K. Naser, V. Ricordel, and P. L. Callet, Experimenting texture similarity metric STSIM for intra prediction mode selection and block partitioning in HEVC, 2014 19th International Conference on Digital Signal Processing, 2014.
DOI : 10.1109/ICDSP.2014.6900795

K. Naser, V. Ricordel, and P. L. Callet, Performance Analysis of Texture Similarity Metrics in HEVC Intra Prediction, Video Processing and Quality Metrics for Consumer Electronics (VPQM), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01150595

K. Naser, V. Ricordel, and P. L. Callet, Texture Similarity Metrics Applied to HEVC Intra Prediction, The third Sino-French Workshop on Information and Communication Technologies, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164951

K. Naser, V. Ricordel, and P. L. Callet, Local texture synthesis: A static texture coding algorithm fully compatible with HEVC, 2015 International Conference on Systems, Signals and Image Processing (IWSSIP), 2015.
DOI : 10.1109/IWSSIP.2015.7313931

URL : https://hal.archives-ouvertes.fr/hal-01327166

K. Naser, V. Ricordel, and P. L. Callet, Estimation of perceptual redundancies of HEVC encoded dynamic textures, 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), 2016.
DOI : 10.1109/QoMEX.2016.7498931

URL : https://hal.archives-ouvertes.fr/hal-01332130

K. Naser, V. Ricordel, and P. L. Callet, Modeling the perceptual distortion of dynamic textures and its application in HEVC, 2016 IEEE International Conference on Image Processing (ICIP)
DOI : 10.1109/ICIP.2016.7533068

URL : https://hal.archives-ouvertes.fr/hal-01361445

K. Naser, V. Ricordel, and P. L. Callet, A foveated short term distortion model for perceptually optimized dynamic textures compression in HEVC, 2016 Picture Coding Symposium (PCS), p.2016
DOI : 10.1109/PCS.2016.7906311

URL : https://hal.archives-ouvertes.fr/hal-01481689

U. Thakur, K. Singh, M. Naser, and . Wien, Dynamic texture synthesis using linear phase shift interpolation, 2016 Picture Coding Symposium (PCS), p.2016
DOI : 10.1109/PCS.2016.7906315

URL : https://hal.archives-ouvertes.fr/hal-01481696

C. Ma, K. Naser, V. Rircordel, P. L. Callet, and C. Qing, An adaptive Lagrange multiplier determination method for dynamic texture in HEVC, 2016 IEEE International Conference on Consumer Electronics-China (ICCE-China), 2016.
DOI : 10.1109/ICCE-China.2016.7849749

URL : https://hal.archives-ouvertes.fr/hal-01481686

. Naser, V. Karam, P. L. Ricordel, and . Callet, Perceptual Texture Similarity for Machine Intelligence Applications, Visual Content Indexing And Retrieval with Psycho-visual Models, 2017.
DOI : 10.1109/TIP.2013.2251645

URL : https://hal.archives-ouvertes.fr/hal-01645011

K. Naser, V. Ricordel, P. L. , and C. France, Method for Encoding Video Frames Based on Local Texture Synthesis and Corresponding Device, 1908.
URL : https://hal.archives-ouvertes.fr/hal-01327124

K. Naser, V. Ricordel, and P. L. Callet, Method of Compression of Dynamic Textures Based on the Exploitation of a Perceptual Distortion Model, US patent ? on going National Conferences 1. Journées Imagerie Optique Non Conventionnelle -11 ème édition. GDR-ISIS in Nantes 2016

]. Y. Zhai, D. L. Neuhoff, and T. N. Pappas, Local radius index - a new texture similarity feature, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1434-1438, 2013.
DOI : 10.1109/ICASSP.2013.6637888

J. Zujovic, T. N. Pappas, and D. L. Neuhoff, Structural Texture Similarity Metrics for Image Analysis and Retrieval, IEEE Transactions on Image Processing, vol.22, issue.7, pp.2545-2558, 2013.
DOI : 10.1109/TIP.2013.2251645

D. Tiwari and V. Tyagi, Dynamic texture recognition based on completed volume local binary pattern, Multidimensional Systems and Signal Processing, pp.563-575, 2016.
DOI : 10.1109/TIP.2011.2175739

R. Péteri, S. Fazekas, and M. J. Huiskes, DynTex: A comprehensive database of dynamic textures, Pattern Recognition Letters, vol.31, issue.12, pp.1627-1632, 2010.
DOI : 10.1016/j.patrec.2010.05.009

M. S. Landy, Texture analysis and perception The new visual neurosciences, pp.639-652, 2013.

C. J. Perry and M. Fallah, Feature integration and object representations along the dorsal stream visual hierarchy, Frontiers in Computational Neuroscience, vol.20, issue.11, pp.84-116, 2014.
DOI : 10.1523/jneurosci.3420-06.2006

URL : http://journal.frontiersin.org/article/10.3389/fncom.2014.00084/pdf

C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. Sullivan, High Efficiency Video Coding (HEVC) Test Model 16 (HM 16), Joint Collaborative Team on Video Coding (JCTVC) of ITU-T SG16 WP3 and ISO, IEC JTC1/SC29/WG11, Document JCTVC-P1002, pp.90-128

U. Thakur, K. Naser, and M. Wien, Dynamic texture synthesis using linear phase shift interpolation, 2016 Picture Coding Symposium (PCS), pp.45-47, 2011.
DOI : 10.1109/PCS.2016.7906315

URL : https://hal.archives-ouvertes.fr/hal-01481696

K. Naser, V. Ricordel, and P. L. Callet, Local texture synthesis: A static texture coding algorithm fully compatible with HEVC, 2015 International Conference on Systems, Signals and Image Processing (IWSSIP), pp.37-40, 2015.
DOI : 10.1109/IWSSIP.2015.7313931

URL : https://hal.archives-ouvertes.fr/hal-01327166

M. N. Do and M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance, IEEE Transactions on Image Processing, vol.11, issue.2, pp.146-158, 2002.
DOI : 10.1109/83.982822

URL : http://lcavwww.epfl.ch/publications/publications/2002/DoV02.pdf

L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, The SJTU 4K video sequence dataset, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX), pp.34-35, 2013.
DOI : 10.1109/QoMEX.2013.6603201

B. S. Manjunath and W. Ma, Texture features for browsing and retrieval of image data Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.18, issue.116, pp.837-842, 1996.

