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Université de Lorraine, Nancy

Invités : Peter YOUNG Professeur Emeritus

Lancaster University

Systems and Control Group, Lancaster UK

Directeur : Hugues GARNIER Professeur, CRAN
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Résumé étendu

Les personnes qui travaillent dans le domaine des Sciences et de l’ingénierie s’intéressent
à la compréhension des phénomènes naturels, et à cette fin, ils construisent habituelle-
ment des modèles qui représentent le système observé. Dans le domaine de la dynamique
des fluides par exemple, l’intérêt est de comprendre comment modifier la conception d’un
navire afin d’améliorer sa maniabilité. Si le navire est déjà construit, le problème pour
un ingénieur pourrait être de concevoir un contrôleur pour guider automatiquement le
navire. Un modèle mathématique de la dynamique du navire, prenant la forme d’un en-
semble d’équations, servirait alors à cette fin [Fossen, 2002]. Une approche pour obtenir
un modèle réside dans l’application des lois fondamentales de la Physique comme les
lois de Newton ou les lois de Kirchhoff. La deuxième option pour la modélisation est
l’identification du système, qui consiste essentiellement à construire un modèle à partir
des mesures collectées de l’entrée et de la sortie du système. Cette thèse porte sur cette
dernière approche.

Identification du système

La procédure d’identification des systèmes est illustrée à par la figure 1, où nous pouvons
voir les trois entités principales, qui sont :

• Le jeu de données. Il s’agit d’une collection de mesures de l’entrée u et de la sortie
y du système S, et est désigné par ZN = u(tk), y(tk)N

k=1), où N est le nombre
d’échantillons. Notez que la sortie y est contaminée par v qui peut représenter un
bruit de perturbation et/ou de mesures provenant du capteur.

• La structure de modèles. C’est un ensemble désigné par M avec des structures de
modèles candidates qui pourraient représenter le système [Ljung, 1999, p. 111].
Une structure de modèle est une expression mathématique, qui relie u, y et v, et
est paramétrée par un vecteur θ ∈ R

nθ .

• Une méthode d’identification. Compte tenu des deux premières entités, une méth-
ode d’identification doit être choisie afin d’estimer le vecteur de paramètres θ et,
par conséquent, le modèle.

Les modèles estimés à l’aide de techniques d’identification du système peuvent être
classés en modèle de type boîte grise ou boîte noire [Ljung, 1999]. Dans le premier,
les lois fondamentales de la Physique servent à construire la structure du modèle, qui
comprend des paramètres inconnus. Ces paramètres sont ensuite estimés à partir d’un
jeu de données et d’une méthode d’identification. Dans le cas d’un modèle de type boîte
noire, la structure et ses paramètres sont directement déterminés à partir des données
mesurées et la méthode d’identification. En outre, le modèle peut être à temps discret
(DT) ou continu (CT). Dans ce travail, nous nous intéressons aux modèles linéaires CT
qui peuvent être de type boîte grise ou boîte noire.
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Figure 1: Entités de base pour l’identification d’un système: jeu de données, structure
de modèles et méthode d’identification.

Figure 2: Approches indirectes et directes pour l’identification d’un modèle CT.

Identification hors ligne des modèles à temps continu

Dans l’estimation hors ligne, également appelée identification non récursive, ou en bloc,
l’ensemble des données doit être disponible a priori. Deux approches d’identification de
modèles CT linéaires invariants dans le temps (LTI) peuvent être obtenus en utilisant
une estimation non récursive résumée sur le schéma de la figure 2 [Garnier et al., 2008]:

• Approche indirecte. Tout d’abord, un modèle DT est identifié puis il est converti
en CT. Dans le cas LTI, cela peut être fait dans MATLAB en utilisant la fonction
d2c.

• Approche directe. Il vise à estimer le modèle CT directement à partir des données
échantillonnées.

Comme le montre le schéma, les paramètres CT peuvent être convertis en paramètres
physiques θ̂p, si nécessaire. Il faut remarquer que quelle que soit l’approche retenue,
directe ou indirecte, il faut faire une hypothèse sur la variation des signaux entre deux
instants d’échantillonnage [Garnier et al., 2008].
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Motivés par les avantages qu’offrent les méthodes directes (voir [Garnier et al., 2008,
Garnier and Young, 2014]), nous avons décidé de travailler dans cette thèse avec ce type
d’approche.

Différentes approches directes sont disponibles dans la littérature ; elles peuvent être
classées comme suit [Garnier et al., 2003, 2008] :

• méthodes de filtrage linéaire

• méthodes intégrales

• méthodes des fonctions de modulation

• d’autres approches comme les méthodes de différence finie

Dans cette étude, nous considérons les méthodes de filtrage linéaire.

Identification de modèles linéaires à paramètres variables
dans le temps

L’identification des modèles CT linéaires à paramètres variables (LTV) partage les as-
pects méthodologiques avec le cas DT LTV. Par conséquent, après quelques commen-
taires sur les systèmes LTV, nous discutons des approches qui ont été proposées pour
l’identification DT LTV. Nous terminons la section avec l’estimation des modèles CT
LTV.

Un système linéaire à paramètres variables dans le temps peut être défini comme un
système dont les propriétés varient au cours du temps. Dans la vie réelle, les processus
sont généralement variables dans le temps, par exemple en raison des effets de vieillisse-
ment ou des changements dans les conditions environnementales telles que la tempéra-
ture. Parfois, la durée d’observation du système qui nous intéresse est assez courte, ce
qui permet de considérer le système comme invariant dans le temps. Cependant, ce n’est
pas le cas pour les systèmes que nous traitons dans cette thèse. Les paramètres d’un
système LTV peuvent évoluer selon les quatre manières suivantes [Niedźwiecki, 2000, p.
60] :

• variations constantes lentes (parfois appelés dérive de paramètres)

• variations brusques peu fréquentes

• variations selon les deux modes ci-dessus (changements lents et brusques)

• tous les autres types de variations (également appelés variations de paramètres
rapides)

Dans ce travail, on suppose que les paramètres varient lentement dans le temps. En
outre, nous restreignons notre attention sur les systèmes linéaires (LTV).

Identification non récursive des modèles à temps discret

Les méthodes d’identification hors ligne peuvent également être utilisées pour l’identifica-
tion des systèmes lentement LTV. Une approche simple et intuitive consiste à estimer
des modèles LTI locaux à l’aide de la méthode des moindres carrés pondérés sur une
fenêtre glissante. Deux options sont alors possibles [Niedźwiecki, 2000] :

• Les moindres carrés pondérés de façon uniforme (fenêtre glissante de type rectan-
gulaire), impliquant que tous les poids sont égaux.
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• Les moindres carrés pondérés de façon exponentielle, où l’influence des données
anciennes est atténuée au moyen d’une pondération de type exponentiel.

L’identification des systèmes LTV peut également être effectuée à l’aide de mo-
dèles déterministes pour décrire les variations de paramètres. On peut ensuite réaliser
l’estimation avec l’approche de la fenêtre glissante hors ligne. Une de ces techniques est
exploitée par exemple dans [Chan and Zhang, 2011] via une modélisation polynomiale
locale. Néanmoins, nous nous intéressons à l’identification en ligne, où il est difficile
de trouver une représentation appropriée des paramètres variables à l’aide de modèles
déterministes. En outre, le nombre de paramètres augmente, ce qui conduit à des valeurs
estimées avec une variance plus grande.

Identification récursive de modèles à temps discret

En estimation récursive, également appelée en ligne ou en temps réel, le modèle est
mis à jour chaque fois que de nouvelles mesures sont disponibles. En comparaison avec
l’estimation hors ligne, les algorithmes récursifs sont en général avantageux en termes
de coût de calculs.

Un grand nombre de travaux de recherche a été réalisé sur l’estimation récursive
des modèles DT (voir par exemple [Ljung and Söderström, 1983, Goodwin and Sin,
1984, Ljung and Gunnarsson, 1990, Ljung, 1999, Haykin, 2014] et les références s’y
rapportant). Certains algorithmes bien connus, résumés dans [Ljung, 1999], sont :

• Méthode récursive des moindres carrés avec facteur d’oubli (RLS-FF). Cette ap-
proche simple est dérivée des moindres carrés pondérés de manière exponentielle.
L’inconvénient de cette approche est qu’elle ne convient pas si les paramètres
varient à des taux différents. Dans ce cas, un facteur d’oubli de type matriciel
pourrait être utilisé comme cela a été suggéré dans [Saelid and Foss, 1983] (voir
aussi [Niedźwiecki, 2000, p. 105]).

• Filtre Kalman (KF). Cet algorithme est obtenu en supposant que les paramètres
varient comme une marche aléatoire, qui est un modèle stochastique. En tant que
méthode basée sur le facteur d’oubli matriciel, l’avantage de KF est qu’il convient
lorsque les paramètres varient à des vitesses différentes. La marche aléatoire est le
modèle stochastique le plus simple de la classe de promenade aléatoire généralisée
[Young, 2011], qui a une flexibilité accrue (voir aussi [Kitagawa and Gersch, 1984]).

• Méthode de la variable instrumentale récursive (RIV). En tant qu’alternative non
récursive, cet algorithme est algébriquement très similaire au RLS, mais avec
l’avantage qu’il possède des propriétés statistiques supérieures. Différentes vari-
antes de RIV peuvent être considérées [Ljung and Söderström, 1983]. Pour suivre
les variations de paramètres variables dans le temps, RIV peut être utilisé avec un
facteur d’oubli ou le KF comme mécanisme d’adaptation [Young, 2011].

• Méthode d’erreur de prédiction récursive (RPEM). Cet algorithme est une ap-
proche basée sur le gradient. La méthode RLS et les moindres carrés (LMS) font
partie de cette famille. Notez que LMS et RLS sont tout aussi bons pour le suivi
des paramètres à variabilité lente [Lindbom, 1995, p. 16].

L’estimation récursive peut également être réalisée à l’aide de modèles détermin-
istes. Comme nous l’avons déjà mentionné, dans l’identification en ligne, il est difficile
de trouver une représentation appropriée des paramètres variables dans le temps à l’aide
de modèles déterministes. Néanmoins, la modélisation déterministe peut offrir de bonnes
performances dans le cas de variations rapides des paramètres [Niedźwiecki, 2000]. Un
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tel problème est abordé par exemple dans [Niedźwiecki and Klaput, 2002] en utilisant
plusieurs modèles déterministes dans un schéma d’estimation parallèle. De cette façon,
la difficulté de trouver un modèle déterministe est contournée. Les modèles détermin-
istes sont également pris en compte dans le cas de certains modèles pour les systèmes
non linéaires, tels que les paramètres dépendants de l’état (voir par exemple [Young
et al., 2001, Young, 2011]) et les paramètres non linéaires variants (voir par exemple
[Previdi and Lovera, 2004]. Enfin, il est également possible de combiner des modèles
déterministes et stochastiques, comme dans le cas de la modélisation de la régression
harmonique dynamique [Young et al., 1999, Young, 2011].

Les travaux de recherche pour l’estimation récursive des modèles LTV se sont pour-
suivis au cours des dernières décennies. Des approches basées sur la classe de modèles
de promenade aléatoire généralisée sont présentées dans [Zheng and Lin, 2003] en con-
sidérant un algorithme basé sur RLS et dans [Rutström, 2005] en considérant un algo-
rithme basé sur LMS. Un autre sujet de recherche récent est l’estimation de modèles non
paramétriques dans le domaine temporel en utilisant une approche de régularisation /
bayésienne (voir [Prando et al., 2016]).

Les méthodes d’identification récursive sont nombreuses et variées. Par conséquent,
choisir une méthode appropriée n’est pas une tâche facile. Les critères pour un bon
choix sont par exemple le taux de convergence, la capacité de suivi, la robustesse,
l’implantation informatique et les propriétés numériques (voir plus dans [Haykin, 2014,
p. 23]). Dans ce travail, nous proposerons des algorithmes basés sur RLS, KF et RIV.

Identification récursive de modèles à temps continu

Une étude récente concernant l’identification des modèles DT et CT LTV est par exemple
[Lataire, 2011], où une méthode fréquentielle hors ligne a été développée. Les techniques
de sous-espace appliquées de manière récursive ont également été utilisées pour identifier
les systèmes multivariables (MIMO) [Bergamasco and Lovera, 2011].

Les méthodes d’identification DT discutées ci-dessus pourraient être appliquées pour
identifier un modèle de CT en utilisant l’approche indirecte. Une estimation récursive
indirecte a été utilisée par exemple dans [Gustafsson and Olsson, 1999].

En ce qui concerne les approches directes, une option consiste à utiliser des méth-
odes intégrales (voir [Garnier et al., 2003]), comme celles utilisées dans [Jiang and
Schaufelberger, 1991]. La méthode CT PEM récursive présentée dans [Östring and
Gunnarsson, 2004] est également une méthode intégrale, et elle a été appliquée pour
estimer les paramètres physiques d’un bras de robot flexible. Une autre classe de méth-
odes d’identification CT directe s’appuie sur le principe des fonctions de modulation.
Une implémentation récursive utilisant des fonctions de modulation est proposée dans
[Co and Ungarala, 1997, Ungarala and Co, 2000]. Une troisième classe d’approches
d’identification CT directe est la méthode de filtrage linéaire. Par exemple, une ap-
proche basée sur un filtre linéaire en ligne est présentée dans [Dimogianopoulos and
Lozano, 2001], où une estimation récursive utilisant les moindres carrés pondérés de
manière exponentielle est exploitée. Les algorithmes récursifs, tels que RLS, RIV et le
filtre de Kalman, peuvent être couplés avec des méthodes de filtrage linéaire [Åstrom
and Wittenmark, 2008, p. 59]. Cela a été proposé par [Isermann and Münchhof, 2010],
où la version récursive des moindres carrés associées à la méthode des filtres de vari-
able d’état, est utilisée pour suivre non seulement les variations lentes mais également
brusques de paramètres (voir aussi [Canudas de Wit, 1986]). Dans ce travail, nous nous
concentrons sur des algorithmes récursifs basés sur des filtres linéaires, mais unique-
ment pour les systèmes CT dont les paramètres varient lentement dans le temps. De
plus, nous développons des méthodes de variables instrumentales (IV) en raison de leurs
propriétés statistiques supérieures.
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Organisation de la thèse et contributions

Dans le chapitre 2, l’objectif est d’étendre les méthodes IV à l’estimation des systèmes
LTV fonctionnant à la fois en boucle ouverte et en boucle fermée. Grâce à des exemples
numériques, nous montrons les bonnes performances générales de ces algorithmes.

En pratique, l’identification récursive des systèmes variant dans le temps est diffi-
cile, car plusieurs aspects pratiques et problèmes de mise en œuvre doivent être pris
en considération. Dans les algorithmes récursifs pour les systèmes CT LTV que nous
avons proposés au chapitre 2, des aspects pratiques et des problèmes d’implémentation
similaires apparaissent. L’objectif du chapitre 3 est de présenter des solutions appro-
priées à certains d’entre eux. En ce qui concerne les aspects pratiques, nous abordons
le problème de l’estimation des hyperparamètres des algorithmes présentés. Un autre
aspect important est le problème de la qualité du signal d’excitation. Les problèmes de
mise en œuvre qui mènent à l’amélioration de l’implantation numérique des algorithmes
proposés sont également discutés.

Le chapitre 4 est dédié à deux applications. Le premier est un circuit électronique
réel qui a récemment été proposé comme benchmark pour l’identification du modèle
LPV et LTV [Lataire et al., 2015]. La seconde est une vanne papillon où l’on suppose
que les paramètres du modèle varient en fonction de la température. Comme il existe
des non-linéarités dans le système, la méthode d’identification proposée au chapitre 2
est alors adaptée à ce contexte.
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Chapter 1

Introduction

People working in science and engineering are interested in understanding natural phe-
nomena, and to this end they usually build models that represent the observed system.
In the field of fluid dynamics for example, the interest is to understand how to modify
the design of a ship in order to improve its maneuverability. If the ship is already built,
the problem for a control engineer might be to design a controller to automatically guide
the vessel. A mathematical model of the ship dynamics, consisting in a set of equations,
would then serve those purposes [Fossen, 2002]. One approach to obtain a model is
from physical principles like Newton’s laws or Kirchhoff’s laws. The second option for
modeling is system identification, which basically consists in building a model based on
collected measurements of the system input/output. This thesis focuses on the latter
approach.

In the following, we first give some general ideas about system identification. After-
wards in Section 1.2, we present the indirect and direct approaches to identify continuous-
time linear time-invariant models in an off-line fashion. Section 1.3 is dedicated to linear
time-varying models. First we describe the type of linear time-varying models in which
we are interested in. Putting the attention in recursive approaches, identification meth-
ods for the discrete-time and continuous-time cases are presented in Sections 1.3.2 and
1.3.3, respectively. Then, the indirect and direct identification approaches for linear
time-varying systems are illustrated through a numerical example. Practical aspects
and applications in recursive identification are presented in Sections 1.4 and 1.5, respec-
tively. Finally, we present the organization of the thesis, contributions and publications.

1.1 System identification

As we already mentioned, in system identification the goal is to estimate a mathematical
model of a given system (or process), based on observations of such system. The system
identification procedure is shown in Figure 1.1, where we can see the three main entities,
which are:

• Data set. It is a collection of measurements of the input u and output y of the
system S, and it is denoted by ZN = {u(tk), y(tk)}N

k , where N is the number of
samples. Notice that y is contaminated by v which can represent a disturbance
and/or measurement noise coming from the sensor.

• Model set. It is a set denoted by M with candidate model structures that might
represent the system [Ljung, 1999, p. 111]. A model structure is a mathematical
expression, which relates u, y and v, and it is parametrized by a vector θ ∈ R

nθ .

• Identification method. Given the first two entities, an identification method has
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1.2. Off-line identification of continuous-time models

Figure 1.1: Basic entities in system identification: data set, model set and identification
method.

to be chosen in order to estimate the parameter vector θ, and as a consequence
the model.

In practice there is always a difference between the true system S and the model set
M, i.e. the system does not belong to the model set (S /∈ M). In other words, that
means that there are unmodeled dynamics.

Models estimated using system identification techniques can be categorized as gray-
or black-box models [Ljung, 1999]. In the former, physical principles like Newton’s laws
are used to build the model structure, which includes unknown parameters. Those
parameters are then estimated considering a certain data set and identification method.
On the other hand, in a black-box model, the structure and its parameters are solely
determined by the data set and the identification method. Furthermore, the model can
be in discrete-time (DT) or continuous-time (CT). In this work we are interested in CT
linear models which can be of gray box or black box type.

1.2 Off-line identification of continuous-time models

In off-line estimation, also called non-recursive, batch or en-bloc identification, the whole
data set must be available for estimation. In this section we illustrate with a simple
example how to obtain a CT linear time-invariant model through a non-recursive iden-
tification approach.

1.2.1 Problem formulation

Many physical processes can be described by a CT output error (OE) model. This
motivates the use of OE models in this study. As true system, let us consider then a
single-input single output (SISO) CT OE representation with input u and output y, i.e.

S

{

Ao(p)x(t) = Bo(p)u(t)

y(tk) = x(tk) + eo(tk)
(1.1)

where p is the differentiation operator; x(t) is the noise-free output; and the additive
term eo(tk) is a zero-mean DT white noise sequence. The polynomials Ao(p) and Bo(p)
are assumed to be relatively coprime and are given by

Bo(p) = bo
0p

nb + bo
1p

nb−1 + . . .+ bo
nb

(1.2)

Ao(p) = pna + ao
1p

na−1 + . . .+ ao
na

(1.3)
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Chapter 1. Introduction

Figure 1.2: Indirect and direct routes to identification of a CT model.

where na ≥ nb. The argument tk in the second equation in (1.1) denotes the sampled
value of the associated variable at the kth sampling instant.

Measurements of the input and output with a sampling time Ts form the available
data set ZN = {u(tk); y(tk)}N

k=1. Then, the goal is to propose a CT model structure
parametrized with θ, and to estimate θ using the given data set and a certain iden-
tification method. We will assume that we know the system structure along with the
polynomial degrees na and nb, and the intersample behavior of the input.

1.2.2 The indirect vs direct identification methods

The two ways in which a CT model can be obtained are illustrated in the scheme of
Figure 1.2; they are [Garnier et al., 2008]:

• Indirect approach. First, a DT model is identified an then it is converted to CT.
In the LTI case, this can be done in MATLAB using the routine d2c.

• Direct approach. It aims at estimating the CT model directly.

As shown in the scheme, the CT parameters can be converted to physical parameters θ̂p,
if necessary. Notice that in both the indirect and direct approaches, we need to assume
a certain intersample behavior [Garnier et al., 2008].

Motivated by the advantages that offers the direct approach over the indirect ap-
proach (see [Garnier et al., 2008, Garnier and Young, 2014]), we have decided to work
in this study with the former approach. Some of the advantages of the direct approach
are the following:

• It allows us to estimate directly physical quantities.

• It is suitable for non-uniformly sampled data.

• It avoids the transformation between DT and CT models which can be difficult.

• It is not sensitive to high sampling rates.

Different direct approaches are available and they can be classified as follows [Garnier
et al., 2003, 2008]:
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1.2. Off-line identification of continuous-time models

• linear filter methods

• integral methods

• modulating function methods

• other approaches like finite difference methods

In this study we consider linear filter methods.

Indirect identification using a DT ARX model

A simple representation for the true system S given in (1.1) is the DT autoregressive
with exogenous input (ARX) model [Ljung, 1999]. By assuming that we know the
system structure, the order of the system and the intersample behavior of the input, we
can define the corresponding DT ARX representation which is given by

M : y(tk)+α1y(tk−1)+ . . .+αnαy(tk−nα
) = β0u(tk)+ . . .+βnβ

u(tk−nβ
)+e(tk) (1.4)

where e(tk) is assumed to be a DT white noise sequence. Model (1.4) can be written as
the linear regression

y(tk) = φT (tk)ρ+ e(tk) (1.5)

with the regressor

φ(tk) =
[

−y(tk−1) . . . −y(tk−nα
) u(tk) . . . u(tk−nβ

)
]T

(1.6)

and the parameter vector ρ ∈ R
nρ , i.e.

ρ =
[

α1 . . . αnα β0 . . . βnβ

]T
(1.7)

The corresponding predictor is given by

ŷ(tk|ρ) = φT (tk)ρ (1.8)

The parameter vector ρ can be obtained by minimizing the prediction error

ε(tk) = y(tk) − ŷ(tk|ρ)

= y(tk) − φT (tk)ρ (1.9)

i.e.
ρ̂ = arg min

ρ∈R
nρ
V (1.10)

Usually, ρ is computed by choosing V as the mean-square error (MSE) defined by

V =
1
N

N∑

k=1

[y(tk) − φT (tk)ρ)]2 (1.11)

This approach is the well-known prediction error method (PEM). The advantage of the
DT ARX model is that (1.10) leads to the normal equations

[
N∑

k=1

φ(tk)φT (tk)

]

ρ̂ =

[
N∑

k=1

φ(tk)y(tk)

]

(1.12)

which have the closed-form solution

ρ̂ =

[
N∑

k=1

φ(tk)φT (tk)

]−1

·

[
N∑

k=1

φ(tk)y(tk)

]

(1.13)

Equation (1.13) corresponds to the least squares estimates.
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Chapter 1. Introduction

Indirect identification using a DT OE model

By assuming that we know the system structure, the order of the system and the inter-
sample behavior of the input, we can define the corresponding DT OE representation
which is given by

M

{

x(tk) + α1x(tk−1) + . . .+ αnαx(tk−nα
) = β0u(tk) + . . . + βnβ

u(tk−nβ
)

y(tk) = x(tk) + e(tk)
(1.14)

with e(tk) a zero-mean DT white noise sequence. The predictor for (1.14) is defined as
follows [Ljung, 1999, p. 85]

ŷ(tk|ρ) = φT (tk, ρ)ρ (1.15)

with the parameter vector ρ defined in (1.7), and the regressor

φ(tk, ρ) =
[

−x̂(tk−1, ρ) . . . x̂(tk−nα
, ρ) u(tk) . . . u(tk−nβ

)
]T

(1.16)

where x̂(tk, ρ) is obtained as the solution of the difference equation

x̂(tk, ρ) + α1x̂(tk−1, ρ) + . . .+ αnα x̂(tk−nα
, ρ) = β0u(tk) + . . .+ βnβ

u(tk−nβ
) (1.17)

Note that (1.15) is non-linear due to the dependence of ρ in the regressor vector. To
make the difference between (1.8) and (1.15), the latter is called pseudolinear regression.

As before, the parameters can be obtained by minimizing the prediction error. How-
ever, due to the non-linear predictor (1.15), (1.10) corresponds to a non-convex opti-
mization problem, and it cannot be guaranteed that the numerical search will yield to
a global minimum. An alternative to solve the problem is to use instrumental variable
techniques as for example the simplified refined instrumental variable method (SRIV)
[Young, 2011]. In that approach, the non-convex optimization is replaced by iterations
of convex optimization problems.

Direct identification of a CT ARX model

We assume here that the system can be represented by a CT ARX model, i.e.

M : y(na)(tk)+a1y
(na−1)(tk)+. . .+anay(tk) = b0u

(nb)(tk)+. . .+bnb
u(tk)+e(tk) (1.18)

where x(i)(tk) denotes the ith time derivative of the continuous-time signal x(t) at time
instant tk = kTs, and e(tk) is a zero-mean DT white noise.

