M. Knott and A. J. Scott, A cluster analysis method for grouping means in the analysis of variance, Biometrics, vol.30, issue.3, pp.507-512, 1974.

D. B. Rubin, A. P. Dempster, and N. M. Laird, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society . Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

M. Achab, E. Bacry, S. Gaïffas, I. Mastromatteo, and J. Muzy, Uncovering causality from multivariate hawkes integrated cumulants. arXiv preprint

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, Mixed membership stochastic blockmodels, The Journal of Machine Learning Research, vol.9, issue.115, p.16, 1981.

. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

R. Albert and A. L. Barabási, Statistical mechanics of complex networks. Modern Physics, pp.47-97, 2002.

R. Albert, H. Jeong, and A. L. Barabasi, Diameter of the World-Wide Web, Nature, vol.82, issue.6749, pp.130-131, 1999.
DOI : 10.1103/PhysRevLett.82.3180

L. A. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of smallworld networks, Proceedings of the National Academy of Sciences, pp.11149-11152, 2000.

A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, vol.286, pp.509-512, 1999.

A. L. Barabási and Z. N. Oltvai, Network biology: understanding the cell's functional organization, Nature Reviews Genetics, vol.5, issue.2, pp.101-113, 2004.
DOI : 10.1038/nrg1272

R. Bellman and R. Ca, The theory of dynamic programming, 1954.

P. Bickel, D. Choi, X. Chang, and H. Zhang, Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels, The Annals of Statistics, vol.41, issue.4, pp.1922-194313
DOI : 10.1214/13-AOS1124

P. J. Bickel and A. Chen, A nonparametric view of network models and Newman???Girvan and other modularities, Proceedings of the National Academy of Sciences, pp.21068-21073, 2009.
DOI : 10.1073/pnas.0611034104

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.25, pp.719-725, 2000.

D. Blei and J. Lafferty, A correlated topic model of Science, The Annals of Applied Statistics, vol.1, issue.1, pp.17-35, 2007.
DOI : 10.1214/07-AOAS114

D. M. Blei, Probabilistic topic models, Communications of the ACM, vol.55, issue.4, pp.77-84
DOI : 10.1145/2133806.2133826

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122269/pdf

M. David, . Blei, D. John, and . Lafferty, Dynamic topic models, Proceedings of the 23rd international conference on Machine learning, pp.113-120, 2006.

M. David, A. Y. Blei, M. I. Ng, and . Jordan, Latent dirichlet allocation, J. Mach. Learn. Res, vol.3, pp.993-1022, 2003.

V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks Journal of statistical mechanics: theory and experiment, pp.10008-10024, 2008.

M. Boullé, Data grid models for preparation and modeling in supervised learning . Microtome, 2010.

C. Bouveyron, P. Latouche, and R. Zreik, The stochastic topic block model for the clustering of vertices in networks with textual edges, Statistics and Computing, vol.31, issue.9, p.95
DOI : 10.1145/1135777.1135807

URL : https://hal.archives-ouvertes.fr/hal-01299161

V. Brault and A. Channarond, Fast and consistent algorithm for the latent block model. arXiv preprint
URL : https://hal.archives-ouvertes.fr/hal-01455682

A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, Time-varying graphs and dynamic networks, International Journal of Parallel, Emergent and Distributed Systems, vol.40, issue.1, pp.387-408
DOI : 10.1109/COMST.2006.323440

URL : https://hal.archives-ouvertes.fr/hal-00847001

G. Celeux and G. Soromenho, An entropy criterion for assessing the number of clusters in a mixture model, Journal of Classification, vol.5, issue.2, pp.195-212, 1996.
DOI : 10.1007/BF01246098

URL : https://hal.archives-ouvertes.fr/inria-00074799

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions URL https://hal.inria.fr/inria-00075196, Projet CLOREC, 1991.
DOI : 10.1016/0167-9473(92)90042-e

A. Celisse, J. Daudin, and L. Pierre, Consistency of maximum-likelihood and variational estimators in the stochastic block model, Electronic Journal of Statistics, vol.6, issue.0, pp.1847-189912
DOI : 10.1214/12-EJS729

URL : https://hal.archives-ouvertes.fr/hal-00593644

J. Chang and D. M. Blei, Relational topic models for document networks, International Conference on Artificial Intelligence and Statistics, pp.81-88, 2009.