M. S. Landy and N. Graham, Visual perception of texture, The visual neurosciences, pp.1106-1118, 2004.

R. Rosenholtz, Texture perception The Oxford handbook of perceptual organization, p.29, 2014.

M. Tuceryan, . Jain, and K. Anil, Texture analysis The handbook of pattern recognition and computer vision, pp.207-248, 1998.

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, Dynamic textures, International Journal of Computer Vision, vol.51, issue.2, pp.91-109, 2003.
DOI : 10.1023/A:1021669406132

L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen, Local binary features for texture classification: Taxonomy and experimental study, Pattern Recognition, vol.62, pp.135-160, 2017.
DOI : 10.1016/j.patcog.2016.08.032

H. Tamura, S. Mori, and T. Yamawaki, Textural Features Corresponding to Visual Perception, IEEE Transactions on Systems, Man, and Cybernetics, vol.8, issue.6, pp.460-473, 1978.
DOI : 10.1109/TSMC.1978.4309999

M. Amadasun and R. King, Textural features corresponding to textural properties, IEEE Transactions on Systems, Man, and Cybernetics, vol.19, issue.5, pp.1264-1274, 1989.
DOI : 10.1109/21.44046

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.24, pp.971-987, 2002.
DOI : 10.1109/tpami.2002.1017623

URL : http://www.ee.oulu.fi/research/imag/texture/publications/show_pdf.php?ID=94

G. Fan and X. Xia, Wavelet-based texture analysis and synthesis using hidden markov models Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol.50, issue.1, pp.106-120, 2003.

G. Caenen and L. Van-gool, Maximum Response Filters for Texture Analysis, 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp.58-58, 2004.
DOI : 10.1109/CVPR.2004.393

J. A. Montoya-zegarra, N. J. Leite, R. Da, and S. Torres, Rotation-Invariant and Scale-Invariant Steerable Pyramid Decomposition for Texture Image Retrieval, XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007), pp.121-128, 2007.
DOI : 10.1109/SIBGRAPI.2007.42

J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients, International Journal of Computer Vision, vol.40, issue.1, pp.49-70, 2000.
DOI : 10.1023/A:1026553619983

V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, Texture optimization for example-based synthesis, ACM Transactions on Graphics, vol.24, issue.3, pp.795-802, 2005.
DOI : 10.1145/1073204.1073263

L. Wei, S. Lefebvre, V. Kwatra, and G. Turk, State of the art in examplebased texture synthesis, Eurographics 2009, State of the Art Report, EG- STAR. Eurographics Association, pp.93-117, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00606853

R. C. Nelson and R. Polana, Qualitative recognition of motion using temporal texture, CVGIP: Image Understanding, vol.56, issue.1, pp.78-89, 1992.
DOI : 10.1016/1049-9660(92)90087-J

A. Rahman and M. Murshed, A Motion-Based Approach for Temporal Texture Synthesis, TENCON 2005, 2005 IEEE Region 10 Conference, pp.1-4, 2005.
DOI : 10.1109/TENCON.2005.301113

W. Chang, N. Yang, C. Kuo, and Y. Chen, An efficient temporal texture descriptor for video retrieval, Proceedings of the 6th WSEAS International Conference on Signal Processing, pp.107-112, 2006.

S. Soatto, G. Doretto, and Y. N. Wu, Dynamic textures, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.439-446, 2001.
DOI : 10.1109/ICCV.2001.937658

L. Wang, H. Liu, and F. Sun, Dynamic texture classification using local fuzzy coding, Fuzzy Systems 2014 IEEE International Conference on, pp.1559-1565, 2014.
DOI : 10.1109/fuzz-ieee.2014.6891691

K. G. Derpanis and R. P. Wildes, Dynamic texture recognition based on distributions of spacetime oriented structure, Computer Vision and Pattern Recognition 2010 IEEE Conference, pp.191-198, 2010.

D. Chetverikov and R. Péteri, A Brief Survey of Dynamic Texture Description and Recognition, Computer Recognition Systems, pp.17-26, 2005.
DOI : 10.1007/3-540-32390-2_2

S. Dubois, R. Péteri, and M. Ménard, A comparison of wavelet based spatiotemporal decomposition methods for dynamic texture recognition, " in Pattern Recognition and Image Analysis, pp.314-321, 2009.

K. G. Derpanis and R. P. Wildes, Spacetime texture representation and recognition based on a spatiotemporal orientation analysis Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.34, issue.33, pp.1193-1205, 2012.
DOI : 10.1109/tpami.2011.221

URL : http://www.cse.yorku.ca/vision/publications/pamiDerpanisWildesAcceptedNotFullyEdited.pdf

T. Crivelli, B. Cernuschi-frias, P. Bouthemy, and J. Yao, Motion Textures: Modeling, Classification, and Segmentation Using Mixed-State Markov Random Fields, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.2484-2520, 2013.
DOI : 10.1137/120872048

S. Valaeys, G. Menegaz, F. Ziliani, and J. , Modeling of 2D+1 texture movies for video coding, Image and Vision Computing, vol.21, issue.1, pp.49-59, 2003.
DOI : 10.1016/S0262-8856(02)00132-4

Y. Wang and S. Zhu, Modeling textured motion: Particle, wave and sketch, Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp.213-220, 2003.

Y. Guo, G. Zhao, Z. Zhou, and M. Pietikainen, Video Texture Synthesis With Multi-Frame LBP-TOP and Diffeomorphic Growth Model, IEEE Transactions on Image Processing, vol.22, issue.10, pp.3879-3891, 2013.
DOI : 10.1109/TIP.2013.2263148

M. Bosch, F. Zhu, and E. J. Delp, An overview of texture and motion based video coding at Purdue University, Picture Coding Symposium, pp.1-4, 2009.

