ∼ δ
√
ξs,n/M ≪ R

√
ξs,n/M that are much slower than

the velocities of classical acoustic waves, which propagation is due to shear/normal force-type

interactions in granular crystals. Correspondingly, these waves caused by torsional/bending

interactions between the grains, could be considered as extremely slow in comparison with the

acoustic waves propagating in the material composing the grains. Note that, commonly normal

rigidity is comparable with shear rigidity, i.e., ξn ≥ ξs, thus bending rigidity is comparable with

torsional rigidity, ξb ≥ ξt.

As it follows from the discussion above, for the realization of extremely slow waves in mech-

anical graphene, the dimensions of the contacts between the spheres should be much smaller

than the dimensions of the spheres. In non-cohesive granular crystals this condition could be

achieved in the regime of weak pre-compression [90,92,95,202]. Otherwise the granular graphene

could be potentially prepared by three-dimensional printing. If rod-type connections between

the spheres are printed with dimensions much smaller than the sphere dimensions, then the

effective torsional and bending rigidities of these artificially created contacts will be in general

much weaker than their shear (normal) rigidities.

In the following, we discuss the influence of weak torsional or/and bending couplings on the

modes propagating along the free zigzag edge being spatially localized in the vicinity of the edge.

3.3.3 Zero-frequency modes

In this part, we first discuss the case of weak torsional rigidity only, and later we turn to the

influence of both weak bending and weak torsional rigidities under the condition that ξb ≥ ξt.

When torsional moments are weak, for example ηt = 10−5 while ηb = 0.1, the dispersion curves

of edge state represented by red dash-dot curves in LPA are shown in Fig. 3.4(a). It is clearly

seen that the edge branch below the first propagating bulk area is a quasi-flat band with near

zero frequency. We choose the point of qy = π/3 (labeled by a circle in Fig. 3.4(a)) to ana-

lyze the near-zero-frequency mode. The movements of beads are shown in Fig. 3.4(b), where

different colors of beads represent the different out-of-plane, i.e. along the z-axis, displacement

of beads and the amplitude of displacement of beads is given in the color bar. The rotational

directions of beads are presented by the arrows marked on beads and the amplitudes of rota-

71



3.3 Zigzag edge

Figure 3.4: (a) Dispersion curves of edge states for ηb = 0.1 and ηt = 10−5 in LPA. A quasi-flat band with
near zero frequency can be observed. (b) Movement of beads of the near-zero-frequency mode at point qy = π/3
highlighted in (a) by a circle. The amplitude of the out-of-plane displacement of each bead is normalized. Thus
the color marked on each bead represents the amplitude of displacement which can be read from the color bar.
The orientation of black arrows on the beads represents the rotating directions of beads. The length of arrows
represents the amplitude of rotations of beads, which is normalized to the out-of-plane displacement. The arrow
in the right marks the largest amplitude of rotation 0.72.

tion of each bead are normalized to the out-of-plane displacement. Thus the length of arrows

marked on the beads represents the amplitude of rotations. It is clearly shown that the os-

cillation of beads are localized mainly on the first three layers near the edge. The existence

Figure 3.5: The relation between the normalized
group velocity of near-zero-frequency modes for a
fixed wave vector qy = π/3 and normalized tor-
sional rigidity ηt.

of zero-frequency mode has been reported in many

systems and a criterion to determine the existence

of zero-frequency edge modes has also been estab-

lished in terms of bulk properties and the chiral

symmetry [20–22, 34, 57]. In granular crystals, the

existence of zero-frequency mode and their trans-

itions into slow mode strongly rely on the rota-

tional interactions of beads. For example, Fig. 3.5

reveals the relation between the torsional rigidity

and the normalized group velocity of the near-zero-

frequency modes (Vg = vg · 2/(3ω0R), where vg is

the group velocity and ω =
√
ξs/M is the character-

istic frequency provided by the magnitude of shear

rigidity) when the wave vector is fixed at qy = π/3.

It suggests that the group velocity of edge states

is extremely slow when torsional rigidity is weak.

The result presented in Fig. 3.5 confirms that elastic

waves supported by the weak torsional rigidity could be of several orders of magnitude slower
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Chapter 3: Edge wave propagation in mechanical granular graphene

Figure 3.6: The projected band structure of granular graphene along the qy direction for ηb = 2 × 10−5 and
ηt = 10−5. (a) One band of edge state exists in the HPA, while the bands of bulk modes in the LPA collapse into
a narrow frequency zone. (b) The zoomed view of the LPA. Three bands of edge state can be observed in this
area.

than such acoustic waves supported by the shear rigidity of the contacts as, for example, longitud-

inal and transverse bulk acoustic modes evaluated in the granular crystals neglecting rotational

degrees of freedom. The smaller the torsional rigidity is, the closer to zero the group velocity of

the near-zero-frequency modes is. As torsional rigidity is closer and closer to zero, this quasi-flat

band tends to become a perfectly non-propagative flat band at zero frequency. For non-zero

finite torsional rigidity, zero-frequency non-propagating edge modes are transformed into slow

modes with low group velocity.

When both bending and torsional rigidities are small, near-zero-frequency edge modes can

be also obtained. For example, for ηb = 2 × 10−5 and ηt = 10−5, the dispersion diagram of

edge state is depicted in Fig. 3.6(a), where three low frequency bulk bands are collapsed into

the narrow zone with near zero frequency. This is due to the simultaneously small values of

bending and torsional rigidity. Nevertheless, the existence of edge state in the LPA can be still

evaluated. The zoom-in of the low frequency bulk bands is shown in Fig. 3.6(b), where three

branches of edge state are observed. The edge states inside this extremely low frequency zone

behave as the ones in the quasi-flat bands with near zero frequency. As discussed in Chapter

2, when the bending rigidity is zero, the bulk bands in the LPA collapse into three degenerated

zero-frequency bands. One could expect that the associated edge states, which in Fig. 3.6(b) are

confined either between the bulk bands or between the lowest bulk band and the zero frequency,

would eventually vanish for zero bending rigidity. For weak but non-zero bending/torsional

rigidities, the three degenerated zero-frequency bulk branches are transformed into three slow

wave bands, resulting in the existence of near-zero-frequency edge modes with extremely slow

group velocity, Fig. 3.6(b).
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3.4 Armchair edge

3.4 Armchair edge

In this section, the boundary condition, dispersion relation and zero-frequency modes of on a

free armchair edge are investigated.

3.4.1 Boundary condition

The mechanical granular graphene with the free armchair edge is illustrated in Fig. 3.1 high-

lighted in orange beads. Assuming the armchair edge is on site (m, 0) by removing all the beads

with n < 0, the boundary conditions are derived from the absence of the interbead interactions

between the cut layer (m,−1) and the edge layer (m, 0). For example, on site (0, 0), the inter-

actions between the beads A0,0 (B0,0) and B−1,−1 (A1,−1) should be zero, thus the boundary

conditions are obtained,

2(uB−1,−1 − uA0,0)−
√
3(ΦB

−1,−1 +ΦA
0,0) + (ΨB

−1,−1 +ΨA
0,0) = 0, (3.13a)

ηt(Φ
B
−1,−1 − ΦA

0,0) +
√
3ηt(Ψ

B
−1,−1 −ΨA

0,0) = 0, (3.13b)

−
√
3ηb(Φ

B
−1,−1 − ΦA

0,0) + ηb(Ψ
B
−1,−1 −ΨA

0,0) = 0, (3.13c)

2(uA1,−1 − uB0,0)−
√
3(ΦA

1,−1 +ΦB
0,0)− (ΨA

1,−1 +ΨB
0,0) = 0, (3.13d)

ηt(Φ
A
1,−1 − ΦB

0,0)−
√
3ηt(Ψ

A
1,−1 −ΨB

0,0) = 0, (3.13e)
√
3ηb(Φ

A
1,−1 − ΦB

0,0) + ηb(Ψ
A
1,−1 −ΨB

0,0) = 0. (3.13f)

Similar to the discussion in Sec. 3.3.1, the edge wave dispersion relation can be derived from

Eqs. (3.13) and Eq. (3.6), if the motion components are given. For the armchair edge in Fig. 3.1, if

the Ω and qx are given, an edge solution is obtained. The evanescent nature of the edge mode into

the bulk is determined by a complex qy, which can be evaluated from the bulk dispersion relation.

When Ω and qx are fixed, one can use Eq. (3.6) to get the possible values of qy. For known Ω

and qy, numerically 12 solutions of qy are expected. Considering that the edge wave should be

in band gaps of the projected band structure, qy has six solutions with negative imaginary part

and other six with positive imaginary part. Under the armchair edge configuration in Fig. 3.1,

only those solutions with negative imaginary part have physical meaning in the system. Thus,

for a solution of the armchair edge, there are six corresponding evanescent eigenmodes that

contribute to the decay of amplitude when the edge mode penetrates into the bulk. Therefore,

the solution of edge wave can be written in the form of the superpositions of the six evanescent

bulk modes,

(uA,ΦA,ΨA)arm =
6∑

j=1

Kj(α
A
j , β

A
j , γ

A
j )e

i(ωt−mqx−nqyj), (3.14a)

(uB,ΦB,ΨB)arm =

6∑

j=1

Kj(α
B
j , β

B
j , γ

B
j )ei(ωt−mqx−nqyj), (3.14b)
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Chapter 3: Edge wave propagation in mechanical granular graphene

where j = 1, · · · , 6 denotes the six evanescent bulk modes. Substituting Eqs. 3.14 into Eqs. 3.13,

the boundary conditions can be rewritten in the matrix form,

Sarm(qx, qy)Karm = 0, (3.15)

where Karm = [K1;K2;K3;K4;K5;K6] is the eigenvector of the boundary matrix and Sarm is

a 6× 6 boundary condition matrix composed of the following elements,

S(1,j)
arm = −2αA

j −
√
3βAj + γAj + (2α2

j −
√
3βBj + γBj )ei(qx+qyj), (3.16a)

S(2,j)
arm = −βAj −

√
3γAj + (βBj +

√
3γBj )ei(qx+qyj), (3.16b)

S(3,j)
arm =

√
3βAj − γAj − (

√
3βBj − γBj )ei(qx+qyj), (3.16c)

S(4,j)
arm = (2αA

j −
√
3βAj − γAj )e

i(−qx+qyj) − 2α2
j −

√
3βBj − γBj , (3.16d)

S(5,j)
arm = (βAj −

√
3γAj )e

i(−qx+qyj) − βBj +
√
3γBj , (3.16e)

S(6,j)
arm = (

√
3βAj + γAj )e

i(−qx+qyj) −
√
3βBj − γBj , (3.16f)

For nontrivial solutions, the determinant of the boundary matrix must satisfy the following

relation,

det|Sarm(qx, qy)| = 0. (3.17)

The solutions for the edge mode of armchair edge are computed by combining Eq. (3.17) with

Eq. (3.6).

3.4.2 Edge modes

In this part, the Ω−k projected band structures for different values of the parameters ηb and ηt

are derived. It is shown that it is possible to modify the dispersion diagram by a fine tuning of

the contact rigidities. For example, the dispersion curves of the edge states for a fixed ηb = 0.4

but changing ηt are depicted in Fig. 3.7, where edge modes are labeled as red dash-dot curves

and the blue areas represent the bulk modes. The particular number of existing edge bands

depends on the value of ηt. Explicitly, for modes in the LPA, Fig. 3.7(a) shows the dispersion

curves for ηb = 0.4 and ηt = 0.1. Two edge bands appear between the second and third bulk

bands. When the value of ηt decreases to 0.05, one of these edge bands disappears, as shown in

Fig. 3.7(b). Continuing to decrease ηt to 0.03, one new edge band appears in each of the regions

below the first bulk band as presented in Fig. 3.7(c). Reducing ηt to 0.01, Fig. 3.7(d), one of

the edge bands which existed between the first and second bulk bands vanishes. We can predict

that, in the LPA, in the regions between the third and second bulk bands, between the second

and the first bulk bands, and below the first bulk band there always exists at least one edge

band each, while one additional edge band may appear in each of these regions depending on the

bending and torsional rigidities. Similar phenomena of variation of the number of edge bands

have also found in the HPA of the dispersion diagram. For example, when ηt changes from 0.1
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3.4 Armchair edge

Figure 3.7: Dispersion diagrams for the armchair boundary for a fixed ηb = 0.4 but ηt = 0.1 (a), ηt = 0.05 (b),
ηt = 0.03 (c) and ηt = 0.01 (d). Red dash-dot curves correspond to the edge states and the dark dots represent
projected bulk modes.

to 0.01, the edge band in HPA would disappear and reappear. Those controllable features of

edge states by tuning bending and torsional rigidities provide extra flexibilities in the design of

functional devices for elastic wave transport based on granular crystals.

