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avais besoin et tu m’as fait confiance du début à la fin de la thèse. J’ai beaucoup apprécié
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discuter avec vous. En particulier, un grand merci à toi Freddy, pour nos très nombreux
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toi Andrea, pour nos discussions de physique et pour m’avoir régulièrement demandé
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tait du bureau sans pouvoir s’arrêter de rire. Je n’ai jamais pu te dire pourquoi, je ne le

sais pas moi-même... Julien, c’était toujours un plaisir de te voir autour d’un café, et ça se
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mission doctorale pendant ces trois ans, pour leurs conseils m’ayant permis d’être plus à
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seul quand je rentrais d’une journée difficile, tu étais là pour me remonter le moral quand
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Introduction

The atomic nucleus is one of the most complex and fascinating physical systems,

presenting a large variety of behaviors like deformation, collective excitation or particle

emission. An intense competition between the electromagnetic, strong and weak interac-

tions occurs within it. Since its discovery by E. Rutherford [1], more than a century ago,

great experimental and theoretical efforts have been achieved to understand its numerous

properties. And yet, even now, there is no unified theory that would explain all nuclear

phenomena.

Early, it has been proposed that the nucleus has a shell structure, similar to the

electrons in the atom. Indeed, the nucleus components, the protons and the neutrons,

may arrange themselves in such ways that some interesting features arise. One of the

most famous examples is the extra binding energy for nuclei having special numbers of

protons and/or neutrons, the magic numbers. Some of these numbers were first identi-

fied in 1934 from isotopic and isotonic abundances by K. Guggenheimer [2], and from

binding energies by W. M. Elsasser [3]. The latter tried to establish for the first time an

independent-particle model, where each nucleon moves independently from the others in

a global potential, but neither his model nor the similar ones that followed could establish

the correct list of magic numbers. The solution to this problem was found in 1949 by

Goeppert Mayer [4] and Haxel, Jensen and Suess [5], who introduced a spin-orbit term in

the potential which gave rise to the well-known magic numbers: 2, 8, 20, 28, 50, 82, 126.

However, although these numbers are valid for the nuclei in the valley of stability, they

are not universal throughout the nuclear chart [6].

One of the greatest challenges in nuclear structure nowadays is to understand the shell

evolution for extreme neutrons over protons N/Z ratios. The observation of the strong

rearrangements of nuclear structure far from stability help to have a better knowledge of

the forces at stake. With the developement of radioactive-ion beams facilities worldwide

over the last few decades, more and more exotic regions of the nuclear chart can be reached.

We show this nuclear chart in figure 1. Many techniques were developed in order to access

to the multiple facets of the nucleus, like laser spectroscopy, mass measurement, β-decay

studies and of course plenty of nuclear reactions involving a wide range of energies. All

these techniques are complementary.
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Figure 1 – The chart of nuclides. The colors represent the different decay modes and the
conventional magic numbers are indicated.

In this thesis, we are interested in the proton-shell evolution towards the supposedly

doubly-magic 78Ni nucleus (Z = 28, N = 50). The evolution of the Z = 28 gap towards

N = 50 can be studied by probing the single-particle character of the states in the

copper isotopic chain, having one proton more than nickel. Our work focuses on 79Cu,

at N = 50, produced through the (p,2p) proton-knockout reaction and studied by means

of in-beam γ-ray spectroscopy. The physics motivations for such a study are described

in chapter 1. The setup of the experiment and the different analysis steps are explained

in chapters 2 and 3, respectively. In chapter 4, we describe the procedure we established

for building level schemes from our data and test it on a known case for validation. We

apply this procedure to 79Cu in chapter 5. Finally, the interpretation of our results and

their comparison with shell-model calculations is done in chapter 6.
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Chapter 1

Shell evolution towards 78Ni

1.1 Nuclear shell-model and exotic nuclei

The nuclear shell-model remains one of the major tools to treat the many-body

problem that represents the atomic nucleus. We present here the main features of this

model, proven to be robust for nuclei close to the valley of stability, and the mechanisms

at work in exotic nuclei.

1.1.1 Independent-particle picture

The properties of a nucleus with aA-body wave function ψA are given by the Schrödinger

equation,
[

A
∑

i=1

− ℏ
2

2m
∆i +

A
∑

i<j

W (i, j)

]

ψA = EψA (1.1)

with W the many-body interaction. Here we show only the two-body part, but the

reasoning that follows is the same including more-body terms.

