L. Arizmendi, Photonic applications of lithium niobate crystals, physica status solidi (a), vol.201, issue.2, pp.253-283, 2004.
DOI : 10.1002/pssa.200303911

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Reviews of Modern Physics, vol.18, issue.2, pp.2257-2298, 2010.
DOI : 10.1209/epl/i2004-10266-6

URL : http://arxiv.org/pdf/0902.3014v3.pdf

P. Clifford, R. , and L. Michal, Integrated Photonics, 2003.

I. A. Young, E. Mohammed, J. T. Liao, A. M. Kern, S. Palermo et al., Optical I/O Technology for Tera-Scale Computing, IEEE Journal of Solid-State Circuits, vol.45, issue.1, pp.235-248, 2010.
DOI : 10.1109/JSSC.2009.2034444

URL : http://www.ece.tamu.edu/%7Espalermo/docs/optical_io_isscc_2009.pdf

M. A. Green, Solar cells : operating principles, technology, and system applications, 1982.

W. U. Huynh, J. J. Dittmer, and A. Paul-alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science, vol.295, issue.5564, pp.2425-2427, 2002.
DOI : 10.1126/science.1069156

D. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone et al., Photonic Crystal Geometry for Organic Solar Cells, Nano Letters, vol.9, issue.7, pp.2742-2746, 2009.
DOI : 10.1021/nl901232p

URL : http://desimone-group.chem.unc.edu/wp-content/uploads/2010/02/2009_photonic_crystal_geometry_for_organic_solar_cells.pdf

U. W. Eberhart-zrenner, S. Paetzold, K. Lehnen, and . Bittkau, Artificial vision : solar cells for the blind Nanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells, Nature Photonics Nano Letters, vol.620, issue.611, pp.344-345, 2012.

V. M. Passaro, F. Dell-'olio, and F. De-leonardis, Electromagnetic field photonic sensors, Progress in Quantum Electronics, vol.30, issue.2-3, pp.45-73, 2006.
DOI : 10.1016/j.pquantelec.2006.08.001

D. Runde, S. Brunken, C. E. Ruter, and D. Kip, Integrated optical electric field sensor based on a Bragg grating in lithium niobate, Applied Physics B, vol.56, issue.1, pp.91-95, 2006.
DOI : 10.1080/00150197208235297

G. C. Righini, A. Tajani, and A. Cutolo, An introduction to optoelectronic sensors. Number v. 7 in Series in optics and photonics, World Scientific, 2009.
DOI : 10.1142/6987

L. Chen and R. M. Reano, Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings, Optics Express, vol.20, issue.4, pp.4032-4038, 2012.
DOI : 10.1364/OE.20.004032

R. Zeng, B. Wang, B. Niu, and Z. Yu, Development and Application of Integrated Optical Sensors for Intense E-Field Measurement, Sensors, vol.99, issue.12, pp.11406-11434, 2012.
DOI : 10.1063/1.3665633

F. Klotz, EMC test specification for integrated circuits, 2007 18th International Zurich Symposium on Electromagnetic Compatibility, pp.73-78, 2007.
DOI : 10.1109/EMCZUR.2007.4388199

S. , B. Dhia, and A. Boyer, Long-term Electro-Magnetic Robustness of Integrated Circuits : EMRIC research project. Microelectronics Reliability, pp.1266-1272, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00938353

H. Togo, Metal-free electric-field probe based on photonics and its EMC applications, 2014 International Symposium on Electromagnetic Compatibility, p.662, 2014.

T. Kimihiro, K. Ryuichi, K. Nobuo, and T. Masamitsu, Development of Optical Isotropic E-Field Sensor Operating More than 10 GHz Using Mach- Zehnder Interferometers(Special Issue on Optical Fibers and Devices), IEICE transactions on electronics, vol.85, issue.4, pp.961-968, 2002.

J. Rosolem, C. Barbosa, C. Floridia, and E. Bezerra, A passive opto-electronic lightning sensor based on electromagnetic field detection for utilities applications, Measurement Science and Technology, vol.21, issue.9, p.94032, 2010.
DOI : 10.1088/0957-0233/21/9/094032

T. Klepsch, T. D. Lindel, W. Hoffmann, H. Botterweck, B. Ittermann et al., Calibration of fibre-optic RF E/H-field probes using a magnetic resonance (MR) compatible TEM cell and dedicated MR measurement techniques, Biomedical Engineering / Biomedizinische Technik, vol.57, issue.SI-1 Track-B, pp.57119-122, 2012.
DOI : 10.1515/bmt-2012-4428

M. S. Fernandes, J. H. Correia, and P. M. Mendes, Electrooptic acquisition system for ECG wearable sensor applications. Sensors and Actuators A : Physical, pp.316-323, 2013.
DOI : 10.1016/j.sna.2013.09.008

C. Gutierrez-martinez, J. Santos-aguilar, and A. Morales-diaz, On the Design of Video-Bandwidth Electric Field Sensing Systems Using Dielectric LiNbO3 Electro-Optic Sensors and Optical Delays as Signal Carriers, IEEE Sensors Journal, issue.11, p.134196, 2013.

F. Miao, Y. Cheng, Y. He, Q. He, and Y. Li, A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone, Sensors, vol.116, issue.5, pp.11465-11484, 2015.
DOI : 10.1109/TBME.2012.2222404

O. Jaakko, L. M. Nieminen, R. J. Koponen, and . Ilmoniemi, Transcranial Magnetic Stimulation (TMS) : Experimental Characterization of the Electric Field Distribution Induced by TMS Devices, Brain Stimulation, vol.8, pp.582-589, 2015.