3.4.3 Zero-frequency modes

In this part, we first investigate the case of weak torsional coupling only, and later we discuss

the influence of both weak bending and torsional couplings under the condition that ξb ≥ ξt.

For very small value of ηt, the quasi-flat bands of edge modes at near zero frequency may

appear in the projected dispersion diagram. Fig. 3.8 shows the dispersion curves of edge state

for ηb = 0.2 and ηt = 10−5. There exist a near-zero-frequency band and a quasi-flat band of

non-zero frequency just above it. We study the edge modes of qx ≈ π/4 (labeled by circles

in Fig. 3.8(a)). The corresponding movements of beads are demonstrated in Fig. 3.8(b) and
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Chapter 3: Edge wave propagation in mechanical granular graphene

Figure 3.8: (a) The dispersion curves of edge modes with slow velocity for ηb = 0.2 and ηt = 10−5. Two quasi-
flat bands appear when torsional rigidity is weak. The corresponding movements of beads for the wave vector
qx ≈ π/4 noted by the circles are shown in (b) and (c). (b) The oscillation of beads on the edge for the second
quasi-flat band. (c) The corresponding oscillation of edge state for the first quasi-flat band. The insert scheme in
(a) illustrates the variations of group velocity of the quasi-flat bands as a function of ηt.

(c). It is clearly seen that the edge waves are propagating along x-axis being in-depth localized

mostly on just a few layers near the edge. The insert in Fig. 3.8(a) shows the normalized

group velocity (Vg = vg · 2/(3ω0R)) of the first (near-zero-frequency) and the second (non-zero-

frequency) quasi-flat modes as a function of ηt. Note that the normalized group velocity in the

first band is positive while of the second one is negative. Principally, both bands have very slow

velocity when the torsional rigidity is weak. For the extreme case when torsional rigidity tends

to zero, both bands have the tendency to be perfect flat bands at zero frequency supporting

non-propagative edge modes. Similar to the results on zigzag edge, weak torsional rigidity can

initiate the propagation of zero-frequency modes by transforming them into slow modes.

When both bending and torsional rigidity are weak, near-zero-frequency modes also can be

found as shown in Fig. 3.9(a), where the dispersion curves of the LPA for ηb = ηt = 10−5 are

exhibited. Similar to the case of the zigzag edge, the small value of bending rigidity can lead

to collapse of projected bulk bands into the region close to zero frequency, thus the associated

edge states are confined to very narrow low frequency zone. In this case, the dispersion curves

of edge modes are very close to the bulk bands, resulting in the edge states exhibiting weak

localization in the vicinity of the edge. For example, we analyzed the edge waves with wave

vector qx ≈ π/4 marked by the circles in Fig. 3.9(a). The corresponding movements of beads in

those three bands are shown in Fig. 3.9(b)−(d). As explained in Sec.3.3.2, the closer the edge

band is located to the bulk band, the weaker localization of the edge modes is. This prediction

is valid in Fig. 3.9(b)−(d) where three edge states of qx ≈ π/4 are all weakly localized near the

edge. Similar to the results on the zigzag edge, for zero bending rigidity, slow edge modes in the
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Figure 3.9: The dispersion curves of edge modes in the LPA for ηb = ηt = 10−5 and the corresponding movements
of the beads in the edge waves with vector qx ≈ π/4 highlighted by circles in (a). (a) Dispersion curves of edge
states. Three branches, presented as red dash-dot curves, are found in the LPA. The oscillation for qx ≈ π/4 of
the first (b), second (c) and third (d) edge bands are depicted. These edge states can penetrate into the bulk for
a rather long distance.

LPA disappear.

3.5 Conclusion

In this Chapter, we theoretically studied the existence of edge states with out-of-plane motion

on the free zigzag and armchair boundaries of 2D semi-infinite mechanical granular graphenes.

Due to the additional rotational DOFs, the bending and torsional moments can be initiated

between adjacent beads. By modifying the bending and torsional rigidities of contact, one could

manipulate the dispersion of the edge states. Although the bending/torsional rigidities are weak

in granular crystals, we demonstrate that they are crucial for the existence of slow propagating

near zero-frequency modes on both zigzag and armchair edges. When torsional rigidity is weak,

the extremely slow near-zero-frequency edge modes, whose group velocity depends on the tor-
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Chapter 3: Edge wave propagation in mechanical granular graphene

sional rigidity, exist on both zigzag and armchair edges. When bending rigidity also becomes

weak in addition to torsional one, edge states in the LPA of the dispersion diagram are localized

very close to zero frequency. Due to the fact that they are very close to the bulk modes in

the dispersion diagram, edge modes in this case can be weakly localized near the edge. For

weak torsional rigidity, the quasi-flat bands at near zero frequency transform into the perfect

zero-frequency edge modes when torsional rigidity tends to zero, while for weak bending rigidity,

those edge modes show the tendency of vanishing as bending rigidity is continuing to reduce.

The granular graphene membrane could be, in principle, prepared by three-dimensional printing.

In accordance with the theoretical estimations [45,48], the intersphere connections, with bending

and torsional rigidities much weaker than shear one, could be prepared if the dimensions of the

contacts are much smaller than the radius of the sphere. There are also possibilities to assemble

a granular graphene supporting the propagation of slow elastic edge waves manually. The elastic

spheres discussed in this manuscript could be in macro scale, which means that the particles

can be displaced manually and the structure can be practically assembled nearly perfectly with

almost zero disorder and missing contacts [56,57]. For example, in Ref. [57], when the external

force (pre-compression) achieved through the magnetic interaction between the spheres is around

4N , the wave dynamics is linear and the magnitude of bending rigidity is around 5 orders of

magnitude smaller than the shear rigidity, which is exactly the same order of magnitude that was

assumed for some of the estimates in our work. Therefore, assembling magnetic beads nearly

perfectly in the geometry of the granular graphene and achieving weak bending and torsional

interactions is potentially possible. An adapted shaker attached to beads on the edge can be

used as the source to initiate the different motions of the beads. Particle acceleration can be

recorded by using small accelerometers glued to the side of several beads or by laser vibrometer

measurements. The physical realizations of the described granular graphene are of interest in

devices of signal processing using acoustic waves and in the design of acoustic delay lines. The

investigation of edge modes in mechanical granular graphene could in turn provide considerable

insights into their optical/acoustic graphene analogues. The study of the near-zero-frequency

modes caused by the existence of weak rotational interactions is useful for the potential realistic

design of granular crystals supporting controllable propagation of extremely slow edge waves.

In addition, it paves the way for the analysis of a variety of possible modifications of the above

presented granular graphene with the goal of designing granular metamaterials supporting one-

way propagating edge states. In the next Chapter, we will discuss the topological transport of

edge wave in mechanical granular graphene.
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4.1 Introduction

In the previous Chapter, we reported theoretically the description and analysis of edge elastic

waves in a semi-infinite mechanical granular graphene structure. The dispersion curves of the

edge waves were theoretically derived and numerically analyzed for various configurations of bead

couplings, as well as the existence of edge states when the torsional or/and bending rigidities

were weak/vanishing. Quasi-flat edge mode dispersion curves with near zero frequency were

observed for both the zigzag and armchair edges. These results on edge waves in mechanical

granular graphene structures with rotational degrees of freedom were the necessary preliminary

step for the design of the granular meta-graphenes with topologically protected unidirectional

edge states.

As discussed in Sec. 1.5, topological wave propagation has been observed in many different

systems [115–143, 203, 204]. For mechanical systems, the topologically protected one-way edge

modes can be realized by different designs. Examples include metamaterials with rotating

gyroscopes [122, 123], mechanical structures subjected to Coriolis force caused by permanent

rotation of the system [28], elastic metaplate with effective spin-orbit coupling (SOC) [134] and

coupled pendula system exhibiting quantum spin Hall (QSH) effect [135]. In those proposals, the

systems either require an external rotating bias to break time-reversal symmetry [27, 122, 123]

or need to be sophisticatedly design to induce Z2 topological order [134, 135]. In addition,

the role of rotational degrees of freedom of individual masses has seldom been evaluated [137].

Due to the existence of non-central forces, which can initiate the rotation of individual mass

particle, rotations become crucial in wave propagation in mechanical discrete systems [160,167].

Especially in granular crystals, rotations can be easily excited by the transverse force between

particles, leading to the propagation of rotational elastic waves. Therefore, rotation of individual

particles should be taken into account when exploiting the topological properties of elastic wave

in granular crystals.

To realize topologically protected transport of elastic waves in granular crystals, one can

also design a granular system following the strategies either with time-reversal symmetry (TRS)

breaking or with TRS invariance, as discussed in Sec. 1.5. In mechanical systems, it has been

reported that TRS can be broken by an external rotating bias, such as by rotating gyroscopes

[122, 123] and by permanent rotation of the system [28]. Nevertheless, the extension of these

insights to the granular system remains a huge challenge, since the elastic particles themselves

in granular crystals can exhibit rotations and out-of-plane displacements. So far, efficiently

breaking TRS in granular system has not been reported. In this Chapter, we investigate the

topological transport of rotational edge waves in the GG with TRS. As demonstrated in Sec. 1.5,

one way to realize the topological wave propagation under TRS invariance is to construct a

analogous system exhibiting the QSH effect [128, 130–132, 134, 136]. Following this idea, two

degenerate spin states both having Dirac dispersion in the absence of SOC are required. In

addition, a complete band gap supporting the propagation of topological edge waves is necessary
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in the presence of SOC. The existence of the Dirac degeneracy or band touching in the dispersion

diagram is very crucial for the topological transition. Before and after the band touching, the

corresponding phase of the two bands could be generally different in topology, resulting in non-

trivial topological numbers for the bands [205]. Therefore, there are two important ingredients

for the existence of topological transport with TRS: (1) A degenerate Dirac dispersion or a

double Dirac cone when the system is unperturbed. (2) A topological band gap when topological

transition is induced to the system.

This Chapter is organized as follows: In Sec. 4.2, a quadruple degeneracy of the modes and

wave dynamics near the center of Brillouin zone (BZ) are studied. In Sec. 4.3, a Dirac equation

is derived to describe the wave dynamics when the degeneracy is achieved near the Γ point. The

concepts of the effective spin and helicity are illustrated in the mechanical granular system. In

Sec. 4.4, we show that the GG, in which wave propagation is described approximately by the

Dirac equation, exhibits non-trivial topological properties and the quasi-topological transport

of rotational edge can be achieved. In Sec. 4.5, the wave dynamics of edge wave on an interface

is theoretically demonstrated. The physical explanation for the quasi-topological transport is

suggested. Finally, we summarize the studies of this chapter in Sec. 4.6.

4.2 Dirac dispersion and wave dynamics

In this section, we focus on the GG that exhibits degenerate Dirac dispersion at the Γ point.

The wave dynamics around the Dirac point is studied.

4.2.1 Degenerate Dirac dispersion

The GG under consideration is shown in Fig. 3.1 (see Sec. 3.2.1). Considering the out-of-plane

motion, the dispersion curves of the GG can be obtained by solving the eigenvalue problem of the

dynamical equation in Eq. (2.12). By controlling the normalized bending and torsional rigidities,

ηb and ηt, the Ω − k dispersion relation can be tuned. However, a degenerate Dirac cone is

essential to exhibit non-trivial topological properties in the GG. As predicted in Sec. 2.5.3, when

the condition ηb+ηt = 1 is satisfied, a double Dirac cone can be observed at the Γ point of the BZ.