The model (1.18) cannot be directly identified because the time-derivatives are usu-
ally not available. One standard approach to solve this problem is to use linear filter
methods, such as the state-variable filter (SVF) (see e.g. [Garnier et al., 2008] and the
prior references therein). The approach consists in filtering the model with a SVF, which
is a low-pass CT filter defined by 1

F (p) =
1

(p+ λsvf)
na

(1.19)

Then, the filtered signals y(i)
f (tk) and u

(i)
f (tk) are obtained. They correspond to the

prefiltered time-derivatives of the input and output in the bandwidth of interest, defined
via the choice of λsvf . This can be written as

y
(i)
f (tk) = F (p)y(i)(tk) i = 0, . . . , na (1.20a)

u
(i)
f (tk) = F (p)u(i)(tk) i = 0, . . . , nb (1.20b)

1The static gain can be made unity.
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1.2. Off-line identification of continuous-time models

or equivalently as

y
(i)
f (tk) = piF (p)y(tk) i = 0, . . . , na (1.21a)

u
(i)
f (tk) = piF (p)u(tk) i = 0, . . . , nb (1.21b)

Applying F (p) to (1.18) we obtain the following equation (which is nearly exact, except
for transients arising from initial conditions),

y
(na)
f (tk) + a1y

(na−1)
f (tk) + . . .+ anayf(tk) = b0u

(nb)
f (tk) + . . .+ bnb

uf(tk) + vf(tk) (1.22)

with
vf(tk) = F (p)e(tk) (1.23)

Equation (1.22) can be rewritten as a linear regression,

y
(na)
f (tk) = ϕf

T (tk)θ + vf(tk) (1.24)

where

y
(na)
f (tk) = pnaF (p)y(tk) (1.25a)

ϕf
T (tk) = F (p)ϕT (tk) (1.25b)

with the regression vector

ϕT (tk) =
[

−y(na−1)(tk) . . . −y(tk) u(nb)(tk) . . . u(tk)
]

(1.26)

i.e. its filtered version is given by

ϕf
T (tk) =

[

−y
(na−1)
f (tk) . . . −yf(tk) u

(nb)
f (tk) . . . uf(tk)

]

(1.27)

The parameter vector θ ∈ R
nθ is defined by

θ =
[

a1 . . . ana b0 . . . bnb

]T
(1.28)

The predictor for (1.18) is then given by

ŷ
(na)
f (tk|θ) = ϕf

T (tk)θ (1.29)

The parameter vector (1.28) can be estimated by the least squares method, i.e. by
solving the minimizing problem

θ̂ = arg min
θ∈R

nθ
V (1.30)

with

V =
1
N

N∑

k=1

[y(na)
f (tk) − ϕf

T (tk)θ]2 (1.31)

The closed form solution to (1.30) is

θ̂ =

[
N∑

k=1

ϕf(tk)ϕf
T (tk)

]−1

·

[
N∑

k=1

ϕf(tk)y(na)
f (tk)

]

(1.32)

This estimation method is called the least squares state-variable filter (LSSVF) ap-
proach.

6



Chapter 1. Introduction

Direct identification of a CT OE model

We assume here that the system can be represented by a CT OE model, i.e.

M

{

x(na)(tk) + a1x
(na−1)(tk) + . . . + anax(tk) = b0u

(nb)(tk) + . . .+ bnb
u(tk)

y(tk) = x(tk) + e(tk)
(1.33)

Analogously to the DT case, the predictor y(tk|θ) corresponds to a pseudolinear regres-
sion. However, in this case it involves the solution of the differential equation

x̂(na)(tk, θ) + a1x̂
(na−1)(tk, θ) + . . .+ ana x̂(tk, θ) = b0u

(nb)(tk) + . . .+ bnb
u(tk) (1.34)

Then, the PEM estimate given by

θ̂ = arg min
θ∈R

nθ

1
N

N∑

k=1

[y(tk) − ŷ(tk|θ)]2 (1.35)

is again a non-convex optimization problem. Alternatives to avoid the non-convex opti-
mization are the suboptimal instrumental variable state-variable filter (IVSVF) method
and the simplified refined instrumental variable method for CT models (SRIVC) [Young
et al., 2008], which is optimal for CT OE models. In Chapter 2, both IVSVF and SRIVC
will be recalled and then adapted to linear time-varying systems.

1.3 Identification of linear time-varying models

The purpose of this section is to show how to extend the direct approach for the estima-
tion of CT models to the case of linear time-varying (LTV) systems. The identification
of CT LTV models shares methodological aspects with the DT LTV case. Therefore, af-
ter some comments about LTV systems, we discuss approaches that have been proposed
in DT LTV identification.

1.3.1 Linear time-varying systems

A time-varying process can be defined as a system whose properties vary in time. In
real-life, processes are usually time-varying, for example, due to aging effects or changes
in the environmental conditions such as the temperature. Sometimes the time scale in
which we are interested in, is short enough, to consider the system as time-invariant.
However, this is not the case for the systems that we deal with in this thesis.

The parameters of a time-varying process can vary in the following four ways [Niedźwiecki,
2000, p. 60]:

• Slow persistent changes (sometimes called parameter drift)

• Infrequent abrupt changes

• Mixed-mode variations (slow and abrupt changes)

• All other changes (also called fast parameter variations)

Note, that there is no precise distinction between fast and slow parameter variation,
although several attempts to quantify the degree of non-stationarity have been done
[Niedźwiecki, 2000, p. 67]. In this work, it is assumed that the parameters change
slowly in time. In addition we restrain our attention to linear processes, that is, we will
focus on slowly linear time-varying (LTV) systems.
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LTV systems can be considered as a special class of linear parameter-varying (LPV)
systems. Contrary to an LTV system, the dynamics of an LPV process depend on an
independent external signal called scheduling variable, that can be measured. A typical
example of an LPV process is an aircraft, where the scheduling parameters are the speed
and altitude. Notice that for a given trajectory of the scheduling variable, an LTV system
is obtained. Due to the similarities between these type of systems, techniques developed
for LPV systems could be extended to LTV systems and vice versa. Identification of
LPV models has been recently addressed in e.g. [Tóth, 2010, Laurain et al., 2011].

1.3.2 Identification of discrete-time models

Non-recursive identification methods using a sliding window

Batch estimation can also be used for the estimation of slowly LTV systems. A simple
and intuitive approach is to estimate local LTI models through the weighted least squares
in a sliding window. Two possible options are the following [Niedźwiecki, 2000]:

• Sliding window least squares, which considers a rectangular window, meaning that
all the weights are equal.

• Exponentially weighted least squares, where old data is discarded by means of
exponential weights.

The identification of time-varying systems can also be tackled using deterministic
models for the parameter variations, and then performing the estimation with the batch
sliding window approach. Such a technique is explored for instance in [Chan and Zhang,
2011] by means of local polynomial modeling. Nevertheless, we are interested in on-
line identification, where it is hard to find an appropriate representation of the time-
varying parameters using deterministic models. Additionally the number of parameters
is increased, leading to estimates with larger variances.

Recursive identification methods

In recursive estimation, also called on-line or real-time identification, the model is se-
quentially updated every time new measurements become available. In comparison with
batch estimation, recursive algorithms are in general advantageous in terms of having
less computational cost. In this thesis, we focus on recursive identification.

Remark 1.1 (Recursive on-line and recursive off-line identification). Note that recur-
sive algorithms can be applied in an off-line or on-line fashion. In the former case,
iterations can be used to improve the estimates (see e.g. [Solbrand et al., 1985, Young,
2015]). Nevertheless, recursive identification is particularly suitable for on-line applica-
tions in which the model parameters are time-varying. Thus we can talk about recursive
off-line or recursive on-line estimation, although in this study we concentrate on the
latter. Here, whenever the word recursive is used alone, it would then mean recursive
on-line.

A large number of studies have been conducted on the recursive estimation of DT
models (see e.g. [Ljung and Söderström, 1983, Goodwin and Sin, 1984, Ljung and
Gunnarsson, 1990, Ljung, 1999, Haykin, 2014] and the references therein). Some well-
known algorithms, summarized in [Ljung, 1999], are:

• Recursive least squares method with forgetting factor (RLS-FF). This simple ap-
proach is derived from the exponentially weighted least squares. The drawback of
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this approach is that it is not suitable if the parameters vary at different rates.
In that case, a matrix forgetting factor could be used as it has been suggested in
[Saelid and Foss, 1983] (see also [Niedźwiecki, 2000, p. 105]).

• Kalman filter (KF). This algorithm is obtained by assuming that the parameters
vary as a random walk, which is a stochastic model. As the matrix forgetting factor
based method, the advantage of KF is that it is suitable when the parameters vary
at different speeds. The random walk is the simplest stochastic model from the
generalized random walk class [Young, 2011, p. 94], which has enhanced flexibility
(see also [Kitagawa and Gersch, 1984]).

• Recursive instrumental variable method (RIV). As the non-recursive counterpart,
this algorithm is algebraically very similar to the RLS, but with the advantage that
it has superior statistical properties. Different variants of RIV can be considered
[Ljung and Söderström, 1983]. To track time-varying parameter variations, RIV
can be used together with a forgetting factor or the KF as adaptation mechanism
[Young, 2011].

• Recursive prediction error method (RPEM). This algorithm is a gradient based
approach. The RLS and the least mean squares (LMS) method are part of this
family. Note that LMS and RLS are equally good for tracking slowly varying
parameters [Lindbom, 1995, p. 16].

Recursive estimation can be also performed using deterministic models. As we al-
ready mentioned, in on-line identification, it is hard to find an appropriate representation
of the time-varying parameters using deterministic models. Nevertheless, deterministic
modeling can offer a good performance for the problem of fast parameter variations
[Niedźwiecki, 2000]. Such a problem is addressed for instance in [Niedźwiecki and Kla-
put, 2002] using more than one deterministic model in a parallel estimation scheme; in
this way, the difficulty of finding a deterministic model is circumvented. Deterministic
models are also considered in the case of certain models for nonlinear systems, such as
state-dependent parameter (see e.g. [Young et al., 2001, Young, 2011]) and nonlinear
parameter varying (see e.g. [Previdi and Lovera, 2004]) models, although in this case
they are used to characterize the relationship between the parameter variations and the
measured system variables on which they are dependent. Finally, it is also valid to com-
bine deterministic and stochastic models, as in the case of dynamic harmonic regression
modeling [Young et al., 1999, Young, 2011].

Research in recursive estimation of DT time-varying models has continued in the last
decades, for instance, in the estimation of models with fast parameter variations. To
deal with that, methods based on the generalized random walk model class have been
developed. Such approaches are presented in [Zheng and Lin, 2003] considering a RLS
based algorithm and in [Rutström, 2005] considering a LMS based algorithm. Another
recent topic of research is the estimation of non-parametric models in the time-domain,
i.e. FIR models, using a regularization/Bayesian approach (see [Prando et al., 2016]
and references therein).

The amount of recursive identification methods is extensive. Therefore, choosing
an appropriate method is not an easy task. Criteria to make a good choice are for
instance rate of convergence, tracking ability, robustness, computational requirements
and numerical properties (see more in [Haykin, 2014, p. 23]). For the reasons given
above, in this work we will propose algorithms based on RLS, KF and RIV.

General recursive identification problem

Usually, the considered models can be written as a [Ljung, 1999]:

9



1.3. Identification of linear time-varying models

• Linear regression. For instance, the ARX model and finite impulse response (FIR)
model belong to this class. The corresponding predictor is given by

ŷ(tk|ρ) = φT (tk)ρ̂(tk−1) (1.36)

• Pseudolinear regression. For instance, the autoregressive moving average with
exogenous input (ARMAX) model and the OE model belong to this class. The
corresponding predictor is given by

ŷ(tk|ρ) = φT (tk, ρ)ρ̂(tk−1) (1.37)

In Section 1.2.2, the predictors for ARX and OE models were defined. The only differ-
ence here is that the parameter vector can vary in time.

The models can be identified using recursive algorithms which have usually the
following general form

ρ̂(tk) = ρ̂(tk−1) + µ(tk)L(tk)ε(tk) (1.38)

where ρ̂(tk) is the estimated time-varying parameter vector and ε(tk) the prediction
error given by

ε(tk) = y(tk) − ŷ(tk|ρ) (1.9)

with ŷ(tk|ρ) defined in (1.36) or (1.37) depending on the chosen model. The vector L(tk)
is the adaptation gain, and the scalar µ(tk) the step size; both L(tk) and µ(tk) depend
on the chosen algorithm [Ljung and Gunnarsson, 1990, Ljung, 1999]. In this thesis, we
consider algorithms that belong to (1.38) with µ(tk) = 1. Next we review two of them,
the RLS and KF methods.

Recursive least squares method

The RLS method is derived from the exponentially weighted least squares, i.e. from the
following optimization problem [Ljung, 1999]

ρ̂ = arg min
ρ∈R

nρ

N ′
∑

k=1

β(N ′, k)
[

y(tk) − ŷ(tk|ρ)
]2 (1.39)

where ŷ(tk|ρ) is the predictor (1.8), which corresponds to the linear regression (1.5).
β(N ′, k) is defined in terms of the forgetting factor λ(tj),

β(N ′, k) =

{∏N ′

j=k+1 λ(tj) 1 ≤ k ≤ N ′ − 1

1 k = N ′
(1.40)

Here we consider a constant forgetting factor λ. From (1.39) it can be shown that the
recursive least squares with forgetting factor method (RLS-FF) is given by [Ljung and
Söderström, 1983, Ljung, 1999]

ρ̂(tk) = ρ̂(tk−1) + L(tk)ε(tk) (1.41a)

ε(tk) = y(tk) − φT (tk)ρ̂(tk−1) (1.41b)

L(tk) =
P (tk−1)φ(tk)

λ+ φT (tk)P (tk−1)φ(tk)
(1.41c)

P (tk) =
1
λ

[

P (tk−1) − L(tk)φT (tk)P (tk−1)
]

(1.41d)

To start RLS, the initial conditions θ̂(t0) and P (t0) have to be specified. Usually,
these initial conditions are set to θ̂(t0) = 0 and P (t0) = c · Inρ , where c is a constant
and I is the identity matrix of order nρ [Ljung and Söderström, 1983, p. 21].

10



Chapter 1. Introduction

Kalman filter method

Let us assume that the model is the linear regression (1.5), and that the parameter
variations can be modeled as a random walk model; therefore the full model becomes

M

{

ρ(tk) = ρ(tk−1) + w(tk)

y(tk) = φT (tk)ρ(tk) + e(tk)
(1.42)

where w(tk) and e(tk) are zero-mean Gaussian noises with covariance matrix Qw and
variance σ2

e , respectively. An estimate of ρ(tk) can be obtained from a bayesian per-
spective, by further assuming that ρ(tk) has a Gaussian distribution with mean ρ0 and
covariance matrix P ∗

0 . The KF gives then the mean ρ̂(tk) and covariance matrix P ∗(tk)
of the posterior distribution [Ljung and Söderström, 1983]. The KF algorithm is given
by (see e.g. [Young, 2011])

Prediction step:

ρ̂(tk|tk−1) = ρ̂(tk−1) (1.43a)

P ∗(tk|tk−1) = P ∗(tk−1) +Qw (1.43b)

Correction step:

ρ̂(tk) = ρ̂(tk|tk−1) + L(tk)ε(tk) (1.43c)

ε(tk) = y(tk) − φT (tk)ρ̂(tk|tk−1) (1.43d)

L(tk) =
P ∗(tk|tk−1)φ(tk)

σ2
e + φT (tk)P ∗(tk|tk−1)φ(tk)

(1.43e)

P ∗(tk) = P ∗(tk|tk−1) − L(tk)φT (tk)P ∗(tk|tk−1) (1.43f)

The normalized KF, obtained from (1.43) by considering that

P ∗(tk)/σ2
e = P (tk) (1.44)

is given by

Prediction step:

ρ̂(tk|tk−1) = ρ̂(tk−1) (1.45a)

P (tk|tk−1) = P (tk−1) +Qn (1.45b)

Correction step:

ρ̂(tk) = ρ̂(tk|tk−1) + L(tk)ε(tk) (1.45c)

ε(tk) = y(tk) − φT (tk)ρ̂(tk|tk−1) (1.45d)

L(tk) =
P (tk|tk−1)φ(tk)

1 + φT (tk)P (tk|tk−1)φ(tk)
(1.45e)

P (tk) = P (tk|tk−1) − L(tk)φT (tk)P (tk|tk−1) (1.45f)

where Qn is the normalized covariance matrix, also called noise-variance ratio matrix,
and is given by

Qn =
Qw

σ2
e

(1.46)
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1.3. Identification of linear time-varying models

Remark 1.2 Let us consider that the true system is defined by a random walk and a
linear regression, i.e.

S

{

ρo(tk) = ρo(tk−1) + wo(tk)

y(tk) = φT (tk)ρo(tk) + eo(tk)
(1.47)

where wo(tk) and eo(tk) are zero-mean Gaussian noises with covariance matrix Qwo and
variance σ2

eo
, respectively. Then, if the system belongs to the model set (S ∈ M), the

KF estimate ρ̂(tk) is optimal, in the sense that it minimizes the a posteriori parameter
error covariance matrix, if KF is run with Qwo and σ2

eo
. However, for other models, the

KF is an ad hoc algorithm [Ljung and Gunnarsson, 1990, Ljung, 1999].

Remark 1.3 The matrix Qw is usually set as

Qw = diag{σ2
w1

. . . σ2
wnρ

} (1.48)

where σ2
wi

is the expected variation of the parameter ρi(tk). If all the parameters vary at
the same speed, then Qw = σ2

wInρ. On the other hand, if the parameter ρi(tk) is known
to be constant, then σ2

wi
can be set to zero or a value close to zero.

1.3.3 Identification of continuous-time models

A recent study concerning identification of both DT and CT LTV models is for instance
[Lataire, 2011], where an off-line frequency domain method has been developed. Sub-
space techniques applied in a recursive fashion have been also used to identify multiple-
input multiple-output (MIMO) systems [Bergamasco and Lovera, 2011].

However, the DT identification methods presented above could be applied to identify
a CT model using the indirect approach. Indirect recursive estimation has been used
for example in [Gustafsson and Olsson, 1999], although this is not a common approach,
because the advantages of the direct approach for LTI systems are also valid in the LTV
case.

Regarding direct approaches, one option is to use integral methods (see [Garnier
et al., 2003]), like block-pulse functions that are used in [Jiang and Schaufelberger,
1991]. The CT RPEM presented in [Östring and Gunnarsson, 2004] is also an integral
method, and it has been applied to obtain physical parameters of a flexible robot arm.
Another class of direct CT identification methods is the modulating function. A batch
scheme with a recursive implementation using modulating functions is proposed in [Co
and Ungarala, 1997, Ungarala and Co, 2000] for on-line estimation. A third class of
direct CT identification approaches is the linear filter methods. For instance, an on-
line linear filter based approach is presented in [Dimogianopoulos and Lozano, 2001],
where a batch estimation using the exponentially weighted least squares is considered.
Recursive algorithms, like RLS, RIV and the Kalman filter, can be coupled with linear
filter methods [Åstrom and Wittenmark, 2008, p. 59]. That is done in [Isermann and
Münchhof, 2010], where the recursive version of LSSVF, presented in Section 1.2.2, is
used to track not only slowly but also abrupt parameter variations (see also [Canudas de
Wit, 1986]). In this study we focus on linear filter based recursive algorithms but only
for CT systems whose parameters vary slowly in time.

Indirect vs direct identification

Analogously to the batch estimation case, recursive identification can be used to identify
CT LTV models either in a indirect or direct way. To illustrate the two approaches, let

12



Chapter 1. Introduction

us consider a CT LTV OE system,

S

{

Ao(p, t)x(t) = Bo(p, t)u(t)

y(tk) = x(tk) + eo(tk)
(1.49)

where eo(tk) is a zero-mean DT white noise sequence, and

Bo(p, t) = bo
0(t)pnb + bo

1(t)pnb−1 + . . .+ bo
nb

(t) (1.50)

Ao(p, t) = pna + ao
1(t)pna−1 + . . .+ ao

na
(t) (1.51)

In this Chapter, we assume that system S can be represented by a CT LTV ARX model
set2, i.e.

M : y(na)(tk) + a1(tk)y(na−1)(tk) + . . .+ ana(tk)y(tk) =

b0(tk)u(nb)(tk) + . . . + bnb
(tk)u(tk) + e(tk) (1.52)

In the indirect approach, after building the predictor, the estimates are compute
with (1.38). Since the system is LTV, the conversion from DT to CT has to be done in
every recursion.

In the direct approach using linear filter methods, we need to write (1.52) as a linear
regression. In the LTV case, this is not obvious since the differentiation operator p
is not commutative with the time-dependent variables. Therefore, a filter cannot be
applied in order to obtain prefiltered time-derivatives. However, if we assume that the
parameters vary slowly, we can neglect the non-commutativity problem. This issue will
be formalized and discussed further in Chapter 2. In the meantime, let us state that
this is possible. Analogously to the LTI case (see (1.24)), applying a filter F (p) to (1.52)
we obtain the filtered time-varying linear regression

y
(na)
f (tk) = ϕf

T (tk)θ(tk) + vf(tk) (1.53)

with y
(na)
f (tk) and ϕf(tk) defined in (1.25), and vf(tk) = F (p)e(tk). The parameter

vector is now

θ(tk) =
[

a1(tk) . . . ana(tk) b0(tk) . . . bnb
(tk)

]T
(1.54)

Then, the corresponding prediction error is

ε(tk) = y
(na)
f (tk) − ϕT

f (tk)θ̂(tk−1) (1.55)

Once the predictor is obtained, the CT parameters are obtained with a recursive
algorithm of the general class (1.38), i.e. in this case

θ̂(tk) = θ̂(tk−1) + µ(tk)L(tk)ε(tk) (1.56)

A scheme of the indirect and direct recursive identification approaches, applied to a
linear regression model, is presented in Figure 1.3. For a pseudolinear regression the
procedure is quite similar, but more involved due to the computation of the predictor.

Note that the prefiltering is an inherent step of the linear filter methods. In DT
recursive estimation, data filtering is not compulsory, but it is sometimes recommended
to cope with disturbances [Åstrom and Wittenmark, 2008, p. 466] or to enhance a
certain frequency band. As the p operator, the shift operator q is also not commutative
with time-dependent variables. Thus, in DT recursive estimation, if the data is filtered,
the non-commutativity problem mentioned above does also exist.

2A CT LTV OE model set will be considered in Chapter 2.
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1.3. Identification of linear time-varying models

Figure 1.3: Indirect and direct recursive identification of a physical parameter vector
θ̂p(tk).
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Recursive least squares state-variable filter method

The direct LSSVF method presented in Section 1.2.2 can be implemented in a recursive
fashion based on the methodology used in the DT case. To cope with the parameter
variation we can consider the forgetting factor. Then the estimates are obtained with
the following algorithm [Isermann and Münchhof, 2010]:

θ̂(tk) = θ̂(tk−1) + L(tk)ε(tk) (1.57a)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)θ̂(tk−1) (1.57b)

L(tk) =
P (tk−1)ϕf(tk)

λ+ ϕf
T (tk)P (tk−1)ϕf(tk)

(1.57c)

P (tk) =
1
λ

[

P (tk−1) − L(tk)ϕf
T (tk)P (tk−1)

]

(1.57d)

where y(na)
f (tk) and ϕf(tk) are defined in (1.25). Algorithm (1.57) will be called the

recursive least squares state-variable filter with forgetting factor (RLSSVF-FF) method.
The second option is to couple LSSVF with KF as an adaptation mechanism for the

time-varying parameters. Then, the parameters are modeled through a random walk,
i.e.

θ(tk) = θ(tk−1) + w(tk) (1.58)

The full model is given by (1.52) and (1.58), with w(tk) and e(tk) independent zero-mean
DT Gaussian noise processes with covariance matrix Qw variance σ2

e , respectively.
Then, the algorithm, based on the DT methodology (see e.g. [Young, 2011]), is

defined by

Prediction step:

θ̂(tk|tk−1) = θ̂(tk−1) (1.59a)

P (tk|tk−1) = P (tk−1) +Qn (1.59b)

Correction step:

θ̂(tk) = θ̂(tk|tk−1) + L(tk)ε(tk) (1.59c)

ε(tk) = y
(na)
f (tk) − ϕT

f (tk)θ̂(tk|tk−1) (1.59d)

L(tk) =
P (tk|tk−1)ϕf(tk)

1 + ϕT
f (tk)P (tk|tk−1)ϕf(tk)

(1.59e)

P (tk) = P (tk|tk−1) − L(tk)ϕT
f (tk)P (tk|tk−1) (1.59f)

where y(na)
f (tk) and ϕf(tk) are defined in (1.25). Algorithm (1.59) will be called the

recursive least squares state-variable filter based Kalman filter (RLSSVF-KF) method.
Two algorithms have been presented, RLSSVF-FF and RLSSVF-KF. In the thesis,

we mainly use RLSSVF-KF; therefore, to simplify the notation we denote it just as
RLSSVF.

To start RLSSVF, the initial conditions θ̂(t0) and P (t0) have to be specified. In this
work, unless otherwise stated we choose θ̂(t0) = 0 and P (t0) = 104 · Inθ

.

Remark 1.4 The cut-off frequency λsvf is a user parameter that should be chosen some-
what larger than the system bandwidth. In the LTV case and especially for systems with
large variations in the bandwidth, the specification of λsvf can be critical since the system
bandwidth is time-varying. Some other aspects about the SVF and the choice of λsvf are
discussed in Section 3.1.
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Figure 1.4: Part of the input-output data.