G. Meltz, W. H. Morey, and . Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Optics Letters, vol.14, issue.15, pp.823-825, 1989.
DOI : 10.1364/OL.14.000823

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, Decay of ultraviolet???induced fiber Bragg gratings, Journal of Applied Physics, vol.1169, issue.1, pp.73-80, 1994.
DOI : 10.1103/PhysRevLett.46.1421

J. Kou, S. Qiu, F. Xu, and Y. Lu, Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe, Optics Express, vol.19, issue.19, pp.18452-18457, 2011.
DOI : 10.1364/OE.19.018452

M. Chomátchom´chomát, ?. Ji?-r-`-i, D. Ctyrok´yactyrok´ya, V. Berkováaberkov´berkováa, ?. Mat et al., Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding, Sensors and Actuators B: Chemical, vol.119, issue.2, pp.642-650, 2006.
DOI : 10.1016/j.snb.2006.01.013

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi et al., Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.12, pp.2611-2616, 2000.
DOI : 10.1109/22.899020

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead-jr, and B. Wu, Polymer Dispersed Liquid Crystals for Display Application, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, vol.33, issue.1, pp.511-532, 1988.
DOI : 10.1080/02678298708086677

S. Francesco, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals, 1997.

S. Bronnikov, S. Kostromin, and V. Zuev, Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation, and Application, Journal of Macromolecular Science, Part B, vol.90, issue.12, pp.1718-1735, 2013.
DOI : 10.1063/1.2736270

C. Fernandez-valdivielso, I. R. Matias, M. Gorraiz, F. J. Arregui, C. Bariain et al., Low cost electric field optical fiber detector, 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533), pp.499-502, 2002.
DOI : 10.1109/OFS.2002.1000715

J. Kee, P. Koo, and G. H. Sigel, An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF/sub 2/) Film in a Single-Mode Fiber Interferometer, IEEE Transactions on Microwave Theory and Techniques, vol.30, issue.4, pp.516-521, 1982.

K. Kawano, M. Kohtoku, M. Ueki, T. Ito, S. Kondoh et al., Polarisation-insensitive travelling-wave

R. Heinzelmann, A. Stohr, M. Groz, D. Kalinowski, T. Alder et al., Optically powered remote optical field sensor system using an electroabsorption-modulator, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), pp.1225-1228, 1998.
DOI : 10.1109/MWSYM.1998.700595

S. Wakana, T. Ohara, M. Abe, E. Yamazaki, M. Kishi et al., Novel electromagnetic field probe using electro/magneto-optical crystals mounted on optical fiber facets for microwave circuit diagnosis, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), pp.1615-1618, 2000.
DOI : 10.1109/MWSYM.2000.862286

W. Mann and K. Petermann, VCSEL-based miniaturised E-field probe with high sensitivity and optical power supply, Electronics Letters, vol.38, issue.10, pp.455-456, 2002.
DOI : 10.1049/el:20020310

P. R. Childs, J. R. Greenwood, and C. A. Long, Review of temperature measurement, Review of Scientific Instruments, vol.213, issue.8, pp.712959-2978, 2000.
DOI : 10.1177/095440629921300702

D. Thomas, Wiley : Principles and Methods of Temperature Measurement -D, 1998.

M. Mcsherry, C. Fitzpatrick, and E. Lewis, Review of luminescent based fibre optic temperature sensors, Sensor Review, vol.25, issue.1, pp.56-62, 2005.
DOI : 10.1080/08327823.1987.11688010

R. M. Measures, Structural Monitoring with Fiber Optic Technology, Applied Mechanics Reviews, vol.55, issue.1, 2001.
DOI : 10.1115/1.1445327

A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors : Recent Advancements, Industrial Applications and Market Exploitation, BENTHAM SCIENCE PUBLISHERS, 2012.
DOI : 10.2174/97816080508401110101

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito et al., Lab-on-Fiber devices as an all around platform for sensing, Optical Fiber Technology, vol.19, issue.6, pp.772-784, 2013.
DOI : 10.1016/j.yofte.2013.07.010

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, vol.9, issue.9, pp.919-933, 1973.
DOI : 10.1109/JQE.1973.1077767

T. Erdogan, Fiber grating spectra Lightwave Technology, Journal, vol.15, issue.8, pp.1277-1294, 1997.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou et al., High-birefringence fiber loop mirrors and their applications as sensors, Applied Optics, vol.44, issue.12, pp.2382-2390, 2005.
DOI : 10.1364/AO.44.002382

Y. Zhao and P. Gao, High-sensitive temperature sensor based on an alcohol-filled HiBi photonic crystal fiber loop mirror. Microwave & Optical Technology Letters, pp.1334-1337, 2014.
DOI : 10.1002/mop.28370

M. Roussey, M. Bernal, N. Courjal, D. Van-labeke, F. I. Baida et al., Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons, Applied Physics Letters, vol.89, issue.24, p.89241110, 2006.
DOI : 10.1109/2944.826874

URL : https://hal.archives-ouvertes.fr/hal-00175555

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot et al., 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity, Optics Express, vol.20, issue.19, pp.2020884-20893, 2012.
DOI : 10.1364/OE.20.020884

URL : https://hal.archives-ouvertes.fr/hal-00941052

A. Yariv and P. Yeh, Optical Waves in Crystals : Propagation and Control of Laser Radiation, 2002.

K. K. Wong, Properties of Lithium Niobate, 2002.

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, Heterogeneous lithium niobate photonics on silicon substrates, Optics Express, vol.21, issue.21, p.25573, 2013.
DOI : 10.1364/OE.21.025573

R. Basu, Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal, Applied Physics Letters, vol.105, issue.11, pp.1-5, 2014.
DOI : 10.1142/S1793292007000350