Consequently, in this Chapter we discuss the GG under the condition ηb + ηt = 1. In addition,

topological transition has to take place in the GG. Basically, this can be accomplished by adding

a perturbation to the GG. In this Chapter, we only analyze the case when a perturbation η′

is added to the normalized bending and torsional rigidities, which will lead to the topological

transition in the GG (see Sec. 4.3.2). Thus, in the GG with the perturbation η′ and ηb+ ηt = 1,

the dynamical equation in Eq. (2.12) is rewritten as,

Dv = Ω2v, (4.1)
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with D of a 6× 6 dynamical matrix taking the form,

D =




3 0 0 −α
√
3iγ −β

0 Ω2
D + 3Pη′ 0 −

√
3iPγ

Ω2

D

6 β − Pη′α −
√
3
Ω2

D

6 iγ

0 0 Ω2
D + 3Pη′ Pβ −

√
3
Ω2

D

6 iγ −Ω2

D

6 β − Pη′α

−α∗
√
3iγ∗ β∗ 3 0 0

−
√
3iPγ∗

Ω2

D

6 β
∗ − Pη′α∗

√
3
Ω2

D

6 iγ
∗ 0 Ω2

D + 3Pη′ 0

−Pβ∗
√
3
Ω2

D

6 iγ
∗ −Ω2

D

6 β
∗ − Pη′α∗ 0 0 Ω2

D + 3Pη′




,

(4.2)

where α = 2eiqx cos qy+e
−2iqx , β = eiqx cos qy−e−2iqx , γ = eiqx sin qy, and ∗ denotes the complex

conjugate. ΩD =
√
3P is the Dirac frequency. In the previous Chapters, we assumed that the

elastic spheres in the GG are homogeneously filled. In this case, the value of P is fixed to be 2.5.

However, if we consider the spheres are hollow or with a custom mass distribution along their

radius, then P is changed. The extreme case is that all the mass of the sphere is at the sphere

periphery. In this case, the value of P is 1.5. To illustrate the influence of P on the dispersion,

we fix ηb = ηt = 0.5 and we monitor the position shifting of the Dirac point by changing P, see

the top panels of Fig. 4.1. When the perturbation η′ is non-zero, the Dirac point at the Γ point

is lifted, see the bottom panels of of Fig. 4.1. However, the existence of a complete band gad

depends on the value of P. In this Chapter, we choose P = 1.55 to make sure that there is a

complete band gap for non-zero η′ and the band width is large. Following the discussion above,

Figure 4.1: The influence of P on band structures when ηb = ηt = 0.5. Top: perturbation η′ = 0. Bottom:
perturbation η′ = 0.1.
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from now on we analyze the GG with P = 1.55, and ηb = ηt = 0.5.

4.2.2 Wave dynamics around the Dirac point

Figure 4.2: (a) Dirac dispersion and (b) the zoom of the black box in (a). The linear slopes of the dispersion
relations near the degenerate point predicted by theory are shown by black lines.

A Dirac cone, described by Dirac equation, possesses a linear dispersion relation [107]. The

quadruple degeneracy around the Γ point also exhibits a linear dispersion relation. To illustrate

the fact, it would be convenient if the 6× 6 dynamical equation in Eq. (4.1) can be simplified.

Due to the existence of non-central transverse force, rotational-translational coupled modes exist

in the GG. However, when we consider the wave dynamics in the region close to the degenerate

point, the four branches marked as red and green are dominant by rotations. The contributions

of u components in the eigenmodes of the four branches actually are very weak. To show the

small influence of u components in the four rotational-dominant branches, the eigenmodes at the

Γ point, under the basis v = [uA; ΦA; ΨA;uB; ΦB; ΨB], can be obtained by setting qx = qy = 0

in Eq. (4.1), which leads to the following forms of the eigenmodes,




0

1

0

0

0

0




,




0

0

1

0

0

0




,




0

0

0

0

1

0




,




0

0

0

0

0

1




. (4.3)

Eq. (4.3) shows that at the Γ point, the rotational modes decouple completely from the transla-

tional modes, forming pure Φ and Ψ modes. The contribution of u components to the eigenmodes

at the degenerate point is zero. Around the small region of the degenerate point, for example,

at the point 0.07K in the ΓK direction as shown in Fig. 4.2(b), the eigenmodes of the red and
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4.2 Dirac dispersion and wave dynamics

green branches are obtained numerically as,




0.0881i

0.5332

−0.4560i

−0.0881i

−0.5332

−0.4560i




,




0.0258

−0.4857i

0.5133

0.0258

−0.4857i

−0.5133




,




0.0892

−0.4425i

0.5442

−0.0892

0.4425i

−0.5442




,




0.0273i

−0.5122

0.4868i

0.0273i

0.5122

0.4868i




.

This shows that away from the degenerate point the u, Φ and Ψ components couple to each other.

However, we can calculate the energy stored in u components for each mode (u2/(u2+Φ2+Ψ2)):

1.55%, 0.13%, 1.59%, 0.15%. It shows that the contribution of u component for the bead motion

is no more than 2% compared to the Φ and Ψ modes. Therefore, we ignore the small influence

of u components when discussing the wave dynamics around the Dirac point. Then the 6 × 6

dynamical equation in Eq.(4.1) can be approximated by a 4× 4 one,

D(k)v0 = Ω2v0, (4.4)

where v0 = [ΦA; ΨA; ΦB; ΨB], and D(k) is a 4× 4 dynamical matrix of the following form,

D(k) =




Ω2
D + 3Pη′ 0

Ω2

D

6 β − Pη′α −
√
3
Ω2

D

6 iγ

0 Ω2
D + 3Pη′ −

√
3
Ω2

D

6 iγ −Ω2

D

6 β − Pη′α
Ω2

D

6 β
∗ − Pη′α∗

√
3
Ω2

D

6 iγ
∗ Ω2

D + 3Pη′ 0
√
3
Ω2

D

6 iγ
∗ −Ω2

D

6 β
∗ − Pη′α∗ 0 Ω2

D + 3Pη′



. (4.5)

In the vicinity of the degenerate point, namely for a small wave vector ∆k = (∆kx,∆ky) and

for ∆Ω ≪ ΩD, Eq.(4.4) can be approximated using the Taylor expansion at k = 0. By ignoring

the second and higher order terms and Ω2 = (ΩD + ∆Ω)2 ≈ Ω2
D + 2ΩD∆Ω, Eq.(4.4) can be

rewritten as,

D(∆k)v0 = Ωv0, (4.6)

with

D(∆k) =




ΩD +m 0 iVD∆kx −m −iVD∆ky
0 ΩD +m −iVD∆ky −iVD∆kx −m

−iVD∆kx −m iVD∆ky ΩD +m 0

iVD∆ky iVD∆kx −m 0 ΩD +m



, (4.7)

where VD = ΩDR/4 is the Dirac velocity, m = η′ΩD/2 is the effective mass coming from the

perturbation on bending and torsional rigidities. When η′ = 0, namely m = 0, Eq. (4.6) takes

the following form,

D0(∆k)v0(∆k) = Ωv0(∆k), (4.8)
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Chapter 4: Quasi-topological transport of rotational edge waves

where D0(∆k) = H0 +∆H(∆k) with the Hamiltonian of the Dirac point H0 = diag(ΩD,ΩD,

ΩD,ΩD). ∆H(∆k) is given by,

∆H(∆k) =




0 0 iVD∆kx −iVD∆ky
0 0 −iVD∆ky −iVD∆kx

−iVD∆kx iVD∆ky 0 0

iVD∆ky iVD∆kx 0 0



. (4.9)

∆H(∆k) describes wave behaviors for a small ∆k. The determinant of Eq. (4.8) gives,

det(D0 − ΩI4×4) = [(∆Ω)2 − V 2
D(∆k

2
x +∆k2y)]

2. (4.10)

For non-trivial solution, the determinant should be zero, leading to ∆Ω = ±VD|∆k|. Thus the

eigenfrequency Ω = ΩD ±VD|∆k|, which exhibits the linear dispersion with the slopes ±VD. As
presented in Fig. 4.2(b), the black lines mark the slopes ±VD. The degenerate black cone is in

a good agreement with the dispersion near the degenerate point obtained from the equations of

motion in Eq. (4.1). This verifies the fact that the quadruple degeneracy at the Γ point exhibits

a liner dispersion relation. In the next section, we will show that the wave dynamics around the

degenerate point can be described by Dirac equation.

4.3 Effective spin and helicity

In this section, we connect the wave dynamics around the degenerate point to a Dirac equation

and we establish the effective spin and helicity in the granular graphene.

4.3.1 Dirac Hamiltonian and effective spin

The rotational wave behavior in the vicinity of the Γ point can be approximately described by

Eq. (4.6). We can transform the original basis v0 = [ΦA; ΨA; ΦB; ΨB] to a circular polarized

basis ψ = Uv0 by the unitary matrix,

U =
1√
2




1 i 0 0

0 0 i 1

0 0 −1 −i
i 1 0 0



. (4.11)

The circular polarized basis can be presented as ψ = [p;d], where p and d take the following

forms,

p =

[
p↑

ip↓

]
=

1√
2

[
ΦA + iΨA

i(ΦB − iΨB)

]
;d =

[
d↑

id↓

]
=

1√
2

[
−(ΦB + iΨB)

i(ΦA − iΨA)

]
, (4.12)
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with “↑↓” denoting the left/right circular polarizations. By the proposed transformation, Eq. (4.8)

becomes, [
H(∆k) 0

0 H(∆k)

][
p

d

]
= ∆Ω

[
p

d

]
. (4.13)

In fact, Eq. (4.13) can be decoupled into two massless Dirac equations: H(∆k)υ′ = ∆Ωυ′,

where υ′ ∈ [p,d], H(∆k) = VDσ ·∆k is a 2× 2 Dirac Hamiltonian, and σ = (σx, σy, σz) are the

Pauli matrices in Eq. (1.23). We can see that under the circular basis, the wave dynamics of the

quadruple degeneracy can be described by two seperated massless Dirac equations, manifesting

that the quadruple degerneracy corresponds to a double Dirac cone. Consequently, p = [p↑; ip↓]

and d = [d↑; id↓] can be regarded as two uncoupled spinors, and the double Dirac cone is the

degeneracy of the Dirac cones of p (red branches) and d (green branches) spinor subsystems at

the Dirac frequency ΩD, as marked in Fig. 4.2. It is worth noting that the effective Hamiltonian

in Eq. (4.13) can be also derived in the band theory of electronic topological insulators [124–126].

Since wave propagation in the GG around the Dirac point can be described by the Dirac

equation, the eigenmodes at the Γ point, p↑↓ and d↑↓ can be regarded as the effective spin

states in the GG. To see the spin nature of modes, the four states p↑↓ and d↑↓ are depicted

in Fig. 4.3. As can be seen, the granular system exhibits a pair of mechanical “spin” states

which physically are the rotations of particle with left/right circular polarizations (the rotation

vector is circulating left/right handed with time). For a small ∆k around the Dirac point, any

eigenstate of the system can be expressed as the linear combination of p↑↓ (d↑↓) modes for the

p (d) branches. This is similar to the case in the electronic system where any spin state of the

system is the linear combination of spin up and spin down states.

Figure 4.3: Possible mechanical spin states in the GG. The left (right) circular polarization of rotation is the
spin ↑ (↓) state. The red (blue) arrow represents rotation vector of the particle A (B).