G. Claeskens and N. L. Hjort, Model selection and model averaging, Cambridge Series in Statistical and Probabilistic Mathematics

E. Côme and P. Latouche, Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood, Statistical Modelling: An International Journal, vol.4, issue.6, pp.564-589, 2015.
DOI : 10.1214/10-AOAS359

M. Corneli, P. Latouche, and F. Rossi, Block modelling in dynamic networks with non-homogeneous poisson processes and exact ICL. Social Network Analysis and Mining, pp.1-14
DOI : 10.1007/s13278-016-0368-3

URL : https://hal.archives-ouvertes.fr/hal-01468548

M. Corneli, P. Latouche, and F. Rossi, Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks, Neurocomputing, vol.192, issue.18, pp.81-91
DOI : 10.1016/j.neucom.2016.02.031

URL : https://hal.archives-ouvertes.fr/hal-01312596

M. Corneli, P. Latouche, and F. Rossi, Multiple change points detection and clustering in dynamic networks, Statistics and Computing, vol.32, issue.2, 2017.
DOI : 10.1007/s00180-016-0655-5

URL : https://hal.archives-ouvertes.fr/hal-01430717

J. Daudin, F. Picard, and S. Robin, A mixture model for random graphs, Statistics and Computing, vol.4, issue.2, pp.173-183, 2008.
DOI : 10.1007/s11222-007-9046-7

URL : https://hal.archives-ouvertes.fr/inria-00070186

C. Dubois, C. T. Butts, and P. Smyth, Stochastic blockmodelling of relational event dynamics, International Conference on Artificial Intelligence and Statistics, volume 31 of the Journal of Machine Learning Research Proceedings, pp.238-246

D. Durante, B. David, and . Dunson, Locally adaptive dynamic networks, The Annals of Applied Statistics, vol.10, issue.4, pp.2203-2232
DOI : 10.1214/16-AOAS971

A. Idris, P. Eckley, R. Fearnhead, and . Killick, Analysis of changepoint models. Bayesian Time Series Models, pp.205-224, 2011.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

URL : http://arxiv.org/pdf/0906.0612v1.pdf

N. Friel, R. Rastelli, J. Wyse, and A. E. Raftery, Interlocking directorates in Irish companies using a latent space model for bipartite networks, Proceedings of the National Academy of Sciences, vol.8, issue.12, pp.6629-6634, 2016.
DOI : 10.1111/1467-9868.00353

A. Goldenberg, X. Zheng, S. E. Fienberg, and E. M. Airoldi, A survey of statistical network models, Machine Learning, pp.129-133, 2009.

B. Grün and K. Hornik, topicmodels: An R package for fitting topic models, Journal of Statistical Software, vol.40, issue.13, pp.1-30, 2011.

R. Guigourès, M. Boullé, and F. Rossi, A Triclustering Approach for Time Evolving Graphs, 2012 IEEE 12th International Conference on Data Mining Workshops, pp.115-122, 2012.
DOI : 10.1109/ICDMW.2012.61

R. Guigourès, M. Boullé, and F. Rossi, Discovering patterns in time-varying graphs: a triclustering approach Advances in Data Analysis and Classification, pp.1-28

S. Mark, . Handcock, E. Adrian, J. M. Raftery, and . Tantrum, Model-based clustering for social networks, Journal of the Royal Statistical Society: Series AStatistics in Society), vol.170, issue.2, pp.301-354, 2007.