S. Das, A. Salandrino, J. Z. Wu, and R. Hui, Near-infrared electro-optic modulator based on plasmonic graphene, Optics Letters, vol.40, issue.7, p.1516, 2015.
DOI : 10.1364/OL.40.001516

C. T. Phare, Y. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30
DOI : 10.1038/nphoton.2015.122

Y. Tazawa, . Kuo, J. Dunayevskiy, . Luo, . Jen et al., Ring resonator-based electrooptic polymer traveling-wave modulator, Journal of Lightwave Technology, vol.24, issue.9, pp.3514-3519, 2006.
DOI : 10.1109/JLT.2006.878514

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts et al., All-optical high-speed signal processing with silicon???organic hybrid slot waveguides, Nature Photonics, vol.16, issue.4, pp.216-219, 2009.
DOI : 10.1038/nphoton.2009.25

F. Qiu, A. M. Spring, F. Yu, and I. Aoki, core and electro-optic polymer cladding waveguide modulators, Applied Physics Letters, vol.102, issue.23, p.233504, 2013.
DOI : 10.1063/1.3453659

R. Palmer, S. Koeber, D. Elder, M. Woessner, W. Heni et al., High-speed, Low Drive-voltage Silicon-organic Hybrid Modulator Based on a Binary-chromophore Electrooptic Material, Journal of Lightwave Technology, issue.16, pp.322726-2734, 2014.

F. Qiu, A. M. Spring, D. Maeda, K. Ozawa, A. Odoi et al., A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator, Scientific Reports, vol.49, issue.1, 2015.
DOI : 10.1002/pola.24410

URL : http://www.nature.com/articles/srep08561.pdf

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3 Applied physics letters, J. Offrein, and Jean Fompeyrine. A strong electro-optically active lead-free ferroelectric integrated on silicon, pp.1783-17851671, 1997.

S. Abel, T. Stoferle, T. Ferle, C. Marchiori, D. Caimi et al., Electro-Optical Active Barium Titanate Thin Films in Silicon Photonics Devices, Advanced Photonics 2013, pp.4-5
DOI : 10.1364/IPRSN.2013.IW4A.5

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah et al., Devices, Nano Letters, vol.14, issue.3, pp.1419-1425, 2014.
DOI : 10.1021/nl404513p

URL : https://hal.archives-ouvertes.fr/hal-00392655

X. Hu, S. Cueff, P. R. Romeo, and R. Orobtchouk, Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator, Optics Express, vol.23, issue.2, pp.1699-1714, 2015.
DOI : 10.1364/OE.23.001699

URL : https://hal.archives-ouvertes.fr/hal-01489430

I. P. Kaminow, Lithium niobate ridge waveguide modulator, Applied Physics Letters, vol.13, issue.12, p.622, 1974.
DOI : 10.1364/AO.13.000396

J. Sochtig, H. Schutz, R. Widmer, R. Corsini, D. Hiller et al., Monolithically integrated DBR waveguide laser and intensity modulator in erbium doped LiNbO3, Electronics Letters, vol.32, issue.10, pp.32899-900, 1996.
DOI : 10.1049/el:19960602

E. L. Wooten, K. M. Kissa, A. Yi-yan, E. J. Murphy, D. Lafaw et al., A review of lithium niobate modulators for fiber-optic communications systems, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.1, pp.69-82, 2000.
DOI : 10.1109/2944.826874

R. Kim, J. Zhang, O. Eknoyan, H. F. Taylor, and T. L. Smith, Distributed Bragg feedback intensity modulator in Ti : LiNbO3, Electronics Letters, issue.18, pp.411028-1030, 2005.
DOI : 10.1049/el:20052450

Y. Liao, H. Zhou, and Z. Meng, Modulation efficiency of a LiNbO_3 waveguide electro-optic intensity modulator operating at high microwave frequency, Optics Letters, vol.34, issue.12, p.1822, 2009.
DOI : 10.1364/OL.34.001822

R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. Kley et al., Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching, physica status solidi (a), vol.425, issue.10, pp.2112421-2425, 2014.
DOI : 10.1038/nature02063

R. S. Weis and T. K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure, Applied Physics A Solids and Surfaces, vol.54, issue.4, pp.191-203, 1985.
DOI : 10.1080/00150198408245047

T. Yamada, N. Niizeki, and H. Toyoda, Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals, Japanese Journal of Applied Physics, vol.6, issue.2, pp.151-155, 1967.
DOI : 10.1143/JJAP.6.151

R. T. Smith, Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate, Journal of Applied Physics, vol.42, issue.6, p.2219, 1971.
DOI : 10.1002/j.1538-7305.1934.tb00674.x

J. R. Teague, R. R. Rice, and R. Gerson, High???frequency dielectric measurements on electro???optic single crystals, Journal of Applied Physics, vol.6, issue.7, p.2864, 1975.
DOI : 10.1063/1.1729696

Y. Ohmachi, K. Sawamoto, and H. Toyoda, Single Crystal up to 9 Gc, Japanese Journal of Applied Physics, vol.6, issue.12, pp.1467-1468, 1967.
DOI : 10.1143/JJAP.6.1467

A. S. Barker, R. P. Loudon94-]-i, W. D. Kaminow, and . Johnston-jr, Dielectric Properties and Optical Phonons in LiNbO3 Quantitative Determination of Sources of the Electro-Optic Effect in LiNb O 3 and LiTa O 3, Physical Review Physical Review, vol.158, issue.1603, pp.433-445519, 1967.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill et al., Fabrication of single-crystal lithium niobate films by crystal ion slicing, Applied Physics Letters, vol.33, issue.16, p.732293, 1998.
DOI : 10.1063/1.366235

G. Poberaj, H. Hu, W. Sohler, and P. Gnter, Lithium niobate on insulator (LNOI) for micro-photonic devices, Laser & Photonics Reviews, vol.60, issue.12, pp.488-503, 2012.
DOI : 10.1103/PhysRevB.60.5751

Y. Sakashita and H. Segawa, thin films produced by chemical???vapor deposition, Journal of Applied Physics, vol.7, issue.11, p.5995, 1995.
DOI : 10.1246/nikkashi.1993.831

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin et al., LiNbO[sub 3] thick films grown on sapphire by using a multistep sputtering process, Journal of Applied Physics, issue.10, p.905274, 2001.

