G. Adj, I. Canales-martínez, N. Cruz-cortés, A. Menezes, T. Oliveira et al., Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields

L. Adleman, A subexponential algorithm for the discrete logarithm problem with applications to cryptography, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pp.55-60, 1979.
DOI : 10.1109/SFCS.1979.2

L. Adleman, The function field sieve, ANTS-I. LNCS, pp.108-121, 1994.
DOI : 10.1007/3-540-58691-1_48

L. Adleman and J. Demarrais, A subexponential algorithm for discrete logarithms over all finite fields, Mathematics of Computation, vol.61, issue.203, pp.1-15, 1993.
DOI : 10.1090/S0025-5718-1993-1225541-3

L. Adleman and M. D. Huang, Function Field Sieve Method for Discrete Logarithms over Finite Fields, Information and Computation, vol.151, issue.1-2, pp.5-16, 1999.
DOI : 10.1006/inco.1998.2761

URL : https://doi.org/10.1006/inco.1998.2761

D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green et al., Imperfect Forward Secrecy, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS '15, pp.5-17, 2015.
DOI : 10.1007/3-540-68339-9_29

URL : https://hal.archives-ouvertes.fr/hal-01184171

A. Atkin and D. Bernstein, Prime sieves using binary quadratic forms, Mathematics of Computation, vol.73, issue.246, pp.1023-1030, 2004.
DOI : 10.1090/S0025-5718-03-01501-1

URL : http://cr.yp.to/papers/primesieves.ps

L. Babai, On Lov??sz??? lattice reduction and the nearest lattice point problem, Combinatorica, vol.357, issue.1, pp.1-13, 1986.
DOI : 10.1016/B978-0-12-566780-7.50016-7

S. Bai, Polynomial Selection for the Number Field Sieve, 2011.

S. Bai, C. Bouvier, A. Kruppa, and P. Zimmermann, Better polynomials for GNFS, Mathematics of Computation, vol.85, issue.298, pp.861-873, 2016.
DOI : 10.1090/mcom3048

URL : https://hal.archives-ouvertes.fr/hal-01089507

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van-der-vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Society for Industrial and Applied Mathematics, 2000.
DOI : 10.1137/1.9780898719581

R. Barbulescu, Algorithmes de logarithmes discrets dans les corps finis, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00925228

R. Barbulescu, New record in F p 3 . Slides presented at the CATRELworkshop (2015), https://webusers.imj-prg.fr/ ? razvan

R. Barbulescu, J. Bos, C. Bouvier, T. Kleinjung, and P. Montgomery, Finding ECM-friendly curves through a study of Galois properties, The Open Book Series, vol.15, issue.1, pp.63-86, 2013.
DOI : 10.1007/11792086_37

URL : https://hal.archives-ouvertes.fr/hal-00671948

R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli et al., Discrete Logarithm in GF(2 809 ) with FFS, PKC 2014, pp.221-238
DOI : 10.1007/978-3-642-54631-0_13

URL : https://hal.archives-ouvertes.fr/hal-00818124

. Springer, announcement available at the NMBRTHRY archives, item 004534, 2014.

R. Barbulescu and S. Duquesne, Updating key size estimations for pairings, Cryptology ePrint Archive Report, vol.2017334, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534101

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improvements to the number field sieve for non-prime finite fields (2014), https, pp.21-70

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improving NFS for the Discrete Logarithm Problem in Non-prime Finite Fields, EUROCRYPT 2015, pp.129-155
DOI : 10.1007/978-3-662-46800-5_6

URL : https://hal.archives-ouvertes.fr/hal-01112879

. Springer, Cited pages 3, pp.61-69, 2015.

R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic, EUROCRYPT 2014, pp.1-16, 2014.
DOI : 10.1007/978-3-642-55220-5_1

URL : https://hal.archives-ouvertes.fr/hal-00835446

R. Barbulescu, P. Gaudry, and T. Kleinjung, The Tower Number Field Sieve, ASIACRYPT 2015, pp.31-55, 2015.
DOI : 10.1007/978-3-662-48800-3_2

URL : https://hal.archives-ouvertes.fr/hal-01155635

R. Barbulescu and A. Lachand, Some mathematical remarks on the polynomial selection in NFS, Mathematics of Computation, vol.86, issue.303, pp.397-418, 2017.
DOI : 10.1090/mcom/3112

