J. Coro, R. Pérez, H. Rodríguez, M. Suárez, C. Vega et al., Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids, Bioorganic & Medicinal Chemistry, vol.13, issue.10, pp.3413-3421, 2005.
DOI : 10.1016/j.bmc.2005.03.009

J. Coro, S. Little, V. Yardley, M. Suárez, H. Rodríguez et al., -(Benzyl)spermidyl-linked bis(1,3,5-thiadiazinane-2-thiones), Archiv der Pharmazie, vol.16, issue.11, pp.708-713, 2008.
DOI : 10.1128/AAC.16.6.710

. Unsymmetrical-polyamine, On these two steps, the global yields were good, except for 188e (21%) and 188a (25%) All the compounds have been used directly without any synthesis optimization

C. Nmr, CDCl3): ?= 163, MHz, 1990.

. Hz, 54 (t, J = 6.5 Hz, 2H), 1.91 (cq, J = 6.5 Hz, 2H) ppm. 13 C NMR (75 MHz, CDCl3): ? = 163, p.5289

. Yellow, 16% in two steps) Rf (EtOAc/MeOH 9:1) = 0

. Yellow, 12% in two steps) Rf (EtOAc/MeOH

2. Hz, 47 (t, J = 6.6 Hz, 2H), 2.28 (s, 1H), pp.99-100

H. Auty, L. J. Morrison, S. J. Torr, and . Lord, Transmission Dynamics of Rhodesian Sleeping Sickness at the Interface of Wildlife and Livestock Areas, Trends in Parasitology, vol.32, issue.8, pp.608-621, 2016.
DOI : 10.1016/j.pt.2016.05.003

S. Grewal, A. Pandita, D. Bhardwaj, S. Lather, and V. , Recent Updates on Development of Drug Molecules for Human African Trypanosomiasis, Current Topics in Medicinal Chemistry, vol.16, issue.20, pp.2245-2265, 2016.
DOI : 10.2174/1568026616666160413125335

. Zilberstein and M. Shapira, The Role of pH and Temperature in the Development of Leishmania Parasites, Annual Review of Microbiology, vol.48, issue.1, pp.449-470, 1994.
DOI : 10.1146/annurev.mi.48.100194.002313

H. Hussain, A. Harrasi, A. Al-rawahi, I. R. Green, and S. Gibbons, Fruitful Decade for Antileishmanial Compounds from 2002 to Late 2011, Chemical Reviews, vol.114, issue.20, pp.10369-10428, 2014.
DOI : 10.1021/cr400552x

B. W. Metcalf, P. Bey, C. Danzin, M. J. Jung, P. Casara et al., Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs, Journal of the American Chemical Society, vol.100, issue.8, pp.2551-2553, 1978.
DOI : 10.1021/ja00476a050

C. Merritt, L. E. Silva, A. L. Tanner, K. Stuart, and M. P. Pollastri, Kinases as Druggable Targets in Trypanosomatid Protozoan Parasites, Chemical Reviews, vol.114, issue.22, pp.11280-11304, 2014.
DOI : 10.1021/cr500197d

G. I. Lepesheva and M. R. Waterman, Sterol 14alpha-Demethylase (CYP51) as a Therapeutic Target for Human Trypanosomiasis and Leishmaniasis, Current Topics in Medicinal Chemistry, vol.11, issue.16, pp.2060-2071, 2011.
DOI : 10.2174/156802611796575902

B. B. Das, A. Ganguly, and H. K. Majumder, DNA Topoisomerases of Leishmania: The Potential Targets for Anti-Leishmanial Therapy, Adv. Exp. Med. Biol, vol.625, pp.103-115, 2008.
DOI : 10.1007/978-0-387-77570-8_9

S. R. Meshnick and J. W. Eaton, Leishmanial superoxide dismutase: A possible target for chemotherapy, Biochemical and Biophysical Research Communications, vol.102, issue.3, pp.970-976, 1981.
DOI : 10.1016/0006-291X(81)91633-8

S. Ghosh, S. Goswami, and S. Adhya, Role of superoxide dismutase in survival of Leishmania within the macrophage, Biochemical Journal, vol.369, issue.3, pp.447-452, 2003.
DOI : 10.1042/bj20021684

