Sensibilité d’un oiseau marin arctique aux changements environnementaux
Françoise Amélineau

To cite this version:

HAL Id: tel-01646601
https://tel.archives-ouvertes.fr/tel-01646601
Submitted on 23 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE
Pour obtenir le grade de Docteur

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale GAIA
Et de l’unité de recherche Centre d’Ecologie Fonctionnelle et Evolutive de Montpellier

Spécialité : Écologie, Évolution, Ressources Génétique, Paléobiologie

Présentée par Françoise Amélineau

Sensibilité d’un oiseau marin arctique aux changements environnementaux

Soutenue le 8 décembre 2016 devant le jury composé de

Mme Stéphanie MANEL, Professeur EPHE, CEFE, Montpellier
M. Richard PHILLIPS, DR, British Antarctic Survey, Cambridge
M. Nigel Gilles YOCCOZ, Professeur, the Arctic University of Norway, Tromsø
M. Jean-Marc FROMENTIN, DR Ifremer, MARBEC, Sète
M. David GRÉMILLET, DR CNRS, CEFE, Montpellier
M. Jérôme FORT, CR CNRS, LIENSs, La Rochelle

Présidente du jury
Rapporteur
Rapporteur
Examineur
Directeur
Co-encadrant
A Paul et Liv, mes neveux nés pendant cette thèse.

Que votre génération arrive à inventer un mode de vie durable.
Sensibilité d’un oiseau marin arctique aux changements environnementaux

L’Arctique se réchauffe deux fois plus vite que le reste du monde, entrainant des changements majeurs des écosystèmes marins. Notamment, l’étendue de la banquise diminue, et la distribution des masses d’air change, modifiant les régimes de vents et de précipitations. Parallèlement à ces changements climatiques, l’Arctique est soumis à une pollution anthropique croissante amenée par les circulations atmosphériques et océaniques, et accentuée par le développement des activités humaines locales. Dans ce contexte, il est urgent de comprendre les impacts écologiques de ces modifications environnementales sur les espèces de cette région. Les mergules nains (*Alle alle*) sont les oiseaux marins les plus abondants de l’Arctique, et des acteurs clés des réseaux trophiques côtiers. Des travaux récents suggéraient une forte résilience de ces organismes aux changements globaux, mais une étude approfondie permettant de comprendre de manière détaillée l’impact de ces changements s’imposait. Au cours de ce travail de thèse, nous avons donc utilisé une approche pluridisciplinaire (écologie alimentaire, écotoxicologie, bioénergétique, écologie du déplacement) menée sur le long terme, afin de caractériser la sensibilité des mergules nains aux changements de leur environnement pendant la saison de reproduction (été) et en hiver. Nous avons pour cela étudié une population de mergules nains au Groenland Est. Nos résultats montrent que les mergules nains sont fortement impactés par les changements en cours. Pendant la période de reproduction, leurs proies changent et leur effort de plongée augmente en l’absence de banquise, même s’ils demeurent fidèles à leurs zones de nourrissage sur le talus continental. Ceci tend à diminuer leur condition corporelle et celle de leur poussin, mais n’impacte pas leur survie. En hiver, les mergules nainsoptimisent leur migration et leur distribution en fonction de leur paysage énergétique et de la distribution de leurs proies. Ainsi, nos modèles prédictifs indiquent qu’un réchauffement de l’Atlantique nord pourrait être bénéfique pour les populations de mergules nains en diminuant leurs besoins énergétiques. Enfin, nous avons trouvé que les mergules nains consomment des microplastiques, et ce en les confondant avec leurs proies. Cette source de pollution supplémentaire pourrait augmenter avec la fonte de la banquise qui libère des microplastiques jusque-là stockés dans la glace. Ce travail souligne l’importance des programmes à long terme pour l’étude des impacts des changements globaux.

Mots clés : Arctique, oiseau marin, changement climatique, changement environnemental, pollution, copépodes, zooplancton, énergétique, migration, modélisation d’habitat, glace de mer, vent, long terme, biologging, paysage énergétique, microplastiques.
Seabird sensitivity to Arctic environmental change

The Arctic is warming twice faster than the rest of the world, leading to major changes for marine ecosystems. Notably, sea-ice extent is decreasing, and air mass distribution is changing, thus modifying wind and precipitation regimes. In parallel, the Arctic is subject to increasing anthropogenic pollution carried by atmospheric and oceanic circulation, and accentuated by the development of local human activities. In this context, there is an urgent need to understand the ecological impacts of these environmental modifications on the species of this region. Little auks (*Alle alle*) are the most abundant seabird in the Arctic, and key players within coastal food webs. Although recent works suggested high resilience of little auks to global changes, a comprehensive study was needed to understand in detail the impacts of these changes. With this aim, we used a multidisciplinary approach (diet ecology, ecotoxicology, bioenergetics, foraging ecology) in the long term to characterize little auk sensitivity to environmental changes during the breeding season (summer) and in winter. We studied a little auk population in East Greenland. Our results show that little auks are indeed impacted by ongoing changes. During the breeding season, their diet composition changes and their diving effort increases when there is no sea-ice, even if they remain faithful to their feeding grounds on the continental slope. This tends to diminish their body condition and that of their chick, but does not impact their survival. In winter, little auks optimize their migration and their distribution according to their energetic landscape and the distribution of their prey. For this inter-breeding period, our predictive models indicate that a warming of the North Atlantic could be benefic for little auk populations, by reducing their energetic needs. Finally, we found that little auks ingest microplastics, by confusing them with their prey. This additional source of pollution could increase with sea-ice loss that release microplastics stored in the ice. This work underlines the importance of long term monitoring programs for the study of global change impacts.

Keywords: Arctic, seabird, climate change, environmental change, pollution, copepods, zooplankton, energetics, migration, habitat modelling, sea-ice, wind, long-term, biologging, energyscape, microplastics.
Sensibilité d’un oiseau marin arctique aux changements environnementaux

Ce travail de doctorat est basé sur les articles suivants :

Présentations orales

Autres activités : animation scientifique, enseignement, vulgarisation

- Mission complémentaire d’enseignement à l’université de Montpellier. Travaux pratiques de biologie intégrative en licence I (45h/an) et leçons de biologie des organismes et de géologie en préparation à l’agrégation (20h/an).

 - Webinaire « Etudier un oiseau marin, le mergule nain, au Groenland » niveau primaire.
 - Webinaire « Les mergules nains face aux changements climatiques » niveau lycée.

- Présentation du métier de chercheur et de mon parcours à une classe de 2nde du lycée Louis Rascol d’Albi (Tarn), Février 2016.

Remerciements

Je remercie tout d’abord Gilles Yoccoz, Richard Phillips, Jean-Marc Fromentin et Stéphanie Manel qui ont accepté d’évaluer mon travail.

Je remercie du fond du cœur David Grémillet et Jérôme Fort, qui ont formé un duo de choc pour m’encadrer. Merci de m’avoir proposé un sujet de thèse aussi chouette. Merci de m’avoir fait confiance en m’envoyant toute seule sur le terrain 3 années de suite alors que je n’avais jamais attrapé de mergules (ni vu d’ours polaires !) Mon plus grand regret sera de n’avoir pas pu faire de terrain avec vous. Merci David pour ton efficacité et ton optimisme. Merci Jérôme d’avoir été très présent même à distance et d’avoir toujours pris le temps de répondre à mes interrogations les plus diverses.

Je remercie Delphine Bonnet, rencontrée par hasard au fond d’une salle de TP et qui a joué un rôle crucial dans ma thèse. Merci pour m’avoir formée à l’identification du zooplancton, pour m’avoir prêté le matériel nécessaire, et merci pour cette magnifique opportunité que tu m’as donnée de travailler sur les microplastiques.

Merci à Simon Chamaillé, Jean-Marc Fromentin, Delphine Bonnet et Thierry Bouléinier d’avoir participé à mon comité de suivi de thèse pendant ces 3 ans.

Pour leur aide technique, je remercie Francis Crenner qui nous a donné 4 LULs (enregistreurs de pression et de température miniature), Rumsais Blatrix pour avoir (longuement) prêté sa loupe binoculaire à mes stagiaires et moi, Marc Bouvy pour le prêt de sa CTD. Je remercie Alan et Elin pour le retour en bateau et la campagne en mer à bord d’Argelvior qui a été une super expérience. Pour les apéros à la Tuborg, au mattaq et au pâté Hénaff sous le soleil de minuit avec du rap ukrainien dans les orcilles ! Je remercie Tangi Le Bot, Mathilde Thomas et Valentine Mortreux pour leur patience à l’identification des proies ou du microplastique.

Merci à tous les copains, assistants de terrain, collègues, famille pour leur soutien sans faille. Merci à l’équipe ESP (Claire D, Doris, Arnaud, Thierry, David, Marcel, Elise, Marie, Amélie L, Amélie F, Sarah, Clara, Alice, Claire L, Mathieu, Timo, Virginie, Nicolas, Tangi, Alois, Amandine, Clémence, Maria, Joan, Jacques, Aurore) et à ceux qui en font presque partie (Annick, Samuel, Christophe, Nathalie et Stéphane), l’équipe super sympa, (qu’on a toujours pas renommée équipe des animaux charismatiques (dauphins exclus)) pour la bonne
ambiance, les réunions du lundi, les gâteaux de Virge, les rigolades (qui va réussir à rentrer dans cette Zarges ?), les paris (quelle va être la date de ponte des mésanges ? mais aussi combien de feuilles vertes vont revenir de la gestion ?). Un Magic merci à Magic Annick pour toutes ses gentilles attentions et pour son aide lors de la manip microplastics à Sète. Merci à Amélie F, ma co-panier, co-pain, co-bureau, co-courses, co-carte, co-quartier, pour tout ce qu’on a co-partagé et tous les services que tu m’as rendus. Merci au duo d’Ecolett pour les cafés, les plumes, les prises de becs (aïe Picouic !), les prises de catch (aïe Leia !!), les prises de courant (talala la la la …nuuut nuuut !) les barbecues et les pique-niques à la plage. Merci aux déjeuners du mercredi « interéquipes » (Marion, Eva, Matthias et Iris, Sarah, Alice…) Merci aux copines de rédaction, Eva, Marion et Sarah pour la rédaction estivale en milieu agréable (et merci à Yannis et Jane pour le prêt de leurs maison/appart). Merci à Mathilde pour la course, l’escalade, les balades et bien plus encore, à Sophie P pour les papotages au potager, aux copains de l’AREB pour l’organisation de la conférence Ecology & Behaviour (mention spéciale à Louise ! et merci à Claire Canard pour les passages à la TdV). Merci à Flo et Rémi pour les vacances en Afrique du Sud.

Des bises à tous ceux qui ont fait du terrain avec moi : Samuel grâce à qui j’ai appris le crochet les (nombreux) jours de tempête, et grâce à qui j’ai pu prendre des douches sur le terrain ! Valère pour ses magnifiques time-lapses et son efficacité à toute épreuve. JB pour avoir grave assuré la 1ère année où on découvrait les mergules. Tangi pour avoir grave assuré la 2ème année. Johanna pour ton sérieux. Merci au grand danois qui m’a sauvé la vie le 1er jour du terrain en tenant la cabane à clé, empêchant ainsi le 1er ours polaire de la journée d’entrer pour manger les croquettes du chien/nous. Je te pardonne d’avoir cassé le téléphone satellite (ah non, pardon, c’est vrai que ce n’est pas toi qui l’a cassé…) La stagiaire canadienne pour avoir réussi à ressusciter tant de mergules, même ceux chassés (hommage à GRMG, tué par un chasseur en 2006 et réapparu furtivement en 2014). Merci à Thierry et Amélie pour les fabuleux terrain-vacances (et David pour m’avoir laissée partir alors que j’avais des choses plus sérieuses à faire).

Un grand merci à Vincent, Laurie et Sophie pour leur aide indispensable dans le monde incompréhensible de l’éduc nat. Merci à Baptiste et à Amap pour le soutien diététique, au potager et aux copains du potager pour m’avoir aéré l’esprit, à Guy du vieux bicolou, passionné des aventures polaires, pour avoir beaucoup réparé mon vieux vélo rose en écoutant radio classique. Merci à Colin et Olivier les préparateurs de biologie pour votre aide, ainsi qu’à Sylvain Coq, Thomas Silberreld et Fleurice Parat pour m’avoir permis de faire des leçons en prépa agreg. En cette fin de thèse, merci spécial à mes nouveaux collocs villejuivos pour leur soutien moral et les bons petits plats, à Iris, et Lucie pour leurs textos de soutien dans la dernière ligne droite, à Jean-Benoit Charassain et Cédric Cotté pour leur accueil au Lceano ainsi qu’à Philippe Koubbi pour son aide en TP de SIG.
Merci à tous ceux qui ont voté pour ma photo au concours APECS (50€ pour aller à une conférence à Marseille !) et au concours cyclable, participant à l’achat de mon nouveau vélo qui m’a fait gagner 30s de trajet par jour, soit 1min de travail chaque jour.

Merci à mes parents qui m’ont toujours soutenu dans tous mes projets, qui ont tout fait pour que je puisse étudier dans les meilleures conditions possibles et sans qui je ne serais jamais arrivée jusque là. Merci à JB et Aude, pour avoir mis au monde mes petits neveux trop mignons, Paul et Liv. Et merci à la Grande Françoise, ma marraine de Nîmes pour ton accueil dans le sud et ta porte qui m’est toujours ouverte.

Enfin, cette thèse n’aurait pas été la même sans le soutien de tous ces animaux :

Merci à tous les mergules embêtés de près ou de loin, pour leur collaboration (forcée ?) et leurs rires malicieus au pays des pierres qui chantent…

Caillou, chien de garde groenlandais pour n’avoir jamais aboyé faute d’ours (sauf en présence de l’ours Alan), et le vieux chien noir, Imaqa pour les intimes, pour avoir beaucoup aboyé, mais jamais en présence d’ours malgré les quelques-uns qu’il aura pu voir d’assez près avec nous. A Caillou qui m’aura fait aimer les chiens, merci pour ton accueil joyeux quand on s’est retrouvés à l’aéroport en 2015, et toutes mes excuses pour t’avoir fait voyager en bateau, on sait que tu n’aimes pas l’eau !

Kevin, le renard polaire intrépide et curieux, qui m’a appris à ne pas laisser trainer mes jumelles sur les cailloux (sous peine qu’elles aient une très très mauvaise odeur pendant très très longtemps).

Les fulmars posés près d’Argelvor à 3h du mat dans le silence du bateau qui dort, quand j’ai réalisé après 1h de téléchargement que la CTD n’avait pas du tout marché, pour ce beau moment surréaliste dans leur monde qui m’a fait oublier la totale loose des manips.

Un grand merci à mon gentil co-chat pour ses ronrons et sa présence, à Gaspard et Edith pour l’envie de me lever le matin et leur bonne humeur, et à Taz, Picouic, Looping et Leia de la maison du bonheur. Merci au Gros lench, à Charlie et leurs amis !

Et pour finir, une pensée toute particulière à A09850 : mon TDR fétiche !
Sommaire

I. Introduction .. 15
 A. Les perturbations anthropiques ... 16
 1. Au cours de l’histoire humaine ... 16
 2. Augmentation récente des températures ... 16
 3. Effets sur la cryosphère et rétroaction positive du réchauffement Arctique 18
 4. Modifications chimiques de l’océan .. 20
 5. Autres effets du changement climatique ... 21
 6. Pollutions anthropiques .. 21
 7. Prédictions ... 22
 B. Diversité des réponses biologiques aux modifications physico-chimiques de l’environnement ... 25
 1. Changements biologiques à l’échelle individuelle .. 25
 2. À l’échelle des communautés ... 32
 3. Impacts des polluants ... 35
 C. Les mergules nains face aux changements environnementaux : pourquoi, comment, et que sait-on ? ... 36
 1. Les études à long terme des oiseaux marins arctiques .. 36
 2. Pourquoi étudier le mergule nain ? ... 37
 3. Les différentes approches possibles et leurs limites pour l’étude ... 37
 4. Mergules nains et température de surface de la mer (SST) ... 39
 5. Mergules nains et glace de mer .. 40
 6. Mergules nains et chronologie de la reproduction ... 40
 7. Mergules nains et bathymétrie ... 40
 8. Mergules nains et autres espèces .. 41
 9. Mergules nains en hiver .. 41
 10. Mergules nains à leur limite sud de répartition .. 42
 D. Problématique et objectifs de l’étude .. 43
 E. Site d’étude et ses caractéristiques ... 44
II. Chapitre II: Where to forage in the absence of sea ice? Bathymetry as a key factor for an arctic seabird45

A. Abstract ...46
B. Introduction ..47
C. Materials and methods ..48
 1. Field site and data collection ...48
 2. Data processing and analyses ..50
D. Results ..53
 1. Sea ice concentration ...53
 2. Foraging behaviour in relation to sea ice concentration and bathymetry54
 3. Chick diet ...55
 4. Chick growth and adult body condition58
 5. Bathymetry impact on zooplankton community composition58
E. Discussion ..60
 1. Bathymetry effects ...60
 2. Sea ice effects ..61
 3. Device effects ...62
 4. Little auks and climate change ...62
F. List of abbreviations and definitions ...63
G. Supporting information ...65

III. Chapitre III Arctic global change impacts little auk foraging and fitness – insights from a 12-year integrative study in East Greenland ..68

A. Abstract ..69
B. Introduction ...70
C. Material and methods ...71
 1. General fieldwork context ...71
 2. Chick and adult diet ...72
 3. Foraging behaviour ...73
 4. Hatching date and chick growth ..73
 5. Adult body condition and mercury contamination74
 6. Survival analysis ..74
 7. Environmental data ...75
D. Results ..76
1. Environmental variables ... 76
2. Temporal variations in chick and adult diet .. 76
3. Foraging behaviour ... 77
4. Adult body condition, chick growth and hatching date 79
5. Mercury .. 80
6. Survival ... 80
E. Discussion ... 83
 1. No simple link between environmental changes and biological parameters 83
 2. Foraging behaviour as a buffer to climate change? 84

IV. Chapitre IV: Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change .. 86
 A. Abstract ... 87
 B. Introduction ... 88
 C. Materials and methods ... 90
 1. Seabird winter geolocation .. 90
 2. Modelling seabird energyscapes .. 90
 3. Zooplankton winter abundance ... 91
 4. Habitat selection of little auk ... 91
 5. Energyscape projections ... 92
 D. Results .. 93
 1. Little auk winter distribution and timing of migration 93
 2. Little auk energyscape .. 94
 3. Little auk habitat selection ... 94
 4. Predictions .. 94
 E. Discussion ... 97
 1. Seabird wintering in the North West Atlantic 97
 2. Wintering strategies under forecasted climate change 99
 3. Outlook .. 100
 F. Supporting information ... 102

V. Chapitre V: Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds 107
 A. Highlights .. 108
 B. Graphical abstract ... 108

12
C. Abstract .. 109
D. Introduction .. 110
E. Material and methods ... 112
 1. Field survey .. 112
 2. Chick diet sampling at the little auk colony .. 112
 3. Microplastic sample contamination ... 114
F. Results ... 115
 1. Identification of real microplastics among debris .. 116
 2. Microplastics and zooplankton counts at sea and in gular pouches 117
 3. Nature, size and colour of microplastics ... 118
G. Discussion .. 121
 1. Microplastics in the Arctic ... 121
 2. Decadal change of microplastic concentration .. 121
 3. Microplastics characterisation ... 122
 4. Little auk contamination ... 123
H. Conclusion ... 125

VI. Discussion générale .. 127
 A. Synthèse des résultats .. 128
 1. Où se nourrir dans un environnement changeant ? 128
 2. Quel régime alimentaire adopter ? .. 129
 3. Quelles sont les autres contraintes rencontrées ? 130
 B. Limites de l’étude ... 131
 1. Durée de l’étude et suivi à long terme ... 131
 2. Mieux estimer la taille et la dynamique des populations de mergules 132
 3. Quel est l’impact des polluants sur les mergules nains ? 133
 C. Ouverture/ perspectives ... 134
 1. Etudie-t-on les mergules nains à la bonne échelle temporelle ? 134
 2. Etudie-t-on étudie les mergules nains à la bonne échelle spatiale ? 136
 3. Etudie-t-on les mergules nains au bon niveau d’organisation écologique? 139
 4. Importance de nos résultats dans un contexte général 140
 5. Grandes orientations pour la recherche Arctique .. 143

VII. Bibliographie .. 145
VIII. Annexes ... 176

Annexe 1: Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging ... 177

Annexe 2: Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? ... 178

Annexe 3: Starving seabirds: unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem .. 179
I. Introduction
La niche écologique représente l’ensemble des conditions environnementales permettant à une espèce donnée de former des populations stables. On parle de construction de niche lorsqu’une espèce modifie l’environnement dans lequel elle vit pour l’adapter à ses besoins, et lorsque ces modifications impactent également les autres espèces vivant dans le même écosystème. Un exemple classique est le castor, qui va modifier un cours d’eau par la présence d’un barrage, ainsi que ses berges qu’il déboisera. L’humain pousse ce concept à l’extrême, en modifiant l’ensemble de sa planète, à tel point que sa propre santé est mise à mal (IPCC, 2013). Cette introduction s’attache à décrire les principales perturbations environnementales causées par l’homme puis les réponses observées au sein des espèces et des écosystèmes, avec une attention particulière aux espèces arctiques. Nous décrirons ensuite notre système d’étude, pour en arriver aux hypothèses de cette thèse.

A. Les perturbations anthropiques

1. **Au cours de l’histoire humaine**

2. **Augmentation récente des températures**

La principale cause des perturbations anthropiques récentes est l’utilisation des énergies fossiles : charbon, pétrole et gaz, qui a très fortement augmenté depuis le début de la révolution industrielle. Leur combustion, utilisée pour l’énergie qu’elle délivre, libre du dioxyde de carbone (CO₂) ainsi que d’autres gaz à effet de serre dans l’atmosphère. La concentration de CO₂ de l’atmosphère était de 280ppm avant le début de la révolution industrielle, et l’année 2016 marque le franchissement de la barre des 400ppm (NOAA : http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html) avec une forte augmentation dès les années 1960 (IPCC, 2013). Ces valeurs n’ont pas été rencontrées dans l’atmosphère depuis au
moins 800 000 ans (IPCC, 2013). L’effet de serre est un phénomène naturel causé par l’atmosphère, qui modifie l’équilibre thermique de la Terre en piégeant les rayons infrarouges que la Terre émet après absorption de l’énergie solaire. Sans cela, les températures à la surface de la Terre varieraient sur de grandes amplitudes entre le jour et la nuit, et entre les saisons. L’augmentation des gaz à effet de serre tel que le CO₂ dans l’atmosphère amplifie ce phénomène naturel, ce qui provoque un réchauffement climatique global.

\[\text{Figure 1.1 : Anomalies des moyennes de température de surface annuelle (°C) entre 2004-2015 et 1951-1980. La carte a été générée à partir du site GISTEMP Team, 2016: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Données extraites à partir du site } \text{http://data.giss.nasa.gov/gistemp/} \text{ (Hansen et al., 2010). Les données de température proviennent du NOAA/NCEI's Extended Reconstructed Sea Surface Temperature (ERSST) v. 4.}\]

Le GIEC estime que la surface de la Terre (continents et océans) s’est réchauffée de 0.85 ±0.2°C sur la période 1880-2012 (IPCC, 2013). Le réchauffement climatique n’est pas uniforme à la surface de la Terre (Figure 1.1). Il est plus marqué sur les continents, dans l’hémisphère nord, et en particulier dans l’Arctique où le réchauffement est deux fois plus rapide que dans le reste du monde (IPCC, 2013). Cela s’explique en partie par une boucle de rétroaction positive en raison de la disparition de surfaces claires (i.e. englacées ; voir paragraphe suivant).
Les océans captent une grande partie de cette chaleur avec environ 90% de l’énergie accumulée entre 1971 et 2010 (Figure 1.2, IPCC 2013). Ainsi, le réchauffement des masses d’eau n’est pas non plus homogène et on note que l’Atlantique Nord se réchauffe plus rapidement. Cela a des conséquences sur les taux de dioxygène dissous, moins soluble dans de l’eau plus chaude. D’autre part, l’augmentation des températures augmente la stratification de l’océan, ce qui limite la pénétration d’oxygène dans les couches profondes (IPCC, 2013).

![Figure 1.2 : Evolution de la température de l’océan (0-700m de profondeur) pour la période 1971-2010 en °C/décennie. Source: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Figure 3-1, p. 261.]

3. **Effets sur la cryosphère et rétroaction positive du réchauffement Arctique**

L’augmentation de la température a des effets drastiques sur la cryosphère. La fonte des glaciers s’accélère partout sur la planète. Les calottes polaires s’amincissent. Les surfaces enneigées régissent, le pergélisol dégèle. Les études concernant l’étendue de la banquise ne remontent qu’à 1979, date des premières observations satellites. Autour de l’Antarctique, on observe une tendance à l’augmentation de l’étendue de 1.2 à 1.8% par décennie, mais avec de fortes disparités locales, certaines zones comme la péninsule Antarctique ayant subi une perte d’étendue de la banquise (IPCC, 2013). En Arctique, une forte diminution de l’étendue de la banquise a été observée pour toutes les saisons (-3.8 ± 0.3% par décennie), mais elle est plus marquée en été (-11.5±2.1% par décennie, IPCC 2013). Il y a également de fortes variations suivant les régions, avec une diminution de l’étendue plus marquée en Atlantique Nord (mer de Barents, mer du Labrador), et une augmentation de l’étendue dans la mer de Béring (Fig.
L’étendue de glace pérenne1 a diminué, ainsi que l’étendue de glace pluriannuelle2 (-13.5 ± 2.5\% par décennie). Parallèlement, l’épaisseur de la banquise a diminué d’en moyenne 1.3 à 2.3m au centre de l’Océan Arctique entre 1980 et 2008 (IPCC, 2013), et la vitesse de dérive de cette banquise plus fine a doublé (Kwok et al., 2013), comme en témoigne la dérive de Tara en 2007-2008 qui a été deux fois plus rapide que celle du Fram à la fin du XIXe siècle (Gascard et al., 2008).

\textbf{Figure I.3 : Circulation de la glace de mer en Arctique et tendances décennales de l’anomalie d’étendue de glace de mer (\%) par région (après avoir pris en compte la variabilité annuelle). Les flèches représentent la vitesse et la direction de la dérive de la glace. Le fond coloré représente l’étendue minimum (gris foncé) et maximum (gris clair) de la banquise observée par satellite entre 1979 et 2012. Source: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Figure FAQ4.1-1, p. 334.}

Sur les continents, les surfaces enneigées ont diminué au printemps dans l’hémisphère nord, avec la diminution la plus marquée au mois de juin (-50\% de réduction de l’étendue sur

1 Banquise qui « survit » d’une année à l’autre, mesurée lors de l’étendue minimum en septembre. Elle peut être âgée d’un an (formation lors de l’hiver précédent) ou plus.

2 Banquise âgée de plusieurs années, plus épaisse.

Presque tous les glaciers du monde étudiés depuis les années 2000 ont fondu (perte de masse, d’épaisseur, de longueur), et cette fonte s’accélère. Au niveau mondial, la perte de masse des glaciers (en excluant les glaciers en périphérie des calottes antarctiques et groenlandaises) a été l’équivalent de 0.54 ± 0.07 mm d’élévation du niveau de la mer entre 1901 et 1990, et de 0.83 ± 0.37 mm/an entre 2005 et 2009 (Marzeion et al., 2012). Les principales pertes de masse ont eu lieu en Arctique ainsi que dans les Andes et l’Himalaya (IPCC 2013).

Les calottes polaires (Antarctique et Groenland) ont également perdu de la masse. La calotte du Groenland a diminué à la fois par une accélération de l’écoulement des glaciers émissaires et par la fonte de surface, alors que la diminution est surtout due à l’augmentation de la vitesse d’écoulement des glaciers en Antarctique. Ainsi, la perte de masse de la calotte groenlandaise a été multipliée par 6 entre 1990 et 2010 (IPCC 2013).

Ces modifications profondes de la cryosphère (glaciers, neige, pergélisol et banquise) entraîneraient un afflux d’eau douce en Arctique (IPCC, 2013), augmentant la stratification des eaux de surface et pouvant également ralentir la circulation océanique globale dont l’un des moteurs est la formation de la banquise en Arctique (Morison et al., 2012).

Par ailleurs, cette disparition des surfaces enneigées et de la banquise en Arctique entraine une rétroaction positive du réchauffement. En effet, une surface blanche réfléchit en grande partie la lumière du soleil (on parle d’albédo élevé) et se réchauffe peu sous l’incidence de l’énergie solaire. En revanche, les surfaces sombres telles que l’océan libre de glace, une surface pierreuse ou herbacée vont davantage absorber l’énergie solaire et se réchauffer (albédo faible). Cela explique en partie que le réchauffement est plus rapide en Arctique qu’ailleurs (IPCC 2013).

4. Modifications chimiques de l’océan

Le second effet de l’augmentation du CO₂ atmosphérique est l’acidification des océans. Les océans étant à l’équilibre avec l’atmosphère, le CO₂ s’y dissout et au contact de l’eau se transforme en ion carbonate en libérant deux ions H⁺. La concentration en ions H⁺ de l’eau de mer a augmenté de 26% depuis le début de l’ère industrielle (IPCC, 2013), entrainant une diminution du pH de l’océan de 8.2 à 8.05 en 150 ans. Ainsi, les océans stockent environ 50% du CO₂ émis au XIXe et XXe siècle (Sabine et al., 2004). Ces changements de pH modifient les propriétés chimiques de l’eau de mer, en particulier les horizons de saturation de l’aragonite et de la calcite, paramètres importants pour la mise en place de squelettes internes ou externes des organismes marins.
5. **Autres effets du changement climatique**

L’augmentation des températures a également pour conséquence une montée du niveau marin en raison de la dilatation de l’eau de mer et de la fonte des calottes glaciaires. Cette élévation a été de 0.19 ± 0.02m entre 1901 et 2010 (IPCC, 2013). Les niveaux extrêmes de pleine mer ont augmenté avec l’élévation globale du niveau marin, entrainant une pression accrue sur les milieux littoraux, en amplifiant notamment l’érosion côtière.

Les régimes de vents et de précipitations ont été modifiés au cours des dernières décennies. L’évaporation s’est amplifiée dans les zones à forte évaporation, et les précipitations ont augmenté dans les zones naturellement soumises aux précipitations, ce qui entraîne un emballement du cycle de l’eau (Durack et al., 2012). Les différences de température entre la terre et la mer changent et engendrent des gradients de pression différents qui pourraient augmenter l’intensité des phénomènes d’upwellings, même si cela doit être vérifié (Harley et al., 2006). De plus, la circulation océanique à l’échelle globale pourrait également être modifiée, et on prédit une augmentation des événements climatiques extrêmes de type El Niño (Cai et al., 2014) ou des pics de chaleur ou de pluies (IPCC 2013). Les changements de régimes du vent sont moins bien établis, mais les différents jeux de données révèlent une augmentation des vents d’ouest aux latitudes moyennes dans les deux hémisphères (Weimerskirch et al., 2012; IPCC, 2013), ainsi qu’une zone avec un affaiblissement du vent au nord de la zone avec des vents d’ouest plus forts dans l’Atlantique Nord.

Enfin, une fragilisation de la couche d’ozone est observée, principalement en raison de la libération de chlorofluorocarbures (CFC), à la fois sur l’ensemble de sa surface où environ 10% de l’ozone stratosphérique a disparu, et aux pôles où le trou de la couche d’ozone se forme chaque année au printemps (phénomène beaucoup moins marqué en Arctique en raison des températures plus élevées) (Solomon, 1999). Cela a pour conséquence une augmentation des UVs à la surface de la Terre.

6. **Pollutions anthropiques**

L’augmentation des populations humaines, l’utilisation des énergies fossiles, ainsi que le développement des industries chimiques, et plus récemment des nouvelles technologies entraînent une émission croissante de polluants dans l’environnement. Outre le CO₂, les combustions libèrent des éléments traces métalliques¹ (communément appelés « métaux lourds ») comme le mercure (Hg) ou le plomb (Pb), ainsi que des hydrocarbures aromatiques polycycliques² (HAP) résultant de la combustion imparfaite de la matière organique (AMAP, 2011, 2014; UNEP, 2013). D’autres produits de l’industrie chimique se retrouvent aussi dans l’environnement, en particulier différents pesticides, des solvants ou encore les retardateurs de flamme bromés. Pour ces derniers exemples, on parle plus généralement de polluants organiques persistants (POPs), des composés résistants aux dégradations biologiques ou environnementales, et particulièrement toxiques pour les écosystèmes. Les polluants sont

¹ Les métaux lourds peuvent aussi avoir une origine naturelle (volcanisme, érosion des sols par exemple).
² Les HAP sont aussi produits lors des feux de forêt qui peuvent être d’origine naturelle (foudre).
transportés à large échelle par les courants atmosphériques mais aussi par les fleuves et les océans. Dans les océans, on retrouve également des microplastiques, particules de matières plastiques de taille inférieure à 5mm, qui proviennent de la dégradation de déchets plastiques de grande taille, ou des microfibres de plastique utilisées en cosmétique ou dans l’industrie (Andrady, 2011). Ces microplastiques contiennent des substances toxiques, et ont tendance à fixer les polluants hydrophobes dans les océans (Teuten et al., 2009).

En Arctique, on retrouve principalement des polluants émis par les activités humaines des pays de l’hémisphère nord qui sont transportés et déposés dans cette région qui agit ainsi comme un réservoir de la pollution globale. Bien que le lien entre les changements climatiques en cours dans cette région (et décrits ci-dessus) et la contamination des écosystèmes arctiques soit encore peu connu, ces changements pourraient accroître la pollution de l’Arctique. Par exemple, les polluants émis localement ont tendance à augmenter avec le développement des activités humaines locales comme les mines, le trafic maritime, l’exploration pétrolière ou gazière (Macdonald et al., 2005), elles-mêmes en développement grâce au retrait des zones englacées. De plus, la fonte de la cryosphère, et en particulier du pergélisol libère des polluants qui y étaient stockés, comme le mercure (Macdonald et al., 2005; Stern et al., 2012). Une étude récente révèle aussi que la glace de mer est un puits pour les microplastiques qui y sont piégés lors de la formation de la banquise, et qui sont libérés dans l’environnement lors de la fonte (Obbard et al., 2014). Même si on retrouve les polluants partout en Arctique, leur distribution n’est pas homogène. Par exemple, les PCBs1 et les retardateurs de flamme bromés sont plus abondants dans l’Atlantique Nord (Greenland Est et Spitzberg) probablement en raison de leur origine nord-américaine et européenne (Macdonald et al., 2005; Vorkamp et al., 2015). Durant les dernières décennies, les concentrations de différents polluants ont continué à augmenter en Arctique (Laender et al., 2011; Dietz et al., 2013), et rien n’indique que cette tendance pourrait s’inverser dans un contexte de changements environnementaux exacerbés, ce qui soulève des préoccupations pour les populations locales ainsi qu’en terme de conservation.