4.3.2 Effective spin-orbit coupling and helicity

When the perturbation is imposed to the system, namely η′ 6= 0 , the original granular system

described by the massless Dirac equation is tuned into a different one characterized by the

massive Dirac equation. According to Eq. (4.6), under the spin basis in Eq. (4.12), we can
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Chapter 4: Quasi-topological transport of rotational edge waves

obtain the dynamical equation,

[
H(∆k) mσz

mσz H(∆k)

]
ψ(∆k) = δΩψ(∆k), (4.14)

where ∆Ω = Ω − ΩD −m, and m can be regarded as the “effective mass” due to perturbation

η′. The existence of the mass term m tunes the dynamical equation of the granular system from

a massless Dirac equation to a massive one. It is clear that the presence of the effective mass

induces hybridization between the p and d spinors. The spin states p and d are no longer the

eigenmodes of the system. The new eigenmodes (U ′ψ) can be found by diagonalizing Eq. (4.13)

through the unitary transformation,

U ′ =
1√
2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



. (4.15)

After the transformation U ′HU ′−1, Eq.(4.14) can be written as,

[
H+(∆k) 0

0 H−(∆k)

][
S+

S−

]
= δΩ

[
S+

S−

]
. (4.16)

S± = p± d is the new spin basis that does not depend on the perturbation. The explicit form

of S± is given by,

S+ =

[
S↑
+

S↓
+

]
=

1√
2

[
p↑ + d↑

i(p↓ + d↓)

]
,S− =

[
S↑
−

S↓
−

]
=

1√
2

[
p↑ − d↑

i(p↓ − d↓)

]
, (4.17)

Eq.(4.16) predicts two decoupled massive Dirac equations, H±(∆k)S± = δΩS±, with the

Hamiltonian,

H±(∆k) = VD∆σ · k ±mσz. (4.18)

This implies that the perturbed system supports a pair of the spin-polarized modes S±. The

second term in Eq. (4.18) describes the hybridization of p and d spinor subsystems, which can

be regarded as the effective spin-orbit coupling (SOC) in the GG [206, 207]. The signs “±”

determine the nature of the eigenmodes to be S+ or S− types. Due to the effective SOC, the

Dirac point is lifted and the p and d modes couple to each other, leading to appearance of a gap

and the spin-polarized modes S±. To illustrate the appearance of a gap, first, the unperturbed

(η′ = 0) dispersion curves are shown in Fig. 4.4(a), where a double Dirac cone appears at

the Dirac frequency ΩD =
√
3P in the center of the BZ. Modifying the bending and torsional

rigidities, the Dirac cone is lifted and a complete band gap appears. Figure 4.4(b) shows the

case when the bending and torsional rigidities are perturbed by η′ = 0.1 (red bonds in the
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4.3 Effective spin and helicity

inset of Fig. 4.4(b)). The hybridization of modes are demonstrated in Fig. 4.4(c) and (d). The

eigenmodes of the Γ point are shown in Fig. 4.4(c) when η′ = 0 and in (d) when η′ = 0.1. Each

eigenmode is presented by its two rotational components Φ and Ψ separately. The amplitude of

the rotational components can be evaluated from the color bar. It is clear that the eigenmodes

in Fig. 4.4(d) are the combinations of the ones in Fig. 4.4(c), confirming the hybridization of

modes in the GG.

Figure 4.4: The band structures for ηb = ηt = 0.5 and P = 1.55 are shown when perturbation η′ = 0 in (a) and
η′ = +0.1 in (b). The four rotational branches around the Dirac point are marked from 1 to 4. The red branches
in (a) represent the d modes, and the blue ones label p modes. The schematics of particles connected by black
(red) bonds in the insets of (a) ((b)) indicates that the bending and torsional rigidities are unmodified (modified).
The spin Chern number is shown in (b) for each band. The four eigenmodes of the Γ point when η′ = 0 in (c)
and when η′ = 0.1 in (d).

When ∆k = 0, Eq. (4.16) reduces to be ±mσzS± = δΩS±. Its solutions are the eigenstates

of the Pauli matrix σz. When ∆k 6= 0, the HamiltonianH± predicts the helicity-locking property

of the bulk modes [96]. To demonstrate the helicity, Eq. (4.16) can be rewritten as,

±λ(σ · e)S± = δΩS±, (4.19)

where λ =
√
V 2
D∆k

2 +m2 and e is a unit vector defined by e = (VD∆kx/λ, VD∆ky/λ,m/λ). It

is clear that σ · e commutes with H±, namely [H±,σ · e] = H±(σ · e) − (σ · e)H± = 0. Then

the helicity ĥ in the GG can be defined as,

ĥ = σ · e. (4.20)
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From Eq. (4.19), the helicity satisfies the following eigenvalue problem,

(σ · e)S± = ±δΩ
λ
S±. (4.21)

Note that, the Hamiltonian H± predicts the dispersion relation δΩ =
√
V 2
D∆k

2 +m2. Thus

the helicity ĥ has the eigenvalues equal to ±1, and its eigenstates are the same as the ones

of the Hamiltonian H±. The eigenvalues ±1 determine the eigenstates to be right-handed

(+1) or left-handed (−1) helical states. The vector ±(VD∆kx/λ, VD∆ky/λ,m/λ) is the helicity

vector denoting the direction of the helicity [108]. It should be mentioned that the definition in

Eq. (4.20) is also valid when η′ = 0, namelym = 0. For right-handed helical states, the helicity is

aligned in the same direction as e, while it is the opposite for the left-handed helical states. The

Figure 4.5: Projection of helical modes with perturbation (a) η′ = 0 and (b) η′ = 0.1 on the k space. The numbers
1,2,3,4 mark the modes corresponding to those in the branches labeled in the same number in Fig. 4.4. The arrow
denotes the axis of helicity projection. The “currents” in the upper branches are outgoing (right-handed) while
in the lower branches are incoming (left-handed). The color in the background represents the eigenfrequency.

helicity patterns, namely the projection of the helicity in the k space, of the eigenmodes around

the Γ point in the upper and lower S± branches are shown by arrows in Fig. 4.5(a) and (b). In the

absence of perturbation, η′ = 0, the arrows maintain the same length as shown in Fig. 4.5(a). The

upper Dirac cones support the right-handed helical modes, exhibiting the outgoing “currents”

(left of Fig. 4.5(a)),while the lower Dirac cones support the left-handed helical modes, showing

the incoming “currents” (right of Fig. 4.5(a)). In the presence of perturbation, η′ = 0.1, as

depicted in Fig. 4.5(b), the “currents” of the upper and lower branches remain in the similar

patterns as those of the unperturbed case, while the lengths of the arrows become shorter when

approaching the Γ point. At the Γ point, the in-plane arrows vanish, indicating the vector e

pointing exactly along the z axis.
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4.4 Topological transport of rotatinal edge wave

So far, we have discussed the wave dynamics around the Dirac point. Several important concepts,

such as spin, SOC and helicity, have been extended to the granular system. In this section, we

study the topological property of the GG.

4.4.1 Topological number

In general, the dispersion diagram contains most of the useful information about the system

such as the allowed and forbidden bands for waves propagation. However, the information on

topology of the system is hidden in the eigenstates [148–150]. As discussed in Sec. 4.3.2, due to

the appearance of perturbation, effective SOC is induced to the granular system. The existence

of the effective SOC leads to the coupling of the original spin states p and d, resulting in the new

spin states S± to be the eigenmodes of the system. This changing of the eigenmodes indicates

that the GG could have experienced a critical phase transition in topology of the system. To

illustrate the topological transition in the GG, we need to classify the topological order of each

branch based on their eigenstates around the Dirac point [136]. We first analyse the cases when

η′ = 0, then come to the case when η′ 6= 0.

When η′ = 0, namely m = 0, the wave dynamics around Dirac point is described by

Eq. (4.13), which can be reduced to a pair of uncoupled equations. Here, we take p modes

as an example to analyse. Similar conclusions are valid for the d modes. The wave dynamical

equation of the p modes around the Dirac point is,

[
0 VD(∆kx − i∆ky)

VD(∆kx + i∆ky) 0

][
p↑

p↓

]
= ∆Ω

[
p↑

p↓

]
. (4.22)

It predicts the linear dispersion relation: ∆Ω± = ±VD∆k. From Eq. (4.22), the following

relations can be obtained,

VD(∆kx − i∆ky)p↓ = ∆Ωp↑, (4.23a)

VD(∆kx + i∆ky)p↑ = ∆Ωp↓. (4.23b)

The relations above lead to two eigenwavefunctions near the Dirac point,

p+(∆k) =
1√
2




1
∆kx + i∆ky

∆k


 eikr,p−(∆k) =

1√
2



∆kx − i∆ky

−∆k
1


 eikr. (4.24)

The subscript ± labels the modes in the upper (+)/lower (−) Dirac cones. According to

Eq. (1.20), we can calculate the Berry phase, a key parameter identifying/characterizing the

topology of material, around the Dirac cone [136,169,208],

Γ± = i

∮

C
〈p±(∆k)|∇∆k|p±(∆k)〉d∆k, (4.25)
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where C represents the close path of the BZ. Let’s take p+ as an example. Substituting it into

Eq. (4.25), we find,

Γ+ = i

∮

C
〈p+(∆k)|∇∆k|p+(∆k)〉d∆k

=
i

2

∮

C

[
1,

∆kx − i∆ky
∆k

]



 0
ex + iey

∆k


+




1
∆kx + i∆ky

∆k


 ir



 d∆k

=
i

2

∮

C

[
1

|∆k|2 (∆kxd∆kx +∆kyd∆ky)

]
+
i

2

∮

C
2ird∆k. (4.26)

Above, ex,y are the unit vectors along x and y directions, respectively. For a close path C, the

second term in the right side of Eq. (4.26) is obviously zero. Then Eq. (4.26) becomes,

Γ+ =
i

2|∆k|2
∮

C
(∆kxd∆kx +∆kyd∆ky)

=

∮

C
d∆k ·A, (4.27)

From Eq. (4.27), the Berry connection is defined as A = i(∆kxex+∆kyey)/2∆k
2. However, ac-

cording to Eq. (4.25), the Berry connection can also be defined asA′ = i〈p+(∆k)|∇∆k|p+(∆k)〉 =
A−r. This exactly reveals the fact that Berry connection, similar to the electromagnetic vector

potential, is gauge dependent [150]. Consequently, it is useful to define, in analogy to electro-

dynamics, a gauge field tensor derived from the Berry vector potential as discussed in Sec. 1.6.2,

B = ∇k ×A. (4.28)

B is the Berry curvature, which is analogous to the magnetic field. Then according to Stokes’s

theorem the Berry phase can be written as a surface integral

Γ+ =

∫

S
dS ·B. (4.29)

where S is the surface (BZ) enclosed by the close path C. It defines the Berry phase as the

integral of the the Berry curvature over the BZ. Since the Berry connection A = i(∆kxex +

∆kyey)/2∆k
2, it is clear that the Berry curvature B = ∇k × A = 0 for the eigen function

p+(∆k). Thus we can directly conclude that the Berry phase Γ+ = 0. The same result is

obtained if p−(∆k) is implied into Eq. (4.26). The results for p± modes are also verified for the

d± modes. Thus we find that the Berry phase for the Dirac cone at the Γ point is zero. The

Chern number, the integral of the Berry curvature over a closed manifold quantized in the units

of 2π, is zero, indicating that the GG is topological trivial when η′ = 0.

When η′ 6= 0, the effective SOC is induced in the system, the eigenmodes of the GG can be

obtained from Eq. (4.19). Take the S+ modes as an example, the corresponding Hamiltonian

is given by H+ = VDσ · ∆k + mσz = λ±e · σ. The corresponding eigenstates with energies
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Figure 4.6: Berry curvature near the Γ point. The numbers 1 to 4 label the four branches near the Dirac frequency
from the top to the bottom as shown in Fig. 4.4(b).