F. Gitmans, P. Sitar, and . Gnter, Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy, Vacuum, vol.46, issue.8-10, pp.939-942, 1995.
DOI : 10.1016/0042-207X(95)00077-1

J. Yoon and K. Kim, thin film on Si with MgO buffer layer through the sol???gel process, Applied Physics Letters, vol.65, issue.18, p.682523, 1996.
DOI : 10.1063/1.115842

Y. Nakata, S. Gunji, T. Okada, and M. Maeda, Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties, Applied Physics A, vol.9, issue.4-6, pp.4-6, 2004.
DOI : 10.1088/0022-3735/9/11/032

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering, Journal of Applied Physics, vol.25, issue.9, p.724336, 1992.
DOI : 10.3891/acta.chem.scand.25-3337

G. Griffel, S. Ruschin, and N. Croitoru, films, Applied Physics Letters, vol.38, issue.15, p.1385, 1989.
DOI : 10.1016/0040-6090(85)90309-8

M. Bruel, The History, Physics, and Applications of the Smart-Cut?? Process, MRS Bulletin, vol.11, issue.12, pp.35-39, 1998.
DOI : 10.1557/S088376940002981X

G. K. Celler and S. Cristoloveanu, Frontiers of silicon-on-insulator, Journal of Applied Physics, vol.78, issue.2, p.4955, 2003.
DOI : 10.1109/55.791932

M. Bruel, Silicon on insulator material technology, Electronics Letters, vol.31, issue.14, pp.311201-1202, 1995.
DOI : 10.1049/el:19950805

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl-'innocenti, and P. Gnter, Electro???optically tunable microring resonators in lithium niobate, Nature Photonics, vol.92, issue.7, pp.407-410, 2007.
DOI : 10.1038/nphoton.2007.93

URL : http://arxiv.org/pdf/0705.2392

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler et al., Ion-sliced lithium niobate thin films for active photonic devices, Optical Materials, vol.31, issue.7, pp.311054-1058, 2009.
DOI : 10.1016/j.optmat.2007.12.019

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru et al., Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO[sub 3] films, Applied Physics Letters, issue.21, p.743197, 1999.

I. Szafraniak, I. Radu, R. Scholz, M. Alexe, and U. Gsele, Single-Crystalline Ferroelectric Thin Films by Ion Implantation and Direct Wafer Bonding, Integrated Ferroelectrics, vol.55, issue.1, pp.983-990, 2003.
DOI : 10.1080/10584580390259452

URL : http://www.mpi-halle.de/mpi/publi/pdf/4794_03.pdf

T. Izuhara, R. Roth, R. M. Osgood-jr, S. Bakhru, and H. Bakhru, Low-voltage tunable TE???TM converter on ion-sliced lithium niobate thin film, Electronics Letters, vol.39, issue.15, pp.391118-1119, 2003.
DOI : 10.1049/el:20030741

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood, Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO[sub 3] films, Applied Physics Letters, issue.19, p.752888, 1999.
DOI : 10.1063/1.125397

P. Rabiei, W. H. Steier-guiem-cerda-pons, R. M. Roth, R. M. Osgood, S. Bakhru et al., Lithium niobate ridge waveguides and modulators fabricated using smart guide, Applied Physics Letters, vol.86, issue.16, pp.161115-90171116, 2005.
DOI : 10.1109/JQE.1978.1069682

P. Rabiei and P. Gunter, Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding, Applied Physics Letters, vol.85, issue.20, pp.4603-4605, 2004.
DOI : 10.1016/0030-4018(89)90023-0

H. Han, L. Cai, and H. Hu, Optical and structural properties of single-crystal lithium niobate thin film, Optical Materials, vol.42, pp.47-51, 2015.
DOI : 10.1016/j.optmat.2014.12.016

E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, p.2059, 1987.
DOI : 10.1007/978-1-4615-1963-8_41

S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, vol.58, issue.23, pp.2486-2489, 1987.
DOI : 10.1103/PhysRevLett.58.160

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals, Solid State Communications, vol.102, issue.2-3, 2011.
DOI : 10.1016/S0038-1098(96)00716-8

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures, Physical Review Letters, vol.63, issue.25, pp.3152-3155, 1990.
DOI : 10.1103/PhysRevLett.63.259

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Physical Review Letters, vol.8, issue.17, pp.2295-2298, 1991.
DOI : 10.1103/PhysRevB.38.10101

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Nature of the photonic band gap: some insights from a field analysis, Journal of the Optical Society of America B, vol.10, issue.2, pp.328-332, 1993.
DOI : 10.1364/JOSAB.10.000328

G. Steven, P. R. Johnson, S. Villeneuve, J. D. Fan, and . Joannopoulos, Linear waveguides in photonic-crystal slabs, Physical Review B, vol.62, issue.12, p.8212, 2000.