URL : https://hal.archives-ouvertes.fr/hal-00954365

R. Barbulescu and C. Pierrot, Abstract, LMS Journal of Computation and Mathematics, vol.17, issue.A, pp.230-246, 0192.
DOI : 10.1017/CBO9781139856065

P. Barreto, B. Lynn, and M. Scott, Constructing Elliptic Curves with Prescribed Embedding Degrees, Security in Communication Networks 2002, pp.257-267
DOI : 10.1007/3-540-36413-7_19

P. Barreto and M. Naehrig, Pairing-Friendly Elliptic Curves of Prime Order, SAC 2005, pp.319-331, 2006.
DOI : 10.1007/11693383_22

C. Bays and R. Hudson, The segmented sieve of eratosthenes and primes in arithmetic progressions to 1012, BIT, vol.17, issue.2, pp.121-127, 1977.
DOI : 10.1007/BF01932283

E. Berlekamp, Algebraic Coding Theory. McGraw-Hill series in systems science, World Scientific, 2015.

D. Bernstein, How to find small factors of integers, 2002.

D. Bernstein, P. Birkner, T. Lange, and C. Peters, ECM using Edwards curves, Mathematics of Computation, vol.82, issue.282, pp.1139-1179, 2013.
DOI : 10.1090/S0025-5718-2012-02633-0

D. Bernstein and T. Lange, Two grumpy giants and a baby, The Open Book Series, vol.6, issue.1, pp.87-111, 2013.
DOI : 10.1090/S0025-5718-00-01213-8

URL : http://cr.yp.to/elliptic/grumpy-20120709.pdf

D. Bernstein, T. Lange, and R. Niederhagen, Dual EC: A Standardized Back Door The New Codebreakers: Essays Dedicated to David Kahn on the Occasion of His 85th Birthday, LNCS, vol.9100, pp.256-281, 2016.

Y. Bistritz and A. Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Linear Algebra and its Applications, vol.432, issue.8, pp.1995-2005, 2010.
DOI : 10.1016/j.laa.2009.08.012

I. Blake, G. Seroussi, and N. Smart, Advances in Elliptic Curve Cryptography, 2005.
DOI : 10.1017/CBO9780511546570

D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, CRYPTO 2001, pp.213-229
DOI : 10.1007/3-540-44647-8_13

URL : http://eprint.iacr.org/2001/090.ps.gz

D. Boneh, B. Lynn, and H. Shacham, Short Signatures from the Weil Pairing, Journal of Cryptology, vol.17, issue.4, pp.297-319, 2004.
DOI : 10.1007/s00145-004-0314-9

URL : http://www.iacr.org/archive/asiacrypt2001/22480516.pdf

F. Boudot, On Improving Integer Factorization and Discrete Logarithm Computation using Partial Triangulation, Cryptology ePrint Archive Report, vol.2017758, 2017.

C. Bouillaguet, C. Delaplace, V. Gerdt, W. Koepf, W. Seiler et al., Sparse Gaussian Elimination Modulo p: An Update, CASC 2016, pp.101-116, 2016.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/hal-01333670

C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thomé, Discrete logarithms in GF(p) ? 180 digits, announcement available at the NMBRTHRY archives, item 004703, pp.21-46, 2014.

C. Bouvier, Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01167281

R. Brent, The first occurrence of large gaps between successive primes, Mathematics of Computation, vol.27, issue.124, pp.959-963, 1973.
DOI : 10.1090/S0025-5718-1973-0330021-0

J. Buhler, H. Lenstra, and C. Pomerance, Factoring integers with the number field sieve, Lecture Notes in Mathematics, vol.32, issue.107, pp.50-94, 1993.
DOI : 10.1109/TIT.1986.1057137

E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning ???factorisatio numerorum???, Journal of Number Theory, vol.17, issue.1, pp.1-28, 1983.
DOI : 10.1016/0022-314X(83)90002-1

S. Cavallar, On the Number Field Sieve Integer Factorisation Algorithm, pp.34-49, 2002.

H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol.138, issue.201, p.189, 2000.
DOI : 10.1007/978-3-662-02945-9

A. Commeine and I. Semaev, An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve, PKC 2006, pp.174-190, 2006.
DOI : 10.1109/TIT.1986.1057137

D. Coppersmith, Modifications to the Number Field Sieve, Journal of Cryptology, vol.6, issue.3, pp.169-180, 1993.
DOI : 10.1007/BF00198464

