]. T. Bibliography-[-ban99 and . Banica, Fusion rules for representations of compact quantum groups, Exposition . Math, vol.17, issue.4, pp.313-337, 1999.

]. T. Ban16a and . Banica, Deformed Fourier models with formal parameters (preprint) Available at arXiv

]. T. Ban16b and . Banica, Quantum groups from stationary matrix models (preprint) Available at arXiv

J. [. Banica and . Bichon, HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS, Glasgow Mathematical Journal, vol.210, issue.03, pp.677-703, 2010.
DOI : 10.1080/00927870008826875

T. Banica, J. Bichon, and S. Natale, Finite quantum groups and quantum permutation groups, Advances in Mathematics, vol.229, issue.6, pp.3320-3338, 2012.
DOI : 10.1016/j.aim.2012.02.012

URL : https://doi.org/10.1016/j.aim.2012.02.012

G. [. Bo?ejko and . Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A, vol.3, issue.62, pp.297-302, 1984.

U. [. Banica, A. Franz, and . Skalski, Idempotent States and the Inner Linearity Property, Bulletin of the Polish Academy of Sciences Mathematics, vol.60, issue.2, pp.123-132, 2012.
DOI : 10.4064/ba60-2-3

URL : http://arxiv.org/pdf/1112.5018.pdf

M. Brannan, B. Forrest, and C. Zwarich, Leinert sets and complemented ideals in Fourier algebras (preprint) Available at arXiv
DOI : 10.4064/sm8733-3-2017

J. Bhowmick, D. Goswami, and A. Skalski, Quantum isometry groups of $0$-dimensional manifolds, Transactions of the American Mathematical Society, vol.363, issue.02, pp.901-921, 2011.
DOI : 10.1090/S0002-9947-2010-05141-4

J. [. Bergh and . Löfström, Interpolation spaces. An introduction, 1976.

M. Bo?ejko, M. Leinert, and R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific Journal of Mathematics, vol.175, issue.2, pp.357-388, 1996.
DOI : 10.2140/pjm.1996.175.357

T. Blendek and J. Michali?ek, $L^1$-Norm estimates of character sums defined by a Sidon set in the dual of a compact Kac algebra, Journal of Operator Theory, vol.70, issue.2, pp.375-399, 2013.
DOI : 10.7900/jot.2011sep03.1945

I. [. Banica and . Nechita, Universal models for quantum permutation groups (preprint) Available at arXiv
DOI : 10.1016/j.aam.2016.09.001

M. Bo?ejko, The existence of ?(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital, vol.8, issue.4, pp.579-582, 1973.

M. Bo?ejko, Sidon sets in dual objects of compact groups, Colloquium Mathematicum, vol.30, issue.1, pp.137-141, 1974.
DOI : 10.4064/cm-30-1-137-141

]. M. Bo?75a and . Bo?ejko, On ?(p) sets with minimal constant in discrete noncommutative groups, Proc. Amer, pp.407-412, 1975.

M. Bo?ejko, A remark to my paper The existence of ?(p) sets in discrete noncommutative groups, Boll. Un. Mat. Ital. Boll. Un. Mat. Ital, vol.8, issue.111, pp.579-58243, 1973.

M. Bo?ejko, Lacunary sets in finite von Neumann algebras. Unpublished manuscript, 1979.

M. Bo?ejko, A new group algebra and lacunary sets in discrete noncommutative groups, Studia Mathematica, vol.70, issue.2, pp.165-175, 1981.
DOI : 10.4064/sm-70-2-165-175

M. Bo?ejko, Positive definite bounded matrices and a characterization of amenable groups, Proc. Amer, pp.357-360, 1985.
DOI : 10.1090/S0002-9939-1985-0806070-2

M. Brannan, Quantum Symmetries and Strong Haagerup Inequalities, Communications in Mathematical Physics, vol.111, issue.1, pp.21-53, 2012.
DOI : 10.1007/BF01219077

URL : http://arxiv.org/pdf/1101.0033.pdf

R. [. Banica and . Speicher, Liberation of orthogonal Lie groups, Advances in Mathematics, vol.222, issue.4, pp.1461-1501, 2009.
DOI : 10.1016/j.aim.2009.06.009