Notice that in CT recursive estimation, an additional computation is needed to
obtain the simulated model output, which we can use to define the output error as
follows

εy(tk) = y(tk) − ŷ(θ̂(tk)) (1.60)

1.3.4 Numerical example - Similar parameter variations

We illustrate the indirect and direct approach with an example where the parameters
vary at a similar rate. Let us consider the following CT LTV OE system

S

{(

p2 + ao
1(t)p+ ao

2(t)
)

x(t) = bo
0(t)u(t)

y(tk) = x(tk) + e(tk)
(1.61)

where
ao

1(t) = 2ζdωn(t) ao
2(t) = bo

0(t) = ω2
n(t) (1.62)

with constant damping ζd = 0.6 and

ωn(t) = 2(1 + 0.3 cos(2πt/4500)) (1.63)

For this second order underdamped system, the measurements have a sampling time
Ts = 0.1 s and the total simulation time is 9000 s. Let us define the signal-to-noise ratio
(SNR) as follows

SNR = 10 log

(

Px

Pe

)

(1.64)

where Px and Pe denote the average power of the noise-free output and the additive noise,
respectively. In this example, the DT measurement noise is a zero-mean, Gaussian noise
with constant variance 0.05, that corresponds to SNR ≈ 11 dB. The input of the system
is a PRBS. Part of the input-output data is shown in Figure 1.4. The step responses
and the Bode plots for some frozen systems obtained every 250 s are plotted in Figures
1.5 and 1.6, respectively. The bandwidth of the same frozen system are shown in Figure
1.7.
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Figure 1.5: Step responses for some frozen systems obtained every 250 s. The system
responses for t1 = 0 and tN ′ = 9000 s, matching in this case, are highlighted.
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Figure 1.6: Bode plots for the frozen systems obtained every 250 s. The bode plots for
t1 = 0 and tN ′ = 9000 s, matching in this case, are highlighted.
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Figure 1.7: Bandwidth ωb for the frozen systems obtained every 250 s.
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Figure 1.8: True DT parameters and RLS estimates of the DT model.

Indirect vs direct identification

For the indirect identification we need to determine the discrete-time equivalent of the
true system (1.61). Considering the appropriate zero-order hold assumption for the
input, in this case, it is given by

x(tk) + αo
1(tk)x(tk−1) + αo

2(tk)x(tk−2) = βo
1(tk)u(tk−1) + βo

2(tk)u(tk−2) (1.65a)

y(tk) = x(tk) + e(tk) (1.65b)

For the model set we assume a DT LTV ARX representation, i.e.

y(tk) + α1(tk)x(tk−1) + α2(tk)y(tk−2) = β1(tk)u(tk−1) + β2(tk)u(tk−2) + e(tk) (1.66)

The model is estimated with the MATLAB routine recursiveARX with a KF as adap-
tation mechanism. That corresponds to the KF algorithm (1.43). By trial and error,
we define the normalized covariance matrix Qn (see (1.46)), which is given by

Qn = diag([10−3 10−3 10−5 10−5)

The true system is an OE representation, which is a common description of many
physical processes. However, for the model set we have chosen an ARX representation
which corresponds to a linear regression. The advantage of the linear regression is that it
can be estimated using RLS, which is a simple and computationally efficient algorithm.
However, there is a mismatch between the noise of the true system and the model,
which would lead to worse estimates. To compensate this effect, data prefiltering will
be considered. In the direct approach we will use RLSSVF, with an SVF (see (1.19))
of order na = 2 and cut-off frequency λsvf = 3.2 (rad/s); note that for λsvf we have
conveniently chosen a value slightly larger than the maximum system bandwidth (see
Figure 1.7). In the indirect method, for data prefiltering, we consider the same SVF
discretized with the bilinear transform. The DT estimates are shown in Figure 1.8;
notice that the estimates for αi(tk) are better than the estimates for βi(tk). At every
step, the conversion from DT to CT parameters is carried out using the appropriate
zero-order hold assumption. The transformed CT estimates from the indirect method
are presented in Figure 1.9(a).

In the direct approach we assume a CT LTV ARX representation for the model set,
i.e.

y
(2)
f (tk) + a1(tk)y(1)

f (tk) + a2(tk)yf(tk) = b0(tk)u(tk) + e(tk) (1.67)
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Figure 1.9: True CT parameters and CT estimates from the indirect RLS and direct
RLSSVF methods.

Again, there is a mismatch between the noise of the true system and the model set. How-
ever in this case, there is no need of data prefiltering since the direct method considers
a prefiltering operation in order to obtain the prefiltered time-derivatives. The model is
estimated with RLSSVF-KF (1.59). We need to select the normalized covariance ma-
trix Qn. Since the parameters vary at a similar rate, according to Remark (1.3), we can
simplified the problem and use Qn = σ2

w ·I3; by trial and error we choose Qn = 10−4 ·I3.
In Figure 1.9(b), the RLSSVF estimates are plotted.

Both the indirect and direct methods are able to track the CT parameters, even when
the mismatch between the noise of the true system and the model introduces errors in
the estimates. However, in the indirect approach we estimate first 4 DT parameters
while in the direct approach 3. Therefore, in the direct approach Qn is 1 dimension
smaller, which means that it is easier to choose than in the indirect approach.

In Section 2.3.5, this example is revisited considering the right OE model and IV
based methods. As we can expect, that will lead to better results.

1.4 Recursive identification in practice

Applying on-line identification in real-life problems is challenging, because practical and
implementation issues have to be considered. In [Fridholm et al., 2016] for instance,
some issues like noise effects, model errors and numerical aspects have been addressed
in the context of automotive lithium-ion batteries. Literature discussing and proposing
solutions to these topics are e.g. [Niedźwiecki, 2000] and [Åstrom and Wittenmark,
2008].

A very important practical issue in recursive estimation is the poor excitation sit-
uation, which has received a lot of attention in the last decades [Cao and Schwartz,
1999, 2004, Stenlund and Gustafsson, 2002, Evestedt et al., 2008]. Input richness is
required for the stability and convergence of the algorithms. Under poor excitation
conditions, the parameter estimates will not be accurate and in the worst case scenario
they will blow up. This phenomenon is called estimator windup, and strategies to solve
the problem will be presented.

Another practical issue is the choice of hyperparameters of the identification algo-
rithms. For the Kalman filter, the hyperparameters are the covariance matrices that
can be estimated using different methods like Maximum Likelihood and Expectation
Maximization [Young, 2011, Bavdekar et al., 2011]. In this thesis, the former is adapted
to the direct CT identification scenario.
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Regarding implementation issues, we will address the numerical aspects of the es-
timation algorithms. In batch estimation, standard tools to improve the conditioning
of the least squares problem are the singular value decomposition and QR-factorization
[Ljung, 1999]. In recursive estimation, which is typically implemented in microcon-
trollers, this issue may be more critical due to roundoff errors introduced as a con-
sequence of poor machine precision. Several solutions, like square root filtering (see
e.g. [Grewal and Andrews, 2015]), have been proposed to deal with this problem. The
use of such methods will be discussed in the particular context of CT identification.
Additionally other implementation issues will be tackled.

1.5 Applications in recursive identification

Applications in which recursive schemes are used can be divided in the following cate-
gories according to [Gustafsson, 2000, p. 4]:

• Surveillance and parameter tracking. For example, monitoring and adaptive con-
trol are part of this category.

• State estimation. Observer-based controller, like Linear Quadratic Gaussian (LQG)
controllers belongs to this category.

• Fault diagnosis. The use of detection together with isolation techniques, usually
called diagnosis, is part of this area.

A precise definition of some of the terms mentioned above, like surveillance and moni-
toring, that are related to fault detection, can be found in [Gustafsson, 2000, p. 475].
It is important to keep in mind, that the evaluation criteria of the methods depends on
the application [Gustafsson, 2000]. Direct CT identification methods proposed in this
thesis are suitable for monitoring physical parameters. The goal in such an application
is to have small tracking errors, while in other it might be more important to have small
prediction errors.

There are many successful applications in which recursive estimation methods have
been used. In control systems for instance, some applications using an ABB adaptive
controller are presented in [Åstrom and Wittenmark, 2008]. In adaptive regulation,
where the aim is to attenuate time-varying disturbances, some applications are given in
[Landau et al., 2011]. Regarding fault detection/diagnosis, examples of applications are
presented in [Isermann, 1993, Sbarbaro et al., 2008].

The application that has motivated our research is an electronic throttle control
(ETC), which is a system used in automobiles to regulate air flow in the internal com-
bustion engine. These devices have been intensively studied in the last two decades (see
[Pavković et al., 2006, di Bernardo et al., 2010, Zhang et al., 2015] and references therein).
In simple terms, the ETC works as follows: the airflow is regulated by a throttle valve
which is actuated by a DC servomotor that is regulated by a controller. This system
is time-varying because of aging effects and temperature variations. In Chapter 4, our
aim is to use the developed techniques to recursively estimate the physical parameters
of a throttle valve model, that could be useful for monitoring, an adaptive controller or
a fault diagnosis mechanism. Since we are interested in the physical parameters of the
system, we focus on direct CT model identification.

1.6 Organization of this thesis and contributions

In CT LTI system identification, IV based approaches are an efficient tool to reduce
bias in the estimates. In particular, the SRIVC method can deliver optimal (unbiased
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Chapter 1. Introduction

and minimum variance) estimates. In CT LTV system identification, IV allows us to
obtain more accurate models. In Chapter 2, the goal is to extend IV based methods to
the estimation of LTV systems operating both in open loop and closed loop. Through
numerical examples we show the overall good performance of these algorithms.

In practice, recursive identification of DT time-varying systems is challenging, be-
cause several practical aspects and implementation issues have to be considered. In
the recursive algorithms for CT LTV systems that we proposed in Chapter 2, similar
practical aspects and implementation issues appear. The goal of Chapter 3 is to present
suitable solutions to some of them. Regarding practical aspects, we address the problem
of estimating hyperparameters of the presented algorithms. Another important aspect
is the problem of poor excitation. Implementation issues which lead to improvement in
numerical aspects are also discussed.

Chapter 4 is dedicated to two applications. The first one is a real-life electronic
circuit which has been recently proposed as a benchmark for both LPV and LTV model
identification [Lataire et al., 2015]. The second one is the throttle valve where it is
assumed that the model parameters vary due to the temperature. Since there are non-
linearities in the system, the identification method proposed in Chapter 2 has to be
adapted to this particular case.
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Chapter 2

Instrumental variable based
methods

2.1 Introduction

Instrumental variable (IV) methods, studied in statistics, econometrics and engineering,
have a long history. One of the first publications in engineering is [Wong and Polak,
1967]. The literature on this technique is extensive (see e.g the books [Söderström and
Stoica, 1983, Young, 1984, Ljung, 1999] and the references therein). Recent studies are
for instance [Gilson and Van den Hof, 2005, Laurain et al., 2011, Tóth et al., 2012].
The popularity of IV methods lies in the simplicity of some of its variants together with
superior statistical properties in comparison with the least squares.

In CT LTI system identification, it is well-known that LSSVF, although simple,
is unsatisfactory because the resultant parameter estimates are asymptotically biased.
Instrumental variable methods are suitable approaches to deal with bias reduction. Two
approaches, mentioned briefly in Chapter 1, are:

• Instrumental variable state-variable filter (IVSVF).

• Simplified refined instrumental variable method of estimation for continuous-time
models (SRIVC).

In CT LTV systems, IV based methods allow us to obtain more accurate models. In
this chapter, the methods IVSVF and SRIVC are extended to LTV systems, both for
open loop and closed loop identification.

The contents of this chapter consists basically in two parts; the first one dedicated
to open-loop identification and the second to closed-loop identification. The former is
partly based on [Padilla et al., 2016], and it is organized as follows: In Section 2.2,
we address the identification of linear time-invariant (LTI) systems. First we recall the
optimal IV solution and then the IVSVF and SRIVC methods. Afterwards we present
the recursive algorithms for the LTI case. Section 2.3 is dedicated to the identification
of linear-time varying models. After formulating the problem, we discuss how to handle
the problem of the time-derivatives. Then, the recursive IV based methods for the
LTV case are developed. In Section 2.3.4 we discuss measures to assess the estimator
performance. We finish the first part with two numerical examples.

The second part, dedicated to the closed-loop case, is based on [Padilla et al., 2017]
and it is organized as follows: In Section 2.4.1, the identification problem is formulated.
Then, in Section 2.4.2, the optimal closed loop IV solution is revisited. In Section 2.4.3,
the closed-loop IV identification methods for LTI models are reviewed. Afterwards, the
recursive algorithms for the LTI case are developed. The proposed closed-loop IV based
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Chapter 2. Instrumental variable based methods

identification methods for linear CT slowly time-varying systems are given in Section
2.4.5 and afterwards a numerical example is presented in Section 2.4.6.

2.2 Open-loop identification of LTI models

2.2.1 Optimal IV estimation

Our goal is to find a model for the CT LTI OE system (1.1). In Chapter 1, we propose
to represent S with a CT LTI ARX model and estimate it using LSSVF. However, the
LSSVF estimate is biased because ϕf(tk) and vf(tk) are correlated [Garnier, 2015], since
both terms are correlated with e(tk).

In this thesis, we propose to solve this problem with IV techniques; arguments to
favor this choice have been given in Section 1.2.2. Let us recall the optimal IV method
where the estimate is defined by

θ̂ = arg min
θ∈R

nθ

1
N

∥
∥
∥
∥
∥

[
N∑

k=1

F (p)ζ(tk)F (p)ϕT (tk)

]

θ −

[
N∑

k=1

F (p)ζ(tk)F (p)y(na)(tk)

]∥
∥
∥
∥
∥

2

W
(2.1)

where F (p) is a stable prefilter and ‖x‖2
W = xTWx, with W a positive definite weighting

matrix. ζ(tk) is the instrument vector that can be computed in different ways. If S ∈ M,
the estimates (2.1) are consistent under the following conditions [Söderström and Stoica,
1983] 1:

C1. Ē{F (p)ζ(tk)F (p)ϕT (tk)} is full column rank.

C2. Ē{F (p)ζ(tk)F (p)vo(tk)} = 0.

with vo(tk) = Ao(p)eo(tk). Optimal estimates, i.e. unbiased and minimum variance
estimates, are obtained if the following additional conditions are satisfied (see [Tóth
et al., 2012] and references therein)

C3. W = I

C4. F (p) = 1
Ao(p)

C5. The instrument vector is computed using the auxiliary model

ζ(tk) =
[

−x(na−1)(tk) . . . −x(tk) u(nb)(tk) . . . u(tk)
]T

(2.2)

where

x(t) =
Bo(p)
Ao(p)

u(t) (2.3)

It is important to notice that the optimal solution requires knowledge of the true system,
i.e. the optimal instrument (2.2) and optimal auxiliary model (2.3) are built assuming
that the true system is known.

1The notation Ē[.] = limN→∞
1
N

∑N

k=1
E[.] is adopted from the prediction error framework of [Ljung,

1999].
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2.2. Open-loop identification of LTI models

2.2.2 Off-line IV algorithms

A basic suboptimal solution to (2.1) is the IVSVF method. This is a two-step approach
with F (p) defined in (1.19). In the first step, LSSVF estimates θ̂1 are computed from
(1.32). In the second step, the estimates are obtained using the instrumental variable
estimator, i.e.

θ̂2 =

[
N∑

k=1

ζf(tk, θ̂1)ϕf
T (tk)

]−1

·

[
N∑

k=1

ζf(tk, θ̂1)y(na)
f (tk)

]

(2.4)

where y(na)
f (tk) and ϕf(tk) are given in (1.25). The filtered instrument ζf(tk, θ̂1) is defined

through the instrument

ζ(tk, θ̂1) =
[

−x̂(na−1)(tk) . . . −x̂(tk) u(nb)(tk) . . . u(tk)
]T

(2.5)

with x̂(tk) given by the auxiliary model

x̂(tk) =
B(p, θ̂1)

A(p, θ̂1)
u(tk) (2.6)

Then,

ζf(tk, θ̂1) = F (p)ζ(tk, θ̂1)

=
[

−x̂
(na−1)
f (tk) . . . −x̂f(tk) u

(nb)
f (tk) . . . uf(tk)

]T
(2.7)

An optimal IV method for CT OE models is the SRIVC method. This is an iterative
method, where both the prefilter and the instruments are updated in each iteration based
on the parameter estimates obtained at the previous iteration. The SRIVC estimate at
the ith iteration is given by

θ̂i =

[
N∑

k=1

ζf(tk, θ̂
i−1)ϕf

T (tk, θ̂
i−1)

]−1

·

[
N∑

k=1

ζf(tk, θ̂
i−1)y(na)

f (tk, θ̂
i−1)

]

(2.8)

In this case, the filtered linear regression (1.24) is obtained using the following adap-
tive prefilter

F (p, θ̂i−1) =
1

Â(p, θ̂i−1)
(2.9)

Therefore,

y
(na)
f (tk, θ̂

i−1) = pnaF (p, θ̂i−1)y(tk) (2.10a)

ϕT
f (tk, θ̂i−1) = F (p, θ̂i−1)ϕT (tk) (2.10b)

The filtered instrument ζf(tk, θ̂i−1) is defined through the instrument

ζ(tk, θ̂i−1) =
[

−x̂(na−1)(tk) . . . −x̂(tk) u(nb)(tk) . . . u(tk)
]T

(2.11)

with x̂(tk) defined by the auxiliary model

x̂(tk) =
B̂(p, θ̂i−1)

Â(p, θ̂i−1)
u(tk) (2.12)
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Chapter 2. Instrumental variable based methods

Figure 2.1: Summary of linear filter methods.

Then,

ζf(tk, θ̂i−1) = F (p, θ̂i−1)ζ(tk, θ̂i−1)

=
[

−x̂
(na−1)
f (tk) . . . −x̂f(tk) u

(nb)
f (tk) . . . uf(tk)

]T
(2.13)

The three linear filter methods presented so far are summarized in Figure 2.1. We
can see for each approach the corresponding prefilter and auxiliary model.

Remark 2.1 In a more general case, the measurement noise in S might be colored. A
reliable solution is then to use the RIVC method [Young, 2011]. Nevertheless, the SRIVC
algorithm has the advantage of its much simpler implementation in this recursive esti-
mation context and it performs optimally if the additive noise is white, i.e. estimates are
consistent and asymptotically efficient. Moreover, if the noise is colored, with rational
spectral density, then the estimates remain consistent, thanks to the inherent instrumen-
tal variable mechanism; and although they do not have minimum variance, experience
has shown that the estimates are often relatively efficient ( i.e. they have low but not
minimum variance [Young, 2011, Garnier, 2015]). Taking into account the trade-off
between accuracy and implementation issues, the recursive version of both IVSVF and
SRIVC are considered in this work.

2.2.3 Recursive instrumental variable methods

The recursive version of IVSVF (RIVSVF) is the following algorithm, which is based
on the methodology used in the DT case, i.e. in this case considering the recursive
instrumental variable method (see e.g. [Young, 2011]):

θ̂(tk) = θ̂(tk−1) + L(tk)ε(tk) (2.14a)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)θ̂(tk−1) (2.14b)

L(tk) =
P (tk−1)ζf(tk)

1 + ϕf
T (tk)P (tk−1)ζf(tk)

(2.14c)

P (tk) = P (tk−1) − L(tk)ϕf
T (tk)P (tk−1) (2.14d)

where y(na)
f (tk) and ϕf(tk) are defined in (1.25). However, note that the CT filtering

operations involved in (1.25) in the off-line case are different than in the recursive case.
This implementation issue is discussed later in Section 3.1.3. The filtered instrument
ζf(tk) is defined through the instrument

ζ(tk, θ̂(tk−1)) =
[

−x̂(na−1)(tk) . . . −x̂(tk) u(nb)(tk) . . . u(tk)
]T

(2.15)
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2.3. Open-loop identification of LTV models

with x̂(tk) given by the auxiliary model

Â(p, θ̂(tk−1))x̂(tk) = B̂(p, θ̂(tk−1))u(tk) (2.16)

Then,

ζf(tk) = F (p)ζ(tk, θ̂(tk−1))

=
[

−x̂
(na−1)
f (tk) . . . −x̂f(tk) u

(nb)
f (tk) . . . uf(tk)

]T
(2.17)

For the sake of simplicity, hereafter and whenever necessary, the parameter depen-
dency will be sometimes omitted, as it is the case for ζf(tk) in (2.17), which should be
ζf(tk, θ̂(tk−1)). Contrary to the off-line case, where the dependency is w.r.t. an estimate
of a previous step, here it is w.r.t. an estimate of a previous recursion.

For the recursive version of SRIVC (RSRIVC), the algorithm is given by (2.14), but
with

y
(na)
f (tk) = pnaF (p, θ̂(tk−1))y(tk) (2.18a)

ϕf
T (tk) = F (p, θ̂(tk−1))ϕT (tk) (2.18b)

where the adaptive prefilter is

F (p, θ̂(tk−1)) =
1

Â(p, θ̂(tk−1))
(2.19)

From ζ(tk) given in (2.15), we define the filtered instrument ζf(tk) by

ζf(tk) = F (p, θ̂(tk−1))ζ(tk, θ̂(tk−1))

=
[

−x̂
(na−1)
f (tk) . . . −x̂f(tk) u

(nb)
f (tk) . . . uf(tk)

]T
(2.20)

It should be noted that in this case, not only x̂(tk), but also the prefilter (2.19) depend on
the estimate θ̂(tk−1), meaning actually that all prefiltered variables depend on θ̂(tk−1).
Notice also that in off-line identification with SRIVC, the auxiliary model and prefilter
depend on an estimate of a previous iteration, whereas in the recursive case they depend
on an estimate of a previous recursion.

Both RIVSVF and RSRIVC are initialized with RLSSVF. The transition from the
latter to the IV based methods can be manually set by the user at a time instant that
we denote ts,iv. Techniques that allow us to perform this transition automatically will
be discussed in Chapter 3.

2.3 Open-loop identification of LTV models

In this section, the aim is to extend these IV approaches presented previously to real-
time estimation of linear time-varying systems.

2.3.1 Problem formulation

Let us consider a CT LTV OE system with input u and output y. The data generating
system is given by

S

{

Ao(p, t)x(t) = Bo(p, t)u(t)

y(tk) = x(tk) + eo(tk)
(1.49)
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Chapter 2. Instrumental variable based methods

where eo(tk) is a zero-mean DT white noise sequence. We assume that the system (1.49)
can be represented by the model set

M

{

A(p, t, θ)x(t) = B(p, t, θ)u(t)

y(tk) = x(tk) + e(tk)
(2.21)

A(p, t, θ) and B(p, t, θ) are the following polynomials with time variable parameters:

B(p, t, θ) = b0(t)pnb + b1(t)pnb−1 + . . .+ bnb
(t)

A(p, t, θ) = pna + a1(t)pna−1 + . . . + ana(t)

where na ≥ nb and e(tk) is a zero-mean DT white noise. The time-varying parameters
can be gathered in the parameter vector θ(t), i.e.

θ(t) =
[

a1(t) . . . ana(t) b0(t) . . . bnb
(t)
]T

(2.22)

The following assumptions are supposed to be satisfied:

A1. The system and the model set have CT LTV OE representation, with poly-
nomial degrees na and nb a priori known.

A2. The true parameter vector θo(t) is slowly time-varying in the sense that in a
local window with time interval s ∈ [ti, tf ], it can be locally approximated by a
constant parameter vector θc, i.e.

‖θ̇o(t)‖ ≤ ǫθ such that ‖θo(s) − θc‖ ≤ ǫ∆θ (2.23)

where ǫθ and ǫ∆θ are small numbers.

A3. The input u is persistently exciting.

Then, the identification problem is to recursively estimate the time-varying parameters
that characterize the model structure given by (2.21), based on sequential samples of
input and output data ZN ′ = {u(tk); y(tk)}N ′

k=1, where N ′ is the number of samples
which increases by one with every recursion.

2.3.2 Handling of the time-derivative issue

As it was briefly mentioned in Section 1.3.3, multiplication with the differentiation
operator p is not commutative with the time-dependent variables, i.e.

pB(p, t, θ)u(t) 6= B(p, t, θ)pu(t)

Thus, it would appear at first that we are no longer able to filter the LTV model (2.21)
without introducing errors and obtain a linear regression, as in the LTI case (see (1.24)).
One solution would be to model the time-varying parameters in a deterministic way such
that the new parameters are constant or nearly constant, as in [Jiang and Schaufelberger,
1991]. For on-line estimation, the difficulty of such an approach lies in finding suitable
deterministic models. Moreover, extra parameters are introduced and, as a consequence,
larger variance of the estimates are obtained.