D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE Transactions on Information Theory, vol.30, issue.4, pp.587-594, 1984.
DOI : 10.1109/TIT.1984.1056941

D. Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear Algebra and its Applications, vol.192, pp.33-60, 1993.
DOI : 10.1016/0024-3795(93)90235-G

URL : https://doi.org/10.1016/0024-3795(93)90235-g

D. Coppersmith, Solving Homogeneous Linear Equations Over GF(2) via Block Wiedemann Algorithm, Mathematics of Computation, vol.62, issue.205, pp.333-350, 1994.
DOI : 10.2307/2153413

D. Coppersmith, A. Odlzyko, and R. Schroeppel, Discrete logarithms inGF(p), Algorithmica, vol.13, issue.1-4, pp.1-15, 1986.
DOI : 10.6028/jres.045.026

J. Davis and D. Holdridge, Factorization Using the Quadratic Sieve Algorithm, CRYPTO 1983. pp. 103?113, 1984.
DOI : 10.1007/978-1-4684-4730-9_9

T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, RFC Editor, 2008.
DOI : 10.17487/rfc4346

W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6, pp.644-654, 1976.
DOI : 10.1109/TIT.1976.1055638

URL : http://www.cs.rutgers.edu/~tdnguyen/classes/cs671/presentations/Arvind-NEWDIRS.pdf

B. Dunten, J. Jones, and J. Sorenson, A space-efficient fast prime number sieve, Information Processing Letters, vol.59, issue.2, pp.79-84, 1996.
DOI : 10.1016/0020-0190(96)00099-3

URL : http://abyss.snu.ac.kr/~parkmj/math_paper/pns.ps

W. Eberly and E. Kaltofen, On randomized Lanczos algorithms, Proceedings of the 1997 international symposium on Symbolic and algebraic computation , ISSAC '97, pp.176-183, 1997.
DOI : 10.1145/258726.258776

W. Ekkelkamp, On the Amount of Sieving in Factorization Methods, 2010.

T. Elgamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, CRYPTO 1984, pp.10-18, 1985.

M. Elkenbracht-huizing, An Implementation of the Number Field Sieve, Experimental Mathematics, vol.5, issue.3, pp.231-253, 1996.
DOI : 10.1007/978-1-4757-1089-2

J. Franke and T. Kleinjung, Continued fractions and lattice sieving, pp.2005-2050, 2005.

J. Franke and T. Kleinjung, Cofactorisation strategies for the number field sieve and an estimate for the sieving step for factoring 1024 bit integers, p.2006, 2006.

D. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic Curves, Journal of Cryptology, vol.2, issue.5, pp.224-280, 2010.
DOI : 10.1007/s00145-004-0313-x

G. Frey and H. G. Rück, A Remark Concerning m-Divisibility and the Discrete Logarithm in the Divisor Class Group of Curves, Mathematics of Computation, vol.62, issue.206, pp.865-874, 1994.

J. Fried, P. Gaudry, N. Heninger, and E. Thomé, A Kilobit Hidden SNFS Discrete Logarithm Computation, ROCRYPT 2017, pp.202-231, 2017.
DOI : 10.1007/3-540-68697-5_8

URL : https://hal.archives-ouvertes.fr/hal-01376934

S. Galbraith, Mathematics of Public Key Cryptography, pp.12-180, 2012.
DOI : 10.1017/CBO9781139012843

S. Galbraith, J. Pollard, and R. Ruprai, Computing discrete logarithms in an interval, Mathematics of Computation, vol.82, issue.282, pp.1181-1195, 2013.
DOI : 10.1090/S0025-5718-2012-02641-X

URL : https://eprint.iacr.org/2010/617.pdf

S. Galbraith, P. Wang, and F. Zhang, Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm. Cryptology ePrint Archive, Report, vol.2015605, 2015.

W. Galway, Robert Bennion's ???hopping sieve???, ANTS-III. LNCS, pp.169-178, 1998.
DOI : 10.1007/BFb0054860

W. Galway, Dissecting a Sieve to Cut Its Need for Space, ANTS-IV. LNCS, pp.297-312, 2000.
DOI : 10.1007/10722028_17

W. F. Galway, Analytic Computation of the Prime-Counting Function, 2004.

P. Gaudry, L. Grémy, and M. Videau, Collecting relations for the number field sieve in, LMS Journal of Computation and Mathematics, vol.6, issue.A, pp.332-350, 2016.
DOI : 10.1007/BFb0091538

URL : https://hal.archives-ouvertes.fr/hal-01273045

P. Gaudry, A. Guillevic, and F. Morain, Discrete logarithm record in GF(p?3) of 592 bits (180 decimal digits), announcement available at the NMBRTHRY archives, item 004930, pp.21-164, 2016.