S. S. Longoni, M. Sánchez-moreno, J. E. López, and C. Marín, Leishmania infantum secreted iron superoxide dismutase purification and its application to the diagnosis of canine Leishmaniasis, Comparative Immunology, Microbiology and Infectious Diseases, vol.36, issue.5, pp.499-506, 2013.
DOI : 10.1016/j.cimid.2013.05.004

L. Birkholtz, M. Williams, J. Niemand, A. I. Louw, L. Persson et al., Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities, Biochemical Journal, vol.237, issue.2, pp.229-244, 2011.
DOI : 10.1006/expr.1995.1090

H. M. Wallace, A. V. Fraser, and A. Hughes, A perspective of polyamine metabolism, Biochemical Journal, vol.376, issue.1, pp.1-14, 2003.
DOI : 10.1042/bj20031327

T. Thomas and T. Thomas, Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications, Cellular and Molecular Life Sciences, vol.58, issue.2, pp.244-258, 2001.
DOI : 10.1007/PL00000852

O. Heby, L. Persson, and M. Rentala, Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas??? disease, and leishmaniasis, Amino Acids, vol.11, issue.2, pp.359-366, 2007.
DOI : 10.1042/bj3330527

C. C. Wang, Molecular Mechanisms and Therapeutic Approaches to the Treatment of African Trypanosomiasis, Annual Review of Pharmacology and Toxicology, vol.35, issue.1, pp.93-127, 1995.
DOI : 10.1146/annurev.pa.35.040195.000521

C. J. Bacchi, H. C. Nathan, S. H. Hutner, P. P. Mccann, and A. Sjoerdsma, Polyamine metabolism: a potential therapeutic target in trypanosomes, Science, vol.210, issue.4467, pp.332-334, 1980.
DOI : 10.1126/science.6775372

A. H. Fairlamb and A. Cerami, Metabolism and Functions of Trypanothione in the Kinetoplastida, Annual Review of Microbiology, vol.46, issue.1, pp.695-729, 1992.
DOI : 10.1146/annurev.mi.46.100192.003403

D. Menezes, C. Valentim, M. F. Oliveira, and M. A. Vannier-santos, Putrescine analogue cytotoxicity against Trypanosoma cruzi, Parasitology Research, vol.275, issue.182, pp.99-105, 2006.
DOI : 10.1099/00221287-145-11-3213

M. A. Vannier-santos, D. Menezes, M. F. Oliveira, and F. G. De-mello, The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis, Microbiology, vol.154, issue.10, pp.3104-3111, 2008.
DOI : 10.1099/mic.0.2007/013896-0

C. F. Da-costa, E. S. Coimbra, F. G. Braga, R. C. Dos-reis, A. D. Da-silva et al., Preparation and antileishmanial activity of lipophilic N-alkyl diamines, Biomedicine & Pharmacotherapy, vol.63, issue.1, pp.40-42, 2009.
DOI : 10.1016/j.biopha.2007.12.013

G. R. Labadie, S. Choi, and M. A. Avery, Diamine derivatives with antiparasitic activities, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.3, pp.615-619, 2004.
DOI : 10.1016/j.bmcl.2003.11.055

M. L. Bolognesi, N. Calonghi, C. Mangano, L. Masotti, and C. Melchiorre, Parallel Synthesis and Cytotoxicity Evaluation of a Polyamine???Quinone Conjugates Library, Journal of Medicinal Chemistry, vol.51, issue.17, pp.5463-5467, 2008.
DOI : 10.1021/jm800637b

J. Tavares, A. Ouaissi, P. K. Lin, A. Tomás, and A. Cordeiro-da-silva, Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes, International Journal for Parasitology, vol.35, issue.6, pp.637-646, 2005.
DOI : 10.1016/j.ijpara.2005.01.008

P. K. Lin and V. A. Pavlov, The synthesis and in vitro cytotoxic studies of novel bis-naphthalimidopropyl polyamine derivatives, Bioorganic & Medicinal Chemistry Letters, vol.10, issue.14, pp.1609-1612, 2000.
DOI : 10.1016/S0960-894X(00)00293-6