The fundamental hypothesis of the nuclear shell-model is that each nucleon moves

independently in a mean-field describing the average interaction with the other nucleons

and represented by a one-body potential U(i). Then, the Hamiltonian is rewritten as

Ĥ =

[

A
∑

i=1

(

− ℏ
2

2m
∆i + U(i)

)

]

+

[

A
∑

i<j

W (i, j)−
A
∑

i=1

U(i)

]

= Ĥ(0) + V̂ (1.2)

where V̂ is the residual interaction. By using an appropriate U , this residual interaction

may be small and is neglected in the independent-particle model. The facts that in stable

nuclei there is a nearly constant nucleon density and that nuclear forces are short-range

interactions lead legitimately to choose a Woods-Saxon potential for U , or an approxi-

mation as a harmonic oscillator potential. The nucleon orbitals that can be built from

such a U are shown in figure 1.1, on the left and central parts. The large gaps between

3



Chapter 1. Shell evolution towards 78Ni

shells correspond to the harmonic oscillator magic numbers, which are 2, 8, 20, 40, 70.

Independently, Goeppert Mayer [4] and Haxel, Jensen and Suess [5] proposed to add a

spin-orbit term in the potential, like for electrons in atoms, and the spin-orbit splitting

led to the set of magic numbers that we know, as shown in figure 1.1 on the right.
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Figure 1.1 – Orbital scheme from the single-particle Hamiltonian Ĥ(0) of equation 1.2, using
a harmonic oscillator potential (left), a Woods-Saxon potential (center), and a
Woods-Saxon potential plus a spin-orbit term (right).

The validity of this independent-particle model is limited to closed-shell nuclei with

one particle or one hole, but for a number of protons or neutrons getting away from

the magic numbers, the residual interaction cannot be neglected anymore: the two-body

interaction plays a significant role. Moreover, these magic numbers are not universal

throughout the nuclear chart, as the nuclear forces far from stability may induce strong

structure rearrangements. Some of them can disappear, like N = 28 in silicon isotopes [7],

while new magic numbers arise, like N = 34 in calcium isotopes [8]. We can therefore

wonder what happens to the Z = 28 gap in exotic regions of the nuclear chart.
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1.1. Nuclear shell-model and exotic nuclei

1.1.2 Effective NN interaction

The properties of the force between two nucleons can be derived from nucleon-nucleon

scattering experiments and from the study of the deuteron, the only two-nucleon system

that is bound. From these observations, we can obtain some general properties of the

NN interaction:

� It is attractive but with a hard core component that prevents the nuclear matter

from collapsing;

� It is of short range, of the order of 1 fm;

� It is strongly spin-dependent, since no pair of nucleons with S = 0 is bound contrary

to the S = 1 ground-state of the deutron;

� It comprises a non-central part, i.e. a part that has not a spherical symmetry, made

of the spin-orbit term ~L.~S and the tensor term, written as:

S12 =
3(~σ1.~r).(~σ2.~r)

r2
− ~σ1.~σ2 (1.3)

with r = |~r1 − ~r2| the distance between the two nucleons;

� It is charge-independent.

Then, different potentials can be built by combining spin (~σ1.~σ2), isospin (~τ1.~τ2), spin-

orbit (~L.~S) and tensor (S12) terms in order to reproduce the experimental observations.

We can notice that the spin-orbit and tensor terms of the interaction act only between

nucleons having a relative spin S = 1.

In order to simplify the many-body problem, shell-model calculations are based on a

truncated space, i.e. a space reduced to several valence orbitals above an inert core, as

explained in section 1.4. Therefore, one deals with an effective NN interaction within

the valence space. To derive this effective interaction, one generally starts from the free

nucleon-nucleon interaction to which are added in-medium effects, because a core is in

reality never totally inert, and the Pauli principle, as a nucleon cannot move to states

already occupied by other nucleons. The in-medium effects are taken into account using

perturbation theory, and the Pauli principle requires the strong repulsive component in the

NN interaction at very short range. Due to the latter, a renormalization procedure has to

be applied because otherwise the repulsive part of the interaction, which tends towards in-

finity when r goes to zero, would make the perturbation treatment meaningless [9].

Such an effective interaction that one builds from the bare NN potential fails to

reproduce saturation properties of nuclei and spin-orbit magic numbers [9]. The limitation

to two-body forces is probably the cause of this problem and the addition of a three-body

term has been argued to give a better agreement with the experimental data [10]. For
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Chapter 1. Shell evolution towards 78Ni

example, an effective interaction with a three-body term has been developed in the oxygen

isotopes region [11], leading to a correct neutron drip-line at 24O, while the use of only

a two-body interaction puts it wrongly at 28O. For the valence spaces where no effective

three-body interaction is available yet, a solution was found in the multipole decompostion

of the Hamiltonian.

1.1.3 Multipole decomposition of the Hamiltonian

Historically, the multipole decomposition of the Hamiltonian was done to overcome

the insufficiency of two-body effective interactions described just before [12]. The decom-

position is done in the following way [13]:

Ĥ = Ĥm + ĤM (1.4)

with Ĥm the monopole part and ĤM the multipole part. The problem of the two-body

interaction was bypassed by adjusting the monopole part to experimental data.