S. Hanneke, W. Fu, and E. P. Xing, Discrete temporal models of social networks, Electronic Journal of Statistics, vol.4, issue.0, pp.585-605, 2010.
DOI : 10.1214/09-EJS548

G. Alan and . Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B (Methodological), pp.438-443, 1971.

Q. Ho, L. Song, and E. P. Xing, Evolving cluster mixed-membership blockmodel for time-evolving networks, International Conference on Artificial Intelligence and Statistics, pp.342-350, 2011.

P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent Space Approaches to Social Network Analysis, Journal of the American Statistical Association, vol.97, issue.460, pp.1090-1098, 2002.
DOI : 10.1198/016214502388618906

T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp.50-57, 1999.
DOI : 10.1145/312624.312649

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social Networks, vol.5, issue.2, pp.109-137, 1983.
DOI : 10.1016/0378-8733(83)90021-7

L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J. Pinton et al., What's in a crowd? Analysis of face-to-face behavioral networks, Journal of Theoretical Biology, vol.271, issue.1, pp.166-180, 2011.
DOI : 10.1016/j.jtbi.2010.11.033

B. Jackson, J. D. Sargle, D. Barnes, S. Arabhi, A. Alt et al., An algorithm for optimal partitioning of data on an interval, IEEE Signal Processing Letters, vol.12, issue.2, pp.105-108, 2005.
DOI : 10.1109/LSP.2001.838216

P. Jernite, C. Latouche, P. Bouveyron, L. Rivera, S. Jegou et al., The random subgraph model for the analysis of an acclesiastical network in merovingian gaul, Annals of Applied Statistics, vol.8, issue.1, pp.55-74

O. Kallenberg, Foundations of modern probability, 2006.
DOI : 10.1007/978-1-4757-4015-8

B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in networks, Physical Review E, vol.33, issue.1, p.16107, 2011.
DOI : 10.1088/1742-5468/2006/11/P11010

URL : http://arxiv.org/pdf/1008.3926

R. Killick, P. Fearnhead, and I. A. Eckley, Optimal Detection of Changepoints With a Linear Computational Cost, Journal of the American Statistical Association, vol.6, issue.500, pp.1590-1598
DOI : 10.1111/j.1541-0420.2006.00662.x

M. Kim and J. Leskovec, Nonparametric multi-group membership model for dynamic networks, Advances in Neural Information Processing Systems (25), pp.1385-1393

G. Tamara, . Kolda, W. Brett, and . Bader, Tensor decompositions and applications, SIAM review, vol.51, issue.3, pp.455-500, 2009.

N. Pavel, . Krivitsky, S. Mark, and . Handcock, A separable model for dynamic networks, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.76, issue.21, pp.29-46

P. Latouche, C. Birmelé, and . Ambroise, Variational Bayesian inference and complexity control for stochastic block models, Statistical Modelling: An International Journal, vol.41, issue.1, pp.93-115
DOI : 10.1016/j.patcog.2008.06.019

URL : https://hal.archives-ouvertes.fr/hal-00624536

P. Latouche, E. Birmelé, and C. Ambroise, Overlapping stochastic block models with application to the french political blogosphere . The Annals of Applied Statistics, pp.309-336, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624538

M. Lawrence and . Leemis, Nonparametric estimation of the cumulative intensity function for a nonhomogeneous poisson process, Management Science, vol.37, issue.7, pp.886-900, 1991.

P. A. Lewis and G. S. Shedler, Simulation of nonhomogeneous poisson processes by thinning, Naval Research Logistics Quarterly, vol.32, issue.3, pp.403-413, 1979.
DOI : 10.1093/biomet/42.1-2.102

Y. Liu, A. Niculescu-mizil, and W. Gryc, Topic-link LDA, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.665-672, 2009.
DOI : 10.1145/1553374.1553460

C. Matias, T. Rebafka, and F. Villers, Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks ArXiv e-prints, pp.20-50, 2015.