7. **Prédictions**

Dans son dernier rapport datant de 2014, le groupe d’experts intergouvernemental sur l’évolution du climat (GIEC) a établi 4 scénarios d’émissions de gaz à effet de serre selon des profils représentatifs d’évolution de concentration (RCP). Le RCP 2.6 correspond à une atténuation des émissions et est le scénario représentatif d’un réchauffement probable sous la barre des 2°C par rapport aux températures pré-industrielles. Les scénarios RCP 4.5 et 6.0 sont intermédiaires, et le scénario 8.5 représente des émissions très élevées. Les modèles ne prévoyant pas d’effort de réduction des émissions de gaz à effets de serre se situent entre le scénario 6.0 et 8.5. Les températures du globe étant corrélatées aux émissions cumulées de dioxyde de carbone, elles vont continuer à augmenter au cours du XXIe siècle. Les prédictions du RCP 2.6 prévoient une atténuation possible du réchauffement dès les années

1 Polychlorobiphénylès
2050 (Figure I.4.a). Le réchauffement ne sera pas uniforme, et l’augmentation des températures sera toujours plus forte sur les continents et en Arctique, quel que soit le scénario (Figure I.5.a). Les modèles prédisent une augmentation des précipitations en Arctique et à l’équateur, ainsi qu’une diminution des précipitations sous les tropiques pour le RCP 8.5 (Figure I.5.b). En Arctique, tous les scénarios prédisent une diminution de l’étendue de banquise pour tous les mois de l’année, et seul le RCP 8.5 prévoit une disparition totale de la glace en septembre dès le milieu du siècle (IPCC, 2013). Le volume des glaciers ainsi que l’étendue du pergélisol vont aussi diminuer. L’acidification et le réchauffement des océans vont se poursuivre, ainsi que la montée du niveau marin (Figure I.4.b).

Figure I.4 : Evolution de la température (a) et du niveau moyen des mers (b) jusqu’à 2100 d’après le RCP 2.6 (bleu) et le RCP 8.5 (rouge). Les chiffres indiquent le nombre de modèles utilisés. Sur le côté sont indiquées les moyennes entre 2081 et 2100 pour les 4 scénarios. Source : GIEC, 2014: Changements climatiques 2014: Rapport de synthèse. Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat. GIEC, Genève, Suisse. 161p. Figure RID.6 p.11.
Figure I.5 : Évolution de la température (a) et des précipitations moyennes (b) pour deux scénarios, RCP 2.6 à gauche, et RCP 8.5 à droite. Les points représentent les zones pour lesquelles 90% des modèles s’accordent sur le signe du changement et pour lesquelles les changements projetés sont grands par rapport aux variations interannuelles. Les zones hachurées correspondent à des zones pour lesquelles les modèles prédisent des changements inférieurs à la variabilité interannuelle. Les nombres en haut à droite représentent le nombre de modèles utilisés pour construire les cartes. Source : GIEC, 2014: Changements climatiques 2014: Rapport de synthèse. Contribution des Groupes de travail I, II et III au cinquième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat. GIEC, Genève, Suisse. 161p. Figure RID.7 p. 12.
B. Diversité des réponses biologiques aux modifications physico-chimiques de l’environnement

Les changements physico-chimiques de l’environnement perturbent les êtres vivants et les communautés d’espèces. Cette section s’attache à décrire la diversité des réponses biologiques observées, avec une attention particulière aux espèces Arctiques et à notre système d’étude.

1. **Changements biologiques à l’échelle individuelle**

Les modifications de l’environnement abiotique peuvent avoir deux types d’effets sur les individus. (1) Si les nouvelles conditions sont tolérables (ou bénéfiques), les individus vont s’acclimater. Dans ce cas il peut y avoir un ajustement physiologique au niveau individuel, sans modification génétique et on parle de plasticité. Il peut aussi y avoir adaptation ; dans ce cas il y a une sélection des individus ayant les génotypes les plus adaptés et la fréquence de ces génotypes va augmenter au fur des générations. On parle alors de microévolution (Gienapp et al., 2008). (2) Si les nouvelles conditions sont intolérables, les individus répondent via des changements de phénologie (réponse temporelle), des migrations (réponse spatiale), ou peuvent disparaître (extinctions locales). Il n’est pas simple de faire la part d’acclimatation et d’adaptation (Gienapp et al., 2008; Charpentier & Gienapp, 2014), nous allons donc présenter les modifications phénotypiques et comportementales sans tenir compte de la nature exacte du processus évolutif sous-jacent.

a) **Changements morphologiques**

En Arctique, Li et collaborateurs (2009) ont trouvé que les petites algues phytoplanctoniques avaient un avantage par rapport aux grosses cellules face au réchauffement climatique. Cela s’explique par l’augmentation de l’apport en eau douce dans l’océan Arctique suite à la fonte des calottes, qui augmente la stratification de l’eau et donc freine la remontée des nutriments depuis les eaux profondes. Les nutriments étant alors limités, les algues de petite taille les absorbent mieux en raison de leur plus grand rapport surface/volume (Li et al., 2009). De tels changements à la base des écosystèmes peuvent fortement les modifier. En Arctique, deux autres études soulignent la diminution significative de la longueur d’aile de deux espèces de papillons (*Boloria chariclea* et *Colias hecla*) mesurés entre 1996 et 2013 au Groenland Est (Bowden et al., 2015), ainsi que la diminution de taille des juvéniles de barges rousses (*Calidris canutus canutus*) de la péninsule de Taïmyr en Sibérie les années où la fonte de la neige est précoce, ce qui pourrait s’expliquer par de moins bonnes conditions de croissance (van Gils et al., 2016).
Plus généralement, des diminutions de taille ont été observées dans différents groupes taxonomiques et différents milieux (Daufresne et al., 2009; Sheridan & Bickford, 2011), et on s’attend à les détecter plus facilement chez les espèces à cycle de vie court. Des expériences en laboratoire ont montré que les copépodes de la mer Baltique soumis à des températures plus élevées répondaient par une taille adulte réduite (Garzke et al., 2014). De nombreuses études suggèrent que le changement climatique va favoriser les espèces et individus de petite taille, à différents niveaux trophiques et en particulier dans les milieux aquatiques (Daufresne et al., 2009; Morán et al., 2010; Sheridan & Bickford, 2011). Cela s’explique par de nombreux facteurs, dont la limitation des ressources en eau ou en nutriments, et pour les ectothermes l’augmentation du taux métabolique avec la température (un organisme ayant alors tendance à diminuer sa taille si les ressources sont limitées).

b) Changements physiologiques

Les changements morphologiques peuvent être la conséquence de modifications des contraintes physiologiques comme le manque de nutriments. Quand la température de l’eau augmente, la solubilité de l’oxygène diminue. Cela a des conséquences pour les espèces marines. En particulier, la niche thermale des poissons est limitée par les températures au-delà desquelles l’organisme n’arrive plus à fournir assez d’oxygène à ses tissus (Pörtner & Knust, 2007). Ce phénomène est d’autant plus marqué chez les individus de grande taille, et tend également à expliquer l’avantage des petites espèces face aux changements environnementaux (Pörtner & Knust, 2007; Daufresne et al., 2009).

Toutefois, certains changements physiologiques peuvent avoir d’autres causes. L’augmentation du dioxyde de carbone dissous dans l’océan stimule l’activité photosynthétique du phytoplancton, jouant un rôle de puits de carbone pour le dioxyde de carbone atmosphérique (Hays et al., 2005). En Arctique, cet effet est couplé à l’allongement de la période photosynthétique dans les zones où la débâcle a lieu plus tôt (Wassmann et al., 2011). Cependant, l’augmentation du CO₂ ainsi que l’acidification des océans ralentit le phénomène de calcification des organismes ayant un test, comme les cocolithophores. Au sein de la communauté planctonique, il n’est pas simple de prédire quelles vont être les évolutions, et quelles espèces vont être favorisées au détriment d’autres. Ces changements physiologiques vont néanmoins impacter l’ensemble des réseaux trophiques (Hays et al., 2005).

D’après certains auteurs, les espèces polaires devraient être plus sensibles à l’augmentation des températures car elles ont généralement mis en place des mécanismes pour limiter les pertes thermiques et sont moins capables d’évacuer la chaleur aux fortes températures (Oswald & Arnold, 2012). Cependant, d’autres travaux montrent que les espèces étant déjà adaptées à des gammes de températures hautes comme en milieu tropical ont une marge de manœuvre plus réduite pour tolérer des températures en hausse (Faulkner et al., 2014).
c) **Changements comportementaux**

Les animaux peuvent modifier leur comportement en réponse à différentes causes, par exemple pour réguler leur température corporelle. C’est le cas de beaucoup de reptiles qui s’exposent ou non au soleil en fonction de la température extérieure, mais aussi des organismes endothermes qui peuvent changer leur comportement pour la thermorégulation. Par exemple, le grand labbe (*Catharacta skua*) va prendre des bains quand la température est élevée, au détriment de la garde de ses poussins qui risquent alors d’être prédatés (Oswald et al., 2008). L’augmentation des températures augmenterait donc le risque de prédation pour cette espèce.

On observe également des modifications du comportement de recherche alimentaire reflétant des changements de proies disponibles ou en réponse à une modification de l’environnement. Suite à l’augmentation des vents d’ouest dans l’Océan Austral et à leur déplacement vers le sud depuis les années 1950, les voyages en mer des albatros hurleurs (*Diomedea exulans*) de Crozet ont changé entre 1989 et 2010. Les albatros vont plus au sud, et ils se déplacent plus vite (Weimerskirch et al., 2012). Dans la même zone, les manchots royaux (*Aptenodytes patagonicus*) de Crozet vont se nourrir au niveau du front polaire antarctique. La position de ce dernier varie en fonction de phénomènes climatiques à large échelle. Lors des anomalies chaudes, le front polaire se situe plus au sud, et les manchots doivent alors faire des voyages alimentaires plus longs (Bost et al., 2015).

En Arctique, la diminution de la banquise a des conséquences drastiques pour les animaux qui y sont associés. Les ours polaires (*Ursus maritimus*) sont contraints à passer plus de temps sur la terre où la nourriture est limitée (Atwood et al., 2016). Ils sont davantage observés sur les colonies d’oiseaux marins, une ressource de piètre qualité pour eux, engendrant néanmoins une pression de prédation supplémentaire sur les oiseaux arctiques (Prop et al., 2015). Dans un contexte similaire, les phoques anellés (*Pusa hispida*) subadultes du Spitzberg ont fait des voyages plus longs, et des efforts de plongée plus importants lorsque l’étendue de la glace de mer était réduite (2010-2012) et n’était plus présente au-dessus du plateau continental, par rapport à une année où la glace était encore présente sur le plateau (2002-2003, Figure 1.6). Ils passaient également moins de temps à se reposer sur la glace (Hamilton et al., 2015).

d) Changements phénologiques

L’augmentation des températures engendre une modification des rythmes saisonniers. Les événements printaniers ont lieu plus tôt et ceux de l’automne plus tard, et l’hiver tend à être plus court (Sparks & Menzel, 2002). Ces changements sont particulièrement marqués aux hautes latitudes. Au Groenland Est, une étude réalisée pendant 10 ans sur 21 espèces (ou familles pour les insectes) de trois taxons différents représentant trois niveaux de la chaîne trophique a montré un avancement de la floraison (plantes), de l’émergence (insectes) et de la ponte (oiseaux) d’en moyenne 14.5 jours par décennie (Høye et al., 2007). De même, le timing de reproduction de nombreux oiseaux marins arctiques varie en fonction des conditions environnementales. La date d’éclosion des mergules nains (*Alke alle*) d’Hornsund au Spitzberg a avancé d’un jour par décennie entre 1963 et 2008 (Moe et al., 2009). Ces dates étaient négativement corrélées à la température de l’air au printemps, suggérant que le début de la reproduction est dicté par la fonte de la neige permettant l’accès aux nids (Moe et al., 2009). Chez les mouettes tridactyles (*Rissa tridactyla*) du Spitzberg, la date d’éclosion n’a pas avancé au cours du temps (entre 1968 et 2008) mais elle était corrélée à la température de la mer (Moe et al., 2009). La phénologie peut varier d’une population à une autre en fonction des conditions locales. Chez les guillemots de Brünnich (*Uria lomvia*), la date de ponte d’une colonie située sur l’île de Coats au nord de la baie d’Hudson a avancé entre 1981 et 2004, en parallèle d’un déclin de la glace de mer, alors que la date de ponte d’une autre colonie située plus au nord sur l’île du Prince Léopold n’a pas évolué, les conditions de glace étant restées stables dans cette seconde zone (Gaston et al., 2005).

Enfin, des modifications de chronologie de la migration ont été observées. C’est par exemple le cas des baleines grises (*Eschrichtius robustus*) du Pacifique Nord Est qui ont retardé leur migration automnale de 6.8 ±2 jours entre 1967 et 1999 (Moore, 2008), ou des bélugas (*Delphinapterus leucas*) dans la mer des Tchouktches restant plus longtemps dans les zones sans glace de mer à la fin de l’été (Hauser, 2016). Ces modifications phénologiques vont changer les relations interspécifiques au sein des communautés (Doney et al., 2012), en particulier en provoquant des décalages spatio-temporels des patrons de présence des proies et de leurs prédateurs (voir paragraphe B.2.c.).

e) Changements démographiques

Les effets néfastes ou bénéfiques des changements environnementaux vont avoir un effet sur la valeur sélective des individus : des traits comme la condition corporelle, la survie, la croissance ou le nombre de descendants vont varier. Cela va alors modifier les tailles des populations.

En Arctique, de nombreuses populations fluctuent en raison des changements environnementaux. Une étude réalisée sur deux espèces de guillemots (guillemot de Brünnich Uria lomvia et guillemot de Troil Uria aalge) sur l’ensemble de l’Arctique révèle que la taille des populations fluctue en parallèle avec les changements de température de surface de l’océan (Irons et al., 2008). De nombreuses espèces vivant sur ou associées à la glace de mer sont en déclin. Par exemple, les populations d’ours polaires de la baie d’Hudson et de la mer de Beaufort déclinent (Stirling et al., 1999; Regehr et al., 2006), et plusieurs études rapportent une baisse de la condition corporelle des adultes et des oursons, ainsi qu’une baisse de la natalité (Wassmann et al., 2011). On note également un déclin de 85% des populations de mouettes ivoire (Pagophila eburnea ; une espèce d’oiseau marin fortement dépendante de la glace de mer) au Canada (Gilchrist & Mallory, 2005). À l’inverse, des espèces profitent des nouvelles conditions de glace. On observe notamment une augmentation de la biomasse de
phytoplancton suite à la débâcle qui a lieu plus tôt, phénomène plus marqué dans la partie Pacifique de l’Arctique (Wassmann et al., 2011). De même, la morue (Gadus morhua) bénéficie du réchauffement : son aire de répartition se déplace vers le nord au Groenland, sur les côtes du Labrador et en mer de Barents, et on prédit que les stocks vont augmenter (Drinkwater, 2005).

Il n’est pas toujours évident de comprendre par quels mécanismes la survie ou le nombre de descendants vont être impactés par les variables environnementales. Un bel exemple est celui des eiders à duvet (Somateria mollissima) de deux colonies situées au Canada et en Norvège (Tromsø). La masse des femelles est influencée par l’oscillation nord-atlantique (NAO) dans ces deux colonies, mais pas de la même manière. Les femelles du Canada semblent impactées par les nombreuses tempêtes hivernales lorsque le NAO est élevé, alors que les femelles de Norvège sont impactées au travers de la chaine alimentaire comme le suggère le décalage d’un an entre les variations du NAO et de la masse des eiders (Descamps et al., 2010). La masse des femelles est un bon indicateur du succès reproducteur chez les eiders, et dans cet exemple, les conditions environnementales vont imacter la dynamique des populations via la condition corporelle des adultes en fin d’hiver (Descamps et al., 2010).

f) Déplacement des aires de répartition

Plusieurs mécanismes participent à la dynamique des aires de répartition. Localement, les populations tendent à s’accroître dans des écosystèmes plus favorables alors qu’elles tendent à décliner dans des écosystèmes moins favorables, pouvant aller jusqu’à disparaître. A cela s’ajouter un fonctionnement en métapopulations : les individus peuvent se déplacer d’une population à l’autre au gré de la qualité des conditions environnementales et participer à l’accroissement des populations dans les écosystèmes favorables, et au déclin, voire à l’extinction dans les milieux moins favorables (Hanski, 1998). Enfin, on peut observer la colonisation de nouveaux milieux si des individus adultes prospectent puis dispersent vers un nouvel habitat. A l’échelle de la distribution globale d’une espèce, ces mécanismes vont engendrer une modification de l’aire de répartition. De manière générale, on observe une contraction de la limite sud des aires de répartition et une extension de la limite nord dans l’hémisphère nord, à l’exception des milieux arctiques où la limite nord n’est pas extensible (Bellard et al., 2012).

A l’échelle de la planète, on rapporte un grand nombre de décalages vers les pôles des aires de répartition sous l’impact des changements climatiques (Parmesan, 2006). En milieu marin, l’exemple le mieux documenté est celui des copépodes de l’Atlantique Nord. Le « Continuous Plankton Recorder » (CPR) est un appareil fixé derrière les bateaux commerciaux qui permet de capturer en continu le zooplancton de surface dans l’Atlantique Nord, depuis les années 50 et donc de cartographier à large échelle la distribution de ces espèces. Beaugrand et collaborateurs ont ainsi pu montrer que les communautés d’espèces voyaient leur aire de répartition se décaler vers le nord (Beaugrand et al., 2009). De même, dans la Mer du Nord, 2/3 des espèces de poissons se sont décalées vers le nord et/ou en profondeur en 25 ans (Perry et al., 2005). Ces changements concernaient davantage les
espèces de poissons à cycle de vie court et de petite taille au détriment des grosses espèces (Perry et al., 2005). Un autre exemple est celui des eiders à duvet (Somateria mollissima) dont la limite nord de l’aire de reproduction au Groenland s’est étendue de 300km vers le nord au cours des dernières décennies, grâce à l’ouverture de nouveaux habitats d’alimentation libres de glace (Boertmann & Nielsen, 2010). Les espèces les plus vulnérables sont celles vivant en montagne ou aux pôles, qui voient leur aire de répartition se contracter mais qui ne peuvent pas gagner des zones plus propices (Parmesan, 2006), et/ou qui se retrouvent en compétition avec de nouvelles espèces venant de latitudes/altitudes plus basses (voir B.2.a).

![Diagram showing changes in species diversity between 1958 and 2005](image-url)

Les événements climatiques extrêmes

Les événements climatiques extrêmes sont définis comme des événements météorologiques extrêmes et rares comme des vagues de froid ou de chaleur, des vents violents ou encore des fortes précipitations (IPCC, 2013). D’après les experts du GIEC, il est très probable que ces événements extrêmes deviennent plus fréquents (IPCC, 2013). Les êtres vivants, homme compris, sont sensibles à ces épisodes, cependant il n’est pas évident d’étudier leurs impacts de par leur caractère rare et imprévisible (Bailey & van de Pol, 2016). En milieu polaire (où normalement il neige), on peut citer le rôle des pluies qui causent des échecs de reproduction massifs, comme en Antarctique à la Station Dumont d’Urville en 2013-2014 où tous les poussins de manchots Adélie (Pygoscelis adeliae) sont morts (Ropert-Coudert et al., 2015), ou au Groenland où elles ont causé à deux reprises et dans deux colonies des échecs massifs de la reproduction de mouettes ivoires (Pagophila eburnea, Yannic et al., 2014). Un autre exemple est celui des vagues de froid qui impactent la survie des flamants roses (Phoenicopterus roseus) en Camargue (Deville et al., 2014). Ces événements impactent également la survie des adultes et ont des effets sur la dynamique des populations (Frederiksen et al., 2008; Jenouvrier et al., 2015).

2. A l’échelle des communautés

a) Changements de phénologie et décalage temporel entre les niveaux trophiques

La chaine alimentaire arctique possède une saisonnalité marquée et rythmée par le cycle de la glace de mer. En hiver, la glace se forme et l’absence de lumière solaire limite toute production primaire. Au printemps, lorsque le soleil atteint un angle assez élevé et perce à travers la glace qui s’amincit, des algues se développent, fixées sous la banquise. Le premier bloom de productivité primaire est donc déclenché par l’angle d’incidence du soleil (Søreide et al., 2010). Le second bloom de productivité primaire a lieu après la débâcle et le phytoplancton peut se développer grâce à la pénétration massive de lumière (Søreide et al., 2010). Le premier bloom planctonique a donc lieu à une date fixe au cours du temps alors que le second bloom dépend de la débâcle dont la chronologie est variable d’une année sur l’autre. Les copépodes Calanus glacialis ont un cycle calé sur le cycle de la banquise et des blooms de production primaire. Les femelles commencent à pondre leurs œufs au moment du bloom des algues associées à la glace (premier bloom, Fig. I.9.a). Les stades nauplius et les premiers stades copépodites vont se développer au moment du bloom de phytoplancton suivant la débâcle (second bloom, Fig. I.9.b). Avec le réchauffement climatique, la débâcle a lieu de plus en plus tôt dans certains endroits, comme par exemple au Spitzberg (Muckenhuber et al., 2016), et un avancement du bloom phytoplanctonique est observé à l’échelle de l’Arctique (Kahru et al., 2011). Le cycle des copépodes n’est alors plus en phase avec les blooms de production primaire, et la production secondaire diminue (Søreide et al., 2010). Cela a ensuite des répercussions sur les maillons supérieurs de la chaîne trophique qui dépendent de l’abondance de copépodes, notamment les mergules nains (Ji et al., 2013; Hovinen et al., 2014b).

Une autre étude dans l’Arctique terrestre a montré le décalage temporel entre le pic d’émergence des arthropodes et la reproduction des bécassins sanderling (Calidris alba) (Reneerkens et al., 2016). Pendant les 17 ans de l’étude, l’émergence des arthropodes a avancé de 1,27 jours par an, alors que la date d’éclosion des bécassins n’a pas été modifiée (Reneerkens et al., 2016). Ce décalage n’a pour l’instant pas eu d’effet délétère sur la croissance des poussins de bécassins. Plus généralement, les espèces qui ne se basent pas sur les mêmes indices (lumière, température, autre espèce) pour caler leur cycle saisonnier vont se retrouver en décalage, avec de nombreuses conséquences au sein des communautés.

b) Réarrangements trophiques : cascades, compétition

Les changements affectant chaque espèce (abondance, phénologie, distribution) vont avoir des répercussions au sein des communautés. Dans l’Arctique Pacifique, un changement de l’organisation trophique est en cours, en réponse aux modifications des paramètres abiotiques (timing de la formation/disparition de la banquise, augmentation des températures)
et l’arrivée de nouvelles espèces boréales dans l’écosystème (Grebmeier, 2012). Au Spitzberg, on observe un remplacement de la communauté de mésozooplancton arctique par des espèces boréales (Weydmann et al., 2014). On observe également de nouvelles interactions de compétition avec des espèces boréales, comme par exemple entre les renards roux \(Vulpes \) \(vulpes \) et les renards polaires \(Vulpes lagopus \) en Scandinavie (Tannerfeldt et al., 2002). Ces modifications peuvent changer la production primaire, les cycles biogéochimiques, ainsi que les niveaux de contrôle des écosystèmes (top-down, bottom-up, (Harley et al., 2006; Doney et al., 2012).

c) **Introductions de pathogènes**

La transmission de pathogènes augmente lorsque des mouvements sont possibles entre plusieurs communautés. En Arctique, si la diminution de la banquise tend à réduire les mouvements de vertébrés entre certaines îles et donc à limiter la transmission de pathogènes, cela peut également favoriser le déplacement d’espèces marines boréales qui étaient préalablement limitées par la glace et donc augmenter la transmission de pathogènes pour d’autres espèces (Post et al., 2013). Par exemple, les pathogènes des espèces atlantiques et pacifiques auparavant séparées par la glace arctique pourraient être transmises suite à la fonte des glaces. Cela aurait des conséquences désastreuses car chacune des communautés pacifique ou atlantique a évolué séparément et les hôtes seraient donc plus sensibles à de nouveaux pathogènes jamais rencontrés (Post et al., 2013). De plus, le réchauffement va être bénéfique aux pathogènes dont le développement est limité par la température (Bradley et al., 2005).

d) **Conséquences pour les espèces migratrices: s’adapter à deux milieux différents**

Les espèces migratrices sont davantage vulnérables aux décalages temporels avec leurs ressources alimentaires car elles se servent d’indices climatiques à large échelle qui peuvent varier différemment des indices locaux, sous le coup des changements globaux (Robinson et al., 2009). Il leur faut de plus faire face aux contraintes changeantes de deux milieux différents. Les juvéniles de bécasses maubèches \(Calidris canutus canutus \) nichant en Sibérie sont moins gros et ont un bec plus court lorsque la neige fond tôt sur les sites de reproduction, probablement en raison d’une moins bonne croissance (van Gils et al., 2016). En hiver, la survie des juvéniles ayant un bec court est moins bonne. La taille de leur bec ne leur permet pas d’atteindre certaines de leurs proies enterrées (van Gils et al., 2016). Cet exemple montre qu’une caractéristique (ici la taille) qui pourrait être un avantage sur les sites de reproduction (voir partie 2.a.i.) peut être contre-sélectionnée sur la zone d’hivernage.
e) Résilience altérée

La résilience est la capacité d’un écosystème, d’une espèce ou d’une population à retrouver un fonctionnement normal suite à une perturbation (Holling, 1973). Dans le contexte arctique, la résilience des écosystèmes correspond à leur capacité à répondre aux changements en cours, principalement la diminution de la cryosphère et l’augmentation des températures. Étudier la résilience des écosystèmes arctiques revient à évaluer quels sont les facteurs environnementaux qui vont rester constants (par exemple l’apport de nutriments par une rivière, ou la bathymétrie) et quelle est l’importance de ces facteurs pour les êtres vivants, afin de comprendre s’ils vont pouvoir s’adapter et exploiter au mieux les nouvelles conditions environnementales. Par exemple, parmi les mammifères marins arctiques, les scénarios possibles de résilience suggèrent que d’ici à 2050, certaines espèces associées à la glace vont se réfugier dans les deux régions où la glace persiste, d’autres vont s’adapter à un environnement dépourvu de glace, et d’autres encore vont profiter des nouvelles zones sans glace pour exploiter de nouveaux habitats jusque là inaccessibles (Moore & Huntington, 2008). Plus généralement, la résilience des écosystèmes est liée à sa richesse spécifique et à redondance fonctionnelle (présence de plusieurs espèces partageant les mêmes fonctions dans un communauté, Allison, 2004).

3. Impacts des polluants

Les polluants, qu’ils soient d’origine naturelle (par exemple émis par les feux de forêts) ou anthropique, sont pour la plupart persistants, c'est-à-dire non dégradés dans l’environnement. Les êtres vivants ne sont souvent pas capables de les éliminer et ils s’accumulent dans leurs organismes. On parle alors de bioaccumulation. Les prédateurs se contaminent à la fois via l’environnement mais surtout via les proies qu’ils consomment, et le niveau de contamination augmente à chaque niveau trophique. On parle alors de biomagnification (AMAP, 2014). Par leur caractère hydrophobe, les polluants organiques persistants (POPs) sont stockés dans les tissus adipeux. D’autres sont stockés dans les tissus musculaires ou le foie, tel que le mercure (Hg).

Les polluants impactent les organismes vivants à différents niveaux. Certains sont des perturbateurs endocriniens et vont avoir un effet négatif sur la reproduction. Par exemple, chez les mouettes tridactyles (Rissa tridactyla), la date d’éclosion est plus tardive chez les mâles qui ont des taux élevés de PCBs\(^1\) et d’OCPs\(^2\) (Tartu et al., 2015c). Les mâles de pétrrels des neiges (Pagdroma nivea) avec un fort niveau de mercure abandonnent davantage leurs œufs (Tartu et al., 2015a). Le succès reproducteur est moins bon chez les individus contaminés par le mercure et les POPs pour les skuas antarctiques (Catharacta maccormicki), les skuaus subantarctiques (C. lonnbergi) et les albatros hurleurs (Diomedea exulans) dans l’Océan Austral (Goutte et al., 2014a, 2014b). De plus, la survie des femelles de mouettes tridactyles était directement impactée par les POPs (Goutte et al., 2015). Certaines substances

\(^1\) polychlorobiphényles
\(^2\) Pesticides organochlorés
réduisent la longueur des télomères, un mécanisme impliqué dans le phénomène de vieillissement et un indicateur de la condition physiologique des individus (Blévin et al., 2016). Enfin, les eiders à duvet (*Somateria mollissima*) contaminés par le plomb avaient une moins bonne condition corporelle (Provencher et al., 2016). Ces effets sur la valeur sélective peuvent à terme entraîner des déclins de populations (Goutte et al., 2014a). Le méthyldéprédateurs marins sont aussi soumis à la présence de microplastiques. Ces derniers pourraient avoir un impact direct en créant des occlusions intestinales (Browne et al., 2015), ou en créant une sensation de satiété réduisant la prise alimentaire, comme cela a été montré chez le poulet (*Gallus domesticus*) (Ryan, 1988). De plus, les microplastiques contiennent des polluants, qui y sont présents dès leur fabrication ou qui s’y associent dans l’océan (Teuten et al., 2009). Des expériences en laboratoire ont montré que ces polluants ainsi que des plastiques à l’échelle nanométrique atteignent le système circulatoire et peuvent entrer dans les cellules, causant du stress oxydatif et perturbant le fonctionnement des organes avec des impacts sur la survie (Browne et al., 2015). Plus généralement, les mécanismes d’action des polluants ainsi que la sensibilité des êtres vivants sont encore mal connus (Dietz et al., 2013; Vorkamp et al., 2015).

C. Les mergules nains face aux changements environnementaux : pourquoi, comment, et que sais-on ?

1. **Les études à long terme des oiseaux marins arctiques**

Les oiseaux de mer sont de puissants indicateurs écologiques des écosystèmes marins (Platt et al., 2007; Cury et al., 2011 ; mais voir Grémillet & Charniant, 2010). Comme ils sont des prédateurs supérieurs, l’état d’une population d’oiseaux de mer peut notamment refléter l’état de l’ensemble de la chaîne trophique sous-jacente (Cairns, 1988). De plus, les oiseaux marins se reproduisent à terre où il est plus facile de les observer et de les échantillonner que les espèces strictement aquatiques.

En Arctique, de nombreuses espèces d’oiseaux marins sont suivies sur le long terme (Irons et al., 2015). Parmi les séries temporelles les plus longues, on peut citer les guillemots de Brünnich (*Uria lomvia*) suivis en continu depuis 1984 à l’île de Coats (Canada), et depuis

1 Le méthyldéprédateurs est produit par l’activité bactérienne par méthylation du mercure.
1975 à l’île du Prince Léopold (Canada; Gaston et al., 2005) ; les mouettes tridactyles (Rissa tridactyla) suivies à Hornøya (Norvège, Barrett, 2007) depuis 1980 et au Spitzberg depuis 1970 (Moe et al., 2009) ou encore les eiders à duvet (Somateria mollissima) suivis depuis 1987 à côté de Tromsø (Norvège, Descamps et al., 2010). Cependant le mergule nain est le seul oiseau planctonophage plongeur suivi à long terme en Atlantique Nord (la starique minuscule Aethia pusilla, planctonophage, est étudiée dans le Pacifique Nord (Jones et al., 2002)). C’est également l’une des rares espèces étudiées à long terme au Groenland Est, ainsi qu’avec un suivi aussi complet (Irons et al., 2015). Le mergule nain est finalement une espèce arctique dont la biologie est assez bien connue, et détaillée dans les paragraphes suivants.

2. Pourquoi étudier le mergule nain ?

On les trouve couramment associé à la glace de mer (Hunt et al., 1996; Jakubas et al., 2012, 2013) mais ils se reproduisent également dans des zones sans glace comme à l’Ile aux Ours (Jakubas et al., 2016a). L’importance de la glace de mer pour cette espèce était très récemment encore mal comprise. Il est néanmoins établi que leurs principales proies, les copépodes du genre Calanus, sont impactées par le changement climatique (voir ci-dessus). On s’attend donc à ce que les mergules nains nous permettent de mieux comprendre le fonctionnement écologique des écosystèmes côtiers arctiques impactés par les changements environnementaux en cours.

3. Les différentes approches possibles et leurs limites pour l’étude

Etudier la réaction d’organismes aux changements de leur environnement n’est pas simple. L’une des principales difficultés consiste à établir un point de comparaison (Magurran et al., 2010). Idéalement, ce point de comparaison devrait être établi avant l’arrivée des
perturbations, pour pouvoir comparer un état perturbé à un état initial non perturbé. Cela n’est en général pas possible dans le cas des changements globaux car la majorité des programmes de recherche ont été mis en place après la prise de conscience des impacts de l’homme sur son environnement, et donc après l’état initial non perturbé du système à étudier. Les scientifiques se basent alors sur un état initial fixé en fonction des taux de changements des paramètres environnementaux, plutôt que de leurs valeurs absolues. Il est alors nécessaire d’obtenir les connaissances de base de la biologie d’une espèce, étape indispensable à l’étude des perturbations. Les connaissances de la biologie du mergule nain ont ainsi été étoffées par les études récentes menées sur cette espèce.

L’un des moyens pour étudier les effets des changements environnementaux sur une espèce consiste à adopter une démarche expérimentale en étudiant un mésocosme où l’on fait varier séparément chacune des conditions environnementales, idéalement sur une durée assez longue pour observer un équilibre. Cette approche est cependant limitée aux petites espèces ayant un temps de génération court et facilement manipulables (Henry & Molau, 1997; Jentsch et al., 2007; Wernberg et al., 2012; Garzke et al., 2014), et ce n’est pas possible pour les prédateurs marins, comme le mergule nain.

Une seconde approche, descriptive, consiste à étudier l’espèce dans son milieu alors qu’elle est confrontée à des conditions variables, dans l’espace, ou dans le temps. Via cette approche, il est souvent difficile de séparer les effets des différents facteurs environnementaux qui agissent en synergie. C’est de plus une approche corrélative qui ne permet pas toujours d’établir avec certitude les liens de causalité entre facteurs environnementaux et facteurs biologiques. Il faut idéalement un grand nombre de lieux et d’années afin d’obtenir la meilleure précision possible. Les études longitudinales nécessitent idéalement au moins une décennie avant de pouvoir tirer des conclusions, ce qui n’est pas toujours facile à effectuer dans la logique actuelle de financement de la recherche à court terme, et ce malgré les nombreuses recommandations des différents groupes de travail (Wassmann et al., 2011; AMAP, 2012; Eamer et al., 2013). Dans le cadre de cette thèse, une approche longitudinale a été adoptée pour le chapitre III, à l’instar de deux études préalables sur les mergules nains (Moe et al., 2009; Hovinen et al., 2014b).

L’approche spatiale permet de faire une étude sur une plus courte période en utilisant les variations spatiales d’une variable environnementale à tester (Wernberg et al., 2010). Elle a été utilisée pour tester l’influence de la température de surface de la mer (SST) sur les mergules nains à partir de trois colonies de la mer du Groenland aux conditions contrastées (Karnovsky et al., 2010, 2011; Grémillet et al., 2012). L’une des limites de cette approche spatiale est de pouvoir vérifier la connectivité entre les populations étudiées : si elles sont isolées génétiquement, les différences observées peuvent provenir d’une microévolution plutôt que d’une acclimatation. Les mergules ont peu de différenciation génétique entre colonies, ce qui suggère une dispersion entre colonies et donc l’absence de microévolution à un site donné (Wojczulanis-Jakubas et al., 2014). Récemment, les groupes de travail du Conseil de l’Arctique ont mis en avant l’importance de créer des réseaux d’analyse, afin de partager les données et d’étudier les espèces sur l’ensemble de leur aire de répartition. C’est
notamment le but du réseau Cbird initié par l’un des groupes de travail du Conseil de l’Arctique, « Conservation of Arctic Flora and Fauna ».