X. Sun, B. Yin, and Y. Shi, A Low Cost Video Coding Scheme Using Texture Synthesis, 2009 2nd International Congress on Image and Signal Processing, pp.1-5, 2009.
DOI : 10.1109/CISP.2009.5303983

F. Zhang and D. R. Bull, A parametric framework for video compression using region-based texture models Selected Topics in Signal Processing, IEEE Journal, vol.5, issue.26, pp.1378-1392, 2011.

B. Julesz, Visual Pattern Discrimination, IEEE Transactions on Information Theory, vol.8, issue.2, pp.84-92, 1962.
DOI : 10.1109/TIT.1962.1057698

B. Julész, E. Gilbert, L. Shepp, and H. Frisch, Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics???Revisited, Perception, vol.10, issue.4, pp.391-405, 1973.
DOI : 10.1137/0110041

B. Julesz, E. Gilbert, and J. D. Victor, Visual discrimination of textures with identical third-order statistics, Biological Cybernetics, vol.10, issue.3, pp.137-140, 1978.
DOI : 10.1007/BF00336998

B. Julesz, Textons, the elements of texture perception and their interactions, Nature, vol.32, issue.5802, pp.91-97, 1981.
DOI : 10.1098/rstb.1980.0091

J. Beck, Textural segmentation, second-order statistics, and textural elements, Biological Cybernetics, vol.4, issue.2, pp.125-130, 1983.
DOI : 10.1007/BF00344396

D. H. Hubel and T. N. , Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, vol.195, issue.1, pp.215-243, 1968.
DOI : 10.1113/jphysiol.1968.sp008455

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1968.sp008455/pdf

D. A. Pollen and S. F. Ronner, Visual cortical neurons as localized spatial frequency filters, IEEE Transactions on Systems, Man, and Cybernetics, vol.13, issue.5, pp.907-916, 1983.
DOI : 10.1109/TSMC.1983.6313086

M. R. Turner, Texture discrimination by gabor functions, Biological cybernetics, vol.55, issue.2-3, pp.71-82, 1986.

J. Ontrup, H. Wersing, and H. Ritter, A computational feature binding model of human texture perception, Cognitive Processing, vol.5, issue.1, pp.31-44, 2004.
DOI : 10.1007/s10339-003-0003-x

J. Malik and P. Perona, Preattentive texture discrimination with early vision mechanisms, Journal of the Optical Society of America A, vol.7, issue.5, pp.923-932, 1990.
DOI : 10.1364/JOSAA.7.000923

URL : http://www.cs.berkeley.edu/~malik/papers/malik-perona90.pdf

K. Grill-spector and R. Malach, THE HUMAN VISUAL CORTEX, Annual Review of Neuroscience, vol.27, issue.1, pp.649-677, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144220

URL : https://hal.archives-ouvertes.fr/hal-01418475

E. P. Simoncelli and D. J. Heeger, A model of neuronal responses in visual area MT, Vision Research, vol.38, issue.5, pp.743-761, 1998.
DOI : 10.1016/S0042-6989(97)00183-1

S. Nishimoto and J. L. Gallant, A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies, Journal of Neuroscience, vol.31, issue.41, pp.14-551, 2011.
DOI : 10.1523/JNEUROSCI.6801-10.2011

E. Tlapale, P. Kornprobst, G. S. Masson, and O. Faugeras, A Neural Field Model for Motion Estimation, Mathematical image processing, pp.159-179, 2011.
DOI : 10.1007/978-3-642-19604-1_9

URL : https://hal.archives-ouvertes.fr/hal-00845749

S. V. David, W. E. Vinje, and J. L. Gallant, Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons, Journal of Neuroscience, vol.24, issue.31, pp.6991-7006, 2004.
DOI : 10.1523/JNEUROSCI.1422-04.2004

J. A. Perrone, A visual motion sensor based on the properties of V1 and MT neurons, Vision Research, vol.44, issue.15, pp.1733-1755, 2004.
DOI : 10.1016/j.visres.2004.03.003

N. C. Rust, V. Mante, E. P. Simoncelli, and J. A. Movshon, How MT cells analyze the motion of visual patterns, Nature Neuroscience, vol.15, issue.11, pp.1421-1431, 2006.
DOI : 10.1088/0954-898X_15_4_002

D. C. Bradley, M. S. Goyal, F. Solari, M. Chessa, N. K. Medathati et al., Velocity computation in the primate visual system What can we expect from a V1-MT feedforward architecture for optical flow estimation, Signal Processing: Image Communication, pp.686-695, 2008.

N. K. Medathati, M. Chessa, G. Masson, P. Kornprobst, and F. Solari, Decoding MT Motion Response for Optical Flow Estimation: An Experimental Evaluation, p.31, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01131100

M. Chessa, S. P. Sabatini, and F. Solari, A systematic analysis of a V1???MT neural model for motion estimation, Neurocomputing, vol.173, pp.1811-1823, 2016.
DOI : 10.1016/j.neucom.2015.08.091

C. Pack, S. Grossberg, and E. Mingolla, A Neural Model of Smooth Pursuit Control and Motion Perception by Cortical Area MST, Journal of Cognitive Neuroscience, vol.24, issue.1, pp.102-120, 2001.
DOI : 10.1016/0042-6989(95)00067-A

S. Grossberg, E. Mingolla, and C. Pack, A Neural Model of Motion Processing and Visual Navigation by Cortical Area MST, Cerebral Cortex, vol.9, issue.8, pp.878-895, 1999.
DOI : 10.1093/cercor/9.8.878

M. N. Do and M. Vetterli, Texture similarity measurement using Kullback-Leibler distance on wavelet subbands, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), pp.730-733, 2000.
DOI : 10.1109/ICIP.2000.899558

URL : http://lcavwww.epfl.ch/~minhdo/publications/ICIP2000_texture.ps.gz

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable multiscale transforms Information Theory, IEEE Transactions on, vol.38, issue.59, pp.587-607, 1992.
DOI : 10.1109/18.119725

URL : http://www.cns.nyu.edu/pub/eero/simoncelli91.ps.gz

X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff, Structural texture similarity metrics for retrieval applications, Image Processing 15th IEEE International Conference on, pp.1196-1199, 2008.