Monopole part

The monopole part of the Hamiltonian depicts a spherical mean field. It is responsible

for global saturation properties and single-particle behavior [13]. Considering a two-body

interaction V , the monopole part of the Hamiltonian can be written as follows [14]:

Ĥm =
∑

j

επj n̂
π
j +

∑

j

ενj n̂
ν
j +
∑

j, j′

V πν
jj′ n̂

π
j n̂

ν
j′ +

∑

j6j′

V νν
jj′

n̂ν
j (n̂

ν
j′ − δjj′)

1 + δjj′
+
∑

j6j′

V ππ
jj′

n̂π
j (n̂

π
j′ − δjj′)

1 + δjj′

(1.5)

with επ,ν the proton and neutron single-particle energies, n̂π,ν the proton and neutron

number operators, j the set of quantum numbers of a given orbital, and V ττ ′

ij the monopole

component of V , corresponding to an average of the two-body interaction over all possible

magnetic substates of the two nucleons in the orbits j and j′:

V ττ ′

jj′ =

∑

J〈jj′|V |jj′〉J (2J + 1)
∑

J(2J + 1)
(1.6)

with J the angular momentum of a two-body state, that takes all allowed values, and

τ the type of nucleon. Terms with higher-order of nπ,ν have to be added to take into

account more-body interactions.

In the shell-model framework, the monopole Hamiltonian is used for the calculation of

effective single-particle energies (ESPE), which quantify the effects of the other nucleons

on a nucleon in a given orbital. These ESPE are defined for an occupied orbit as the

opposite of the nucleon separation-energy of this orbit and for an unoccupied orbit as the
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1.1. Nuclear shell-model and exotic nuclei

opposite of the gain of binding energy by putting a nucleon into this orbit [15]. The ESPE

are linear functions of the occupation numbers 〈n̂τ ′

j′ 〉 of the orbitals j′ above a core A0,

ε̃ τ
j (A) = ετj (A0) +

∑

j′,τ ′

V ττ ′

jj′ 〈n̂τ ′

j′ 〉 (1.7)

where the sum runs over all valence orbitals, and

∆εj = ε̃ τ
j (A)− ετj (A0) =

∑

j′,τ ′

V ττ ′

jj′ 〈n̂τ ′

j′ 〉 (1.8)

is the so-called monopole drift. An illustration of such an effect is shown in figure 1.2(a).

The monopole drift is responsible of shell-structure modifications that can be strong

enough to make disappear some magic numbers and give rise to new ones, like for ex-

ample in 24O [15, 16], illustrated in figure 1.2(b). Unfortunately, the ESPE are not ob-

servables [17]: they are uncorrelated energies while the nucleus is a correlated system.

nν

E
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E

επ,j’

επ,j’
~

εν,j

0 (2jν + 1)

Slope = V
πν

(j,j’)

0

4

8
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E
 (

M
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)

30
Si (Z = 14)

24
O (Z = 8)

2s1/2

1d3/2

  pf
shell

N = 20
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a) b)

Figure 1.2 – Monopole drift. (a) Linear decrease of the πj′-orbital ESPE as a function of the
neutron occupation in the νj orbital. (b) Example of a monopole drift for the
neutron 1d3/2 orbital between 30Si and 24O, relatively to the 2s1/2 orbital. The
magic number N = 20 disappears and is replaced by N = 16 [15,16].

The contribution to the shell evolution of the different components of the monopole

part of the NN interaction has been much discussed [14,15,18–22]. This is not a straight-

forward question because of the renormalization of the bare NN force and the adjustment

of the monopole part to experimental data. In several studies, the effective interaction was

decomposed into central, spin-orbit and tensor parts, allowing to trace them separately.

Various effective interactions and different shells were considered. The conclusion of these

works is that the central part of the NN interaction mainly drives the global trend of

the ESPE, while the tensor part can significantly modify the ESPE splitting between

spin-orbit partners [14, 18–21]. The tensor force, when filling a neutron (proton) orbital
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Chapter 1. Shell evolution towards 78Ni

j′ = l′ ± 1/2, impacts proton (neutron) spin-orbit partners j
>
= l+ 1/2 and j

<
= l− 1/2

as follows [19]:

(2j
>
+ 1)V πν

j> , j′ + (2j
<
+ 1)V πν

j< , j′ = 0 (1.9)

meaning that the monopole part of the tensor force acts in an opposite way on spin-

orbit partners, but also that it vanishes when both j
>
and j

<
orbitals are full. Moreover,

j′
<
− j

>
and j′

>
− j

<
interactions are attractive while j′

>
− j

>
and j′

<
− j

<
interactions are

repulsive. As explained in section 1.4, this has strong implications on the shell gaps that

are delimited by spin-orbit orbit partners, which is the case of the Z = 28 gap in 78Ni.