Alternatively, we consider Assumption (A2) in Section 2.3.1, which states that the
true time-varying parameters are slowly varying in the sense that the system can be
locally approximated by a constant parameter vector, i.e. an LTI model. Recursive es-
timation algorithms capable of tracking time-varying parameters have a finite memory,
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2.3. Open-loop identification of LTV models

meaning that the data used for identification is a sliding window in which the approx-
imation of the LTI system is valid. Since an LTI representation does not suffer from
the non-commutativity problem, then the non-commutativity aspect is negligible in the
estimation of slowly LTV systems. Thus, as in the LTI case, prefilter time-derivatives
can be obtained by applying a low-pass filter to the model (2.21). Analogous to the case
for CT LTV ARX models (see (1.53)), applying a filter F (p) to (2.21) we obtain

y
(na)
f (tk) = ϕf

T (tk)θ(tk) + vf(tk) (2.24)

where y(na)
f (tk) and ϕf(tk) are defined in (1.25). The difference between (1.53) and (2.24)

is that in the latter the filtered noise is given by

vf(tk) = F (p)A(p, t, θ)e(tk) (2.25)

Remark 2.2 In [Dimogianopoulos and Lozano, 2001], the same reasoning is done to
compute prefilter time-derivatives and estimate a CT model. Moreover, the authors
provided Lemma 1 which guarantees the existence of a local LTI representation under
the conditions of a bounded change ratio of the true parameters and bounded measure-
ment noise. Lemma 1 has been derived from a exponentially weighted least squares in
continuous-time in order to have an explicit dependency on the change ratio of the true
parameters. However, Lemma 1 can be also expressed in DT using approximations of
the derivatives and integrals involved in the formulation.

In practice, a simple way to validate Assumption (A2) would be to compare the cost
functions

V [θ̂(s)]
ti≤s≤tf

=
1
N

f
∑

k=i

[y(na)
f (tk) − ϕf

T (tk)θ̂(tk)]2 (2.26)

with V [θc], where θc ∈ θ̂(s). Then, Assumption (A2) is valid, if

V [θc]

V [θ̂(s)]
ti≤s≤tf

≈ 1 (2.27)

Remark 2.3 In tracking analysis it can be distinguished between transient mode and
tracking mode [Rutström, 2005]. The former mode starts when the parameters jump due
to either an inaccurate initialization of the recursive algorithm or an abrupt change in
the system. After the transient mode, we arrive at the tracking mode which is a steady-
state condition. In recursive estimation of LTI models, the estimated parameters vary
abruptly in the transient mode, and then they vary slowly in the tracking mode. Thus,
in the tracking mode, the non-commutativity can be neglected and an SVF can be applied
to circumvent the time-derivative issue. However, in the transient mode this argument
is not valid and errors in the computed estimates are introduced.

2.3.3 Recursive instrumental variable methods

For the reasons exposed in Remark 2.1, let us now adapt IVSVF and SRIVC to LTV
systems.

To cope with the parameter variation we assume that they can be represented by a
random walk model. Then, the full model becomes:

M







θ(tk) = θ(tk−1) + w(tk)

A(p, t, θ)x(t) = B(p, t, θ)u(t)

y(tk) = x(tk) + e(tk)

(2.28)
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Figure 2.2: Diagram of Kalman filter based RSRIVC.

The parameters of model (2.28) can be estimated based on the methodology used in
the DT case, i.e. in this case considering the instrumental variable based Kalman filter
(see [Young, 2011, p. 298]). The algorithm is given by

Prediction step:

θ̂(tk|tk−1) = θ̂(tk−1) (2.29a)

P (tk|tk−1) = P (tk−1) +Qn (2.29b)

Correction step:

θ̂(tk) = θ̂(tk|tk−1) + L(tk)ε(tk) (2.29c)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)θ̂(tk|tk−1) (2.29d)

L(tk) =
P (tk|tk−1)ζf(tk)

1 + ϕf
T (tk)P (tk|tk−1)ζf(tk)

(2.29e)

P (tk) = P (tk|tk−1) − L(tk)ϕf
T (tk)P (tk|tk−1) (2.29f)

where y(na)
f (tk), ϕf(tk) and ζf(tk) are computed as in the recursive LTI case (see Section

2.2.3). The methods are called Kalman filter based RIVSVF and Kalman filter based
RSRIVC algorithms. A diagram of the Kalman filter based RSRIVC method is presented
in Figure 2.2; note that the auxiliary model and adaptive filter are shown in their
operator form.

Another way to deal with the estimation of time-varying parameters is the forgetting
factor approach. Based on the methodology used in the DT case, the forgetting factor
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based RIVSVF/RSRIVC algorithm is defined by

θ̂(tk) = θ̂(tk−1) + L(tk)ε(tk) (2.30a)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)θ̂(tk−1) (2.30b)

L(tk) =
P (tk−1)ζf(tk)

λ+ ϕf
T (tk)P (tk−1)ζf(tk)

(2.30c)

P (tk) =
1
λ

[

P (tk−1) − L(tk)ϕf
T (tk)P (tk−1)

]

(2.30d)

It should be however reminded that a drawback of those approaches is that they are not
suitable for cases where parameters vary at different rates. Moreover, as we will see in
Section 3.6.1, KF based approaches are in general more robust to poor excitation. This
motivates the focus on KF based methods in this work.

Both the forgetting factor and Kalman filter based routines are available in the
CONtinuous-Time System IDentification (CONTSID) toolbox, which has been recently
updated [Padilla et al., 2015] and can be freely downloaded 2.

2.3.4 Measures of estimator performance

In practice, the tracking ability of the approaches can be measured only indirectly in
terms of the prediction error ε. Nonetheless, in simulation the true parameters are
available, which allows us to assess the performance by means of the tracking error

θ̃(tk) = θo(tk) − θ̂(tk) (2.31)

For N samples, the mean squared value of the parameter tracking error is given by

MSE[θ̂(tk)] =
1
N

N∑

k=1

‖θo(tk) − θ̂(tk)‖2 (2.32)

For the ith element of θo(tk), denoted by θo
i (tk), we can also use the relative error

defined by

θ̃i,r(tk) =

∣
∣
∣
∣
∣

θo
i (tk) − θ̂i(tk)

θo
i (tk)

∣
∣
∣
∣
∣
× 100 (2.33)

By adding and subtracting E[θ̂(tk)] in (2.31), the tracking error can be split into two
parts [Haykin, 2014, p. 524], the lag error θ̃l(tk) and the noise error θ̃n(tk), i.e.

θ̃(tk) = θo(tk) − E[θ̂(tk)]
︸ ︷︷ ︸

θ̃l(tk)

+E[θ̂(tk)] − θ̂(tk)
︸ ︷︷ ︸

θ̃n(tk)

(2.34)

These errors cannot be minimized simultaneously due to the well-known trade-off of
recursive algorithms between tracking capability and noise sensitivity [Ljung and Gun-
narsson, 1990]. For tracking problems, the lag error can be compared to the standard
concept of bias in LTI systems [Rutström, 2005, p. 15]. The presence of the lag error is
testimony to the non-stationary nature of the environment [Haykin, 2014], meaning that
in the case of time-varying parameters, the lag error is larger than in the time-invariant
case. Indeed, in the latter, the lag error could be zero.

The lag error and noise error could be computed by a Monte Carlo simulation using a
given input and different measurement noise realizations. Then, the expectation E[θ̂(tk)]

will be replaced by the sample mean ¯̂
θ(tk) taken over the total number of simulations.

2www.cran.univ-lorraine.fr/contsid/
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Such an analysis is done in Section 2.3.5. It is then convenient to define two additional
measures, the mean squared value of the lag error defined by

MSEl[θ̂(tk)] =
1
N

N∑

k=1

‖θo(tk) −
¯̂
θ(tk)]‖2 (2.35)

and the mean squared value of the noise error given by

MSEi
n[θ̂(tk)] =

1
N

N∑

k=1

‖
¯̂
θ(tk) − θ̂(tk)‖2 (2.36)

where the superscript i means that the computation is done w.r.t. the estimate θ̂(tk)
from the ith simulation which can be arbitrarily chosen.

Remark 2.4 In the identification of LTI models, IV methods are applied to reduce
bias. Analogously, in the LTV case, the aim is to reduce the lag error which come at
the expenses of increasing slightly the noise error. That is the well-known trade-off of
recursive algorithms between tracking ability and noise sensitivity.

2.3.5 Numerical example - Similar parameter variations

Example 1.3.4 is revisited here to illustrate the performance of the proposed IV based
Kalman filter methods. Additionally, the lag error and noise error defined in Section
2.3.4 are analyzed.

For all the simulations, we use the same value for the hyperparameters Qn and λsvf .
The former is a diagonal matrix, and since the parameters are varying at a similar rate
we consider

Qn = 10−4I3

where I3 is the identity matrix of dimension 3. For the SVF, λsvf = 3.2 rad/s is chosen,
i.e. a convenient value slightly larger than the maximum bandwidth (see Figure 1.7).
The IV methods, which are initialized with RLSSVF, start to operate at time instant
ts,iv = 100 s. The value for ts,iv is chosen based on the convergence of both the output
error and the parameter tracking error.

We present next some results for a single experiment run out of the 100 that are
considered later in a Monte Carlo simulation analysis.

Single experiment analysis

In the LTI case, it is known that the RLSSVF estimates are always biased due to the
measurement noise. Even if the bias cannot be fully removed, it can be reduced by a
proper choice of the cut off frequency λsvf . In the LTV case, this is more difficult since
the system bandwidth is varying, while the SVF bandwidth is constant. Instrumental
variable methods, like RSRIVC, can be used to cope with the noise and reduce the lag
error, as explained in Remark 2.4. The RLSSVF and RSRIVC estimates are compared
with the true parameter in Figure 2.3, from where we can see the improvement obtained
by using the IV approach. The mean squared value of the parameter tracking error is
compared in Table 2.1, where we can see that the performance of RIVSVF is similar
to RSRIVC, the latter being slightly better as we could expect, due to the adaptive
prefiltering. Note that the value for λsvf has been conveniently chosen; an unsuitable
cut-off frequency would produce worse results.
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Figure 2.3: True parameters, RLSSVF estimates and RSRIVC estimates for experiment
1.

Table 2.1: Mean squared value of the parameter tracking error.

Method MSE[θ̂(tk)]

RLSSVF 1.152

RIVSVF 0.814

RSRIVC 0.800
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Figure 2.4: Average of the parameter relative errors for RLSSVF and RSRIVC for a
Monte Carlo simulation with 100 runs.

Table 2.2: Mean squared of the lag error and mean squared of the noise error w.r.t.
experiment 1.

Method MSEl[θ̂(tk)] MSE1
n[θ̂(tk)]

RLSSVF 0.8036 0.2578

RIVSVF 0.4114 0.2670

RSRIVC 0.3998 0.2672

Monte Carlo simulation analysis

The performance of these algorithms is further assessed through a Monte Carlo simula-
tion analysis with 100 experiments. As a first performance measure, we take the relative
error θ̃i,r (2.33). Averaging the relative errors over the 100 experiments, we obtain the
results presented in Figure 2.4 for RLSSVF and RSRIVC. The improvement is clear
from the plot.

For LTV model identification, the purpose of using IV methods is to reduce the lag
error (2.34) as we can see from Figure 2.5, where its absolute value is shown for RLSSVF
and RSRIVC. The absolute value of the noise error is plotted in Figure 2.6 only for the
last 1000 s, to be able to distinguish the RLSSVF result from the RSRIVC result. The
reduction of the lag error implies an increase of the noise error, although in terms of
error magnitudes, the reduction of the former is greater than the increase in the latter.
This is confirmed from Table 2.2, where the mean squared of the lag error (2.35) and
mean squared of the noise error (2.36) w.r.t. experiment 1, are presented. Here we can
see additionally the results for RIVSVF, whose MSEl[θ̂(tk)] is slightly worse than the
one for RSRIVC as expected.

2.3.6 Numerical example - Different parameter variations

To illustrate further the performance of the proposed algorithms, let us consider a partic-
ular LTV system whose bandwidth variation in time is significant. The data generating
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|ã
2

,
l
|

|b̃
0

,
l
|

Figure 2.5: Absolute value of lag errors for RLSSVF and RSRIVC w.r.t. experiment 1.

8000 8200 8400 8600 8800 9000
0

0.5

1

8000 8200 8400 8600 8800 9000
0

0.5

1

8000 8200 8400 8600 8800 9000
0

0.5

1

RLSSVF

RSRIVC

t (s)

|ã
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system is now given by the following second order CT LTV OE system.

S

{(
p2 + ao

1(t)p+ ao
2(t)

)
x(t) = bo

0(t)u(t)

y(tk) = x(tk) + e(tk)
(2.37)

where ao
1(t) varies slowly between 5 and 45 in a linear fashion, bo

0(t) remains constant at
200 and ao

2(t) varies slowly as follows,

ao
2(t) = 160 − 90 cos(2πt/1000)

The sampling time is set to 0.01 s and the total simulation time is 1000 s. The input is
a PRBS and the DT measurement noise is a zero-mean, Gaussian noise with constant
variance 0.1. Part of the input-output data is shown in Figure 2.7.

In this example, as a consequence of the time-varying parameters, the DC gain is
decreasing towards half of the simulation time; and since the noise variance is kept
constant, the signal-to-noise ratio (SNR) is decreasing around half of the simulation
time. For some frozen systems obtained every 100 s, the Bode diagrams are plotted
in Figure 2.8, where we can see how the DC gain is varying. The step responses and
bandwidths of these frozen systems are shown in Figures 2.9 and 2.10, respectively.
Notice that the ratio between the maximum and minimum bandwidths is nearly 10,
i.e. the bandwidth variation is relatively large over the total simulation time, as we
mentioned.

For all the estimations in this example, the same normalized covariance matrix Qn

is used. Qn has been obtained by a numerical search; it is set as a diagonal matrix
with diagonal elements equal to 10−5, 10−4 and 10−10 corresponding to ao

1, ao
2 and

bo
0, respectively. The value corresponding to bo

0 is 10−10, because it is assumed known
that this parameter is constant. For the SVF, λsvf = 16 rad/s is chosen, i.e. a value
slightly greater than the maximum bandwidth. The IV based methods are initialized
with RLSSVF. Based on the convergence of RLSSVF, the start of the IV methods ts,iv

is set to 10 s. In addition, for the IV methods we consider the filter

Mθ(q−1) =
0.04762 + 0.04762q−1

1 − 0.9048q−1
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Figure 2.11: True parameters and RLSSVF estimates for the noise-free case and noisy
case. (The estimates for the noise-free case are matching the true values).

This filter is used to feed back the algorithms with the estimated parameters (see more
details in Section 3.2.3).

We present next some results for a single experiment run out of the 100 that are
considered later in a Monte Carlo simulation analysis.

Single experiment analysis

Firstly, the RLSSVF results are analyzed. The RLSSVF estimates are displayed in
Figure 2.11 for two situations: the first a noise-free (or deterministic) case, and the
second using noisy data. In the former case, since there is no noise, RLSSVF performs
very well and it is difficult to distinguish between the true and estimated parameters.
However, in the noisy case, RLSSVF does not provide reasonable parameter estimates,
as it can be observed in Figure 2.11(b). Note that the relative errors of the three
estimates are similar but this is difficult to see because the limits for the y-axes are
different. Similar results have been obtained for other values of λsvf . Notice that, in this
example, the variance of the tracking error increases slightly over the central portion of
the plot that can be seen in Figure 2.11. This is because the SNR is decreasing in time
while the system bandwidth reduces in time (which would also require λsvf to be lower).

To cope with the measurement noise and reduce the lag error, RIVSVF and RSRIVC
are used. The improvement in performance obtained by using these IV based methods is
clear from Figure 2.12. We can also see that the RSRIVC algorithm gives better results
than RIVSVF at the end of the simulation time as expected, because the RSRIVC
prefilter is adapted over time. Naturally, the changes of the variance of the tracking
error observed in the RLSSVF case, also occur here.

Monte Carlo simulation analysis

A more thorough analysis is done by performing a Monte Carlo simulation with 100
experiments. For RLSSVF, the average value of the relative error over the 100 exper-
iments is shown in Figure 2.13. The same is done for the IV methods in Figure 2.14,
where we can see clearly the improvements in the results. Notice also that RSRIVC
is outperforming RIVSVF for the last 200 seconds. The worse results for RIVSVF are
expected since in this part of the simulation, the chosen value for λsvf (16 rad/s) is
significantly larger than the system bandwidth (see Figure 2.10).
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Figure 2.12: True parameters, RIVSVF estimates (a) and RSRIVC estimates (b).
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Figure 2.13: Average of the relative errors for RLSSVF for a Monte-Carlo simulation
with 100 runs.
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Figure 2.14: Average of the relative errors for RIVSVF (a) and RSRIVC (b) for a Monte
Carlo simulation with 100 runs.
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Figure 2.15: Closed-loop system.

2.4 Closed-loop identification

In real-life, experiments for model identification are often done in closed loop because
there are economic or safety constraints, or the system is unstable. The issue with closed-
loop identification is that the feedback mechanism introduces correlation between the
disturbances and the input signal, yielding biased estimates if no special strategy is
used. For LTI systems, instrumental variable (IV) techniques have been proposed to
solve this problem both for DT models [Gilson and Van den Hof, 2005, Gilson et al.,
2011] and CT models [Gilson et al., 2008]; [see also, Chapter 9 in Young, 2011]. IV have
been also extended to the identification of DT linear parameter-varying models in [Tóth
et al., 2012]. The recursive identification schemes developed in the previous sections are
adapted here for identifying linear CT slowly time-varying systems operating in closed
loop.

2.4.1 Problem formulation

Let us consider the closed-loop configuration from Figure 2.15 with a CT LTV OE
system S,

S

{

Ao(p, t)x(t) = Bo(p, t)u(t)

y(tk) = x(tk) + eo(tk)
(2.38)

as in the open-loop case. Go is the plant and eo(tk) a zero-mean DT white noise sequence.
In Figure 2.15, the CT controller C can be any nonlinear and/or time-varying controller.
Knowing C, we can compute the input u(t) as follows

u(tk) = r1(tk) + C(r2(tk) − y(tk)) (2.39)

where C is the operator form of the controller and r1(tk), r2(tk) are external signals. We
assume that the system can be represented by the model set M given in (2.21).

Suppose that assumptions A1 and A2 defined in Section 2.3.1 for the open-loop case
are satisfied. Additional assumptions are:

A3. The controller C is known.

A4. The controller C ensures BIBO stability of the closed-loop system defined by
(2.38) and (2.39).

A5. The reference signal r(tk) = r1(tk) + Cr2(tk) is persistently exciting.

Then, the identification problem is to recursively estimate the time-varying parameters
that characterize the model structure given by (2.21), based on the data set

ZN ′ = {r(tk), u(tk), y(tk)}N ′

k=1

where N ′ is the number of samples which increases by one with every recursion.
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2.4. Closed-loop identification

Figure 2.16: Auxiliary model.

2.4.2 Optimal off-line IV estimation of LTI models

In this section we assume that both the plant and the controller are LTI systems, i.e.

Go : Go(p) =
Bo(p)
Ao(p)

(2.40)

C : Cc(p) =
Qc(p)
Pc(p)

(2.41)

with the pairs (Ao, Bo) and (Pc, Qc) assumed to be coprime. First we address the off-line
estimation problem and afterwards its recursive counterpart.

When the parameters in (2.21) are constant, they could be estimated as in the
open-loop case using the LSSVF method (see (1.32)). However, the parameters will be
biased because ϕf(tk) and vf(tk) are correlated due to the filter and because vf(tk) is
colored. Additionally, in a closed-loop configuration, ϕf(tk) and vf(tk) are correlated
due to the feedback mechanism. A solution is to use the closed-loop IV method given
by (2.1) (see [Gilson et al., 2008]). The only difference w.r.t. to the open-loop case is the
computation of the instruments. Then, optimal estimates, i.e. unbiased and minimum
variance estimates, can be obtained if the conditions C1-C4 defined in Section 2.2.1
together with the following condition C5 are satisfied [Gilson et al., 2008]

C5. The instrument vector is computed using the auxiliary model from Figure
2.16 as follows

ζ(tk) =
[

−x̊(na−1)(tk) . . . −x̊(tk) ů(nb)(tk) . . . ů(tk)
]T

(2.42)

where

Ao(p)̊x(tk) = Bo(p)̊u(tk) (2.43a)

ů(tk) = r1(tk) + C(r2(tk) − x̊(tk)) (2.43b)

2.4.3 Off-line IV algorithms of LTI models

Conditions C1-C3 can be readily satisfied [Söderström and Stoica, 1983]. However C4-
C5 require knowledge of the true unknown system, which is the usual dilemma with
optimal estimation. To circumvent this problem, different estimation algorithms have
been proposed, which vary depending on the choice of the instruments ζ(tk), the filter
F (p) and the model structure of the true system [Gilson et al., 2008]. In the following
we recall the closed-loop version of IVSVF and SRIVC presented in Section 2.2.2.

The closed-loop version of IVSVF, denoted by CLIVSVF, consists of two steps. First,
LSSVF estimates θ̂1 are obtained using (1.32). In the second step, given N samples, the
CLIVSVF estimates are computed from (see [Gilson et al., 2008])

θ̂2 =

[
N∑

k=1

ζf(tk, θ̂1)ϕf
T (tk)

]−1

·

[
N∑

k=1

ζf(tk, θ̂1)y(na)
f (tk)

]

(2.4)
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The difference w.r.t. the open-loop case stands in the computation of the filtered in-
strument ζf(tk, θ̂1), which is defined through the instrument

ζ(tk, θ̂1) =
[

−ˆ̊x(na−1)(tk) . . . −ˆ̊x(tk) ˆ̊u(nb)(tk) . . . ˆ̊u(tk)
]T

(2.44)

with ˆ̊x(tk) and ˆ̊u(tk) given by the auxiliary model

Â(p, θ̂1)ˆ̊x(tk) = B̂(p, θ̂1)ˆ̊u(tk) (2.45a)
ˆ̊u(tk) = r1(tk) + C(r2(tk) − ˆ̊x(tk)) (2.45b)

Then,

ζf(tk, θ̂1) = F (p)ζ(tk, θ̂1)

=
[

−ˆ̊x(na−1)
f (tk) . . . −ˆ̊xf(tk) ˆ̊u(nb)

f (tk) . . . ˆ̊uf(tk)
]T

(2.46)

In [Gilson et al., 2008], a similar algorithm, called CLIVC2, has been proposed. The
difference is that in CLIVC2, a CT ARX model instead of a CT OE model, is considered.

The closed-loop version of SRIVC, denoted by CLSRIVC, has been developed in
[Gilson et al., 2008]. Given N samples, the CLSRIVC estimates at the ith iteration is

θ̂i =

[
N∑

k=1

ζf(tk, θ̂i−1)ϕf
T (tk, θ̂i−1)

]−1

·

[
N∑

k=1

ζf(tk, θ̂i−1)y(na)
f (tk, θ̂i−1)

]

(2.47)

As in the open-loop case, y(na)
f (tk, θ̂i−1) and ϕf(tk, θ̂i−1) are obtained from (2.10) using

the adaptive prefilter (2.9). The difference w.r.t. the open-loop case stands in the com-
putation of the filtered instrument ζf(tk, θ̂i−1), which is defined through the instrument

ζ(tk, θ̂i−1) =
[

−ˆ̊x(na−1)(tk) . . . −ˆ̊x(tk) ˆ̊u(nb)(tk) . . . ˆ̊u(tk)
]T

(2.48)

with ˆ̊x(tk) and ˆ̊u(tk) given by the auxiliary model

Â(p, θ̂i−1)ˆ̊x(tk) = B̂(p, θ̂i−1)ˆ̊u(tk) (2.49a)
ˆ̊u(tk) = r1(tk) + C(r2(tk) − ˆ̊x(tk)) (2.49b)

Then,

ζf(tk, θ̂
i−1) = F (p, θ̂i−1)ζ(tk, θ̂

i−1)

=
[

−ˆ̊x(na−1)
f (tk) . . . −ˆ̊xf(tk) ˆ̊u(nb)

f (tk) . . . ˆ̊uf(tk)
]T

(2.50)

2.4.4 Recursive estimation of LTI models

The two closed-loop identification methods presented previously can be adapted for
recursive estimation. As in the open-loop scenario, the algorithm is given by (2.14).
The difference is only in how the filtered instrument ζf(tk) is computed.

For the recursive version of CLIVSVF, denoted by CLRIVSVF, the filtered instru-
ment is defined through the instrument

ζ(tk, θ̂(tk−1)) =
[

−ˆ̊x(na−1)(tk) . . . −ˆ̊x(tk) ˆ̊u(nb)(tk) . . . ˆ̊u(tk)
]T

(2.51)

with ˆ̊x(tk) and ˆ̊u(tk) given by the auxiliary model

Â(p, θ̂(tk−1))ˆ̊x(tk) = B̂(p, θ̂(tk−1))ˆ̊u(tk) (2.52a)
ˆ̊u(tk) = r1(tk) + C(r2(tk) − ˆ̊x(tk)) (2.52b)
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where C is the controller. Then,

ζf(tk) = F (p)ζ(tk, θ̂(tk−1))

=
[

−ˆ̊x(na−1)
f (tk) . . . −ˆ̊xf(tk) ˆ̊u(nb)

f (tk) . . . ˆ̊uf(tk)
]T

(2.53)

For the recursive version of CLSRIVC, denoted by CLRSRIVC, the filtered instru-
ment is given by

ζf(tk) = F (p, θ̂(tk−1))ζ(tk, θ̂(tk−1))

=
[

−ˆ̊x(na−1)
f (tk) . . . −ˆ̊xf(tk) ˆ̊u(nb)

f (tk) . . . ˆ̊uf(tk)
]T

(2.54)

with ζ(tk, θ̂(tk−1) defined in (2.51) and the prefilter in (2.19).

2.4.5 Recursive estimation of LTV models

In a closed-loop configuration, tracking time-varying parameters changing at different
rates can be done using the Kalman filter based RLSSVF. For the reason exposed above,
these estimates would be biased. A solution is then to use the closed-loop versions of
RIVSVF and RSRIVC, which are based on the Kalman filter instrumental variable algo-
rithm given by (2.29). The difference w.r.t. the open-loop case stands in how the filtered
instruments ζf(tk) are computed. For these new methods, denoted by CLRIVSVF and
CLRSRIVC, ζf(tk) is defined in the previous Section 2.4.4.