Enfin, une dernière approche consiste à étudier une espèce en limite d’aire de répartition, c’est-à-dire là où les conditions sont potentiellement moins favorables, afin de voir quels paramètres limitent la valeur sélective des individus. Cette approche a été utilisée pour les mergules nains nicheurs de l’Île aux Ours (Węsławski et al., 1999; Jakubas et al., 2016a). Les prochains paragraphes s’attacheront à faire un état de l’art des connaissances sur les mergules nains, notamment en ce qui concerne l’influence des paramètres environnementaux qui varient avec le réchauffement climatique : température, concentration de glace de mer, distribution et abondance des proies.

4. **Mergules nains et température de surface de la mer (SST)**

Pendant la période de reproduction, les colonies de mergules nains de la Mer du Groenland sont soumises à des SSTs contrastées (Fig. 1.10). A l’ouest (Groenland), on trouve des eaux de surface froides aménées de l’océan Arctique par le courant est-groenlandais, alors qu’à l’est (Spitzberg), on trouve des eaux plus chaudes d’origine Atlantique. De plus, au sud du Spitzberg (Hornsund), on trouve des eaux froides d’origine Arctique près de la côte aménées par le courant froid du Sørkapp contournant le sud de l’archipel, et des eaux atlantiques chaudes plus au large. Au nord du Spitzberg (Magdalenefjorden), les eaux atlantiques se retrouvent près de la côte, et on retrouve des eaux froides arctiques plus au large (Jakubas et al., 2013). Les eaux froides de l’Arctique contiennent des proies plus grosses et plus riches en lipides (*Calanus hyperboreus, C. glacialis et Apherusa glacialis*), alors que dans les eaux atlantiques, elles sont plus petites et moins caloriques (*Calanus finmarchicus*).

Les mergules nains du Spitzberg ont ainsi accès à différentes masses d’eau à partir de leurs colonies, et on peut donc étudier où ils vont préférentiellement se nourrir. On les trouve principalement dans les masses d’eaux froides d’après les comptages en mer (Karnovsky et al., 2003; Hovinen et al., 2014a) et d’après les voyages d’adultes reproducteurs équipés de GPS (Jakubas et al., 2013). Les mergules nains se nourrissent dans des eaux plus froides pendant les voyages longs que pendant les voyages courts (Jakubas et al., 2012). Ces données sont confirmées par le contenu des poches sublinguales. Les adultes reproducteurs du Spitzberg collectent sélectivement les espèces de zooplancton arctique qui sont plus grosses et plus riches en lipides, bien que l’on retrouve davantage de copépodes d’origine atlantique (*Calanus finmarchicus* dans les poches sublinguales des individus de la colonie davantage influencée par les eaux atlantiques, Magdalenefjorden (Karnovsky et al., 2003; Kwasniewski et al., 2010).

Une comparaison entre les différentes colonies bordées par des SSTs contrastées montre que l’effort de recherche alimentaire est corrélé à la SST. Les mergules nains passent plus de temps en mer, effectuent des voyages plus longs et volent davantage quand la SST est élevée (Karnovsky et al., 2011; Grémillet et al., 2012). Ils sont également plus de longues plongées profondes quand la SST augmente (Karnovsky et al., 2011). Ces différences de comportement n’ont pas d’effet sur la condition corporelle et la survie des adultes, ni sur la
croissance des poussins (Grémillet et al., 2012). Deux études menées au Spitzberg montrent cependant que la probabilité d’envol des poussins diminue avec l’augmentation de la SST pour 2 colonies suivies pendant 3 ans (Hovinen et al., 2014c), de même que la survie des adultes sur une période de 8 ans (Hovinen et al., 2014b).

5. **Mergules nains et glace de mer**

De nombreuses études recensent la présence de mergules nains au niveau de la zone marginale des glaces (MIZ pour « marginal ice zone »), qui correspond au bord de la banquise, aussi bien en été (Bradstreet, 1982; Lønne & Gabrielsen, 1992; Mehlum, 1997; Joiris & Falck, 2011) qu’en hiver (Fort et al., 2013). Les déploisements de GPS ont permis de confirmer que les adultes reproducteurs fréquentent bien la bordure des glaces pendant l’élevage du poussin (Jakubas et al., 2012, 2013). Cette association entre les mergules nains et la glace de mer se note aussi dans le contenu des poches sublinguales, constitué d’espèces strictement associées à la glace de mer, comme les amphipodes *Apherusa glacialis*, *Gammarus wilkitzkii*, *Onisimus glacialis* et *O. nansenii*. Ces espèces sont retrouvées dans les poches sublinguales des mergules nains de Terre François Joseph (Węsławski et al., 1994), du Groenland Est (Harding et al., 2009), du Groenland Ouest (Pedersen & Falk, 2001) et du Spitzberg (Kwasniewski et al., 2010), et peuvent constituer la totalité du contenu d’une poche. Les mergules nains consomment également des *Apherusa glacialis* en dehors de la période de reproduction, et cette proie représentait 62% du régime alimentaire des adultes à l’automne dans la polynie de la mer de Baffin (Karnovsky et al., 2008).

Malgré cette proximité évidente à la glace, les mergules nains peuvent s’en passer. Ils se reproduisent dans des zones éloignées de la glace comme à l’Ile aux Ours ou à Jan Mayen, et leur valeur sélective n’en est pas impactée (Jakubas et al., 2016a). Hovinen et collaborateurs reportent cependant une survie légèrement plus faible à l’Ile aux Ours qu’au Spitzberg (Hovinen et al., 2014b).

6. **Mergules nains et chronologie de la reproduction**

Les mergules nains reviennent de migration en mai. Au Spitzberg, leur date d’éclosion est corrélée à la température printanière de la colonie d’Hornsund (Moe et al., 2009). En effet, la température va jouer sur la fonte de la neige, permettant l’accès aux terriers. La date moyenne d’éclosion a avancé de 4.5 ±2.1 jours entre 1963 et 2008 au Spitzberg (Moe et al., 2009). La reproduction du mergule nain ne semble cependant pas impactée par les variations de cette chronologie de la reproduction. Une étude menée sur deux colonies du Spitzberg ayant des synchronies différentes montre que le succès reproducteur n’est pas fonction de la date de ponte / de la synchronie, et ce malgré une disponibilité en proies variables au cours de la saison (Jakubas et al., 2016b).

7. **Mergules nains et bathymétrie**

Les données existantes provenant de différentes colonies suggèrent que les mergules nains se nourrissent principalement sur le plateau continental à des profondeurs inférieures à 250m (Karnovsky et al., 2010; Hovinen et al., 2014a; Jakubas et al., 2016a). Une étude
rapporte la présence de mergules nains au niveau du talus continental dans le détroit de Fram (Joiris et al., 2014), mais on les retrouve dans des zones plus profondes en mer de Baffin (Wong et al., 2014).

8. **Mergules nains et autres espèces**

Le réchauffement climatique entraîne des modifications des communautés avec l’apparition ou la disparition possible de compétiteurs, prédateurs, proies ou parasites (Parmesan, 2006). Peu d’études ont recensé ce type de changements pour les mergules nains. On peut quand même citer l’augmentation de la prédation des oiseaux marins par les ours polaires (Stempniewicz, 1993; Prop et al., 2015), très probablement accélérée par la disparition précoce de la banquise en été. Les mergules nains pourraient également être sujets à davantage de parasites, comme les tiques qui survivent mieux aux hivers doux (Descamps, 2013), et à davantage de maladies suite à une modification de la circulation des pathogènes (Van Hemert et al., 2014). On s’attend également à une modification de la chaîne trophique suite aux changements d’aires de répartition des copépodes (Reygondeau & Beaugrand, 2011).

9. **Mergules nains en hiver**

La biologie des mergules nains en hiver est beaucoup moins connue du fait qu’ils ne reviennent pas à terre en dehors de la période de reproduction et qu’ils hivernent dans des mers où peu de navires de recherche s’aventurent à la mauvaise saison. Le développement d’appareils électroniques assez petits enregistrant la luminosité (géolocateurs, GLS) et dont les oiseaux sont équipés pendant l’hiver, a permis de connaître précisément les aires d’hivernage des principales populations de mergules nains (Fort et al., 2013). Les mergules nains d’Ukaleqarteq au Groenland Est migrent d’abord vers le nord de la Mer du Groenland où ils font une étape de 6 à 7 semaines pendant laquelle ils vont muer (Mosbech et al., 2012). Ils migrent ensuite au large de Terre Neuve où ils vont passer l’hiver, dans une zone où les *Calanus finmarchicus* sont abondants et les températures sont comprises entre 0 et 5°C (Fort et al., 2012). Les mergules nains ont un régime alimentaire hivernal qui est évalué via deux méthodes : l’observation directe du contenu stomacal d’oiseaux prélevés en mer, ou par la mesure des isotopes stables dans les plumes de la tête (plumes muées à la fin de l’hiver et qui renseignent donc sur l’alimentation hivernale). La première technique a été utilisée sur des populations hivernantes au large de Terre Neuve (Canada) et de Nuuk (Groenland). Les principales proies trouvées étaient les Euphausidés, suivies par les amphipodes du genre Themisto et les juvéniles de capelans (*Mallotus villoso*) (Rosing-Asvid et al., 2013). Les études isotopiques suggèrent que les mergules nains se nourrissent à un niveau trophique plus bas que les espèces trouvées par Rosing-Asvid et collaborateurs (2013), ce qui correspondrait à un régime alimentaire composé principalement de *Calanus finmarchicus* (Fort et al., 2010a, 2010b; Burke et al., 2014). Ces différences entre les deux méthodes pourraient s’expliquer par le fait que les mergules nains de l’étude des contenus stomacaux ont été chassés dans des zones très côtières pour cette espèce et que le régime alimentaire de ces oiseaux ne serait pas représentatif de l’ensemble de la population (Rosing-Asvid et al., 2013). Enfin, des modèles énergétiques de la zone d’hivernage des mergules montrent qu’ils sont le plus contraints
énergétiquement en décembre, janvier et février (Fort et al., 2009). Davantage de connaissances sur la biologie hivernale des mergules nains sont cependant nécessaires afin de pouvoir prédire les impacts des changements environnementaux à la mauvaise saison.

10. **Mergules nains à leur limite sud de répartition**

La colonie de mergules nains de Bjørnøya, île située entre l’Europe et l’archipel du Spitzberg à 74° de latitude nord, n’est pas la colonie la plus au sud de l’aire de répartition des mergules nains géographiquement parlant, mais c’est celle où les conditions environnementales sont les plus chaudes en raison de l’influence du Gulf Stream (Fig. I.10). Bjørnøya se situe sur le front polaire, zone riche en proies, séparant des eaux chaudes d’origine atlantique (>7°C) à l’ouest et au sud, d’eaux froides d’origine Arctique (<5°C) à l’est et au nord. Les mergules nains de cette colonie nourrissent leurs poussins avec du zooplancton d’origine arctique (Węsławski et al., 1999; Jakubas et al., 2016a). Ils ne vont pas chercher leur nourriture uniquement dans les masses d’eaux les plus froides au nord-ouest, mais aussi dans les eaux de température moyenne situées autour de l’île et supposées moins favorables aux copépodes arctiques (SST médiane de 6.6°C sur les lieux de nourrissage, Jakubas et al. 2016). Deux études menées à 20 ans d’intervalle montrent que l’aire de nourrissage des mergules nains n’a pas été modifiée (Węsławski et al., 1999; Jakubas et al., 2016a). La croissance des poussins n’a pas non plus varié (Jakubas et al., 2016a). Les adultes faisaient cependant des voyages plus longs que les mergules nains du Spitzberg (Jakubas et al., 2016a). Ces différents résultats suggèrent que les mergules nains de Bjørnøya ne sont pas encore soumis à des conditions environnementales délétères, certainement en raison du front polaire qui leur assure une zone de nourrissage constante, et souligne leur plasticité comportementale pendant leur période de reproduction.

Une autre publication étudie la probabilité de survie des mergules nains de Bjørnøya et de deux colonies du Spitzberg. La probabilité de survie varie de la même manière pour les 3 colonies, bien que la survie des mergules de Bjørnøya paraisse légèrement inférieure (Fig. 4, Hovinen et al., 2014b).
D. Problématique et objectifs de l’étude

Disposant de 12 années de suivis effectués sur une colonie de mergules nains au Groenland Est, nous avons cherché à répondre à la question suivante : Quel est l’impact des changements environnementaux en cours sur les mergules nains ?

D’après les résultats existants résumés ci-dessus, voici nos prédictions :

(1) Les adultes présentent une forte plasticité comportementale lors de la recherche de nourriture, ce qui leur permet de maintenir constants leurs indices de valeur sélective (survie, condition corporelle, croissance des poussins) face à des ressources changeantes.

(2) Concernant les proies, on s’attend à voir une augmentation de la proportion de Calanus finmarchicus dans les régimes alimentaires de poussins collectés au cours du temps, au vu du décalage vers le nord des aires de répartition des communautés zooplanctoniques en Atlantique Nord. De plus, la proportion de proies associées à la glace de mer devrait varier en parallèle des changements de l’étendue de la banquise à proximité de la colonie étudiée.

(3) Suite à la diminution de la taille des proies au cours du temps (à la fois via des espèces différentes et via des plus petits individus au sein de chaque espèce), on s’attend à atteindre un point où les mergules nains n’arriveront plus à équilibrer leur balance énergétique. D’après les données existantes, ce point n’a pas encore été atteint.

(4) En hiver, période la plus contraînte au niveau énergétique, nous prédisons que les mergules nains optimisent leur localisation afin de limiter leurs dépenses énergétiques (zones aux conditions climatiques clémentes) et afin de profiter de zones riches en proies.

(5) En raison de l’augmentation de la pollution environnementale en Arctique au cours de la dernière décennie, nous prédisons que les mergules nains ont une exposition accrue au mercure et aux microplastiques, et que cela peut impacter leur valeur sélective.

Les résultats sont découpés en quatre chapitres, avec les objectifs suivants :

Dans le chapitre II, nous avons caractérisé la zone de recherche alimentaire des mergules en présence ou en l’absence de glace de mer au large de la colonie, ainsi que les conséquences de la concentration de glace sur le régime alimentaire, la condition corporelle des adultes et la croissance des poussins.

Dans le chapitre III, nous avons étudié les corrélations entre variables environnementales et variables biologiques tout au long des dix années de suivi de la colonie d’Ukaleqarteq.

Le chapitre IV a consisté à modéliser le paysage énergétique des mergules dans l’Atlantique Nord en hiver, à construire un modèle d’habitat en fonction du paysage énergétique et de la répartition des proies, et à modéliser le futur de ce paysage énergétique selon les prédictions climatiques du GIEC.

Enfin, dans le chapitre V nous avons quantifié la contamination par les microplastiques des mergules et de leur environnement en mer du Groenland en 2005 et 2014.
E. Site d'étude et ses caractéristiques

Nous avons étudié la colonie de mergules nains d’Ukaleqarteq (littéralement « l’endroit où il y a des lièvres », nom danois : Kap Høegh) située en Terre de Liverpool au Groenland Est (70°44’ N, 21°35’ W, Fig. I.10). La Terre de Liverpool est l’aire de reproduction majeure du mergule nain en mer du Groenland, avec des effectifs totaux estimés à 4 millions de couples (Stempniwicz, 2001). Ce site d’étude est influencé par le courant Est-groenlandais (EGC) qui s’écoule du nord vers le sud le long de la côte. Ce courant est constitué d’eau froide et peu salée provenant de l’Océan Arctique, et c’est la principale zone d’export de la glace de mer arctique (Figure I.8).

Figure I.10 : Localisation de la colonie d’Ukaleqarteq (étoile verte) au Groenland Est, et principaux courants marins de la mer du Groenland. EGC : Courant Est-Groenlandais. WSC : Courant de l’Ouest du Spitzberg. SC : Courant de Sørkapp.

Les conditions de glace au large de la colonie, dans la zone de pêche des mergules nains, sont très variables. La glace de mer qui s’y trouve a deux origines (1) la banquise côtière (fast ice) qui se forme chaque hiver, et qui débâcle en début d’été, et (2) la banquise de mer (pack ice) qui provient de l’Océan Arctique et qui dérive au large, portée par le courant Est-Groenlandais. La débâcle de la glace côtière peut avoir lieu plus ou moins tôt dans l’été. Certaines années elle a totalement disparu avant la naissance des poussins, et d’autres années elle ne disparaît que peu de temps avant leur envol. D’autre part, le front de glace de mer du courant Est-Groenlandais descend plus ou moins au sud selon les années. La glace peut donc être complètement absente pendant l’élevage du poussin, ou au contraire très abondante.

Cette colonie est située à proximité du village d’Ittoqqortoormiit (460 habitants environ) et on y trouve une cabane. Les habitants viennent y chasser les mergules et ramasser des œufs au printemps, lorsque la banquise leur permet de voyager en traineau.
II. Chapitre II: Where to forage in the absence of sea ice? Bathymetry as a key factor for an arctic seabird.

Photo: Samuel Perret
Where to forage in the absence of sea ice?
Bathymetry as a key factor for an arctic seabird.

Françoise Amélineau F, David Grémillet, Delphine Bonnet, Tangi Le Bot, Jérôme Fort.

A. Abstract

The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.

Keywords
Climate change, marginal ice zone, shelf break, little auk, copepod, dovekie
B. Introduction

The release of anthropogenic greenhouse gases into the atmosphere leads to climate warming on a worldwide scale (IPCC, 2013). Consequences are diverse among regions, yet the Arctic is arguably the most impacted area due to changes in the cryosphere. In particular, minimum summer sea ice extent decreased by 12 ± 2% per decade since 1979 (IPCC, 2013). Changes in the cryosphere significantly affect the Arctic biota (Eamer et al., 2013). For instance, observed and predicted declines in sea ice extent will affect animals that use sea ice as a habitat, such as seals, walruses (Odobenus rosmarus), polar bears (Ursus maritimus) or ice-associated amphipods (Arndt & Swadling, 2006; Gilg et al., 2012). Modifications in sea ice extent and in the timing of sea ice melting in spring will also perturb the amplitude, location and timing of Arctic plankton blooms (Søreide et al., 2010). These blooms are an essential feature of Arctic marine ecological processes, and the resulting stochasticity in primary and secondary productivity (phyto- and zooplanктон biomasses) is predicted to impact higher trophic levels, including seabirds (Wassmann et al., 2011; Doney et al., 2012; Post et al., 2013).

Little auks (Alca alle) are endemic to the Arctic and the most abundant seabird in the North Atlantic Arctic, with an estimated population of 40-80 million individuals (Egevang et al., 2003). Recent studies have demonstrated that they are affected by the ecological consequences of higher ocean temperatures in the Arctic (Karnovsky et al., 2003, 2010; Grémillet et al., 2012; Hovinen et al., 2014c). Beyond ocean temperatures, little auks might also be affected by the presence/absence of sea ice. During the breeding season, this planktivorous species is known to use the marginal ice zone (the transition area between pack ice and open water), whenever accessible, to forage and to rest (Bradstreet, 1982; Lønne & Gabrielsen, 1992; Mehlum, 1997; Jakubas et al., 2012, 2013), a behaviour also suspected to occur outside of the breeding season (Fort et al., 2013). Moreover, prey availability and species composition are predicted to differ significantly according to sea ice concentration (SIC, percentage of sea surface covered by ice in a given area), particularly in the case of ice-associated species (Lønne & Gabrielsen, 1992). Such organisms are the preferred prey of little auks, because of their high lipid concentration (Harding et al., 2009), and little auks feeding within Atlantic ice-free water masses have been found to forage in less optimal conditions due to smaller, leaner prey (Karnovsky et al., 2003; Hovinen et al., 2014c). Yet marine productivity is also tightly linked to bathymetry (Parsons et al., 1984). In particular, continental shelves and shelf break slopes modify water fluxes and induce plankton concentration and aggregation of top predators (Yen et al., 2004; Bost et al., 2009). Aggregations of little auks have been observed along the shelf-break outside the breeding season, probably reflecting an area of high prey density (Folkestad, 1990; Skov & Durinek, 2000; Fifield et al., 2009). In the perspective of an ice-free Arctic Ocean in summer, bathymetry is, with light intensity, the environmental parameter that will remain unchanged. Understanding how little auks take advantage of bathymetric features is thus needed to predict climate change impacts on this species.

In this study, we tested the hypothesis that little auk foraging behaviour during the breeding season is affected both by the presence/absence of sea ice and bathymetry. To this
end, we looked at the effects of these two factors on (1) little auk foraging location and diving activity, and (2) zooplankton species composition of chick diet. We also investigated their impact on (3) chick growth and adult body condition.

To test this hypothesis, we studied little auks from the breeding colony of Ukaleqarteq (Kap Höegh), located in East Greenland where foraging conditions are influenced by the East Greenland current carrying large volumes of Arctic sea ice southwards. Importantly, there is a strong inter-annual variability in this sea ice drift, allowing us to compare little auk foraging behaviour in the presence/nearby absence of sea ice within their foraging range (in 2012 and 2014, respectively). To this end, we used a multidisciplinary approach, combining satellite remote-sensing of sea ice concentration, land-based studies of little auk foraging behaviour and reproductive performance, and at-sea observations of little auk distribution and sampling of their zooplankton prey.

C. Materials and methods

The R software version 3.0.2 was used for numerical and statistical analyses (R Core Team, 2013). QGis (QGIS Development Team, 2015) was used to map GPS and sea-ice data. All bird handling procedures and at-sea samplings were approved by the Government of Greenland (Permits N°2012-065815 and 2014-098814) and validated by the ethics committee of the French Polar Institute (Permit N° MP/53/06/12).

1. Field site and data collection

 a) General fieldwork at the colony

Fieldwork took place in Ukaleqarteq (Kap Höegh, 70°44’ N, 21°35’ W, Fig II.1A), East Greenland, between mid-July and mid-August 2012 and 2014.

Adult birds were caught either in the nest by hand or on rocks surrounding the nest using noose traps. Each handled adult bird was weighed (to the nearest gram), measured (head-bill and wing length to the nearest millimeter), fitted with a metal ring for individual identification and equipped with a data logger (see below; 2012: n = 38; 2014: n = 32). Additional breeding birds (2012: n = 27; 2014: n = 88) were captured and measured only following the same procedure to access their body condition. All birds were released within less than 10 minutes of capture. The breeding status of adult birds was ascertained via the presence of a full gular pouch (a sub-lingual pouch used for prey transport to the chick), of a brood patch, or through the presence of a chick at the nest. When birds had a full gular pouch, chick diet was collected following Harding et al (Harding et al., 2009) (2012: n = 20, 2014: n = 20). Little auks only raise one chick, and chick growth was monitored. To this end, some nests were visited every second day to determine hatching date (2012: n = 24, 2014: n = 29). Chicks were then weighted every second day, once they were more than 2 days-old.
b) **Logger deployment**

GPS-recorders or Temperature-Depth-Recorders (TDR) were attached dorsally (GPS) or ventrally (TDR) to feathers with Tesa® tape (Hamburg, Germany). Devices were either removed upon recapture after 3-10 days, or fell off during the complete moult which immediately follows the breeding season in little auks (Mosbech et al., 2012). Two GPS types were used: EP-3.3 in 2012 and 2014 (Ecotone, Gdansk, Poland; 40 x 17 x 9 mm, 4.9 g, 3.2% of the average little auk weight) and ALLE in 2014 (Ecotone, Gdansk, Poland; 35 x 16 x 12 mm, 4.2 g, 2.9% of the average little auk weight). GPSs recorded positions at 15 min intervals, and were either downloaded remotely using a base station placed in the colony, or upon recatching birds. In 2014, 3 TDR types were used: DST micro-TD (Star Oddi, Iceland; 25.4 x 8.3 mm, 3.3 g, 2.2% of the average little auk weight); LULs (CNRS, France, 17 x 9 x 5 mm, 2.2 g, 1.4% of the average little auk weight) and G5 (CEFAS Technology Limited, Lowestoft, UK, 8 x 31 mm, 2.6 g, 1.7% of the average little auk weight). In 2012, only DST micro-TD were used. Sampling intervals for both pressure and temperature were 4 s (DST micro-TD), 2 s (G5) or 1 s (LUL). Chick age was not known for equipped birds due to the difficulty to find accessible nests and nest attendance was not monitored by direct observation to limit disturbance near the nests.

c) **At sea survey**

In order to sample little auk prey and to assess the spatial distribution of foraging birds, an at-sea survey was conducted onboard SV Argelvor between August, 16-18 2014, towards the end of the chick-rearing period. No sea ice was encountered during the whole survey. Two transects were performed, one at the latitude of the colony and the other 0.29° further North, from the coast to 135 km offshore. Along each transect, 10 plankton samples were collected using a WP2 net (diameter 57 cm, mesh size 100 μm). Vertical net hauls were performed from 50 m depth to the surface with a manual winch at constant speed (mean maximum depth of birds equipped with TDRs in 2014 was 21.1 ± 4.2 m, Table II.2B). Fifty meters correspond to the maximum dive depth little auks are known to forage to (Fort et al., 2010b). A Conductivity Temperature Depth sonde (CTD model YSI 600 XLM, Yellow Spring, Ohio, USA) was initially deployed above the net but did not work. Instead, a TDR (G5) was attached to the net to validate depth profiles, but temperature data could not be used to detect water masses, due to the slow response of the temperature sensor compared to net vertical speed. Zooplankton samples were stored in 70% ethanol.

Bird count protocols followed Karnovsky et al [13]. All birds were counted within a 300 m radius and at 90° angle from the bow, on the one side of the boat with the best visibility when the boat was sailing. Counts stopped during net hauls. All bird species were counted but only little auk sightings are analyzed in this study.
2. **Data processing and analyses**

 a) Sea ice remote-sensing data

 Daily sea ice concentrations were downloaded from the Eumetsat OSI SAF website (Eumetsat, 2011, http://osisaf.met.no/). Data from the Global Sea Ice Concentration reprocessing dataset, with a grid resolution of 12.5km, were used for the period 1978-2014 (Fig II.2). An area of 150 x 200 km was determined around the colony, which included all available little auk GPS tracks. For each year, the mean sea ice concentration was calculated for this area between 15 July and 15 August. This time span contains the entire little auk chick-rearing period. For clarity, we presented sea ice extent on the maps instead of sea ice concentrations to avoid using a raster format. Daily sea ice extent data presented on the maps were downloaded from the U.S. National Ice Center (http://www.natice.noaa.gov/products/daily_products.html) and for each map, we presented the daily ice extent on the day for which we had more tracks recorded.

 b) Logger data

 GPS data were analyzed following Jakubas et al. (Jakubas et al., 2013) to determine foraging trip duration, foraging path length, and to identify positions associated to active foraging or resting. Only complete trips were used for path length and trip duration calculations. Foraging/resting areas were defined as areas where instant speed was < 10 km.h⁻¹ (Jakubas et al., 2013). Since both resting and foraging occurred at low speeds and could not be distinguished, we only used a single category for both behavioural patterns, which are nonetheless strongly linked since previous investigations showed that foraging birds rest at sea in the vicinity of their feeding spots (e.g. Fig. 4 in (Jakubas et al., 2013)). For each foraging/resting position, we calculated the distance to the colony and the distance to the ice, i.e. the closest distance to the daily 80% sea-ice concentration area, obtained from the sea-ice extent maps of the U.S. National Ice Center. For each year, a kernel density estimation of foraging and resting positions was performed using the ‘adehabitatLT’ package in R (Calenge, 2006) and a UTM 27N/GR96 projection. The smoothing parameter was calculated with the ad-hoc method and a 75% contour was chosen to represent the core foraging/resting area. Similarities of the foraging areas and the use of the shelf break were respectively quantified with the percentage of overlap between both kernels and between each kernel and the shelf-break area (defined as the area comprised between the 500 and 1500m isobaths).

 TDR data were analysed using MultiTrace (Jensen Software Systems, Germany). Dive duration, maximum dive depth and the number of foraging dives per 24h were measured. To compare depth data from different TDR types, we recalibrated them in a pressure chamber. We found that DST micro-TD underestimated real depth and the following correction was therefore applied on depth data before analyses: Depth = 1.0473 * Depth(Star Oddi) + 0.4498 (1).
c) Zooplankton data

Zooplankton sampled at sea and in gular pouches was identified under a stereo microscope, to the lowest-possible taxonomic level using (Rose, 1933; Dunbar, 1963; Tencati et al., 1970; Klekowski & Weslawski, 1991). Calanus species were determined with prosome length as follows: individuals were classified by stage, photographed with the microscope-adapted camera and measured with the Image J software (U. S. National Institutes of Health, Maryland, USA). Size thresholds were defined for each stage using the size distribution obtained with our dataset.

To compare species composition between the different at-sea sampling locations, the Bray-Curtis distance was calculated and a classification tree was constructed using Ward’s method in the R package ’Vegan’ (Legendre & Legendre, 2012; Oksanen et al., 2013). We also calculated the density (individuals per m3) of the 3 Calanus species over the continental shelf, the shelf break and the open ocean.

The linear food selection index (LFSI) was calculated as LFSI = GP$_i$ – E$_i$, which is the difference between the relative abundance of prey i in the gular pouch GP$_r$, and in the environment E$_r$ (Strauss, 1979). This index ranges between -1 and 1, with positive values indicating preference, and negative or null values indicating avoidance or unavailability. Mean values for LFSI, and their confidence intervals, were obtained by bootstrapping 10,000 LFSI values from random GP$_i$ and E$_i$ which were assumed to have a normal distribution of observed means and standard deviations.

d) Chick growth and adult condition

We compared chick growth during the linear growth period (age 4-14 days, Fig II.S2). A linear mixed effect model was used with mass as response variable, chick identity as a random effect and year and chick age as fixed effects. The R package ‘nlme’ was used and a model selection process using AIC was performed to select the most parsimonious model among all possible combinations of factors (Zuur et al., 2009; Pinheiro et al., 2013). When the difference of AIC was ≤2, the model with the smallest degree of freedom was retained (Table II.S1).

An index of adult body condition was calculated following Harding et al (Harding et al., 2011). Mass was corrected with wing length and head-bill length to take bird size into account. The index was calculated for 65 and 120 birds in 2012 and 2014, respectively. An ANCOVA was performed to test differences in residual mass between years.
Figure II.1: (A) Location of the study site, sea ice extent and GPS tracks from (B) 2012 and (C) 2014 and (D) 75% kernel contours of resting and foraging positions in 2012 (grey), and 2014 (pink), and the shelf break area (yellow). 1A: General map situating Ukaleqarteq (red dot) and the location of the studied area (red rectangle) represented in Fig II.1B, II.1C, II.5A and II.5I. 1B and C: GPS tracks: red dots correspond to foraging or resting (speed <10 km.h⁻¹) and black dots to travelling (speed >10 km.h⁻¹). Sea ice extent data were downloaded from the U.S. National Ice Center (http://www.natice.noaa.gov/products/daily_products.html, 24 July 2012 and 23 July 2014). White: pack ice with an ice concentration >80%. Light blue: marginal ice zone (MIZ) with an ice concentration <80%. In the marginal ice zone, sea ice concentration decreased between pack ice and open water. Black lines: 500-m isobaths. GPS track of the bird going far North-East in 2014 was not included in the analyses because it was not complete, but we present it on this map to show how this bird travelled along the shelf break and probably target areas of high ice concentration. 1D. Red lines represent the 500 and 1500m isobaths used to delimit the shelf break area. Projection: GR96/ UTM zone 27N.
D. Results

1. Sea ice concentration

Mean sea ice concentration in the vicinity of the little auk colony was calculated each year between July 15 and August 15 corresponding to the little auk chick rearing period. Sea ice concentration between 1979 and 2014 showed high interannual variability, with a maximum of 39.4% in 1981 and a minimum of 1.9% in 2009 (Fig II.2), and declined across 1979-2014 (slope: -0.499, t(35) = -3.243, p = 0.003). In 2012, sea-ice concentration was higher than in 2014 (10.89% and 2.82%, respectively; Fig II.2) and pack ice was closer to the bird colony (approx. 120 km and 300 km, respectively; Fig II.1). Importantly, our at-sea surveys conducted in summer 2014 showed that the surveyed area was completely sea-ice free at the end of the chick rearing period, thereby confirming remote-sensing data.

![Graph of sea ice concentration](image)

Figure II.2: Mean sea ice concentration (SIC) in a 150x200 km area off Ukaleqarteq, East Greenland. The mean value was calculated for each year between 15 July and 15 August across 1979-2014 (reprocessed sea ice concentration dataset of the EUMETSAT OSI SAF). Red dots indicate mean SIC values for 2012 and 2014.
2. Foraging behaviour in relation to sea ice concentration and bathymetry

In 2012, 25 GPSs were deployed between July 19-31. Eleven tracks were recorded, with 8 complete long foraging trips from 6 birds. In 2014, 14 GPSs were deployed between July 22 and August 1. Data were recorded for 8 birds, with 6 complete foraging trips from 6 birds (Fig II.1B and C). In total, 17 and 4 GPS-equipped loggers were recaptured in 2012 and 2014 respectively. Three more tracks were recorded in 2011 and are presented in appendix (Fig II.S1).

All 15 complete GPS tracks showed a similar pattern, with unidirectional eastward commuting flights towards feeding areas. Return flights to the colony were also highly directional, with foraging/resting behaviour occurring on the way (Fig II.1). Foraging/resting birds were closer to sea ice in 2012 than in 2014 (median distances of 23 and 152 km respectively, Fig II.3A). However, the maximum distance from the colony reached during a foraging trip remained similar across years (89 ± 26 km in 2012 and 108 ± 26 km in 2014 (means ± SD, Table II.1A, Fig II.3B), and foraging/resting areas consistently overlapped with the shelf break (Fig II.1). Indeed, in 2012 and 2014 the 75% kernel area of foraging/resting positions respectively overlapped by 40.4% and 42.5% with the shelf break (Fig. II.1D). In addition, total distance travelled, maximum distance to the colony and trip duration were not significantly different between years (Wilcoxon test: W = 19, p = 0.57; W = 15, p = 0.28 and W = 20, p = 0.66, respectively). Finally, foraging/resting kernels for 2012 and 2014 showed a 45.6% mutual overlap (Fig. II.1D). Three birds equipped in 2011, in the presence of sea ice, performed similar trips as birds equipped in 2012 and 2014 (Fig II.S1).

![Figure II.3: Histograms of the distance to (A) the ice (80% sea ice concentration) and (B) to the colony for foraging and resting positions in 2012 (grey) and 2014 (red). Vertical bars correspond to median values for each year.](image-url)
Table II.1: Statistics summary for (A) foraging trips performed by little auks equipped with GPSs (2012 and 2014); and (B) dives performed by little auks equipped with TDRs (2012 and 2014).