Multipole part

The multipole part of the Hamiltonian describes the correlations between the valence

nucleons, like pairing and quadrupole interactions. It is responsible for the particle-

hole excitations across shell gaps. The decrease of a shell gap, due to a monopole drift

that brings closer the two orbitals defining the gap, can induce the presence of intruder

deformed configurations at low energy if the correlation energy of such configurations is

larger than energy needed to create them [14]. In some cases, the correlations may be

important enough so that the typical signatures of a magic nucleus disappear, while the

magic gap is only weaker but still existing [12]. There is therefore competition between

the monopole part, that tends to make the nucleus spherical, and the multipole part,

that leads it into a deformed shape. The disentanglement between correlations and pure

monopole effect is non-trivial.

1.2 Magicity in the vicinity of 78Ni

In the shell model as it was initially formulated, the proton πf7/2 orbital separates

from the 3~ω harmonic oscillator shell because of the spin-orbit splitting and forms the

Z = 28 gap. The neutron νg9/2 orbital splits off from the 4~ω shell to join the 3~ω orbits

and creates a magic number at N = 50. With 28 protons and 50 neutrons, the 78Ni

nucleus is thus expected to be one of the most neutron-rich doubly magic nuclei, making

it of great interest for nuclear structure.

Up to now, no evidence has been found for the disappearance of the shell closures at

Z = 28 and N = 50, even if some studies hint at a possible weakening of the Z = 28 magic

number towards N = 50, as explained in the following, and more recently of the N = 50

magic number below 78Ni [23]. The mechanisms at work far from stability, described in the

previous section, may influence these two gaps, in particular through monopole drifts of

single-particle energies. So far no information about the spectroscopy of 78Ni is available,

but we present here the status of experimental knowledge regarding the magicity towards

this key nucleus, focusing more on the Z = 28 gap.
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1.2. Magicity in the vicinity of 78Ni

1.2.1 Separation energies

Mass measurements are a key tool in the identification of shell closures, as they give

access to properties like the two-proton separation energy, defined as

S2p(Z,N) =M(Z − 2, N) + 2M(1H)−M(Z,N) = B(Z,N)− B(Z − 2, N) (1.10)

with M the mass and B the binding energy of the nuclei considered. In other words,

this quantity corresponds to the energy required to remove the last pair of protons, which

is much higher in the case of a closed shell than for a pair of protons above a gap. In

figure 1.3(a), one can see the evolution of S2p as a function of the number of protons in

the nickel region. The drop when passing Z = 28 that can be observed in the N = 40

and N = 42 isotonic chains is characteristic of a shell closure. The latter is even more

visible when looking at the evolution of S2p as a function of the neutron number, shown

in figure 1.3(b), where there is a gap between the nickel and zinc isotopic chains. Unfor-

tunately, S2p(
78Ni) and S2p(

80Zn) are not known, they require to measure the masses of
76Fe and 78Ni that are not accessible so far.
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a) b)

Figure 1.3 – Two-proton separation energies of (a) the N = 40 to 50 isotonic and (b) the Z = 26
to 32 isotopic chains. Data taken from reference [24].

1.2.2 Half-lives

Experimental indications of a doubly-magic 78Ni can also be found looking at the half-

lives of the surrounding isotopes. The systematics of the β-decay half-lives for the Z = 27

to 31 isotopic chains is shown in figure 1.4.
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Figure 1.4 – β-decay half-lives of the Z = 27 to 31 isotopic chains above N = 44. Data taken
from references [25, 26].

Half-lives beyond 78Ni were measured at RIKEN [25]. The fast drop of the half-life

for the N > 50 nickel isotopes was interpreted by the authors as suggesting the magicity

of the N = 50 neutron number: if the N = 50 gap is large, the 51th neutron that is

above will strongly increase the Qβ value and therefore strongly decrease the half-life. As

regards the gap between the cobalt and nickel chains, a similar reasoning is made but

this time concerning the Z = 28 gap: in a Co→Ni decay, the proton produced can fill the

last proton orbital before the gap, while a Ni→Cu decay can only fill an orbital above,

decreasing Qβ especially if the gap is large.

1.2.3 Systematics of the 2+
1 state

One of the signatures of a shell gap is a high first 2+ state in the magic nucleus

compared to its neighbors. This can be understood within the shell-model framework as

follows: (i) if the nucleus is doubly magic, i.e. with a closed shell for both protons and

neutrons, at least one nucleon has to be excited across a shell gap to generate a 2+ state,

which requires an important amount of energy; (ii) in a nucleus with one closed shell and

one open shell, the creation of an excited state costs only the energy of breaking a pair

in the open shell; (iii) when both proton and neutron shells are open, we can have an

important deformation of the nucleus that leads to even lower excited states.