S. Bonse, C. Santelli-rouvier, J. Barbe, and R. L. Krauth-siegel, Trypanothione Reductase by Acridines:?? Kinetic Studies and Structure???Activity Relationships, Journal of Medicinal Chemistry, vol.42, issue.26, pp.5448-5454, 1999.
DOI : 10.1021/jm990386s

G. P. Moloney, D. P. Kelly, and P. Mack, Synthesis of Acridine-based DNA Bis-intercalating Agents, Molecules, vol.61, issue.3, pp.230-243, 2001.
DOI : 10.1002/jctb.5000611006

S. R. Meshnick, K. R. Kitchener, and N. Le-trang, Trypanosomatid iron-superoxide dismutase inhibitors, Biochemical Pharmacology, vol.34, issue.17, pp.3147-3152, 1985.
DOI : 10.1016/0006-2952(85)90161-3

R. L. Krauth-siegel and M. A. Comini, Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.11, pp.1236-1248, 2008.
DOI : 10.1016/j.bbagen.2008.03.006

R. L. Krauth-siegel, H. Bauer, and R. H. Schirmer, Dithiol Proteins as Guardians of the Intracellular Redox Milieu in Parasites: Old and New Drug Targets in Trypanosomes and Malaria-Causing Plasmodia, Angewandte Chemie International Edition, vol.78, issue.5, pp.690-715, 2005.
DOI : 10.1128/AAC.39.12.2671

E. A. Garrard, E. C. Borman, B. N. Cook, E. J. Pike, and D. G. Alberg, Inhibition of Trypanothione Reductase by Substrate Analogues, Organic Letters, vol.2, issue.23, pp.3639-3642, 2000.
DOI : 10.1021/ol0065423

J. A. Czechowicz, A. K. Wilhelm, M. D. Spalding, A. M. Larson, L. K. Engel et al., The Synthesis and Inhibitory Activity of Dethiotrypanothione and Analogues against Trypanothione Reductase, The Journal of Organic Chemistry, vol.72, issue.10, pp.3689-3693, 2007.
DOI : 10.1021/jo062597s

H. K. Smith and M. Bradley, Comparison of Resin and Solution Screening Methodologies in Combinatorial Chemistry and the Identification of a 100 nM Inhibitor of Trypanothione Reductase, Journal of Combinatorial Chemistry, vol.1, issue.4, pp.326-332, 1999.
DOI : 10.1021/cc990013c

M. J. Dixon, R. I. Maurer, C. Biggi, and J. Oyarzabal, Mechanism and structure???activity relationships of norspermidine-based peptidic inhibitors of trypanothione reductase, Bioorganic & Medicinal Chemistry, vol.13, issue.14, pp.4513-4526, 2005.
DOI : 10.1016/j.bmc.2005.04.039

K. Bandyopadhyay, J. Banères, A. Martin, C. Blonski, J. Parello et al., Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer- specific chemo-and radiosensitization, Cell Cycle, vol.8, issue.17, pp.2779-2788, 2009.
DOI : 10.4161/cc.8.17.9416

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.8.17.9416?needAccess=true

Y. Zou, Z. Wu, N. Sirisoma, P. M. Woster, R. A. Casero-jr et al., Novel Alkylpolyamine Analogues that Possess Both Antitrypanosomal and Antimicrosporidial Activity, Bioorganic & Medicinal Chemistry Letters, vol.11, issue.12, pp.1613-1617, 2001.
DOI : 10.1016/S0960-894X(01)00315-8

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109676/pdf

J. Wang, M. Kaiser, and B. R. Copp, Investigation of Indolglyoxamide and Indolacetamide Analogues of Polyamines as Antimalarial and Antitrypanosomal Agents, Marine Drugs, vol.54, issue.6, pp.3138-3160, 2014.
DOI : 10.1016/j.molbiopara.2004.04.007

L. P. Liew, M. Kaiser, and B. R. Copp, Discovery and preliminary structure???activity relationship analysis of 1,14-sperminediphenylacetamides as potent and selective antimalarial lead compounds, Bioorganic & Medicinal Chemistry Letters, vol.23, issue.2, pp.452-454, 2013.
DOI : 10.1016/j.bmcl.2012.11.072

O. Sullivan, M. C. Zhou, and Q. , Novel polyamine derivatives as potent competitive inhibitors of Trypanosoma cruzi trypanothione reductase, Bioorganic & Medicinal Chemistry Letters, vol.5, issue.17, pp.1957-1960, 1995.
DOI : 10.1016/0960-894X(95)00331-M