URL : https://hal.archives-ouvertes.fr/hal-00627408

L. [. Bédos and . Tuset, Amenability and Co-Amenability for Locally Compact Quantum Groups, International Journal of Mathematics, vol.29, issue.08, pp.865-884, 2003.
DOI : 10.1090/S0002-9947-1994-1220906-5

M. Caspers, The $L^p$-Fourier transform on locally compact quantum groups, Journal of Operator Theory, vol.69, issue.1, pp.161-193, 2013.
DOI : 10.7900/jot.2010aug22.1949

URL : http://arxiv.org/pdf/1008.2603

]. C. Cec72 and . Cecchini, Lacunary Fourier series on compact Lie groups, J. Funct. Anal, vol.11, pp.191-203, 1972.

U. [. Cipriani, A. Franz, and . Kula, Symmetries of L??vy processes on compact quantum groups, their Markov semigroups and potential theory, Journal of Functional Analysis, vol.266, issue.5, pp.2789-2844, 2014.
DOI : 10.1016/j.jfa.2013.11.026

U. [. Cowling and . Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Inventiones Mathematicae, vol.6, issue.3, pp.507-549, 1989.
DOI : 10.1007/978-1-4684-9488-4

J. [. Cartwright and . Mcmullen, A structural criterion for the existence of infinite Sidon sets, Pacific Journal of Mathematics, vol.96, issue.2, pp.301-317, 1981.
DOI : 10.2140/pjm.1981.96.301

A. Connes, Noncommutative geometry, 1994.

]. T. Coo10 and . Cooney, A Hausdorff-Young inequality for locally compact quantum groups, Internat. J. Math, vol.21, issue.12, pp.1619-1632, 2010.

M. Caspers, J. Parcet, M. Perrin, and É. Ricard, NONCOMMUTATIVE DE LEEUW THEOREMS, Forum of Mathematics, Sigma, vol.18, issue.59, p.21, 2015.
DOI : 10.1017/CBO9781107360235

G. [. Coifman and . Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, vol.242, 1971.
DOI : 10.1007/bfb0058946

M. Daws, Multipliers, self-induced and dual Banach algebras, Dissertationes Mathematicae, vol.470, p.62, 2010.
DOI : 10.4064/dm470-0-1

URL : http://arxiv.org/pdf/1001.1633.pdf

M. Daws, COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS, International Journal of Mathematics, vol.124, issue.12, p.1250132, 2012.
DOI : 10.1142/S0129167X96000086

K. De-commer, A. Freslon, and M. Yamashita, CCAP for Universal Discrete Quantum Groups, Communications in Mathematical Physics, vol.111, issue.4, pp.677-701, 2014.
DOI : 10.1007/BF01219077

C. [. D-'andrea, S. Pinzari, and . Rossi, Polynomial growth for compact quantum groups, topological dimension and *-regularity of the Fourier algebra (preprint) Available at

]. S. Dru70 and . Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B, vol.271, pp.162-163, 1970.

Z. [. Effros and . Ruan, Operator spaces, 2000.

]. P. Eym64 and . Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, vol.92, pp.181-236, 1964.

U. Franz, A. Kula, and A. Skalski, L??vy Processes on Quantum Permutation Groups, Proceedings of the Conference 'Noncommutative Analysis, Operator Theory, and Applications', Milano, 2014.
DOI : 10.1007/978-3-319-29116-1_11

]. G. Fol95 and . Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, 1995.

. [. Figà-talamanca, Insiemi lacunari nei gruppi non commutativi, Rendiconti del Seminario Matematico e Fisico di Milano, vol.90, issue.4, pp.45-59, 1977.
DOI : 10.1007/978-3-662-00102-8

A. Figà-talamanca and M. A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, vol.87, 1983.

D. [. Figà-talamanca and . Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific Journal of Mathematics, vol.16, issue.3, pp.505-514, 1966.
DOI : 10.2140/pjm.1966.16.505

]. L. Gro06 and . Gross, Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys, Diffusion, quantum theory, and radically elementary mathematics, pp.45-73, 2006.