The evolution of the 2+1 state in the N = 44 to 52 isotonic chains is shown in fig-

ure 1.5(a). The magic character of Z = 28 is reflected by a higher energy of the 2+1
state in nickel compared to the other isotopes. The same observation can be done for the

N = 50 isotonic chain that is higher in energy than the others, showing the magic char-

acter of N = 50. Similar conclusions can be drawn from the systematics of the 2+1 state
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1.2. Magicity in the vicinity of 78Ni

in the iron, nickel, zinc, germanium and selenium isotopic chains, shown in figure 1.5(b):

when passing the N = 50 neutron number, the 2+1 state suddenly rises, and the nickel

isotopic chain is significantly above the others.
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Figure 1.5 – Systematics of the 2+1 state in (a) theN = 44 to 52 isotonic and (b) the Z = 26 to 34
isotopic chains. The Z = 28 and N = 50 numbers clearly show a magic character,
but no information is available for 78Ni so far. Data taken from references [26–37].

Up to now, no information about the spectroscopy of 78Ni has been published, but one

can see that its 2+1 -state energy would be a crucial information to ascertain the persistence

of the Z = 28 and N = 50 gaps at such a high exoticity.

1.2.4 B(E2; 2+
→ 0+) in nickel isotopes

The 70Ni nucleus (N = 42) was found to have a reduced transition probability

B(E2; 2+ → 0+), defined in section 1.5.2, three times larger [38] than for 68Ni [39]. While

it is somewhat normal that the addition of two neutrons above a subshell closure, like at

N = 40, increases the collectivity, such an abrupt rise of the B(E2) in 70Ni was unex-

pected and was interpreted as an indication of a reduction of the Z = 28 gap [38]. This

was also suggested as a possible explaination for the slight decrease of the first 2+-state

energy above 70Ni [30], that can be seen in figure 1.5(b). The enhancement of collectivity

was confirmed in 74Ni by measuring its deformation length, but this time the authors con-

cluded that it could be also due to the weakening of the N = 50 gap and not necessarily

of the Z = 28 one [40]. More recently, two experiments were performed to measure the

B(E2) value in 72,74Ni, one through Coulomb excitation [41] and the other one through

a lifetime measurement [42]. The results show that the enlargement of collectivity above

N = 40 is not as pronounced as previously said and the authors concluded that the
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Chapter 1. Shell evolution towards 78Ni

quenching of the Z = 28 gap does not happen. But no other explanation for such a high

B(E2) in 70Ni was given so far. As a consequence, the study of the proton magicity close

to 78Ni is of primary importance to disentangle the ambiguity on the possible weakening

of the Z = 28 gap.

1.3 The neutron-rich copper isotopic chain

Neutron-rich copper isotopes, having one proton more than nickel isotopes, provide

an interesting way of probing the nuclear structure in the vicinity of 78Ni, in particular

to characterize its proton single-particle nature. We present here the latest status of the

experimental knowledge in this isotopic chain. The orbitals of interest for protons are

1f7/2, supposedly full, and 2p3/2, 1f5/2, 2p1/2. As regards neutrons, we are concerned

about the 1g9/2 orbital, which is empty at N = 40 and full at N = 50.

1.3.1 Monopole drift

When adding neutrons in the νg9/2 orbital above the N = 40 subshell gap, there is a

sudden decrease of the energy of the first 5/2− excited state relative to the 3/2− ground

state in 71,73Cu, compared to lighter copper isotopes. This was established from β decay

of 69,71,73Ni [43, 44] and the authors assumed a πf5/2 and πp3/2 single-particle characters

for these two states, respectively. The πf5/2 single-particle character of the 5/2− state

in 69,71,73Cu was confirmed by Coulomb excitation [45], in which the fall of the reduced

transition probability B(E2; 5/2−1 → 3/2−gs) from more than 10 W.u. (N < 40) to less

than 5 W.u. (N ≥ 40) was observed. The inversion of these 3/2− and 5/2− states above

N = 44 was evidenced from collinear laser spectroscopy, where it was shown that the

ground state of 75Cu has a spin 5/2− [46]. Two nearly degenerate states were observed

in 75Cu, at 61.7(4) and 66.2(4) keV [47], and based on the systematics and the B(M1)

and B(E2) transition rates, the authors concluded that one of them is a 3/2− state with

a significant single-particle character. The inversion of the first 3/2− and 5/2− states in
75Cu was found to be maintained in 77Cu by laser spectroscopy [48], and the first 3/2−

level was assigned very recently to a state at 293 keV in a β-decay experiment [49]. But

no information is available for 79Cu.

The systematics of the first 3/2− and 5/2− states in the copper isotopic chain is shown

in figure 1.6. The important single-particle character of these levels means that the gap

between the πp3/2 and πf5/2 orbitals decreases when filling the νg9/2 orbital, due to a

monopole drift [43,44]. If the πf5/2 orbital is inverted with the πp3/2 one, it becomes the

upper orbital defining the Z = 28 gap, and therefore a continuation of the monopole drift

could affect the size of the gap.
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Figure 1.6 – Systematics of the first 3/2− and 5/2− states in neutron-rich copper isotopes. The
ground-state spin changes at N = 46. Data taken from references [26, 43, 46–50].