<table>
<thead>
<tr>
<th>A. Foraging trips</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>6</td>
</tr>
<tr>
<td>Number of trips</td>
<td>8</td>
</tr>
<tr>
<td>Maximum distance to the colony (km, means ± SD)</td>
<td>88.7 ±26.3</td>
</tr>
<tr>
<td>Trip duration (hour, means ± SD)</td>
<td>30.3 ±14.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Dives</th>
<th>TDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>Maximum dive depth (m, means ± SD)</td>
<td>17.4±3.3</td>
</tr>
<tr>
<td>Dive duration (sec, means ± SD)</td>
<td>54.7±4.2</td>
</tr>
<tr>
<td>Number of dives/24h (means ± SD)</td>
<td>270±90</td>
</tr>
</tbody>
</table>

In 2012, 13 TDRs were deployed on August 2. Nine were retrieved and one file was corrupted. In 2014, 18 TDRs were deployed between July 20 and August 8. Twelve of them were retrieved and 7 recordings were used for the analyses. Diving behaviour (maximum dive depth, dive duration and the number of dives per 24h) did not differ between years (Table II.1B, Wilcoxon test: W = 42, p = 0.12; W = 43, p = 0.094; W = 29, p = 0.96 respectively).

At-sea counts of little auks performed in 2014, in the absence of sea ice, showed a first peak of abundance on the continental shelf (Fig II.4) and a second lower peak close to the 500 m isobath, which corresponds to the beginning of the shelf break (Fig II.4).

3. Chick diet

The composition of prey brought back to chicks by adults differed between years (Table II.2). Calanoid copepods (Calanus sp.) were the main prey type in both years (85% in 2012 and 90% in 2014), but proportion of the three Calanus species present in the diet differed between years. The largest species C. hyperboreus was more abundant in 2012 (t(38) = 2.43, p = 0.02), whereas the smaller C. glacialis and C. finnarchicus were more abundant in 2014 (t-tests, t(38) = 5.28, p < 0.001 and t(38) = 2.75, p < 0.001 respectively). Further, ice-associated amphipods represented nearly 10% of the diet in 2012 and were virtually absent in 2014. In particular, the amphipod Apherusa glacialis represented up to 96% of single food loads in 2012, and only a few single specimens were found in 2014. The linear food selection index (LFSI, (Strauss, 1979)) indicated which prey items were preferentially collected by parent little auks in 2014 (Table II.2): LFSI was the highest for Calanus
hyperboreus and C. glacialis (LFSI = 0.43 and 0.28 respectively, Table II.2) indicating that they were actively selected by birds. Other prey species had low or negative indexes, indicating that they were avoided or opportunistically taken. In particular, Calanus finmarchicus LFSI was not different from 0 despite its high abundance in the environment and was therefore not selected (Table II.2). Small Calanus copepodite stages (I-III) were also avoided by parent little auks to feed their chick (negative LFSI, Table II.2).

Figure II.4: At-sea little auk sightings in 2014, in the absence of sea ice. Data from the two transects (Fig II.5) were pooled and counts were grouped according to longitude. The two dashed lines represent the longitude of the 500 m and 1500 m isobaths, which delimit the shelf break.
<table>
<thead>
<tr>
<th></th>
<th>Little auk gular pouch</th>
<th>At sea samples 2014</th>
<th>Linear food selection index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2014</td>
<td>RA</td>
</tr>
<tr>
<td>C. hyperboreus</td>
<td>65.3 ± 28.6</td>
<td>90</td>
<td>47.0 ± 17.6</td>
</tr>
<tr>
<td>C. glacialis</td>
<td>15.5 ± 9.2</td>
<td>95</td>
<td>34.1 ± 12.8</td>
</tr>
<tr>
<td>C. finmarchicus</td>
<td>4.2 ± 4.2</td>
<td>100</td>
<td>9.0 ± 6.7</td>
</tr>
<tr>
<td>Calanus CI-CIII</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Small copepods</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Paracalanus spp</td>
<td>0.01 ± 0.05</td>
<td>5</td>
<td>0.1 ± 0.3</td>
</tr>
<tr>
<td>Oithona spp</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Apherusa glacialis*</td>
<td>8.7 ± 26.4</td>
<td>45</td>
<td>0.1 ± 0.3</td>
</tr>
<tr>
<td>Gammaurus spp*</td>
<td>0.5 ± 1.9</td>
<td>40</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Onisimus spp*</td>
<td>0.3 ± 0.7</td>
<td>40</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Thysanoessa spp</td>
<td>4.2 ± 13.8</td>
<td>15</td>
<td>4.7 ± 11.4</td>
</tr>
<tr>
<td>Thermisto spp</td>
<td>1.1 ± 1.6</td>
<td>55</td>
<td>4.2 ± 5.2</td>
</tr>
<tr>
<td>Decapod larvae</td>
<td>0.01 ± 0.03</td>
<td>10</td>
<td>0.1 ± 0.3</td>
</tr>
<tr>
<td>Fish</td>
<td>0.03 ± 0.1</td>
<td>10</td>
<td>0.2 ± 0.3</td>
</tr>
<tr>
<td>Limacina helicina</td>
<td>0.2 ± 0.4</td>
<td>25</td>
<td>0.1 ± 0.4</td>
</tr>
<tr>
<td>Nautilus larvae</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Tunicates</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Echinodermata larvae</td>
<td>0.0 ± 0.0</td>
<td>0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.01 ± 0.02</td>
<td>5</td>
<td>0.1 ± 0.3</td>
</tr>
</tbody>
</table>

Table II.2 Relative abundance (RA, mean ± SD, %) and occurrence frequency (OF, %) of zooplankton found in little auk gular pouches in 2012 and 2014, and in at-sea samples collected in 2014; and linear food selection index (mean ± SD, %) for 2014 prey. Calanus hyperboreus, C. glacialis and C. finmarchicus groups included the stages CIV, CV, and adult males and females. Other copepodite stages of these 3 species were included in the ‘Calanus CI-CIII’ group. Species included in the ‘small copepods’ group are Trichona borealis, Scaphocalanus magnus, Metridia longa and Microcalanus spp for the Continental shelf, and Trichona borealis, Metridia longa and Microcalanus spp for the shelf break and the open ocean. Main little auk prey species are in bold. Asterisk indicates ice-associated prey. Continental shelf, shelf break and open ocean groups were defined based on isobaths (<500 m, 500-1500 m and >1500 m respectively). Linear food selection index is the difference between prey proportion found in little auk gular pouch and prey proportion in the environment and ranges from -1 to 1 (Strauss, 1979). A positive value indicates preference and negative or null values avoidance or unavailability.
4. **Chick growth and adult body condition**

Chick mass was monitored for 24 chicks in 2012 and 29 chicks in 2014 (Fig II.S2). The linear growth period was modelled using a linear mixed effect model including chick age and year, and chick ID was added as a random factor (Table II.S1). Chick age was the only relevant factor in the selected model (Table II.S1). Year was rejected during model selection process, indicating that chick growth did not differ between years (Fig II.S2). Adult body condition was calculated from 65 and 120 birds in 2012 and 2014, respectively. No difference in adult body condition was found between years (ANCOVA, $F_{1,183} = 0.064$, $p = 0.8$, Fig II.S3).

5. **Bathymetry impact on zooplankton community composition**

During our 2014 at-sea survey, 20 zooplankton samples were collected on two transects across the shelf break, corresponding to little auk foraging areas (Fig II.5A). Given the Bray-Curtis distance measuring dissimilarity between samples, zooplankton composition was grouped in two communities (Fig II.5B). The first included samples collected on the continental shelf, and the second samples from the shelf break and the open ocean (Fig II.5). The density of *Calanus* species depended on bathymetric features (Fig. II.5C): *C. glacialis* and *C. hyperboreus* (main prey items found in little auk chick diets, Table II.2) were both more abundant on the continental shelf than on the shelf break and the open ocean (Kruskal-Wallis test, $p < 0.01$ for both species, Fig. II.5C). On the contrary, *C. finnarchicus* was more abundant on the shelf break and the open ocean, with densities nearly 5 times higher than for each of the 3 species on the continental shelf (Kruskal-Wallis test, $p < 0.01$, Fig. II.5C).
Figure II.5: Zooplankton communities sampled along two transects in 2014. (A) Location of zooplankton sampling transects, little auk GPS tracks for 2014 (white line), bathymetry (black lines: 500-m isobaths) and sea ice extent (17 August 2014, only the marginal ice zone (MIZ) is present). (B) Cluster dendrogram of zooplankton species composition grouped according to Bray-Curtis distance. This allowed associating samples to a 'continental shelf' (red) or 'open ocean' (yellow) community, and those groups/colours are reported on Fig II.5A. (C) Number of individuals per m³ of the 3 Copepod species in the 3 marine habitats defined by bathymetry. For each species, means with different letters are significantly different (Wilcoxon test, \(p<0.01 \)).
E. Discussion

During their foraging trips, little auks visited similar areas of the continental shelf and of the shelf break, irrespective of the presence/absence of sea-ice (Figs II.1, II.S1). Chick growth curves and adult body mass (Figs II.S2 and II.S3) were also similar across years with/without sea ice, suggesting unaffected reproductive output and adult body condition. We conclude that bathymetry is potentially more important to foraging little auks than sea ice. Our results are particularly relevant in the context of Arctic climate change, and of the environmental impacts of vanishing sea ice cover.

1. Bathymetry effects

Information provided by GPSs and at-sea observations show that little auks foraged preferentially on the shelf break and on the continental shelf (Figs II.1, II.4 and II.S1). Upwelling areas or fronts are known to occur along shelf breaks and to concentrate seabird prey (Genin, 2004; Bost et al., 2009). In the studied area, the East Greenland break front could play this role (Belkin et al., 2009). Many examples show seabird association with shelf breaks worldwide, among which Cory’s shearwaters Calonectris diomedea in the Mediterranean Sea (Louzao et al., 2009), black petrels Procellaria parkinsoni off New Zealand (Freeman et al., 2010), or black-footed albatrosses Phoebastria nigripes on the Californian shelf slope (Hyrenbach et al., 2006). In addition, numerous studies have mentioned the presence of Alcids at fronts, among which Murres (Uria lomvia and U. aalge) in the East Bering Sea (Kinder et al., 1983), and planktivorous auklets taking advantage of tidal fronts at the sills between the Aleutian islands (Hunt, 1997; Hunt et al., 1998). Concerning little auks, one exception has been highlighted by Karnovsky and collaborators. They found that little auks from Hornsund (South-West Spitsbergen) foraged mainly on the continental shelf (Arctic water from the Sørkapp Current) but avoided the shelf break where they encountered waters of Atlantic origin (West Spitsbergen Current) (Karnovsky et al., 2003). This difference with our results was most likely due to prey types and densities. Off Hornsund, small and less profitable prey species were in the same densities within Atlantic water masses than the bigger and richer ones within Arctic water masses, and were further away from the colony. Little auks therefore had no incentives to forage at the shelf break. In contrast, in our system in the absence of ice, smaller species were largely more abundant at the shelf break than the bigger ones upon the shelf area (Fig. II.5).

In 2014, chick diets were mainly composed of C. hyperboreus and C. glacialis (Table II.2) and these species were more abundant on the continental shelf (Fig. II.5C). However, 42.5% of adult foraging/resting areas were situated on the shelf break. There, C. finnarchicus densities were about five times greater than densities found on the continental shelf for the three copepod species. This comparison between chick diet, adult foraging/resting areas and Calanus copepod densities suggests that breeding little auks may not feed on the same prey and in the same areas when foraging for themselves, or for their chicks as described by Brown and collaborators (Brown et al., 2012). More specifically, it suggests that breeding birds fed
for themselves first. Tracked birds targeted the shelf break, probably to feed for themselves on highly abundant, yet smaller and less calorific *C. finmarchicus*. Then, on their way back across the continental shelf, they likely caught *C. hyperboreus* and *C. glacialis* for their chicks. These two copepods are less abundant but larger and more calorific than *C. finmarchicus* (Harding et al., 2009). This hypothesis is consistent with the fact that most adult little auks caught at colonies have empty stomachs (Pedersen & Falk, 2001) and that nearly all studies focusing on adult diet were performed on birds caught at sea (Bradstreet, 1982; Lomne & Gabrielsen, 1992; Mehlum, 1997; Pedersen & Falk, 2001; Karnovsky et al., 2008). It is therefore particularly difficult to compare adult and chick diet (Pedersen & Falk, 2001). Previous isotopic investigations performed at the same colony suggested that breeding adults and their chicks feed at the same trophic level (Fort et al., 2010a). However, and because the three copepod species are all mainly herbivorous and present similar isotopic signatures/trophic positions (Tamelander et al., 2006; Søreide et al., 2008), this method cannot be used to confirm our hypothesis, and further investigations are required to confirm factors driving the combined use of continental shelf and shelf break by foraging parent little auks.

2. **Sea ice effects**

In the present study, little auks foraged in the same areas in the presence and nearby absence of sea ice (Figs II.1 and II.S1), thus questioning the importance of sea-ice habitats for foraging little auks during the breeding season (Gaston & Jones, 1998). Previous studies led in West Spitsbergen found that little auks foraged mainly in the marginal ice zone and could modulate their foraging distance to track sea ice up to 150 km (Jakubas et al., 2013, 2014). However, areas where little auks foraged in Spitsbergen were also close to the shelf break where the Arctic front separates Atlantic waters from the West Spitsbergen current and Arctic waters from the Sorkapp current (Kwasniewski et al., 2010). It is thus possible that bathymetry also played an important role for foraging little auks in Spitsbergen, as in East Greenland. However, the spatial match between the shelf break and the marginal ice zone in both Spitsbergen and East Greenland precludes further quantitative evaluation of the role played by each parameter, and further studies from other arctic areas are needed.

In our system, another open question is whether little auks could cope with longer foraging trips to reach sea ice areas. Going as close to the ice in 2014 as in 2012 (i.e. travelling an additional 258 km, Fig. II.3) would have required little auks to increase their flight times by six hours per foraging trip, with an overall 18% increase in trip duration. Compared with other published data on foraging trip duration or maximum foraging distance, little auks from our study already performed trips which were longer (mean duration of 15.9 h and 22.7 h (Welcker et al., 2009; Jakubas et al., 2016a); mean maximum distance of 67.1 km and 65.5 km (Jakubas et al., 2014, 2016a)) or of the same order of magnitude (mean maximum distance of 97.9 km and mean duration of 24.3 h, (Jakubas et al., 2013)) than little auks from other areas. This suggests that birds may have already been operating to their maximum capabilities, and probably cannot reach the ice when it is further away. Further, our two study years actually represent moderate sea ice conditions for little auks in East
Greenland. Indeed, 2012 and 2014 are within the lower range of sea ice extents over the 1979-2014 period (Fig. II.2), and the current sea ice decline started well before the advent of satellite measurements (Polyak et al., 2010). We can therefore only speculate about the foraging behaviour of little auks exposed to substantially higher sea ice concentrations > 20 years ago. Under these conditions, understanding which other parameters influence little auk foraging behaviour, such as bathymetry, is crucial to anticipate their response to an ice-free environment.

Further, sea ice is also important for little auks and other Arctic seabirds as a platform to rest during foraging trips (Bradstreet, 1982), and its disappearance may increase the energetic costs of resting. In spectacled eiders (Somateria fischeri), for instance, resting at the sea surface was estimated to be 50% more costly, energetically, than resting on sea ice (Lovvorn et al., 2009) and the same trend is expected for other seabird species (Eamer et al., 2013). This could alter adult body condition, especially in little auks that are known to have an elevated metabolism (Harding et al., 2009). In our study, it is possible that some physical processes aggregated small remaining ice floes at the shelf break in 2014 and that these platforms were used for birds to digest food and rest in the middle of their trip as we could not distinguish resting and foraging behaviour.

3. Device effects

Birds equipped with GPSs showed significantly longer trip durations when compared with literature data for the same colony (mean long trip duration of 9.6 ± 0.5 h, obtained with direct observations of marked, yet unequipped birds in 2007 (Welcker et al., 2009)). Moreover, birds from these two studies were investigated a different times of the chick-rearing phases, and hence it cannot be excluded that birds modified their foraging behaviour as the season progressed, or that prey availability and foraging conditions differed between years (Jakubas et al., 2014). However, a similar bias towards longer foraging trips was also observed in little auks equipped with the same type of GPS devices in Spitsbergen (Jakubas et al., 2013). Devices attached to diving seabirds increase hydrodynamic drag (Bannasch et al., 1994), and has been shown to affect trip duration in some species, including little auks (Phillips et al., 2003; Kidawa et al., 2012). Overall, we recommend that future little auk GPS-tracking studies use smaller/lighter tags, to ensure the smallest possible impact on the birds. Nevertheless, as birds equipped with GPSs in the presence/absence of sea ice in 2012 and 2014 were similarly handicapped by tags, we consider that our comparison of their utilization of the marginal ice zone and of bathymetric features during foraging trips remains valid.

4. Little auks and climate change

Climate change may affect arctic seabirds through (1) changes in the behaviour of their predators. For instance, enhanced polar bear predation on seabirds has been demonstrated in recent years (Prop et al., 2015), see also (Stempniewicz, 1993). (2) The spread of new parasites and pathogens from lower latitudes (e.g. (Descamps, 2013; Van Hemert et al., 2014)), and (3) changes in their breeding and foraging habitats. Notably, former
work showed that little auks perform better in cold Arctic waters containing lipid-rich copepods (Karnovsky et al., 2010; Grémillet et al., 2012; Hovinen et al., 2014b). In the longer term, an increase in sea surface temperature in the Arctic is therefore expected to favour boreal copepods such as Calanus finmarchicus (Beaugrand et al., 2009). C. finmarchicus are smaller and contain less lipids than the two Arctic copepods C. glacialis and C. hyperboreus. Moreover, higher temperatures are expected to favour smaller zooplankton, both smaller species and smaller individuals within a species (Daufrésne et al., 2009; Garzke et al., 2014). Such a negative relationship between organismal size and temperature was observed during geological times for phytoplankton (Falkowski & Oliver, 2007). While adult little auks might be able to cope with smaller prey like C. finmarchicus in their environment (this study, (Fort et al., 2012)), the food selection index showed that breeding birds had a strong preference for large copepods to feed their chick (Table II.2). This finding raises the questions whether, in the longer term, adult little auks will have capabilities to gather more/less smaller and less profitable prey to meet their chick energetic requirements and whether chicks will deal with smaller prey in their diet. One study indeed found that when there was a larger influx of Atlantic water off Hornsund, Spitsbergen, chick meals were of lower mass and lower energy content, and parents had to increase the number of foraging trips to fulfil chick dietary needs (Jakubas et al., 2007).

Comparative studies conducted across the Greenland Sea do indicate that little auks have for now the capacity to buffer the consequences of current ocean warming, through marked foraging plasticity (Jakubas et al., 2007; Grémillet et al., 2012). Further, recent investigations demonstrated that, in the absence of sea-ice, little auks may efficiently switch from offshore feeding habitats to less distant, prey-rich coastal fronts created by the melt water of retreating coastal glaciers (Grémillet et al., 2015), and unexpectedly, may efficiently feed in warm Atlantic waters containing boreal zooplankton species at their southernmost breeding site (Jakubas et al., 2016a). These results confirm that little auks are so far flexible with respect to the consequences of arctic warming, challenging current species distribution models forecasting future distributions for little auks in a warming Arctic (Karnovsky et al., 2010; Huettmann et al., 2011). Crucially, our study strongly suggests that bathymetric features and associated productivity may actually be more important for efficient little auk foraging than sea-ice habitats. Nevertheless, these ideas should now be tested using smaller tracking devices, and at further study sites, to fully understand the importance of bathymetry for foraging little auks across the Arctic.

F. List of abbreviations and definitions

E_i: relative abundance of prey i in the environment

GP_i: relative abundance of prey i in gular pouch

$LFSI$: linear food selection index

63
MIZ: Marginal ice zone, transition area between pack ice and the open ocean. Defined by a sea ice concentration <80% on our figures.

Pack ice: also called “drift ice”, sea ice that is not attached to land. If attached to land it is called fast ice.

SIC: sea ice concentration, percentage of sea surface covered by ice in a given area.

TDR: temperature depth recorder

Acknowledgements

Fieldwork benefited from the help of Julien Nezan, Jules Chiffard-Carricaburu, Pierre-Henri Fabre, Johanna Hovinen and Justine Ammendolia. We are grateful to Nanu Travel and Scoresby. We thank Elin Austerheim and Alan Le Tressoler onboard Argelvor who provided the logistical support for the at-sea survey, Francis Crenner and the MIBE (Strasbourg) who kindly provided 4 LULs (TDRs), Rumsais Blatrix who lent his stereo microscope for zooplankton analyses and Clara Péron and Cyril Bernard for their help with spatial analyses in R and QGis. We thank Morten Frederiksen and Anders Mosbech for their fruitful comments and discussions at the onset of this project.
G. Supporting information

Figure II.S1: GPS tracks of 3 little auks in 2011 and sea ice extent. Red dots correspond to foraging or resting (speed <10 km.h⁻¹) and black dots to travelling (instant speed >10 km.h⁻¹). Sea ice extent data were downloaded from the U.S. National Ice Center (http://www.natice.noaa.gov/products/daily_products.html). White: pack ice with an ice concentration >80%. Light blue: marginal ice zone (MIZ) with an ice concentration <80%. In the marginal ice zone, sea ice concentration decreased between pack ice and open water. Only 2 of the 3 trips were complete, thus we did not include these tracks in our analyses. Projection: GR96/ UTM zone 27N.
Figure II.S2: Chick Growth curves for 2012 (black, n=24 chicks) and 2014 (red, n=29 chicks). Chicks were weighed every second day. Chick growth was compared between years during the linear growth period (delimited by dotted lines) using a linear mixed effect model with mass as an explanatory variable, chick age and year as fixed factors and chick as a random factor. Model selection process retained model with chick age as fixed factor and chick as random effect. Year factor was rejected meaning that there is no difference of chick growth between years.
Figure II.S3: Adult body condition index (mean±SE) in 2012 (black, n=65) and 2014 (red, n=120) calculated following [42]. There was no difference in body condition between both years ($F_{1,183} = 0.064, p=0.8$).

Table II.S1: Model selection using Akaike’s information criterion (AIC) to test the effects of age and year on chick body mass. S1A: Model selection of all combination of factors, a chick random effect is included. K: number of parameters. ΔAIC is the difference of AIC between a given model and the model with the lowest AIC. Best model is number 1 with the smallest AIC and less parameters than model 2. S1B: parameter estimation for model 1.

II.S1A. Model selection (51 chicks, 256 observations)

<table>
<thead>
<tr>
<th>No</th>
<th>Model</th>
<th>K</th>
<th>AIC</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age</td>
<td>4</td>
<td>1653.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Age+Year</td>
<td>5</td>
<td>1655.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>Year</td>
<td>4</td>
<td>2344.2</td>
<td>691.3</td>
</tr>
<tr>
<td>4</td>
<td>Intercept</td>
<td>3</td>
<td>2342.5</td>
<td>689.5</td>
</tr>
</tbody>
</table>

II.S1B. Model 1 parameter estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>12.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Chick age</td>
<td>6.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>
III. Chapitre III Arctic global change impacts little auk foraging and fitness – insights from a 12-year integrative study in East Greenland.

Photo: Valère Marsaudon
Arctic global change impacts little auk foraging and fitness – insights from a 12-year integrative study in East Greenland.

Françoise Amélineau, David Grénillet, Ann MA Harding, Wojciech Walkusz, Rémi Choquet, Samuel Perret, Jérôme Fort

A. Abstract

Ongoing global changes apply drastic environmental forcing onto Arctic marine ecosystems: sea-surface temperatures are increasing, sea-ice is declining and anthropogenic pollution is reaching this area despite its remoteness. To test the effects of environmental changes on marine ecological functioning in the Arctic, we used a 12-year integrative study of little auks (Alle alle), which are the most abundant seabirds in the North Atlantic and feed on zooplankton. In East Greenland, we monitored little auk foraging behaviour, diet, and different fitness proxies (adult survival, adult body condition) as well as hatching date and chick growth rate. We tested linkages between these biological variables and a set of environmental parameters recorded at the birds’ breeding and wintering site, as well as their mercury contamination. We found that little auk showed substantial foraging plasticity, notably through an increase in foraging effort in the absence of sea-ice. Yet, in contrast to former studies conducted over shorter time periods, we found that little auk fitness proxies were also impacted by environmental changes: Adult body condition decreased across years, and with increasing summer wind speed, and adult diet changed across the study period. Hatching date was gradually delayed, and when mercury concentrations were high, and chick growth rate tended to decrease across the study period. However, no trend was found for adult survival despite a high variability and the possible impact on storm frequency at their wintering grounds. Overall, our study demonstrates how global changes affect a pivotal organism of the Atlantic Arctic, and stresses the importance of monitoring arctic ecological processes in the longer term.

Keywords: Alle alle, dovekie, little auks, long term, foraging, chick growth, survival, sea-ice, wind, SST, NAO,
B. Introduction

Arctic biota are facing rapid, global changes. The Arctic is warming twice as fast as any other place on earth, with subsequent consequences on sea-ice distribution, wind regimes or precipitation levels (IPCC, 2013). The concurrent emergence of competitors (Gilg et al., 2012), parasites (Kutz et al., 2005) or pollutants (Vorkamp et al., 2015; Amélineau et al., 2016a) poses additional new threats for the Arctic wildlife (AMAP 2013). In this context, there is an urgent need for long-term monitoring programs to investigate Arctic species and ecosystem reactions to environmental modifications (Høye et al., 2007; Wassmann et al., 2011; Eamer et al., 2013; Post et al., 2013; Descamps et al., 2016). This is especially true as arctic biomes are poorly studied compared to the rest of the world (Meltofte et al., 2013). In this region, coastal ecosystems deserve particular attention (Post et al., 2013), and they host endemic seabirds which have been identified as powerful ecological indicators, and are emblematic for arctic peoples (Eamer et al., 2013). Seabirds are subjected to a fair number of long-term monitoring programs in polar regions (e.g. Croxall et al. 2002; Gaston et al. 2005; Weimerskirch et al. 2012; Lesroël et al. 2014; Bost et al. 2015; Descamps et al. 2016), yet most of these studies focus on the sub-Antarctic and the Antarctic, and integrative, long-term studies of the impacts of environmental changes on the foraging ecology and fitness proxies of arctic seabirds are rare (Gaston et al., 2005; Descamps et al., 2016). Those are needed to fully apprehend the incidence of ecosystem modifications on these vulnerable species.

In this study, we focused on little auks (*Alle alle*), the most abundant seabird breeding in the Arctic (40 to 80 million individuals, Egevang et al. 2003), which is ecologically highly significant in regional food webs (Karnovsky & Hunt, 2002) but could also be highly impacted by ongoing environmental change. Notably, little auks are zooplanktivorous, and the distribution of their main prey, *Calanus* spp copepods, is changing along with the warming of the North Atlantic. The range of the smallest and less calorific species, *Calanus finmarchicus*, of Atlantic origin, is extending northwards (Reygondeau & Beaugrand, 2011) and may replace the two larger and fattier Arctic species that are preferred by little auks (Karnovsky et al., 2010; Amélineau et al., 2016b). This could prevent birds from covering their energetic needs (Harding et al., 2009). Although previous studies highlighted that little auks from different colonies can demonstrate strong behavioural plasticity to foraging conditions and prey availability (Karnovsky et al., 2011; Grémillet et al., 2012), impacts on the long term are unknown. Furthermore, little auks are living in sea-ice habitats and sea-ice is likely to disappear soon from their foraging grounds according to IPCC predictions (IPCC, 2013) which could further modify bird foraging behaviour and reproduction. Similarly, changes in wind regimes could directly affect little auk energetics (Fort et al., 2009) and their capacity to respond to the aforementioned changes. Further, the North Atlantic Oscillation (NAO) index reflects climatic conditions over a large area and is commonly used to test for the effects of climate on seabirds (e.g. Sandvik et al. 2005; Sandvik et al. 2012), and seems particularly adapted to migrants that rely on climatic clues on a larger scale (Frederiksen et al., 2004).
In particular, survival of little auks from Spitsbergen was linked to winter NAO with a time lag of 2 years and could reflect the abundance of their main prey (Hovinen et al., 2014b).

In addition to these climatic modifications, little auks could face an increasing contamination of their environment. For instance, mercury (Hg) levels have increased by 3.4% per year over the last decade in little auks from East Greenland (Fort et al., 2016). Hg is a powerful neurotoxin as well as an endocrine disruptor (Wolfe et al., 1998) which could therefore have large impacts on the reproduction of this arctic seabird species (Tartu et al., 2013, 2015b).

In this context, and based on recent findings for little auks and their prey, we propose to examine the behavioural plasticity of this species in response to environmental change and investigate impacts on bird fitness. More specifically, we tested the hypotheses that (1) the proportion of ice-associated prey in little auk diet is decreasing with decreasing sea-ice extent, and the proportion of Calanus finmarchicus is increasing with time (Reygondeau & Beaugrand, 2011) (2) adult little auks use foraging plasticity to cope with a changing environment during summer, to maintain their body condition and the provisioning of their chicks, and thereby also maintain chick growth rates (Grémillet et al., 2012; Jakubas et al., 2016b), (3) increasing Hg contamination of little auk environment impacts their body condition and their investment in the reproduction (hatching date, chick growth rate) (Tartu et al., 2013) and (4) little auk inter-annual survival is impacted by environmental conditions, both during the breeding and the inter-breeding season (Harding et al., 2011; Hovinen et al., 2014b). Such hypotheses were evaluated within the framework of life history theory (Stearns, 1992), which predicts that, in long-lived species such as seabirds, adults facing severe environmental conditions should favour their own body condition and survival, to the detriment of reproduction.

To test these hypotheses, we used the longest time-series currently available with respect to little auk ecology, which we collected at the breeding colony of Ukkaleqarteq (East Greenland) during 12 consecutive summers (2004-2015). We investigated adult foraging behaviour, adult and chick diet, adult winter survival, chick growth, hatching date, and tested the incidence of environmental conditions (sea-surface temperature, sea-ice concentration, wind force, North Atlantic Oscillation and Hg concentrations).

C. Material and methods

1. General fieldwork context

Little auks from Ukkaleqarteq (Kap Hoëgh, East Greenland, 70°44′N, 21°35′ W) were studied during the breeding season (mid-July/mid-August) from 2004 to 2015. Birds breed under rocks in steep boulder fields, where they raise a single offspring, and fly out to sea where they forage on zooplankton, which they bring back to their chick in a sublingual pouch. During the inter-breeding period (Sept-May), birds migrate to wintering areas in the North Atlantic, notably off Newfoundland (Fort et al. 2012). Each summer, a set of biological
parameters detailed below were monitored, and sample sizes are presented in table III.1. Adult birds were caught either in their nests or on the surrounding rocks using a lasso or noose carpets. Breeding status was assessed by the presence of a chick, a full sublingual pouch or a brood patch. Handling time was <10 min. For all sampling except for the survival study (see below), each year different individuals were studied. Therefore, our investigations were mainly conducted at the population – and not at the individual – level.

Table III.1: Sample sizes for each biological parameter

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TDR</td>
<td>4</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chick diet</td>
<td>35</td>
<td>35</td>
<td>48</td>
<td>39</td>
<td>4</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chick growth</td>
<td>-</td>
<td>30</td>
<td>38</td>
<td>29</td>
<td>-</td>
<td>12</td>
<td>33</td>
<td>21</td>
<td>29</td>
<td>28</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Adult body condition</td>
<td>-</td>
<td>502</td>
<td>174</td>
<td>308</td>
<td>85</td>
<td>145</td>
<td>169</td>
<td>143</td>
<td>85</td>
<td>86</td>
<td>129</td>
<td>76</td>
</tr>
<tr>
<td>Birds ringed in survival plot</td>
<td>-</td>
<td>191</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>45</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>18</td>
<td>8</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stable isotopes</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>32</td>
</tr>
</tbody>
</table>

2. **Chick and adult diet**

Breeding adults were captured on arrival at the colony and the content of their sublingual pouch (chick diet) was removed and stored in 4% borax-buffered formaldehyde solution (2005 to 2007) or in 70% ethanol (2008 and beyond). Samples were identified to the lowest possible taxonomical level under a stereomicroscope following groups presented in Harding et al. (2009). Adult diet was estimated from stable isotope analyses (δ15N) performed on total blood samples (Fort et al., 2010a). δ15N isotopic values reflect the relative trophic position of birds and are considered as an indicator of their diet a couple of weeks before the sampling (Kelly, 2000). δ13C was also considered as an indicator of bird foraging habitats (Kelly, 2000). Blood samples (0.3ml) were collected from bird brachial vein, stored in 70% ethanol and kept frozen at -20°C. Prior to analyses, blood samples were freeze-dried for 48h and homogenized. Stable isotope analyses were then performed on ~0.5 mg subsamples of homogenized, non-lipid extracted whole blood loaded into tin cups, and using an elemental analyzer (Flash EA 1112, Thermo Fisher) coupled in continuous flow mode to an isotope ratio mass spectrometer (Delta V Advantage, Thermo Fisher, Bremen, Germany). Stable isotope abundances were expressed in δ notation as the deviation from standards in parts per thousand (‰) according to the equation: δX = [(Rsample/Rstandard)−1] × 1000 where X is 13C or 15N and R is the corresponding ratio 13C/12C or 15N/14N. Standard values were Vienna Pee Dee Belemnite (VPDB) for C and atmo-spheric N2 (air) for N. Replicate measurements of internal laboratory standards (acetalilide) indicated that the measurement error was <0.2% for both d15N and d13C values.
3. **Foraging behaviour**

Breeding adults were equipped with temperature-depth recorders (TDRs) attached ventrally, recording at 0.2, 0.5 or 1Hz for 2-5 days during the chick-rearing period. Details on TDR types and attachment methods are presented in table III.2. Data were analysed with MultiTrace™ to extract maximum depth, dive and pause duration for each dive. We also measured time spent flying and foraging trip duration following Welcker et al. (2009), and calculated the time spent underwater and the number of dives per day.

Table III.2: Summary of time-depth recorders (TDRs) types, attachment methods and sample sizes. Loggers were attached directly on feathers with Tesa® tape or with Loctite® glue (2007 only). In 2008, birds were equipped with intra-abdominal TDRs (see details in Fort et al. 2010) and we could not measure time spent flying (based on temperature channel) for this year.