λ± = ±
√
m2 + V 2

D∆k
2 are obtained,

v+ =



cos

θ

2
e−iφ

sin
θ

2


 , v− =



sin

θ

2
e−iφ

− cos
θ

2


 , (4.30)

where θ and ψ are the azimuthal angle and the polar angle of vector e, respectively. They satisfy

the following relations,

cos θ =
m

λ±
, sin θ =

VD|∆k|
λ±

, cosφ =
∆kx
|∆k| , sinφ =

∆ky
|∆k| . (4.31)

We can see that actually the S+ modes system governed by the Hamiltonian H+ is similar to

the two-level system described in Sec. 1.6.2. Let us consider the v− mode, the Berry connection

is given by,

Aθ = i〈v−|∂θv−〉 = 0, (4.32a)

Aφ = i〈v−|∂φv−〉 = sin2
θ

2
, (4.32b)

and the Berry curvature is,

B− = ∂θAφ − ∂φAθ =
1

2
sin θ. (4.33a)

Similarly, the Berry curvature of the v+ mode can be obtained,

B+ = −1

2
sin θ. (4.33b)

The Berry curvature of the S− states can be calculated the same way. Fig. 4.6 shows the Berry

curvature near the Γ point for the four branches from upper to lower subbands in Fig. 4.4(b).
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Berry phase, the integral of the Berry curvature over the BZ, is equal to ±π when the integral

is performed on B±. It is clear that the overall Berry phase is zero around the Γ point, which

is guaranteed by time-reversal symmetry. However, the Berry phase for each of the branches

at the Γ point is nonzero, then the topological number (more accurately, here it is spin Chern

number characterizing the integral of the Berry curvature of the same spin over the BZ) is

Cs = +1,−1,+1,−1 from the upper subbands to the lower ones as shown in Fig. 4.4(b). This

shows that after the perturbation η′, the four branches around the Γ point exhibit non-trivial

topological numbers. We can conclude that the crucial point is the Dirac point. When η′ 6= 0,

the Dirac point is lifted, and the GG undergoes a critical phase shift from the topological trivial

to topological non-trivial. Consequently, the gap with band width 2m is topological non-trivial.

4.4.2 Boundary condition

Figure 4.7: Schematics of the interface. The unit cells in the bulk and at the interface have been marked by the
circles.

The GG, with the approximate Hamiltonian of Eq. (4.18) around the Γ point, is expected

to support a pair of topologically protected edge waves on the interface constructed by two

topological non-trivial GGs with the same amounts but opposite signs of perturbation [108]. To

observe the topological transport of edge waves, an interface is constructed by combining two

GGs with opposite signs of perturbation η′ = ±0.1 as shown in Fig. 4.7. On the interface, the

bonds connecting the left and right GGs remain unmodified. The edge waves, which are localized

near the edge and transporting the energy along the edge, should not emit the bulk modes. The

propagation of the bulk modes is forbidden in the energy gaps of the bulk GG. So the condition

of the non-evanescence of the edge modes could be satisfied if the frequency of the edge mode

is inside the bulk band gap of both GG, i.e., in the left and in the right of their interface. Thus

the band gaps of the two GGs should overlap. From Eq. (4.1), when ηb = ηt = 0.5 and P = 1.55

the dynamical matrix D in Eq. (4.2) predicts four rotational eigenmodes at the Γ point:

1. Φ modes: ΩΦ1 =
√
3P and ΩΦ2 =

√
3P(1 + 2η′).

2. Ψ modes: ΩΨ1 =
√
3P and ΩΨ2 =

√
3P(1 + 2η′).
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4.4 Topological transport of rotatinal edge wave

Suppose the two GGs have the same mass of beads, it is clear that when η′ = 0.1, the band

width of the forbidden gap is
√
3P < Ω <

√
3P(1 + 2η′) for the GG in the left side. However,

when η′ = −0.1, the forbidden gap is
√
3P(1− 2η′) < Ω <

√
3P for the GG in the right side.

This shows that the two GGs with the same mass of beads but opposite signs of perturbation

η′ = ±0.1 do not exhibit overlapping band gap as depicted in Fig. 4.8(a) and (b). In order to

ensure that the two GGs exhibit overlapping band gaps, the mass of beads of the right GG has

been modified by MR = fM with a scaling factor f = 0.92 (M is the mass of the left side). The

dispersion curves in Fig. 4.8(b) and (c) confirm the existence of overlapping gap.

Let us focus on the interface shown in Fig. 4.7 and derive the boundary condition. Suppose

that the interface is constructed at position x = 0. The masses of beads on the two sides satisfy

MR = fM = M/(1 + g) (g is the tuning factor). On the interface, the unit cell contains two

particles AL and BR (the superscripts L,R represent the GGs in the left or right sides), and

particle AL is connected with particle BR through unperturbed bonds (black). In general, the

total forces/moments on particle AL of the interface can be described by the equation,

MÄe = F ′
inner + Fneighor, (4.34a)

where M denotes the mass/moment of inertia of particle AL, Ae is the movement (displace-

ment/rotation) of particle AL on the interface, F ′
inner represents the interactions within the unit

cell of interface, i.e., with the particle BR, and Fneighbor corresponds to the interactions with

the adjacent unit cells. For the propagating edge waves, the boundary motion in Eq. (4.34)(a)

should be ensured by the evanescent modes of the bulk. Meanwhile, the evanescent bulk modes

in the GG of the left side material satisfy the following equation for the particle AL,

MÄl = Finner + Fneighor, (4.34b)

Figure 4.8: Dispersions for different parameters. (a) perturbation η′ = −0.1 and the scaling factor f = 1. (b)
η′ = 0.1 and f = 1. (c) η′ = −0.1 and f = 0.92. The gray regions mark the common band gap.
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Chapter 4: Quasi-topological transport of rotational edge waves

where the difference from Eq. (4.34)(a) is only in the evaluation of the interaction inside the

unit cell, i.e., Finner. In Eq. (4.34)(b), the particle B in the edge unit cell is the one of the bulk

GG in the left side and the bonds between the particles in the edge unit cell are also those in the

unit cell of the left GG. Comparison of Eqs. (4.34)(a) and (b) indicates that the combination of

the bulk modes from the left side should guarantee that the interactions at the interface x = 0

are the same as the ones in the same position of the bulk GG,

F ′
inner = Finner. (4.35)

Similar analysis of the motion for the particle BR in the edge unit cell leads to the boundary

condition of the same form as Eq. (4.35). The only difference with Eq. (4.35) is that the

evanescent bulk modes are from the GG in the right side. Therefore, the boundary condition

can be written as,




0 0 0 1 0 −1

0 η′ 0 0 −(η + η′) 0

0 0 η′ 0 0 −(η + η′)

1 0 1 0 0 0

0 η 0 0 0 0

0 0 η 0 0 0




vL =




0 0 0 1 0 −1

0 0 0 0 −η 0

0 0 0 0 0 −η
1 0 1 0 0 0

0 (η − η′) 0 0 η′ 0

0 0 (η − η′) 0 0 η′




vR, (4.36)

where vL,R = [vAe
iqL,R

x ; vBe
−iqL,R

x ] with vA,B the motion components of the particles A or B,

η = ξb,t/ξs and η′ = ξ′/ξs with ξ′ denoting the perturbation of stiffness. Basically, in numerical

calculations, the edge wave solution can be obtained by combining the dynamical equation of the

bulk modes, Eq. (4.1), and the boundary condition, Eq. (4.36). However, the analytical formulas

are too cumbersome. In fact, we are only interested in the wave dynamics of the interface near

the Γ point. In this case the solution can be simplified significantly, see Sec. 4.5.1

4.4.3 One way propagating edge waves

Numerically, the projected band structure of the GGs with the interface in Fig. 4.7 is presented

in Fig. 4.9(a), where the grey lines correspond to the bulk modes which are projected to the

qy =
√
3kyR direction. Using the boundary condition, the dispersion curves of edge modes can

be obtained, as labelled by color lines in Fig. 4.9(a). There are two branches of edge waves in

the topological gap labelled as cyan and magenta lines. The cyan (magenta) lines correspond to

upward Su (downward Sd) propagating rotational edge waves. The green lines mark the edge

branches that support the propagation of the topological trivial waves (see Sec. 4.5.2). The

zooms of the boxes are shown in Fig. 4.9(b).

In fact, the cyan and magenta branches located in the topological bad gap support the

propagation of edge wave with different polarizations. To clear see this, we chose two edge
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4.4 Topological transport of rotatinal edge wave

Figure 4.9: (a) Dispersion of the edge wave along the y−direction. The grey lines correspond to the bulk modes
and color lines to the edge modes. (b) The zooms of different edge branches. a tiny gap appears in the topological
gap. However, The branches labelled by the blue and red lines still support upward and downward propagating
edge modes, respectively. The green lines represent topological trivial edge modes. (c) Schematics revealing the
opposite spin nature of modes in the blue and red branches in (b). The arrow in red (blue) in the unit cell
represents the rotation direction of particle A (B). Time evolution simulations are implemented for the one-way
upward propagating wave in (d) and downward propagating wave in (e). The green stars highlight the positions
of source. (f) The same configuration as the one in (c) except that there is a hole close to the interface. The
movement of a bead marked by the black circle is recorded to compare with the case in (e). (g) The rotational
signals of the recorded bead. The green areas correspond to non-defect case and blue to the defect case.

eigenmodes from the two edge branches to see the circulating natures of their rotational vectors.

Time evolution of the trajectories of the eigenmodes with opposite signs of ky are presented in

Fig. 4.9(c), where a unit cell of the interface is also shown. The arrow in red (blue) represents

the rotational vector of particle A (B), which is rotating with increasing time. The trajectories

of the red and blue arrows suggest that the edge modes on the cyan (magenta) branches are left

(right) circular-polarized. Therefore, the cyan/magenta branches (Su/Sd modes) support the

propagation of rotational edge waves with different polarizations.

The branches with the edge modes of different circular polarization support the unidirectional

propagation of edge waves on the interface. To check the one-way property of the edge wave,

we implement the spatio-temporal evolution simulations of edge waves. Since the equations

of motion are the second order of Ordinary differential equation (ODE), they can be solved

numerically. The method we used to simulate the elastic wave propagation in the 2D granular

graphene is based on the 4th order Runge-Kutta method. The results for the Su and Sd modes

are shown in Fig. 4.9(d) and (e), respectively. In the simulations, an interface unit cell is used

to be the source (star) to excite the harmonic edge wave A±e
−iωt, where A± are the eigenmodes
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Chapter 4: Quasi-topological transport of rotational edge waves

of Su and Sd waves. As can be seen in Fig. 4.9(d) and (e), upward Su and downward Sd

propagating rotational edge waves are observed, manifesting the one-way propagation property

of the rotational edge wave.

It should be mentioned that a topological transport on the interface exists only when the

edge wave dispersion is gapless. However, the dispersion of the edge waves in the GG is not

gapless as there is a tiny gap at the Γ point, Fig. 4.9(b). In the bulk, the system has C6

symmetry, while due to the mismatch of the masses in the interface unit cell, the C6 symmetry

is broken, resulting in a tiny gap. The existence of the tiny gap actually leads to the coupling of

spin-polarized helical edge states, inducing the hybridized Su and Sd rotational edge waves which

are not perfectly topologically protected. This is confirmed by the spatio-temporal evolution

simulations in Fig. 4.9(f), where the interface configuration is identical to Fig. 4.9(e) except

that a hole is placed close to the interface. We monitor the particle at the position marked

by the circle to see if there is back reflection. The rotational movements of the particle as a

function of time are shown in Fig. 4.9(g) both for the cases with/without the hole. In the case

of immune propagation and no backscattering, one would expect identical dynamics. However,

a small difference between these two is observed which could originate from a small amount of

back-reflection due to the existence of tiny gap and coupling of the edge waves.

4.5 Wave dynamics on the interface

In the previous section, we showed that a pair of unidirectional edge waves were observed on

the interface constructed by two GGs with opposite signs of perturbation. Since the two GGs

had different masses, the C6 symmetry is broken on the interface, leading to a tiny gap in the

dispersion relation of the edge wave. In this section, we theoretically investigate the origin and

influence of this tiny gap.