It is interesting to note that a similar behavior was observed in the gallium isotopes,

that have two protons more than copper. Indeed, the ground state of 71Ga (N = 40)

has a spin 3/2− and when starting to fill the νg9/2 orbital, there is a drop in energy of

the first 5/2− excited state, although less sudden than for copper. The inversion between

the 3/2− and 5/2− states happens in 81Ga [51,52]. The authors concluded that the same

mechanism as for copper is at work in gallium. But studying single-particle behaviors in

gallium is more difficult as the three protons in the πp3/2f5/2 orbitals, instead of one for

copper, may couple and give rise to states that mix with the single-particle ones.

1.3.2 πf−1

7/2 single-hole strength

The behavior of the πf7/2 spin-orbit partner is more difficult to determine. This

orbital is of primary importance as it is the lower orbital defining the Z = 28 gap. Access

to this hole state is possible through proton transfer or knockout reactions. The πf−1
7/2

strength can be fragmented over several 7/2− levels and it is therefore necessary to extract

the spectroscopic factor, defined in section 1.5.1, of each level in order to calculate the

centroid of the strength.

In 69Cu, two 7/2− states were observed a few decades ago [50] and another one was

discovered recently [53], from experiments using the 70Zn(d,3He)69Cu pick-up reaction.

These three states lie at 1.71, 1.87 and 3.35 MeV and were found to have spectroscopic

factors equal to 2.50(14), 0.50(10) and 2.40(15), implying the important πf−1
7/2 character

of the first and third ones. 67(3)% of the πf−1
7/2 strength have been observed and the rest

must lie at higher energy than 3.35 MeV, meaning that the centroid found at 2.45 MeV

has to be seen as a lower limit [53].

A 7/2− state was observed at 1.19 MeV in 71Cu, fed by the E2 cascade from the decay

of a 19/2− isomeric state [28, 54], for which a single-hole character was excluded by the
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Chapter 1. Shell evolution towards 78Ni

large B(E2) value (10.7(12) W.u.) measured in the Coulomb-excitation experiment [45].

Based on the log ft values, a 7/2− spin was assigned to the 0.98-MeV state observed in the

β-decay experiment [43,44]. In the 72Zn(d,3He)71Cu pick-up reaction perfomed lately [55],

none of these two levels was observed but three new 7/2− states were discovered at 1.86,

3.24 and 4.36 MeV with a spectroscopic factor of 1.4(2), 1.5(3) and 3.7(6), respectively.

An experimental centroid of 3.8 MeV for the πf−1
7/2 strength was determined from the latter

experiment, based on the 86(12)% of the total strength observed. Comparing with 69Cu,

it is not possible to clarify in what direction or to what extent the energy of the centroid

shifts, but the πf−1
7/2 strength remains sufficiently high to conclude that the Z = 28 gap

does not collapse when starting to fill the νg9/2 orbital [55].

The first spectroscopic information for 73Cu was obtained in the β-decay experiment,

in which a 7/2− spin has been tentatively assigned to two states, at 0.96 and 1.01 MeV, and

a (7/2−, 9/2−) spin to another one at 1.30 MeV [44]. The Coulomb-excitation experiment

exludes the single-hole character of the 0.96-MeV level because of its high B(E2) value

(14.9(18) W.u.) [45]. A multinucleon-transfer experiment was performed recently, in which

the lifetime of several states was extracted [56]. The authors concluded that only the

1.30-MeV state could have a πf−1
7/2 single-hole character, in contradiction with the core-

coupling character suggested earlier [44], but mentioning that this state could also have

a spin 5/2−. The situation is not clear in this nucleus and no spectroscopic factor was

extracted, preventing from firm conclusions.

As regards the isotopes heavier than 73Cu, no 7/2− state has ever been observed

in 75Cu, while two of them were possibly identified in 77Cu in a recent β-decay experi-

ment [49]: one at 1.15 MeV, interpreted as a core-coupling state, and another one ten-

tatively placed at 2.07 MeV, mentioned as a possible candidate for the πf−1
7/2 hole state.

For 79Cu, there is not even a partial level scheme. The situation is therefore not clear in

this region, and spectroscopic information in such an exotic isotope as 79Cu is crucial in

order to know more about the behavior of the Z = 28 gap when reaching N = 50.