A. V. Krasavin and A. V. Zayats, Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides, Physical Review B, vol.78, issue.4, 2008.
DOI : 10.1063/1.1814793

M. Qiu and B. Jaskorzynska, Design of a channel drop filter in a two-dimensional triangular photonic crystal, Applied Physics Letters, vol.83, issue.6, p.1074, 2003.
DOI : 10.1109/7260.916327

A. Mock and L. Lu, Two-Dimensional Photonic Crystal Micro-Cavities for Chip-Scale Laser Applications, 2010.
DOI : 10.5772/6905

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata et al., Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, Applied Physics Letters, vol.75, issue.3, p.75316, 1999.
DOI : 10.1143/JJAP.37.1400

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-romeo et al., InP-based twodimensional photonic crystal on silicon : In-plane Bloch mode laser, Applied Physics Letters, issue.27, pp.815102-5104, 2002.
DOI : 10.1063/1.1532554

C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry et al., Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane, Journal of Applied Physics, vol.88, issue.1, pp.23-31, 2003.
DOI : 10.1051/epjap:2001191

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho et al., Experimental demonstration of a high quality factor photonic crystal microcavity, Applied Physics Letters, vol.83, issue.10, p.1915, 2003.
DOI : 10.1088/0268-1242/9/11S/028

B. Maune, J. Witzens, T. Baehr-jones, M. Kolodrubetz, H. Atwater et al., Optically triggered Q-switched photonic crystal laser, Optics Express, vol.13, issue.12, pp.4699-4707, 2005.
DOI : 10.1364/OPEX.13.004699

H. Watanabe and T. Baba, High-efficiency photonic crystal microlaser integrated with a passive waveguide, Optics Express, vol.16, issue.4, pp.2694-2698, 2006.
DOI : 10.1364/OE.16.002694

A. Jugessur, P. Pottier, and R. De-la-rue, Engineering the filter response of photonic crystal microcavity filters, Optics Express, vol.12, issue.7, pp.1304-1312, 2004.
DOI : 10.1364/OPEX.12.001304

K. J. Vahala, Optical microcavities, Nature, vol.1, issue.6950, pp.839-846, 2003.
DOI : 10.1238/Physica.Topical.076a00138

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs, Applied Physics Letters, vol.82, issue.13, 1999.
DOI : 10.1103/PhysRevB.63.125107

O. Painter, T. Vuckovic, and A. Scherer, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, Journal of the Optical Society of America B, vol.16, issue.2, pp.275-285, 1999.
DOI : 10.1364/JOSAB.16.000275

H. Ryu, S. Kwon, Y. Lee, Y. Lee, and J. Kim, Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs, Applied Physics Letters, vol.90, issue.19, pp.3476-3478, 2002.
DOI : 10.1063/1.126693

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures, Journal of the Optical Society of America B, vol.22, issue.12, pp.222581-2595, 2005.
DOI : 10.1364/JOSAB.22.002581

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen et al., Photonic-crystal slow-light enhancement of nonlinear phase sensitivity, Journal of the Optical Society of America B, vol.19, issue.9, pp.2052-2059, 2002.
DOI : 10.1364/JOSAB.19.002052

M. El-beheiry, V. Liu, S. Fan, and O. Levi, Sensitivity enhancement in photonic crystal slab biosensors, Optics Express, vol.18, issue.22, pp.22702-22714, 2010.
DOI : 10.1364/OE.18.022702

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor et al., Principles of Optics : Electromagnetic Theory of Propagation , Interference and Diffraction of Light, 1999.
DOI : 10.1017/CBO9781139644181

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 1984.

J. D. Jackson, Classical Electrodynamics Third Edition, 1998.
DOI : 10.1063/1.3037637

. Bloembergen, MAXWELL'S EQUATIONS IN NONLINEAR MEDIA, Nonlinear Optics, pp.62-73, 1996.
DOI : 10.1142/9789814261081_0003

A. W. Mcdavid and C. D. Mcmullen, Generalizing cross products and maxwell's equations to universal extra dimensions . arXiv :hep-ph/0609260, 2006.

K. S. Yee, Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media, IEEE Trans. Antennas and Propagation, pp.302-307, 1966.

T. Allen, H. Susan, and C. , Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition, 2005.

R. T. Ling, A finite-difference frequency-domain (fdfd) approach to electromagnetic scattering problems, Journal of Electromagnetic Waves and Applications, vol.3, issue.2, pp.107-128, 1989.

P. Clauberg and P. Von-allmen, Vectorial beam-propagation method for integrated optics, Electronics Letters, vol.27, issue.8, pp.654-655, 1991.
DOI : 10.1049/el:19910410

C. T. Chan, Q. L. Yu, and K. M. Ho, spectral method for electromagnetic waves, Physical Review B, vol.91, issue.23, p.16635, 1995.
DOI : 10.1016/0030-4018(92)90433-R

C. M. Rappaport and B. J. Mccartin, Fdfd analysis of electromagnetic scattering in anisotropic media using unconstrained Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles, Journal of Lightwave Technology, vol.155, issue.8, pp.201609-1618, 2002.

Z. Zhu and T. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers, Optics Express, vol.10, issue.17, pp.853-864, 2002.
DOI : 10.1364/OE.10.000853

J. Hwang, A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.2, pp.653-659, 2005.
DOI : 10.1109/TMTT.2004.840569

R. Scarmozzino and R. M. Osgood, Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications, Journal of the Optical Society of America A, vol.8, issue.5, pp.724-731, 1991.
DOI : 10.1364/JOSAA.8.000724

W. Huang and C. L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method, IEEE Journal of Quantum Electronics, vol.29, issue.10, pp.2639-2649, 1993.
DOI : 10.1109/3.250386

S. Jungling and J. C. Chen, A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method, IEEE Journal of Quantum Electronics, vol.30, issue.9, pp.2098-2105, 1994.
DOI : 10.1109/3.309869