J. Zujovic, T. N. Pappas, and D. L. Neuhoff, Structural similarity metrics for texture analysis and retrieval, Image Processing 16th IEEE International Conference on, pp.2225-2228, 2009.
DOI : 10.1109/icip.2009.5413897

M. Maggioni, G. Jin, A. Foi, and T. N. Pappas, Structural texture similarity metric based on intra-class variances, 2014 IEEE International Conference on Image Processing (ICIP), pp.1992-1996, 2014.
DOI : 10.1109/ICIP.2014.7025399

URL : http://www.cs.tut.fi/~foi/papers/ICIP2014_Maggioni_STSIM-I.pdf

J. R. Smith, C. Lin, and M. Naphade, Video texture indexing using spatiotemporal wavelets, Image Processing. 2002. Proceedings. 2002 International Conference on, pp.437-470, 2002.
DOI : 10.1109/icip.2002.1039981

W. N. Gonçalves, B. B. Machado, and O. M. Bruno, Spatiotemporal gabor filters: a new method for dynamic texture recognition, p.33, 2012.

K. G. Derpanis, M. Sizintsev, K. J. Cannons, and R. P. Wildes, Action spotting and recognition based on a spatiotemporal orientation analysis Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.35, issue.3, pp.527-540, 2013.
DOI : 10.1109/tpami.2012.141

Z. Bao, C. Xu, and C. Wang, Perceptual auto-regressive texture synthesis for video coding, Multimedia tools and applications, pp.535-547, 2013.
DOI : 10.1109/TCSVT.2005.848313

N. Campbell, C. Dalton, D. Gibson, D. Oziem, and B. Thomas, Practical generation of video textures using the auto-regressive process, Image and Vision Computing, vol.22, issue.10, pp.819-827, 2004.
DOI : 10.1016/j.imavis.2004.02.008

A. Khandelia, S. Gorecha, B. Lall, S. Chaudhury, and M. Mathur, Parametric Video Compression Scheme Using AR Based Texture Synthesis, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp.219-225, 2008.
DOI : 10.1109/ICVGIP.2008.86

G. Doretto and S. Soatto, Modeling Dynamic Scenes: An Overview of Dynamic Textures, Handbook of Mathematical Models in Computer Vision, pp.341-355, 2006.
DOI : 10.1007/0-387-28831-7_21

B. Abraham, O. I. Camps, and M. Sznaier, Dynamic texture with fourier descriptors, Proceedings of the 4th nternational Workshop on Texture Analysisand Synthesis, pp.53-58, 2005.

Y. Li, T. Wang, and H. Shum, Motion texture, Proceedings of the 29th annual conference on Computer graphics and interactive techniques , SIGGRAPH '02, pp.465-472, 2002.
DOI : 10.1145/566570.566604

R. Costantini, L. Sbaiz, and S. Süsstrunk, Higher Order SVD Analysis for Dynamic Texture Synthesis, IEEE Transactions on Image Processing, vol.17, issue.1, pp.42-52, 2008.
DOI : 10.1109/TIP.2007.910956

URL : http://infoscience.epfl.ch/record/100992/files/CostantiniSS2008.pdf

L. Yuan, F. Wen, C. Liu, and H. Shum, Synthesizing Dynamic Texture with Closed-Loop Linear Dynamic System, Computer Vision-ECCV 2004, pp.603-616, 2004.
DOI : 10.1007/978-3-540-24671-8_48

P. Ghadekar and N. Chopade, Nonlinear dynamic texture analysis and synthesis model, Int. J. of Recent Trends in Engineering & Technology, vol.11, p.34, 2014.

G. Zhao and M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.78, pp.915-928, 2007.
DOI : 10.1109/tpami.2007.1110

URL : http://www.ee.oulu.fi/mvg/files/pdf/pdf_740.pdf

Y. Zhai and D. L. Neuhoff, Rotation-invariant local radius index: A compact texture similarity feature for classification, 2014 IEEE International Conference on Image Processing (ICIP), pp.5711-5715, 2014.
DOI : 10.1109/ICIP.2014.7026155

J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen et al., WLD: A robust local image descriptor Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.32, issue.9, pp.1705-1720, 2010.

D. He and L. Wang, Texture unit, texture spectrum, and texture analysis Geoscience and Remote Sensing, IEEE Transactions on, vol.28, issue.4, pp.509-512, 1990.

A. Barcelo, E. Montseny, and P. Sobrevilla, Fuzzy Texture Unit and Fuzzy Texture Spectrum for texture characterization, Fuzzy Sets and Systems, vol.158, issue.3, pp.239-252, 2007.
DOI : 10.1016/j.fss.2006.10.008

D. He and L. Wang, Simplified texture spectrum for texture analysis, Journal of Communication and Computer, vol.7, issue.8, pp.44-53, 2010.

X. Liu and D. Wang, A spectral histogram model for texton modeling and texture discrimination, Vision Research, vol.42, issue.23, pp.2617-2634, 2002.
DOI : 10.1016/S0042-6989(02)00297-3

URL : https://doi.org/10.1016/s0042-6989(02)00297-3

L. Van-der-maaten and E. Postma, Texton-based texture classification, Proceedings of Belgium-Netherlands Artificial Intelligence Conference, p.35, 2007.

C. Peh and L. Cheong, Synergizing spatial and temporal texture, Image Processing IEEE Transactions on, vol.11, issue.10, pp.1179-1191, 2002.

R. Péteri and D. Chetverikov, Dynamic texture recognition using normal flow and texture regularity, " in Pattern Recognition and Image Analysis, pp.223-230, 2005.