1.3.3 Low-lying collective states

One of the major discoveries in the Coulomb-excitation experiment was the observation

of a strongly collective low-lying state in 71,73Cu [45]. Indeed, a 1/2− level was observed

with a large B(E2; 1/2−1 → 3/2−gs) value, above 20 W.u., in both isotopes, at 454 and

135 keV, respectively. In comparison, the first 1/2− in 69Cu was measured at 1.1 MeV [50]

and the corresponding B(E2) value is 10.4 W.u. [45], meaning that there is a significant

increase of the collectivity at low energy beyond N = 40. This coexistence of single-

particle and collective states was also observed in 75Cu, with the discovery of nearly

degenerate isomeric states at 61.7(4) and 66.2(4) keV [47]. Although it was not possible

to attribute firmly a spin to each state, the authors suggested a spin 3/2− and 1/2−,

based on the systematics. They determined the B(E2) of each transition assuming these
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1.3. The neutron-rich copper isotopic chain

spins and they found that the 3/2− state has a πp3/2 single-particle character while the

1/2− state, with B(E2; 1/2−1 → 5/2−gs) > 16 W.u., is strongly collective. These low-energy

collective states might be linked to the possible increase of collectivity in nickel isotopes,

discussed in section 1.2.4. It would be interesting to see the evolution of the energy and

nature of this first 1/2− state when reaching N = 50.

1.3.4 Summary

The systematics of the first 1/2−, 3/2− and 5/2− states as well as the known or sug-

gested 7/2− ones for N ≥ 40 is shown in figure 1.7. The spectroscopic factors extracted

for the 7/2− states are indicated, knowing that in this precise case their sum is at most

equal to 8 (i.e. 2j + 1, the number of protons expected in the πf7/2 orbital in the ex-

treme shell-model representation) for a given copper isotope. The two lowest 7/2− states

were not observed in the 72Zn(d,3He)71Cu reaction, meaning that their spectroscopic fac-

tor is low [55], and no spectroscopic factors were measured in heavier copper isotopes.

The systematics of the 2+1 state in nickel isotopes is also shown, and it can be noted

that it follows closely the 7/2− states of copper for which a core-coupling nature was

determined [45,55,56] or at least suggested [49].
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Figure 1.7 – Systematics of the first 1/2−, 3/2−, 5/2− and 7/2− states of neutron-rich copper
isotopes, as well as the 2+1 state of nickel isotopes. The spectrosopic factors known
for the 7/2− states are indicated. Data taken from references [27–30,43–50,53–55].
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Chapter 1. Shell evolution towards 78Ni

1.4 Summary of theoretical studies for copper

Shell-model calculations in the full space, i.e. considering all possible single-particle

orbitals, is numerically impossible for medium-mass and heavy nuclei, and one has to use

a truncated space. The model space in then divided into:

� An inert closed-shell core, whose orbitals are always full (no exchange of particles

with upper orbitals);

� A valence space, composed of several orbitals where the valence nucleons may evolve;

� A forbidden space, including orbitals energetically higher than the valence space,

which is always empty.

These three components are chosen depending on the region of interest in the nuclear

chart and the total dimension of the valence space is given by

D =

(

Ωπ

Nπ

)(

Ων

Nν

)

(1.11)

with Nπ,ν the number of valence protons and neutrons evolving in a space of dimension

Ωπ,ν and Ω =
∑

j(2j + 1).

One of the first shell-model calculation dedicated to the copper isotopic chain beyond

N = 40 was performed after the β-decay study but before the Coulomb excitation and

laser spectroscopy experiments, using a realistic interaction developped by the Strasbourg

group in a valence space composed of the p3/2f5/2p1/2g9/2 orbitals, both for protons and

neutrons, above a 56Ni core [57]. The main component of the wave functions of the 3/2−

and 5/2− states above N = 40 is found to correspond to the πp3/2 and πf5/2 single-particle

states, respectively. The calculations show a monopole shift, as observed experimentally,

but the 5/2− lies too high in energy and the inversion of the πp3/2 and πf5/2 orbitals is

predicted at N = 50.

This monopole drift implies the strong attraction between the νg9/2 and πf5/2 orbitals,

that has been later explained by the tensor force by the Tokyo group in a study where

the inversion of the πp3/2 and πf5/2 orbitals is found to happen at mid-shell [19]. The

authors also predicted a weakening of the Z = 28 gap in 78Ni because of the repulsion

between νg9/2 and πf7/2 orbital, due to the same tensor force. The effect of such an

interaction between the νg9/2 and the πf7/2f5/2 orbitals is illustrated in figure 1.8(a),

while an example of the predicted evolution of proton ESPE is shown in figure 1.8(b).

Further calculations within the p3/2f5/2p1/2g9/2 valence space were then performed using

the JUN45 interaction [58]. They reproduce the inversion of the 3/2− and 5/2− states in
75Cu but failed to explain the lowering of the 1/2− one.
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Figure 1.8 – (a) Schematic representation of the interaction due to the tensor force between the
νg9/2 and πf5/2f7/2 orbitals. (b) Evolution of the proton ESPE in nickel isotopes,
showing the inversion between the πp3/2 and πf5/2 orbitals. Values taken from [20].

A possible weakening of the Z = 28 gap towards N = 50 was also stressed by cal-

culations performed by the Strasbourg group, including the πf7/2 orbital in the valence

space [59], which allows proton excitations across the Z = 28 gap. In agreement with the

experimental evidences [45] and the previous calculation for copper [57, 58], the authors

showed the important single-particle character of the first 3/2− and 5/2− states, while

the first 1/2− level is found to be more and more collective when adding neutrons in the

νg9/2 orbital, except at N = 50 where there is a restoration of its single-particle character.