´. A. González, Measurement of Areas on a Sphere Using Fibonacci and Latitude???Longitude Lattices, Mathematical Geosciences, vol.73, issue.1, pp.42-49, 2010.
DOI : 10.1201/9781420035223

D. Gordon, Designing and Detecting Trapdoors for Discrete Log Cryptosystems, CRYPTO 1992, pp.66-75, 1993.
DOI : 10.1007/3-540-48071-4_5

D. Gordon, Discrete Logarithms in $GF ( P )$ Using the Number Field Sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.
DOI : 10.1137/0406010

D. M. Gordon and K. S. Mccurley, Massively Parallel Computation of Discrete Logarithms, pp.312-323, 1992.
DOI : 10.1007/3-540-48071-4_22

R. Granger and F. Vercauteren, On the Discrete Logarithm Problem on Algebraic Tori, LNCS, pp.66-85, 2005.
DOI : 10.1007/11535218_5

URL : http://homes.esat.kuleuven.be/~fvercaut/papers/crypto2005.pdf

R. Granger, T. Kleinjung, and J. Zumbrägel, On the discrete logarithm problem in finite fields of fixed characteristic. Transactions of the, p.3

R. Granger, T. Kleinjung, and J. Zumbrägel, Discrete Logarithms in GF(2?9234), announcement available at the NMBRTHRY archives, item 004666, 2014.

J. Graver, On the foundations of linear and integer linear programming I, Mathematical Programming, vol.69, issue.1, pp.207-226, 1975.
DOI : 10.1007/BF01681344

L. Grémy and A. Guillevic, DiscreteLogDB, a database of computations of discrete logarithms (2017), https://gitlab.inria.fr/dldb/ discretelogdb, pp.5-205

L. Grémy, A. Guillevic, and F. Morain, Breaking DLP in GF (p 5 ) using 3- dimensional sieving (2017), preprint, 7 pages, pp.152-160

L. Grémy, A. Guillevic, F. Morain, and E. Thomé, Computing discrete logarithms in GF, SAC 2017, pp.146-152

A. Guillevic, Computing Individual Discrete Logarithms Faster in $${{\mathrm{GF}}}(p^n)$$ with the NFS-DL Algorithm, ASIACRYPT 2015, pp.149-173, 2015.
DOI : 10.1007/978-3-662-48797-6_7

A. Guillevic, Individual Discrete Logarithm in GF(p k ) Slides presented at the CATREL-workshop, p.67, 2015.

A. Guillevic, Faster individual discrete logarithms with the QPA and NFS variants Cryptology ePrint Archive, Report, vol.2016684, issue.87, pp.54-77, 2017.
DOI : 10.1007/978-3-662-48797-6_7

A. Guillevic and F. Morain, Discrete Logarithms Guide to pairing-based cryptography, p. 42, 2016.

A. Guillevic and F. Morain, Breaking a dlp on a 170-bit n=3 mnt curve, announcement available at the NMBRTHRY archives, item 004900, 2016.
DOI : 10.1007/978-3-319-69453-5_30

A. Guillevic, F. Morain, and E. Thomé, Solving Discrete Logarithms on a 170-Bit MNT Curve by Pairing Reduction, SAC 2016, pp.70-143
DOI : 10.1016/j.jalgor.2004.11.004

URL : https://hal.archives-ouvertes.fr/hal-01320496

G. Hanrot, X. Pujol, D. Stehlé, Y. Chee, Z. Guo et al., Algorithms for the Shortest and Closest Lattice Vector Problems, International Workshop Coding and Cryptology 2011, pp.159-190, 2011.
DOI : 10.1007/978-3-642-14518-6_27

URL : https://hal.archives-ouvertes.fr/hal-00640637

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, An Experiment of Number Field Sieve for Discrete Logarithm Problem over GF(p 12), Number Theory and Cryptography, pp.108-120, 2013.
DOI : 10.1007/978-3-642-42001-6_8

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, A construction of 3-dimensional lattice sieve for number field sieve over F p n . Cryptology ePrint Archive, pp.1179-75, 2015.

