Dynamic stochastic block models, clustering and segmentations in dynamic graphs

Résumé : Les graphes sont des structures mathématiques très adaptées pour modéliser les interactions parmi des objet/individus à étudier. De nombreux types de réseaux réels peuvent être modélisés à travers des graphes, tels que les réseaux de transport, les réseaux de transactions financières ou les réseaux sociaux comme Facebook ou Linkedin. Quand on observe un réseau d'interactions, le temps entre en jeu de deux manières différentes: on peut étudier les instants auxquels les interactions ont lieu et les durées de ces interactions. Les travaux de cette thèse se limitent à la première dimension temporelle. Chaque interaction est donc considérée comme instantanée pour des raisons de simplicité. L'évolution du réseau repose ainsi sur les temps des interactions uniquement. Dans ce contexte, les graphes peuvent être utilisés de deux manières différentes pour modéliser les réseaux: 1) Temps discret. Un réseau est observé à des instants différents et un graphe est associé à chacun de ces instants. Deux nœuds d'un graphe sont connectés si une ou plusieurs interactions entre eux sont observées dans le réseau à l'instant correspondant. Les interactions sont donc agrégées entre un instant d'observation et le suivant et les dates exactes des interactions sont perdues. Un réseau dynamique est enfin représenté par une séquence de graphes. 2)Temps continu. Plusieurs arcs connectent les nœuds d'un graphe. Chaque arc est donc uniquement associé à une paire de nœuds et à un instant temporel. Il n'y a pas d'agrégation temporelle dans ce cas et les instants exacts des interactions ne sont pas perdus. Le réseau dynamique est donc représenté par un seul graphe multiple dont les arcs sont étiquetés par les temps d'interaction. Dans cette thèse ces deux visions sont adoptées alternativement. Nous proposons de nouvelles méthodes d'apprentissage non supervisé qui visent à partitionner les sommets d'un graphe dynamique en classes homogènes au sens où les sommets d'une même classe ont des profils d'interaction similaires. Pour éviter des problèmes d'identifiabilité les groupes de nœuds ne changent pas dans le temps. Par ailleurs, les approches proposées visent à détecter des changements structurels dans la façon dont les groupes de nœuds interagissent entre eux. Le point de départ de cette thèse est le stochastic block model (SBM), une approche probabiliste initialement utilisée en sciences sociales. Dans la version standard du modèle, les nœuds d'un graphe sont répartis dans des classes et la probabilité d'apparition d'un arc entre deux nœuds dépend uniquement des classes auxquelles ils appartiennent. Comme aucune hypothèse n'étant faite sur les probabilités d'interaction, SBM est un modèle très flexible qui permet de capturer des structures topologiques différentes et variées (hubs, stars, communautés, etc.). Tout en gardant une approche de modélisation par blocs (comme dans SBM) dans le contexte des graphes dynamiques, les principales contributions de cette thèse sont les suivantes: 1) Nous introduisons une nouvelle extension dynamique du SBM, appelée dSBM, qui utilise des processus de Poisson non homogènes pour modéliser les interactions parmi les paires de nœuds d'un graphe dynamique, en temps discret et continu. Les fonctions d'intensité des processus ne dépendent que des classes des nœuds comme dans SBM. De plus, ces fonctions d'intensité ont des propriétés de régularité sur des intervalles temporels qui sont à estimer, et à l'intérieur desquels les processus de Poisson redeviennent homogènes. 2) Un récent algorithme d'estimation pour SBM, qui repose sur la maximisation d'un critère exact (ICL exacte) est ici adopté pour estimer les paramètres de dSBM et sélectionner simultanément le modèle optimal. notre connaissance, c'est la première fois que cet algorithme est utilisé dans le cadre d'un modèle SBM dynamique. 3) Un algorithme exact pour la détection de rupture dans les séries temporelles, la méthode pruned exact linear time (PELT), est étendu pour faire de la détection de rupture dans des données de graphe dynamique selon le modèle dSBM. 4 Le modèle dSBM est étendu ultérieurement pour faire de l'analyse de réseau textuel dynamique. Les réseaux sociaux sont un exemple de réseaux textuels: les acteurs s'échangent des documents (posts, tweets, etc.) dont le contenu textuel peut être utilisé pour faire de la classification et détecter la structure temporelle du graphe dynamique. Le modèle que nous introduisons est appelé dynamic stochastic topic block model (dSTBM). Ce manuscrit est organisé de la façon suivante. Dans le premier chapitre nous faisons état des principales notions de théorie des graphes et des propriétés connues des réseaux réels. Deux définitions formelles de graphe dynamique sont énoncées. Ensuite, nous présentons les principaux modèles génératifs existants pour les graphes (statiques et dynamiques) et les méthodes d'estimation introduites dans la littérature pour ces modèles. Enfin, nous introduisons des outils statistiques (pas forcement liés à l'analyse de réseau) qui sont à la base de nos travaux. Dans le deuxième chapitre, deux versions du modèle dSBM sont présentées pour l'analyse des réseaux dynamiques en temps discret. Une procédure d'inférence est ensuite détaillée. Elle vise à maximiser (de façon gloutonne) la vraisemblance intégrée des données complétées: ceci permet d'estimer les paramètres du modèle tout en sélectionnant simultanément le nombre de classes. Le troisième chapitre introduit une version du modèle dSBM pour l'analyse de graphes dynamiques en temps continu. La méthode proposée assure une forme de détection de rupture dans l'évolution temporelle de ce type de graphes. L'inférence repose sur une approche variationnelle classique dont une partie est basée sur le PELT. Le quatrième chapitre revient sur les graphes dynamiques en temps discret. Les réseaux dynamiques textuels sont pris en compte, le modèle dSTBM est présenté et une procédure d'inférence est détaillée. Un critère de sélection de modèle est enfin formellement dérivé. En conclusion chaque chapitre, nous conduisons des expériences sur des données simulées et réelles. Ces expériences nous servent à la fois à tester les points forts et les faiblesses de nos méthodes et à les comparer avec des approches concurrentes.
Type de document :
Thèse
Mathematics [math]. Université Paris 1 - Panthéon Sorbonne, 2017. English
Liste complète des métadonnées

Littérature citée [105 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/tel-01644866
Contributeur : Marco Corneli <>
Soumis le : mercredi 22 novembre 2017 - 16:23:48
Dernière modification le : jeudi 23 novembre 2017 - 01:10:44

Fichier

these_sample.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : tel-01644866, version 1

Collections

Citation

Marco Corneli. Dynamic stochastic block models, clustering and segmentations in dynamic graphs. Mathematics [math]. Université Paris 1 - Panthéon Sorbonne, 2017. English. 〈tel-01644866〉

Partager

Métriques

Consultations de la notice

371

Téléchargements de fichiers

464