4.5.1 Edge waves on the interface

For a small tuning on the mass in the right side, we can treat this tuning as perturbation on the

system. Consequently, we can evaluate bulk motion equations at ΩD at the Γ point by using

Taylor expansion. Under the spin basis in Eq. (4.17), the dynamical equation is given by,

He




S↑
+

S↓
+

S↑
−

S↓
−



= ∆Ω




S↑
+

S↓
+

S↑
−

S↓
−



, (4.37)
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with He of the form,

He = (1 + g)




mL,R ±m VD(∆kx − i∆ky) 0 0

VD(∆kx + i∆ky) mL,R ∓m 0 0

0 0 mL,R ∓m VD(∆kx − i∆ky)

0 0 VD(∆kx + i∆ky) mL,R ±m



.

(4.38)

Above, mL = m, mR = (1 + g)(Ωg −m) with Ωg = gΩD/2(1 + g). The sign + corresponds to

the left side, while − to the right. From herein, in the left side, we have g = 0. The dispersion

relations of bulk modes can be written as,

∆Ω = mL,R ± (1 + g)
√
m2 + V 2

D(∆k
2
x +∆k2y). (4.39)

The edge wave should propagate along the interface (x = 0) and decay into the bulk (x 6= 0).

According to Eq. (4.39), the following relations are obtained from the dispersion relations,

∆kLx = iκL = i

√
m2

V 2
D

+∆k2y −
(∆Ω−m)2

V 2
D

, (4.40a)

∆kRx = −iκR = −i
√
m2

V 2
D

+∆k2y −
[∆Ω− (1 + g)(Ωg −m)]2

(1 + g)2V 2
D

; (4.40b)

Eqs. (4.40) implies that for a given frequency, there are one S+ and one S− modes. The

corresponding eigenmodes of each side can be chosen as,

SL
+ =




αL

1

0

0



=




VD(∆k
L
x − i∆ky)

∆Ω− 2m
1

0

0



;SL

− =




0

0

1

βL



=




0

0

1

VD(∆k
L
x + i∆ky)

∆Ω− 2m



, (4.41a)

SR
+ =




αR

1

0

0



=




VD(∆k
R
x − i∆ky)

f∆Ω+ 2m

1

0

0



;SR

− =




0

0

1

βR



=




0

0

1

VD(∆k
R
x + i∆ky)

f∆Ω+ 2m



. (4.41b)

On the interface (x = 0), the edge wave solution should be the combination of the bulk modes,

which takes the form,

ϕedge = Σ




S↑
+

S↓
+

S↑
−

S↓
−



=




S↑
+

S↓
+

S↑
−

S↓
−



L

+




S↑
+

S↓
+

S↑
−

S↓
−



R

, (4.42)

100



Chapter 4: Quasi-topological transport of rotational edge waves

with




S↑
+

S↓
+

S↑
−

S↓
−



L

= (KL
+S

L
+ +KL

−S
L
−)e

−i∆kyy;




S↑
+

S↓
+

S↑
−

S↓
−



R

= (KR
+S

R
+ +KR

−S
R
−)e

−i∆kyy, (4.43)

where KL,R
± are the coefficients, indicating the reltive contribution of different modes. Around

the Γ point, the boundary condition in Eq. (4.36) can be approximated as (the u components

are ignored),




−η′ 0 η 0

0 0 0 η + η′

−η − η′ 0 0 0

0 −η 0 −η′







S↑
+

S↓
+

S↑
−

S↓
−



L

+




η′ 0 −η 0

0 0 0 −η + η′

η − η′ 0 0 0

0 η 0 η′







S↑
+

S↓
+

S↑
−

S↓
−



R

= 0. (4.44)

As shown in Fig. 4.8, we are looking for the edge wave solutions in the overlapping band gap

Ω2
D < Ω2 < Ω2

D/f . Using the approximation Ω2 ≈ Ω2
D + 2ΩD∆Ω, it is easy to obtain that

0 < ∆Ω < (1+g)Ωg (see the definition of Ωg in Eq. (4.38)). Substituting Eqs. (4.41) and (4.43)

into Eq. (4.44), we arrive at,




−cαL cαR 1 −1

0 0 (1 + c)βL −(1− c)βR

−(1 + c)αL (1− c)αR 0 0

−1 1 −cβL cβR







KL
+

KR
+

KL
−

KR
−



= 0. (4.45)

Above, we set c = η′/η. Eq. (4.45) predicts the relations between components,

KR
+ =

(1 + c)αL

(1− c)αR
KL

+,K
R
− =

(1 + c)βL
(1− c)βR

KL
−. (4.46)

Thus, Eq. (4.45) can be reduced,




2c2

1− c
αL 1− (1 + c)βL

(1− c)βR

−1 +
(1 + c)αL

(1− c)αR

2c2

1− c
βL




[
KL

+

KL
−

]
= 0. (4.47)

Based on Eq. (4.47), it is possible to get analytical results for the existence of the tiny gap in

the dispersion curves of edge waves.
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4.5.2 Quasi-topological edge waves

The original of the tiny gap can be physically investigated. For simplicity, we only discuss the

case when ∆ky = 0 below.

• The masses of both sides are equal

In this case, the scaling factor f = 1 (g = 0). For topological gapless edge wave, ∆Ω should be

zero when ∆ky = 0. Then Eq. (4.45) leads to,

KL
+ = KR

+ ,K
L
− = KR

− . (4.48)

which predict two independent edge wave solutions:

ϕ± = SL
± + SR

±. (4.49)

Eq. (4.49) shows that the edge states do not depend on perturbation η′, thus ϕ± are the time-

reversal pair that support the edge modes with different spin polarization, which are perfectly

topological-protected. However, from Eq. (4.40), we can obtain ∆kLx = ∆kRx = 0. Thus the

modes in this case are not evanescent into the bulk. They are not the localized modes on the

edge.

• The mass in the right side is modified

In this case, the scaling factor f 6= 1 (g 6= 0). When ∆ky = 0, αL = βL and αR = βR. Suppose

we still have ∆Ω = 0. From Eq. (4.40), it is clear that αL = βL = 0, while αR = βR 6= 0. Then

Eq. (4.47) becomes, [
0 1

−1 0

][
KL

+

KL
−

]
= 0. (4.50)

The determinant of Eq. (4.50) is nonzero, meaning that there is no edge wave solution. Con-

sequently, ∆Ω must be non zero when g 6= 0. For non zero ∆Ω, from Eq. (4.40) it is apparent

that αL = βL 6= 0 and αR = βR 6= 0. Thus, the zero determinant of Eq. (4.47) leads to the

relation,
1− c

αL
− 1 + c

αR
= ±2c2. (4.51)

Finally, we can obtain the edge wave frequencies,

∆Ω =
2m(a− b)± 2c2

a− bf
(4.52)

where a = (1− c)/(VD∆k
L
x ) and b = (1+ c)/(VD∆k

R
x ). Eq. (4.52) shows that there exists a gap

for the edge wave at the Γ point. Thus, we can conclude that when f 6= 1, the mismatch of the

masses on two sides of the interface leads to a gap for the edge wave.
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The existence of a tiny gap has an influence on the nature of edge waves. Actually, in this

case the uncoupled time-reversal pair of edge waves hybridize to each other, leading to non-

prefect topological edge waves on the interface. From Eq. (4.47) it is clear that KL
+ and KL

−

are not independent from each other when αL = βL 6= 0 and αR = βR 6= 0, which directly

shows that the S+ modes couple with S− modes. The coupled modes are the eigenstates of

the system. The new edge waves can be theoretically predicted. According to Eq. (4.47), the

following relation can be obtained,

KL
+ =

(
1− c

2c2αL
− 1 + c

2c2αR

)
KL

− = ±KL
− (4.53)

The edge wave solution can take the form,

ϕedge =
[
±(1− c)αRS

L
+ + (1− c)αRS

L
− ± (1 + c)αLS

R
+ + (1 + c)αLS

R
−

]
e−i∆kyy. (4.54)

It shows that the edge waves are the combinations of the S± modes. Since αL,R rely on the

values η′ and f , Eq. (4.54) shows that the eigenstates of edge wave depend on perturbation η′

and the modification on the mass f , which is not the case for non-trivial topological edge wave

whose eigenstates are independent from perturbations [132].

Figure 4.10: Robustness of the topological rotational wave against defect: a zigzag path containing two corners.
(a) When downward propagating edge wave is launched from the position marked by the green star, it shows that
rotational wave can turn the corners and keep propagating without noticeable backscattering. For comparison, a
normal edge wave is excited from the same positions in (b). It can be seen that wave can not turn the corner and
huge reflection can be observed.

According to the results above, we can conclude that when defects appear, the spin-polarized

states can be scattered from one into another, turning the edge waves from being perfect immune

to being non-perfect immune to the defects. Consequently, backscattering exists in the system

as discussed in Fig. 4.9(g). However, as can be seen in Fig. 4.9(b), the width of the tiny gap

is ∆ = 5e−5 when f = 0.92, suggesting that the hybridization of the spin-polarized helical

edge states is very weak. Therefore, the backscattering is too small, and the propagation of

rotational edge waves can be regarded as quasi-topologically protected. The rotational edge

waves in the GG are still quite robust against defects. This can be confirmed by using the
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spatio-temporal evolution simulations. As an example, in Fig. 4.10(a) a zigzag path with two

corners is constructed by combining two GGs with opposite signs of perturbation, η′ = ±0.1.

The same source (star) as in Fig. 4.9(e) is applied to launch the downward propagating rotational

edge wave Sd. It can be seen that the excited Sd can turn the corners and keep propagating

without significant backscattering. For comparison, in Fig. 4.10(b), a normal edge wave with

qk = π/3 in the green branch of Fig. 4.9(b) is excited from the same position as Fig. 4.10(a),

Figure 4.11: Schematics of the interface with defect.

we can observe clearly the reflection and dif-

fraction when wave meets the corner and no

output rotational edge wave in the end.

To check the robustness of the quasi-

topological edge waves. An interface is con-

structed by two kinds of particles with differ-

ent masses. This kind of interface supports

the propagation of the quasi-topological edge

waves. As an example, in Fig. 4.11, the masses

of the beads on the interface from position

y = 32 to y = 42 have been changed to be the

same as the ones in the left side. The down-

ward rotational edge wave is excited, and the

simulation is shown in Fig. 4.11. The amp-

litude of edge wave can be referred from the

color bar. The interfaces above and below

the defect have nearly the same magnitude of

brightness, suggesting that the edge wave can

travel through the defect without losing much

energy. Thus, the edge wave is quite robust

again this kind of defects.

4.6 Conclusion

The quasi-topological transport of rotational edge waves in the GG in a similar way to the QSHE

have been demonstrated. The mechanical spin and helical states in the GG can be observed

around the Γ point. By introducing perturbation on bending and torsional rigidities, effective

SOC can be achieved, leading to the quasi-topological transport of rotational edge wave in the

band gap. We show that the interface constructed by two GGs with different masses of the

particles does not support the propagation of perfectly topological edge wave since it hybridizes

the spin states. However, since the hybridization is very weak, the edge waves can be regarded as

nearly topologically protected edge waves. The easy construction of granular crystals, combined

with other features such as tunabilitiy upon external fields/mechanical loading and enhanced
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nonlinear response make them a perfect testbed for further fundamental studies in the field

of topological mechanics. In addition, the study in this work could promote the potential

applications of granular structures designed for the directional transport of elastic waves.
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General conclusion

In this manuscript, we studied theoretically the linear wave dynamics and the topological prop-

erty of elastic waves in two-dimensional (2D) granular crystals or granular membranes. Granular

crystals as a particular type of phononic crystals exhibit excellent abilities in manipulation of

elastic waves. Due to the rotational degrees of freedom, purely rotational and coupled rotational-

translational modes can exist in granular systems. Regardless of these properties, we found that

zero-frequency modes and slow modes can be observed in the two-dimensional granular systems.

Nevertheless, inspired by the study on topological wave behaviour in quantum/photonic/phononic

systems, the possible existence of topological waves propagation in granular crystals was also

investigated. Quasi-topological rotational waves on the interface are theoretically predicted and

numerically confirmed in granular graphene, granular honeycomb crystals.