C. Matias and V. Miele, Statistical clustering of temporal networks through a dynamic stochastic block model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.4, issue.4, pp.1119-1141
DOI : 10.1214/10-AOAS359

URL : https://hal.archives-ouvertes.fr/hal-01167837

A. Mc-daid, T. B. Murphy, N. Frieln, and N. J. Hurley, Improved Bayesian inference for the stochastic block model with application to large networks, Computational Statistics & Data Analysis, vol.60, pp.12-31
DOI : 10.1016/j.csda.2012.10.021

A. Mccallum, A. Corrada-emmanuel, and X. Wang, The author-recipienttopic model for topic and role discovery in social networks, Workshop on Link Analysis, Counterterrorism and Security, 2005.

J. L. Moreno, Who shall survive?: A new approach to the problem of human interrelations. Nervous and Mental, 1934.

M. Radford, . Neal, E. Geoffrey, and . Hinton, A view of the em algorithm that justifies incremental, sparse, and other variants, Learning in graphical models, pp.355-368, 1998.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.65, issue.2, p.26113, 2004.
DOI : 10.1103/PhysRevE.68.065103

E. Mark and . Newman, The structure and function of complex networks, SIAM review, vol.45, issue.2, pp.167-256, 2003.

A. Noack and R. Rotta, Multi-level algorithms for modularity clustering. CoRR, abs/0812, p.16, 2008.
DOI : 10.1007/978-3-642-02011-7_24

URL : http://arxiv.org/pdf/0812.4073v1.pdf

J. R. Norris, Markov chains. Cambridge series in statistical and probabilistic mathematics, 1998.

L. Nouedoui and P. Latouche, Bayesian non parametric inference of discrete valued networks, 21-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp.291-296
URL : https://hal.archives-ouvertes.fr/hal-00825966

K. Nowicki and T. A. Snijders, Estimation and Prediction for Stochastic Blockstructures, Journal of the American Statistical Association, vol.96, issue.455, pp.1077-1087, 2001.
DOI : 10.1198/016214501753208735

G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, vol.433, issue.7043, pp.814-818, 2005.
DOI : 10.1038/nature03248

C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic indexing, Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems , PODS '98, pp.159-168, 1998.
DOI : 10.1145/275487.275505

N. Pathak, C. Delong, A. Banerjee, and K. Erickson, Social topic models for community extraction, The 2nd SNA-KDD workshop, 2008.

F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J. Daudin, A statistical approach for array cgh data analysis, BMC Bioinformatics, vol.6, issue.1, p.27, 2005.
DOI : 10.1186/1471-2105-6-27

URL : https://hal.archives-ouvertes.fr/hal-00427846

H. William, S. A. Press, W. T. Teukolsky, B. P. Vetterling, and . Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 2007.

M. William and . Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical association, vol.66, issue.79, pp.846-850, 1971.

G. Robins, P. Pattison, Y. Kalish, and D. Lusher, An introduction to exponential random graph (p*) models for social networks, Social Networks, vol.29, issue.2, pp.173-191, 2007.
DOI : 10.1016/j.socnet.2006.08.002

M. Rosen-zvi, T. Griffiths, M. Steyvers, and P. Smyth, The author-topic model for authors and documents, Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp.487-494, 2004.

M. Sachan, D. Contractor, T. A. Faruquie, L. Venkata, and . Subramaniam, Using content and interactions for discovering communities in social networks, Proceedings of the 21st international conference on World Wide Web, WWW '12, pp.331-340
DOI : 10.1145/2187836.2187882

P. Sarkar, W. Andrew, and . Moore, Dynamic social network analysis using latent space models, ACM SIGKDD Explorations Newsletter, vol.7, issue.2, pp.31-40, 2005.
DOI : 10.1145/1117454.1117459

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

K. Daniel, Y. Sewell, and . Chen, Latent space models for dynamic networks, Journal of the American Statistical Association, vol.110, issue.21, pp.1646-1657

K. Daniel, Y. Sewell, and . Chen, Latent space models for dynamic networks with weighted edges, Social Networks, vol.44, issue.21, pp.105-116, 2016.