S. Fazekas and D. Chetverikov, Dynamic Texture Recognition Using Optical Flow Features and Temporal Periodicity, 2007 International Workshop on Content-Based Multimedia Indexing, pp.25-32, 2007.
DOI : 10.1109/CBMI.2007.385388

URL : http://visual.ipan.sztaki.hu/publ/cbmi2007.pdf

A. Rahman and M. Murshed, Real-time temporal texture characterisation using block based motion co-occurrence statistics, 2004 International Conference on Image Processing, 2004. ICIP '04., p.36, 2004.
DOI : 10.1109/ICIP.2004.1421372

T. Amiaz, S. Fazekas, D. Chetverikov, and N. Kiryati, Detecting regions of dynamic texture, " in Scale Space and Variational Methods in Computer Vision, pp.848-859, 2007.

S. Fazekas, T. Amiaz, D. Chetverikov, and N. Kiryati, Dynamic Texture Detection Based on Motion Analysis, International Journal of Computer Vision, vol.4, issue.9, pp.48-63, 2009.
DOI : 10.1007/978-1-4757-2917-7

URL : http://visual.ipan.sztaki.hu/publ/ijcv2008.pdf

Y. Xu, Y. Quan, H. Ling, and H. Ji, Dynamic texture classification using dynamic fractal analysis, 2011 International Conference on Computer Vision, pp.1219-1226, 2011.
DOI : 10.1109/ICCV.2011.6126372

URL : http://www.dabi.temple.edu/%7Ehbling/publication/DFA-DT-iccv11.pdf

Y. Xu, Y. Quan, Z. Zhang, H. Ling, and H. Ji, Classifying dynamic textures via spatiotemporal fractal analysis, Pattern Recognition, vol.48, issue.10, pp.3239-3248, 2015.
DOI : 10.1016/j.patcog.2015.04.015

Y. Xu, S. Huang, H. Ji, and C. Fermüller, Scale-space texture description on SIFT-like textons, Computer Vision and Image Understanding, vol.116, issue.9, pp.999-1013, 2012.
DOI : 10.1016/j.cviu.2012.05.003

W. N. Goncalves and O. M. Bruno, Dynamic texture analysis and segmentation using deterministic partially self-avoiding walks, Expert Systems with Applications, vol.40, issue.11, pp.4283-4300, 2013.
DOI : 10.1016/j.eswa.2012.12.092

K. Dimitropoulos, P. Barmpoutis, and N. Grammalidis, Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection, IEEE Transactions on Circuits and Systems for Video Technology, vol.25, issue.2, pp.2014-2051
DOI : 10.1109/TCSVT.2014.2339592

P. Barmpoutis, K. Dimitropoulos, and N. Grammalidis, Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition, Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 22nd European, pp.1078-1082, 2014.

R. Narain, V. Kwatra, H. Lee, T. Kim, M. Carlson et al., Featureguided dynamic texture synthesis on continuous flows, Proceedings of the 18th Eurographics conference on Rendering Techniques. Eurographics Association, pp.361-370, 2007.

K. J. Siddalinga-swamy and D. M. Chandler, Parametric quality assessment of synthesized textures, Human Vision and Electronic Imaging XVI, p.38, 2011.
DOI : 10.1117/12.876743

S. Varadarajan and L. J. Karam, Adaptive texture synthesis based on perceived texture regularity, 2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX), pp.76-80, 2014.
DOI : 10.1109/QoMEX.2014.6982299

J. Ballé, Subjective evaluation of texture similarity metrics for compression applications, 2012 Picture Coding Symposium, pp.241-244, 2012.
DOI : 10.1109/PCS.2012.6213337

J. Zujovic, T. N. Pappas, D. L. Neuhoff, R. Van-egmond, and H. De-ridder, Subjective and objective texture similarity for image compression, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
DOI : 10.1109/ICASSP.2012.6288145

P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto, Dynamic texture recognition, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.58-77, 2001.
DOI : 10.1109/CVPR.2001.990925

B. Ghanem and N. Ahuja, Maximum Margin Distance Learning for Dynamic Texture Recognition, European Conference on Computer Vision, pp.223-236, 2010.
DOI : 10.1007/978-3-642-15552-9_17

URL : http://vision.ai.uiuc.edu/%7Ebghanem2/Files/DT_distance_learning.pdf

D. Tiwari and V. Tyagi, Improved Weber???s law based local binary pattern for dynamic texture recognition, Multimedia Tools and Applications, pp.1-18, 2016.
DOI : 10.1109/TPAMI.2007.1110

G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, Overview of the high efficiency video coding (HEVC) standard, " Circuits and Systems for Video Technology, IEEE Transactions on, vol.22, issue.42, pp.1649-1668, 2012.

J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, Comparison of the coding efficiency of video coding standards?including high efficiency video coding (HEVC), " Circuits and Systems for Video Technology, IEEE Transactions on, vol.22, issue.12, pp.1669-1684, 2012.

D. Mukherjee, H. Su, J. Bankoski, A. Converse, J. Han et al., An overview of new video coding tools under consideration for VP10: the successor to VP9, SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, pp.95-991, 2015.

D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, O. Hadarmpeg-hevc et al., Performance comparison of H, Picture Coding Symposium (PCS), pp.394-397, 2013.