M. Hellman, An overview of public key cryptography, IEEE Communications Magazine, vol.40, issue.5, pp.42-49, 2002.
DOI : 10.1109/MCOM.2002.1006971

URL : http://www-ee.stanford.edu/~hellman/publications/31.pdf

A. Hildebrand and G. Tenenbaum, Integers without large prime factors, Journal de Th??orie des Nombres de Bordeaux, vol.5, issue.2, pp.411-484, 1993.
DOI : 10.5802/jtnb.101

H. Jeljeli, Accélérateurs logiciels et matériels pour l'algèbre linéaire creuse sur les corps finis, pp.47-50, 2015.

A. Joux and C. Pierrot, Nearly sparse linear algebra and application to discrete logarithms computations, Contemporary Developments in Finite Fields and Applications, pp.119-144, 2016.
DOI : 10.1142/9789814719261_0008

URL : https://hal.archives-ouvertes.fr/hal-01154879

A. Joux, A One Round Protocol for Tripartite Diffie?Hellman, Journal of Cryptology, vol.17, issue.4, pp.263-276, 2004.
DOI : 10.1007/s00145-004-0312-y

A. Joux, Discrete Logarithms), announcement available at the NMBRTHRY archives, item 004544, GF(2?6168) [=GF((2?257)?24)], 2013.

A. Joux, Faster Index Calculus for the Medium Prime Case Application to 1175-bit and 1425-bit Finite Fields, EUROCRYPT 2013 announcements available at the NMBRTHRY archives, item 004451 and item 004458, pp.177-193, 2013.
DOI : 10.1007/978-3-642-38348-9_11

A. Joux, A New Index Calculus Algorithm with Complexity $$L(1/4+o(1))$$ in Small Characteristic, SAC 2013, pp.355-379, 2014.
DOI : 10.1007/978-3-662-43414-7_18

A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

A. Joux and R. Lercier, Discrete logarithms in GF(p) ? 130 digits, announcement available at the NMBRTHRY archives, item 002778, 2005.

A. Joux and R. Lercier, The Function Field Sieve in the Medium Prime Case, EUROCRYPT 2006, pp.254-270, 2006.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/hal-00456191

A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, CRYPTO 2006, pp.326-344, 2006.
DOI : 10.1007/11818175_19

URL : https://hal.archives-ouvertes.fr/hal-01102034

A. Joux, A. Odlyzko, and C. Pierrot, The Past, Evolving Present, and Future of the Discrete Logarithm, Open Problems in Mathematics and Computational Science, pp.5-36, 2014.
DOI : 10.1007/978-3-319-10683-0_2

A. Joux and C. Pierrot, The Special Number Field Sieve in $\mathbb{F}_{p^{n}}$, Pairing 2013, pp.45-61, 2013.
DOI : 10.1007/978-3-319-04873-4_3

A. Joux and C. Pierrot, Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms, ASIACRYPT 2014, pp.378-397
DOI : 10.1007/978-3-662-45611-8_20

URL : https://hal.archives-ouvertes.fr/hal-01213649

A. Joux and C. Pierrot, Discrete logarithm record in characteristic 3, GF(3?(5*479)) a 3796-bit field, announcement available at the NMBRTHRY archives, item 004745, 2014.

E. Kachisa, E. Schaefer, and M. Scott, Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field, Pairing 2008, pp.126-135
DOI : 10.1007/978-3-540-85538-5_9

E. Kaltofen, Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems, Mathematics of Computation, vol.64, issue.210, pp.777-806, 1995.

C. Kerry and P. Gallagher, FIPS PUB 186-4: Digital Signature Standard (DSS), Tech. rep., NIST, vol.22, pp.11-23, 2013.

T. Kim and R. Barbulescu, Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case, CRYPTO 2016, pp.543-571, 2016.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/hal-01281966

T. Kim and J. Jeong, Extended Tower Number Field Sieve with Application to Finite Fields of Arbitrary Composite Extension Degree, PKC 2017, pp.388-408, 2017.
DOI : 10.1007/978-3-642-34931-7_24

T. Kleinjung, On polynomial selection for the general number field sieve, Mathematics of Computation, vol.75, issue.256, pp.2037-2047, 2006.
DOI : 10.1090/S0025-5718-06-01870-9

URL : http://www.ams.org/mcom/2006-75-256/S0025-5718-06-01870-9/S0025-5718-06-01870-9.pdf

T. Kleinjung, Polynomial Selection. Slides presented at the CADO workshop on integer factorization, 2008.

T. Kleinjung, Filtering and the matrix step in NFS. Slides presented at the Workshop on Computational Number Theory on the occasion of Herman te Riele's retirement from CWI Amsterdam, 2011.