T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface, Journal of Lightwave Technology, vol.20, issue.8, pp.1627-1634, 2002.
DOI : 10.1109/JLT.2002.800360

J. Yamauchi, G. Takahashi, and H. Nakano, Fullvectorial beam-propagation method based on the

G. and R. Hadley, Wide-angle beam propagation using Pad?? approximant operators, Optics Letters, vol.17, issue.20, pp.1426-1428, 1992.
DOI : 10.1364/OL.17.001426

J. C. Chen and S. , Computation of higher-order waveguide modes by imaginary-distance beam propagation method. optical and quantum electronics, pp.199-205, 1994.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. , Accurate theoretical analysis of photonic band-gap materials, Physical Review B, vol.50, issue.11, pp.488434-8437, 1993.
DOI : 10.1119/1.12734

M. Qiu, Tekniska hgskolan i Stockholm, and sensorer och system Institutionen fr signaler. Computational methods for the analysis and design of photonic bandgap structures, 2000.

G. Steven, A. Johnson, S. Mekis, J. D. Fan, and . Joannopoulos, Molding the flow of light, Computing in Science & Engineering, vol.3, issue.6, pp.38-47, 2001.

S. Johnson and J. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Optics Express, vol.8, issue.3, pp.173-190, 2001.
DOI : 10.1364/OE.8.000173

S. Guo and S. Albin, Simple plane wave implementation for photonic crystal calculations, Optics Express, vol.11, issue.2, pp.167-175, 2003.
DOI : 10.1364/OE.11.000167

S. Shi, C. Chen, and D. W. Prather, Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers, Journal of the Optical Society of America A, vol.21, issue.9, pp.1769-1775, 2004.
DOI : 10.1364/JOSAA.21.001769

E. Ghahramani and J. E. Sipe, Transfer-matrix method for the complex band structure of superlattices, Physical Review B, vol.34, issue.2, p.1102, 1989.
DOI : 10.1103/PhysRevB.34.5621

M. Qiu and S. He, A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions, Journal of Applied Physics, vol.87, issue.12, p.8268, 2000.
DOI : 10.1364/OL.16.001412

M. Qiu and S. He, FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusions, Physics Letters A, vol.278, issue.6, pp.348-354, 2001.
DOI : 10.1016/S0375-9601(00)00795-7

F. I. Baida, D. Van-labeke, G. Granet, A. Moreau, and A. Belkhir, Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands, Applied Physics B, vol.203, issue.1, pp.1-8, 2004.
DOI : 10.1016/S0030-4018(02)01122-7

URL : https://hal.archives-ouvertes.fr/hal-00095069

W. Axmann and P. Kuchment, An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials, Journal of Computational Physics, vol.150, issue.2, pp.468-481, 1999.
DOI : 10.1006/jcph.1999.6188

C. David and . Dobson, An Efficient Method for Band Structure Calculations in 2d Photonic Crystals, Journal of Computational Physics, vol.149, issue.2, pp.363-376, 1999.

C. David, J. Dobson, J. E. Gopalakrishnan, and . Pasciak, An Efficient Method for Band Structure Calculations in 3d Photonic Crystals, J. Comput. Phys, vol.161, issue.2, pp.668-679, 2000.

J. John, D. , J. Steven, G. , W. Joshua et al., Photonic Crystals : Molding the Flow of Light, 2008.

C. Kittel, Introduction to Solid State Physics, 2004.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares et al., Low Power and High Density Optical Interconnects for Future Supercomputers, Optical Fiber Communication Conference, pp.1-3, 2010.
DOI : 10.1364/OFC.2010.OThX2

M. Lipson, Guiding, modulating, and emitting light on Silicon-challenges and opportunities, Journal of Lightwave Technology, vol.23, issue.12, pp.4222-4238, 2005.
DOI : 10.1109/JLT.2005.858225

T. Murphy, J. T. Hastings, and H. I. Smith, Fabrication and characterization of narrow-band braggreflection filters in silicon-on-insulator ridge waveguides, Journal of lightwave technology, vol.19, issue.12, 1938.

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun et al., Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides, Optics Express, vol.20, issue.14, pp.15899-15907, 2012.
DOI : 10.1364/OE.20.015899

J. Kou, Q. Wang, F. Zi-yan-yu, Y. Xu, and . Lu, Broadband and highly efficient quadratic interactions in double-slot lithium niobate waveguides through phase matching, Optics Letters, vol.36, issue.13, p.2533, 2011.
DOI : 10.1364/OL.36.002533

E. L. Wooten, K. M. Kissa, A. Yi-yan, E. J. Murpley, D. A. Lafaw et al., A review of lithium niobate modulators for fiber-optic communications systems, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.1, p.69, 2000.
DOI : 10.1109/2944.826874

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer et al., 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate, Optics Letters, vol.22, issue.24, pp.1834-1836, 1997.
DOI : 10.1364/OL.22.001834

S. Tanzilli, H. D. Riedmatten, W. Tittle, H. Zbindend, P. Baldi et al., Highly efficient photon-pair source using periodically poled lithium niobate waveguide, Electronics Letters, vol.37, issue.1, p.26, 2001.
DOI : 10.1049/el:20010009

URL : https://hal.archives-ouvertes.fr/hal-00432358

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier et al., Nanostructuring lithium niobate substrates by focused ion beam milling, Optical Materials, vol.27, issue.8, pp.1421-1425, 2005.
DOI : 10.1016/j.optmat.2004.07.016

URL : https://hal.archives-ouvertes.fr/hal-00095692

M. Soljacic and J. D. Joannopoulos, Enhancement of nonlinear effects using photonic crystals, Kazuhiko Ogusu, and Makoto Minakata, pp.211-219, 2004.
DOI : 10.1038/nmat1097

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film, Applied Physics Letters, vol.85, issue.20, pp.4615-4617, 2004.
DOI : 10.1007/s10832-004-5081-3

Z. Liu, P. Lin, B. W. Wessels, F. Yi, and S. Ho, Nonlinear photonic crystal waveguide structures based on barium titanate thin films and their optical properties, Applied Physics Letters, vol.90, issue.20, p.90, 2007.
DOI : 10.1109/LPT.2004.831255

R. Vilson, Q. Almeida, C. A. Xu, M. Barrios, and . Lipson, Guiding and confining light in void nanostructure, Opt. Lett, vol.29, issue.11, pp.1209-1211, 2004.