N. S. Carter and A. H. Fairlamb, Arsenical-resistant trypanosomes lack an unusual adenosine transporter, Nature, vol.361, issue.6408, pp.173-176, 1993.
DOI : 10.1038/361173a0

O. Sullivan, M. C. Zhou, Q. Li, Z. Durham, T. B. Rattendi et al., Polyamine derivatives as inhibitors of trypanothione reductase and assessment of their trypanocidal activities, Bioorganic & Medicinal Chemistry, vol.5, issue.12, pp.2145-2155, 1997.
DOI : 10.1016/S0968-0896(97)00157-0

B. Chitkul and M. Bradley, Optimising inhibitors of Trypanothione reductase using solid-phase chemistry, Bioorganic & Medicinal Chemistry Letters, vol.10, issue.20, pp.2367-2369, 2000.
DOI : 10.1016/S0960-894X(00)00471-6

L. Salmon, V. Landry, O. Melnyk, L. Maes, and C. Sergheraert, A General Approach to the Synthesis of Polyamine Linked-Monoindolylmaleimides, a New Series of Trypanothione Reductase Inhibitors., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.46, issue.4, pp.707-710, 1998.
DOI : 10.1248/cpb.46.707

X. Bi, C. Lopez, C. J. Bacchi, D. Rattendi, and P. M. Woster, Novel alkylpolyaminoguanidines and alkylpolyaminobiguanides with potent antitrypanosomal activity, Bioorganic & Medicinal Chemistry Letters, vol.16, issue.12, pp.3229-3232, 2006.
DOI : 10.1016/j.bmcl.2006.03.048

J. Coro, R. Pérez, H. Rodríguez, M. Suárez, C. Vega et al., Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids, Bioorganic & Medicinal Chemistry, vol.13, issue.10, pp.3413-3421, 2005.
DOI : 10.1016/j.bmc.2005.03.009

J. Coro, S. Little, V. Yardley, M. Suárez, H. Rodríguez et al., -(Benzyl)spermidyl-linked bis(1,3,5-thiadiazinane-2-thiones), Archiv der Pharmazie, vol.16, issue.11, pp.708-713, 2008.
DOI : 10.1128/AAC.16.6.710

M. L. Edwards, R. D. Snyder, and D. M. Stemerick, Synthesis and DNA-binding properties of polyamine analogs, Journal of Medicinal Chemistry, vol.34, issue.8, pp.2414-2420, 1991.
DOI : 10.1021/jm00112a016

R. J. Baumann, W. L. Hanson, P. P. Mccann, A. Sjoerdsma, and A. J. Bitonti, Suppression of both antimony-susceptible and antimony-resistant Leishmania donovani by a bis(benzyl)polyamine analog., Antimicrobial Agents and Chemotherapy, vol.34, issue.5, pp.722-727, 1990.
DOI : 10.1128/AAC.34.5.722

N. Seiler, B. Duranton, and F. Raul, Fortschritte Arzneimittelforschung Prog, Prog. Drug Res Rech. Pharm, vol.59, pp.1-40, 2002.

R. Mukhopadhyay and R. Madhubala, Effect of a Bis(Benzyl)Polyamine Analogue, and DL-??-difluoromethylornithine on Parasite Suppression and Cellular Polyamine Levels in Golden Hamster During Leishmania Donovani Infection, Pharmacological Research, vol.28, issue.4, pp.359-365, 1993.
DOI : 10.1006/phrs.1993.1138

S. Majumder and F. Kierszenbaum, Inhibition of host cell invasion and intracellular replication of Trypanosoma cruzi by N,N'-bis(benzyl)-substituted polyamine analogs., Antimicrobial Agents and Chemotherapy, vol.37, issue.10, pp.2235-2238, 1993.
DOI : 10.1128/AAC.37.10.2235

S. Majumder and F. Kierszenbaum, N,N???-Thiophene-substituted polyamine analogs inhibit mammalian host cell invasion and intracellular multiplication of Trypahosoma cruzi, Molecular and Biochemical Parasitology, vol.60, issue.2, pp.231-239, 1993.
DOI : 10.1016/0166-6851(93)90134-J