T. Kleinjung, Discrete Logarithms in GF(2?1279), announcement available at the NMBRTHRY archives, item 004751, 2014.

T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé et al., Factorization of a 768-Bit RSA Modulus, CRYPTO 2010, pp.333-350, 2010.
DOI : 10.1007/978-3-642-14623-7_18

URL : https://hal.archives-ouvertes.fr/inria-00444693

T. Kleinjung, J. Bos, and A. Lenstra, Mersenne Factorization Factory, ASIACRYPT 2014, pp.358-377, 2014.
DOI : 10.1007/978-3-662-45611-8_19

URL : https://eprint.iacr.org/2014/653.pdf

T. Kleinjung, C. Diem, A. Lenstra, C. Priplata, and C. Stahlke, Computation of a 768-Bit Prime Field Discrete Logarithm, EUROCRYPT 2017, pp.185-201
DOI : 10.1109/TIT.1986.1057137

B. Lamacchia and A. Odlyzko, Solving Large Sparse Linear Systems Over Finite Fields, CRYPT0 1990, pp.109-133, 1991.
DOI : 10.1007/3-540-38424-3_8

C. Lanczos, Solution of systems of linear equations by minimized iterations, Journal of Research of the National Bureau of Standards, vol.49, issue.1, pp.33-53, 1952.
DOI : 10.6028/jres.049.006

A. Lenstra and H. Lenstra, Algorithms in Number Theory, Handbook of Theoretical Computer Science, pp.675-715, 1990.
DOI : 10.1016/B978-0-444-88071-0.50017-5

A. Lenstra and W. Hendrik, The Development of the Number Field Sieve, Lecture Notes in Mathematics, vol.1554, pp.2-37, 1993.
DOI : 10.1007/BFb0091534

A. Lenstra, H. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, vol.32, issue.4, pp.515-534, 1982.
DOI : 10.1007/BF01457454

URL : http://www.busim.ee.boun.edu.tr/~mihcak/teaching/ee684-spring07/proposed-project-papers/hard-problems/lattice-problems/lenstra.pdf

A. Lenstra and E. Verheul, The XTR Public Key System, CRYPTO 2000, pp.1-19, 2000.
DOI : 10.1007/3-540-44598-6_1

H. W. Lenstra, Factoring Integers with Elliptic Curves, The Annals of Mathematics, vol.126, issue.3, pp.649-673, 1987.
DOI : 10.2307/1971363

J. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information Theory, vol.15, issue.1, pp.122-127, 1969.
DOI : 10.1109/TIT.1969.1054260

D. Matyukhin, On asymptotic complexity of computing discrete logarithms over GF(p), Discrete Mathematics and Applications, vol.58, issue.2, pp.27-50, 2003.
DOI : 10.1007/BF01457454

U. Maurer, Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms, CRYPTO 1994, pp.271-281, 1994.
DOI : 10.1007/3-540-48658-5_26

A. Menezes, P. Sarkar, and S. Singh, Challenges with Assessing the Impact of NFS Advances on the Security of Pairing-Based Cryptography, Mycrypt 2016, pp.83-108
DOI : 10.1090/S0025-5718-99-01137-0

A. J. Menezes, T. Okamoto, and S. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, vol.39, issue.5, pp.1639-1646, 1993.
DOI : 10.1109/18.259647

F. Mertens, Ein beitrag zur analytischen zahlentheorie, Journal für die reine und angewandte Mathematik, vol.78, pp.46-62, 1874.

A. Miele, J. Bos, T. Kleinjung, and A. Lenstra, Cofactorization on Graphics Processing Units, CHES 2014, pp.335-352, 2014.
DOI : 10.1007/978-3-662-44709-3_19

URL : https://eprint.iacr.org/2014/397.pdf

S. Mitsunari, R. Sakai, and M. Kasahara, A New Traitor Tracing, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol.85, issue.2, pp.481-484, 2002.