Considering the rotational degrees of freedom, we firstly studied the bulk wave behaviour

in the hexagonal/honeycomb monolayer membranes when out-of-plane or in-plane motions are

imposed. The tunability of the band structures for phononic modes as well as the complete band

gaps are demonstrated. These properties are similar to those in other known phononic crystals.

However, distinguishing them from other phononic crystals, the existence of the non-propagating

rotational modes and slow rotational modes is very common in granular crystals, especially when

the bending/torsional rigidities are small. In the extreme case when bending/torsional rigidities

is absent, the non-propagating modes are observed in both hexagonal and honeycomb membranes

with out-of-plane motion.

To understand the physics of these non-propagating modes and slow modes, we analyzed the

case when torsional rigidity is zero. It is found that due to the existence of rotational degrees of

freedom, the non-propagating modes are predicted in the system when bending and/or torsional

rigidities are zero. Their existences in the membrane are analyzed. For example, when wave

vector is zero, rotation of the particles is not launched but the relative translations of adjacent

beads are zero. When wave vectors is non-zero, the elongation of the effective springs between

beads due to their unequal translations could be compensated by shrinking of the effective

springs caused by their relative rotations. Consequently, both cases keeps the contacts between

the particles unloaded and the energy of the system unmodified. For weak bending/torsional

rigidities of the contacts, the balance of the compensation is broken, transforming the non-

propagating modes into propagating modes with extremely slow speed.

Based on the results obtained for bulk wave dynamics, we analyzed the edge wave dynamics
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in a semi-infinite mechanical granular graphene structure. The band structures of the edge waves

are theoretically derived and analyzed for zigzag and armchair edge configurations. Similar to the

bulk bands, the dispersion of the edge states is also tunable by modifying bending and torsional

rigidities of contacts. Since the bending/torsional rigidities are weak in granular crystals, quasi-

flat bands of edge wave with near zero frequency are observed. These quasi-flat dispersion curves,

supporting the propagation of waves with extremely slow group velocity, show a tendency to be

perfect zero-frequency modes for zero torsional rigidity or vanish for zero bending rigidity. In

particular, when torsional rigidity is weak and bending rigidity is non-zero, the extremely slow

edge modes can exist on both zigzag and armchair edges. When bending rigidity also becomes

weak in addition to torsional one, all the branches of edge states in the low frequency area are

shifted and concentrated to be near zero frequency and very close to the bulk modes, leading to

the weak localization of edge waves on the boundaries.

The studies of bulk and edge waves made it possible to investigate the topologically protected

edge wave propagation in granular crystals. We found that granular graphene exhibiting double

Dirac cone at the Brillouin zone center is a potential structure to study the topological wave

in granular system. Those topological wave effects, e.g. unidirectionality and insensibility to

defects, can be explored in granular graphene. The notions such as effective spin, helicity and

effective spin-orbit coupling are established. The existence quasi-topological rotational wave on

the interface constructed by two topologically distinct granular graphenes with different masses

of beads is predicted.

To conclude, the presented research results provide fundamental understandings of wave

propagation in two-dimensional granular crystals and granular metamaterials and promote their

potential applications in acoustic wave control and vibration isolation. We believe that the

study of the zero-frequency modes and slow modes is useful for the potential realistic design of

granular crystals supporting controllable propagation of extremely slow edge waves. In addition,

it paves the way for the analysis of a variety of possible modifications of the granular graphene

with the goal of designing granular metamaterials supporting one-way propagating edge states.

The easy construction of granular crystals, combined with other features such as tunabilitiy

upon external fields/mechanical loading and enhanced nonlinear response make them a perfect

testbed for further fundamental studies in the field of topological mechanics.

We hope that the study of the topological wave propagation in this work will motivate

the enthusiasm for the scientific research on topological phenomena in granular system, and

the experimental design for topological transport of edge wave based on granular crystals and

metamaterials.
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Appendix A

Dynamical equation of a finite size

GG

In this part, the eigenvalue problem in a finite size granular granular (GG) is derived.

Figure A.1: Schematics of a granular graphene composed of M×N rectangular cells. The rectangular box labeled
by red dash lines is chosen as the unit cell in the numerical calculation.

A granular graphene of finite size is shown in Fig. A.1. In the numerical analysis, we would

like to choose the unit cell as the rectangular box enclosed by red dash lines. The advantage of

this definition is that the whole structure can be easily constructed by packing the rectangular

cells along the x− and y−directions. We use two integers m and n to be position indices. The

rectangular cell in position (m,n) contains four particles and six bonds, all of which are marked

in a way as shown in Fig. A.1. Let us focus on the rectangular cell at position (m,n). To
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be clear, we take the out-of-plane motion as an example to discuss. For in-plane motion, the

results can be obtained by following the same procedure. For out-of-plane motion, the green

bonds represent the total couplings of three types of effective springs between the beads: (1)

shear, (2) bending, and (3) torsional springs. Following analysis of interactions between beads

in the main text in Sec. 2.2.4, the equations of motion for the four particles in the rectangular

box can be obtained,

−Ω2
MAm,n = Saam,nAm,n + Sabm,nBm+1,n + Sadm,nDm,n + Sdm,nDm,n−1, (A.1a)

−Ω2
MBm,n = Sbam,nAm−1,n + Sbbm,nBm,n + Scm,nCm,n−1 + Sbcm,nCm,n, (A.1b)

−Ω2
MCm,n = Sccm,nCm,n + Scdm,nDm,n + Sbm,nBm,n+1 + Scbm,nBm,n, (A.1c)

−Ω2
MDm,n = Sdcm,nCm,n + Sddm,nDm+1,n + Sdam,nAm,n + Sam,nAm,n+1, (A.1d)

where A, B, C and D are the component vectors [u,Φ,Ψ] for beads 1, 2, 3, and 4, respectively.

M = diag[1; 1/P; 1/P]. Saa, Sab, Sad, Sd, Sba, Sbb, Sc, Sbc, Scc, Scd, Sb, Scb, Sdc, Sdd,

Sda, Sa are all 3× 3 matrices. Their exact forms can be obtained by analyzing the interactions

of each particles. As an example, let us consider particle 1 in the cell (m,n). The equation of

motion of particle 1 can be obtained according to Eqs. (2.9)(a)-(c). It should be mentioned that,

under the notations in Fig. A.1, particle 1 (the motion component vector is Am,n in Eq. (A.1a))

corresponds to the one labeled as 0 in Fig. 2.5. Its neighbour particle 4 (Dm,n) in cell (m,n)

corresponds to the one marked as 3 in Fig. 2.5, particle 2 (Bm+1,n) in cell (m+1, n) corresponds

to the one noted as 1 in Fig. 2.5, and particle 4 (Dm,n−1) in cell (m,n−1) corresponds to the one

labeled as 5 in Fig. 2.5. In addition, the spring rigidity characterized by ξ in Eqs. (2.9)(a)-(c)

is replaced by k in the numerical calculations. Therefore, from Eqs. (2.9)(a)-(c), we can easily

obtain Saa, Sab, Sad, Sd of the following forms,

Saam,n =




−(kn,m3s + kn,m+1
2s + kn,m1s )

√
3

2
(kn,m3s − kn,m1s ) −1

2
(kn,m3s − 2kn,m+1

2s + kn,m1s )
√
3

2
(kn,m3s − kn,m1s ) Saa2,2m,n Saa2,3m,n

−1

2
(kn,m3s − 2kn,m+1

2s + kn,m1s ) Saa3,2m,n Saa3,3m,n




with

Saa2,2m,n = −1

4
(3kn,m3s + 3kn,m3b + kn,m3t )− 1

4
(3kn,m1s + 3kn,m1b + kn,m1t )− kn,m+1

2t ,

Saa2,3m,n =

√
3

4
(kn,m3s + kn,m3b − kn,m3t ) +

√
3

4
(−kn,m1s − kn,m1b + kn,m1t ),

Saa3,3m,n = −1

4
(kn,m3s + kn,m3b + 3kn,m3t )− 1

4
(kn,m1s + kn,m1b + 3kn,m1t )− kn,m+1

2b − kn,m+1
2s ,

Saa3,2m,n = Saa2,3m,n.
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and

Sabm,n =




kn,m+1
2s 0 kn,m+1

2s

0 kn,m+1
2t 0

−kn,m+1
2s 0 −kn,m+1

2s + kn,m+1
2b




Sadm,n =




kn,m3s

√
3

2
kn,m3s −1

2
kn,m3s

−
√
3

2
kn,m3s

−3kn,m3s + 3kn,m3b + kn,m3t

4

√
3(kn,m3s − kn,m3b + kn,m3t )

4
1

2
kn,m3s

√
3(kn,m3s − kn,m3b + kn,m3t )

4

−kn,m3s + kn,m3b + 3kn,m3t

4




Sdm,n =




kn,m1s −
√
3

2
kn,m1s −1

2
kn,m1s√

3

2
kn,m1s

−3kn,m1s + 3kn,m1b + kn,m1t

4

√
3(−kn,m1s + kn,m1b − kn,m1t )

4
1

2
kn,m1s

√
3(−kn,m1s + kn,m1b − kn,m1t )

4

−kn,m1s + kn,m1b + 3kn,m1t

4




Following the same procedure for particles 2, 3 and 4, all the matrices in Eqs. (A.1) can be

obtained. Here, we will not list all of them but continue to discuss the eigenvalue problem

in a finite size granular graphene. The four equations in Eqs. (A.1) describe the interactions

involving the four particles in a rectangular cell. We can put them in a 12× 12 matrix equation

to characterize the total interactions of the rectangular cell in position (m,n),

−Ω2Xm,n = SAm,nXm,n + SBm,nXm−1,n + SCm,nXm,n−1 + SDm,nXm,n+1 + SEm,nXm+1,n,

(A.2)

whereX = [B;C;D;A] is a 1×12 vector containing all the motion components of the rectangular

cell. SA, SB, SC, SD and SE are 12× 12 matrices of the following forms,

SA =
1

M




Sbb Sbc 0 0

Scb Scc Scd 0

0 Sdc Sdd Sda

0 0 Sad Saa



, SB =

1

M




0 0 0 Sba

0 0 0 0

0 0 0 0

0 0 0 0



, SC =

1

M




0 Sc 0 0

0 0 0 0

0 0 0 0

0 0 Sd 0



,

SD =
1

M




0 0 0 0

Sb 0 0 0

0 0 0 Sa

0 0 0 0



, SE =

1

M




0 0 0 0

0 0 0 0

0 0 0 0

Sab 0 0 0



.

with M = diag[M;M;M;M]. The five matrices above have physical meanings: SA describes

the interactions within the rectangular cell; SB and SE demonstrate the interactions of cell

(m,n) with cell (m ∓ 1, n); SC and SD characterize the interactions of cell (m,n) with cell

(m,n∓ 1). Therefore, Eq. (A.2) can be regarded as the equation of motion of cell (m,n). For a

GG of finite size, we can get its eigenmodes from its dynamical equation, which can be obtained
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Figure A.2: Three types of boundaries in a finite size granular graphene. (a) Free boundary on the left edge. (b)
Fixed boundary on the left edge. (c) Periodic boundary on the left and right edges.

by taking into account all position indices m and n in the equation of motion in Eq. (A.2).

However, the boundary conditions have to be taken into consideration before considering the

indices. Basically, three types of boundary conditions are taken into account: (1) Free boundary;

(2) Fixed boundary; (3) Periodic boundary. We will discuss them below separately.

• Free boundary

As an example, Fig. A.2(a) shows a free boundary at positoin m = 1. In this case, the

particles on the edge have zero interaction with those in the left side (m < 1). Mathematically,

this is equivalent to setting the corresponding spring rigidities to be zero. For example, in

Fig. A.2(a), the rigidities kn,12 of the bonds (green dash lines) should be zero.