P. Ndjiki-nya, B. Makai, G. Blattermann, A. Smolic, H. Schwarz et al., Improved H.264/AVC coding using texture analysis and synthesis, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), pp.849-893, 2003.
DOI : 10.1109/ICIP.2003.1247378

P. Ndjiki-nya and T. Wiegand, Video coding using texture analysis and synthesis, Proc Picture Coding Symp, p.44, 2003.
DOI : 10.1109/jstsp.2011.2164892

G. J. Sullivan, P. N. Topiwala, and A. Luthra, The H.264/AVC advanced video coding standard: overview and introduction to the fidelity range extensions, Applications of Digital Image Processing XXVII, pp.454-474, 2004.
DOI : 10.1117/12.564457

URL : https://hal.archives-ouvertes.fr/in2p3-00024976

P. Ndjiki-nya, T. Hinz, A. Smolic, and T. Wiegand, A generic and automatic content-based approach for improved H, MPEG4-AVC video coding Image Processing, 2005. ICIP 2005. IEEE International Conference on, pp.874-918, 2005.
DOI : 10.1109/icip.2005.1530195

P. Ndjiki-nya, D. Bull, and T. Wiegand, Perception-oriented video coding based on texture analysis and synthesis, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.2273-2276, 2009.
DOI : 10.1109/ICIP.2009.5414386

U. S. Thakur and B. Ray, Image coding using parametric texture synthesis, 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP), pp.1-6, 2016.
DOI : 10.1109/MMSP.2016.7813339

O. Chubach, P. Garus, and M. Wien, Motion-based analysis and synthesis of dynamic textures, 2016 Picture Coding Symposium (PCS), p.44, 2016.
DOI : 10.1109/PCS.2016.7906314

A. Dumitras and B. G. Haskell, A texture replacement method at the encoder for bit-rate reduction of compressed video Circuits and Systems for Video Technology, IEEE Transactions on, vol.13, issue.45, pp.163-175, 2003.

J. Ballé and M. Wien, Extended Texture Prediction for H.264/AVC Intra Coding, 2007 IEEE International Conference on Image Processing, pp.93-139, 2007.
DOI : 10.1109/ICIP.2007.4379529

A. Stojanovic, M. Wien, and J. Ohm, Dynamic texture synthesis for H.264/AVC inter coding, 2008 15th IEEE International Conference on Image Processing, pp.1608-1611, 2008.
DOI : 10.1109/ICIP.2008.4712078

C. Wong, O. C. Au, B. Meng, and H. Lam, Perceptual rate control for low-delay video communications, Multimedia and Expo, 2003. ICME'03. Proceedings. 2003 International Conference on, pp.361-408, 2003.

C. Sun, H. Wang, H. Li, and T. Kim, Perceptually Adaptive Lagrange Multiplier for Rate-Distortion Optimization in H.264, Future Generation Communication and Networking (FGCN 2007), pp.459-463, 2007.
DOI : 10.1109/FGCN.2007.179

H. Yu, F. Pan, Z. Lin, and Y. Sun, A perceptual bit allocation scheme for H, Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, pp.4-47, 2005.

M. Liu and L. Lu, An Improved Rate Control Algorithm of H.264/AVC Based on Human Visual System, Computer, Informatics, Cybernetics and Applications, pp.1145-1151, 2012.
DOI : 10.1007/978-94-007-1839-5_124

L. Xu, W. Lin, L. Ma, Y. Zhang, Y. Fang et al., Freeenergy principle inspired video quality metric and its use in video coding, p.106, 2016.
DOI : 10.1109/tmm.2016.2525004

H. Hadizadeh, Visual saliency in video compression and transmission, Applied Sciences: School of Engineering Science, p.47, 2013.

H. Hadizadeh and I. V. Bajic, Saliency-Aware Video Compression, IEEE Transactions on Image Processing, vol.23, issue.1, pp.19-33, 2014.
DOI : 10.1109/TIP.2013.2282897

K. Naser, V. Ricordel, and P. L. Callet, Estimation of perceptual redundancies of HEVC encoded dynamic textures, 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp.1-5, 2016.
DOI : 10.1109/QoMEX.2016.7498931

URL : https://hal.archives-ouvertes.fr/hal-01332130

C. Ma, K. Naser, V. Ricordel, P. L. Callet, and C. Qing1, An adaptive Lagrange multiplier determination method for dynamic texture in HEVC, 2016 IEEE International Conference on Consumer Electronics-China (ICCE-China), p.47, 2016.
DOI : 10.1109/ICCE-China.2016.7849749

URL : https://hal.archives-ouvertes.fr/hal-01481686

V. Bruce, P. R. Green, and M. A. Georgeson, Visual perception: Physiology, psychology, & ecology, p.56, 2003.

G. Mather, Foundations of sensation and perception, p.56, 2009.

J. Hérault, Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception, World Scientific, vol.19, p.56, 2010.
DOI : 10.1142/7311

R. Young, The gaussian derivative theory of spatial vision: Analysis of cortical cell receptive field line-weighting profiles. publication gmr-4920, general motors research labs, Computer Science Dept, vol.30500, pp.48-090

A. Parker and M. Hawken, Two-dimensional spatial structure of receptive fields in monkey striate cortex, Journal of the Optical Society of America A, vol.5, issue.4, pp.598-605, 1988.
DOI : 10.1364/JOSAA.5.000598

A. B. Watson, The cortex transform: rapid computation of simulated neural images Computer vision, graphics, and image processing, pp.311-327, 1987.

K. Foster, J. P. Gaska, M. Nagler, and D. Pollen, Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey., The Journal of Physiology, vol.365, issue.1, pp.331-363, 1985.
DOI : 10.1113/jphysiol.1985.sp015776

M. Hawken, R. Shapley, and D. Grosof, Temporal-frequency selectivity in monkey visual cortex, Visual Neuroscience, vol.365, issue.03, pp.477-492, 1996.
DOI : 10.1113/jphysiol.1985.sp015776

C. C. Pack and R. T. Born, Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain, Nature, vol.409, issue.6823, pp.1040-1042, 2001.
DOI : 10.1038/35059085

A. B. Chan and N. Vasconcelos, Probabilistic Kernels for the Classification of Auto-Regressive Visual Processes, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.846-851, 2005.
DOI : 10.1109/CVPR.2005.279

M. A. Papadopoulos, F. Zhang, D. Agrafiotis, and D. Bull, A video texture database for perceptual compression and quality assessment, 2015 IEEE International Conference on Image Processing (ICIP), pp.2781-2785, 2015.
DOI : 10.1109/ICIP.2015.7351309

S. Zhang, H. Yao, and S. Liu, Dynamic background modeling and subtraction using spatio-temporal local binary patterns, Image Processing 15th IEEE International Conference on, pp.1556-1559, 2008.