P. Montgomery, A Block Lanczos Algorithm for Finding Dependencies over GF(2), EUROCRYPT 1995, pp.106-120, 1995.
DOI : 10.1007/3-540-49264-X_9

B. Murphy, Polynomial Selection for the Number Field Sieve Integer Factorisation Algorithm, pp.40-41, 1999.

P. Nguyen and D. Stehlé, An LLL Algorithm with Quadratic Complexity, SIAM Journal on Computing, vol.39, issue.3, pp.874-903, 2009.
DOI : 10.1137/070705702

URL : https://hal.archives-ouvertes.fr/hal-00550981

S. Onn, Theory and Applications of n-Fold Integer Programming, Mixed Integer Nonlinear Programming, pp.559-593, 2012.
DOI : 10.1007/978-1-4614-1927-3_20

URL : http://arxiv.org/pdf/0911.4191.pdf

C. Pierrot, The Multiple Number Field Sieve with Conjugation and Generalized Joux-Lercier Methods, ROCRYPT 2015, pp.156-170, 0191.
DOI : 10.1007/978-3-662-46800-5_7

URL : https://hal.archives-ouvertes.fr/hal-01056205

S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF (p) and its cryptographic significance, IEEE Transactions on Information Theory, vol.241, pp.106-110, 1978.
DOI : 10.1109/tit.1978.1055817

J. Pollard, The lattice sieve, Lecture Notes in Mathematics, vol.1554, issue.46, pp.43-49, 1993.
DOI : 10.1090/psapm/042/1095550

J. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of Computation, vol.32, issue.143, pp.918-924, 1978.
DOI : 10.2307/2006496

C. Pomerance, Analysis and comparison of some integer factoring algorithms Computational Methods in Number Theory, Mathematical Centre Tracts, vol.154, pp.89-139

C. Pomerance, A Tale of Two Sieves. Notices of the, pp.1473-1485, 1996.

C. Pomerance, J. Selfridge, and S. Wagstaff, The Pseudoprimes to 25 ???10 9, Mathematics of Computation, vol.35, issue.151, pp.1003-1026, 1980.
DOI : 10.2307/2006210

C. Pomerance and J. Smith, Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes, Experimental Mathematics, vol.32, issue.2, pp.89-94, 1992.
DOI : 10.1109/TIT.1986.1057137

P. Pritchard, A sublinear additive sieve for finding prime number, Communications of the ACM, vol.24, issue.1, pp.18-23, 1981.
DOI : 10.1145/358527.358540

P. Pritchard, Explaining the wheel sieve, Acta Informatica, vol.17, issue.4, pp.477-485, 1982.
DOI : 10.1007/BF00264164

P. Pritchard, Fast compact prime number sieves (among others), Journal of Algorithms, vol.4, issue.4, pp.332-344, 1983.
DOI : 10.1016/0196-6774(83)90014-7

P. Pritchard, Linear prime-number sieves: A family tree, Science of Computer Programming, vol.9, issue.1, pp.17-35, 1987.
DOI : 10.1016/0167-6423(87)90024-4

URL : https://doi.org/10.1016/0167-6423(87)90024-4

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.21, issue.2, pp.120-126, 1978.
DOI : 10.1145/359340.359342

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Rubin and A. Silverberg, Torus-Based Cryptography, CRYPTO 2003, pp.349-365, 2003.
DOI : 10.1007/978-3-540-45146-4_21

P. Sarkar and S. Singh, A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm, ASIACRYPT 2016, pp.37-62, 2016.
DOI : 10.1090/S0025-5718-99-01137-0

P. Sarkar and S. Singh, A Generalisation of the Conjugation Method for Polynomial Selection for the Extended Tower Number Field Sieve Algorithm, Cryptology ePrint Archive Report, vol.2016537, pp.87-211, 2016.

P. Sarkar and S. Singh, New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields, EUROCRYPT 2016, pp.429-458, 2016.
DOI : 10.1007/978-3-662-49890-3_17

P. Sarkar and S. Singh, Tower number field sieve variant of a recent polynomial selection method, Cryptology ePrint Archive Report, vol.2016401, pp.87-211, 2016.