]. A. Har99 and . Harcharras, Fourier analysis, Schur multipliers on S p and non-commutative ?(p)-sets, Studia Math, vol.137, issue.3, pp.203-260, 1999.

]. S. Hel58 and . Helgason, Lacunary Fourier series on noncommutative groups, Proc. Amer, pp.782-790, 1958.

U. Haagerup, M. Junge, Q. Xuhr70-]-e, K. A. Hewitt, and . Ross, A reduction method for noncommutative $L_p$-spaces and applications, Transactions of the American Mathematical Society, vol.362, issue.04, pp.2125-2165, 1970.
DOI : 10.1090/S0002-9947-09-04935-6

URL : https://hal.archives-ouvertes.fr/hal-00477037

M. Junge, T. Mei, and J. Parcet, Noncommutative Riesz transforms ? Dimension free bounds and Fourier multipliers, J. Eur. Math. Soc

M. Junge, T. Mei, and J. Parcet, Smooth Fourier multipliers on group von Neumann algebras, Geometric and Functional Analysis, vol.6, issue.(2011, pp.1913-1980, 2014.
DOI : 10.1007/BF01404824

URL : http://arxiv.org/pdf/1010.5320

M. Junge, M. Neufang, and Z. Ruan, A REPRESENTATION THEOREM FOR LOCALLY COMPACT QUANTUM GROUPS, International Journal of Mathematics, vol.7, issue.03, pp.377-400, 2009.
DOI : 10.2977/prims/1195176848

]. P. Jol90 and . Jolissaint, Rapidly decreasing functions in reduced C * -algebras of groups, Trans. Amer. Math. Soc, vol.317, issue.1, pp.167-196, 1990.

Z. [. Junge and . Ruan, Approximation properties for noncommutative L p -spaces associated with discrete groups, Duke Mathematical Journal, vol.117, issue.2, pp.313-341, 2003.
DOI : 10.1215/S0012-7094-03-11724-X

URL : http://arxiv.org/pdf/math/0206060

M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math, vol.549, pp.149-190, 2002.
DOI : 10.1515/crll.2002.061

URL : http://arxiv.org/pdf/math/0206062v1.pdf

M. Junge, Embedding of the operator space OH and the logarithmic ???little Grothendieck inequality???, Inventiones mathematicae, vol.1, issue.2, pp.225-286, 2005.
DOI : 10.1155/S1073792802201038

A. [. Jolissaint and . Valette, Normes de Sobolev et convoluteurs born??s sur $L^2(G)$, Annales de l???institut Fourier, vol.41, issue.4, pp.797-822, 1991.
DOI : 10.5802/aif.1274

URL : http://archive.numdam.org/article/AIF_1991__41_4_797_0.pdf

Q. [. Junge and . Xu, Noncommutative Burkholder/Rosenthal inequalities, The Annals of Probability, vol.31, issue.2, pp.948-995, 2003.
DOI : 10.1214/aop/1048516542

URL : https://hal.archives-ouvertes.fr/hal-00477038

]. Kah10 and . Kahng, Fourier transform on locally compact quantum groups, J. Operator Theory, vol.64, issue.1, pp.69-87, 2010.

]. H. Kos84 and . Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative L p -spaces, J. Funct. Anal, vol.56, issue.1, pp.29-78, 1984.

K. [. Klimyk and . Schmüdgen, Quantum groups and their representations. Texts and Monographs in Physics, 1997.
DOI : 10.1007/978-3-642-60896-4

S. [. Kustermans and . Vaes, Locally compact quantum groups, Annales Scientifiques de l?????cole Normale Sup??rieure, vol.33, issue.6, pp.837-934, 2000.
DOI : 10.1016/S0012-9593(00)01055-7

]. V. Ldls11, M. Lafforgue, and . De-la-salle, Noncommutative L p -spaces without the completely bounded approximation property, Lei74] M. Leinert. Faltungsoperatoren auf gewissen diskreten Gruppen. Studia Math, pp.71-116149, 1974.