D. Tiwari and V. Tyagi, A novel scheme based on local binary pattern for dynamic texture recognition, Computer Vision and Image Understanding, vol.150, issue.78, pp.58-65, 2016.
DOI : 10.1016/j.cviu.2016.04.010

A. B. Chan and N. Vasconcelos, Classifying Video with Kernel Dynamic Textures, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-6, 2007.
DOI : 10.1109/CVPR.2007.382996

J. Ren, X. Jiang, and J. Yuan, Dynamic texture recognition using enhanced LBP features, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2400-2404, 2013.
DOI : 10.1109/ICASSP.2013.6638085

J. Ren, X. Jiang, J. Yuan, and G. Wang, Optimizing LBP Structure For Visual Recognition Using Binary Quadratic Programming, IEEE Signal Processing Letters, vol.21, issue.11, pp.1346-1350, 2014.
DOI : 10.1109/LSP.2014.2336252

M. Baktashmotlagh, M. Harandi, B. C. Lovell, and M. Salzmann, Discriminative Non-Linear Stationary Subspace Analysis for Video Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.12, pp.2353-2366, 2014.
DOI : 10.1109/TPAMI.2014.2339851

Y. Wang and S. Hu, Chaotic features for dynamic textures recognition, Soft Computing, vol.6, issue.6, pp.1977-1989, 2016.
DOI : 10.1109/CVPR.2010.5539882

S. R. Arashloo and J. Kittler, Dynamic Texture Recognition Using Multiscale Binarized Statistical Image Features, IEEE Transactions on Multimedia, vol.16, issue.8, pp.2099-2109, 2014.
DOI : 10.1109/TMM.2014.2362855

Y. Wang and S. Hu, Exploiting high level feature for dynamic textures recognition, Neurocomputing, vol.154, pp.217-224, 2015.
DOI : 10.1016/j.neucom.2014.12.001

A. R. Rivera and O. Chae, Spatiotemporal Directional Number Transitional Graph for Dynamic Texture Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, issue.10, pp.2146-2152, 2015.
DOI : 10.1109/TPAMI.2015.2392774

URL : http://doi.org/10.1109/tpami.2015.2392774

A. B. Watson, DCTune: A technique for visual optimization of DCT quantization matrices for individual images, Sid International Symposium Digest of Technical Papers, pp.946-946, 1993.

Z. Wei and K. N. Ngan, Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain Circuits and Systems for Video Technology, IEEE Transactions on, vol.19, issue.3, pp.337-346, 2009.

H. Wu and D. Tan, Subjective and objective picture assessment at suprathreshold levels, Picture Coding Symposium (PCS), pp.312-316, 2015.
DOI : 10.1109/pcs.2015.7170097

S. A. Klein, Measuring, estimating, and understanding the psychometric function: A commentary, Perception & Psychophysics, vol.63, issue.Suppl., pp.1421-1455, 2001.
DOI : 10.3758/BF03194545

F. A. Wichmann and N. J. Hill, The psychometric function: I. Fitting, sampling, and goodness of fit, Perception & Psychophysics, vol.63, issue.8, pp.1293-1313, 2001.
DOI : 10.3758/BF03194545

P. G. Engeldrum, Psychometric scaling: a toolkit for imaging systems development, p.85, 2000.

M. Taylor and C. D. Creelman, PEST: Efficient Estimates on Probability Functions, The Journal of the Acoustical Society of America, vol.41, issue.4A, pp.782-787, 1967.
DOI : 10.1121/1.1910407

J. Findlay, Estimates on probability functions: A more virulent PEST, Perception & Psychophysics, vol.41, issue.2, pp.181-185, 1978.
DOI : 10.1121/1.1910407

URL : https://link.springer.com/content/pdf/10.3758%2FBF03208300.pdf

A. Pentland, Maximum likelihood estimation: The best PEST, Perception & Psychophysics, vol.25, issue.4, pp.377-379, 1980.
DOI : 10.1121/1.1910407

URL : https://link.springer.com/content/pdf/10.3758%2FBF03204398.pdf

A. B. Watson and D. G. Pelli, Quest: A Bayesian adaptive psychometric method, Perception & Psychophysics, vol.33, issue.2, pp.113-120, 1983.
DOI : 10.3758/BF03202828

P. E. King-smith, S. S. Grigsby, A. J. Vingrys, S. C. Benes, and A. Supowit, Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation, Vision Research, vol.34, issue.7, pp.885-912, 1994.
DOI : 10.1016/0042-6989(94)90039-6

M. R. Leek, Adaptive procedures in psychophysical research, Perception & Psychophysics, vol.63, issue.Suppl., pp.1279-1292, 2001.
DOI : 10.3758/BF03194545

URL : https://link.springer.com/content/pdf/10.3758%2FBF03194543.pdf

B. Treutwein, Adaptive psychophysical procedures Vision research, pp.2503-2522, 1995.

Y. Shen and V. M. Richards, A maximum-likelihood procedure for estimating psychometric functions: Thresholds, slopes, and lapses of attention, The Journal of the Acoustical Society of America, vol.132, issue.2, pp.957-967, 2012.
DOI : 10.1121/1.4733540

Y. Shen, W. Dai, and V. M. Richards, A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure, Behavior Research Methods, vol.71, issue.7, pp.13-26, 2015.
DOI : 10.3758/APP.71.6.1414

I. Rec, Methodology for the subjective assessment of the quality of television pictures, pp.500-511, 2002.

T. Installations and L. Line, Subjective video quality assessment methods for multimedia applications, pp.37-93, 1999.

S. Winkler, Analysis of Public Image and Video Databases for Quality Assessment, IEEE Journal of Selected Topics in Signal Processing, vol.6, issue.6, pp.616-625, 2012.
DOI : 10.1109/JSTSP.2012.2215007

R. M. Haralick, K. Shanmugam, and I. H. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

URL : http://www.cis.rit.edu/~cnspci/references/dip/segmentation/haralick1973.pdf

T. Wiegand and B. Girod, Lagrange multiplier selection in hybrid video coder control, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), pp.542-545, 2001.
DOI : 10.1109/ICIP.2001.958171