T. Baehr-jones, B. Penkov, J. Huang, P. Sullivan, J. Davies et al., Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V, Applied Physics Letters, issue.16, p.92163303, 2008.

G. Wang, T. Baehr-jones, M. Hochberg, and A. Scherer, Design and fabrication of segmented, slotted waveguides for electro-optic modulation, Applied Physics Letters, vol.91, issue.14, p.91143109, 2007.
DOI : 10.1364/OL.32.001250

R. Ding, T. Baehr-jones, W. Kim, X. Xiong, R. Bojko et al., Low-loss strip-loaded slot waveguides in silicon-on-insulator, Optics express, issue.24, pp.1825061-25067, 2010.
DOI : 10.1364/oe.18.025061

R. Ding, T. Baehr-jones, W. Kim, B. Boyko, R. Bojko et al., Asymmetric strip-loaded slot waveguides and its applications in silicon-polymer hybrid electro-optic modulators, IEEE Photonic Society 24th Annual Meeting, 2011.
DOI : 10.1109/PHO.2011.6110431

T. Baehr-jones, M. Hochberg, C. Walker, and A. Scherer, High-Q optical resonators in silicon-on-insulator-based slot waveguides, Applied Physics Letters, vol.86, issue.8, p.81101, 2005.
DOI : 10.1364/OL.29.001209

R. Sun, P. Dong, C. Ning-ning-feng, J. Hong, M. Michel et al., Horizontal single and multiple slot waveguides: optical transmission at ?? = 1550 nm, Optics Express, vol.15, issue.26, pp.17967-17972, 2007.
DOI : 10.1364/OE.15.017967

P. , A. Anderson, B. S. Schmidt, and M. Lipson, High confinement in silicon slot waveguides with sharp bends, Optics Express, vol.14, issue.20, pp.9197-9202, 2006.

T. Fujisawa and M. Koshiba, Polarization-independent optical directional coupler based on slot waveguides, Optics Letters, vol.31, issue.1, pp.56-58, 2006.
DOI : 10.1364/OL.31.000056

A. Kenneth, J. A. Diest, H. A. Dionne, H. Atwater, and . Lezec, Slot waveguide for color display International Classification G02F1/01 ; Cooperative Classification G02F2203, U.S. Classification, vol.38518344220, issue.38512910, pp.213-215, 2011.

C. Angulo, B. , and M. Lipson, Electrically driven silicon resonant light emitting device based on slot-waveguide, Optics express, vol.13, issue.25, pp.10092-10101, 2005.

C. Shakeeb-bin-hasan, T. Rockstuhl, F. Pertsch, and . Lederer, Second-order nonlinear frequency conversion processes in plasmonic slot waveguides, Journal of the Optical Society of America B, vol.29, issue.7, p.1606, 2012.
DOI : 10.1364/JOSAB.29.001606

L. Zhang, Y. Yue, Y. Xiao-li, J. Wang, R. G. Beausoleil et al., Flat and low dispersion in highly nonlinear slot waveguides, Optics Express, vol.18, issue.12, p.13187, 2010.
DOI : 10.1364/OE.18.013187

R. Spano, J. V. Galan, P. Sanchis, A. Martinez, J. Mart et al., Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation, Optics express, vol.20, issue.2, pp.1685-1690, 2008.

W. Peter, C. Nolte, J. Bohley, and . Schilling, Tuning of zero group velocity dispersion in infiltrated vertical silicon slot waveguides, Optics Express, vol.21, issue.2, p.1741, 2013.

F. Dell, V. M. Olio, and . Passaro, Optical sensing by optimized silicon slot waveguides, Optics Express, vol.15, issue.8, pp.4977-4993, 2007.
DOI : 10.1364/OE.15.004977

C. Angulo and B. , Optical Slot-Waveguide Based Biochemical Sensors, Sensors, vol.9, issue.6, pp.4751-4765, 2009.

C. A. Barrios, K. B. Gylfason, and B. Snchez, Slot-waveguide biochemical sensor, Optics Letters, vol.32, issue.21, pp.3080-3082, 2007.
DOI : 10.1364/OL.32.003080

C. A. Barrios, M. J. Bauls, V. Gonzlez-pedro, K. B. Gylfason, B. Snchez et al., Angel Maquieira, Hans Sohlstrm, Miquel Holgado, and R. Casquel. Label-free optical biosensing with slot-waveguides, Optics Letters, issue.7, pp.33708-710, 2008.

J. T. Robinson, L. Chen, and M. Lipson, On-chip gas detection in silicon optical microcavities, Optics Express, vol.16, issue.6, pp.4296-4301, 2008.
DOI : 10.1364/OE.16.004296

M. N. Vittorio, F. Passaro, C. Dellolio, M. N. Ciminelli, and . Armenise, Efficient Chemical Sensing by Coupled Slot SOI Waveguides, Sensors, vol.9, issue.2, pp.1012-1032, 2009.