<table>
<thead>
<tr>
<th>Year</th>
<th>TDR type</th>
<th>Attachment method</th>
<th>Recording rate</th>
<th>Number deployed</th>
<th>Number retrieved</th>
<th>Number analyzed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>LTD_1110, Lotek</td>
<td>Tesa® tape</td>
<td>5s</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>Harding et al 2009</td>
</tr>
<tr>
<td>2008</td>
<td>G5, Cefas</td>
<td>Intra-abdominal</td>
<td>2s</td>
<td>22</td>
<td>13</td>
<td>10</td>
<td>Fort et al 2010</td>
</tr>
<tr>
<td>2013</td>
<td>G5, Cefas</td>
<td>Tesa® tape</td>
<td>2s</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>this study</td>
</tr>
<tr>
<td>2014</td>
<td>G5, Cefas</td>
<td>Tesa® tape</td>
<td>2s</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>Amélineau et al 2016</td>
</tr>
<tr>
<td>2014</td>
<td>LUL, MIBE</td>
<td>Tesa® tape</td>
<td>1s</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>Amélineau et al 2016</td>
</tr>
<tr>
<td>2014</td>
<td>DST micro-TD, Star Oddi</td>
<td>Tesa® tape</td>
<td>4s</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Amélineau et al 2016</td>
</tr>
<tr>
<td>2015</td>
<td>G5, Cefas</td>
<td>Tesa® tape</td>
<td>1s</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>this study</td>
</tr>
</tbody>
</table>

4. **Hatching date and chick growth**

Nests were controlled for hatching date and chicks were weighed every second day. For each chick, we calculated the chick growth rate (g.day⁻¹) as the slope of the linear growth period (4-14 days, (Amélineau et al., 2016b).
5. **Adult body condition and mercury contamination**

Each handled adult was weighed to the nearest gram, and wing and headbill lengths were measured. We constructed a body condition index, correcting adult body mass by wing length and head-bill length to take bird size into account following Harding et al. (2011). Adult pectoral muscle thickness was measured with a portable ultrasound scanner SonoSite Titan (SonoSite Inc, Bothell, WA, USA).

Hg analyses were performed on one complete back cover feather using an advanced Hg analyzer spectrophotometer (Altec AMA 254) as described in Bustamante et al. (2006). Hg in little auk back feathers reflect the amount of Hg that has accumulated by birds during the previous breeding season spent in East Greenland (year preceding the sample) (see Fort et al. 2016). Analyses were repeated two or three times (two or three feathers) for each bird until the relative standard deviation was <10%; samples not meeting this criterion were excluded from the analysis. The mean Hg concentrations for those two measurements were then considered for statistical analyses. To ensure the accuracy of measurements, a certified reference material (CRM) was used [Lobster Hepatopancreas Tort-2; NRC, Canada; Hg concentration of 0.27 ± 0.06 mg/g of dry weight (dw)]. The CRM was measured every 10 samples and the average measured value was 0.26 ± 0.01 mg/g dw (n = 113). Additionally, blanks were run at the beginning of each sample set. The detection limit of the method was 0.005 mg/g dw.

6. **Survival analysis**

One plot of the colony was dedicated to a capture-mark-recapture experiment. Birds (n=333) were marked with a unique code composed of 3 colour rings and one metal ring. Each season, recapture sessions lasted 6 days with 7h of continuous observation per day. Data were analyzed using a capture-recapture model with E-SURGE (Choquet et al., 2009b). We first built a structural model without any external covariate. To define the structural model, we first did single state goodness-of-fit (GOF) tests using U-CARE (Choquet et al., 2009a). In order to take into account recapture heterogeneity among marked birds, we used a model with two classes of capture (Pledger et al., 2003) and defined three states: individuals with a high recapture probability, individuals with a low recapture probability and dead individuals. Changes of state between high and low recapture probability were not permitted. Such a structure explained our data better than a model including trap-dependence or allowing changes of recapture probability through time (if, for example, this was linked to breeding status). Biologically, recapture heterogeneity was due to the structure of the colony, where some birds nest in areas where it is more difficult to see them enter and leave their burrows. Such a model with recapture heterogeneity was used for least auklets (Aethia pusilla) that also breed in burrows like little auks (Jones et al., 2002). Models were selected based on Akaike (Akaïke, 1987) Information Criterion (AIC) corrected for sample sizes and overdispersion (QAICc). During first step, we selected the best model with only time and state as explanatory variables. In step two, we included environmental variables (one or two at a time, Grosbois et al. 2008) to the model with the best structure in the first step. Results are presented in table III.4.
7. **Environmental data**

For the summer period, environmental data were calculated within a rectangle of 160x200km surrounding the colony, which included little auk at-sea habitats as determined through GPS tracking (Amélineau et al., 2016b). Monthly sea-surface temperature (SST) came from the Multi-scale Ultra-high resolution (MUR) SST analysis from the NASA (v4.1, global 0.01° resolution, monthly) and were downloaded from the ERDDAP data server (http://coastwatch.pfeg.noaa.gov/erddap/index.html). Monthly wind data came from the Metop/ASCAT data set (0.25° resolution, monthly, starting in 2009) and were downloaded from http://cersat.ifremer.fr/. Daily sea-ice concentration (SIC, percentage of sea surface covered by ice in a given area) were downloaded from the Eumetsat OSI SAF website (Eumetsat, 2011, http://osisaf.met.no/), from the Global Sea Ice Concentration reprocessing dataset (0.25° resolution, daily). For wind and SST data, we used monthly values for July and we calculated the mean annual value for the foraging area defined above. For SIC, we calculated a mean annual value from the daily SIC concentration in the area between 15th July and 15th August (Amélineau et al., 2016b).

Winter location of birds from Ukaleqarteq was known from birds equipped with geolocators (Fort et al., 2012), and we defined the core wintering area of birds as the 50% kernel area of positions between 1st November to 28th February obtained for 94 little auks equipped between 2009 and 2015 (Amélineau et al., submitted). Yearly winter environmental conditions (wind speed, SST) were calculated as a mean value within the core wintering area from November to February from monthly values of the datasets mentioned above. In addition, we calculated the proportion of days with high winds (mean daily wind speed >40 km/h) during the same period, using daily wind speeds from the Metop/ASCAT data set (0.25° resolution). Data for the North Atlantic Oscillation (NAO) were downloaded from https://climatedataguide.ucar.edu/climate-data. We used the winter NAO index (Hovinen et al., 2014b).
D. Results

1. Environmental variables

![Graph showing SIC, SST, and Wind trends over years](image)

Figure III.1: (a) Sea-ice concentration (SIC, solid line), (b) Sea surface temperature (SST, dotted line) and (c) wind speed (dashed line) during summer in the vicinity of the studied colony, from remote sensing data. SIC was negatively correlated with SST ($n=12$, $R^2=0.74$, $p<0.001$, $y = -6.1x + 13.6$) and with wind speed ($n=8$, $R^2=0.57$, $p=0.03$, $y = -1.3x + 42.9$).

Over the period 2004-2015, mean summer SIC varied between 1.8 and 19.8% within the foraging range of little auks (Fig. III.1), allowing us to study the correlation between ice conditions and little auk ecology. SIC was negatively correlated with SST ($n=12$, $R^2=0.74$, $p<0.001$, $y = -6.1x + 13.6$) and with wind speed ($n=8$, $R^2=0.57$, $p=0.03$, $y = -1.3x + 42.9$, Fig. III.1). No temporal trend was found for summer SIC during the study period, however, a decrease in SIC was found in the same area for the period 1979-2014 (Amélineau et al., 2016b).

2. Temporal variations in chick and adult diet

Correlations between prey proportions in chick diet and SIC were weak. Nevertheless, proportion of the ice-associated species *Apherusa glacialis* increased with SIC in chick diet ($n=302$, $R^2=0.03$, $p=0.002$, $y = 0.74x + 4.21$). Further, the proportion of *Calanus glacialis* decreased with SIC ($n=302$, $R^2=0.06$, $p=0.001$, $y = -0.79x + 36.1$), and the proportion of *Calanus finmarchicus* increased with SIC ($n=302$, $R^2=0.04$, $p<0.001$, $y = 0.23x + 4.8$). Also, the proportion of *Calanus hyperboreus* did not correlate with SIC but was negatively correlated with SST ($n=302$, $R^2=0.01$, $y = -3.49x + 44.6$), and the proportion of Hyperiidae decreased with SIC ($n=302$, $R^2=0.01$, $p=0.04$, $y = -0.09x + 3.67$). Other prey species proportions did not correlate with SIC.
The proportion of *Calanus finmarchicus* did not correlate with time (n=302, p>0.1). Prey proportions increased with time in chick diet for Euphausiacea (n=302, R²=0.01, p=0.047, y = -582 + 0.29x), Hyperiidae (n=302, R=0.02, p=0.01, y=-401 +0.20x) and *Limacina helicina* (n=302, R²=0.02, p=0.006, y=-22.8 + 0.01x) whereas the proportion of *C. glacialis* decreased with time (n=302, R²=0.02, p=0.019, y=1578 – 0.77x). Note that these correlations are weak (low R²). Other prey proportions did not correlate with time. Chick diet was less diverse in the absence of sea-ice according to the Shannon index (n=302, R²=0.04, p<0.001, y=331 + 1.6x). The number of species remained unchanged but diets were more homogenous (the same amount of different species in one chick meal, by opposition to one species being abundant in one chick meal when SIC is high) during low SIC years.

Adult diet did not differ with SIC (n=167, p>0.05). However, adult diet changed over time (Fig. III.2, δ¹⁵N: n=167, R²=0.32, p<0.001, y=-138 + 0.07x, δ¹³C: n=167, R²=0.36, p<0.001, y=96.4 -0.06x). Prey were higher in the trophic chain with time, and from a more offshore origin (Hobson, 1992).

![Graph](image)

Figure III.2: Variation of adult summer diet with time from stable isotope analyses performed on blood samples drawn from adult birds during the breeding season. Delta 15N (left panel) increased significantly during the study period, indicating an increase in trophic level. Concomitantly, Delta 13C (right panel) decreased, indicating more coastal foraging habitats.

3. **Foraging behaviour**

Distribution of dive depths for all dives across the study period showed two distinct peaks: one with dives <7m and one with dives between 10 and 40m (Fig. III.3). Further investigations showed a link between diving behaviour and sea-ice concentration (Fig. III.4). Dives were deeper and the proportion of shallow dives (<7m) decreased when there was less ice (Figs III.4A and B). Dives were also longer and birds performed fewer dives per day when SIC decreased (Figs III.4C and D). Birds spent slightly less time underwater and more time flying when SIC was low (Figs. III.4E and F). There was no link between foraging trip duration and SIC (n = 53, R² = 0.004, p>0.1).
Fig. III.4: Dive characteristics in relation with sea-ice concentration. A. Proportion of shallow dives (n = 67, \(R^2 = 0.40, p<0.001, y = 1.68x + 5.74 \)). B. Maximum Depth (n = 67, \(R^2 = 0.26, p<0.001, y = -0.40x + 21.7 \)). C. Dive duration (n = 67, \(R^2 = 0.38, p<0.001, y = -0.91x + 63.0 \)). D. Number of dives per 24h (n = 61, \(R^2 = 0.26, p<0.001, y = 9.6x + 226.8 \)). E. Time underwater (n = 61, \(R^2 = 0.09, p = 0.02, y = 0.31x + 17.0 \)). F. Time spent flying (n = 53, \(R^2 = 0.12, p = 0.01, y = -0.62x + 38.0 \)).

4. **Adult body condition, chick growth and hatching date**

A slight decrease in chick growth rate (mass gained per day) was observed when SIC increased (n=252, \(R^2=0.03, p=0.007, y=-0.037x + 6.79 \)) whereas no trend was observed for adult body condition (n=1779, \(R^2<0.001, p>0.1 \)). Hatching date was positively correlated with SIC (n=303, \(R^2=0.08, p<0.001, y= 16.7+0.15x \)).

Adult body condition decreased with time over the study period (n=1779, \(R^2=0.004, p=0.006, y=405-0.20x \)), and chick growth rate tended to decrease over time (n=252, \(R^2=0.02, p=0.052, y=103 -0.05x \)). Chicks hatched later with time (n= 303, \(R^2=0.11, p<0.001, y=-660 + 0.34x \)).

Adult body condition was negatively correlated with summer wind conditions (n=1078, \(R^2=0.01, p<0.001, y= 6.70 - 1.13x \)). There was no correlation between chick growth rate and summer wind speed (n=152, \(R^2=0.005, p=0.37 \)).

Pectoral muscle thickness was negatively correlated with SIC (n=307, \(R^2=0.123, p<0.001, y=1.12+0.003BCI-0.005x \), with BCI=body condition index), and no trend was found between pectoral muscle thickness and wind or time.
5. **Mercury**

Hg levels in body back feathers increased with time over the study period (n=87, $R^2=0.13$, $p<0.001$, $y=-238.3 +0.12x$). Hg levels measured in birds were thereafter considered as a proxy of Hg levels found in the environment.

Adult body condition of birds for which Hg was measured was not correlated to Hg levels (n= 66, $p>0.05$), neither was chick growth rate (n=176, $p>0.05$). However, chicks hatched later when Hg levels increased (n=166, $R^2=0.31$, $p<0.001$, $y=3.19 + 5.81*\text{Hg} + 0.48*\text{SIC}$).

6. **Survival**

Results of the goodness-of-fit tests are presented in table III.3. Only the 2.CT test was significant, meaning that there is a difference in the probability of being recaptured at $i+1$ for birds seen and not seen at occasion i. We therefore built a model with capture heterogeneity (see methods). The general starting model was $(\varphi(\text{het.}t), p(\text{het.}t))$, with “het” the state given capture heterogeneity (seen with a high probability, seen with a low probability, not seen), and t the time. A summary of the selection model process is presented in table III.4.

Table III.3. Goodness of fit of the full model ($\varphi(\text{het.}t)$, $p(\text{het.}t)$) assessed by U-CARE.

<table>
<thead>
<tr>
<th>Test</th>
<th>df</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.SR</td>
<td>5</td>
<td>9.45</td>
<td>0.092</td>
</tr>
<tr>
<td>3.SM</td>
<td>4</td>
<td>5.36</td>
<td>0.252</td>
</tr>
<tr>
<td>2.CT</td>
<td>8</td>
<td>77.71</td>
<td><0.001</td>
</tr>
<tr>
<td>2.CL</td>
<td>5</td>
<td>5.10</td>
<td>0.404</td>
</tr>
<tr>
<td>Sum</td>
<td>22</td>
<td>97.6</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Survival probabilities for the best model ($\varphi(t)$, $p(\text{het}+t)$) are presented in Fig. III.5. No direct correlation was found between survival and environmental parameters (tested one by one: North-Atlantic Oscillation (current year, previous year and two years before, Hovinen et al. 2014), SST in their wintering area (current and previous year) and in their breeding area, SIC, and wind conditions). Survival probability was lower for two years: 2006-2007 and 2012-2013. More storms occurred during the winter in 2006-2007 at the little auks’ wintering site off Newfoundland, and could explain the lower survival. However the number of stormy days was not higher than usual during the 2012-2013 winter.
Figure III.5: survival probability of adult little auk s with time. Year represent the recapture year (e.g. 2015 for the 2014-2015 survival rate). Dashed lines represent 95\% CI.
Table III.4: Model selection for the survival analysis. \(\varphi \): resighting probability. \(P \): survival probability. \(N_p \): number of parameters. \(\Delta QAIc \): difference between the current model AIC and the smallest AIC. \(QAIc \): \(W \): QAIC weight. \(\text{het} \): heterogeneity of capture (seen with a high probability/seen with a low probability/not seen). \(\text{NAO} \): North Atlantic Oscillation winter index. \(\text{SST} \): sea-surface temperature. \(\text{SST or NAO n-1} = \) the winter of year \(n \)-1. \(\delta^{13}C \) and \(\delta^{15}N \): summer isotopes from blood. Models in bold are considered as the best model (\(\Delta QAIc < 2 \)).

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(p)</th>
<th>(N_p)</th>
<th>(\Delta QAIc)</th>
<th>QAICc (W)</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>het x time</td>
<td>het x time</td>
<td>39</td>
<td>10.97</td>
<td>0.00</td>
<td>1346.21</td>
</tr>
<tr>
<td>final models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>het + time</td>
<td>22</td>
<td>0.00</td>
<td>0.43</td>
<td>1371.41</td>
</tr>
<tr>
<td>het + time</td>
<td>het + time</td>
<td>23</td>
<td>0.12</td>
<td>0.40</td>
<td>1369.44</td>
</tr>
<tr>
<td>STEP 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>models with environmental data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>het x time</td>
<td>het + time</td>
<td>31</td>
<td>2.82</td>
<td>0.10</td>
<td>1355.24</td>
</tr>
<tr>
<td>summer wind</td>
<td>het + time</td>
<td>15</td>
<td>4.61</td>
<td>0.04</td>
<td>1390.56</td>
</tr>
<tr>
<td>time</td>
<td>het</td>
<td>13</td>
<td>7.35</td>
<td>0.01</td>
<td>1397.42</td>
</tr>
<tr>
<td>winter wind</td>
<td>het + time</td>
<td>15</td>
<td>8.27</td>
<td>0.01</td>
<td>1394.22</td>
</tr>
<tr>
<td>winter SST</td>
<td>het + time</td>
<td>14</td>
<td>18.04</td>
<td>0.00</td>
<td>1406.05</td>
</tr>
<tr>
<td>n-1</td>
<td>het + time</td>
<td>15</td>
<td>20.58</td>
<td>0.00</td>
<td>1406.53</td>
</tr>
<tr>
<td>NAO n-1</td>
<td>het + time</td>
<td>14</td>
<td>26.50</td>
<td>0.00</td>
<td>1414.51</td>
</tr>
<tr>
<td>NAO n-1</td>
<td>het + time</td>
<td>14</td>
<td>27.25</td>
<td>0.00</td>
<td>1415.26</td>
</tr>
<tr>
<td>NAO n-1 +</td>
<td>het + time</td>
<td>14</td>
<td>27.70</td>
<td>0.00</td>
<td>1415.72</td>
</tr>
<tr>
<td>NAO n-2</td>
<td>het + time</td>
<td>14</td>
<td>28.26</td>
<td>0.00</td>
<td>1416.27</td>
</tr>
<tr>
<td>NAO</td>
<td>het + time</td>
<td>14</td>
<td>28.40</td>
<td>0.00</td>
<td>1416.41</td>
</tr>
<tr>
<td>winter SST</td>
<td>het + time</td>
<td>14</td>
<td>28.53</td>
<td>0.00</td>
<td>1416.55</td>
</tr>
<tr>
<td>summer body</td>
<td>het + time</td>
<td>14</td>
<td>28.68</td>
<td>0.00</td>
<td>1416.70</td>
</tr>
<tr>
<td>condition</td>
<td>het + time</td>
<td>14</td>
<td>28.81</td>
<td>0.00</td>
<td>1416.83</td>
</tr>
<tr>
<td>NAO + SST n-1</td>
<td>het + time</td>
<td>14</td>
<td>28.82</td>
<td>0.00</td>
<td>1416.83</td>
</tr>
<tr>
<td>winter SST</td>
<td>het + time</td>
<td>14</td>
<td>29.91</td>
<td>0.00</td>
<td>1417.92</td>
</tr>
<tr>
<td>SST n-1</td>
<td>het + time</td>
<td>14</td>
<td>33.74</td>
<td>0.00</td>
<td>1421.76</td>
</tr>
<tr>
<td>NAO + NAO n-1</td>
<td>het + time</td>
<td>14</td>
<td>33.81</td>
<td>0.00</td>
<td>1421.82</td>
</tr>
<tr>
<td>winter SST</td>
<td>het + time</td>
<td>14</td>
<td>363.62</td>
<td>0.00</td>
<td>1753.68</td>
</tr>
<tr>
<td>SST (\delta^{15})N</td>
<td>het + time</td>
<td>13</td>
<td>366.85</td>
<td>0.00</td>
<td>1756.91</td>
</tr>
<tr>
<td>summer</td>
<td>het + time</td>
<td>14</td>
<td>366.98</td>
<td>0.00</td>
<td>1757.05</td>
</tr>
<tr>
<td>(\delta^{13})C</td>
<td>het + time</td>
<td>13</td>
<td>367.76</td>
<td>0.00</td>
<td>1757.83</td>
</tr>
</tbody>
</table>
E. Discussion

Using a unique dataset of biological parameters from a 12-year long-term monitoring program in East Greenland, we found that little auks are impacted by current environmental changes occurring in the Arctic. (1) As expected, the proportion of ice-associated species in chick diet was linked to SIC, but the proportion of *Calanus finmarchicus* (copepod of Atlantic origin) did not increase with time in the diet. (2) Despite substantial plasticity in foraging behaviour and diet, adult body condition declined significantly, and chick growth rate tended to decline with time. (3) Summer levels of mercury increased in adult blood and feathers, yet no link was found between adult body condition and mercury levels. When Hg levels were high in the environment, the timing of breeding was delayed. (4) Despite these changes, adult survival did not correlate with environmental variables.

Importantly, adult body condition, and not only chick growth, was impacted, suggesting significant long term fitness consequences for this long-living species (Stearns, 1992). Our results therefore go beyond previous studies on little auks, performed over shorter time periods, which indicated that little auks efficiently buffered climate change, with no apparent fitness cost (Grémillet et al., 2012; Hovinen et al., 2014c; Amélineau et al., 2016b; Jakubas et al., 2016a).

1. **No simple link between environmental changes and biological parameters**

Our results show a deterioration of little auk fitness indices in East Greenland over time. However, despite the numerous covariates tested and the range of biological parameters monitored, we found no clear relationship between environmental conditions and little auk biology – except between SIC and foraging behaviour (see below and figure III.4). We possibly missed important environmental factors due to the inability to get appropriate data. For instance, we know that the timing of breeding in little auks is linked to the timing of snow melt in spring, which determines nest accessibility (Moe et al., 2009). Spring snow melt can be approximated by spring temperature, but we did not have access to these data at our study site. Concerning survival data, we could not take into account oil spills (Votier et al., 2005), although it is known that little auks are highly impacted during winter, with an estimation of up to 300,000 guillemots and little auks killed each winter by oiling between 1998 and 2001 off Newfoundland, number decreasing to 22,000 birds for 2011-2012 (Robertson et al., 2014).

Moreover, little auks are in contact with a cocktail of pollutants reaching the Arctic via the atmosphere or the ocean. We focused on Hg, which is known to bioaccumulate in polar regions and cause additional stress to birds (Wolfe et al., 1998), but other pollutants may as well impact little auks, such as PCBs or flame retardants (Braune et al., 2005; Vorkamp et al., 2015). Hg concentration during summer increased in adult little auks, and this could be linked to (1) an increase in prey Hg concentration over time (Fort et al., 2016) and (2) to changes in diet towards prey that are higher in the food chain (higher bioaccumulation), as reflected by the increase in δ^{15}N in adult blood (Fig. III.2A). No link was found between Hg concentration and adult body condition, but Hg concentration was correlated to the timing of breeding, with
a delayed timing when concentrations were high. We cannot infer causal links from our observations, however other studies performed on Arctic seabirds found that Hg levels could trigger the decision to breed or to skip reproduction (Tartu et al., 2013), and it is thus likely that current Hg contamination could influence little auk laying dates.

More generally, we only performed simple and independent regression models to test the effects of one or two environmental covariates at a time for each biological parameter studied. However, these covariates are likely interacting and lead to complex biological reactions that were not tested here. For example, Hg contamination in the Arctic is modified with global change, via reorganizations of the food chain or changes in transport patterns and subsequent depositions (Stern et al., 2012). In our study, it would be interesting to use more complex models to test for possible interactions between covariates. However, the use of too many covariates can lead to overfitting (Grosbois et al., 2008), and there is the risk that too many variables are correlated (cf figure III.1). In this case, one can recommend the use of principal component analysis, but it makes the interpretation of results difficult. Alternatively it is possible to use large-scale teleconnection indices such as the North Atlantic Oscillation (NAO) index, but again, this approach does not allow understanding which environmental factor is of particular importance for a given effect, and is not of particular interest to disentangle the underlying mechanisms. We therefore limited our analyses to simple correlations and targeted specific questions, instead of testing all possible interactions, which could increase the risk of type I error (Grosbois et al., 2008).

2. Foraging behaviour as a buffer to climate change?

Among all biological parameters investigated, foraging behaviour was the most variable. While little auks foraged in the same areas with or without sea-ice (Amélineau et al., 2016b), we found that diving behaviour was highly correlated to SIC: birds performed deeper and longer dives when SIC decreased (Fig. III.4). In addition, pectoral muscle thickness increased when SIC decreased, suggesting that it was more costly for birds to dive deeper in terms of body maintenance. This result probably reflected dives performed directly under the ice when present, to feed on sympagic species such as Apherusa glacialis, and indeed proportion of this species was increasing with SIC in chick diet. However, the direct link between the type of prey caught and dive characteristics is missing to further investigate the link between foraging depth and diet (Woo et al., 2008; Watanabe & Takahashi, 2013).

Changes in little auk diet are reflecting both little auk preferences and prey availability in the environment. Recent studies suggest that little auks favour larger and fattier species (Karnovsky et al., 2010; Amélineau et al., 2016b) and therefore observed changes in prey proportions are likely to reflect the availability of larger prey species in the foraging range of birds. Proportions of their main prey, Calanus spp, did not vary as expected (i.e. that smaller Calanus finmarchicus would be present in “warm” conditions (high SST, low SIC), and bigger C. glacialis and C. hyperboreus in “cold” conditions (low SST, high SIC), Reygondain and Beaugrand, 2011). C. finmarchicus proportions increased and C. glacialis decreased with SIC, and no change was observed for C. hyperboreus. Underlying mechanisms driving zooplankton abundance at a given place are complex and do not depend solely on local
summer SIC/SST (Carstensen et al., 2012). Interestingly, despite no clear pattern in chick diet, adult diet shifted to a higher trophic level and more offshore prey during the study period (Fig. III.2). Such stable isotope analyses are particularly integrative and could therefore reflect fine changes occurring on the long term among the zooplankton community. More generally, little auks seem able to cope with different prey species in their environment (Pedersen & Falk, 2001; Karnovsky et al., 2010; Rosing-Asvid et al., 2013). Although this diet is restricted to zooplankton species, such a generalist pattern is likely to make them less sensitive to environmental changes and perturbations than specialist species (Smart et al., 2006; Clavel et al., 2011).

Finally, we have been considering a large series of parameters and response variables individually, but to gain a complete understanding of the impacts of global changes on little auks during the breeding season, a synthetic vision is still lacking. Such a synthesis may be provided through an energetics approach. For example, the observed increase in diving effort and body maintenance costs with decreasing SIC rises important questions about the foraging efficiency of little auks in the context of a disappearance of summer sea-ice (Jakubas et al., 2012, 2013; Amélineau et al., 2016b). Moreover, deeper dives are probably more costly as little auks never reach neutral buoyancy during dives (RP Wilson, unpubl. data) and longer descent and ascent times increase foraging duration. The use of accelerometers or doubly labeled water to measure energy expenditure could allow testing this hypothesis (Fort et al., 2011). Such an energetic approach could also help understanding the effects of wind on foraging birds. Indeed, we found a negative effect of wind on adult body condition, probably mediated via a direct increase in energy expenditure for flight when wind increase (Gabrielsen et al., 1991).

Acknowledgements

This study was funded by the French Polar Institute (grant 388 to DG and JF) and the European Commission (Marie Curie IEF to JF, Project 273061). We thank all the field assistants for their great work, Delphine Bonnet and Rumsais Blatrix for their help/technical assistance for the zooplankton identification, Francis Crenner who kindly provided 4 LULs.
IV. Chapitre IV : Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change

Photo: Valère Marsaudon
Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change

Françoise Amélineau, Jérôme Fort, Paul Mathewson, Douglas C Speirs, Nicolas Courbin, Samuel Perret, Warren P Porter, Robert J Wilson, David Grémillet

A. Abstract

Aim: There is an urgent need for a better understanding of animal migratory ecology under the influence of climate change. Most current approaches require long-term monitoring of populations on the move, and shorter-term ecological tools are needed. Here, we analyse the ecological drivers of seabird migration in the context of climate change, within the framework of the energyscape concept, which we define as the spatial distribution of immediate energy requirements of an animal at one specific moment in time.

Location: North Atlantic basin

Methods: We confronted the winter location of seabirds with their modelled energy requirements and prey fields through the North Atlantic. Our model species was the little auk (Alle alle), a key sentinel Arctic species. We studied an East Greenland population that migrates off Newfoundland, towards a major wintering hotspot for the North Atlantic seabird community. We used geolocators to determine the wintering locations of 94 birds for six winters (2009-2015). Little auk winter energyscapes were then modelled with Niche Mapper™, a mechanistic tool which takes into account local climate and bird ecophysiology. Subsequently, we used a resource selection function to explain seabird distributions through modelled energyscapes and winter surface distribution of one their main prey, Calanus finmarchicus. Finally, future energyscapes were calculated according to IPCC climate change scenarios.

Results: Little auk large-scale distribution during winter is driven by both energyscapes and prey distributions, with birds targeting areas where their energetic requirements are moderate, and prey densities are high. Predicted little auk energyscapes for 2050 and 2095 showed a decrease in winter energy requirements at their current wintering grounds, which could be beneficial if prey abundance is maintained.

Main conclusions: Overall, our study demonstrates the great potential of energyscapes as a tool for the study of animal spatial ecology under global change.

Keywords: Alle alle; bioenergetics; biologging; dovekie; habitat modelling; little auk; migration; spatial ecology
B. Introduction

Theoretical and empirical studies have demonstrated that migration evolves to maximize fitness in a seasonal environment (Alerstam et al., 2003). Migratory animals thereby track the most profitable areas (Newton, 2010), balancing their energy requirements with available resources, within ever-changing ecological landscapes. Such complex spatio-temporal match/mismatch of migratory species with their biotic and abiotic environments shape migratory dynamics and the fate of populations on the move (Newton, 2010). Migrating animals are thus particularly vulnerable to climate change and resulting environmental modifications (Robinson et al., 2009; Newton, 2010; van Gils et al., 2016). Most long-distance migrants breed at high latitudes, where climatic changes have the strongest amplitude and seasonally travel to more favourable wintering grounds (IPCC, 2013; Meltofle et al., 2013). Overall, this puts a strong emphasis on the migratory ecology of birds in a warming Arctic (Ward et al., 2016).

Bird sensitivity to climate change has been mainly studied during the breeding season. In particular, drastic changes in phenology have been noticed worldwide, triggered by shorter winters in polar and temperate regions (Parmesan, 2006; Høye et al., 2007; Ward et al., 2016). Such phenological changes, that differ between species, can lead to a mismatch between food availability and demands for reproduction with strong impacts on breeding success, particularly for migrating species (Parmesan, 2006; Robinson et al., 2009). However, the impacts of climatic changes during winter have been the focus of fewer studies (e.g. Louzao et al., 2015; van Gils et al., 2016), probably because it is far more challenging to monitor individuals outside the breeding season (Newton, 2010).

A prerequisite to understanding how animal wintering is affected by climate change is to quantify the ecological benefits of seasonal habitat choice. For this purpose, it is essential to define and utilize ecological metrics that will allow researchers to rate and compare the profitability of wintering areas. According to evolutionary theory, these fitness proxies should show functional relationships with the capacity of each individual to survive and reproduce (Alves et al., 2013). Indeed, a series of studies have identified the impact of wintering conditions on adult survival probabilities (e.g. Sandvik et al., 2005; Reiertsen et al., 2014), while others have identified significant carry-over effects of such conditions on survival and reproduction in subsequent months (Bogdanova et al., 2011), or even years (O’Connor et al., 2014).

Despite the great success and the necessity of such studies, they require long-term population monitoring and individual phenotyping, which are both extremely time-consuming and costly, particularly for long-lived species, like many migratory birds. Animal energetics offer a powerful, short-term alternative (Thomas et al., 2001). In particular, within the rapidly emerging field of movement ecology (Patterson et al., 2008), the concept of energy landscapes (hereafter ‘energyscapes’) seems extremely relevant and attractive for studies of avian migration. Specifically, Wilson, Shepard and coworkers defined energyscapes as “environmentally dependent variation in the cost of transport, driven by variation in parameters such as incline, substrate type, vegetation, current speed, or direction” (Wilson et
al., 2012; Shepard et al., 2013). Here, we broaden the concept of energyscape and define it as the spatial distribution of the energy requirements of an individual at a given point within a landscape, for one specific moment in time.

Wild birds notably migrate at the scale of continents, ocean basins, and sometimes the entire globe (Egevang et al., 2010). Hence, determining the immediate energy requirements of a remotely wintering animal seems technically almost impossible. However, the recent development of mechanistic energetic models allows such costs to be estimated for any animal at any location around the globe (Fort et al., 2009, 2012; Kearney & Porter, 2009; Deville et al., 2014). This methodology, which in birds compares well with the accuracy of empirical measurements (Fort et al., 2011; Fitzpatrick et al., 2015), provides a unique opportunity to develop and expand the concept of energyscapes for the study of animal migration.

To evaluate the potential of this approach, we determined energyscapes for an arctic migrant, the little auk (Alle alle), and used them to test hypotheses related to wintering ecology in a climate change context. We focused on little auks because they are the most numerous seabird of the Arctic (with an overall population estimated between 40-80 million individuals). They are key components of Arctic marine food webs. Their winter migration across the North Atlantic has only recently been depicted through the use of miniaturized electronic geolocators (Fort et al., 2012). Because the little auk is the smallest of all seabirds in the Atlantic Arctic, with a body mass of 150g, its morphology makes it a particularly attractive model for the study of avian energetics in a migratory and wintering context. Indeed, its mass-specific resting metabolic rate is approximately seven times that of Emperor penguins (Aptenodytes forsteri) (Ellis & Gabrielsen, 2002), and therefore energetic constraints acting upon little auk winter migratory decisions are predicted to be drastic. Finally, little auks feed on zooplankton, especially Calanoid copepods, which show a strong response to the climate-induced increase of North Atlantic surface water temperatures (Beaupre et al., 2009). It is therefore an excellent model species for the study and forecast of the marine ecological consequences of rapid warming in the North Atlantic.

We took advantage of a large data set on little auk migratory movements in the North Atlantic. This information was collected over 6 years using geolocators for a little auk population which breeds in East Greenland and predominantly overwinters off Newfoundland. Once the location of this wintering hotspot had been identified, we used the mechanistic model Niche Mapper™ and remote-sensing information to assess the energyscapes of birds within the North Atlantic. Via resource selection functions, little auk spatial distribution was then compared with the modelled energyscapes and abundance of zooplankton prey, to characterize the energetic strategy of wintering little auks. Finally, using climate forecasting models, we modelled the future energyscapes of little auks in their wintering region, to assess the potential impacts of forthcoming North Atlantic climate warming. As air temperature is predicted to be the main driver of little auk energy expenditure during winter (Fort et al., 2009), we expected that little auk energy demands would consequently decrease due to this warming.

89
We tested the hypotheses that (1) little auks optimize the position of their wintering location, so as to minimize their winter daily energy requirements, and maximize their use of zooplankton distribution; and (2) climate change will significantly decrease little auk energy requirements in their current wintering location.

C. Materials and methods

1. Seabird winter geolocation

Fieldwork took place at Ukaleqarteq (Kap Höegh, Liverpool Land, 70°44’ N, 21°35’ W), East Greenland. Breeding adults were equipped with light-level archival tags (GLS) each summer from 2009 to 2014 and recaptured the following years. All GLSs weighed between 0.8 and 1.5 g (0.6 to 1.1 % of the lowest equipped bird weight). GLS types, technical characteristics and deployment/recapture details are available in Appendix IV.S1 in Supporting Information. In total 244 GLSs were deployed, 102 were retrieved and 94 data files were exploitable. Birds were captured either in their underground nests or with a lasso placed on the rocks surrounding their nests. They were weighed and fitted with a metal ring on which a GLS was attached using a cable tie. Previous investigations showed that GLS deployments had no impacts on little auk body condition (Fort et al., 2012).