URL : http://www.stanford.edu/~bgirod/pdfs/ICIP2001.pdf

Y. Huang, T. Ou, P. Su, and H. H. Chen, Perceptual Rate-Distortion Optimization Using Structural Similarity Index as Quality Metric, IEEE Transactions on Circuits and Systems for Video Technology, pp.1614-1624, 2010.
DOI : 10.1109/TCSVT.2010.2087472

S. Wang, A. Rehman, Z. Wang, S. Ma, and W. Gao, SSIM-motivated ratedistortion optimization for video coding, IEEE Transactions on Circuits and Systems for Video Technology, pp.516-529, 2012.
DOI : 10.1109/tcsvt.2011.2168269

URL : https://ece.uwaterloo.ca/%7Ez70wang/publications/TCSVT_SSIM_RDO.pdf

H. H. Chen, Y. Huang, P. Su, and T. Ou, Improving video coding quality by perceptual rate-distortion optimization, 2010 IEEE International Conference on Multimedia and Expo, pp.1287-1292, 2010.
DOI : 10.1109/ICME.2010.5582535

C. Tang, C. Chen, Y. Yu, and C. Tsai, Visual sensitivity guided bit allocation for video coding, IEEE Transactions on Multimedia, vol.8, issue.1, pp.11-18, 2006.
DOI : 10.1109/TMM.2005.861295

L. Shen, Z. Liu, and Z. Zhang, A novel H.264 rate control algorithm with consideration of visual attention, Multimedia tools and applications, pp.709-727, 2013.
DOI : 10.1155/2010/830605

URL : https://hal.archives-ouvertes.fr/pasteur-00823211

G. Lin and S. Zheng, Perceptual importance analysis for H.264/AVC bit allocation, Journal of Zhejiang University SCIENCE A, vol.9, issue.2, pp.225-231, 2008.
DOI : 10.1631/jzus.A071355

K. Castleman, M. Schulze, and Q. Wu, Simplified design of steerable pyramid filters, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), pp.329-332, 1998.
DOI : 10.1109/ISCAS.1998.694481

URL : http://markschulze.net/docs/pdf/iscaskrc.pdf

M. S. Gide and L. J. Karam, On the assessment of the quality of textures in visual media, 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp.1-5, 2010.
DOI : 10.1109/CISS.2010.5464741

Z. Wan, A. Bovik-]-k, V. Naser, P. L. Ricordel, and . Callet, Mean squared error: Love it or leave it Modeling the perceptual distortion of dynamic textures and its application in HEVC, Image Processing (ICIP), 2016 IEEE International Conference on. IEEE, pp.98-117, 2009.

I. R. Assembly, Methodology for the subjective assessment of the quality of television pictures, p.125, 2003.

P. Itu-t and . Recommendation, Subjective video quality assessment methods for multimedia applications, p.135, 1999.

J. Blin, SAMVIQ?Subjective assessment methodology for video quality, Rapport technique BPN, vol.56, pp.24-125, 2003.

S. Péchard, R. Pépion, and P. L. Callet, Suitable methodology in subjective video quality assessment: a resolution dependent paradigm, International Workshop on Image Media Quality and its Applications, pp.6-125, 2008.

K. Tsukida and M. R. Gupta, How to analyze paired comparison data, DTIC Document, Tech. Rep, p.125, 2011.

J. Li, M. Barkowsky, and P. L. Callet, Boosting paired comparison methodology in measuring visual discomfort of 3DTV: performances of three different designs, Stereoscopic Displays and Applications XXIV, p.125, 2013.
DOI : 10.1117/12.2002075

A. R. Reibman, K. Shirley, and C. Tian, A probabilistic pairwise-preference predictor for image quality, 2013 IEEE International Conference on Image Processing, pp.413-417, 2013.
DOI : 10.1109/ICIP.2013.6738085

URL : http://www.research.att.com/export/sites/att_labs/techdocs/TD_101119.pdf

Q. Xu, Q. Huang, T. Jiang, B. Yan, W. Lin et al., HodgeRank on Random Graphs for Subjective Video Quality Assessment, IEEE Transactions on Multimedia, vol.14, issue.3, pp.844-857, 2012.
DOI : 10.1109/TMM.2012.2190924

Z. Wang and E. P. Simoncelli, Maximum differentiation (MAD) competition: A methodology for comparing computational models of perceptual quantities, Journal of Vision, vol.8, issue.12, pp.8-8, 2008.
DOI : 10.1167/8.12.8

M. Nuutinen, T. Virtanen, T. Leisti, T. Mustonen, J. Radun et al., A new method for evaluating the subjective image quality of photographs: dynamic reference, Multimedia Tools and Applications, pp.1-25, 2014.
DOI : 10.1109/JSTSP.2012.2215007

L. T. Maloney and J. N. Yang, Maximum likelihood difference scaling, Journal of Vision, vol.3, issue.8, pp.5-125, 2003.
DOI : 10.1167/3.8.5

URL : https://hal.archives-ouvertes.fr/inserm-00252010

C. Charrier, L. T. Maloney, H. Cherifi, and K. Knoblauch, Maximum likelihood difference scaling of image quality in compression-degraded images, Journal of the Optical Society of America A, vol.24, issue.11, pp.3418-3426, 2007.
DOI : 10.1364/JOSAA.24.003418

URL : https://hal.archives-ouvertes.fr/inserm-00175755

G. Bjontegaard, Calculation of average PSNR differences between RD-curves, pp.2-4, 2001.

D. H. Brainard, The Psychophysics Toolbox, Spatial Vision, vol.10, issue.4, pp.433-436, 1997.
DOI : 10.1163/156856897X00357

K. Naser, V. Ricordel, and P. L. Callet, A foveated short term distortion model for perceptually optimized dynamic textures compression in HEVC, 2016 Picture Coding Symposium (PCS), p.135, 2016.
DOI : 10.1109/PCS.2016.7906311

URL : https://hal.archives-ouvertes.fr/hal-01481689