• Fixed boundary

In this case, the particles on the edge connect to a huge mass which can be regarded as

an immobile and absolutely rigid wall. As an example, Fig. A.2(b) shows a fixed boundary at

position m = 1. The particle on the edge can rotate and displace, the interactions between

the particles and the wall can be characterized be the grey bonds with the rigidities kn,12 . The

boundary conditions can be obtained by setting the movement of the rigid wall to be zero (both

rotation and translation). For example, in Fig. A.2(b), the static wall is equivalent to setting the
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motion components of the rectangular cells in (0, n) to be zero, i.e. X0,n = 0 and to modifying

the rigidities of the links connecting the beads with the wall, if required.

• Periodic boundary

As shown in Fig. A.2(c), periodic boundaries are considered in the two ends of the structure

(positions m = 1 and m = M). In this case, the boundary conditions can be obtained by

connecting the two ends together. Thus, the motion components of the cell in the two ends

satisfy X0,n = XM,n and X1,n = XM+1,n. The springs on the edges satisfy kn,12 = kn,M+1
2 .

In the discussion above, we consider that the boundaries were constructed along y−direction.

If we consider the boundaries along x−direction, similar boundary conditions can be formulated.

In general, the dynamical equation of the finite GG can be obtained by taking into account

all the cell indices. As an example, let us consider the case in Fig. A.1, where the two boundaries

at positions n = 1 and n = N (top and bottom edges) are free, while the two at positions m = 1

and m =M (left and right edges) are periodic. First of all, we consider the index n. According

to Eq. (A.1), the following equation can be derived,

−Ω2Ym = QamYm +QbmYm−1 +QcmYm+1, (A.3)

where Ym = [Xm,1;Xm,2; ...;Xm,N ] is a 1× 12N vector containing all the motion components of

particles in position m. Qam, Qbm and Qcm are 12N × 12N matrices of the forms,

Qam =




SAm,1 SDm,1 0 ... 0 0

SCm,2 SAm,2 SDm,2 0 ... 0

0 SCm,3 SAm,3 SDm,3 ... ...

... ... ... ... ... 0

0 ... 0 SCm,N−1 SAm,N−1 SDm,N−1

0 0 ... 0 SCm,N SAm,N




,

Qbm = diag[SBm,1;SBm,2; ...;SBm,N ],

Qcm = diag[SEm,1;SEm,2; ...;SEm,N ].

Qam describes the interactions of particles within the rectangular cells at position m, while Qbm

(Qcm) describes the interactions of cells at position m with those at position m − 1 (m + 1).

Next, we need to consider all the indices of m in Eq. (A.3). This leads to the final dynamical

equation of the finite size GG,

−Ω2V = QqV , (A.4)

where V = [Y1;Y2; ...;YM ] is a 1 × 12NM vector containing all the motion components of
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Figure A.3: An eigenmode of a GG composed of 5× 25 rectangular cells. Three motion components of beads are
presented separately. The top and bottom edges are free boundaries, while the left and right edges are periodic
boundaries.

particles in the GG, Qq is a 12NM × 12NM dynamical matrix of the following form,

Qq =




Qa1 Qc1 0 ... 0 Qb1

Qb2 Qa2 Qc2 0 ... 0

0 Qb3 Qa3 Qc3 ... ...

... ... ... ... ... 0

0 ... 0 QbM−1 QaM−1 QcM−1

QcM 0 ... 0 QbM QaM




.

We can see that, the eigenfrequencies and eigenmodes of the finite size GG can be studied by

solving the eigenvalue problem in Eq. (A.4). As an example, Fig. A.3 shows an eigenmode of a

GG composed of 5× 25 rectangular cells.
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Time evolution of waves in a finite

size GG

In this part, the spatio-temporal simulation for elastic wave propagation in the structure is

discussed. As discussed in Sec. A, Eq. (A.4) gives the eigenfrequencies and the eigenmodes of a

finite size GG. However, in numerical analysis, if we also want to see the propagation of elastic

wave in the structure, then the dynamical equation of the system should be time-dependent.

Let us still consider the case in Fig. A.1, according to Eq. (A.4), time evolution of elastic waves

in the structure can be evaluated by the following equation,

V̈ = QqV , (B.1)

which is a second order ordinary differential equation (ODE). Actually, in Eq. (B.1), V can be

regarded as the “displacement” of the system, then V̈ is the “acceleration”. Therefore, we can

introduce the “velocity” of the system U , which satisfies the following relations:

U̇ = V̈ , (B.2a)

U = V̇ . (B.2b)

Using the relation in Eq. (B.1), we arrive at,

U̇ = QqV , (B.3a)

V̇ = U . (B.3b)

We can see that the second order ODE in Eq. (B.1) can be divided into two first order ODEs

in Eqs. (B.3). Consequently, the time evolution problem in the GG can be studied by solving

Eqs. (B.3). Numerically, we used the Runge-Kutta 4th order (RK4) method [209, 210] to solve

the two ODEs in Eqs. (B.3).
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Let us consider the ODE, U̇ = QqV in Eqs. (B.3). This equation can be rewritten as,

U̇ i =
dU

dt
=
U i+1 −U i

ti+1 − ti
= QqV i, (B.4)

where U i is the velocity at time ti. From Eq. (B.4), the following relation can be obtained,

U i+1 = U i +∆t ·QqV i, (B.5a)

where ∆t = ti+1 − ti. Similarly, we can obtain another equation from Eqs. (B.3),

V i+1 = V i +∆t ·U i. (B.5b)

The RK4 method for the ODE problems in Eqs. (B.5) lead to [209,210],

U i+1 = U i +
1

6
(Ku1 + 2Ku2 + 2Ku3 +Ku4), (B.6a)

V i+1 = V i +
1

6
(Kv1 + 2Kv2 + 2Kv3 +Kv4), (B.6b)

with,

Ku1 = ∆t · V i, (B.7a)

Kv1 = ∆t ·QqU i, (B.7b)

Ku2 = ∆t · (V i +
1

2
Kv1), (B.7c)

Kv2 = ∆t ·Qq(U i +
1

2
Ku1), (B.7d)

Ku3 = ∆t · (V i +
1

2
Kv2), (B.7e)

Kv3 = ∆t ·Qq(U i +
1

2
Ku2), (B.7f)

Ku4 = ∆t · (V i +Kv3), (B.7g)

Kv4 = ∆t ·Qq(U i +Ku3). (B.7h)

Therefore, the code for Eqs. (B.5) based on RK4 is given as follows:

for ii=1:N

Ku1 = dt ∗ V ;

Kv1 = dt ∗Qq ∗ U ;

au = U +Ku1/2;

av = V +Kv1/2;
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Ku2 = dt ∗ av;
Kv2 = dt ∗Qq ∗ au;

au = U +Ku2/2;

av = V +Kv2/2;

Ku3 = dt ∗ av;
Kv3 = dt ∗Qq ∗ au;

au = U +Ku3;

av = V +Kv3;

Ku4 = dt ∗ av;
Kv4 = dt ∗Qq ∗ au;

U = U + (Ku1 + 2 ∗Ku2 + 2 ∗Ku3 +Ku4)/6;

V = V + (Kv1 + 2 ∗Kv2 + 2 ∗Kv3 +Kv4)/6;

t = t+ dt;

end

Using the code above, the time evolution problem of elastic wave propagation in the GG can

be solved.
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[83] L. Limat, Percolation and Cosserat elasticity: exact results on a deterministic fractal.

Phys. Rev. B 37(1), 672-675 (1988).
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Thèse de Doctorat

Li-Yang ZHENG

Granular monolayers: Wave dynamics and topological properties

Monocouches granulaires: Dynamique ondes et propriétés topologiques

Résumé

Les cristaux granulaires sont des structures périodiques de partic-

ules, le plus souvent des billes élastiques homogènes et élastiques,

disposées en réseau cristallin. Les billes sont couplées via leurs

contacts, qui ont des dimensions et des masses effectives beau-

coup plus petites que celles des billes. Les interactions entre

ces billes peuvent donc être modélisées par des rigidités nor-

males et de cisaillement des interconnexions élastiques. Ceci

induit une propagation d’ondes élastiques dans les structures

granulaires avec des vitesses significativement plus lentes que

dans le matériau des grains individuels. En outre, l’existence

de forces de cisaillement non centrales entre les particules peut

initier les rotations de particules, conduisant à des ondes couplées

rotationnelles-transverses ou rotationnelles dans ces cristaux.

Dans ce manuscrit, on étudie la propagation d’ondes élastiques

dans les cristaux granulaires monocouche bidimensionnels avec

un mouvement des particules hors-plan ou dans le plan. Les

courbes de dispersion des ondes élastiques, qui peuvent être

modifiées en contrôlant les rigidités des contacts, sont obtenues

théoriquement et analysées numériquement pour différentes con-

figurations de couplages entre billes. Les propriétés phononiques

des cristaux granulaires sont étudiées, y compris l’existence de

points de Dirac, les modes de fréquence nulle, les modes à vitesse

de groupe nulle et leur transformation en modes de propaga-

tion lente en raison de faibles interactions de flexion et de

torsion inter-grain. En outre, en présence de bords, on peut

prévoir également des ondes de bord élastiques à fréquence nulle

et extrêmement lentes dans des cristaux granulaires en ≪ nid

d’abeille ≫ (graphène granulaire) lorsque les rigidités de torsion

et / ou de flexion sont de plus en plus faibles. En outre, par un

design précis de la structure, la transition de phase topologique

critique peut avoir lieu dans des cristaux granulaires. Les pro-

priétés topologiques des ondes de bord rotationelles-transverses

dans un graphène granulaire sont théoriquement démontrées. La

dispersion de Dirac de deux modes dégénérés découplés peut

être observée au centre de la zone de Brillouin. Une per-

turbation, couplant ces deux modes, transforme l’ordre topo-

logique du graphène granulaire de trivial en non trivial, ce

qui conduit à la possibilité de transport topologique d’ondes

de bord rotationelles-transverses dans les structures granulaires

mécaniques. Les théories développées pourraient mener potenti-

ellement à des applications sur le contrôle des ondes élastiques

par des structures granulaires.

Abstract

Granular crystals are spatially periodic structures of particles,

most often spherical homogeneous elastic beads, arranged in crys-

tal lattices. The beads are linked by interconnections, which are

of much smaller dimensions and weights than the beads. The

interactions between beads take place predominantly via nor-

mal and transverse rigidities of these elastic interconnections.

These induce propagation of elastic waves in granular structures

at significantly slower velocities than in the individual grains.

In addition, the existence of non-central shear forces between

the particles can initiate the rotations of particles, leading to

the rotational and rotational-translational coupled waves in the

crystals. In the manuscript, the elastic waves dynamics in two-

dimensional monolayer granular crystals with either out-of-plane

or in-plane particle motion is studied. The dispersion curves of

the elastic waves, which can be tuned by controlling the rigidities

of contacts, are theoretically derived and numerically analyzed

for various configurations of bead couplings. The phononic prop-

erties of granular crystals are investigated, including the exist-

ence of Dirac points, zero-frequency modes, zero-group-velocity

modes and their transformation into slow propagating phononic

modes due to weak bending and torsional intergrain interactions.

In addition, in the presence of edges/boundaries, zero-frequency

and extremely slow elastic edge waves can be also predicted

in mechanical granular honeycomb crystals (granular graphene)

when the torsional or/and bending rigidities are weak/vanishing.

In addition, by a proper design of the structure, the critical topo-

logical phase transition can take place in granular crystals. Topo-

logical properties of rotational edge waves in a granular graphene

are theoretically demonstrated. Dirac dispersion of two degener-

ate uncoupled modes can be observed at the center of Brillouin

zone. A perturbation, coupling these two modes, turns the topo-

logical order of granular graphene from trivial to nontrivial, lead-

ing to the possibility of topological transport of rotational edge

waves in the mechanical granular structures. The developed the-

ories could promote the potential applications of designed gran-

ular structures with novel elastic wave propagation properties.

Mots-clés

cristal granulaire, ondes élastiques, modes de fréquence nulle,
ondes de bord topologiques, ondes lentes de bord, point de Dirac.

Keywords

granular crystal, wave dynamics, zero-frequency modes,
topological edge waves, slow edge waves, Dirac point.
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