GLS data were analysed with British Antarctic Survey softwares (TransEdit and Locator) for BAS and Biotrack devices, and with Intiproc® for Migrate technology devices. In both cases, the light intensity threshold was set to 10 lux, and the sun elevation angle to -3°. Two positions per day were obtained for each bird, one at local noon and one at local midnight. Points on land and outside the study area (70°W-15°E, 30°N-80°N) were removed.

2. Modelling seabird energyscapes

To model seabird energy requirements, we used the mechanistic model Niche Mapper™, which evaluates the daily energy expenditure of an individual using the biophysical properties of seabird bodies exposed to specific microclimatic conditions (see Fort et al. 2009, 2010a for details). Niche Mapper consists of two submodels: a microclimate model and an animal model. The microclimate model uses macroclimate data (sea surface temperature (SST), air temperature, cloud cover, relative humidity and wind speed), substrate properties, geographic location, and time of year to calculate hourly environmental conditions at the animal’s height (See Fuentes & Porter (2013) for more details on the microclimate model calculations). The animal model uses the outputs from the microclimate model to iteratively solve a heat balance equation to find the metabolic rate needed for the animal to maintain its body temperature, accounting for convective, radiative, evaporative and solar heat fluxes with its microenvironment (see supplemental materials from Mathewson & Porter (2013) for details on the heat balance calculations). Little auks were modelled as a series of simple shapes that have well-understood heat transfer properties that enable surface temperature calculations – and thus heat flux calculations – given a certain core temperature to maintain: two ellipsoids for the head and torso and two cylinders for the featherless parts of the legs. For time not spent diving or flying, little auks were modelled as floating on the ocean
surface with legs and 25% of torso submerged in the water (Appendix IV.S2). Auks were modelled as diving 24% of each day and flying 9% of each day (Appendix IV.S2). All other model input values are detailed in Appendix IV.S2. Monthly average environmental input data were downloaded from the International Comprehensive Ocean-Atmosphere Data Set (http://icoads.noaa.gov/, observed data, 1°x1° resolution). The model was run to predict little auk daily energy expenditure during the winter months (November, December, January and February) between 30°N to 80°N and 70°W to 15°E with a 1°x1° grid size. A sensitivity analysis was performed to identify input variables which had the strongest influence upon modelled energy expenditure (Appendix IV.S3).

3. **Zooplankton winter abundance**

We used the distribution and abundance of the copepod *Calanus finmarchicus*, one of little auk main prey, as a proxy for little auk prey availability (Karnovsky et al., 2010; Fort et al., 2012). Since temporally continuous observational data on *C. finmarchicus* are not available on the spatial scale required for our study, we used abundance estimates obtained from the ocean-scale population model of Speirs et al. (2006). This is an implicitly spatial model (at 0.5°x0.25° grid size) where at each discrete location the population is divided into surface (0-100m depth) individuals and a deep diapausing individuals. The surface population is further divided into discrete development classes that map on to the naupliar and copepodite stages. Development rate and egg production depend on the local temperature and food availability. A proportion of individuals entering the pre-adult (CV) copepodite stage join the diapausing population and emerge as surface adults (CVI) in the spring. Temperature and spatial transport for the model was determined using outputs from the OCCAM (Ocean Circulation and Climate Modelling) ocean circulation model, while phytoplankton food was estimated from SeaWIFS satellite observations. Model outputs have been successfully compared with field data from the continuous plankton recorder, in situ winter distributions of diapausers, and, at some locations, copepod time series. A full formal description of the approach is given in Speirs et al. (2006). The spatial extent of the model encompasses our entire study area, as defined in the previous section, and we used the modelled abundances of the surface CV and CVI copepodite stages as our proxy for little auk prey.

4. **Habitat selection of little auk**

We determined how little auks balanced the cost of their daily energy requirements with the benefits of searching for *C. finmarchicus* for each winter month (November to February). We used resource selection functions (RSF, Manly et al., 2002) that assessed whether a given habitat feature is used disproportionately relative to availability (i.e. selection or avoidance). RSFs compared the daily energy requirements of little auks and the density of *C. finmarchicus* at GLS locations with those expected at an equal set of random locations generated within the 95% kernel density of observed locations for each month (Fig. IV.1). RSFs were fitted using generalized linear mixed models (GLMMs) with a binomial distribution for errors and a logit link. We added individual ID as a random intercept that accounted for unbalanced sampling design among individuals (Gillies et al., 2006). We assessed empirical standard errors that are robust to both among- and within-individual
correlations (i.e., serial correlation) and that provide robust estimates of significance (Koper & Manseau, 2009). The RSF took the form

\[w(x_{ij}) = \exp(\beta_0 + \beta_1 x_{ij} + \beta_2 x_{2ij} + \ldots + \beta_k x_{nij} + y_{ij}) \]

where \(w(x_{ij}) \) is the relative probability of selection for little auk, \(x \) is a vector, \(\beta_0 \) is the mean intercept, \(\beta \) is the estimated fixed regression coefficient for continuous covariate \(x \), \(i \) represents the \(i^{th} \) observation, \(j \) represents the \(j^{th} \) individual, and \(g_{ij} \) is the random effect on the intercept \(\beta_i \) for animal \(j \). We included the squared energy requirements and the squared density of \textit{C. finmarchicus} to allow for quadratic effects, and an interaction term between prey density and energy requirements. Both the daily energy requirements and density of \textit{C. finmarchicus} were centered to avoid collinearity issue and multicollinearity was low in all RSFs (variance inflation factors \(\leq 6.6 \) in all models, Dormann et al., 2013). We assessed model robustness using \(k \)-fold cross validation (Boyce et al., 2002). RSFs were performed with the GLIMMIX procedure of SAS 9.2 software (SAS Inst.).

5. **Energyscape projections**

We investigated changes in energy requirements within the core wintering area of little auks in 2010, 2050 and 2095, using climatic projections based on two IPCC scenarios: one reflecting a low greenhouse gas concentration trajectory (Representative Concentration Pathway, RCP 2.6) and one reflecting a high concentration trajectory (RCP 8.5). Based on model comparisons by Han et al. (2015) for our studied area, we chose the Canadian Earth System Model version 2 (CanESM2), which reproduced the best observed climatic trends off Newfoundland. Climatic predictions were downloaded from http://www.cccma.ec.gc.ca/data/cgcm4/index.shtml. In order to avoid potential bias due to year-to-year variations in the climatic projections, we calculated decadal averages for all environmental variables, centered in 2010, 2050 and 2095. As Niche Mapper™ requires a minimum and a maximum value for each input variable, and only mean values were available from CanESM2, we calculated min/max from the observed amplitude within the same variables from ICOADS data. Niche Mapper™ was run for each 10-year average (2010, 2050 and 2095) using both scenarios (RCP 2.6 and 8.5). Then, for each month and each run, we calculated the mean daily energy expenditure of little auks within their core wintering area, defined as the 50% kernel density contour of the positions from November 1 to February 28 (Fig. IV.4, core wintering area presented in the top-left panel of Fig. IV.1).
D. Results

Fig. IV.1: Little auk winter distribution (number of individuals per 1°x1° cell, green), little auk energyscape (kJ.day⁻¹, red), little auk prey distribution (log₁₀ density (m⁻²)) and relative probability of habitat selection by little auks for each month in the North Atlantic (brown). Monthly 95% kernel contours of little auk positions are presented in red. The position of the colony (red plus symbol) and the 50% kernel of winter positions (green) are presented in the top-left panel. White areas represent an absence of data.

1. Little auk winter distribution and timing of migration

Figure IV.1 presents the density of bird positions per 1° x 1° cell for each winter month. On Fig. IV.2, bird positions were summed by longitude and latitude for each non-breeding month. Over the study period (2009-2015), GLS recordings showed that little auks migrated to their wintering grounds in October (Fig. IV.2). Birds wintered off Newfoundland,
between 40°N and 55°N and 35°W and 55°W, at nearly 3,000km from their colony. They remained within this area until February, and migrated towards their breeding grounds in March (Fig. IV.2). Importantly, we found a clear overlap between little auk distribution and peaks of *C. finmarchicus* abundance over the winter months. Hence, the timing of migration closely matched the narrowing (October) and broadening (March) of the *C. finmarchicus* distribution in the North Atlantic.

2. **Little auk energyscape**

The sensitivity analysis revealed that little auk daily energy requirements are mainly driven by sea surface temperature (SST) and air temperatures (Appendix IV.S3). Little auk daily energy requirements in the North Atlantic followed a latitudinal gradient, with higher energy expenditures at higher latitudes all year round (Fig. IV.1 and IV.2b). During winter, daily energy expenditure was highest around Newfoundland, within the cold Labrador Current, and increased gradually from December to March. This peak of seabird energyscape overlapped with the highest predicted densities of *C. finmarchicus*, especially in January and February, where the prey spatial distributions were less widespread (Fig. IV.1). Consequently, in January and February, the little auk distribution became slightly uncoupled from the prey distributions, birds remaining in areas with lower energy requirements in the south-east of prey distribution (Fig. IV.1 and IV.2b).

3. **Little auk habitat selection**

All RSFs were robust to k-fold cross validation and had a high power to predict spatial distribution of little auk (Table IV.1). From November to January, little auks had a higher likelihood of selecting areas with high *C. finmarchicus* densities and low levels of daily energy requirements (Fig. IV.3a, b and c). In December, little auks were more likely to occur where their energy requirements were around 260 kJ/day⁻¹. In November and January, they experienced increased daily energy requirements, around 340 kJ/day⁻¹. As the daily energy requirements progressively increased, and the prey spatial distribution strongly overlapped high energyscapes around Newfoundland in January and February (Fig. IV.1 and IV.2), little auk made a trade-off between the benefit of food resource and the cost of energy expenditure. In January, little auk also selected in a lesser extent areas with low density of *C. finmarchicus* (Fig. IV.3c). The trade-off was still stronger in February, little auks being more likely to select areas with high daily energy requirements (Fig. IV.1, IV.2 and IV.3d).

4. **Predictions**

Overall, an increase in sea surface temperatures and a resulting decrease in energy requirements with time were found within the little auk current core wintering area (Fig. IV.4). This trend was stronger for January and February, both months being characterized by the highest energetic requirements. The decrease in energy requirements was also stronger for the high emission scenario (RCP 8.5) than for the low emission scenario (RCP 2.6) for all studied months.
Fig. IV.2: Number of little auk GLS positions (black), mean Calanus finmarchicus density in log_{10} density/m² (red, dashed line) and little auk mean daily energy requirements in kJ/day (blue, dotted line) per longitude (a) and latitude (b) and per month. The numbers of positions are low in August and May because most of the birds are already above the polar circle and permanent daylight does not allow positioning using GLS recorders. Similarly, bird position is not indicated during the summer (June and July), but their position was known as they were breeding at our study site in East Greenland.
Table IV.1: Generalized linear mixed effect models for habitat selection of little auk (n=94), with parameter estimates (β) and their 95% confidence interval (CI) for each winter month. Calanus finmarchicus density (Cfin, log10 density m⁻²) and energy requirements (ER) were centered. 95% CI exclude 0 at α<0.05 (*), <0.01 (**), <0.001 (***)..

<table>
<thead>
<tr>
<th></th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.073 ± 0.088</td>
<td>0.31 ± 0.077***</td>
<td>0.32 ± 0.11**</td>
<td>0.36 ± 0.11**</td>
</tr>
<tr>
<td>Cfin</td>
<td>0.19 ± 0.031***</td>
<td>0.20 ± 0.030***</td>
<td>0.081 ± 0.029**</td>
<td>0.10 ± 0.046*</td>
</tr>
<tr>
<td>Cfin²</td>
<td>-5.8x10⁻³ ± 1.8x10⁻³ **</td>
<td>-7.7x10⁻³ ± 2.1x10⁻³ ***</td>
<td>-5.3x10⁻³ ± 1.4x10⁻³ ***</td>
<td>-5.7x10⁻³ ± 2.3x10⁻³ *</td>
</tr>
<tr>
<td>ERc</td>
<td>0.017 ± 7.5x10⁻³ *</td>
<td>-4.3x10⁻³ ± 6.1x10⁻³</td>
<td>3.0x10⁻³ ± 4.2x10⁻³</td>
<td>0.016 ± 3.9x10⁻³ ***</td>
</tr>
<tr>
<td>ERc²</td>
<td>-2.0x10⁻³ ± 8.7x10⁻⁵ *</td>
<td>-4.0x10⁻⁵ ± 4.1x10⁻⁵</td>
<td>-7.0x10⁻⁵ ± 4.3x10⁻⁵</td>
<td>-9.0x10⁻⁵ ± 3.3x10⁻⁵ **</td>
</tr>
<tr>
<td>Cfin*ERc</td>
<td>-2.0x10⁻⁴ ± 1.4x10⁻³</td>
<td>-1.8x10⁻⁴ ± 6.4x10⁻⁴ **</td>
<td>-1.1x10⁻⁴ ± 2.6x10⁻⁴</td>
<td>-1.0x10⁻³ ± 2.7x10⁻³ ***</td>
</tr>
<tr>
<td>k-Fold (r₁)</td>
<td>0.93 ± 0.039</td>
<td>0.87 ± 0.058</td>
<td>0.90 ± 0.046</td>
<td>0.91 ± 0.041</td>
</tr>
</tbody>
</table>
Fig. IV.3: Relative probability of selection for little auk as a function of their daily energy requirements, and C. finmarchicus density modelled for each during the wintering period. Little auk daily energy requirements are only represented in the range of observed values for each month.

E. Discussion

Based on our detailed analysis of little auk wintering energyscapes and prey fields in a climate change context, we accept our first hypothesis and demonstrate, thanks to a resource selection function, that little auks tune their winter spatial ecology so as to optimize their energyscapes relative to prey fields. We also validate our second hypothesis, that forthcoming climate warming will substantially modify energyscapes for little auks wintering off Newfoundland. Furthermore, our study demonstrates the relevance of the emerging energyscape concept as a methodological framework for the study of animal migration ecology and evolution in the context of global change. Nevertheless, our results also strongly call for the inclusion of prey fields, and of their energetic profitability, in forthcoming energyscape studies.

1. Seabird wintering in the North West Atlantic

In this study, we took advantage of existing, detailed knowledge of Calanoid copepod distribution and habitat models in the North Atlantic (Speirs et al., 2006; Reygondeau & Beaugrand, 2011). While the winter diet of little auks is still a matter of debate, we considered that C. finmarchicus density and distribution was a good proxy for overall little auk prey availability, as they fed either on those prey, or on species from the next trophic level, such as amphipods and krill when they winter off Newfoundland (Fort et al., 2010a, 2010b; Rosing-Asvid et al., 2013). Interestingly, little auk timing of migration correlated closely with C. finmarchicus range restriction in autumn, and range expansion in spring (Fig. IV.2). This observation also strongly suggests a tight link between little auks and C. finmarchicus off Newfoundland in winter.
Fig. IV.4: Projected mean sea-surface temperature (SST, top) between 2010 and 2100, and 10-year average little auk energetic requirements in 2010, 2050 and 2095 (bottom) for two emission scenarios. Both SST and energetic requirements are calculated for little auk core wintering area, defined as the 50% kernel density contour of the GLS positions obtained each year (2009-2015) from November 1 to February 28 (represented in top-left panel of Fig. IV.1). Low emission = RCP 2.6, black, dashed line. High emission = RCP 8.5, red.

Surprisingly, little auks did not winter in areas where their energyscape was the most favourable, i.e. the East Atlantic (Fig. IV.1). In fact, they were constrained because highly productive areas were also located where their energy requirements are higher, within and around the cold Labrador Current off Newfoundland (Figs IV.1 and IV.2). Within this area, they fine-tuned their spatial distribution in respect to the energyscape, targeting the south-eastern range of C. finmarchicus during winter, where prey items were still abundant and bird energyscapes were more advantageous (Fig. IV.1 and IV.2). The energetic expenditures were the most limiting factor, underlying the little auk spatial distribution within their wintering
area, and little auk must balance the benefit of *C. finmarchicus* acquisition with the cost of their daily energetic requirements, especially at the end of the winter. A second wintering strategy was also observed: according to the resource selection function, there was a medium (January) and high (February) probability of little auk occurrence with medium energy requirements when there was little or no *C. finmarchicus* (Fig. IV.3c and d), which suggests that some of the little auks from East Greenland could rely on different prey/food web at the end of winter.

Little auk wintering areas are also crucial for many other seabird species. Indeed, the North West Atlantic is a major wintering hotspot for seabirds from various breeding grounds (Frederiksen et al., 2012, 2016; McFarlane Tranquilla et al., 2013), and even for birds from the southern hemisphere during the boreal summer (Hedde et al., 2012). It is also a migration stopover for some long-distance migrants (Egevang et al., 2010; Gilg et al., 2013), and South West Greenland itself hosts seabirds from the whole Arctic (Boertmann et al., 2004). Therefore, the energyscape concept illustrated here, as well as associated analytical tools, will also be of great use for the general ecological understanding of the evolution of aquatic bird migration in the North Atlantic, in a global change context.

2. **Wintering strategies under forecasted climate change**

According to our energyscape predictions based on two different IPCC scenarios, little auk energy requirements should decrease during the 21st century within their current wintering areas (Fig. IV.4). This could be beneficial for them as well as for other wintering seabirds. However, in order to anticipate the future distributions of wintering migrants, it is also necessary to know how their prey will react to ongoing environmental changes, and two scenarios can be considered: (1) if prey biomass remains constant, winter visitors could stay in their current wintering areas, especially if those become energetically more profitable, due to climate warming. However (2) if prey abundance decreases in this area, they may have to move to follow their current prey distribution and/or target different prey species. It is therefore crucial to understand whether little auk wintering areas off Newfoundland will remain highly productive during winter, thereby supporting scenario (1), or if changes in ocean circulation may modify primary productivity and associated food webs. Higher temperatures are known to favour smaller zooplankton species (Daufresne et al., 2009; Garzke et al., 2014). Therefore, prey biomass has to be maintained to sustain the rest of the food web, including migratory bird populations. Yet, over the past 40 years, a decrease in total zooplankton biomass has been observed in the North East Atlantic (Pitois & Fox, 2006) and the same phenomenon is predicted to occur in the North West Atlantic.

Thanks to the continuous plankton recorder survey (Reid et al., 2003), the spatio-temporal evolution of zooplankton species has been well studied in the North Atlantic during the last 50 years. A northward shift in zooplankton assemblages and in the copepod *Calanus finmarchicus* has been demonstrated for the North East Atlantic (Reygondeau & Beaugrand, 2011; Chust et al., 2014) as well as for the North West Atlantic (Wilson et al., 2015), whereas no changes have been found so far for the Arctic species *C. glacialis* and *C. hyperboreus* that form an important food link at higher latitudes (Chust et al., 2014). The authors speculate that
this may be due to the southward penetration of water from the Labrador current into the North West Atlantic (Chust et al., 2014). These studies suggest that seabird visitors may have to move northwards to target their preferred prey during winter. Moreover, seabirds (including little auks) that winter at higher latitudes in the Labrador Sea rely on different prey communities. Indeed, energy requirements are higher further north (Fort et al., 2009), but prey of these areas are richer in lipids (Pedersen & Falk, 2001). In particular, copepods from colder waters are bigger and richer in lipids (Wilson et al., 2015). Changes in winter distribution will be facilitated in species that show a low individual consistency in their wintering areas. While seabirds were until recently seen as highly consistent in their wintering locations (Phillips et al., 2005), this understanding is changing (Dias et al., 2011), and among Alcids in particular, individual consistency varies strongly between species, suggesting some plasticity in wintering ecology (Guilford et al., 2011; Tranquilla et al., 2014). In this study, preliminary results on little auks equipped with GLSs during two or three successive years prove that they are not always wintering at the same place (Appendix IV.S4).

Finally, a northward shift of little auk wintering grounds could be beneficial because it reduces overall migration distance. In the case of little auks from East Greenland, wintering in the Labrador Sea instead of the area around the Grand Banks of Newfoundland would reduce migration distance by about 1,000 km, corresponding to 33% of their current migration distance. Such a shortening in migration distance has been observed in some terrestrial bird species (Visser et al., 2009; Heath et al., 2012), and an experimental study has even shown that residency can evolve rapidly in a passerine population if selection pressure towards shorter migration is maintained (Pulido & Berthold, 2010). Migrating closer to the breeding area is not only beneficial because of a decrease in travel costs, but also because it allows a better detection of the environmental conditions occurring at the breeding grounds, so as to match resource phenology at the breeding site (Heath et al., 2012).

However, one potential barrier to the poleward shift of little auk wintering areas, is the decrease in daylight duration and the polar night, but this does not seem to be problematic for Arctic seabirds as individual seabirds, including little auks, have been found to actively forage during the polar night in Greenland, Spitsbergen or the Barents sea (Grémillet et al., 2005; Berge et al., 2015, Fort et al. unpublished).

3. **Outlook**

Over the past decade, Niche Mapper™ has emerged as a powerful tool for the modelling of energyscapes. Indeed, while correlative species distribution models have initially been extremely useful to test the impacts of climate change on the range shifts of organisms (Araújo et al., 2005; Guisan & Thuiller, 2005), there are now incentives to move towards mechanistic species distribution models, whenever possible (Morin & Thuiller, 2009; Chuine, 2010). Niche Mapper™ offers such an alternative, as it includes mechanistic links between environmental conditions and behavioural traits for any given species, anywhere on the planet (Kearney & Porter, 2009). Thereby, it has demonstrated its great potential within
the fields of biogeography, conservation biology (Kearney et al., 2008, 2009) and behavioural ecology (Long et al., 2016).

With the present study, we have broadened the concept of energy landscapes as defined by Wilson, Shephard and coauthors (Wilson et al., 2012; Shephard et al., 2013), and redefined it as the spatial variations in energy expenditure of an animal at a specific moment in time. Therefore, in contrast to Shephard et al. (2013), this approach does not require recording detailed accelerometry data to estimate transport cost for each study individual, but rather some knowledge of environmental conditions encountered through time, and on species time-budgets and metabolism. Energyscapes calculated with Niche Mapper™ can consequently be used in a much wider range of species and ecological contexts, (e.g. Mathewson & Porter, 2013; Dudley et al., 2016).

Nevertheless, our study of little auk wintering ecology has also demonstrated the overarching importance of prey fields, for a thorough understanding of individual strategies and population biogeography under climate change. Therefore, once functional relationships between prey availability and predatory performance become known (e.g. Enstipp et al., 2007), we propose further expanding the energyscape concept to include this information. Energyscapes would be defined as the energetic profitability, for a given species at a given time, thereby setting an exciting target for future investigations of species biogeography in a changing world.

Acknowledgements

This study was funded by the French Polar Institute Paul-Emile Victor, through the ADACLIM programme (N°388) led by David Grémillet and Jérôme Fort. This study also represents a contribution to the ARCTOX research project (European commission Marie Curie CIG, Project 631203 to Jérôme Fort). We thank Nanu Travel for the logistical support, Cyril Bernard and Xavier Morin for their help in the analyses and all the fieldworkers involved in this study: Luis de Sousa, Régis Cavignaux, Julien Nezan, Jules Chiffard, Eric Buchel, Peter Lyngs, Pierre-Henri Fabre, Anders Birk Nielsen, Jean-Baptiste Pons, Johanna Hovinen, Justine Amendolia, Tangi Le Bot, Samuel Perret and Valère Marsaudon.
F. Supporting information

Appendix IV.S1: Details of GLS deployments.

<table>
<thead>
<tr>
<th>Year</th>
<th>GLS type</th>
<th>Manufacturer</th>
<th>Dimensions</th>
<th>Weight (g)</th>
<th>Deployed</th>
<th>Retrieved (year+1)</th>
<th>Included in the analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Mk14</td>
<td>BAS</td>
<td>20x8.5x5.5</td>
<td>1.5</td>
<td>88</td>
<td>51</td>
<td>47</td>
</tr>
<tr>
<td>2010</td>
<td>Mk18L</td>
<td>BAS</td>
<td>15x10x6</td>
<td>1.5</td>
<td>16</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2010</td>
<td>Mk12</td>
<td>BAS</td>
<td>20x8x4</td>
<td>0.8</td>
<td>16</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>2011</td>
<td>Mk10b</td>
<td>BAS</td>
<td>17x9x6</td>
<td>1.1</td>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2012</td>
<td>Mk4093</td>
<td>Biotrack</td>
<td>15x10x6</td>
<td>1.5</td>
<td>30</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>Mk4093</td>
<td>Biotrack</td>
<td>15x10x6</td>
<td>1.5</td>
<td>30</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2014</td>
<td>Mk4093</td>
<td>Biotrack</td>
<td>15x10x6</td>
<td>1.5</td>
<td>19</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>Intigo C65</td>
<td>Migrate technology</td>
<td>14x8x6</td>
<td>1.0</td>
<td>15</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

total | **244** | **102** | **94**
Appendix IV.S2: Summary of parameters used in Niche Mapper™

<table>
<thead>
<tr>
<th>Morphological properties</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (g)</td>
<td>152</td>
<td>This study</td>
</tr>
<tr>
<td>Body plumage depth (dorsal-ventral) (mm)</td>
<td>7.4–12.8</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Head plumage depth (d-v) (mm)</td>
<td>5.2–9.4</td>
<td>This study</td>
</tr>
<tr>
<td>Plumage reflectivity (d-v) (%)</td>
<td>40.4–65.0</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Body feather length (d-v) (mm)</td>
<td>20.0–19.2</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Head (feather length (d-v) (mm)</td>
<td>11.6–10.7</td>
<td>This study</td>
</tr>
<tr>
<td>Feather diameter (d-v) (μm)</td>
<td>33.0–33.0</td>
<td>Fort et al 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physiological properties</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body core temperature (°C)</td>
<td>40</td>
<td>Gabrielsen et al 1991</td>
</tr>
<tr>
<td>Flesh thermal conductivity (W.m⁻¹°C⁻¹)</td>
<td>0.5–2.8</td>
<td>Cheng and Plewes 1992</td>
</tr>
<tr>
<td>Oxygen extraction efficiency (%)</td>
<td>35</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Bird density (kg.m⁻³)</td>
<td>932.9</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Resting metabolic rate (W)</td>
<td>2.02</td>
<td>Gabrielsen et al 1991</td>
</tr>
<tr>
<td>Flight metabolism (W)</td>
<td>10.57</td>
<td>Fort et al 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavioural properties</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventral area contacting substrate (%)</td>
<td>25</td>
<td>Fort et al 2009</td>
</tr>
<tr>
<td>Proportion of time spent flying per day (%)</td>
<td>9</td>
<td>Fort et al 2009, 2010</td>
</tr>
<tr>
<td>Proportion of time spent diving per day (%)</td>
<td>24</td>
<td>Fort et al 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental data</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea surface temperature (°C)</td>
<td>ICOADS (http://icoads.noaa.gov/)</td>
</tr>
<tr>
<td>Air temperature (°C)</td>
<td>ICOADS (http://icoads.noaa.gov/)</td>
</tr>
<tr>
<td>Cloud cover (%)</td>
<td>ICOADS (http://icoads.noaa.gov/)</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>ICOADS (http://icoads.noaa.gov/)</td>
</tr>
<tr>
<td>Wind speed (m.s⁻¹)</td>
<td>ICOADS (http://icoads.noaa.gov/)</td>
</tr>
</tbody>
</table>
Appendix IV.53: Results of the sensitivity analysis in Niche Mapper™ for the daily energy requirements of little auks in November, December, January and February.

<table>
<thead>
<tr>
<th>Varname</th>
<th>Range</th>
<th>Variation of energy requirements (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>body T</td>
<td>±10%</td>
<td>-2.56</td>
</tr>
<tr>
<td>plumage reflectivity</td>
<td>±10%</td>
<td>0</td>
</tr>
<tr>
<td>feather length</td>
<td>±10%</td>
<td>-1.63</td>
</tr>
<tr>
<td>feather diameter</td>
<td>±10%</td>
<td>0.61</td>
</tr>
<tr>
<td>plumage density</td>
<td>±10%</td>
<td>-0.98</td>
</tr>
<tr>
<td>plumage depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>activity E released at heat</td>
<td>±10%</td>
<td>0.5</td>
</tr>
<tr>
<td>flight metabolism</td>
<td>±10%</td>
<td>0</td>
</tr>
<tr>
<td>ventral area on water</td>
<td>±10%</td>
<td>0</td>
</tr>
<tr>
<td>cloud cover</td>
<td>min-max</td>
<td>-0.45</td>
</tr>
<tr>
<td>relative humidity</td>
<td>min-max</td>
<td>-0.16</td>
</tr>
<tr>
<td>SST</td>
<td>min-max</td>
<td>-11.4</td>
</tr>
<tr>
<td>Air temperature</td>
<td>min-max</td>
<td>-8.54</td>
</tr>
<tr>
<td>wind</td>
<td>min-max</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Appendix IV.S4: Winter locations of four birds for which 2 (or 3) consecutive years were recorded. (a) Bird 3645 in 2009-2010 (purple), 2010-2011 (mauve) and 2011-2012 (light green). (b) Bird 3668 in 2009-2010 (green) and 2010-2011 (red). (c) Bird 3668 in 2009-2010 (blue) and 2010-2011 (pink). (d) Bird 3679 in 2009-2010 (green) and 2010-2011 (red).
V. Chapitre V : Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds.

Photo: Samuel Perret
Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds.

* co-premiers auteurs

A. Highlights

- Microplastic concentration off East Greenland was similar to other oceanic basins.
- Microplastics were more abundant in 2014 than in 2005.
- 100% of little auks were contaminated with microplastics.
- Little auks mistook microplastics for their zooplankton prey.
- 97% of debris were filaments.

B. Graphical abstract

Microplastics

<table>
<thead>
<tr>
<th>Light</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenland Sea

Presence of sea ice

Lack of sea ice

Little auks

![Image](little_auks.png)
C. Abstract

Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (*Alle alle*), an Arctic seabird feeding on zooplankton while diving between 0-50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with $0.99 \pm 0.62 \text{m}^{-3}$ in the presence of sea-ice (2005), and $2.38 \pm 1.11 \text{m}^{-3}$ in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea-ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris.

Key words: Arctic; Little auk; Plastic; Sea Ice; Selective Uptake; Zooplankton.
D. Introduction

Global plastic production is increasing exponentially with a current doubling time of 11 years (Plastics Europe, 2013; Wilcox et al., 2015). In 2013, 299 million tons of plastic were manufactured in the world, with 57 million tons in Europe alone (Plastics Europe, 2015). Thompson (2006) estimated that up to 10% of plastics produced end up in the oceans where they may persist and accumulate. In the environment, microplastics (i.e. plastic fragments < 5mm) are either a direct release of primary microplastics such as industrial pellets and plastic beads from cosmetics, or can originate from larger plastic debris that gradually fragment. Marine microplastic pollution is a worldwide phenomenon and contamination has been reported on a global scale, from poles to the equator (Browne et al., 2008, 2011).

Little is known about microplastic pollution in the Arctic in comparison with other basins (Bergmann et al., 2016). To our knowledge, there is only one study on microplastic abundance in the water column of the Greenland Sea (Lusher et al., 2015), and one recent study reporting considerable microplastic concentrations in Arctic Sea ice (Obbard et al., 2014). However, several biological monitoring studies have reported ingestion of microplastics by marine animals in this part of the world, mostly by seabirds (4 species, Trevail et al., 2015). Seabirds are indeed particularly exposed because of the frequency with which some species ingest plastics, and because of the emerging evidence of impacts on both bird body condition and transmission of toxic chemicals, which could result in changes in mortality or reproduction (Spear et al., 1995; Tanaka et al., 2013; Lavers et al., 2014). Notably, the northern fulmar (Fulmarus glacialis) which regularly ingests plastic (i.e. van Franeker, 1985; Moser & Lee, 1992; Robards et al., 1995; van Franeker et al., 2011), is used for monitoring plastic pollution by OSPAR (Oslo/Paris Convention for the Protection of the Marine Environment of the North-East Atlantic) and the European MSFD (Marine Strategy Framework Directive), and supports international legislation aiming at reducing marine litter (E.C., 2008, 2010; OSPAR, 2008).

Recent studies (Wilcox et al., 2015; Schuyler et al., 2016) have shown that seabird and turtle plastic ingestion rates scale with plastic exposure, i.e. if more plastics are introduced into the ocean, ingestion rates can be expected to increase proportionally. For example, more plastic debris were observed in fulmars from the North Sea or from California than in fulmars from presumably cleaner Arctic breeding locations (van Franeker, 1985). Besides, seabirds and turtles have been found to ingest more items which contrast with the ocean background: darker plastics for turtles which detect prey from below, and lighter plastics for seabirds detecting prey from above (Santos et al., 2016). In addition, seabird contamination is expected to vary according to feeding techniques, with filter-feeders being more contaminated than single-prey catchers, as the former do not target specific items, and surface-feeders being more contaminated than divers because plastics are mainly at the surface (Reisser et al., 2015).

While plastic ingestion is widespread in seabirds, to our knowledge, only a few studies have investigated the interaction between microplastics and little auks (Alle alle) (Pedersen &
Falk, 2001; Falk and Durinck unpublished data in Provencher et al., 2014; Fife et al., 2015),
the most abundant seabird in the North Atlantic Arctic, with an estimated 40-80 million
individuals (Egevang et al., 2003). Little auks are zooplanktivorous birds. They dive within
the first 50 m of the water column, and feed mainly on Calanus spp. (see Fig 1 in Frandsen et
al., 2014). Prey items, brought back to their single chick, are carried by adults in a gular
pouch (Fig.V.1). Among studies which recorded microplastic occurrence in chick diet or
gizzard content of adult little auks, none have established correlations with environmental
parameters such as zooplankton or microplastics abundance in the water column.
Furthermore, those studies indicated contrasting results, with 0 %, 9 % to 14 % of birds
containing plastic debris (with a number of birds dissected of n=19, 104 and 65, respectively).

In this context, our objectives were (1) to determine and quantify the occurrence of
microplastic pollution in coastal waters of the Greenland Sea (East Greenland), (2) to assess if
those debris are encountered in little auk chick diet and if their color or size influence the
frequency of little auk microplastic intake and, finally, (3) to compare microplastic occurrence
in the water column and little auk diet nine years apart, in the presence of sea-ice within little
auk foraging areas (2005), and in its nearby absence (2014).

Figure V.1: Little auks bring back food to their chicks in a gular pouch. Breeding little auks
with a full gular pouch (left) and an empty one (right).
E. Material and methods

All field work in East Greenland was conducted with the permission of the Greenland Home Rule Government, Ministry of Environment and Nature (Danish Polar Center Scientific Expedition Permit 512-240 and 2014-098814), and under permits granted by the Ethics Committee of the French Polar Institute (MP/12/24/05/05).