2.4.6 Numerical example

Three recursive algorithms are evaluated: CLRIVSVF, CLRSRIVC and RLSSVF, which
is used to initialized the first two approaches. The example presented in Section 2.3.6
is adapted here to the closed-loop configuration shown in Figure 2.15. Regarding the
external signals (see Figure 2.15), r1(t) is a PRBS and r2(t) = 0. eo(tk) is a zero-
mean DT Gaussian noise with constant variance 0.1. Remember that the ratio between
the maximum and minimum bandwidths is nearly 10, i.e. the bandwidth variation is
relatively large over the total simulation time.

CT filtering operations for the computation of prefiltered time-derivatives and in-
struments are implemented from their discretized counterparts. The discretized version
of the PID controller is given by

C : Cc(q−1) = kp +
ki

1 − q−1
+ kd(1 − q−1) (2.55)

with q−1 the backward shift operator and kp = 1.79, ki = 13.8, kd = 5.83 · 10−2. For all
the simulations, we use the same value for the hyperparameters Qn and λsvf as before.

We present next some results for a single experiment run out of the 100 that are
considered later in a Monte Carlo simulation analysis.

Single experiment analysis

In the LTI open-loop case, it is known that the RLSSVF estimates are always biased due
to the noise. Even if the bias cannot be removed, it can be reduced by a proper choice
of the cut off frequency λsvf . In the open-loop LTV case, this is more difficult since the
system bandwidth is varying, while the SVF bandwidth is constant, as it was illustrated
in Section 2.3.6. When the system operates in closed loop there is an additional issue,
namely the correlation between the input u(tk) and the noise eo(tk) due to the feedback
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Figure 2.17: True parameters and RLSSVF estimates for the noise-free case and noisy
case. (The estimates for the deterministic case are matching the true values).
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Figure 2.18: True parameters, CLRIVSVF estimates and CLRSRIVC estimates.

mechanism. In the LTI case, that might result in larger bias on the estimates, while in
the LTV case, it results in larger lag errors. In order to illustrate the impact of the noise
on RLSSVF in the closed-loop LTV situation, we compare the noise-free case with the
noisy case. From Figure 2.17, we can see that RLSSVF is able to track the parameters
only in the noise-free situation. It is important to stress that the value used for λsvf is
a very good choice since it is slightly higher than the maximum system bandwidth.

To circumvent the parameter tracking problem, the two closed-loop IV approaches
introduced in Section 2.4.5 have been used. From Figure 2.18 we can see that both
CLRIVSVF and CLRSRIVC are able to track the parameters in this situation where
the parameters vary at different rates. The former approach considers a constant prefilter
while in the latter the filter is automatically adapted from the previous estimates.

Monte Carlo simulation analysis

In order to see more clearly the difference between these algorithms, a Monte Carlo sim-
ulation analysis with 100 experiments is run. For comparison purposes, the relative error
(2.33) is used as a measure. Averaging the relative errors of the 100 experiments, we ob-
tain the results presented in Figure 2.19 for RLSSVF and in Figure 2.20 for CLRIVSVF
and CLRSRIVC. It can be seen that towards the end of the simulation time, the best
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Figure 2.19: Average of the relative errors for RLSSVF for a Monte Carlo simulation
with 100 runs.

results are obtained with CLRSRIVC.

2.5 Conclusions

In this chapter, the algorithms RIVSVF and RSRIVC have been developed for open-loop
identification. Closed-loop versions have been also presented. The recursive algorithms
follow from the equivalent discrete-time versions but are more complex because they
require prefiltering for handling the time-derivatives. These approaches are able to
track slow variations in the model parameters, based on an assumed stochastic random
walk model for the parameter variations. One of the advantage of the random walk is
that it is suitable when the parameters vary at different rates.

RIVSVF can provide good estimates if prior knowledge exists to define the cut-off
frequency of the SVF, meaning that it can be chosen close to the true system bandwidth.
However, if the system bandwidth vary too much, it will not be possible to choose a
value which is suitable for every moment. With RSRIVC, this is not an issue since it
considers an adaptive filter which is updated using previous estimates.

The approaches have been evaluated by means of Monte Carlo simulation analysis
that demonstrates the effectiveness of the IV approaches to reduce the tracking error,
in comparison with RLSSVF.
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Figure 2.20: Average of the relative errors for CLRIVSVF and CLRSRIVC for a Monte
Carlo simulation with 100 runs.
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Chapter 3

Practical aspects and
implementation issues

Practical aspects and implementation issues in recursive estimation are of crucial impor-
tance, and have been discussed e.g. in the books [Åstrom and Wittenmark, 2008] and
[Niedźwiecki, 2000]. In this chapter we investigate these problems for the approaches
developed in the previous chapter. The particularity of those methods is basically that
they handle CT models and they use IV techniques.

The first part of this chapter is dedicated to the choice of the hyperparameters for
the methods developed in Chapter 2. We will focus on RSRIVC, since the analysis for
the other approaches is analogous. A diagram of RSRIVC highlighting the practical
aspects and implementation issues is presented in Figure 3.1; the issues, denoted by Ii
in the figure, are the following:

I1. Choice of user hyperparameters, which are:

– λsvf : cut-off frequency of the RLSSVF which is used to initialized RSRIVC.
In Section 3.1, aspects related to the SVF, including the choice of λsvf are
discussed.

– ts,iv: time instant when RSRIVC starts to operate. In Section 3.2 aspects
related to IV techniques, including the choice of ts,iv, are presented.

– Qn: normalized covariance matrix of the Kalman filter. In Section 3.3, an
estimation of Qn using maximum likelihood is proposed.

I2. Digital implementation of the CT filtering operations involved in the prefilter
and auxiliary model. This is covered in Section 3.1.3.

I3. Numerical aspects. One way to solve this implementation issue is to use square
root filtering. For our methods we will see that a suitable approach is to use signal
scaling. This is done in Section 3.5.

I4. Estimator windup problem. One of the assumptions made in the theoretical
developments in the previous chapter is that the input u(tk) is persistently exciting.
In practice, there might be intervals where this condition is not met. Solutions for
this phenomenon, called estimator windup, will be discussed in Section 3.6.

These and some other issues will be discussed along the chapter. For instance, another
practical aspect presented in Section 3.4 is how to handle the unknown initial conditions
of the system that we want to identify. We will show that by properly handling these
initial conditions, the overshoots that they can produce in the estimates during the
initial recursions can be reduced.
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Chapter 3. Practical aspects and implementation issues

Figure 3.1: Diagram of RSRIVC with issues (Ii) regarding practical usage and imple-
mentation (see text for the description of the issues).

3.1 Aspects related to the SVF

3.1.1 Normalized vs ordinary SVF

In the direct identification approaches presented in Chapter 2, the SVF allows us to
obtain prefiltered time-derivatives. For the SVF, two forms are possible, the ordinary
version (OSVF) defined in (1.19) and the normalized version (NSVF)

Fnsvf(p) =

(

λsvf

p+ λsvf

)na

(3.1)

Thus, these forms are linked as follows

Fnsvf(p) = λna

svfFosvf(p) (3.2)

For the OSVF, given N ′ samples, the parameter covariance matrix is, up to a scaling
factor, defined by

Posvf(tN ′) =
N ′
∑

k=1

[

ϕf(tk)ϕf
T (tk)

]−1
(3.3)

with ϕf(tk) defined in (1.27). Using the NSVF, the filtered regressor vector is given by

ϕT
f,nsvf(tk) = Fnsvf(p)ϕT (tk)

= λna

svfϕf
T (tk) (3.4)

Then, in this case the parameter covariance matrix is, up to a scaling factor, defined as
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follows

Pnsvf(tN ′) =
N ′
∑

k=1

[

ϕf,nsvf(tk)ϕT
f,nsvf(tk)

]−1

=
1

λ2na

svf

N ′
∑

k=1

[

ϕf(tk)ϕT
f (tk)

]−1
(3.5)

Thus, from (3.3) and (3.5) we obtain [Garnier et al., 1994]

Posvf(tN ′) = λ2na

svf Pnsvf(tN ′) (3.6)

To use RLSSVF, either with OSVF or NSVF, the initial estimates (θ̂(t0), P (t0))
have to be set. The RLSSVF estimates obtained with OSVF and (θ̂(t0), Posvf(t0)) are
identical to the RLSSVF estimates obtained with NSVF and (θ̂(t0), Pnsvf(t0)).

Notice that the ordinary version could introduce a significant signal scaling, leading
to numerical problems, that deteriorate the identification results1.

Suggested choice/procedure 3.1 In order to avoid signal scaling problems we sug-
gest to use in general the normalized version of the SVF.

3.1.2 Choice of λsvf

In [Canudas de Wit, 1986], it has been shown that the parameter convergence of RLSSVF
depends on the cut-off frequency of the SVF λsvf , the sampling time and the input signal.
Regarding the cut-off frequency of the SVF, the larger the value of λsvf the quicker the
convergence rate. On the other hand, the smaller the sampling time the quicker the
convergence rate.

The cut-off frequency λsvf is a user parameter that should be chosen somewhat
larger than the system bandwidth. In the LTV case and especially for systems with
relatively large variations of the bandwidth, the specification of λsvf can be critical since
the system bandwidth is time-varying. For its choice, the convergence aspects discussed
above should be also keep in mind.

Suggested choice/procedure 3.2 In general, the identification of LTI should be eas-
ier than the identification of LTV models. Thus, assuming that the parameters are
slowly varying, one approach to have an idea about λsvf is to estimate local LTI models
on segments of the training data. One option is to use SRIVC.

3.1.3 Digital implementation of CT filtering operations

The digital implementation issues of the CT filtering operations using an SVF (see
(1.20) or (1.21)) are well-known in CT model identification. They should be treated in
an appropriate way since errors generated by the digital implementation can have an
impact on the quality of the estimated model.

When the intersample behavior of the filter input is piecewise constant, i.e. a zero-
order hold assumption is considered, an exact solution to the filtering operation can be
obtained. This is valid both for off-line and on-line computations. When the filter input
is not piecewise constant, a traditional assumption is to consider it to be linear. Then,
we could use a first-order hold assumption or the bilinear (or Tustin) transform. An
advantage of the latter is that it maps a stable region in the s-plane into a stable region in

1An analysis about signal scaling and its impact in the identification problem is presented in Section
3.5.
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the z-plane [Franklin et al., 1998, p. 193]. Notice that the accuracy of these approaches
depend on the sampling time, namely the faster the sampling the more accurate the
filter output.

In this thesis, when the intersample behavior is assumed to be linear, the Tustin
transform is considered.

Remark 3.1 In the off-line case, when the intersample behavior is assumed to be linear,
a first-order hold assumption can be used without introducing any delay in the signal.
However, in the on-line case, both the first-order hold assumption and the bilinear trans-
form introduce a delay.

The digital implementation of the CT filtering operations using an SVF is carried
out from a time-invariant state space representation. In Appendix A, a general digital
implementation considering a time-varying state space model is presented. That holds
also for the LTI SVF but with constant matrices.

Suggested choice/procedure 3.3 When the filter input is not piecewise constant,
we suggest to use the bilinear transform. In order to obtain accurate filter outputs, the
sampling frequency should be as high as possible.

3.2 Aspects related to the IV approaches

In this section, the discussions will be done considering only the RSRIVC method,
although they will hold for RIVSVF, CLRSRIVC and CLRIVSVF as well.

3.2.1 Start of the IV methods

RSRIVC is initialized using RLSSVF. The switch between these algorithms takes place
at some time instant ts,iv, which is when RSRIVC defined in (2.29) starts to operate.
The prefiltered time-derivatives and instruments are computed from the final RLSSVF
estimate; afterwards, previous RSRIVC estimates are used.

The switch to (2.29) at ts,iv should be done once convergence of the RLSSVF es-
timates is achieved. The convergence of RLSSVF could be automatically determined
based on checks of variability or steady state condition of:

• ∆θ̂(tk) = θ̂(tk−1) − θ̂(tk)

• the size of the parameter covariance matrix P (tk), which can be measured through
its trace or determinant

• the condition number of the parameter covariance matrix P (tk)

• the prediction error ε(tk)

• the output error εy(tk) defined in (1.60)

For instance, the variability of ∆θ̂(tk) can be measured through its variance that may
be computed recursively with an exponential moving average [Bittencourt et al., 2015].
The steady state condition, for instance of the output error, can be assessed using the
approach proposed in [Cao and Rhinehart, 1995]. Note that the automatic detection of
convergence of RLSSVF requires to set threshold values, which depend on the system.

Suggested choice/procedure 3.4 A simple option to set ts,iv is to use RLSSVF with
some training data, and to check convergence based on the prediction error or the output
error. For the latter, the frequency content is lower, and therefore it might be easier to
visualize convergence in a plot.
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3.2.2 Stability test

In off-line estimation using SRIVC, the prefilter (2.9) and the auxiliary model (2.6),
depend on the estimates of the previous iteration. To ensure that both the prefilter
and auxiliary model are stable, a stability test is required (see e.g. [Garnier, 2015]).
Analogously, in on-line estimation using RSRIVC, the prefilter (2.19) and the auxiliary
model (2.16) depend on the estimates of the previous recursion θ̂(tk−1). Then, a stability
check is also required. However, in this case it is more complicated, since instead of
dealing with an LTI system, we have an LTV system. Both the prefilter and the auxiliary
model can be written as an LTV state-space model

Mss

{

ẋ(t) = F (t)x(t) +G(t)u(t)

y(t) = H(t)x(t) + J(t)u(t)
(3.7)

Let us recall first how to check stability of (3.7). This can be done using the following
lemma (see [Rugh, 1996, p. 206])

Lemma 1 Suppose the system (3.7) is uniform exponentially stable, and there exist
finite constant µ1, µ2 and µ3 such that for all t

‖G(t)‖ ≤ µ1, ‖H(t)‖ ≤ µ2, ‖J(t)‖ ≤ µ3 (3.8)

Then the state equation also is uniformly bounded-input, bounded-output stable.

More details are given in Appendix B, where we recall some important theorems about
LTV system stability. Assuming that G(t), H(t) and J(t) are bounded, i.e. (3.8) is
fulfilled, it remains to check uniform exponential stability. That can be done in practice
by solving a linear matrix inequality problem.

A more simple approach is the following. In general, uniform exponential stability
cannot be characterized by the location of the eigenvalues of the matrix F (t). However, if
it is assumed that the parameters vary slowly, uniform exponential stability is guaranteed
if the eigenvalues of F (t) are in the left half plane [Ilchmann et al., 1987]. Such procedure
is usually considered in recursive estimation (see e.g. [Ljung and Söderström, 1983, p.
93]) and it is also the one adopted in this thesis.

Now we recall a stability test for θ̂(tk) [Ljung, 1999]. Let us define first a set Ds

containing stable estimates, i.e.

Ds = {θ | Mss has all eigenvalues in the left half plane} (3.9)

If we denote the estimate before the stability check by θ̂⋆(tk), and after it by θ̂(tk), then

θ̂(tk) =

{

θ̂⋆(tk) if θ̂⋆(tk) ∈ Ds

θ̂⋄(tk) if θ̂⋆(tk) /∈ Ds

(3.10)

where θ̂⋄(tk) is a stable estimate obtained

• from the previous recursion, i.e. θ̂(tk−1), or

• by reflecting the eigenvalues of F (t) (obtained from θ̂⋆(tk)) into the left half plane.
This means that the sign of the real part of the unstable eigenvalues is changed.
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3.2.3 Correlation between filtered instruments and filtered noise

In the batch estimation of LTI systems, consistent estimates can be obtained with SRIVC
if the two conditions specified in Section 2.2.1 are fulfilled. The condition C2 is given
by

Ē{F (p, θo)ζ(tk, θo)F (p, θo)vo(tk, θo)} = 0

or
Ē{ζf(tk, θo)vo,f(tk, θo)} = 0

which means that ζf(tk) and vo,f(tk) are uncorrelated.
In the on-line case with RSRIVC, C2 takes the form

Ē{F (p, θ̂(tk−1))ζ(tk, θ̂(tk−1))F (p, θ̂(tk−1))vo(tk)} =

Ē{ζf(tk, θ̂(tk−1))vo,f(tk, θ̂(tk−1))} = 0 (3.11)

Then, (3.11) holds asymptotically as θ̂(tk) gets close to the true value θo(tk). When
θ̂(tk) is not close to θo(tk), vo,f(tk, θ̂(tk−1)) is colored, meaning that it will be correlated
with its previous value vo,f(tk−1, θ̂(tk−2)). On the other hand, the filtered instrument
ζf(tk, θ̂(tk−1) depends on the previous estimates θ̂(tk−1), which at the same time depend
on vo,f(tk−1, θ̂(tk−2)) through the filtered output y(na)

f (tk). Thus, (3.11) will be slightly
violated. This is analogous to what happens in DT identification when IV techniques
are used (see [Ljung and Söderström, 1983, p. 237] and also [Young, 1984, p. 132]).

To reduce this correlation, as initially suggested in [Young, 1984, p. 132], the esti-
mates can be filtered. The DT filter, denoted here by Mθ(q−1) has the additional effect
of smoothing the estimates, which improves the stability of the algorithm [Ljung and
Söderström, 1983, p. 315]. A scheme of RSRIVC, including the filter Mθ(q−1) and the
stability test described previously, is shown in Figure 3.2. The filter Mθ(q−1) can be an
infinite impulse response (IIR) or a finite impulse response (FIR) filter.

Suggested choice/procedure 3.5 As proposed in [Wong and Polak, 1967], to reduce
correlation between filtered instruments and filtered noise, we consider as default option
for Mθ(q−1) a delay, i.e.2

Mθ(q−1) = q−1

An alternative to filtering the estimates is to use regularization. This is discussed in
Section 3.6.2.

3.3 Estimation of the normalized covariance matrix Qn

To apply Kalman filter based methods, the user has to specify the normalized covariance
matrix Qn. The performance of these methods, in terms of tracking ability and noise
sensitivity, depends on Qn. The maximum likelihood method is one of the available
approaches that can be used to estimate this hyperparameter Qn [Young, 2011].

3.3.1 Review of maximum likelihood method

The maximum likelihood method is presented in detail in [Åstrom, 1980] (see also [Söder-
ström and Stoica, 1989, Ljung, 1999]. Here we recall this method considering a simple

2Unless otherwise stated, we consider Mθ(q−1) = q−1 both in the previous and the following examples.
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Figure 3.2: Diagram of RSRIVC including a DT filter Mθ(q−1) and a stability test.

case. We assume that the system is modeled by a random walk for the parameters and
a linear regression, which could represent a LTV ARX model, either in CT or DT, i.e.

M

{

θ(tk) = θ(tk−1) + w(tk)

z(tk) = ψT (tk)θ(tk) + e(tk)
(3.12)

where w(tk) and e(tk) are independent zero-mean DT Gaussian noise processes with
covariance matrix Qw variance σ2

e , respectively. For the estimation of (3.12), there is
available N measurements of the regressor and the output denoted by ΨN = {ψ(tk)}N

k=1

and ZN = {z(tk)}N
k=1, respectively. Assuming that ZN is a random sequence whose

observations are not independent, the likelihood function, i.e. the probability density
function of the observations ZN given by the parameters θ is defined by

pθ(ZN |ΨN ) = p(ZN |ΨN , θ)

=
N∏

k=1

p(z(tk)|Ψk, θ) (3.13)

The maximum likelihood method consists in finding the parameters θ such that the mea-
surements ZN are as likely as possible [Ljung, 1999]. Mathematically, this is expressed
as follows

θ̂ = arg max
θ
pθ(ZN |ΨN ) (3.14)

Due to numerical reasons, the logarithm of the likelihood, called log-likelihood, is usually
maximized instead. Then, the maximization of the log-likelihood, denoted by l(θ), yields
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the maximum likelihood estimates, i.e.

θ̂ = arg max
θ

log pθ(ZN |ΨN )

= arg max
θ
l(θ) (3.15)

If it is assumed that e(tk) is a zero-mean Gaussian noise sequence with variance σ2
e ,

then, the conditional densities in (3.13) are Gaussian, and the likelihood is given by

pθ(ZN |ΨN ) =
N∏

k=1

1
√

2πr(tk)
exp

{

−
[z(tk) − ẑ(tk)]2

2r(tk)

}

(3.16)

with conditional mean ẑ(tk) and conditional variance r(tk) that are computed with the
Kalman filter, i.e.

ẑ(tk) = Ē[z(tk)|Ψk, θ]

= ψT (tk)θ̂(tk|tk−1) (3.17)

r(tk) = var[z(tk)|Ψk, θ]

= σ2
e + ψT (tk)P ∗(tk|tk−1)ψ(tk) (3.18)

Notice that in (3.18) the standard form of the Kalman filter is used, and P ∗(tk|tk−1)/σ2
e =

P (tk|tk−1). Then, the log-likelihood is given by

l(θ) = −
1
2

{

N log 2π +
N∑

k=1

log r(tk) +
N∑

k=1

[z(tk) − ẑ(tk)]2

r(tk)

}

(3.19)

Finally, the maximization of (3.19) is equivalent to

θ̂ = arg min
θ

N∑

k=1

log r(tk) +
N∑

k=1

[z(tk) − ẑ(tk)]2

r(tk)
(3.20)

3.3.2 Estimation of Qn using maximum likelihood

In this section we will show how to estimate the normalized covariance matrix in a
recursive off-line fashion considering the CT LTV OE model (2.28). This model can
be written as the filtered linear regression (2.24) plus the random walk model for the
parameters, i.e.

M

{

θ(tk) = θ(tk−1) + w(tk)

y
(na)
f (tk) = ϕf

T (tk)θ(tk) + vf(tk)
(3.21)

Notice that (3.21) is similar to (3.12). The difference is that the filtered noise vf(tk) in
(3.21) is in general not Gaussian, although e(tk) in (2.28) is assumed to be Gaussian.
However, when RSRIVC is used, vf(tk) will be approximately asymptotically Gaussian.
Thus, considering that the estimation is performed with RSRIVC, we assume that vf(tk)
is Gaussian and the maximum likelihood method presented in the previous section can
be applied to estimate the normalized covariance matrix Qn of the Kalman filter. We
will consider that Qn is diagonal and its elements are denoted by qn,i with i = 1, . . . , d.
Therefore, Qn is estimated by solving an optimization problem similar to (3.20) but
with a parameter vector η that includes the constant scalars qn,i, i.e.

η =
[

qn,1 . . . qn,d

]

(3.22)
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Then,

η̂ = arg min
η
V

= arg min
η

N∑

k=1

log r(tk) +
N∑

k=1

[z(tk) − ẑ(tk)]2

r(tk)
(3.23)

The conditional mean

ẑ(tk) = ŷ
(na)
f (tk) = ϕf

T (tk)θ̂(tk|tk−1) (3.24)

and conditional variance

r(tk) = σ2
e + ϕf

T (tk)P ∗(tk|tk−1)ϕf(tk) (3.25)

are computed with RSRIVC. The procedure requires to set initial values for Qn, that
should be defined considering Remark 1.3. We should also keep in mind that the user
has to specify P (t0), θ̂(t0) and λsvf . Additionally it might by necessary to incorporate
bounds (lb,i, ub,i) for qn,i, as suggested in [Bavdekar et al., 2011] for a similar problem.

Suggested choice/procedure 3.6 From a physical insight of the system, it might be
known that some parameters are constant or that some parameters vary at the same
rate. To simplify the estimation of Qn through maximum likelihood, it is important to
use that prior knowledge. On the other hand, since we assume that the parameters are
slowly varying, it is possible to identify local LTI models on segments of some training
data. Then, from the set of estimated LTI model, we can learn about the parameter
variations.

3.3.3 Numerical example

For the following example, the normalized covariance matrix is estimated using maxi-
mum likelihood. The data generating system is given by

S

{(
p+ ao

1(t)
)
x(t) = bo

0u(t)

y(tk) = x(tk) + e(tk)
(3.26)

with bo
0 = 3 and

ao
1(t) = 2 + 0.8t/250

The sampling time is set to 0.025 s and the total simulation time is 250 s. The input is
a PRBS and the DT measurement noise is a zero-mean, Gaussian noise with constant
variance 3.0 · 10−3. Part of the input-output data is shown in Figure 3.3.

It is assumed that the parameter b0 is known to be constant, and thus qn,2 = 0.
Therefore, η is the scalar qn,1 corresponding to a1. The optimization problem (3.23),
with initial value qn,1 = 10−5, lower bound lb = 10−6, upper bound ub = 10−4 and
λsvf = 3 (rad/s), yields qn,1 = 3.3 · 10−5. The plot cost function V vs η is shown in
Figure 3.4.

The normalized covariance matrix is then given by

Qn = diag{3.3 · 10−5 0} (3.27)

The true parameters are compared with the RSRIVC estimates computed with (3.27)
in Figure 3.5.
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Figure 3.3: Part of the input-output data.
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Figure 3.5: True parameters and RSRIVC estimates considering Qn estimated by max-
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3.4 Handling of input/output initial conditions

In the identification of DT models, the predictor depends on unknown input/output
initial conditions. To circumvent that problem, the initial conditions can be assumed
to be zero [Ljung, 1999, p. 320]. Analogously, in the derivation of the LSSVF method
in Section 1.2.2, the initial conditions of the LTI system (1.1) have been ignored. That
is, (1.22) has been obtained assuming that the initial conditions are zero. These initial
conditions can be estimated together with the model parameters, as it was shown in
[Garnier et al., 2004]. The goal of this section is to illustrate the impact of the initial
conditions in the recursive estimates. To this end, we derive the RLSSVF for the LTI
case considering initial conditions.