R. Mukhopadhyay and R. Madhubala, Effects of Bis(benzyl)polyamine Analogs on Leishmania donovani Promastigotes, Experimental Parasitology, vol.81, issue.1, pp.39-46, 1995.
DOI : 10.1006/expr.1995.1090

C. S. Bond, Y. Zhang, M. Berriman, M. L. Cunningham, A. H. Fairlamb et al., Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors, Structure, vol.7, issue.1, pp.81-89, 1999.
DOI : 10.1016/S0969-2126(99)80011-2

C. J. Hamilton, A. Saravanamuthu, A. H. Fairlamb, and I. M. Eggleston, Benzofuranyl 3,5-bis-Polyamine derivatives as time-Dependent inhibitors of trypanothione reductase, Bioorganic & Medicinal Chemistry, vol.11, issue.17, pp.3683-3693, 2003.
DOI : 10.1016/S0968-0896(03)00344-4

C. J. Hamilton, A. Saravanamuthu, C. Poupat, A. H. Fairlamb, and I. M. Eggleston, Time-dependent inhibitors of trypanothione reductase: Analogues of the spermidine alkaloid lunarine and related natural products, Bioorganic & Medicinal Chemistry, vol.14, issue.7, pp.2266-2278, 2006.
DOI : 10.1016/j.bmc.2005.11.004

URL : https://hal.archives-ouvertes.fr/hal-00021946

L. Salmon, V. Landry, O. Melnyk, L. Maes, and C. Sergheraert, A General Approach to the Synthesis of Polyamine Linked-Monoindolylmaleimides, a New Series of Trypanothione Reductase Inhibitors., CHEMICAL & PHARMACEUTICAL BULLETIN, vol.46, issue.4, pp.707-710, 1998.
DOI : 10.1248/cpb.46.707

M. Grunstein, Histone acetylation in chromatin structure and transcription, Nature, vol.93, issue.6649, pp.349-352, 1997.
DOI : 10.1073/pnas.93.23.13143

R. Marmorstein and S. Y. Roth, Histone acetyltransferases: function, structure, and catalysis, Current Opinion in Genetics & Development, vol.11, issue.2, pp.155-161, 2001.
DOI : 10.1016/S0959-437X(00)00173-8

H. Wapenaar and F. Dekker, Histone acetyltransferases: challenges in targeting bi-substrate enzymes, Clinical Epigenetics, vol.52, issue.2, p.59, 2016.
DOI : 10.1021/jm800657z

G. Roblot, R. Wylde, A. Martin, and J. Parello, Regioselective synthesis of inhibitors of histone acetyl transferase covalently linking spermidine to the s-terminus of coenzyme a and fragments., Tetrahedron, vol.49, issue.29, pp.6381-6398, 1993.
DOI : 10.1016/S0040-4020(01)80153-8

K. Bandyopadhyay, J. Banères, A. Martin, C. Blonski, J. Parello et al., Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer- specific chemo-and radiosensitization, Cell Cycle, vol.8, issue.17, pp.2779-2788, 2009.
DOI : 10.4161/cc.8.17.9416

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.8.17.9416?needAccess=true

F. H. Kwie, M. Briet, D. Soupaya, P. Hoffmann, M. Maturano et al., New Potent Bisubstrate Inhibitors of Histone Acetyltransferase p300: Design, Synthesis and Biological Evaluation, Chemical Biology & Drug Design, vol.13, issue.1, pp.86-92, 2011.
DOI : 10.1002/jcc.20084

T. Kawahara, T. N. Siegel, A. K. Ingram, S. Alsford, G. A. Cross et al., Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes, Molecular Microbiology, vol.32, issue.4, pp.1054-1068, 2008.
DOI : 10.1111/j.1365-2958.2007.06079.x

V. Sagar, W. Zheng, P. R. Thompson, and P. A. Cole, Bisubstrate analogue structure???activity relationships for p300 histone acetyltransferase inhibitors, Bioorganic & Medicinal Chemistry, vol.12, issue.12, pp.3383-3390, 2004.
DOI : 10.1016/j.bmc.2004.03.070

T. L. Riss, R. A. Moravec, A. L. Niles, S. Duellman, H. A. Benink et al., Assay Guidance Manual, Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda (MD), 2004.

