Skip to Main content Skip to Navigation

Implication de CXCR3 dans la progression tumorale : une nouvelle cible thérapeutique

Abstract : CXCR3 belongs to the G-protein-coupled receptors family. With its ligands, the CXC chemokines, CXCR3 regulates several biological functions and plays important roles in angiogenesis, inflammation and cancer. The interaction with CXCR3 is rather complex due to the presence of distinct spliced isoforms. CXCR3-A is known to promote cell proliferation, survival, and migration while CXCR3-B leads to cell growth inhibition.The human glioblastoma cell model, U87, was used to study the molecular mechanisms regulating the activity and trafficking of CXCR3 isoforms in tumor cells. CXCR3 has been reported as the functional receptor for the angiostatic activity of CXCL4 and its variant CXCL4L1. Depending on their oligomerization status, these two chemokines present preferential interaction with CXCR3 isoforms. Activation of CXCR3-A leads to an important conformational change and induces pro-migratory signaling pathways. Studies on the vesicular trafficking highlight the importance of the clathrin and the Trans-Golgi network for both internalization and recycling of CXCR3-A. For the first time, LRP-1 is identified as a new partner of CXCR3-A. LRP1 is not only recognized as an endocytic receptor but also as a signaling protein. LRP1 interacts with CXCR3-A via its extracellular α subunit and regulates CXCR3-A conformation, trafficking and pro-tumoral activity.Pancreatic ductal adenocarcinoma cell models were used to characterize CXCL4L1 as a pro-tumoral factor that activates CXCR3-A in tumor cells. For the first time, CXCL4L1 appears as an important biomarker for pancreatic cancer progression.In the different cell models, signaling pathways of CXC chemokine/CXCR3-A lead to an increase in tumor invasive properties. At the molecular level, the association of CXCR3 with various proteins (ligands and partners) is essential to regulate tumor cell biological functions.The nanoparticles are now known as a new generation of therapeutic antibodies with many advantages over conventional antibodies. Thus, the development of nanoparticles associated to CXCR3 inhibitors appears as a new promising pharmacological targeted strategy to treat cancer.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Sunday, December 3, 2017 - 11:43:32 PM
Last modification on : Tuesday, October 20, 2020 - 11:30:59 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01654420, version 1



Kevin Boyé. Implication de CXCR3 dans la progression tumorale : une nouvelle cible thérapeutique. Biologie cellulaire. Université de Bordeaux, 2016. Français. ⟨NNT : 2016BORD0315⟩. ⟨tel-01654420⟩



Record views


Files downloads