3.4.1 Problem formulation

We start by formulating the problem again. Let us simplify the problem by assuming
that there is no measurement noise in the data generating system, which is given by

S : Ao(p)y(t) = Bo(p)u(t) (3.28)

with polynomials Ao(p) and Bo(p) relatively coprime. The system is assumed to be
subject to an arbitrary set of input/output initial conditions

u0 =
[

u(0) u(1)(0) · · · u(nb−1)(0)
]

, (3.29)

y0 =
[

y(0) y(1)(0) · · · y(na−1)(0)
]

. (3.30)

Moreover, it is assumed that the system belongs to the model set defined by

M : A(p, θ)y(t) = B(p, θ)u(t) (3.31)

A(p, θ) and B(p, θ) are the following polynomials

B(p, θ) = b0p
nb + b1p

nb−1 + . . .+ bnb

A(p, θ) = pna + a1p
na−1 + . . . + ana

where na ≥ nb. Then, the identification problem is to recursively estimate the pa-
rameters that characterize the model structure given by (3.31), based on the sequences
{u(tk), y(tk)}N ′

k=1, where N ′ is the number of samples which increases by one with every
recursion.

3.4.2 Recursive least squares state-variable filter method

Consider the Laplace transform of the differential equation defined in (3.31),

snaY (s) +
na∑

i=1

ais
na−iY (s) =

nb∑

i=0

bis
nb−iU(s) +

na−1∑

i=0

cis
na−i (3.32)

or
A(s)Y (s) = B(s)U(s) + C(s) (3.33)

where s represents the Laplace variable while Y (s) and U(s) are the Laplace transforms
of y(t) and u(t) respectively. The coefficients ci depend on the unknown parameters ai

and bi as well as the unknown initial conditions. Notice that if there was measurement
noise, the coefficients ci would depend on initial conditions of the noise as well.
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Applying a filter F (s) to (3.33) yields

A(s)F (s)Y (s) = B(s)F (s)U(s) + F (s)C(s), (3.34)

The SVF has the following form

F (s) =
(

λsvf

s+ λsvf

)na

(3.35)

where λsvf is the cut-off frequency of the filter.
Let us define a filter Fi(s) to be

Fi(s) =
(λsvf)nasi

(s+ λsvf)
na

for i = 1, . . . , na (3.36)

Then, (3.34) in terms of Fi(s) takes the following form
(

Fna(s) + a1Fna−1(s) + . . . + anaF0(s)
)

Y (s) =
(
b0Fnb

(s) + . . .+ bnb
F0(s)

)
U(s) +

(
c1Fna(s) + . . . + cnaF0(s)

)
(3.37)

In terms of time-domain signals, (3.37) can be written as

[Fnay](t) + a1[Fna−1y](t) + . . .+ ana[F0y](t) =

b0[Fnb
u](t) + . . .+ bnb

[F0u](t) + c1fna−1(t) + . . .+ cnaf0(t) (3.38)

where

[Fiy](t) = y
(i)
f (t) = fi(t) ∗ y(t)

[Fiu](t) = u
(i)
f (t) = fi(t) ∗ u(t)

with fi the corresponding impulse response of (3.35) and ∗ denoting the convolution
operator. The filter outputs [Fiy] and [Fiu] are prefiltered time-derivatives of the outputs
and inputs in the bandwidth of interest. Then, (3.38) can be expressed as the linear
regression

y
(na)
f (tk) = ϕf

T (tk)θ (3.39)

The parameter vector is given by

θ =
[

a1 . . . ana b0 . . . bnb
c1 . . . cna

]T
(3.40)

and the regressor by

ϕf(tk) =







ϕf,y(tk)

ϕf,u(tk)

ϕic(tk)







(3.41)

with

ϕT
f,y(tk) = −

(

y
(na−1)
f (tk) y

(na−2)
f (tk) · · · yf(tk)

)

ϕT
f,u(tk) =

(

u
(nb)
f (tk) u

(nb−1)
f (tk) · · · uf(tk)

)

ϕT
ic(tk) =

(

fna−1(tk) fna−2(tk) · · · f0(tk)
)

From (3.39) it is straightforward to estimate θ using the RLSSVF-FF algorithm (1.57)
with λ = 1 (for the LTI case considered here).

The estimation of initial conditions implies an extra computational burden. On the
other hand, neglecting its effect can lead to overshoots in the estimates. In order to
avoid these overshoots, another option is to start the estimation after transients due to
initial conditions have died out.
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Figure 3.6: Part of the input-output data.

Suggested choice/procedure 3.7 The proposed identification strategy with RLSSVF
is the following: prefiltered time-derivatives are computed from t = 0, but estimates
are computed only from the time instant when the effect of the initial conditions are
negligible. This time instant when the least squares approach starts to operate is denoted
by ts,ls. In the following example, these ideas are illustrated and further discussed.

Remark 3.2 An alternative to deal with overshoots is to use regularization based meth-
ods, as pointed out e.g. in [Stoica and Åhgren, 2002]. The use of regularization is
discussed in Section 3.6.

3.4.3 Numerical example

The data generating system is noise-free and given by

(p + ao
1)y(t) = bo

0u(t) (3.42)

with ao
1 = 3 and bo

0 = 30. The sampling time is Ts = 0.01 s and the input is a square
wave. In the input-output data shown in Figure 3.6, the transient response has been
removed. Therefore, the output is periodic for t ≥ 0 and the period is 2 s. The initial
condition is y(0) = 18.1.

We are interested in identifying a CT model that represents (3.42) considering initial
conditions. For this case, we have a linear regression as in (3.39) with

ϕf
T (tk) =

[

−yf(tk) uf(tk) f0(tk)
]

θT =
[

a1 b0 c1

]

where f0(tk) is the impulse response corresponding to the SVF

F0(s) =
λsvf

s+ λsvf
(3.43)

Notice that c1 is here an estimate of y(0).
The parameters are estimated with RLSSVF using λsvf = 4 rad/s. In Figure 3.7, we

compare RLSSVF estimates obtained with and without taking into account the initial

58



Chapter 3. Practical aspects and implementation issues

0 5 10 15 20 25 30
0

1

2

3

4

0 5 10 15 20 25 30
0

10

20

30

40

RLSSVF without i.c.

RLSSVF with i.c.

true

t (s)

â
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Figure 3.7: True parameters and RLSSVF estimates with and without initial condition
handling.
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Figure 3.8: True parameter c1, RLSSVF estimate (with i.c.) ĉ1 and impulse response
f0.

conditions. We can see that by taking into account the initial conditions the results are
better in terms of convergence rate and bias. The estimate ĉ1(tk) is very close to the
true value (y(0) = 18.1), as it can be seen in Figure 3.8, where we plot additionally the
impulse response f0(tk).

Now let us take a look at the overshoots in the estimates that cannot be seen in
Figure 3.7 because of the chosen axes. The overshoots are defined as follows

overshoot =
max[θ̂(tk)] − θo

θo
× 100 (3.44)

The results, presented in Table 3.1, show that large overshoots are obtained when the
initial conditions are not considered. By including the estimate of c1, the overshoots are
significantly reduced.

As it was mentioned in the previous section, another option is to start the estimation
after transients due to initial conditions have died out. From Figure 3.8, for the chosen
value of λsvf , we can see that the effect of the initial condition is negligible for t ≥ 1
s. The RLSSVF estimates with ts,ls = 2 s is shown in Figure 3.9. Note that since the
input-output data is periodic and there is no noise, the observations for t = 2 s are
the same than for t = 0. These simulation conditions have been deliberately chosen in
order to show only the effect of the initial conditions. In Table 3.1, we can see that the
overshoots are the smallest in this case.
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Table 3.1: Overshoots for the estimates â1 and b̂0.

Method & settings overshoots (%) for:

â1 b̂0

RLSSVF without i.c. 6561 5177

RLSSVF with i.c. 110 0.005

RLSSVF with ts,ls = 2 s 0.0052 0.0193
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Figure 3.9: True parameters and RLSSVF estimates using ts,ls = 2 s.
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From (3.43) it can be seen that the effect of the initial conditions is weighted by λsvf .
Therefore, if RLSSVF estimates are computed without initial conditions, the larger the
value of λsvf , the larger the overshoots will be. This has been also pointed out in
[Johansson, 1994], for an approach which is similar to RLSSVF.

3.5 Numerical issues

In off-line identification, least squares estimates can be computed using the normal
equations. Nonetheless, the conditioning can be improved by using QR factorization.
Another complementary method to improve conditioning is signal scaling.

While off-line estimation is usually done in a desktop computer, on-line estimation
is meant to be performed in a microcontroller, where numerical aspects are more im-
portant. Roundoff errors introduced by the microcontroller due to its poor machine
precision might yield a negative definite covariance matrix. In recursive estimation, QR
factorization can be also implemented in a recursive fashion with forgetting factor (see
[Bittencourt et al., 2015]). Thus, the forgetting factor based RLSSVF method (1.57)
can be implemented using QR factorization. However, the Kalman filter based RLSSVF
cannot be handled in this way. A solution is Potter’s algorithm which corresponds to
a square root filtering method (see e.g. [Niedźwiecki, 2000, Grewal and Andrews, 2015,
Simon, 2006]). For Potter’s algorithm, there are both a Kalman filter based approach
and a forgetting factor based approach.

Next, we discuss first the numerical issues in off-line identification. After showing
how to measure conditioning in LSSVF, we present the signal scaling approach for
LSSVF to improve conditioning. Then, the numerical issues in recursive identification
are addressed. First we discuss solutions for LS based methods and at the end for the
IV based methods developed in Chapter 2. In Section 4.1, the proposed approaches to
improve conditioning are tested with real data.

3.5.1 Conditioning in LSSVF

For LSSVF presented in Section 1.2.2, let us consider the minimization problem (1.10)
in matrix form. Then, the cost function is given by

V =
1
N

‖Y − Φθ‖2 (3.45)

where

Y =










y
(na)
f (t1)

y
(na)
f (t2)

...

y
(na)
f (tN )










, Φ =
(

Φy Φu

)
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with

Φy = −











y
(na−1)
f (t1) y

(na−2)
f (t1) · · · yf(t1)

y
(na−1)
f (t2) y

(na−2)
f (t2)

...
...

...
...

y
(na−1)
f (tN ) y

(na−2)
f (tN ) · · · yf(tN )











Φu =











u
(nb)
f (t1) u

(nb−1)
f (t1) · · · uf(t1)

u
(nb)
f (t2) u

(nb−1)
f (t2)

...
...

...
...

u
(nb)
f (tN ) u

(nb−1)
f (tN ) · · · uf(tN )











The optimization problem with objective function (1.10) corresponds to the normal
equations

[

ΦT Φ
]

θ̂ =
[

ΦTY
]

(3.46)

or
RN θ̂ = fN (3.47)

which have a closed-form solution

θ̂ = R−1
N · fN (3.48)

There are different ways to check whether RN in (3.48) is well-conditioned. If RN

is well-conditioned, it is invertible. The invertibility of a matrix can be evaluated by
computing its determinant which must be different than zero. However, this might not
be sufficient to detect numerically ill-conditioned matrices whose determinant might be
close to zero [Shardt and Huang, 2013]. An alternative is to use the condition number,
which is defined by [Quarteroni et al., 2000, p. 60]

κp(RN ) = ‖RN‖p‖R−1
N ‖p (3.49)

where ‖ · ‖p is the p-norm. For the infinity norm (p = ∞), the values tend to be too
conservative, and usually 2-norm (p = 2) is preferred [Shardt and Huang, 2013]. The
2-norm condition number is defined by

κ2 =
σmax

σmin
(3.50)

where σmax, σmin is the maximum and minimum singular values, respectively. For a
symmetric positive definite matrix (like in this case for RN )

κ2 =
λmax

λmin
(3.51)

with λmax, λmin the maximum and minimum eigenvalues, respectively [Quarteroni et al.,
2000, p. 61].

Remark 3.3 The condition number κ2(M) lies in the interval [1 ∞) and the optimal
conditioning is 1, which is obtained in DT identification with a FIR model with white
noise as input [Van den Hof and Ninness, 2005].
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3.5.2 Signal scaling in LSSVF

Signal scaling can be used to improve conditioning of the normal equations. In the off-
line identification of a DT linear regression model using least squares, the regressor is
defined in term of past outputs and inputs (see (1.5)). Thus, the linear regression can be
readily scaled by changing the magnitude of the input-output signals. The situation is
more tricky in the off-line identification of a CT linear regression model using LSSVF. In
that case, we arrive at a filtered linear regression (see (1.24)) whose regressor is defined
in terms of prefiltered time-derivatives of the input-output signals. Thus, the filtered
linear regression cannot be longer scaled by changing the magnitude of the input-output
signals.

Next we show how to apply signal scaling in LSSVF. The cost function (3.45) can
be modified as follows

V =
1
N

‖Y − ΦMsM
−1
s θ‖2 (3.52)

where Ms is a diagonal matrix that is used to obtain a scaled solution. The matrix Ms

is defined by

Ms =







ms,1 0 0

0
. . . 0

0 0 ms,nθ







(3.53)

with
ms,i =

1
‖Φi‖

(3.54)

and Φi the column vectors that constitute Φ, i.e.

Φ =
[

Φ1 . . . Φnθ

]

(3.55)

Let us define

θ̂s = M−1
s θ̂ (3.56a)

Φs = ΦMs (3.56b)

Then, the cost function (3.52) may by written as

V =
1
N

‖Y − Φsθs‖
2 (3.57)

Thus, the scaled LSSVF estimate that minimizes (3.57) is given by,

θ̂s = [ΦT
s Φs]−1ΦT

s Y (3.58)

In general, the filtered noise vf(tk) is not Gaussian. However, if the polynomial
A(p, θ) in 1.2 and the polynomial E(p) in (1.19) are equal, vf(tk) is Gaussian and the
parameter covariance matrix can be estimated by

P = σ̂2
vf

[ΦT Φ]−1 (3.59)

with σ̂vf
(tk) the sample variance of vf(tk). Equation (3.59), that will allow us to intro-

duce the signal scaling approach in the recursive case in the next section, can be written
as follows

P [ΦT Φ] = σ̂2
vf

(3.60)

Replacing (3.56b) in (3.60) yields

PM−1
s ΦT

s ΦsM
−1
s = σ̂2

vf
(3.61)
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Multiplying (3.61) from the left by M−1
s we obtain

M−1
s PM−1

s ΦT
s ΦsM

−1
s = σ̂2

vf
M−1

s (3.62)

Let us define
Ps = M−1

s PM−1
s (3.63)

Then, multiplying (3.62) from the right by Ms yields

Ps = σ̂2
vf

[ΦT
s Φs]−1 (3.64)

Then, by choosing Ms according to (3.53), κ2(Ps) < κ2(P ). From the properties of
the condition number, note that for RN defined in (3.48), κ2(RN ) = κ2(P ).

3.5.3 Signal scaling in RLSSVF

Signal scaling can be also applied in recursive estimation. The expression (3.56a) shows
us how to scale θ̂(tk) in the KF based RLSSVF algorithm defined in (1.59). Note that
although (3.63) is in general not valid, it also shows us how to modify P (tk) in (1.59).
Then, in analogy to the off-line case (see (3.56a) and (3.63)), for the time instant tk, we
can write

θ̂s(tk) = M−1
s θ̂(tk) (3.65a)

Ps(tk) = M−1
s P (tk)M−1

s (3.65b)

Replacing (3.65) in (1.59) we obtain the scaled version of the KF based RLSSVF:

Prediction step:

θ̂s(tk|tk−1) = θ̂s(tk−1) (3.66a)

Ps(tk|tk−1) = Ps(tk−1) +Qn,s (3.66b)

Correction step:

θ̂s(tk) = θ̂s(tk|tk−1) +M−1
s L(tk)ε(tk) (3.66c)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)Msθ̂s(tk|tk−1) (3.66d)

L(tk) =
MsPs(tk|tk−1)Msϕf(tk)

1 + ϕf
T (tk)MsPs(tk|tk−1)Msϕf(tk)

(3.66e)

Ps(tk) = M−1
s [I − L(tk)ϕf

T (tk)]MsPs(tk|tk−1) (3.66f)

where Qn,s = M−1
s QnM

−1
s . Notice that in this recursive version Ms could be computed

with some representative training data. It is clear from (3.66) that the disadvantage of
this approach are the additional operations that are introduced.

3.5.4 Review of Potter’s algorithm

Next we recall Potter’s algorithms which have been developed for DT estimation. Since
the only difference in the CT case w.r.t. the DT case is how the linear regression is
built, we present directly the CT version of the approaches.

The conditioning of the recursive estimation can be also improved by using square
root filtering algorithms (see e.g. [Grewal and Andrews, 2015]). Instead of propagating
the covariance matrix P (tk), they propagate S(tk) which is the square root of P (tk), i.e.

P (tk) = S(tk)ST (tk) (3.67)
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The benefit of this approach is clear, since the condition number of S(tk) is the square
root of the condition number of P (tk), i.e.

κ2(P (tk)) = κ2
2(S(tk)) (3.68)

One of these approaches is Potter’s algorithm, which consists on writing the covari-
ance matrix of the correction step as follows

S(tk)ST (tk) = S(tk−1)

[

Id −
f(tk)fT (tk)

β(tk)

]

S(tk−1) (3.69)

where

f(tk) = ST (tk−1)ϕf(tk) (3.70a)

β(tk) = 1 + fT (tk)f(tk) (3.70b)

It has been shown that the square root of P (tk) can be updated as follows (see e.g.
[Niedźwiecki, 2000])

S(tk) = S(tk−1)

[

Id −
f(tk)fT (tk)

α(tk)

]

(3.71)

where
α(tk) = β(tk) +

√

β(tk) (3.72)

The Kalman filter based Potter’s algorithm is given by

Prediction step:

θ̂(tk|tk−1) = θ̂(tk−1) (3.73a)
[

ST (tk|tk−1)

0

]

= T

[

ST (tk−1)

Q
T/2
n

]

(3.73b)

Correction step:

θ̂(tk) = θ̂(tk|tk−1) + L(tk)ε(tk) (3.73c)

ε(tk) = y
(na)
f (tk) − ϕT

f (tk)θ̂(tk|tk−1) (3.73d)

f(tk) = ST (tk|tk−1)ϕf(tk) (3.73e)

β(tk) = 1 + fT (tk)f(tk) (3.73f)

α(tk) = β(tk) +
√

β(tk) (3.73g)

L(tk) =
S(tk|tk−1)f(tk)

β(tk)
(3.73h)

S(tk) = S(tk|tk−1)

[

Id −
f(tk)fT (tk)

α(tk)

]

(3.73i)

where T is a 2nθ × 2nθ orthogonal matrix that can be found using Givens rotations,
Householder transformation, etc. (see more in [Simon, 2006, p. 162]). Regarding the
matrix S(tk|tk−1), note that it is not unique. Algorithm (3.73) will be called PotterSVF.
Signal scaling can also be introduced in PotterSVF as it is shown in Appendix C.
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3.5.5 Signal scaling in RSRIVC

The RSRIVC method presented in Section 2.3.3 is the on-line counterpart of SRIVC.
The SRIVC estimate can be written as in (3.48), i.e.

θ̂i =

[
N∑

k=1

ζf(tk, θ̂i−1)ϕf
T (tk, θ̂i−1)

]−1

·

[
N∑

k=1

ζf(tk, θ̂i−1)y(na)
f (tk, θ̂i−1)

]

This approach corresponds to the so-called non-symmetric version of the IV technique
[Söderström and Stoica, 1983], since in this case, the matrix in the first square brackets
is non-symmetric. An alternative is the symmetric SRIVC defined by

θ̂i =

[
N∑

k=1

ζf(tk, θ̂
i−1)ζT

f (tk, θ̂
i−1)

]−1

·

[
N∑

k=1

ζf(tk, θ̂
i−1)y(na)

f (tk, θ̂
i−1)

]

where in this case, the matrix in the first square brackets is symmetric. Analogously,
we can derive the recursive counterpart of the symmetric SRIVC.

The drawback of the square root filtering method is that it cannot be applied to non-
symmetric IV techniques, since the corresponding covariance matrix is non-symmetric
and it cannot be written as (3.67). Such an issue could be circumvented by using the
symmetric IV approach. However, it is known that the non-symmetric IV approach
gives better results than the symmetric IV approach [Söderström and Stoica, 1983]. A
solution to improve conditioning in the proposed recursive IV methods presented in
Chapter 2 is then to use signal scaling. Analogously to RLSSVF (see Section 3.5.3), the
scaled version of the KF based RSRIVC method is given by

Prediction step:

θ̂s(tk|tk−1) = θ̂s(tk−1) (3.74a)

Ps(tk|tk−1) = Ps(tk−1) +Qn,s (3.74b)

Correction step:

θ̂s(tk) = θ̂s(tk|tk−1) +M−1
s L(tk)ε(tk) (3.74c)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)Msθ̂s(tk|tk−1) (3.74d)

L(tk) =
MsPs(tk|tk−1)Msζf(tk)

1 + ϕf
T (tk)MsPs(tk|tk−1)Msζf(tk)

(3.74e)

Ps(tk) = M−1
s [I − L(tk)ϕf

T (tk)]MsPs(tk|tk−1) (3.74f)

where Qn,s = M−1
s QnM

−1
s .

3.6 Anti-windup techniques

In system identification, in order to obtain accurate models, the input u of the system
has to be persistently exciting (or sufficiently rich). Loosely speaking this means that
the input should excite all modes of the system [Ljung and Söderström, 1983]. In
formal terms, for off-line estimation using LSSVF, the input is persistently exciting if
the matrix RN in (3.48) is non-singular. Similarly, in on-line estimation using RLSSVF,
the persistence of excitation condition is defined by

i+s∑

k=i

ϕf(tk)ϕf
T (tk) � c · I ∀k (3.75)
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with s and c positive constants. Notice that for stochastic regressors, the deterministic
persistence of excitation condition (3.75) is very difficult to fulfill (see [Ljung and Gun-
narsson, 1990] and [Niedźwiecki, 2000, p. 72]). In our case, if the input is deterministic
like a PRBS, and the output is contaminated with stochastic noise, the regressor will
have both deterministic and stochastic components. Then (3.75) could be used to check
the persistency of excitation. For the recursive IV based methods, the counterpart of
(3.75) is given by

i+s∑

k=i

ζf(tk)ϕf
T (tk) � c · I ∀k (3.76)

3.6.1 Anti-windup techniques in discrete-time identification

In DT recursive identification, when the input is not sufficiently rich, recursive estima-
tion approaches could suffer from a phenomenon called estimator windup, where the
covariance matrix blow up leading to wrong estimates. To illustrate the problem, let us
consider an extreme case where we want to estimate a FIR model,

y(tk) = φT (tk)ρ+ e(tk)

with φ(tk) = 0, ∀ tk ≥ 0. Then, the RLS-FF algorithm becomes [Åstrom and Witten-
mark, 2008, p. 473]

ρ̂(tk) = ρ̂(tk−1) (3.77a)

P (tk) =
1
λ
P (tk−1) (3.77b)

The equations (3.77) are unstable and P (tk) will grow exponentially if λ < 1. On the
other hand, the KF algorithm with φ(tk) = 0 becomes [Niedźwiecki, 2000, p. 284],
[Evestedt, 2007]

ρ̂(tk) = ρ̂(tk−1) (3.78a)

P (tk) = P (tk−1) +Qw(tk) (3.78b)

The equations (3.78) are also unstable but in this case P (tk) grows linearly.

Remark 3.4 In general, it can be expected that a linear growth is slower than an expo-
nential growth, which means that the Kalman filter with a constant Qw could be more ro-
bust to excitation problems than the forgetting factor based approach [Cao and Schwartz,
2004].

Many anti-windup techniques have been proposed in the literature (see e.g. [Salgado
et al., 1988, Parkum et al., 1992, Gunnarsson, 1996, Cao and Schwartz, 2000, Evestedt,
2007, Evestedt et al., 2008]). We can distinguish for instance the following classes:

• Directional forgetting approaches. The principle is that old data must be discarded
only in the direction where new information is available. One algorithm of this
class is the selective forgetting which was developed in [Parkum, 1992, Parkum
et al., 1992].

• Directional tracking approaches. The principle is to restrict tracking directions
of an algorithm to the excited subspace (see [Cao and Schwartz, 2004]). The
algorithm proposed in [Stenlund and Gustafsson, 2002] corresponds to this class.
It is a KF based algorithm and it is suitable when the parameters vary at different
speeds.
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• Conditional updating [Åstrom and Wittenmark, 2008, p. 477] (to be explained in
Section 3.6.2).

• Regularization based approaches [Gunnarsson, 1996] (to be explained in Section
3.6.3).

These methods have been developed for DT estimation. Here we extend the conditional
updating and regularization based approaches to the CT case using the linear filter
methods that we have proposed. Since the only difference in the CT case w.r.t. the
DT case is how the linear regression is built, we present directly the CT version of the
approaches.

3.6.2 Conditional updating

This method consists in updating the estimates and covariance only when there is exci-
tation [Åstrom and Wittenmark, 2008, p. 477]. A method that works with conditional
updating is for instance the Dasgupta-Huang optimal bounding ellipsoid algorithm [Das-
gupta and Huang, 1987]. Note that conditional updating can be done using the same
techniques proposed in data quality assessment [Peretzki et al., 2011, Shardt and Huang,
2013, Bittencourt et al., 2015], which consists on finding suitable data for model esti-
mation given a large dataset.