R. C. Trievel, F. Y. Li, and R. Marmorstein, Application of a Fluorescent Histone Acetyltransferase Assay to Probe the Substrate Specificity of the Human p300/CBP-Associated Factor, Analytical Biochemistry, vol.287, issue.2, pp.319-328, 2000.
DOI : 10.1006/abio.2000.4855

C. J. Bacchi, H. C. Nathan, S. H. Hutner, P. P. Mccann, and A. Sjoerdsma, Polyamine metabolism: a potential therapeutic target in trypanosomes, Science, vol.210, issue.4467, pp.332-334, 1980.
DOI : 10.1126/science.6775372

A. J. Geall and I. S. Blagbrough, Homologation of Polyamines in the Rapid Synthesis of Lipospermine Conjugates and Related Lipoplexes, Tetrahedron, vol.56, issue.16, pp.2449-2460, 2000.
DOI : 10.1016/S0040-4020(99)01082-0

I. S. Blagbrough and A. J. Geall, Practical synthesis of unsymmetrical polyamine amides, Tetrahedron Letters, vol.39, issue.5-6, pp.439-442, 1998.
DOI : 10.1016/S0040-4039(97)10542-1

A. Huczy?ski, J. Janczak, M. Antoszczak, J. Stefa?ska, and B. Brzezinski, X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin???benzotriazole intermediate ester, Journal of Molecular Structure, vol.1022, pp.197-203, 2012.
DOI : 10.1016/j.molstruc.2012.05.019

K. H. Verschueren, K. Pumpor, S. Anemüller, S. Chen, J. R. Mesters et al., A Structural View of the Inactivation of the SARS Coronavirus Main Proteinase by Benzotriazole Esters, Chemistry & Biology, vol.15, issue.6, pp.597-606, 2008.
DOI : 10.1016/j.chembiol.2008.04.011

J. Fu, Y. Yang, X. Zhang, W. Mao, and . Zhang, Discovery of 1H-benzo[d][1,2,3]triazol-1-yl 3,4,5-trimethoxybenzoate as a potential antiproliferative agent by inhibiting histone deacetylase, Bioorganic & Medicinal Chemistry, vol.18, issue.24, pp.8457-8462, 2010.
DOI : 10.1016/j.bmc.2010.10.049

A. K. Ghosh and M. Brindisi, Organic Carbamates in Drug Design and Medicinal Chemistry, Journal of Medicinal Chemistry, vol.58, issue.7, pp.2895-2940, 2015.
DOI : 10.1021/jm501371s

F. Vacondio, C. Silva, M. Mor, and B. Testa, Qualitative structure-metabolism relationships in the hydrolysis of carbamates, Drug Metabolism Reviews, vol.20, issue.1, pp.551-589, 2010.
DOI : 10.1124/dmd.106.012450

M. Basselin, G. H. Coombs, and M. P. Barrett, Putrescine and spermidine transport in Leishmania, Molecular and Biochemical Parasitology, vol.109, issue.1, pp.37-46, 2000.
DOI : 10.1016/S0166-6851(00)00234-6

I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone et al., Virtual Computational Chemistry Laboratory ??? Design and Description, Journal of Computer-Aided Molecular Design, vol.16, issue.40, pp.453-463, 2005.
DOI : 10.1007/s10822-005-8694-y

D. V. Lueder and M. A. Phillips, ??-Glutamylcysteine Synthetase, an Essential Enzyme in the Biosynthesis of Trypanothione (Diglutathionylspermidine), Journal of Biological Chemistry, vol.246, issue.29, pp.17485-17490, 1996.
DOI : 10.1006/jmbi.1993.1106

F. X. Sullivan, S. B. Sobolov, M. Bradley, and C. T. Walsh, Mutational analysis of parasite trypanothione reductase: acquisition of glutathione reductase activity in a triple mutant, Biochemistry, vol.30, issue.11, pp.2761-2767, 1991.
DOI : 10.1021/bi00225a004

R. J. Baumann, W. L. Hanson, P. P. Mccann, A. Sjoerdsma, and A. J. Bitonti, Suppression of both antimony-susceptible and antimony-resistant Leishmania donovani by a bis(benzyl)polyamine analog., Antimicrobial Agents and Chemotherapy, vol.34, issue.5, pp.722-727, 1990.
DOI : 10.1128/AAC.34.5.722