1. Field survey

We performed at-sea surveys within the foraging areas of little auk from the Ukaleqarteq breeding colony (East Greenland) in 2005 and 2014 (Fig. V.2). This area is under the influence of the East-Greenland Current (EGC, Fig. V.2a) that carries multi-year sea-ice from the Arctic southwards. Sea-ice conditions are highly variable between years in this area and the front of ice carried by the EGC can be located more or less South (Fig. V.2b). We sampled 18 and 20 stations in 2005 and 2014, respectively. Detailed accounts of the at-sea procedures are provided in Karnovsky et al. (2010). In both years, we collected zooplankton with a WP-2 net with a 0.25 m² opening area. We performed vertical tows from 50 m to the surface. To assess the filtered water volume, we used a flowmeter in 2005. In 2014, we used a data logger recording depth (G5, CEFAS Technology Ltd.) and the filtered water volume was calculated from the span of the tow and the opening of the net. In 2005, sampling was performed onboard RV Vagabond from 1 to 11 August within pack-ice and the net mesh size was 500 μm. Samples were stored in sterile plastic containers with 5% formaldehyde solution in sea water, buffered with borax. In 2014, sampling was performed onboard RV Arvelor from 16 to 19 August and no sea ice was observed. The mesh size of the net was 100 μm. Samples were stored in sterile plastic containers with 70% ethanol. Back in the lab, we sieved samples on a 500 μm mesh, and only fraction >500 μm was analyzed for microplastics and zooplankton abundance to allow comparison with 2005 samples. We counted zooplankton and identified it to the lowest taxonomic level. Zooplankton identification results are available in Karnovsky et al. (2010) and Amélineau et al. (2016). In this study, we used Calanus counts, which include C. finnarchicus, C. glacialis and C. hyperboreus at stages CIV, CV and CVI, which are the main prey of little auk during summer (Karnovsky et al., 2010).

1. Chick diet sampling at the little auk colony

Fieldwork occurred at the little auk colony of Ukaleqarteq (Kap Høegh, East Greenland, 70°44’ N, 21°35’ W; Fig. V.2) in 2005 and 2014. Breeding little auk bring back food for their chick in a gular pouch (Fig. V.1). We caught birds coming back with a full pouch upon arrival with nooses placed on the rocks surrounding their nests. The pouch content was collected by opening their beak and gently removing the content with a soft rubber paint brush, and stored in a sterile plastic container with 5% formalin in 2005, and with 70% ethanol in 2014. Birds were then weighed, ringed and released. All handling lasted less than 2 min and birds were sampled only once. 26 and 18 birds were sampled in 2005 and 2014, respectively. Captures occurred between 23 July and 7 August in both years (i.e. during the chick-rearing period).
Figure V.2: (a) General study area and (b) location of zooplankton sampling stations and sea ice extent in 2005 (red) and 2014 (yellow). EGC: East Greenland Current. SC: Sørkapp Current, WSC: West Spitsbergen Current. The green star represents the study colony. White lines represent GPS tracks from 2014 (results from Amélineau et al., 2016). Sea ice extents correspond to the daily sea ice extent of the median day of each cruise and were downloaded from the U.S. National Ice Center (http://www.natice.noaa.gov/products/daily_products.html).
As a first step, in each sample (either plankton collected at sea or little auk gular pouch content), we identified visually all non-biological particles based on surface characteristics, morphology and physical response (see Zhao et al., 2016 for detailed criteria). Particles were then counted, sorted and classified by color and by shape (fiber or fragment, Hidalgo-Ruz et al., 2012) under a binocular microscope. Each debris was sized with an increment of 0.1 mm. The sizes were defined by the longest length of each piece and were measured with ImageJ software (Schneider et al., 2012). We classified debris as either light, or dark in colour (Santos et al., 2016).

As a second step, in order to identify microplastics among debris and the nature of polymers, we analysed a subsample of particles (randomly chosen) using a Fourier transform infrared spectrophotometer (Spectrum Two- ATR Sample base plate Diamond). The spectrum for each particle was compared with several polymer spectra banks (HR Sprouse Polymers by ATR, Aldrich FT-IR Collection Edition II, Hummel Polymer, Hummel Polymer and Additives, Industrial Coatings, Sprouse Polymers by Transmission) and the detection threshold for a correct identification of polymers was set to a match of at least 75%. We then calculated a proportion of microplastics among debris for water column and gular pouch samples, and for all the samples, the number of microplastics per sample was recalculated. For water column samples, the quantities of microplastics were divided by the volume of water filtered to convert them to quantities per unit seawater volume (hereinafter “concentration”, as items per m\(^{-3}\)). For gular pouches, microplastic counts were adjusted as number of items per complete pouch.

2. Microplastic sample contamination

In order to minimize contamination, lab coats, cotton clothing and gloves were worn when sorting the samples. In addition, to estimate contamination when processing the samples (zooplankton identification, counts and sorting), negative controls were performed in sterile glass petri dishes of the same diameter than the ones used for counts. Those Petri dishes were filled up with 70% ethanol and placed under the hood close to the experimenter during the time needed to count and isolate the debris from one sample. This control was made 10 times. We corrected debris counts in samples by the mean control count (7.33±2.8 debris) multiplied by the number of times the sample was opened, from two to four times depending on sample manipulations (once for sampling, once for debris counts, once for sieving, and once for zooplankton identification if the subsample analyzed was replaced within the main sample).
F. Results
Figure V.3: Density of (a) microplastics, (b) zooplankton and (c) Calanus spp. copepods per station in number of items per cubic meter in 2005 (red) and 2014 (yellow). The green star represents the little auk colony. Details on zooplankton data are in Karnovsky et al., (2010) and Amélineau et al., (2016).

1. **Identification of real microplastics among debris**

A subsample of 334 debris was analyzed under Fourier Transform Infrared Spectroscopy (FT-IR) in order to separate real plastics from organic debris (Table V.1). In total, 16.7% and 24.1% of debris isolated visually from plankton samples and from little auk gular pouches, respectively, were identified as real plastics by spectrometry. Other debris were either unidentified or organic (83.3% for plankton samples and 75.9% for gular pouches). Unless otherwise specified, the following results consider the fraction of identified microplastics among debris only and thus probably underestimate actual plastic concentrations.
Table V.1: Summary of Fourier Transform Infrared (FT-IR) spectroscopy analyses and microplastic contribution to debris.

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Samples analysed</th>
<th>Total nb of debris</th>
<th>Debris analysed via FT-IR spectroscopy</th>
<th>Microplastic contribution to debris (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water column</td>
<td>6</td>
<td>1058</td>
<td>168</td>
<td>16.7</td>
</tr>
<tr>
<td>Gular pouch</td>
<td>21</td>
<td>1311</td>
<td>166</td>
<td>24.1</td>
</tr>
</tbody>
</table>

2. Microplastics and zooplankton counts at sea and in gular pouches

In the water column, mean microplastic concentration was 0.99 pieces.m\(^{-3}\) in 2005 (range: 0.15 to 2.64 pieces.m\(^{-3}\)) and 2.38 pieces.m\(^{-3}\) in 2014 (range: 0.81 to 4.52 pieces.m\(^{-3}\)). Microplastic distribution is shown in Fig. V.3a. No spatial pattern was observed within the study area. Overall zooplankton and specific *Calanus* spp. (preferred little auk prey in summer) densities are presented in Figs. V.3b and c. Total zooplankton abundances were higher in 2014 than in 2005.

The number of microplastics in gular pouches did not differ between 2005 and 2014 (Fig. V.4). We found an average of 9.99 and 8.99 microplastics per gular pouch in 2005 and 2014, respectively (W=279, p=0.288). The ratio microplastics/number of prey or microplastics/*Calanus* did not differ between years.

![Figure V.4: Number of microplastics per gular pouch samples Values are mean ±SD.](image)

117
3. Nature, size and colour of microplastics

The types of plastics found in zooplankton samples and little auk gular pouches are detailed in Table V.2. The main plastic type found in the water column is Polyester (PES, 53%), followed by high and low density polyethylene (23%). In gular pouches, the main plastic type found was Polyvinyl chloride (PVC, 60%) followed by high and low density polyethylene (30%).

Figure V.5: Debris length histogram in (a) the water column and (b) gular pouches. Vertical lines are the median value for each sample type and the curves represent cumulative percentage. Red: 2005. Yellow: 2014. Median debris length in the water column: 0.85 mm in 2005 and 0.82 mm in 2014; in gular pouches: 0.84 mm in 2005 and 0.67 mm in 2014.
The distribution of debris size was similar for the water column and gular pouches, with higher frequencies when the size decreases, except for the smallest sizes (Fig V.5). Median debris length was 0.82 mm in zooplankton samples and 0.77 mm in gular pouches. Debris were classified by shape (fragment/filament) and by colour. Among all samples, 97.2% of the debris found were filaments.

Water column samples contained more dark than light debris (83.4 and 52.9% of dark debris in 2005 and 2014, respectively, Figs. V.6a and V.b). On the contrary, gular pouch samples contained more light than dark debris (25.0 and 18.7% of dark debris, respectively, Figs. V.6c and d). The proportion of dark debris was higher in 2005 than in 2014 both in the water column and in the pouches.

![Figure V.6: Proportion of dark and light debris in the water column (a) in 2005 and (b) in 2014, and in gular pouch samples (c) in 2005 and (d) in 2014.](image-url)
Table V.2: Proportion of polymer classes found in the water column (n=30) and in gular pouches (n=40) and their origin.

<table>
<thead>
<tr>
<th>Plastic Class</th>
<th>Contribution to MP in water column samples (%)</th>
<th>Contribution to MP in gular pouches (%)</th>
<th>Products and typical origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-density polyethylene</td>
<td>LDPE LLDPE</td>
<td></td>
<td>Plastic bags, six-packs rings, bottles, netting, drinking straws</td>
</tr>
<tr>
<td>High-density polyethylene</td>
<td>HDPE</td>
<td>23.3</td>
<td>Milk and juice containers</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>PP</td>
<td>10.0</td>
<td>Rope, bottle caps, netting</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>PS</td>
<td>0</td>
<td>Plastic utensils, food containers</td>
</tr>
<tr>
<td>Nylon</td>
<td>PA</td>
<td>3.3</td>
<td>Netting and traps</td>
</tr>
<tr>
<td>Polyesters</td>
<td>PES</td>
<td>53.3</td>
<td>Plastic beverage bottles</td>
</tr>
<tr>
<td>Polyvinyl chloride</td>
<td>PVC</td>
<td>3.3</td>
<td>Plastic films, bottles, cups</td>
</tr>
<tr>
<td>Cellulose Acetate</td>
<td>CA</td>
<td>6.7</td>
<td>Cigarette filters</td>
</tr>
<tr>
<td>Polytetrafluoroethylene</td>
<td>PTFE</td>
<td>0</td>
<td>Cables, printed circuit boards</td>
</tr>
</tbody>
</table>
G. Discussion

1. Microplastics in the Arctic

Little is known about the state of microplastics in the Arctic in comparison with other ocean basins (Trevail et al., 2015). The recent review of Gall and Thompson (2015) on encounters between marine debris and organisms worldwide reported only 5 papers from the Arctic, and to our knowledge there is only one record for surface and water column concentrations of microplastics in the Southwestern Svalbard (Lusher et al., 2015).

Our study revealed high abundances of filaments (97.2%) as similarly described by Lusher et al. (2015) from Svalbard. We observed average abundances of 0.99 ± 0.62 microplastics per m$^{-3}$ and 2.38 ± 1.11 microplastics per m$^{-3}$ in 2005 and 2014, respectively. These values are slightly lower than those found off South-West Svalbard and in the Barents Sea (2.68±2.95 particles per m$^{-3}$, Lusher et al., 2015), but the mesh size used in this study was also smaller (250μm). In comparison, Thompson et al. (2004) reported 0.34 debris m$^{-3}$ in Atlantic waters North of Scotland (mesh size used: 270μm) and Lusher et al., (2014) recorded microplastics density in sub-surface water of the North East Atlantic of 2.46 ± 2.43 per m$^{-3}$ (mesh size used: 250μm). Our results, therefore, show relatively high concentrations of microplastic litter off East Greenland, considering the remoteness of the Greenland Sea in terms of human activities and the Arctic provenance of the East Greenland Current waters (Fig. V.2, Trevail et al., 2015). However, although the Arctic can be considered as almost exempt of plastic emissions, oceanographic processes and bio-transport most likely advect microplastics from other oceanic areas (Mallory, 2008; Provencher et al., 2014). In this context, Enders et al. (2015) suggested a strong dispersal throughout the surface mixed layers for small particles, indicating that plastics can travel extensively along with currents. Therefore, particles encountered in our study area could come either from Southern latitudes with the North Atlantic current, from the eastern Arctic, or even from the Northern Pacific via the transpolar drift which ultimately flows along the East Greenland coast. For example, higher microplastic concentrations were observed off Svalbard where water masses are mainly of Atlantic origin compared to off East Greenland (Lusher et al., 2015, Fig. V.2). Consequently, when assessing potential levels of plastic pollution in the Arctic, the North Atlantic and Bering Sea have to be considered as potential source areas.

2. Decadal change of microplastic concentration

Since mass production of plastic began in the early 1940s, plastic entering in the marine environment has increased in parallel with rates of production, and a decrease in the average size of plastic litter has been observed over time (Barnes et al., 2009), as larger plastic debris reduced continuously into fragments. Consequently, in several places microplastic concentrations have been shown to increase with time over decadal periods (e.g. Thompson et al., 2004). This could explain why microplastic concentration in 2014 was found to be more than twice higher than in 2005 in our study. However, results are not homogeneous worldwide and anytime (Thompson et al., 2004; Law et al., 2010; Claessens et al., 2011). For example Law et al. (2010) did not find any significant increase of microplastic
concentration in the Northwest Atlantic Ocean over a 22 years period when processing more than 6 000 surface trawls.

Another explanation for microplastic increase in the study area nine years later is the role of the Arctic sea ice extent. Obbard et al. (2014) presented the only study which quantifies plastic concentration in the Arctic Sea ice. They showed high variation in microplastic concentration in sea ice cores, ranging from 38 to 234 debris m⁻³. Those values are much higher than in highly polluted oceanic gyres and might be due to the concentrating effect of the scavenging phenomenon that accompanies sea ice growth (Obbard et al., 2014). In that regards, the sea ice acts as the sink (freeze up) and source (break up) for plastics. This would imply that when melting, sea ice would release plastic debris into the underlying water column. One should bear in mind, however, that the Arctic sea ice is in constant motion, thus the transport of sea ice trapped particles would play a role in plastic dispersion. Our study took place during two contrasted sea ice extents, and plastic concentrations recorded in 2005 were much lower than those observed in 2014. It is therefore difficult to make a temporal comparison of both datasets as the effect of ice extent is probably superimposed on temporal variability. Anyhow, as suggested by Obbard et al. (2014), microplastic concentrations were much higher when the sea ice extent was reduced.

3. Microplastics characterisation

In our study, 16.7% and 24.1% of debris isolated visually from plankton samples and little auk gular pouches, respectively, were identified as plastics by spectrometry. This indicates that many of the sorted debris were not microplastics, and our results are much lower than for terrestrial bird gut content analyses (54.9%, Zhao et al., 2016) or for particles from the sea surface (68%, Lenz et al., 2015). Enders et al., (2015) also indicated that in their study 25% of the spectra observed presented a pigment signal that totally overlaid the plastic type signal and that therefore a precise identification was not possible. In our study, we might have visually over-sampled microplastic-like particles because, as little auks are feeding on zooplankton, appendages of damaged organisms as well as other plankton organisms might mimic fiber-like pieces. Those organic debris, however, could also be of anthropogenic origin such as natural fibers used for clothing or cordage.

Obbard et al. (2014) and Lusher et al. (2015) have shown that, on average, polyester and nylon were the most abundant microplastics found in the Arctic, with acrylic, polypropylene, polystyrene, and polyethylene showing much lower contributions. Our study also reports a high occurrence of polyester. Nevertheless, the results of Obbard et al. (2014) indicated high variability in microplastic debris composition among their 4 study sites. In consequence, we could suggest that the discrepancy we observed between microplastics composition in the water column and in little auk gular pouches could be explained by either spatial or temporal variability.
4. **Little auk contamination**

Plastic ingestion by seabirds is well documented, with the first records dating back to the 60s’, and little auks are affected (Table V.3, Day et al., 1984; Ryan, 1987; Provencher et al., 2014; Fife et al., 2015). Wilcox et al. (2015) predicted to find plastic in digestive tracks of 99% of all seabird species by 2050 and that 95% of the individuals within these species will have ingested plastic by the same year. To assess current levels of plastic ingestion and to allow for comparison through time and among oceanic regions, Provencher et al. (2014) underlined the importance of standardized baselines and protocols. Little auk gular pouches do not report ingestion rates *sensu stricto* but their collection is not very invasive for the birds compared to removing stomach contents. Therefore, they could be a good indicator within the Arctic especially as they are already commonly collected in different monitored colonies (Pedersen & Falk, 2001; Harding et al., 2009; Karnovsky et al., 2010).

The first observations of plastic ingestion by little auks were made in 1978. While four studies recorded plastics in 0%, 9%, 12% and 14% of adult birds (Fife et al., 2015; Pedersen & Falk, 2001; Provencher et al., 2014; Trevail et al., 2015), our observations revealed that all individuals contained plastic debris in their gular pouches. However, contrary to most studies on plastic contamination in seabirds, we searched for microplastics under a binocular microscope. Consequently, we detected smaller items and this likely explains why we detected a large amount of small filaments that were hardly detectable to the naked eyes, compared to other studies on little auks and seabirds. We therefore separated fragments and filaments in Table V.3, in order to make our results more comparable with previous publications on little auk contamination. Despite that, discrepancies between studies may result from these differences in methodology. For the same reason, it is difficult to compare our results with other seabird studies for which only debris visible to the naked eye were reported. We found an average of 9.5 microplastic items per gular pouch which is in the same order of magnitude than two other studies reporting on animal microscopic contamination: Zhao et al. (2016) found 10.6 ± 6.4 items per birds on terrestrial species, and Rochman et al. (2015) observed 0 to 21 anthropogenic particles per individuals in seafood from the USA and Indonesia.

Birds can either ingest plastic items directly, or indirectly *via* prey items. We found that little auks ate preferentially lighter debris, rather than darker ones (Fig V.6). This may be the result of an easier target detection by birds, or of a resemblance with prey, as suggested by Zhao et al. (2014, 2016). In nature, little auk prey are light-coloured and contrast with the dark ocean background at little auk feeding depths, and microfilaments may mimic contour lines or appendices of crustaceans. Little auks also showed a polymer preference. They caught preferentially polyvinyl chloride (PVC) among all polymer types found in the environment. While we did not find any correlation between polymer type and colour, this preference could suggest that some physical features of PVCs, such as their aspect, light diffusion or the way they move in the water, could make them attractive to little auks. All these observations suggest an active uptake and therefore contamination of little auks by microplastics through confusion with their natural prey.
<table>
<thead>
<tr>
<th>Location</th>
<th>Year(s)</th>
<th>Sample size</th>
<th>Fragments Prevalence (%)</th>
<th>Filaments Prevalence (%)</th>
<th>Sample type</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litterature review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian Arctic</td>
<td>1978-1979</td>
<td>303</td>
<td>presence</td>
<td></td>
<td>Necropsy</td>
<td>Bradstreet (in Day et al., 1984)</td>
</tr>
<tr>
<td>Nuuk, SW Greenland</td>
<td>1988-1989</td>
<td>19</td>
<td>0</td>
<td>na</td>
<td>Necropsy</td>
<td>Falk and Durinck (in Provencher et al., 2014)</td>
</tr>
<tr>
<td>NW Greenland, Thule area</td>
<td>1997</td>
<td>104</td>
<td>9</td>
<td>na</td>
<td>Necropsy</td>
<td>Perdersen and Falk (2001)</td>
</tr>
<tr>
<td>East Greenland</td>
<td>2005</td>
<td>26</td>
<td>50</td>
<td>100</td>
<td>Gular pouches</td>
<td>This study</td>
</tr>
<tr>
<td>This study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Greenland</td>
<td>2014</td>
<td>18</td>
<td>33</td>
<td>100</td>
<td>Gular pouches</td>
<td>This study</td>
</tr>
</tbody>
</table>
Regarding prey contamination, several laboratory studies (Wilson, 1973; Cole et al., 2013, 2015) have shown that copepods are able to ingest polystyrene beads, and that the more beads are present in the environment, the more copepods prey on them, to the detriment of their natural phytoplankton prey, thereby impacting zooplankton function and health. As little auks are zooplankton feeders, both primary and secondary consumption of microplastics may be occurring. However, we probably did not detect the latter, as particles taken by zooplankton are one order of magnitude smaller than those taken directly from the ocean by little auks (Cole et al., 2013).

Ingestion of plastics by seabirds is often related to seabirds directly ingesting plastic floating at the surface. However, surface feeders are not the only seabirds capable of ingesting marine debris (Provencher et al., 2014). Indeed, pursuit divers such as Brünnich’s guillemots (Uria lomvia) and little auks also ingest plastic debris. In their study, Provencher et al. (2014) recorded that 11% of guillemots had at least one piece of plastic debris in their gastrointestinal tracts. In our work, frequencies were much higher, with 100% of gular pouch samples containing plastic filaments, whereas fragments were found in 33 % and 50 % of the gular pouches in 2014 and 2005, respectively. Comparison between guillemots and northern fulmars at similar times and locations (Provencher et al., 2009) indicated that guillemots had a significantly lower mass of plastics per unit body mass than fulmars, and that the plastic pieces ingested by guillemots were significantly smaller than the ones ingested by fulmars. As for guillemots, it is likely that little auks exposure to microplastics is occurring during dives, but probably induces less contamination than for surface feeders (Moser & Lee, 1992; Provencher et al., 2014).

H. Conclusion

Our study provides, to the best of our knowledge, the first assessment of microplastic contamination in the water column of the Greenland Sea. Despite being far from anthropogenic activities, the waters off East Greenland appeared to be contaminated by microplastics, at concentrations which are comparable with those of other oceanic basins. These microplastics probably transited via the Arctic, according to the provenance of the East Greenland current, and could have been retained in sea ice (Obbard et al., 2014). Further, we demonstrate that microplastics were caught by pursuit-diving seabirds with color selectivity, strongly suggesting that they are mistaken for prey items and therefore that little auks are actively contaminated. Our results highlight the importance of considering Arctic species as vulnerable to microplastic pollution as the area reflects global microplastic production increase, and they are especially exposed to an enhanced release of microplastics by the vanishing sea ice under climate change combined with an increase of human activities in the Arctic.
Acknowledgements

We thank Juan Pablo Lopez Aguillon and Annick Lucas who helped with spectroscopy analyses. We are grateful to the fieldworkers: Heli Routi, Maggie Hall, Tangi Le Bot, Johanna Hovinen and Justine Amendolia. We thank Nanu Travel, Alan Le Tressoler, Elin Austerheim, Eric Brossier and France Pinczon du Sel for logistical support.

This work was supported by the French Polar Institute IPEV [grant number 388] and the NSF [grant number 0612504]. This study is also a contribution to the program ARCTOX [European commission Marie Curie CIG, Project 631203 to JF].
VI. Discussion générale

Photo : Valère Marsaudon
A. Synthèse des résultats

1. Où se nourrir dans un environnement changeant?

L’environnement des mergules nains en mer du Groenland a changé au cours des dernières décennies, avec principalement une forte réduction de l’étendue de la banquise (Figure II.2), et une augmentation des températures de l’air et de la mer (IPCC 2013). Ces changements entraînent ainsi une profonde modification des habitats d’alimentation des mergules nains et comprendre comment ils y font face et dans quelles mesures ils pourraient être impactés est essentiel.

Nos résultats montrent que les mergules nains trouvent assez de proies pour maintenir leur condition corporelle et assurer la croissance de leur poussin en l’absence de glace dans leur zone de nourrissage (Chapitre II). La présence de glace n’est donc pas nécessaire aux mergules nains en ét. Cependant, en l’absence de glace l’effort de plongée des adultes est plus important (plongées plus profondes et plus longues, plus de temps passé à voler par voyage en mer, Figure III.4). De plus, des études récentes ont montré que les mergules nains du Spitzberg vont, pour leur part, se nourrir à proximité de la glace même si cela les contraint à augmenter la durée de leurs voyages en mer (Jakubas et al., 2012, 2013). Ces résultats suggèrent que la glace offre des conditions favorables aux mergules nains, certainement en raison de la présence des proies sympagiques qu’ils y trouvent, mais peut-être aussi par la possibilité de s’y reposer (Bradstreet, 1982; Lovvorn et al., 2009).

Nos résultats soulignent également l’importance de la bathymétrie et des fronts, qui concentrent les proies (Bost et al., 2009). En ét, les mergules nains vont se nourrir à la fois au niveau du talus continental et sur le plateau continental (Figure II.1). Les prélèvements de zooplancton en mer montrent que les proies sont plus petites au niveau du talus, mais plus abondantes (Figure II.5). Les adultes explorent donc des proies abondantes mais moins caloriques et situées plus loin de la colonie (talus), ou des proies peu abondantes mais plus caloriques et moins distantes (plateau continental). Les régimes alimentaires des poussins suggèrent que les adultes favorisent les proies de grande taille pour nourrir leur poussin (Table II.2), probablement majoritairement capturées sur le plateau continental. Les adultes pourraient donc utiliser le talus continental pour capturer et consommer eux-mêmes des proies différentes de celles de leur jeune. Le régime alimentaire des mergules nains adultes au cours de la saison de reproduction reste cependant assez mal connu. En hiver, la zone principale d’hivernage des individus issus de la colonie d’Ukaleqarteq se situe au-dessus des Grands Bancs au large de Terre-Neuve, zone de hauts fonds marins à la croissance des courants du Labrador et du Gulf Stream. Ces conditions particulières de bathymétrie et de courants en font une zone particulièrement productive, favorable aux mergules nains (Brown, 1988).

Enfin, nous avons trouvé que les mergules de Terre François Joseph avaient changé leurs habitudes de recherche alimentaire et tirent partie des fronts de fonte des glaciers côtiers (Annexe 1, Grémillet et al. 2015). L’accélération de la fonte des glaciers provoque un afflux d’eau douce et très froide à leur pied, et le zooplancton qui atteint ce front meurt suite au choc thermique et osmotique provoqué par ce changement de masse d’eau. Les oiseaux exploitent

128
donc des proies faciles à capturer, situées beaucoup plus près de leurs colonies (<5km, temps de vol de quelques minutes, alors que le temps de vol moyen par voyage des mergules nains du Groenland Est est d’un peu plus d’une heure, Figure 3 de l’annexe 1). Les mergules nains du Groenland Est ou du Spitzberg ne semblent pas exploiter ces zones d’après les connaissances actuelles, et il serait important de comprendre pourquoi.

Alors que la glace de mer et les fronts de fonte des glaciers sont des environnements amenés à disparaître avec les changements climatiques, la bathymétrie est un paramètre qui va rester constant. L’importance démontrée de ce paramètre pour l’alimentation des mergules nains permet d’être optimiste quant à leur capacité à s’adapter aux changements globaux, à condition que la productivité du talus et des zones frontales reste suffisante pour leur permettre de maintenir leur condition corporelle et de se reproduire. Cependant, l’estimation de la productivité de ces zones dans le futur est encore très incertaine.

2. Quel régime alimentaire adopter ?

Les différentes études effectuées sur le régime alimentaire des poussins de mergule nain soulignent une forte variabilité interindividuelle, mais aussi interannuelle et entre les différents sites de reproduction (Chapitre II et III, Pedersen and Falk 2001; Harding et al. 2009; Karnovsky et al. 2010; Frandsen et al. 2014; Boehnke et al. 2015). De manière générale, cette variabilité ne semble pas être associée à des variations des indices de valeur sélective (voir cependant Hovinen et al. 2014b). Ceci suggère que la disponibilité des proies en fonction de leurs qualités énergétiques respectives reste suffisamment élevée pour permettre aux mergules nains d’équilibrer leurs balances énergétiques sur l’ensemble de leur aire de répartition en Arctique.

Contrairement à nos prédictions, le type de proies retrouvé dans le régime des poussins n’était pas directement relié à la température de surface des eaux environnantes. Nous n’avons pas détecté d’augmentation de la proportion de Calanus finmarchicus (copépode des eaux plus chaudes atlantiques) avec la température. Cependant, durant l’étude à long terme les températures de surface de la mer observées variaient entre -0.5 et 2.3°C, alors que le préférendum thermique des C. finmarchicus se situe au-dessus de 4°C (Karnovsky et al., 2010). Les préférendums thermiques des deux espèces arctiques (C. glacialis et C. hyperboreus) sont par contre bien compris dans la gamme de températures observées (Karnovsky et al., 2010). Les variations observées n’impactent donc a priori pas les copépodes du genre Calanus dans notre zone d’étude. Par contre, la proportion d’espèces vivant sous la glace de mer (e.g. Apherusa glacialis) augmentait cependant bien avec la quantité de glace présente (Chapitre III).

De même, nous avons trouvé peu de tendances temporelles dans la composition en proies des régimes alimentaires de poussins : une diminution des Calanus glacialis, ainsi qu’une légère augmentation des Hyperiidae et des Euphausiacea. Cependant, de manière intéressante, le régime alimentaire des adultes a évolué vers des proies plus haut placées dans la chaîne alimentaire (espèces prédatrices plutôt qu’herbivores) comme l’ont révélé les données d’isotopes stables (Figure III.2). Cela pourrait correspondre à l’augmentation, chez
les adultes également, de la consommation des Hyperiidae et des Euphausiacea, ou bien cela pourrait refléter un changement plus global et plus fin de leur alimentation qui serait mieux détecté via ce traceur écologique synthétisant le régime alimentaire en une seule variable. Finalement, les mécanismes sous-jacents à la composition en plancton de l’environnement des mergules nains sont complexes, et ne sont aujourd’hui pas compris. Globalement, une évolution vers des proies plus petites et moins riches en lipides est attendue (Daufresne et al., 2009; Pepin & Head, 2009), ce qui complexifie les liens entre régime alimentaire et valeur sélective chez les mergules nains.

3. Quelles sont les autres contraintes rencontrées ?

Nos résultats montrent un effet négatif du vent sur les mergules nains. Lorsque les régimes de vent sont élevés en été, la condition corporelle des adultes diminue, et l’épaisseur de leurs muscles pectoraux augmente, ce qui suggère un effort accru pour aller se nourrir et une augmentation des besoins énergétiques afin de fabriquer du muscle (Chapitre III). En hiver, la force du vent a un impact non négligeable sur la dépense énergétique des mergules (Fort et al., 2009), et nous suspectons que des vents forts impactent négativement la survie des adultes. Ces résultats sont préoccupants car le GIEC prédit une augmentation des événements climatiques extrêmes tels que les tempêtes, ainsi qu’une augmentation des vents d’ouest aux latitudes moyennes en Atlantique Nord (IPCC 2013).

sont présents partout en Arctique (McKinney et al., 2015; Vorkamp et al., 2015). De plus, polluants et changements climatiques peuvent avoir des effets synergiques sur la santé des écosystèmes (Macdonald et al., 2005). Les concentrations de mercure et de certains POPs pourraient notamment augmenter avec la fonte de la cryosphère (Stern et al., 2012; McKinney et al., 2015).

La teneur en mercure des adultes n’était pas liée à leur condition corporelle, ni au taux de croissance des poussins (Chapitre III), suggérant que l’exposition des oiseaux au mercure, bien qu’en augmentation au Groenland, n’atteint pas des valeurs entraînant des impacts. La date médiane d’éclosion était corrélée à la contamination en mercure de la population (Chapitre III), mais cela pourrait être dû à des facteurs confondants. En effet, la date d’éclosion est tardive les années où il y a beaucoup de neige (Moe et al., 2009), et il est possible que l’augmentation des précipitations corresponde aussi à un dépôt accru de mercure dans l’environnement.

Bien que les microplastiques aient augmenté dans l’environnement en 2014, les mergules nains n’étaient pas davantage contaminés (Chapitre V). Cela laisse penser que le mécanisme par lequel ils les consomment est soumis à un seuil, ou qu’ils apprennent à les reconnaître. Nous avons montré qu’ils consommaient préférentiellement les débris de couleur claire, ce qui suggère qu’ils consomment activement les débris en les confondant avec leurs proies (Santos et al., 2016). Une étude menée dans le Pacifique dans les années 80 avait déjà mis en évidence la « disparition » des débris de couleur claire en dessous d’une certaine taille, et émis l’hypothèse d’une consommation sélective par les prédateurs qui les confondent avec leurs proies (Shaw & Day, 1994).

B. Limites de l’étude

1. Durée de l’étude et suivis à long terme

Face au changement global, il est rapidement apparu nécessaire de suivre des systèmes sur le long terme, et cela fait maintenant partie intégrante des recommandations de divers groupes de travail (Sydeman et al., 2012; Meltofte et al., 2013; Frederiksen et al., 2014). Les programmes à long terme sont indispensables pour comprendre le fonctionnement des écosystèmes et appréhender leurs réactions face aux perturbations. Mais à partir de quand un programme devient-il « à long terme » ? A partir de quand peut-on raisonnablement étudier les variations temporelles d’un système ? Tout dépend de la variabilité des paramètres à tester et du seuil de réponse attendu (Sokal & James, 1969). Il sera plus long de détecter un changement sur un système évoluant peu, alors que deux saisons contrastées peuvent permettre de tester l’impact d’une variable.

Dans notre système où les conditions environnementales varient beaucoup d’une année à l’autre (Figure III.1), 10 années de données offraient déjà assez de recul pour observer des variations de certains paramètres biologiques. Cependant, et malgré ce recul, nous ne
sommes pas capables de comprendre toutes les causes sous-jacentes à ces variations, comme par exemple les faibles probabilités de survie des adultes certaines années ou encore la tendance à une dégradation de la condition corporelle des adultes. Augmenter la durée d'une étude permet donc d'obtenir davantage de données afin de comprendre le fonctionnement d'un écosystème, mais aussi et surtout de mesurer sa réaction aux changements climatiques en cours.

2. **Mieux estimer la taille et la dynamique des populations de mergules**

L'une des grandes inconnues dans l'étude des mergules nains est l'estimation de la taille des populations (Egevang et al., 2003). Comme les mergules nichent sous des pierres, il n'est pas possible de compter le nombre de nids, ni le nombre d'adultes présents sur la colonie. La technique adoptée pour estimer les populations consiste donc à mesurer la densité des nids dans une zone donnée, de petite taille, et l'étendue d'une colonie. Ces informations sont alors utilisées afin d'estimer le nombre de nids sur l'ensemble d'une colonie, et d'une région. C'est ainsi qu'il a été estimé qu'en Terre de Liverpool, où ces travaux de thèse ont eu lieu, quelques 4 millions de mergules nichent (Kampp et al., 1987). Cependant, estimer la densité de nids n'est pas une tâche facile, car les mergules nains peuvent établir leurs nids sur plusieurs étages dans les pierriers. De plus, la densité varie beaucoup au sein d'une colonie et il s'avère laborieux de délimiter des zones de différentes densités. L'erreur liée à l'estimation de cette densité conduit à une forte incertitude sur la taille des populations de mergules nains, taille totale estimée entre 40 et 80 millions d'individus (Anker-Nilssen, 2000; Isaksen et al., 2000; Egevang et al., 2003). De plus, une étude sur un autre Alcidé nichant dans des pierriers, les stariques minuscules (Aethia pusilla) montre qu'estimer la densité d'individus nicheurs en comptant les oiseaux vus en surface entraîne une sous-estimation du nombre total d'individus, par rapport à une estimation de la taille de populations via des méthodes de capture-marquage-recapture (Sheffield et al., 2006). Il semble donc plus judicieux de se baser sur les données de capture-marquage-recapture d'oiseaux marqués pour estimer les variations de tailles de populations, et c'est une piste exploitable avec les données de capture-marquage-recapture du programme ADAACLIM.