There are different measures that can be used for conditional updating and the
criteria to choose one or another should be based e.g. on computational cost, reliability
and sensitivity of the indexes. By sensitivity we mean how much does the measure
change between rich excitation and poor excitation.

The conditional updating can be based on:

1. the conditions of persistent excitation (3.75) and (3.76) for LS and IV based meth-
ods, respectively

2. measures of the input u(tk) or output y(tk)

3. measures of quantities coming from the recursive algorithm like the scalars ε(tk)
and ϕf

T (tk)P (tk)ϕf(tk) [Åstrom and Wittenmark, 2008], or the matrix P (tk)

Regarding the second category, the updating could be done for instance based on a
variability test of the output. In the context of data quality assessment, this is proposed
in [Bittencourt et al., 2015] by means of a recursive computation of the output variance.

Regarding the third category, the updating can be done by defining a scalar measure
of the covariance matrix P (tk). The inverse of P (tk) can be proportional to the infor-
mation matrix. Then good estimates imply a small matrix P (tk) or a large information
matrix. The size of a matrix can be measured in different ways, as it is discussed in the
field of optimal experiment design [Rojas, 2008]. Possible solutions are the determinant
or the trace. The other option is to compute the condition number3 of P (tk), as it has
been proposed in the studies about data quality assessment (see e.g. [Bittencourt et al.,
2015]). Since the condition number lies in the interval [1,∞) it might be difficult to set
a threshold for it. Instead, its inverse, i.e. [κ2(P )]−1 that lies in the interval (0, 1], can
be monitored [Bittencourt et al., 2015].

Note that in practice it is likely that conditional updating is based on several mea-
sures, in order to increase robustness of the approach. In [Bittencourt et al., 2015] for
instance, various indexes are considered for data quality assessment.

3The condition number of a matrix A, denoted by κ2(A), is defined in Section 3.5.1.
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Proposed conditional updating for IV based methods

In this work, we suggest to use the recursive IV methods proposed in Chapter 2 with
conditional updating based on the condition number of P (tk). However, conditional
updating based on measures provided by the algorithm, like the condition number of
P (tk), should not be done using directly an IV method. The reason is that in this case,
P (tk) depends not only on the data but also indirectly on the estimated parameters θ̂(tk)
through the filtered instrument ζf(tk). Under poor excitation, θ̂(tk) is not reliable, and
neither is P (tk) as a measure for conditional updating. The solution that we propose is
to run in parallel RLSSVF for the purpose of obtaining κ2(P ).

For RLSSVF there are two possible adaptation mechanism, the forgetting factor
and the KF. The former is a better option for conditional updating because it is less
robust to poor excitation (see Remark 3.4), which means that the measure κ2(P ) is more
sensitive. Then, the conditional updating for the IV methods is based on the condition

κ2(P ) < γ (3.79)

where P is obtained from RLSSVF-FF and γ is the threshold which is chosen depending
on the given identification problem.

When the excitation is detected as being poor such that (3.79) does not hold, the
IV based algorithms must be reset to the original values, i.e. the parameter estimates
and covariance matrix are set as follows

θ̂(tk) = θ(t0)

P (tk) = P (t0)

Once the excitation is again rich enough, the IV approaches are initialized as usual with
RLSSVF.

3.6.3 Levenberg-Marquardt regularization method

Regularization is a well-known technique in system identification (see e.g. [Sjöberg et al.,
1993, Pillonetto et al., 2014]). It is often used to deal with an ill-conditioned problem
that can arise due to poor excitation. Anti-windup algorithms based on regularization
are presented in [Gunnarsson, 1996, Yoo et al., 2003, Waterschoot et al., 2008]. It is
important to keep in mind that regularization involves a bias-variance trade-off.

As it is shown in [Sayed and Kailath, 1994], the forgetting factor based RLSSVF
algorithm (1.57), initialized with θ0 = θ∗, P0 = Γ−1, corresponds to the following
regularized cost function

V =
N ′
∑

k=1

λN ′−k[y(na)
f (tk) − ϕf

T (tk)θ]2 + [θ − θ∗](λ(N ′+1)Γ)[θ − θ∗] (3.80)

In (3.80) we can note that as the number of samples increases, the regularization term
vanishes due to the forgetting factor. By using regularization as in (3.80) we are forcing
our first estimates to be close to θ∗.

Remark 3.5 To increase the convergence rates of the estimates in the transient mode,
it is sometimes suggested to decrease the value of the forgetting factor (see [Ljung and
Söderström, 1983, p. 279]). In this way, the tracking capability of the algorithm is
increased, but at the same time it is more sensitive to noise. On the other hand, it can
be observed from (3.80), that by decreasing the forgetting factor, we penalize less the
regularization term, which is damping the estimates.
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If we want the regularization term to remain in time, then the cost function should
be defined as follows

V =
N ′
∑

k=1

λN ′−k[y(na)
f (tk) − ϕf

T (tk)θ]2 + [θ − θ∗]T Γ[θ − θ∗] (3.81)

The recursive estimate that minimize (3.81) for θ∗ = θ(tN ′−1) is presented in [Water-
schoot et al., 2008] and it is defined as follows

θ̂(tk) = θ̂(tk−1) +R−1(tk)ϕf(tk)ε(tk) (3.82a)

R(tk) = λR(tk−1) + ϕf(tk)ϕf(tk) + (1 − λ)Γ (3.82b)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)θ̂(tk−1) (3.82c)

For the choice θ∗ = θ(tN ′−1), algorithm (3.82) corresponds to the Levenberg-Marquardt
regularization (LMR) approach in [Ljung and Söderström, 1983]. The algorithm (3.82)
is written in terms of the CT linear regression that it is built with SVF. Therefore, we
call it LMR-RLSSVF method, and it has two hyperparameters, λ and Γ. Notice that
with this choice for θ∗, we are damping the estimate such that it remains close to the
previous value. The downside of LMR is that it involves matrix inversion, as it is the
case for all the methods based on regularization. However, different methods have been
developed to overcome or alleviate that issue (see [Gunnarsson, 1996] and [Waterschoot
et al., 2008]).

LMR approach and IV methods under rich excitation

While regularization introduces bias in the estimates, the aim of IV methods is to
reduce it. Therefore, at first sight, it would seem that it does not make sense to use
these approaches together. However, in recursive estimation of slowly time-varying
models under rich excitation conditions, if we consider regularization as in (3.81) with
θ∗ = θ(tN ′−1), the bias introduced is minimum. On the other hand, in the IV techniques
presented in Chapter 2, the instruments are built using previous estimates, which should
vary smoothly to guarantee stability of the algorithm. A solution to get smooth estimates
is to use a filter, as discussed in Section 3.2.3. Another option is to use the IV methods
with regularization, i.e. the IV counterpart of algorithm (3.82).

However, it is important to stress that such an approach is not suitable to deal
with poor excitation, because in the considered IV methods the instruments depend on
previous estimates θ̂(tk−1) that are not reliable.

3.6.4 Numerical example

To illustrate the windup problem and the proposed solutions, the numerical example
given in Section 2.3.5 is considered under poor excitation conditions. For 0 ≤ t < 6000
s the input is a PRBS as before, and for 6000 ≤ t ≤ 9000 s the input remains equal to
1, leading to an estimator windup problem. Part of the input-output data is shown in
Figure 3.10.

We present here the performance of the algorithms shown in Table 3.2. For the
simulations, we use as before an SVF with cut-off frequency λsvf = 3.2 rad/s, which is
slightly higher than the maximum system bandwidth. The rest of the hyperparameters
has been obtained by trial and error and their values are given in Table 3.2.

Firstly, we present the results using RLSSVF-FF and RLSSVF-KF. With the former
approach, good results can be expected since the parameters are varying with a similar
rate. The estimates obtained using RLSSVF-FF and RLSSVF-KF are shown in Figure
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Figure 3.10: Part of the input-output data.

Table 3.2: Hyperparameters of the algorithms.

Method Hyperparameters

RLSSVF-FF λ = 0.998

RLSSVF-KF Qn = diag([10−4 10−4 10−4])

RSRIVC-KF Qn = diag([10−4 10−4 10−4]); ts,iv = 100 s

LMR-RLSSVF λ = 0.998; Γ = diag([1 1 1])
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â
2

b̂
0

(b)

Figure 3.11: True parameters, RLSSVF-FF estimates (a) and RLSSVF-KF estimates
(b) when poor excitation appear from t ≥ 6000 s.
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Figure 3.12: Condition number of P (tk) for RLSSVF-FF and RLSSVF-KF when poor
excitation appear from t ≥ 6000 s.

3.11. Under rich excitation conditions, the RLSSVF-FF estimates are similar to the ones
provided by RLSSVF-KF. However this is not the case under poor excitation conditions.

The condition numbers of P are plotted in Figure 3.12. We can see a faster growth
of κ2(P ) for RLSSVF-FF; as we already mentioned, this is expected since in forgetting
factor based algorithms P (tk) may grow exponentially under poor excitation, while in
KF based algorithms the growth is linear.

The estimation with RSRIVC is performed considering a conditional updating based
on κ2(P ) of RLSSVF-FF with a threshold γ = 300 (see (3.79)). In Figure 3.13, the
RSRVIC estimates are plotted. For t ≈ 6000 s, the condition κ2(P ) < 300 does not hold
anymore, and therefore θ̂(tk) = 0.

Regarding LMR-RLSSVF, the estimates are compared with the true values in Figure
3.14. Notice that under persistent excitation conditions, the RLSSVF-FF and LMR-
RLSSVF estimates are similar. However, under poor excitation, κ2(P ) is smaller for
LMR-RLSSVF, as it can be seen in Figure 3.15. Note though that κ2(P ) for RLSSVF-
KF is even smaller (see Figure 3.12).

3.7 Conclusions

For the algorithms presented in Chapter 2, several practical aspects and implementation
issues, summarized in the introduction of the chapter, have been analyzed. Next we list
them together the proposed solutions.

• Choice of user hyperparameters. The most important hyperparameters are:
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Figure 3.13: True parameters and RSRIVC estimates when poor excitation appear from
t ≥ 6000 s.
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Figure 3.14: True parameters and LMR-RLSSVF estimates when poor excitation appear
from t ≥ 6000 s
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Figure 3.15: Condition number of P (tk) for LMR-RLSSVF.
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– λsvf . This is an hyperparameter of RLSSVF which is used to initialized the
IV based methods. The cut-off frequency λsvf should be chosen close to the
system bandwidth. One of the assumptions that we have made is that the
parameters are slowly varying. Then, to have an idea about values for λsvf ,
we propose to estimate local LTI models on portions of some training data.
Nonetheless, it is important to know that this parameter has also an impact
in the parameter convergence, namely, the larger the value of λsvf , the quicker
the convergence. On the other hand, in the transient mode, the larger λsvf ,
the larger the overshoots in the estimates can be. Through a numerical
example we have shown that one way to reduce these overshoots is to start
the estimation after the transients due to initial conditions have died out.
Regarding the implementation of the SVF, the ordinary version could intro-
duce an undesired signal scaling that leads to numerical issues. Therefore we
suggest to use in general the normalized version.

– ts,iv. The choice of the time instant at which RLSSVF converges and the
IV methods starts to operate can be done automatically. To this end, some
indexes have been presented. Based on RLSSVF estimations in some training
data, we suggest to choose ts,iv according to prediction error ε(tk) or output
error εy(tk).

– Qn. The normalized covariance matrix of the Kalman filter can be estimated
through maximum likelihood using some training data. It might be the case
that it is known in advance that some parameters do not vary in time. Then,
it is important that such prior information is used in the estimation through
maximum likelihood in order to simplify the problem. As in the case of the
choice of λsvf , it might be also useful to estimate local LTI models on segments
of training data to find out how the parameters are varying.

• Digital implementation of the CT filtering operations involved on the prefilter and
auxiliary model: in order to obtain accurate filter outputs, the sampling frequency
should be as high as possible.

• Numerical aspects: for recursive LS based methods, Potter’s algorithm can be
used to improve conditioning. For recursive IV based methods, this is not possible
because the P matrix is non-symmetric. Therefore, the proposed solution is to
use signal scaling. The advantage of this approach will be shown in Section 4.1.3.

• Estimator windup problem: the problem of having poor excitation in the data
has been considered. For IV based methods, it is proposed to use conditional
updating based on the condition number of the covariance matrix P (tk), where
P (tk) is obtained from running in parallel RLSSVF with forgetting factor.
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Chapter 4

Applications

Here we present two real-life problems to which we apply the approaches developed in
Chapters 2 and 3. The first one is an electronic bandpass filter proposed as a benchmark
both for LPV and LTV model identification [Lataire et al., 2015]. The second real life
based problem is an electronic throttle control (ETC) system that we find in automobiles
nowadays. In the last decades, several studies have been carried out in order to improve
the performance of this device (see e.g. [Pavković and Deur, 2011]).

4.1 Benchmark data from an electronic bandpass filter

In [Lataire et al., 2015], real data collected from a second order bandpass filter has been
proposed as a benchmark both for LPV model and LTV model identification. It deals
with an open-loop estimation problem. In Figure 4.1, a diagram of the electronic circuit
is shown. A parallel connection of an n-type J-FET transistor and a 470 kΩ resistor con-
stitute a variable resistance, which produces the parameter variations. The scheduling
variable r(t) is the gate-source voltage of the transistor, and the input u(t) and output
y(t) are the voltages indicated in Figure 4.1. The noise level in the measurements is
very low, with an SNR of more than 60 dB. Note that some small non-linear effects are
also present.

Several scenarios, consisting on different excitations and scheduling signals are pro-
vided. To assess our approaches, we consider one scenario with smooth parameter
variations. Since LTV models are identified, the measured scheduling signal is not used.

Figure 4.1: Second order bandpass filter.
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4.1.1 Problem formulation

According to the qualitative description of the circuit given in [Lataire et al., 2015], the
system has two complex poles and one zero at the origin. Therefore, we consider the
following CT LTV OE model

(p2 + a1(t)p + a2(t))x(t) = b0(t)pu(t) (4.1a)

y(tk) = x(tk) + e(tk) (4.1b)

where the input u(t) and output y(t) are voltages. Given a data set, the aim is then
to identify the parameters using the methods proposed previously in Chapters 1 and 2.
One of the assumption that we make to develop those approaches is that the parameters
are slowly varying. Thus, from the many different scenarios available in [Lataire et al.,
2015]1, we consider the data which satisfied that assumption. The name of the chosen
data set is

MS_Harm_h3_N15640_RMS70_P2P700.mat (4.2)

which means the following:

• multisine excitation

• scheduling signal composed of one harmonic

• N = 15640 samples (in one period)

• RMS of 70 mV for the excitation

• scheduling signal with a peak-to-peak value of 700 mV

The data consists in 6 experiments, denoted here by Ei, with i = 1, . . . , 6. Each
experiment has 3 periods, with N = 15640 samples in each period. In each experiment
the input is different. Regarding the scheduling variable, there is one for the first 3
experiments, and another one for the last 3 experiments. We are using only the following
experiments:

• E1 as estimation data

• E3 as validation data

• E4 as training data

Then, experiment E1 of the data set (4.2) will be denoted as (4.2)-E1.
The sampling frequency is 156250 Hz. Part of the input-output data is presented in

Figure 4.2. The scheduling signal r(t) of the second period is shown in Figure 4.3. As
we already mentioned, r(t) is not used in the identification. However it will be used to
interpret the results.

To get a better insight of the system, we will also use the data set named

MS_Const_N15640_RMS70_P2P700.mat (4.3)

which includes experiments with constant scheduling variables with different values.

1The data can be downloaded from
www.kth.se/social/group/system-identificatio/page/17th-ifac-symposium-on-system-identifica/
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Figure 4.2: Part of the input-output data for the identification of the circuit model.
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Figure 4.3: Scheduling signal r(t) of the estimation data for the identification of the
circuit model.
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Figure 4.4: RLSSVF and RSRIVC estimates of the electrical circuit.

4.1.2 Recursive estimation of the electrical circuit

Our goal is to assess the performance of RLSSVF and RSRIVC. To get rough estimates
of the hyperparameters λsvf and Qn, we first identify LTI models using the data set (4.3)
corresponding to LTI systems. The estimation is performed with SRIVC with detrended
data, i.e. the mean is removed. This procedure lead to λsvf = 107 rad/s. From [Lataire
et al., 2015], we know that the parameter b0(t) is constant. Additionally we found out
that also a1(t) is nearly constant. This means that in Qn the corresponding values for
a1(t) and b0(t) are zero.

From the previous analysis, we know that there is only one value of Qn remaining
to be estimated. This is done using the data set (4.2)-E1 corresponding to the LTV
system. As part of the preprocessing, this data is also detrended. By trial and error we
finally obtain Qn = diag([10−15 0.5 10−15]). Regarding ts,iv, from the convergence of
RLSSVF, we choose ts,iv = 20 ms.

The RLSSVF estimates and RSRIVC estimates are compared in Figure 4.4. As
expected, the results are very close due to the low noise level in the measurements. Notice
that the variation of â2(t) matches the shape of the scheduling signal r(t) displayed in
Figure 4.3 for one period.

The frequency response functions for the frozen RSRIVC models corresponding to
the second period are shown in Figure 4.5. Note that the shape is similar to the one
reported in [Lataire et al., 2015]; as it is pointed out there, the evolution of the resonance
frequency (peak of the frequency response function) matches the shape of the scheduling
signal (see Figure 4.3).

To assess the quality of the estimates we use the benchmark criterion proposed in
[Lataire et al., 2015], which corresponds to the RMS error computed on the second
period of the simulated output signal, i.e.

RMSEy =

√
√
√
√

1
N −Ntr

2N−1∑

k=N+Ntr

(
y(tk) − ŷ(tk, θ̂, u)

)
(4.4)

where y is the measured output from the validation data. The simulated output ŷ is
computed from the estimate θ̂ and the measured input from the validation data u. The
term Ntr = 500 is used to eliminate the transient effects. Additionally, we compute the
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Figure 4.5: Frequency response functions of the frozen models obtain with RSRIVC.

fit between the measured and simulated outputs, which is defined as follows

F = 100 ×

[

1 −
‖y(tk) − ŷ(tk, θ̂, u)‖

‖y(tk) − mean(y(tk))‖

]

(4.5)

with tk varying as in (4.4). In [Lataire et al., 2015], for the analyzed data set, the
proposed model structure, which is different than ours (see (4.1)), has 3 poles and one
zero, with none of the parameters in the numerator being set to zero. Considering the
data set (4.2)-E3 as validation data, we obtain after detrending the results that are
shown in Table 4.1. From the values of RMSEy, we can see that RSRIVC is doing
better than RLSSVF but still not as good as the result given in [Lataire et al., 2015].
Notice that in our case, apart from having a different model structure, we are only
considering the data set (4.2)-E1 as estimation data. Nevertheless, from the fits we can
conclude that the estimated models are a fair representation of the system dynamics.
For RSRIVC, a comparison between measured and simulated outputs is shown in Figure
4.6.

4.1.3 Illustration of the signal scaling approach

The advantage of using the signal scaling approach introduced in Section 3.5 is illustrated
here. Signal scaling improves the conditioning of the proposed recursive algorithms, that
is, it reduces the condition number of the P matrix.

The condition numbers of P corresponding to the previous estimations using RLSSVF
and RSRIVC are shown in Figures 4.7(a) and (c), respectively. The large values ob-
tained for κ2(P ) can be reduced through the signal scaling approach. We should keep in
mind that by using signal scaling, the parameter estimates are not altered. The signal
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Table 4.1: Performance indexes using validation data.

Method RMSEy (mV) F (%)

[Lataire et al., 2015] 0.1156 not reported

RLSSVF 0.6909 95.7

RSRIVC 0.3781 97.6

195 196 197 198 199 200

-50

0

50

t (ms)

y
(m

V
)

meas.

sim.

Figure 4.6: Comparison between measured and simulated outputs for RSRIVC (the
measured and simulated outputs are nearly matching).
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Figure 4.7: Condition number of P for (a) RLSSVF, (b) RLSSVF with signal scaling,
(c) RSRIVC, (d) RSRIVC with signal scaling and (e) PotterSVF. Note that the limits
for the y-axes are different.

scaling approach requires the computation of the scaling matrix Ms (see (3.53)), which
is computed using the data set (4.2)-E4 after being detrended. The condition numbers
of P with RLSSVF and RSRIVC with signal scaling decrease considerably, as we can see
in Figure 4.7(b) and (d). Additionally, we provide κ2(P ) for the PotterSVF algorithm
in Figure 4.7(e); as we can note, smaller condition numbers are obtained with the signal
scaling approach.

4.2 Electronic throttle control system

In this section, the goal is to apply our proposed recursive estimation approaches to
a simulated case study of an electronic throttle control (ETC). This corresponds to a
closed-loop identification problem.

An ETC is a system used in automobiles to regulate air flow in the internal com-
bustion engine. Basically, this is achieved by means of a DC (or step) motor which
controls the position of the throttle valve plate. The ETC replaces the mechanical link
between the vehicle acceleration pedal and the throttle valve in conventional automo-
biles. The benefits of the ETC, found both in gasoline and diesel engines, is to improve
fuel economy, emissions and drivability. Additionally, the ETC is used for torque based
engine control, where the desired torque is set by the pedal and the engine control sys-
tem determines the necessary engine charge air and fuel to meet the torque requirement
[Canudas de Wit et al., 2001, Pavković and Deur, 2011, Zhang et al., 2015].

An ETC system consists basically of a controller and an electronic throttle body
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(ETB), which is shown in Figure 4.8. Apart from the DC motor and throttle plate,
there are a gearbox and two springs; to simplify the scheme, only one spring is shown
in Figure 4.8. While the aim of the former is to reduce the speed coming from the
motor, the aim of the latter is to return the plate into the so-called limp-home (LH)
position in case of power supply failure [Pavković and Deur, 2011]. Non-linearities in
the system come from the springs and also from friction effects. Additionally, there is
the disturbance due to the air flow. On the other hand, the physical process parameters
can vary, for instance, due to [Pavković et al., 2006]:

• Aging effect.

• Variations of external temperature which may produce changes in the armature
resistance of the motor.

Figure 4.8: Electronic throttle body (ETB).

The design of an ETC system is a challenging task, because of the ETB’s nonlinear-
ities and parameter variations. Among different approaches, a popular method for this
application is sliding control (see e.g. [Reichhartinger and Horn, 2009]). PID based con-
trollers are also an option. In [Deur et al., 2004] for instance, a PID with compensation
mechanisms for the nonlinearities has been developed. PIDs coupled with an adaptive
mechanism have been also considered in [Canudas de Wit et al., 2001, Pavković et al.,
2006].

In this chapter, we focus on the recursive estimation of the ETB parameters which
could be used in an adaptive controller.

4.2.1 Electronic throttle body model

The present study is done based on the model provided by [di Bernardo et al., 2010],
which represents an ETB for a gasoline engine. The ETB model is given by

di(t)
dt

= −
R

L
i(t) −

KvGr

L
ω(t) +

1
L
u(t) (4.6a)

ω(t) =
dφ(t)
dt

(4.6b)

J
dω(t)
dt

= KtGri(t) −Ms(t) −Mf (t) −Ma(t) (4.6c)

Equation (4.6a) corresponds to the electrical submodel and (4.6c) to the mechanical
submodel. In Table 4.2, the variables and physical parameters are described. The
numerical values of the physical parameters in (4.6) are given in Table 4.3. A block
diagram of the ETB model is presented in Figure 4.9, where we can distinguish the
electrical and mechanical submodels.
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Table 4.2: Description of ETB model parameters.

Symbol Description

φ Angular position of the throttle plate

ω Angular velocity of the throttle plate

i Current

u Voltage source of the armature

L Inductance of the armature coil

R Resistance of the armature coil

Kv Velocity coefficient

Kt Torque coefficient

J Moment of inertia

Gr Transmission ratio due to the gear

Ms Spring torque

Mf Friction torque

Ma Aerodynamic torque due to the air flow

Table 4.3: ETB physical parameter values coming from [di Bernardo et al., 2010].

Symbol Value Unit

Ks1 1.83 · 10−3 · 180/π N·m/rad

Ks2 22.90 · 10−3 · 180/π N·m/rad

Ks3 47.15 · 10−3 · 180/π N·m/rad

Mclose 28.4162 · 10−3 N·m

Mopen 15.8202 · 10−3 N·m

φmin 8 · π/180 rad

φmax 90 · π/180 rad

φLH 12.58 · π/180 rad

∆φ 1.12 · π/180 rad

φ12 85 · π/180 rad

J 1.56 · 10−3 Kg·m2

Kb 4.98 · 10−3 N·m·s/rad

Mc 8 · 10−3 N·m

R 1.4 Ω

L 2.5 · 10−3 H

Kv 0.02 V·s/rad

Kt 10.8856 · 10−3 N·m/A

Gr 22.56 1
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4.2. Electronic throttle control system

Figure 4.9: Block diagram of the ETB model.
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Figure 4.10: Spring torque Ms vs angular position φ.

The spring torque Ms(t) is a piece-wise linear function. Here Ms(t) is considered as
defined in [di Bernardo et al., 2010], i.e.