Y. [. Levendorski?-i and . Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Communications in Mathematical Physics, vol.111, issue.1, pp.141-170, 1991.
DOI : 10.1016/B978-0-12-400465-8.50019-5

A. [. Lindsay and . Skalski, Quantum stochastic convolution cocycles I, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.3, pp.575-610, 2008.
DOI : 10.1016/j.anihpb.2004.10.002

A. [. Lindsay and . Skalski, Convolution semigroups of states, Mathematische Zeitschrift, vol.11, issue.1, pp.325-339, 2011.
DOI : 10.2977/prims/1195191690

URL : http://arxiv.org/pdf/0905.1296

]. A. Lun09 and . Lunardi, Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, 2009.

S. [. Liu, J. Wang, and . Wu, Young's inequality for locally compact quantum groups, Journal of Operator Theory, vol.77, issue.1
DOI : 10.7900/jot.2016mar03.2104

URL : http://arxiv.org/pdf/1611.04630

]. R. Meg98 and . Megginson, An introduction to Banach space theory, volume 183 of Graduate Texts in Mathematics, 1998.

M. B. Marcus, G. Pisier, and N. J. , Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, vol.101, 1981.
DOI : 10.1515/9781400881536

A. Maes and A. Van-daele, Notes on compact quantum groups, Nieuw Arch. Wisk, vol.16, issue.412, pp.73-112, 1998.

R. [. Nica and . Speicher, Lectures on the combinatorics of free probability, 2006.
DOI : 10.1017/CBO9780511735127

L. [. Neshveyev and . Tuset, Compact quantum groups and their representation categories, Cours Spécialisés, vol.20, 2013.

]. D. Obe82 and . Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math, vol.47, issue.1, pp.113-117, 1982.

]. M. Pic73 and . Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital, vol.8, issue.4, pp.494-508, 1973.

]. G. Pis78a and . Pisier, Ensembles de Sidon et espaces de cotype 2, Séminaire sur la Géométrie des Espaces de Banach, 1977.

]. G. Pis78b and . Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Séminaire sur la Géométrie des Espaces de Banach, pp.17-18, 1977.

]. G. Pis83a and . Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon In Topics in modern harmonic analysis, Ist. Naz. Alta Mat. Francesco Severi, vol.I, pp.911-944, 1982.

]. G. Pis83b and . Pisier, Some applications of the metric entropy condition to harmonic analysis In Banach spaces, harmonic analysis, and probability theory, Lecture Notes in Math, vol.995, pp.123-154, 1980.

]. G. Pis95 and . Pisier, Multipliers and lacunary sets in non-amenable groups, Amer. J. Math, vol.117, issue.2, pp.337-376, 1995.

P. Podle? and S. L. Woronowicz, Quantum deformation of lorentz group, Communications in Mathematical Physics, vol.122, issue.2, pp.381-431, 1990.
DOI : 10.1007/3-540-09964-6_354

Q. [. Pisier and . Xu, Non-commutative L p -spaces, Handbook of the geometry of Banach spaces, pp.1459-1517, 2003.

D. Rider, Central lacunary sets, Monatshefte f???r Mathematik, vol.22, issue.4, pp.328-338, 1972.
DOI : 10.1007/BF01297366

D. Rider, Randomly continuous functions and Sidon sets. Duke Math, J, vol.42, issue.4, pp.759-764, 1975.
DOI : 10.1215/s0012-7094-75-04264-7

]. D. Rit84 and . Ritter, A convolution theorem for probability measures on finite groups, Illinois J. Math, vol.28, issue.3, pp.472-479, 1984.

]. W. Rud60 and . Rudin, Trigonometric series with gaps, J. Math. Mech, vol.9, pp.203-227, 1960.

]. W. Rud90 and . Rudin, Fourier analysis on groups Wiley Classics Library, 1990.