Outre les tailles de populations, il reste encore des zones d'ombre sur certaines parties du cycle de vie des mergules nains. Par exemple, certaines phases de leur cycle migratoire demeurent obscures, malgré le développement récent des techniques de géolocalisation (Fort et al., 2012, 2013). On sait notamment qu’ils vont muer dans le nord de la mer du Groenland après la période de reproduction, et avant d’entamer leur migration vers leur zone d’hivernage (Mosbech et al., 2012), mais on ne sait pas pourquoi ils se rendent précisément dans cette zone (quelles proies consomment-ils ? recherchent-ils la présence de glace de mer ?) ni l’importance qu’elle a, sachant qu’ils ne peuvent plus voler pendant la mue, et qu’ils vont ensuite entamer un voyage de plus de 4000km (Fort et al., 2013).

Enfin, on ne connait rien sur les premières années de vie des mergules nains. Il est possible que l’étape de migration au nord vers une zone riche en zooplancton arctique soit cruciale pour les poussins à l’envol afin qu’ils finissent leur croissance et acquièrent des
réserves avant la migration hivernale. Il est aussi possible qu’ils suivent un tout autre patron de migration hivernale que celui des adultes, ne revenant à la colonie qu’après quelques années (Stempniewicz, 2001). On ne connaît pas non plus le taux de recrutement des jeunes dans la population (probabilité de survie jusqu’à l’âge adulte), paramètre important pour comprendre la dynamique des populations (Fay et al., 2015).

Ces points sont nécessaires à une compréhension globale de l’écologie des mergules nains et devront être clarifiés dans le futur.

3. **Quel est l’impact des polluants sur les mergules nains ?**

Actuellement, nos résultats ne permettent pas de comprendre tous les impacts des polluants sur les mergules nains. A l’échelle de l’individu, nous ne savons pas quels sont les effets sur la valeur sélective (survie et succès reproducteur, Tartu et al. 2013; Goutte et al. 2015; Tartu et al. 2016), qui pourraient avoir des répercussions sur la population entière (Goutte et al., 2014a).

![Image](image_url)

Figure VI.1 : Pelote de filaments retrouvée dans le gésier d’un mergule nain adulte, mesurant 7.9 x 2.6 mm.

De même, nous avons quantifié les microplastiques dans les régimes alimentaires de poussins mais nous ne savons pas quels peuvent être les effets sur la santé des oiseaux. L’un des effets pourrait être une occlusion intestinale ou la réduction de la prise alimentaire à cause d’une sensation de satiété biaisée par la présence de microplastiques dans le gésier (Ryan, 1988). De plus, nous ne savons pas quelle est la contamination des adultes. Lors d’une étude
préliminaire réalisée dans le cadre de cette thèse, nous avons disséqué 5 gésiers de mergules
nains prélevés au large de Terre Neuve en 2007. L’un des 5 gésiers contenait une pelote de
filaments mesurant 7.9 x 2.6 mm (Figure VI.1), et les autres gésiers contenaient une quantité
négligeable de microplastiques. Ce type de débris pourrait effectivement perturber la
sensation de satiété et impacter la condition corporelle des adultes. Une étude réalisée sur les
mergules nains échoués à Terre-Neuve en hiver montre que 30% d’entre eux avaient ingéré
des fragments de plastique (Avery-Gomm et al., 2016). Cependant cette valeur ne représente
pas nécessairement la prévalence de plastique dans la population globale, car les mergules
nains contenant des débris plastiques pouvaient être affaiblis et donc davantage retrouvés
parmi les oiseaux échoués. La présence de microplastiques dans l’environnement et leur
ingestion exposeraient donc davantage les mergules nains aux polluants (Cole et al., 2011).

C. Ouverture/ perspectives

1. Etudie-t-on les mergules nains à la bonne échelle temporelle ?

Notre travail se base sur l’étude des impacts des changements environnementaux
récents sur les mergules nains, autrement dit dans le cadre du changement global lié aux
activités humaines depuis le début de l’ère industrielle. On définit ainsi de manière implicite
un « état initial » (t₀) de notre système d’étude qui se situerait à la fin du XIXe ou au début du
XXe siècle. Comme nous ne disposons pas de données si anciennes, cet état initial nous est
inconnu et nous avons étudié les changements entre un état t et un état t+1. On peut cependant
s’interroger sur l’évolution des populations de mergules nains au cours des derniers siècles,
voire à une échelle temporelle beaucoup plus large.

Dans ce contexte, il est important de souligner que, même si le réchauffement actuel
de l’Arctique est inégalé à l’échelle du millier d’années (IPCC, 2013), les périodes glaciaires
et interglaciaires passées ont laissé une empreinte profonde et durable sur les paysages de
l’Arctique ainsi que dans l’histoire évolutive de la biodiversité arctique. Les patrons de
distribution des espèces arctiques, ainsi que leurs potentiels évolutifs, sont donc aussi à
considérer dans un contexte paléo-écologique, même s’ils ont été largement façonnés par les
conditions environnementales en place depuis la fin de la dernière glaciation, il y a
approximativement 12 000 ans (Grémillet & Fort, 2016; Yoccoz, 2016; Yoccoz & Gauthier,
2016). Des recherches récentes ont montré que les mergules nains existent en tant qu’espèce
depuis approximativement 15 millions d’années (Smith & Clarke, 2015), ce qui sous-entend
que leur émergence au sein de la radiation des alcidés correspond à une période pendant
laquelle la zone arctique de l’Atlantique nord était soumise à un climat subtropical. Le passé
evolutif des mergules nains sous-entend donc une capacité pour cette espèce à fonctionner,
écologiquement, dans des zones océaniques beaucoup plus chaudes que celles correspondant
t à sa zone de répartition actuelle (Grémillet et al., 2001).

Pour la période contemporaine, il est également essentiel de prendre en compte les
phénomènes de compétition avec d’autres espèces planctonophages, notamment la baleine
boréale, ou baleine du Groenland (*Balaena mysticetus*). L’aire de répartition de ce mammifère marin, qui consomme en moyenne 890 kg de zooplancton par jour (Laidre et al., 2007), recoupe fortement celle des mergules, pour sa population de la mer du Groenland (Burns et al., 1993). Cette baleine a fait partie des principales espèces chassées entre le XVIIe et le XXe siècle en raison de son épaisse couche de graisse. En se basant sur le nombre de baleines chassées, des chercheurs ont reconstruit les effectifs de la population de la mer du Groenland depuis le XVIIe siècle (Figure V.1). Le nombre de baleines boréales de cette population est passé d’environ 52500 individus à une population quasiment éteinte au XXe siècle (Allen & Keay, 2006), et seule une petite sous-population aurait survécu en se réfugiant au Nord-Est du Groenland, protégée des baleinières par la glace de mer très dense (Boertmann et al., 2015). En faisant disparaître son principal compétiteur, la chasse à la baleine a donc très certainement été bénéfique aux mergules nains (Hacquebord, 1999). Des fouilles réalisées dans les dépôts d’ordures des campements de baleinières du XVIIe siècle au Svalbard ont révélé que les os de mergules nains y étaient peu présents (0,6% des ossements retrouvés) même si les écrits de l’époque révèlent que sa chair était appréciée, et que les mergules représentent aujourd’hui 35% des oiseaux du Svalbard (Hacquebord, 1999). Cela suggère que les populations de mergules nains ont augmenté depuis le XVIIe siècle, au Spitzberg comme en mer du Groenland. La disparition des baleines boréales aurait aussi été bénéfique aux morues (*Boreogadus saida*) et aux capelans (*Mallotus villosus*), et une réorganisation majeure de l’écosystème aurait donc eu lieu, avec également une augmentation d’autres prédateurs supérieurs se nourrissant de ces espèces, tels que les mouettes tridactyles ou les phoques du Groenland (*Phoca groenlandica*) (Hacquebord, 1999).

L’étude de l’Océan Austral révèle que le même phénomène s’est déroulé en Antarctique. La chasse aux otaries à fourrure (*Arctocephalus gazella*) et aux baleines franches australes (*Eubalaena australis*), espèces consommatrices de krill (*Euphausia superba*), aurait aussi favorisé les espèces en compétition pour le krill, comme les manchots Adélie (*Pygoscelis adeliae*), les manchots à jugulaire (*P. antarctica*), et les manchots macaroni (*Eudyptes chrysolophus*) dont les populations ont augmenté de 5 à 10% depuis la fin de la chasse à la baleine (Croxall et al., 1988).

Dans ce contexte, il devient encore plus difficile d’étudier la réponse des mergules nains à leur environnement en prenant un temps de référence antérieur à la chasse à la baleine (mais voir Mosbech et al. 2015), et on peut s’interroger sur l’importance à accorder à un déclin récent d’une population de mergules ou de toute autre espèce qui aurait bénéficié de la disparition des baleines, dans un écosystème où ces dernières reprennent petit à petit leur place. Faudrait-il s’en inquiéter, ou au contraire y voir un signe d’accroissement des populations de baleines boréales ? On peut néanmoins émettre l’hypothèse d’une variation de la population de baleine boréale sur une échelle multi-décennale, avec une population mondiale actuellement estimée à seulement 1750 individus (www.iwc.int). Il paraît donc raisonnable d’avancer que les ajustements écologiques que nous avons observés au cours de la dernière décennie chez les mergules nains du Groenland Est répondent principalement aux conséquences des changements globaux, et dans une beaucoup plus faible mesure à une éventuelle récupération des populations de baleines planctonophages en Mer du Groenland.

2. **Étudie-t-on étudie les mergules nains à la bonne échelle spatiale ?**

Au-delà des populations, on trouve la métapopulation, qui regroupe plusieurs populations entre lesquelles les individus peuvent disperser (Hanski, 1999). L’étude des mergules nains pour plusieurs colonies de la mer du Groenland se base sur cette échelle (Karnovsky et al., 2010; Grémillet et al., 2012; Fort et al., 2013), on peut s’interroger sur la pertinence d’une échelle encore plus large, pan-arctique.

a) **Nécessité d’études à l’échelle de l’Arctique**

Comme pour la plupart des programmes à long terme, et pour des contraintes logistiques, nous avons focalisé notre étude sur une seule colonie. Or, nous savons que les contraintes environnementales varient entre les colonies (Karnovsky et al., 2010; Grémillet et al., 2012), et que les tendances observées à une colonie ne reflètent pas nécessairement l’état des autres populations, comme chez la mouette ivoire (*Pagophila eburnea*) dont les populations déclinent fortement au Canada mais pas forcément au Groenland en raison de
conditions différentes d’englacement et de contamination (Gilchrist & Mallory, 2005; Gilg et al., 2009). Pour cette raison, le groupe d’étude sur les oiseaux marins (Cbird group, CAFF) du Conseil de l’Arctique, en concertation avec le « Circumpolar Biodiversity Monitoring Program » préconise de mutualiser les efforts des différents programmes de recherche, et d’homogénéiser les méthodes de suivi pour avoir une vision circumpolaire des statuts des oiseaux marins (Irons et al., 2015). Une plateforme internet pour regrouper et visualiser les données existantes est en train d’être construite (seabirds.net).

Etudier une espèce sur toute son aire de répartition permet donc d’avoir une vue d’ensemble de son état, et de mesurer la variabilité spatiale qui peut exister (Brown et al., 2011). De telles études à l’échelle de l’Arctique ont été mises en place chez les guillemots de Brünnich (Uria lomvia) et les guillemots de Troil (Uria aalge) pour étudier la biologie des populations de ces deux espèces (Irons et al., 2008; Descamps et al., 2013). De même, les géolocateurs ont permis de connaître la migration hivernale de nombreux oiseaux marins, et des déploiements ont été effectués à l’échelle des métapopulations en Arctique, Figure V.2 (Frederiksen et al., 2012, 2016; Fort et al., 2013). On voit par exemple que les mouettes tridactyles de différentes colonies très éloignées exploitent les mêmes zones hivernales au large de Terre-Neuve (Figure V.2, zone également prisées par de nombreux autres oiseaux marins en hiver), alors que d’autres hivernent au large de l’Europe (Frederiksen et al., 2012). Ces connaissances sont importantes pour ensuite mieux comprendre le fonctionnement des métapopulations et l’impact des conditions rencontrées en dehors de la période de reproduction.
Figure V.2. Contour kernel à 50% des positions de mouettes tridactyles (Rissa tridactyla) pour 16 colonies différentes de l’Atlantique Nord en décembre 2009. Source : Fig. 2 in Frederiksen M, Moe B, Daunt F, Phillips RA, Barrett RT, Bogdanova MI, Boulinier T, Chardine JW, Chastel O, Chivers LS, & others (2012) Multic colony tracking reveals the winter distribution of a pelagic seabird on an ocean basin scale. Diversity and Distributions, 18, 530–542.

b) Possibilité d’une migration trans-arctique?

D’après les différents modèles climatologiques existants, la fonte totale de la banquise estivale en Arctique devrait avoir lieu dès les années 2050 (Liu et al., 2013). Cela suscite des inquiétudes quand à la disparition d’une barrière naturelle entre les eaux Pacifiques et Atlantiques (Vermeij, 1991; Renaud et al., 2015; Wisz et al., 2015; McKeon et al., 2016). Les données paléontologiques et phylogénétiques confirment que les migrations ont été possibles dans le passé, notamment pendant les périodes chaudes du Pléistocène où la glace arctique pouvait disparaître (par exemple Reid et al. 1996; Nikula et al. 2007; Polyak et al. 2010). Les migrations et isolations de populations au gré des alternances de périodes chaudes et froides ont ainsi joué sur l’histoire évolutive de nombreux taxons (Friesen et al., 1996; Wares & Cunningham, 2001).

Qu’en est-il pour les mergules nains ? Des individus sont observés régulièrement en Alaska depuis le début du XXe siècle, où une petite population est établie (Day et al., 1988). Cela suggère qu’ils sont déjà capables de migrer d’est en ouest en Arctique, et l’augmentation des surfaces en eau libre devrait favoriser ces migrations. On sait notamment que les mergules nains du Groenland Est font une étape migratoire au nord de la Mer du Groenland pour muer juste après la saison de reproduction (Mosbech et al., 2012). S’ils se rendent dans cette zone...
en raison de leur affinité pour la glace de mer et de proies bien spécifiques dont ils ont besoin au cours de leur période de mue, on s’attend à ce qu’ils se déplacent de plus en plus au nord en suivant la réduction de l’étendue de glace en fin d’été. Depuis cette zone, les mergules seraient alors plus près de la mer de Béring que de leur zone actuelle d’hivernage au large de Terre Neuve1, et on pourrait imaginer que des individus changent de zone pour aller hiverner dans le Pacifique Nord en parallèle de la disparition de la banquise arctique. Ils y seraient néanmoins en compétition avec les Alcidés planctivores locaux, dont les stariques minuscles \textit{(Aethia pusilla)} en mer de Béring (Hunt, 1997).

Certains auteurs s’inquiètent également de passages d’espèces marines d’un pôle à l’autre (Byrne et al., 2016). Des invertébrés transportés par les ballasts des bateaux arrivent parfois à survivre dans leur nouvel environnement et à former de nouvelles populations (Tavares & De Melo, 2004). Ces migrations sont plus compliquées pour les Vertébrés qui doivent passer la barrière chaude de l’équateur. Cependant, les oiseaux marins migrant d’un pôle à l’autre comme les sternes arctiques \textit{(Sterna paradisaea)} ou les puffins fuligineux \textit{(Puffinus griseus)} pourraient éventuellement se reproduire sur leur aire d’hivernage si les conditions venaient à rendre cette option favorable.

3. \textbf{Etudie-t-on les mergules nains au bon niveau d’organisation écologique?}

\textit{a) Nécessité d’étudier des guildes d’espèces}

Enfin, au-delà des études monospécifiques, il est également important de considérer des études à l’échelle des guildes écologiques (groupe taxonomique ou fonctionnel exploitant une ressource commune). Etudier plusieurs espèces simultanément permet d’avoir un point de vue plus global sur le fonctionnement des écosystèmes et permet de s’affranchir des éventuelles sources de variabilité à l’échelle d’une espèce (Brown et al., 2011). De telles études ont par exemple été menées sur les oiseaux marins des îles Britanniques (Grandgeorge et al., 2008; Daunt & Mitchell, 2013; MacDonald et al., 2015), de l’Atlantique Nord (Frederiksen et al., 2013) ou en Antarctique (Jenouvrier et al., 2005b). En Arctique, une étude récente sur les abondances des communautés d’oiseaux marins en mer des Tchouktches démontre un changement de fonctionnement de l’écosystème suite à la disparition de la glace de mer, favorisant la production de zooplancton de grande taille et la guilde des oiseaux marins planctonivores au détriment de la guilde des piscivores (Gall et al., 2016). Dans l’Atlantique Nord, la guilde des Alcidés piscivores se ségrège spatialement ou selon les profondeurs de plongées lors du partage de mêmes zones de recherche alimentaire en été (Linnebjerg et al., 2013) A une échelle mondiale, mais toujours dans la même logique, l’étude de Cury et collaborateurs (2011) a permis de mettre en évidence des similitudes de

1 C’est le cas s’ils se rendent au-delà de 77°N pour muer, avec environ 4150km pour rejoindre le milieu du Détroit de Béring ou aller au large de Terre Neuve. D’après Mosbech et collaborateurs (2012), les mergules équipés de géolocateurs étaient en moyenne à 75°N.
fonctionnement des écosystèmes marins et de montrer que les stocks de poissons nécessaires à la reproduction des oiseaux marins étaient d’environ 1/3 des stocks maximum observés. La force de cette étude vient du grand nombre d’espèces utilisé, qui a permis de faire ressortir les grandes lignes de fonctionnement des écosystèmes.

4. **Importance de nos résultats dans un contexte général**

 a) La fonte de la cryosphère

Nous sommes encore loin d’imaginer un monde où la banquise Arctique serait absente en été. Si les mergules nains semblent capables de faire sans, ce n’est pas le cas de nombreuses autres espèces associées à la glace. A chaque pôle, la banquise est utilisée par des mammifères et des oiseaux marins pour se reposer (par exemple morses *Odobenus rosmarus*, mouettes tridactyles *Rissa tridactyla*, ou encore les eiders à lunettes *Somateria fischeri*, (Lovvorn et al., 2009) ou les guillemots à miroir *Cepphus grylle* (Divoky et al., 2016)); pour se reproduire (différentes espèces de phoques comme les phoques du Groenland (*Pagophilus groenlandicus*), les phoques de Weddell (*Leptonychotes weddellii*), ou encore les manchots empereurs (*Aptenodytes forsteri*) ; pour se nourrir (ours *Ursus maritimus* et renards polaires (*Vulpes lagopus*). La banquise sert aussi de substrat à tout un écosystème basé sous la glace, dont des algues fixées à la glace qui sont des producteurs primaires importants au printemps (Thomas & Dieckmann, 2002; Eamer et al., 2013). De plus, la productivité de la zone marginale des glaces (zone où la couverture par la glace est comprise entre 0 et 80% de la surface de l’océan) la rend attractive à de nombreuses espèces qui viennent s’y nourrir (Hunt et al., 1996; Ballard et al., 2012; Labrosse et al., 2015). Pour ces espèces, qui ne sont pas obligatoirement associées à la glace, il est moins facile d’évaluer l’impact d’une réduction de la banquise (Eamer et al., 2013).

Le comportement de recherche alimentaire des prédateurs supérieurs dans les zones de glace de mer repose sur un équilibre fragile. Pendant la reproduction, les colonies d’oiseaux marins pagophiles doivent se situer à une distance idéale de la zone marginale de glace, c’est-à-dire ni trop loin afin d’optimiser la durée des voyages (Jakubas et al., 2013; Jenouvrier et al., 2015), ni dans des zones où la glace est trop dense, également sous peine d’allonger la durée des voyages afin d’accéder à la zone marginale de glace, en particulier pour les manchots (Lescroël et al., 2014; Ropert-Coudert et al., 2015). En hiver, certaines espèces calquent leur migration sur la formation de la glace afin de rester dans la zone marginale, qui offre un accès à l’eau et des plateformes de repos (Spencer et al., 2014; Divoky et al., 2016). Pour les mammifères marins utilisant la glace comme plateforme de repos, celle-ci doit être située à proximité des zones productives où ils vont se nourrir, comme les fronts pour les éléphants de mer (*Mirounga leonina*) en Antarctique (Labrosse et al., 2015), ou encore le plateau continental pour les phoques annelés (*Pusa hispida*) du Spitzberg (Hamilton et al., 2015). De plus, la survie de nombreuses espèces est finement liée à la concentration de glace de leur environnement, ce qui souligne l’importance de la banquise dans leur écologie.
(Jenouvrier et al., 2003, 2005a; Gilchrist & Mallory, 2005; Gilg et al., 2009; Lescroël et al., 2009). On peut donc se demander à quel point les espèces polaires vont s’adapter à une réduction de l’étendue de la banquise et à une modification de sa saisonnalité (Post et al., 2013).

Au-delà de la glace de mer, d’autres changements de la cryosphère impactent les écosystèmes. Par exemple, la fonte du pergélisol modifie les communautés du sol et entraîne un relargueage dans l’atmosphère du carbone stocké sous forme de CO₂ et de méthane (Natali et al., 2014, 2015), avec des conséquences sur l’équilibre climatique global. La fonte des glaciers impacte également la biosphère. D’après le GIEC, les glaciers de toutes les régions du monde ont perdu de la masse (IPCC, 2013). En milieu polaire, cette accélération de la fonte créée des fronts de fonte plus importants au niveau des glaciers côtiers. Ces fronts sont nécessaires à la biologie de nombreuses espèces (Arimitsu et al., 2012; Lydersen et al., 2014; Hamilton et al., 2016), et peuvent, comme nous l’avons montré, constituer de nouveaux habitats, plus profitables dans un environnement changeant (Annexe 1, Grémillet et al., 2015). Cependant, ces nouveaux micro-habitats, s’ils s’avèrent actuellement bénéfiques pour les espèces planctonophages, pourraient devenir un piège écologique sur le long terme. En effet, ces fronts ne sont pas pérennes et vont se réduire avec la perte de masse des glaciers, ce qui va augmenter la compétition pour des ressources limitées. Par exemple, la compétition pour les plateformes vélées en l’absence de banquise est déjà observée chez les phoques annelés dans les fjords du Spitzberg (Hamilton et al., 2016). D’autre part, l’apport de polluants toxiques pour ces organismes pourrait y être plus important qu’auparavant en raison de leur relargage par les glaciers (Stern et al., 2012; Rigét et al., 2016).

b) **Energétique en hiver et conservation**

Les revues synthétisant les connaissances sur les impacts des changements climatiques soulignent l’importance d’utiliser des modèles mécanistes (ex: Sydeman et al., 2012). Dans le chapitre IV, nous avons développé une approche de ce type afin d’évaluer le paysage énergétique des mergules nains à large échelle (Atlantique Nord) et pendant l’hiver. De manière importante, cette approche peut à présent être appliquée à d’autres espèces, d’autres milieux et d’autres périodes clés de leur cycle annuel pour évaluer ce paysage énergétique, et ainsi définir leur niche énergétique (Kearney & Porter, 2009). L’énergétique est à la base des stratégies individuelles, par le conditionnement de l’énergie que les individus vont pouvoir allouer à leurs activités (Brown et al., 2004). Ainsi, la capacité de modéliser la niche énergétique de n’importe quelle espèce à large échelle est un pas essentiel dans la compréhension de la distribution des espèces, tout particulièrement dans les milieux polaires où les conditions climatiques changeantes pourraient avoir un impact fort sur l’énergétique des espèces (augmentation des températures, changement des régimes de vents par exemple).

Les résultats obtenus ont ainsi des conséquences en termes de stratégies de conservation puisqu’ils suggèrent que c’est principalement la productivité de la zone (et donc la source d’énergie) plutôt que les conditions climatiques et la dépense énergétique qui
détermine la distribution hivernale des oiseaux marins. Même si cela reste à valider pour l’ensemble des espèces, ces informations sont essentielles car elles pourraient être utilisées, en complément des données de suivi télémétrique, afin de déterminer les contours des aires marines protégées en Atlantique Nord qui sont en train d’être définies par BirdLife International. L’importance de la répartition des proies comme facteur gouvernant la distribution des prédateurs marins supérieurs pointe également du doigt l’importance d’augmenter les efforts quant aux prédictions des abondances et distributions future des champs de proies à large échelle afin de mieux déterminer la réaction de leurs prédateurs dans un contexte de changements globaux.

c) Les microplastiques et les pôles : une grande inconnue

La pollution par les microplastiques est encore largement inconnue dans les milieux polaires. À notre connaissance, notre étude était la seconde à quantifier les microplastiques en mer du Groenland après une étude menée au sud-ouest du Spitzberg (Chapitre V, Lusher et al. 2015), et quasiment aucune donnée n’existe pour l’Antarctique, que ce soit pour l’Océan Atlantique, pour la banquise antarctique ou pour l’ingestion par des animaux, mis à part deux études. La première, datant de 1988, mentionne la présence de fragments de plastique dans les estomacs de poussins d’oceanites de Wilson (Oceanites oceanicus) morts avant l’envol, mais suggère que ces fragments proviennent de l’hivernage des adultes en dehors de l’Antarctique car très peu de pétrels des neiges (Pagodroma nivea) et de pétrels antarctiques (Thalassoica antarctica), qui ne quittent jamais l’Antarctique et qui n’ichaient au même endroit, étaient contaminés (van Franeker & Bell, 1988). La seconde rapporte la présence de macroplastiques dans l’océan Austral (Barnes et al., 2010). La pollution de l’Antarctique pourrait cependant être limitée par le front subtropical, jouant un rôle de barrière pour les macrédéchets (Ryan et al., 2014). L’étude d’Obbard et collaborateurs (2014), qui alarme sur la densité élevée de microplastiques stockés dans la banquise, montre pourtant que les écosystèmes polaires sont menacés par les microplastiques dans un contexte de changement climatique. Quantifier les microplastiques en Antarctique et évaluer la menace qu’ils représentent pour les écosystèmes est nécessaire, de même qu’un approfondissement des connaissances à ce sujet en Arctique.

d) Impact du vent et des événements climatiques extrêmes

Les mergules nains sont impactés par les régimes de vents moyens (Chapitre III) mais on ne sait pas quel est l’impact des événements climatiques extrêmes comme les tempêtes hivernales sur leur survie et la dynamique de leurs populations. Des échouages massifs d’Alcidés sont régulièrement observés en hiver sur les côtes européennes et nord-américaines, mais les répercussions en terme de démographie sont peu établies car on ne connaît pas l’origine exacte (site de reproduction) des oiseaux qui s’échouent (Harris et al., 2005). Le lien entre vents forts et démographie a cependant été établi chez plusieurs espèces d’oiseaux marins comme les cormorans huppés (Phalacrocorax aristotelis), les pétrels de la Trinité (Pterodroma arminjoniana) ou encore les pétrels diablotins (Pterodroma hasitata), avec de
fortes implications en terme de conservation (Frederiksen et al., 2008; Hass et al., 2012; Nicoll et al., 2016). Par exemple, les pétrels diablotins, classés « en danger » par l’UICN en raison de leur faible effectif, vivent dans les Caraïbes et au Sud de la Floride, zones soumises à des cyclones. A huit reprises au siècle dernier, les ouragans ont soufflé des individus sur le continent américain, parfois jusqu’aux Grands Lacs (Hass et al., 2012). L’augmentation de la fréquence des ouragans pourrait donc rendre cette espèce encore plus vulnérable.

De manière générale, estimer l’impact des événements climatiques extrêmes n’est pas simple en raison de leur caractère stochastique (Frederiksen et al., 2008; Descamps et al., 2015; Bailey & van de Pol, 2016). Chez les espèces longévives, la survie des adultes est pourtant un paramètre plus important que le succès reproducteur dans la dynamique des populations, d’où la nécessité de comprendre les mécanismes en jeu. Les événements climatiques extrêmes peuvent entrainer une forte pression de sélection lorsque seuls les individus de « haute qualité » arrivent à se reproduire, comme par exemple les fulmars antarctiques (Fulmarus glacialoides) et les manchots Adélie (Pygoscelis adeliae) lorsque les conditions de glace sont extrêmes (Lescroël et al., 2014; Jenouvrier et al., 2015). Cependant, si la fréquence de ces événements est rare par rapport à la durée de vie des organismes, on verra alors une sélection des phénotypes plus performants à des conditions climatiques moyennes (Bailey & van de Pol, 2016).

5. Grandes orientations pour la recherche Arctique

a) Politique de recherche en Arctique

On peut s’interroger sur les stratégies de financement des programmes de recherche en Arctique. Quelles priorités donner ? Faut-il laisser les scientifiques choisir les sujets à traiter en fonction de leurs centres d’intérêt ? Ou au contraire faut-il diriger les recherches vers les sujets importants à traiter (en raison par exemple d’un manque de connaissances, ou des enjeux de conservation, Tesar et al. 2016) ? Une étude menée auprès des décideurs de l’Arctique montre qu’ils ne sont pas favorables à un triage des sujets pour orienter les recherches vers les points stratégiques plutôt que vers les préférences des scientifiques (Wheeler et al, in prep).
b) L’Arctique, baromètre des changements globaux ?

Considérer l’Arctique comme un indicateur des changements à venir dans le reste du monde a cependant ses limites. Les contraintes liées aux changements environnementaux diffèrent selon les biomes. Le principal changement dont doit faire face l’Arctique est la réduction de la cryosphère, et cette contrainte lui est bien spécifique. Au niveau politique, il est intéressant de voir comment les pays concernés s’organisent et mutualisent leurs efforts afin d’optimiser les recherches et tenter de minimiser les impacts pour leurs habitants. Cette organisation est facilitée par le petit nombre de pays concernés et leur niveau de développement élevé. À l’échelle globale, un tel effort de conservation est bien plus difficile à mettre en place (voir par exemple la difficulté à ratifier l’accord de Paris sur le climat au niveau mondial), et cette difficulté est accrue par les différences de développement entre les pays. D’un point de vue biologique, il est indispensable d’effectuer des suivis dans des environnements variés afin d’avoir des connaissances globales sur les mécanismes de réponse à différentes contraintes abiotiques. Chez les oiseaux marins, le manque de données sur les espèces tropicales est pointé du doigt (Sydeman et al., 2012). Ces dernières sont particulièrement vulnérables à l’augmentation niveau marin (Couchamp et al., 2014; Reynolds et al., 2015) et seraient moins flexibles face à des changements de température (Faulkner et al., 2014).
VII. Bibliographie

Photo: Valère Marsaudon

Blévin P., Angelier F., Tartu S., Ruault S., Bustamante P., Herzke D., Moe B., Bech C., Gabrielsen G.W., Bustnes J.O., & others (2016) Exposure to oxychlordane is

Fort J., Grémillet D., Traisnel G., Amélineau F., & Bustamante P. (2016) Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? *Environmental Pollution, 211*, 382–388.

160

173

VIII. Annexes
Annexe 1: Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging

Annexe 2: Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?

Annexe 3: Starving seabirds: unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem

Mots clés : Arctique, oiseau marin, changement climatique, changement environnemental, pollution, copépodes, zooplancton, énergétique, migration, modélisation d’habitat, glace de mer, vent, long terme, biologging, paysage énergétique, microplastiques.

L’Arctique se réchauffe deux fois plus vite que le reste du monde, entrainant des changements majeurs des écosystèmes marins. Notamment, l’étendue de la banquise diminue, et la distribution des masses d’air change, modifiant les régimes de vents et de précipitations. Parallèlement à ces changements climatiques, l’Arctique est soumise à une pollution anthropique croissante amenée par les circulations atmosphériques et océaniques, et accentuée par le développement des activités humaines locales. Dans ce contexte, il est urgent de comprendre les impacts écologiques de ces modifications environnementales sur les espèces de cette région. Les mergules nains (Alle alle) sont les oiseaux marins les plus abondants de l’Arctique, et des acteurs clés des réseaux trophiques côtiers. Des travaux récents suggéraient une forte résilience de ces organismes aux changements globaux, mais une étude approfondie permettant de comprendre de manière détaillée l’impact de ces changements s’imposait. Au cours de ce travail de thèse, nous avons donc utilisé une approche pluridisciplinaire (écologie alimentaire, écotoxicologie, bioénergétique, écologie du déplacement) menée sur le long terme, afin de caractériser la sensibilité des mergules nains aux changements de leur environnement pendant la saison de reproduction (été) et en hiver. Nous avons pour cela étudié une population de mergules nains au Groenland Est. Nos résultats montrent que les mergules nains sont fortement impactés par les changements en cours. Pendant la période de reproduction, leurs proies changent et leur effort de plongée augmente en l’absence de banquise, même s’ils demeurent fidèles à leurs zones de nourrissage sur le talus continental. Ceci tend à diminuer leur condition corporelle et celle de leur poussin, mais n’impacte pas leur survie. En hiver, les mergules nains optimisent leur migration et leur distribution en fonction de leur paysage énergétique et de la distribution de leurs proies. Ainsi, nos modèles prédictifs indiquent qu’un réchauffement de l’Atlantique nord pourrait être bénéfique pour les populations de mergules nains en diminuant leurs besoins énergétiques. Enfin, nous avons trouvé que les mergules nains consomment des microplastiques, et ce en les confondant avec leurs proies. Cette source de pollution supplémentaire pourrait augmenter avec la fonte de la banquise qui libère des microplastiques jusque-là stockés dans la glace. Ce travail souligne l’importance des programmes à long terme pour l’étude des impacts des changements globaux.

Keywords: Arctic, seabird, climate change, environmental change, pollution, copepods, zooplankton, energetics, migration, habitat modelling, sea-ice, wind, long-term, biologging, energyscape, microplastics.

The Arctic is warming twice faster than the rest of the world, leading to major changes for marine ecosystems. Notably, sea-ice extent is decreasing, and air mass distribution is changing, thus modifying wind and precipitation regimes. In parallel, the Arctic is subject to increasing anthropogenic pollution carried by atmospheric and oceanic circulation, and accentuated by the development of local human activities. In this context, there is an urgent need to understand the ecological impacts of these environmental modifications on the species of this region. Little auks (Alle alle) are the most abundant seabird in the Arctic, and key players within coastal food webs. Although recent works suggested high resilience of little auks to global changes, a comprehensive study was needed to understand in detail the impacts of these changes. With this aim, we used a multidisciplinary approach (diet ecology, ecotoxicology, bioenergetics, foraging ecology) in the long term to characterize little auk sensitivity to environmental changes during the breeding season (summer) and in winter. We studied a little auk population in East Greenland. Our results show that little auks are indeed impacted by ongoing changes. During the breeding season, their diet composition changes and their diving effort increases when there is no sea-ice, even if they remain faithful to their feeding grounds on the continental slope. This tends to diminish their body condition and that of their chick, but does not impact their survival. In winter, little auks optimize their migration and their distribution according to their energetic landscape and the distribution of their prey. For this inter-breeding period, our predictive models indicate that a warming of the North Atlantic could be benefit for little auk populations, by reducing their energetic needs. Finally, we found that little auks ingest microplastics, by confusing them with their prey. This additional source of pollution could increase with sea-ice loss that release microplastics stored in the ice. This work underlines the importance of long term monitoring programs for the study of global change impacts.