P. Bazzini and C. G. Wermuth, In The Practice of Medicinal Chemistry (Third Edition), pp.429-463, 2008.

A. Mann, In The Practice of Medicinal Chemistry (Third Edition), pp.363-379, 2008.

J. R. Lakanen, J. K. Coward, and A. E. Pegg, .alpha.-Methyl polyamines: metabolically stable spermidine and spermine mimics capable of supporting growth in cells depleted of polyamines, Journal of Medicinal Chemistry, vol.35, issue.4, pp.724-734, 1992.
DOI : 10.1021/jm00082a013

A. Järvinen, N. Grigorenko, A. R. Khomutov, M. T. Hyvönen, A. Uimari et al., Metabolic Stability of ??-Methylated Polyamine Derivatives and Their Use as Substitutes for the Natural Polyamines, Journal of Biological Chemistry, vol.61, issue.8, pp.6595-6601, 2005.
DOI : 10.1016/S0006-291X(03)00636-3

N. Seiler, J. G. Delcros, and J. P. Moulinoux, Polyamine transport in mammalian cells. An update, The International Journal of Biochemistry & Cell Biology, vol.28, issue.8, pp.843-861, 1996.
DOI : 10.1016/1357-2725(96)00021-0

D. Soulet, B. Gagnon, S. Rivest, M. Audette, and R. Poulin, A Fluorescent Probe of Polyamine Transport Accumulates into Intracellular Acidic Vesicles via a Two-step Mechanism, Journal of Biological Chemistry, vol.325, issue.47, pp.49355-49366, 2004.
DOI : 10.1074/jbc.272.33.20484

A. E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes, Biochemical Journal, vol.234, issue.2, pp.249-262, 1986.
DOI : 10.1042/bj2340249

C. Carrillo, G. E. Canepa, I. D. Algranati, and C. A. Pereira, Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi, Biochemical and Biophysical Research Communications, vol.344, issue.3, pp.936-940, 2006.
DOI : 10.1016/j.bbrc.2006.03.215

M. R. Ariyanayagam and A. H. Fairlamb, Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes, Molecular and Biochemical Parasitology, vol.84, issue.1, pp.111-121, 1997.
DOI : 10.1016/S0166-6851(96)02788-0

R. Balaña-fouce, D. Ordóñez, and J. M. Alunda, Putrescine transport system in Leishmania infantum promastigotes, Molecular and Biochemical Parasitology, vol.35, issue.1, pp.43-50, 1989.
DOI : 10.1016/0166-6851(89)90140-0

M. Kandpal and B. L. Tekwani, Polyamine transport systems of Leishmania donovani promastigotes, Life Sciences, vol.60, issue.20, pp.1793-1801, 1997.
DOI : 10.1016/S0024-3205(97)00139-2

H. M. Wallace and H. M. Keir, A comparison of polyamine metabolism in normal and transformed baby-hamster-kidney cells, Biochemical Journal, vol.202, issue.3, pp.785-790, 1982.
DOI : 10.1042/bj2020785

O. Phanstiel, N. Kaur, and J. Delcros, Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter, Amino Acids, vol.54, issue.2, pp.305-313, 2007.
DOI : 10.1042/bj2630745

P. M. Cullis, R. E. Green, L. Merson-davies, and N. Travis, Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells, Chemistry & Biology, vol.6, issue.10, pp.717-729, 1999.
DOI : 10.1016/S1074-5521(00)80019-8

J. Barret, A. Kruczynski, S. Vispé, J. Annereau, V. Brel et al., F14512, a Potent Antitumor Agent Targeting Topoisomerase II Vectored into Cancer Cells via the Polyamine Transport System, Cancer Research, vol.68, issue.23, pp.9845-9853, 2008.
DOI : 10.1158/0008-5472.CAN-08-2748

URL : https://hal.archives-ouvertes.fr/inserm-00353546

F. R. Opperdoes and G. H. Coombs, Metabolism of Leishmania: proven and predicted, Trends in Parasitology, vol.23, issue.4, pp.149-158, 2007.
DOI : 10.1016/j.pt.2007.02.004