[. Ricard and Q. Xu, Khintchine type inequalities for reduced free products and applications, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.129, issue.599, pp.27-59, 2006.
DOI : 10.1006/jfan.1995.1051

URL : https://hal.archives-ouvertes.fr/hal-00475245

[. Ricard and Q. Xu, A noncommutative martingale convexity inequality, The Annals of Probability, vol.44, issue.2, pp.867-882, 2016.
DOI : 10.1214/14-AOP990

URL : http://arxiv.org/pdf/1405.0431.pdf

]. Y. Soi90 and . Soibelman, Algebra of functions on a compact quantum group and its representations, Algebra i Analiz, vol.2, issue.1, pp.190-212, 1990.

]. P. So?05 and . So?tan, Quantum Bohr compactification, Illinois J. Math, vol.49, issue.4, pp.1245-1270, 2005.

P. [. Skalski and . So?tan, Quantum Families of Invertible Maps and Related Problems, Journal canadien de math??matiques, vol.68, issue.3, pp.698-720, 2016.
DOI : 10.4153/CJM-2015-037-9

URL : https://cms.math.ca/cjm/abstract/pdf/151386.pdf

]. E. Ste70 and N. J. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, issue.63, 1970.

M. Takesaki, Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 2002.

M. Takesaki, Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences Operator Algebras and Non-commutative Geometry, 2003.

]. M. Ter81 and . Terp, L p spaces associated with von neumann algebras, Notes, Report No. 3a + 3b. Københavns Universitets Matematiske Institut, 1981.

T. Timmermann, An invitation to quantum groups and duality, EMS Textbooks in Mathematics. European Mathematical Society (EMS), 2008.
DOI : 10.4171/043

. A. Vd94 and . Van-daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc, vol.342, issue.2, pp.917-932, 1994.

. A. Vd96 and . Van-daele, Discrete quantum groups, J. Algebra, vol.180, issue.2, pp.431-444, 1996.

. A. Vd97 and . Van-daele, The Haar measure on finite quantum groups, Proc. Amer, pp.3489-3500, 1997.

. A. Vd07 and . Van-daele, The Fourier transform in quantum group theory In New techniques in Hopf algebras and graded ring theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), pp.187-196, 2007.

[. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, volume 1 of CRM Monograph Series A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, 1992.

A. Van-daele and S. Wang, UNIVERSAL QUANTUM GROUPS, International Journal of Mathematics, vol.07, issue.02, pp.255-263, 1996.
DOI : 10.1142/S0129167X96000153

]. R. Ver07 and . Vergnioux, The property of rapid decay for discrete quantum groups, J. Operator Theory, vol.57, issue.2, pp.303-324, 2007.

]. D. Voi98 and . Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices, issue.1, pp.41-63, 1998.

S. Wang, Free products of compact quantum groups, Communications in Mathematical Physics, vol.21, issue.3, pp.671-692, 1995.
DOI : 10.1007/978-1-4612-6188-9

S. Wang, Tensor Products and Crossed Products of Compact Quantum Groups, Proceedings of the London Mathematical Society, vol.3, issue.3, pp.695-720, 1995.
DOI : 10.1112/plms/s3-71.3.695

S. Wang, Quantum Symmetry Groups of Finite Spaces, Communications in Mathematical Physics, vol.195, issue.1, pp.195-211, 1998.
DOI : 10.1007/s002200050385

URL : http://arxiv.org/pdf/math/9807091v1.pdf

S. Wang, $L_p$-improving convolution operators on finite quantum groups, Indiana University Mathematics Journal, vol.65, issue.5
DOI : 10.1512/iumj.2016.65.5881

S. Wang, Lacunary Fourier Series for Compact Quantum Groups, Communications in Mathematical Physics, vol.111, issue.4, 2016.
DOI : 10.1007/BF01219077

]. S. Wor87a and . Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys, vol.111, issue.4, pp.613-665, 1987.

]. S. Wor87b and . Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci, vol.23, issue.1, pp.117-181, 1987.

]. S. Wor88 and . Woronowicz, Tannaka-Kre? ?n duality for compact matrix pseudogroups. Twisted SU (N ) groups, Invent. Math, vol.93, issue.1, pp.35-76, 1988.

]. S. Wor89 and . Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys, vol.122, issue.1, pp.125-170, 1989.

S. L. Woronowicz, Compact quantum groups, Symétries quantiques, pp.845-884, 1995.