O. Schirokauer, Using number fields to compute logarithms in finite fields, Mathematics of Computation, vol.69, issue.231, pp.1267-1283, 2000.
DOI : 10.1090/S0025-5718-99-01137-0

URL : http://www.ams.org/journals/mcom/2000-69-231/S0025-5718-99-01137-0/S0025-5718-99-01137-0.pdf

O. Schirokauer, Virtual logarithms, Journal of Algorithms, vol.57, issue.2, pp.140-147, 2005.
DOI : 10.1016/j.jalgor.2004.11.004

O. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676, pp.409-423, 1676.
DOI : 10.1098/rsta.1993.0139

O. A. Schirokauer, On pro-finite groups and on discrete logarithms, 1992.

C. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems, Fundamentals of Computation Theory 1991, pp.68-85, 1991.
DOI : 10.1007/bf01581144

URL : http://www.mi.informatik.uni-frankfurt.de/research/papers/schnorr.improved_practical.1993.ps.gz

D. Shanks, Class number, a theory of factorization, and genera, In: Symposia in Pure Mathematics, vol.20, pp.415-440, 1971.
DOI : 10.1090/pspum/020/0316385

V. Shoup, NTL: A library for doing Number Theory. Available at www.shoup.net/ntl

V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, EUROCRYPT 1997, pp.256-266
DOI : 10.1007/3-540-69053-0_18

URL : http://www.shoup.net/papers/dlbounds1.ps.Z

V. Shoup, A Computational Introduction to Number Theory and Algebra, 2009.
DOI : 10.1017/cbo9781139165464

R. Singleton, Algorithm 357: an efficient prime number generator [A1], Communications of the ACM, vol.12, issue.10, pp.563-564, 1969.
DOI : 10.1145/363235.363247

N. Smart, Cryptography Made Simple, Information Security and Cryptography, 2016.
DOI : 10.1007/978-3-319-21936-3

J. Sorenson, Trading time for space in prime number sieves, ANTS-III. LNCS, pp.179-195, 1998.
DOI : 10.1007/BFb0054861

URL : http://sorenson.butler.edu/~sorenson/research/ftp/newpns.ps

J. Sorenson, The Pseudosquares Prime Sieve, ANTS-VII, pp.193-207, 2006.
DOI : 10.1007/11792086_15

C. The and . Team, CADO-NFS, an implementation of the number field sieve algorithm (2017), http://cado-nfs.gforge. inria.fr/, development version, pp.126-128

E. Thomé, A modified block Lanczos algorithm with fewer vectors In: Topics in Computational Number Theory, 2016.

L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried et al., Measuring small subgroup attacks against Diffie-Hellman, Proceedings 2017 Network and Distributed System Security Symposium, 2017.
DOI : 10.14722/ndss.2017.23171

L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri et al., Factoring as a Service, Financial Cryptography and Data Security 2016, pp.321-338
DOI : 10.1007/10968987_3

B. Vialla, ContributionsàContributionsà l'Algèbre Linéaire Exacte sur Corps Finis et au Chiffrement Homomorphe, 2015.

K. Walisch, primesieve, http://primesieve.org

D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Transactions on Information Theory, vol.32, issue.1, pp.54-62, 1986.
DOI : 10.1109/TIT.1986.1057137

H. Williams, A p + 1 method of factoring, Mathematics of Computation, vol.39, issue.159, pp.225-234, 1982.

P. Zajac, Discrete Logarithm Problem in Degree Six Finite Fields, 0208.

P. Zajac, On the use of the lattice sieve in the 3D NFS, Tatra Mountains Mathematical Publications, vol.45, issue.1, pp.161-172, 2010.
DOI : 10.2478/v10127-010-0012-y

Y. Zhu, J. Zhuang, C. Lv, and D. Lin, Improvements on the individual logarithm step in extended tower number field sieve, Cryptology ePrint Archive Report, vol.2016, p.727, 2016.

. Dans-les-cas-de-moyenne-et-grande-caractéristiques, /3) est le crible algébrique, number field sieve (NFS) en anglais. Initialement proposé pour factoriser de grands entiers [127], NFS a ´ etéetéétendu au calcul de logarithmes discrets, tout d'abord pour les corps premiers [77] puis pour d'autres corps finis. L'algorithme NFS est un algorithme par calcul d'indice : cependant, l'´ etape de définition du corps finis devient unéuné etapè a elle seule, appelée sélection polynomiale. PourévaluerPourévaluer l'impact des algorithmes sous-exponentiels

A. Guillevic, nous avons créé une base de donnée recensant tous ces records, et plus généralement