Ms(t) = hs(φ(t))

=







hs3(φ(t)) if φ ∈ [φmin;φLH − ∆φ/2[

0 if φ ∈ [φLH − ∆φ/2;φLH + ∆φ/2]

hs1(φ(t)) if φ ∈ ]φLH + ∆φ/2;φ12[

hs2(φ(t)) if φ ∈ [φ12;φmax]

(4.7)

with

hs1(φ(t)) = Ks1

[

φ(t) −

(

φLH +
∆φ
2

)]

+Mopen (4.8a)

hs2(φ(t)) = Ks2(φ(t) − φ12) + hs1(φ12) (4.8b)

hs3(φ(t)) = −Ks3

[

φLH −
∆φ
2

− φ(t)
]

−Mclose (4.8c)

The values of the coefficients in (4.7) and (4.8) are given in Table 4.3. A plot of Ms(t)
is presented in Figure 4.10.

84



Chapter 4. Applications

The literature about friction modeling is extensive (see e.g. [Olsson et al., 1998] and
references therein). To represent friction in an ETB, both static and dynamical models
have been used. In [di Bernardo et al., 2010], the static model consists of Coulomb,
Stribeck and viscous friction. Regarding a dynamic model, the so-called LuGre model
is considered in [Canudas de Wit et al., 2001]. In our case, the model proposed in
[di Bernardo et al., 2010] is simplified, such that the Stribeck effect is neglected. Then,
Mf (t) is given by

Mf (t) = hf (ω(t))

= Kbω(t) +Mcsign(ω(t)) (4.9)

with the coefficients defined in Table 4.3.
The aerodynamic torque Ma(t) depends e.g. on the throttle plate angle φ(t) among

others [Canudas de Wit et al., 2001]. Here we consider that it is zero.

4.2.2 Problem formulation

We define now the true system for the simulations based on the model (4.6). As it
was mentioned before, the system is subject to parameter variations. Some changes
can be very slow due to aging effects. However, this is not the case for the armature
resistance, which can differ considerably within a single cycle of engine operation, due to
temperature variations in the DC windings [Pavković and Deur, 2011, p. 97]. According
to [Pavković and Deur, 2011, p. 98], the armature resistance does not exceed ±50% of
the nominal value. The same variation is assumed here, i.e.

0.5 ·R ≤ Ro(t) ≤ 1.5 · R (4.10)

with the nominal value R specified in Table 4.3. The rest of the true parameters, denoted
also with a superscript {}o, are defined according to Table 4.3.

Since the electrical dynamics is much faster than the mechanical dynamics, the
dynamics of the current is usually neglected. Such an assumption is also considered
here both for the true system and the model to be presented next. In this way we can
better evaluate the tracking of the parameters. Then, the true system S is given by

i(t) =
1

Ro(t)
u(t) −

Ko
vG

o
r

Ro(t)
ω(t) (4.11a)

ω(t) =
dφ(t)
dt

(4.11b)

Jodω(t)
dt

= Ko
t G

o
ri(t) −Ms(t) −Mf (t) (4.11c)

φm(tk) = φ(tk) + eo(tk) (4.11d)

with Ro(t) varying linearly in the range (4.10). Regarding the signal eo(tk), it is a
zero-mean DT Gaussian noise sequence with variance 10−3 (rad/s)2. The torques Ms(t)
and Mf (t) are also defined considering the values provided in Table 4.3 as the true
parameters.

The system operates in closed loop, and the closed-loop configuration is shown in
Figure 4.11. The true plant Go is defined by the first three equations in (4.11). Fφ is a
filter to smooth the set-point and C is a PID controller. The former is described by

Fφ(q−1) =
0.009901 + 0.009901q−1

1 − 0.9802q−1
(4.12)
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4.2. Electronic throttle control system

Figure 4.11: Closed-loop block diagram of the ETB.

and the latter by

C : Cc(q−1) = kp +
ki

1 − q−1
+ kd(1 − q−1) (4.13)

with kp = 2.85, ki = 6.06 · 10−3, kd = −36.96.
Due to the complexity of the system, the model identification of a throttle valve is

done considering more than one experiment (see e.g. [Isermann and Münchhof, 2010,
Pavković and Deur, 2011]). In this study, assuming that the parameters of the mechan-
ical submodel have been previously identified, we focus on the recursive estimation of
the electrical submodel which is given by

i(t) =
1

R(t)
u(t) −

KvG
o
r

R(t)
ω(t) (4.14a)

ω(t) =
dφ(t)
dt

(4.14b)

φm(tk) = φ(tk) + e(tk) (4.14c)

with e(tk) a zero-mean DT Gaussian noise sequence. Note that both the electrical and
mechanical subsystem have the parameter Go

r , and it is assumed to be known. The
parameter vector to be estimated is

θ(t) =
[

θ1(t) θ2(t)
]T

=
[

1
R(t)

KvGo
r

R(t)

]T
(4.15)

To avoid non-linearities coming from the spring, the estimation data satisfies the
condition

φ ∈ ]φLH + ∆φ/2;φ12[ = ]13.14; 85[ (deg) (4.16)

i.e. we need to identify the linear function hs1(φ(t)) defined in (4.8a). Therefore, the
non-linear effects are only due to friction. Notice that the closed-loop system is excited
only through the set point φd(t), i.e. no external signal2 is considered, since then it is
easier to satisfy (4.16) by a proper choice of φd(t).

Then, the identification problem is to recursively estimate the time-varying param-
eter vector (4.15) that characterizes the model (4.14), based on the sequences

{φd(tk), u(tk), i(tk), φm(tk)}N ′

k=1

where N ′ is the number of samples which increases by one with every recursion.

4.2.3 Recursive estimation of the electrical submodel

Let us formulate the solution with CLRSRIVC. Firstly, note that (4.14) is not a CT LTV
OE model, which is the type of model considered in the development of the identification

2The external signal corresponds to r1(t) in Figure 2.15.
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Figure 4.12: Closed-loop auxiliary model.

methods in Chapter 2. However, the proposed methods can be adapted to handle this
situation.

From a heuristic approach we found out that a suitable prefilter for the identification
of the electrical model is the prefilter corresponding to the mechanical system, which
can be written as follows

(

p2 +
Ko

b

Jo
p+

Ko
s1

Jo

)

φ(t) =
Ko

t G
o
r

Jo
i(t) −

mo
s1

Jo
−
Mo

c

Jo
sign(ω(t)) (4.17)

with p the differentiation operator, and mo
s1 gathering the constant terms in (4.8a), i.e.

it is given by

mo
s1 = −Ko

s1

(

φo
LH +

∆φo

2

)

+Mo
open (4.18)

Note that if we discard the last term in (4.17), which is the source of the non-linearity,
we obtain a multi-input single-output linear time-varying (MISO LTV) model with 2
inputs. The prefilter corresponding to this MISO LTV model is

F (p) =
Ko

s1/J
o

p2 + (Ko
b /J

o)p +Ko
s1/J

o
(4.19)

Since we assume that the parameters of the mechanical subsystem are known and con-
stant, then the prefilter (4.19) is also known and constant.

Now we rewrite (4.14) as a filtered linear regression. By assuming slow parameter
variations, we can neglect the non-commutativity issue and then apply the prefilter
(4.19) to (4.14a) obtaining

if(t) = θ1(t)uf(t) − θ2(t)φ(1)
f (t) (4.20)

The closed-loop auxiliary model to compute the instruments is shown in Figure 4.12,
where the estimated plant Ĝ is given by

ˆ̊i(t) =
1

R̂(t)
ˆ̊u(t) −

K̂vG
o
r

R̂(t)
ˆ̊ω(t) (4.21a)

ˆ̊ω(t) =
d

ˆ̊
φ(t)
dt

(4.21b)

Jod
ˆ̊ω(t)
dt

= Ko
t G

o
r
ˆ̊i(t) −

ˆ̊
Ms(t) −

ˆ̊
Mf (t) (4.21c)

with the torques ˆ̊
Ms(t) and ˆ̊

Mf (t) defined with the true parameters. The other chosen
hyperparameters are: ts,iv = 5 s; Qn = diag([10−6 5 · 10−5]).

For comparative purposes we also consider RLSSVF with the SVF

F (p) =

(

λsvf

p+ λsvf

)2

(4.22)
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Figure 4.13: Estimation data for the identification of the ETB model.

where λsvf is defined in terms of the bandwidth ωb of (4.17), which is 12.4 (rad/s); the
chosen value is λsvf = 5.0 · ωb. For Qn we take the same matrix as for CLRSRIVC.

We present next some results for a single experiment run out of the 100 that are
considered later in a Monte Carlo simulation analysis. The measurements that are
used for the model estimation are shown in Figure 4.13. The results for RLSSVF and
CLRSRIVC are presented in Figures 4.14 (a) and (b), respectively. We can clearly see
that while for RLSSVF there is a significant tracking error, for CLRSRIVC the estimates
are very close to the true values. From θ̂(t) it is straightforward to compute the physical
estimates R̂(t) and K̂v (see (4.15)). A comparison between the true physical parameters
and the CLRSRIVC estimates is shown in Figure 4.15.

The Monte Carlo simulation is performed with 100 experiments. The results, pre-
sented in Figure 4.16, confirm the previous analysis for a single experiment.
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Figure 4.14: True parameters, RLSSVF and CLRSRIVC estimates for a single experi-
ment.
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Figure 4.15: True physical parameters and CLRSRIVC estimates for a single experiment.
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Figure 4.16: True parameters, RLSSVF and CLRSRIVC average estimates for a MC
simulation.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis we have addressed the on-line identification of CT LTV models. In par-
ticular we focused on CT output-error type models whose parameters vary slowly in
time.

In Chapter 1, we have first shown how linear filter methods are able to estimate CT
LTI models. A simple approach that has been recalled is the LSSVF method which gives
a closed form solution. That is what makes this least squares based method attractive.
However, if the output measurement noise is not negligible, the LSSVF estimates will be
biased. For the identification of CT LTV models, the recursive counterpart of LSSVF,
denoted RLSSVF, can be used. In LTV model identification, analogously to the LTI
case, the presence of measurement noise deteriorates the RLSSVF estimates, and the
degradation of the results might not be acceptable for certain applications.

In Chapter 2, the contribution has been to develop recursive instrumental variable
based methods, both for open-loop and closed-loop identification of CT LTV models. As
RLSSVF, these are also direct identification methods based on the linear filter approach,
but provide better estimates when the output measurement noise is not negligible. To
track the time-varying parameter variations, we proposed the forgetting factor and the
random walk model approaches. Nevertheless, we have focused on the latter since it
is more flexible, meaning that it is suitable for cases in which the parameters vary at
different rates. Furthermore, it should be more robust in cases of poor excitation. Nu-
merical examples including Monte Carlo simulations have been considered to show that
IV methods are advantageous over RLSSVF in terms of delivering parameter estimates
with smaller tracking errors. One of the numerical examples and some of the algorithms
developed in this chapter, have been included in the CONTSID toolbox.

In Chapter 3 we have proposed solutions to the practical aspects and implementation
issues related to the use of the recursive IV methods that have been developed. The
main contributions are:

• Development of a method to estimate the normalized covariance matrix of the
Kalman filter Qn. This is one of the hyperparameters of the developed identifica-
tion methods that has to be chosen by the user. The tracking ability and noise
sensitivity of Kalman filter based algorithms depend on Qn. If the parameters of
the system are not varying at the same speed, different values for the diagonal el-
ements of Qn have to be chosen. Finding suitable values for the covariance matrix
might be time-consuming and not straightforward. We have proposed an off-line
method to estimate Qn from a given training data set. The approach couples the
maximum likelihood method with one of the developed IV based methods. The
effectiveness of this approach has been shown in a numerical example.
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• Proposition of guidelines to choose the hyperparameters of the developed identifi-
cation methods. Guidelines were given for the following hyperparameters, which
along with Qn, are the most important:

– Cut-off frequency of the SVF (λsvf). This is an hyperparameter of RLSSVF
which is used to initialize the IV based methods. The impact of λsvf in the
estimates have been discussed. In particular, we showed through a numerical
example how overshoots of the estimates in the transient mode are related to
λsvf . Approaches to reduce these overshoots have been also presented.

– Time instant when the IV based method starts to operate (ts,iv). The value of
ts,iv should be the time instant at which the RLSSVF has converged. Several
measures that can be used to choose ts,iv were discussed.

• Proposition of an anti-windup approach for IV based methods. When a system
to be identified is poorly excited, anti-windup methods are needed to prevent the
parameter estimates to blow up. For the IV based methods, the solution that we
have proposed is to use conditional updating based on the condition number of
the parameter covariance matrix P , where P is obtained from the RLSSVF with
forgetting factor algorithm running in parallel. The motivation to use the RLSSVF
with forgetting factor method is that it should be in general more sensitive than
other algorithms to poor excitation.

• Development of a signal scaling approach to improve conditioning of IV based
methods. Numerical aspects can play an important role when recursive algorithms
are run in a microcontroller. To improve the conditioning of the identification
problem and thus to avoid numerical issues, we have proposed to use a signal
scaling approach. The effectiveness of this method has been demonstrated with a
benchmark considering real data from an electronic band pass filter.

Finally, in Chapter 4, a simulation case study corresponding to the estimation of an
electronic throttle valve model is considered. The identification problem is challenging
because of non-linear effects due to friction. Moreover the system operates in closed-
loop. We have illustrated how to adapt one of the developed IV methods to the recursive
estimation of the physical time-varying parameters.

5.2 Future work

In this thesis we have developed recursive instrumental variable methods for CT models
under the assumption that the parameters are slowly varying in time. This assump-
tion allows us to neglect the non-commutativity problem when linear filter method are
applied. Additionally this assumption is used to guarantee stability of the auxiliary
model. The goal of a future work can be to adapt the developed approaches to scenarios
with fast or abrupt parameter variations. The problem is not trivial because of these
non-commutativity and stability issues.

For fast parameter variations, a solution might be to use a parallel estimation scheme,
were several recursive algorithms running in parallel compete with each other. These
algorithms could differ in the assumed representation of the time-varying parameters
which can be described by different deterministic and/or stochastic models. For the
case of abrupt parameter variations, parallel estimation is also an option.

One of our algorithms, developed under the assumption of a having a CT LTV
system, has been adapted to a CT non-linear time-varying system. Another possible
direction of research would be to develop algorithms specially dedicated to this type of
systems.

91



Appendix A

Digital implementation of CT
filtering operations

The digital implementation issues of the CT filtering operations are well-known in CT
model identification. They should be treated in an appropriate way since errors gener-
ated by the digital implementation can have an impact on the quality of the estimated
model.

The CT filtering operation is represented by a LTV state-space system

ẋ(t) = F (t)x(t) +G(t)u(t) (A.1a)

y(t) = H(t)x(t) + J(t)u(t) (A.1b)

with state x(t) ∈ R
nx , input u(t) ∈ R

nu, output y(t) ∈ R
ny and matrices F (t), G(t),

H(t) and J(t) of appropiate dimensions. Depending on the intersample behaviour of
the input u(t), two different discretizations are considered in this work.

A.1 Zero-order-hold assumption

The zero-order-hold assumption is considered if the intersample behaviour of the input
u(t) is piecewise constant. In the LTV scenario, the zero-order-hold assumption applies
also to the system time-varying matrices F (t), G(t), H(t) and J(t), i.e. the following is
satisfied for the input

u(t) = u(tk), ∀t ∈ [(k − 1)Ts, kTs) (A.2)

and for the time-varying matrices we have

F (t) = F (tk) (A.3a)

G(t) = G(tk) (A.3b)

H(t) = H(tk) (A.3c)

J(t) = J(tk), ∀t ∈ [(k − 1)Ts, kTs) (A.3d)

That is, between samples the matrices are constant. As pointed out in [Tóth et al., 2010]
in the context of LPV systems, this assumption of having constant matrices is usually
not realistic. The discrete-time version of (A.1) is then defined as in the LTI case (see
[Åstrom and Wittenmark, 1996, p. 34]) and it is given by

x(tk+1) = Fd(tk)x(tk) +Gd(tk)u(tk) (A.4a)

y(tk) = Hd(tk)x(tk) + Jd(tk)u(tk) (A.4b)
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where

Fd(tk) = eTsF ((k−1)Ts) (A.5a)

Gd(tk) =
∫ Ts

0
eF ((k−1)Ts)sds G (A.5b)

Hd(tk) = H((k − 1)Ts) (A.5c)

Jd(tk) = J((k − 1)Ts) (A.5d)

These matrices Fd(tk) and Gd(tk) can be computed from

[

Fd(tk) Gd(tk)

0 I

]

= exp

([

F ((k − 1)Ts) G((k − 1)Ts)

0 0

]

Ts

)

(A.6)

with ‘exp’ corresponding to the matrix exponential that can be computed in MATLAB
with expm.

A.2 Trapezoidal approximation

If the intersample behaviour for the input u(t) is different than piecewise constant, the
trapezoidal approximation may be used assuming that the system time-varying matrices
F (t), G(t), H(t) and J(t) remain constant between samples, i.e. (A.3) is satisfied.

The discrete-time version of (A.1) is then defined as in the LTI case (see [Franklin
et al., 1998, p. 200]) and it given by (A.4), where

Fd(tk) =

(

I +
Ts

2
F ((k − 1)Ts)

)(

I −
Ts

2
F ((k − 1)Ts)

)−1

(A.7a)

Gd(tk) =
√

Ts

(

I −
Ts

2
F ((k − 1)Ts)

)−1

G((k − 1)Ts) (A.7b)

Hd(tk) =
√

TsH((k − 1)Ts)

(

I −
Ts

2
F ((k − 1)Ts)

)−1

(A.7c)

Jd(tk) = J((k − 1)Ts) +
Ts

2
H((k − 1)Ts)

(

I −
Ts

2
F ((k − 1)Ts)

)−1

G((k − 1)Ts)

(A.7d)
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Appendix B

Stability of LTV systems

The following material is extracted mainly from [Khalil, 2002, pp. 156-158]. Let us
consider the LTV system

ẋ(t) = F (t)x(t) (B.1)

with state x(t) ∈ R
nx and system matrix F (t). The solution of (B.1) is given by

x(t) = Φ(t, t0)x(t0)

where Φ(t, t0) is the state transition matrix. The following theorem defines stability in
terms of the state transition matrix.

Theorem 1 The equilibrium point x = 0 of (B.1) is uniformly exponentially stable if
and only if the state transition matrix satisfies the inequality

‖Φ(t, t0)‖ ≤ keλ(t−t0), ∀t ≥ t0 ≥ 0 (B.2)

for some positive constants k and λ.

To test stability in practice, instead of using Theorem 1, it is more convenient to work
with the following theorem.

Theorem 2 Let,

• x = 0 be the exponentially stable equilibrium point of (B.1).

• Q(t) be a continuous, bounded, positive definite, symmetric matrix.

Then, there is a continuously differentiable, bounded, positive definite, symmetric matrix
P (t) that satisfies

−Ṗ (t) = P (t)F (t) + F T (t)P (t) +Q(t) (B.3)

Hence, V (t, x) = xTP (t)x is a Lyapunov function for the system that satisfies the con-
ditions of Theorem 1.

Equation (B.3) corresponds to a linear matrix inequality that can be solved numerically.
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Appendix C

Scaled version of Potter’s
algorithm

For simplicity of exposition, the time index is omitted. To distinguish {·}(tk) from
{·}(tk−1), for the former we use the superindex {·}+. Then, the a-posteriori covariance
matrix is written as follows

P+ = P −
Pϕfϕf

TP

1 + ϕf
TPϕf

(C.1)

Replacing (3.65b) in (C.1) we obtain

MsP
+
s Ms = MsPsMs −

MsPsMsϕfϕf
TMsPsMs

1 + ϕf
TMsPsMsϕf

(C.2)

Using the square root factorization Ps = SsS
T
s yields

MsS
+
s S

+T
s Ms = MsSsS

T
s Ms −

MsSsS
T
s Msϕfϕf

TMsSsS
T
s Ms

1 + ϕf
TMsSsST

s Msϕf
(C.3)

If we consider

U = MsSs (C.4a)

g = ST
s Msϕf = UTϕf (C.4b)

then (C.3) can be written in the form of (3.69), i.e.

U+U+T = UUT −
UggTUT

β

= U

[

Id −
ggT

β

]

UT (C.5)

Since (C.5) has the same form than (C.3), we know that

β = 1 + gT g (C.6)

, and U can be written as follows

U+ = U

[

Id −
ggT

α

]

(C.7)

where α is given by (3.72) but with β defined in (C.6). Finally, considering (C.4a), the
square root of Ps can be recursively computed as follows

S+
s = Ss

[

Id −
ggT

α

]

(C.8)
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Then, the scaled version of the Kalman filter based Potter’s algorithm is given by

Prediction step:

θ̂s(tk|tk−1) = θ̂s(tk−1) (C.9a)
[

ST
s (tk|tk−1)

0

]

= T

[

ST
s (tk−1)

Q
T/2
n,s

]

(C.9b)

Correction step:

θ̂s(tk) = θ̂s(tk|tk−1) +M−1
s L(tk)ε(tk) (C.9c)

ε(tk) = y
(na)
f (tk) − ϕf

T (tk)Msθ̂s(tk|tk−1) (C.9d)

g(tk) = ST
s (tk|tk−1)Msϕf(tk) (C.9e)

β(tk) = 1 + gT (tk)g(tk) (C.9f)

α(tk) = β(tk) +
√

β(tk) (C.9g)

L(tk) =
MsS(tk|tk−1)ST (tk|tk−1)Msϕf(tk)

β(tk)
(C.9h)

Ss(tk) = Ss(tk|tk−1)

[

Id −
g(tk)gT (tk)
α(tk)

]

(C.9i)

Notice that (C.9) involves many multiplications with the diagonal matrix Ms, which
means that several multiplications with zeros are performed. A more efficient scalar
implementation could be developed.
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Résumé

Les travaux présentés dans ce mémoire traitent de l’identification des systèmes dy-
namiques représentés sous la forme de modèles linéaires continus à paramètres variant
lentement au cours du temps. La complexité du problème d’identification provient
d’une part du caractère inconnu de la loi de variation des paramètres et d’autre part de
la présence de bruits de nature inconnue sur les signaux mesurés.

Les solutions proposées s’appuient sur une combinaison judicieuse du filtre de Kalman
en supposant que les variations des paramètres peuvent être représentées sous la forme
d’une marche aléatoire et de la méthode de la variable instrumentale qui présente
l’avantage d’être robuste vis à vis de la nature des bruits de mesure.

Les algorithmes de type récursif sont développés dans un contexte d’identification
en boucle ouverte et en boucle fermée. Les différentes variantes se distinguent par la
manière dont est construit la variable instrumentale. Inspirée de la solution développée
pour les systèmes linéaires à temps invariant, une construction adaptative de la variable
instrumentale est suggérée pour pouvoir suivre au mieux l’évolution des paramètres.
Les performances des méthodes développées sont évaluées à l’aide de simulations de
Monte Carlo et montrent la suprématie des solutions proposées s’appuyant sur la variable
instrumentale par rapport celles plus classiques des moindres carrés récursifs.

Les aspects pratiques et d’implantation numérique sont d’une importance capitale
pour obtenir de bonnes performances lorsque ces estimateurs sont embarqués. Ces
aspects sont étudiés en détails et plusieurs solutions sont proposées non seulement pour
robustifier les estimateurs vis à vis du choix des hyper-paramètres mais également vis à
vis de leur implantation numérique. Les algorithmes développés sont venus enrichir les
fonctions de la boîte à outils CONTSID pour Matlab.

Enfin, les estimateurs développés sont exploités pour faire le suivi de paramètres de
deux systèmes physiques : un benchmark disponible dans la littérature constitué d’un
filtre électronique passe-bande et une vanne papillon équipant les moteurs de voiture.
Les deux applications montrent le potentiel des approches proposées pour faire le suivi
de paramètres physiques variant lentement dans le temps.

Mots-clés : modèle à temps continu, modèle linéaire à paramètres variables, estimateur
de la variable instrumentale, filtre de Kalman



Abstract

The work presented in this thesis deals with the identification of dynamic systems
represented through continuous-time linear models with slowly time-varying parameters.
The complexity of the identification problem comes on the one hand from the unknown
character of the parameter variations and on the other hand from the presence of noises
of unknown nature on the measured signals.

The proposed solutions rely on a judicious combination of the Kalman filter assuming
that the variations of the parameters can be represented in the form of a random walk,
and the method of the instrumental variable which has the advantage of being robust
with respect to the nature of the measurement noises.

The recursive algorithms are developed in an open-loop and closed-loop identification
setting. The different variants are distinguished by the way in which the instrumental
variable is built. Inspired by the solution developed for time-invariant linear systems,
an adaptive construction of the instrumental variable is suggested in order to be able to
follow the evolution of the parameters as well as possible. The performance of the de-
veloped methods are evaluated using Monte Carlo simulations and show the supremacy
of the proposed solutions based on the instrumental variable compared with the more
classical least squares based approaches.

The practical aspects and implementation issues are of paramount importance to
obtain a good performance when these estimators are used. These aspects are studied
in detail and several solutions are proposed not only to robustify the estimators with
respect to the choice of hyperparameters but also with respect to their numerical im-
plementation. The algorithms developed have enhanced the functions of the CONTSID
toolbox for Matlab.

Finally, the developed estimators are considered in order to track parameters of
two physical systems: a benchmark available in the literature consisting of a bandpass
electronic filter and a throttle valve equipping the car engines. Both applications show
the potential of the proposed approaches to track physical parameters that vary slowly
over time.

Keywords: continuous-time model, linear time-varying model, instrumental variable,
Kalman filter
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