A. Tom and . Snijders, Stochastic actor-oriented models for network change, Journal of mathematical sociology, vol.21, issue.12, pp.149-172, 1996.

D. Snyder and E. L. Kick, Structural Position in the World System and Economic Growth, 1955-1970: A Multiple-Network Analysis of Transnational Interactions, American Journal of Sociology, vol.84, issue.5, pp.1096-1126, 1979.
DOI : 10.1086/226902

M. Steyvers, P. Smyth, M. Rosen-zvi, and T. Griffiths, Probabilistic author-topic models for information discovery, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.306-315, 2004.
DOI : 10.1145/1014052.1014087

Y. Sun, J. Han, J. Gao, and Y. Yu, iTopicModel: Information Network-Integrated Topic Modeling, 2009 Ninth IEEE International Conference on Data Mining, pp.493-502, 2009.
DOI : 10.1109/ICDM.2009.43

URL : http://www.cs.uiuc.edu/homes/hanj/pdf/icdm09_ysun.pdf

Y. W. Teh, D. Newman, and M. Welling, A collapsed variational bayesian inference algorithm for latent Dirichlet allocation Advances in neural information processing systems, pp.1353-1360, 2006.

W. A. Thompson, Point process models with applications to safety and reliability, 1988.
DOI : 10.1007/978-1-4613-1067-9

N. Villa, F. Rossi, and Q. D. Truong, Mining a medieval social network by kernel som and related methods, Arxiv preprint, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00278196

L. Ulrike-von, A tutorial on spectral clustering, Statistics and Computing, vol.17, issue.4, pp.395-416, 2007.

Y. J. Wang and G. Y. Wong, Stochastic Blockmodels for Directed Graphs, Journal of the American Statistical Association, vol.4, issue.397, pp.8-19, 1987.
DOI : 10.1080/01621459.1987.10478406

URL : http://www.stat.cmu.edu/~fienberg/Stat36-835/WangWong-JASA-1987.pdf

J. Wyse, N. Friel, and P. Latouche, Abstract, Network Science, vol.11, issue.01, pp.45-69
DOI : 10.1016/j.csda.2007.09.007

E. P. Xing, W. Fu, and L. Song, A state-space mixed membership blockmodel for dynamic network tomography, The Annals of Applied Statistics, vol.4, issue.2, pp.535-566, 2010.
DOI : 10.1214/09-AOAS311

URL : http://doi.org/10.1214/09-aoas311

H. Xu, M. Farajtabar, and H. Zha, Learning granger causality for hawkes processes, Proceedings of The 33rd International Conference on Machine Learning, pp.1717-1726

S. Kevin, A. O. Xu, and I. Hero, Dynamic stochastic blockmodels: Statistical models for time-evolving networks, Social Computing, Behavioral- Cultural Modeling and Prediction, pp.201-210

T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, Detecting communities and their evolutions in dynamic social networks???a??Bayesian approach, Machine Learning, vol.2, issue.1, pp.157-189, 2011.
DOI : 10.1017/CBO9780511815478

URL : https://link.springer.com/content/pdf/10.1007%2Fs10994-010-5214-7.pdf

D. Zhou, E. Manavoglu, J. Li, C. L. Giles, and H. Zha, Probabilistic models for discovering e-communities, Proceedings of the 15th international conference on World Wide Web , WWW '06, pp.173-182, 2006.
DOI : 10.1145/1135777.1135807

M. Zhou, Empirical Likelihood Method in Survival Analysis. Chapman & Hall/CRC Biostatistics Series URL https://books.google.fr/books?id= 9-b5CQAAQBAJ, 2015.

R. Zreik, P. Latouche, and C. Bouveyron, The dynamic random subgraph model for the clustering of evolving networks, Computational Statistics, vol.31, issue.9, pp.1-33, 2016.
DOI : 10.1016/j.patrec.2010.01.026

URL : https://hal.archives-ouvertes.fr/hal-01122393