Skip to Main content Skip to Navigation
Theses

Wintertime Stable Boundary-Layer Processes in Alpine Valleys

Abstract : Alpine valleys are rarely closed systems, implying that the atmospheric boundary layer of a particular valley is influenced by the surrounding terrain and large-scale flows. A detailed characterisation and quantification of these effects is required in order to design appropriate parameterisation schemes for complex terrains. The focus of this work is to improve the understanding of the effects of surrounding terrain (plains, valleys or tributaries) on the heat and mass budgets of the stable boundary layer of a valley, under dry and weak large-scale wind conditions. Numerical simulations using idealised and real frameworks are performed to meet this goal. Several idealised terrains (configurations) were considered: an infinitely long valley (i.e. two-dimensional), and upstream valleys opening either on a plain (valley-plain), on a wider valley (draining) or on a narrower valley (pooling). In three-dimensional valleys, two main regimes can be identified for all configurations: a transient regime, before the down-valley flow develops, followed by a quasi-steady regime, when the down-valley flow is fully developed. The presence of a downstream valley reduces the along-valley temperature difference, therefore leading to weaker down-valley flows. As a result, the duration of the transient regime increases compared to the respective valley-plain configuration. Its duration is longest for pooling configuration. For strong pooling the along-valley temperature difference can reverse, forcing up-valley flows from the narrower towards the wider valley. In this regime, the volume-averaged cooling rate is found maximum and its magnitude dependent on the configuration considered. Therefore pooling and draining induce colder and deeper boundary layers than the respective valley-plain configurations. In the quasi-steady regime the cooling rate is smaller than in the transient regime, and almost independent of the configuration considered. Indeed, as the pooling character is more pronounced, the warming contribution from advection to the heat budget decreases because of weaker down-valley flows, and so does the cooling contribution from the surface sensible heat flux. The mass budget of the valley boundary layer was found to be controlled by a balance between the convergence of downslope flows at the boundary layer top and the divergence of down-valley flows along the valley axis, with negligible contributions of subsidence far from the slopes. The mass budget highlighted the importance of the return current above the down-valley flow, which may contribute significantly to the inflow of air at the top of the boundary layer. A case-study of a persistent cold-air pool event which occurred in February 2015 in the Arve River Valley during the intensive observation period 1 of the PASSY-2015 field campaign, allowed to quantify the effects of neighbouring valleys on the heat and mass budgets of a real valley atmosphere. The cold-air pool persisted because of warm air advection at the valley top, associated with the passage of an upper-level ridge over Europe. The contributions from each tributary valley to the mass and heat budgets of the valley atmosphere were found to vary from day to day within the persistent stage of the cold-air pool, depending on the large-scale flow. Tributary flows had significant impact on the height of the inversion layer and the strength of the cold-air pool, transporting a significant amount of mass within the valley atmosphere throughout the night. The strong stratification of the near-surface atmosphere prevented the tributary flows from penetrating down to the valley floor. The evolution of the large-scale flow during the episode had a profound impact on the near-surface circulation of the valley. The channelling of the large-scale flow at night, can lead to the decrease of the horizontal temperature difference driving the near-surface down-valley flow, favouring the stagnation of the air close to the ground.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-01643685
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, November 21, 2017 - 3:47:08 PM
Last modification on : Monday, May 2, 2022 - 3:41:21 AM

File

ARDUINI_2017_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01643685, version 1

Collections

UGA | CNRS | LEGI | STAR

Citation

Gabriele Arduini. Wintertime Stable Boundary-Layer Processes in Alpine Valleys. Meteorology. Université Grenoble Alpes; University of Hertfordshire (Hatfield (GB)), 2017. English. ⟨NNT : 2017GREAU006⟩. ⟨tel-01643685⟩

Share

Metrics

Record views

304

Files downloads

187