X. Tu, X. Xu, S. Chen, J. Yu, and Q. Wang, Simulation Demonstration and Experimental Fabrication of a Multiple-Slot Waveguide, IEEE Photonics Technology Letters, vol.20, issue.5, pp.333-335, 2008.
DOI : 10.1109/LPT.2007.915619

L. An, H. Liu, Q. Sun, N. Huang, and Z. Wang, Wavelength conversion in highly nonlinear silicon???organic hybrid slot waveguides, Applied Optics, vol.53, issue.22, p.4886, 2014.
DOI : 10.1364/AO.53.004886

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith et al., Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film, Optics Express, vol.20, issue.3, pp.2974-2981, 2012.
DOI : 10.1364/OE.20.002974

URL : https://hal.archives-ouvertes.fr/hal-00708074

P. Delaye, M. Astic, R. Frey, and G. Roosen, Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal, Journal of the Optical Society of America B, vol.22, issue.11, pp.2494-2504, 2005.
DOI : 10.1364/JOSAB.22.002494

URL : https://hal.archives-ouvertes.fr/hal-00671116

Z. Liu, P. Lin, B. W. Wessels, F. Yi, and S. Ho, Nonlinear photonic crystal waveguide structures based on barium titanate thin films and their optical properties, Applied Physics Letters, vol.90, issue.20, p.90201104, 2007.
DOI : 10.1109/LPT.2004.831255

U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts, Physical Review, vol.35, issue.6, pp.1866-1878, 1961.
DOI : 10.1103/PhysRev.35.649.2

S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Physical Review B, vol.36, issue.23, p.235112, 2002.
DOI : 10.1109/3.880652

S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators, Journal of the Optical Society of America A, vol.20, issue.3, p.569, 2003.
DOI : 10.1364/JOSAA.20.000569

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch et al., Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice, Applied Physics Letters, vol.21, issue.11, p.701438, 1997.
DOI : 10.1364/JOSA.73.000669

P. Paddon and J. F. Young, Two-dimensional vector-coupled-mode theory for textured planar waveguides, Physical Review B, vol.23, issue.3, p.2090, 2000.
DOI : 10.1364/OL.23.001529

W. Suh and S. Fan, All-pass transmission or flattop reflection filters using a single photonic crystal slab, Applied Physics Letters, vol.84, issue.24, p.4905, 2004.
DOI : 10.1103/PhysRevE.68.066616

B. Park, J. Jung, A. Provine, J. Gellineau, R. T. Landry et al., Double-Layer Silicon Photonic Crystal Fiber-Tip Temperature Sensors, IEEE Photonics Technology Letters, vol.26, issue.9, pp.900-903, 2014.
DOI : 10.1109/LPT.2014.2309345

H. Yang, D. Zhao, S. Chuwongin, J. Seo, W. Yang et al., Transfer-printed stacked nanomembrane lasers on silicon, Nature Photonics, vol.38, issue.9, pp.617-622, 2012.
DOI : 10.1143/JJAP.38.1261

E. Andrey, Y. S. Miroshnichenko, and . Kivshar, Mach zehnder fano interferometer, Applied Physics Letters, vol.95, issue.12, p.121109, 2009.

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Nonlinear Fano resonance and bistable wave transmission, Physical Review E, vol.37, issue.3, p.71, 2005.
DOI : 10.1103/PhysRevB.70.121202

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri et al., Slow bloch mode cavity for optical trapping, 2013 15th International Conference on Transparent Optical Networks (ICTON), pp.1-5, 2013.
DOI : 10.1109/ICTON.2013.6602774

L. Ferrier, P. Rojo-romeo, E. Drouard, X. Letatre, and P. Viktorovitch, Slow Bloch mode confinement in 2D photonic crystals for surface operating devices, Optics Express, vol.16, issue.5, pp.3136-3145, 2008.
DOI : 10.1364/OE.16.003136

. Danner, Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs, Opt Express, vol.21, issue.3, pp.3243-3252, 2013.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals, Applied Physics Letters, vol.100, issue.3, p.31106, 2012.
DOI : 10.1063/1.360314

D. Caballero, J. Snchez-dehesa, R. Martnez-sala, C. Rubio, J. V. Snchez-prez et al., Suzuki phase in two-dimensional sonic crystals, Physical Review B, vol.16, issue.6, 2001.
DOI : 10.1143/JPSJ.16.67

A. R. Alija, L. J. Martnez, P. A. Postigo, J. Snchez-dehesa, M. Galli et al., Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy, Optics Express, vol.15, issue.2, pp.704-713, 2007.
DOI : 10.1364/OE.15.000704

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan et al., Air-bridged photonic crystal slabs at visible and near-infrared wavelengths, Physical Review B, vol.8, issue.11, p.73115126, 2006.
DOI : 10.1023/A:1026075614215

Y. R. Shen, The Principles of Nonlinear Optics, 2002.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey et al., Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals, Applied Physics Letters, vol.86, issue.23, p.86231106, 2005.
DOI : 10.1109/3.89946

URL : https://hal.archives-ouvertes.fr/hal-00671148

W. Qian, C. Zhao, S. He, X. Dong, S. Zhang et al., High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror, Optics Letters, vol.36, issue.9, p.1548, 2011.
DOI : 10.1364/OL.36.001548

Y. Peng, J. Hou, Z. Huang, and Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber Enhanced detection limit by dark mode perturbation in 2d photonic crystal slab refractive index sensors, Applied Optics Opt. Express, vol.21, issue.25, pp.31698-31712, 2012.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry, Optics Express, vol.16, issue.17, pp.13090-13103, 2008.
DOI : 10.1364/OE.16.013090

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan et al., Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator, Journal of Lightwave Technology, vol.32, issue.20, pp.3774-3784, 2014.
DOI : 10.1109/JLT.2014.2319152