In these calculations, the inversion of the πp3/2 and πf5/2 orbitals was found at N = 46

and the systematics of the low-lying levels, known up to 73Cu at that time, was correctly

reproduced. The authors explained the impossibility for previous calculations to have a

fair agreement with the experimental systematics by the lack of proton degrees of free-

dom due to the non-inclusion of the πf7/2 orbital in the valence space. Later on, the same

authors showed that using a larger model space, with the addition of the νd5/2 orbital

that allows neutron excitations across the N = 50 gap, the Z = 28 shell closure appears

to be robust [60]. The latter work was performed using the LNPS interaction [61].

The tensor force seems to play a major role in the evolution of the Z = 28 gap,

delimited by the πf7/2 and πp3/2 -πf5/2 orbitals. The strength of this interaction reaches

its maximum when the νg9/2 orbital is full, at N = 50, i.e. for 78Ni. The lack of data

in the very close vicinity of the latter nucleus prevents both experimental and theoretical

firm conclusions about its magicity. The study of 79Cu can therefore provide significant

information on the evolution of nuclear structure in such an exotic region of the nuclear

chart.
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Chapter 1. Shell evolution towards 78Ni

1.5 Study proposed in the present work

In the experiment, described in the next chapter, we are dealing with inverse kine-

matics and the nucleus of interest is produced through proton-removal of the projectile:
80Zn(p,2p)79Cu. Nucleon-removal reactions, also referred as knockout reactions, are part

of the direct reactions. A direct reaction is a fast process occurring at the surface of

the nuclei where a few nucleons may be exchanged or removed from the projectile and

the target, and in which the populated final states keep memory of the initial state [62].

This property leads to the notion of spectroscopic factor, a powerful tool that links direct

reactions and nuclear structure. The γ rays emitted in-flight by the final nucleus are

detected to obtain information on its levels.

1.5.1 Spectroscopic factors

In a knockout reaction, hole states can be populated. The probability to populate a

final state f depends on the overlap between this state f and the initial state i of the

projectile. The overlap between a nucleus with A nucleons in the initial state |ψA
i 〉 and a

nucleus with A− 1 nucleons in the final state |ψA−1
f 〉 is given by the spectroscopic factor:

Sk = |〈ψA
i | a†k |ψA−1

f 〉|2 (1.12)

with a†k the creation operator. Said in a different way, this spectroscopic factor Sk quan-

tifies the degree of likeness between a nucleus |ψA−1
f 〉 and a core |ψA

i 〉 plus a hole in

the k = (nlj) orbital. Therefore, Sk informs us about the single-hole nature of each pop-

ulated state in the final nucleus. Sk goes from 0 (no likeness at all) to 1 (full likeness, i.e.

pure single-hole state). Of course, due to the correlations in the nucleus, pure single-hole

states do not exist and the spectroscopic strength is fragmented over several levels. The

challenge resides in finding all these fragments in order to reconstruct the energy centroid

of the considered orbital, given as follows:

Ecentroid
k =

∑

i S
i
k E

i
k

∑

i S
i
k

(1.13)

with Ei
k the energy of each level i with a spin and parity j(−1)l carrying a spectroscopic

strength Si
k. Often, and it will be the case in the following, the spectroscopic factors

regarding nucleon-removal are multiplied by the occupation number of the orbital k in

the initial nucleus, which corresponds at most to (2j + 1).
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1.5. Study proposed in the present work

Unfortunately, spectroscopic factors are not observables [17], they are model depen-

dent, but they can be extracted from the reaction cross sections. Indeed, the cross sec-

tion to populate a given final bound state with a spin J
πf

f , called exclusive cross sec-

tion σexc(J
πf

f ), is given by [63]:

σexc(J
πf

f ) =
∑

k

Sk σ
k
sp (1.14)

with σk
sp the calculated single-particle cross-section to remove a particle in the k = (nlj)

orbital. In our case, we remove a proton from a 80Zn in its ground state, which means

Jπi

i = 0+. If one considers that the proton can be removed either from the π1f7/2,

π1f5/2 or π2p3/2 orbitals, we expect to populate final states in 79Cu with a spin J
πf

f

that corresponds to a proton removed in an orbital k with j
(−1)lk

k = J
πf

f . Therefore,

equation 1.14 reduces to one term and we obtain

Sk =
σexc(J

πf

f )

σk
sp

with j
(−1)lk

k = J
πf

f (1.15)

giving access to the spectroscopic factor. One has to be careful as Sk depends on the

model of reaction used. And of course, it necessary to know the spin and parity of a state

for calculating its spectroscopic factor, as σsp depends on the orbital where the nucleon is

removed. In the ideal case, the spin determination is done by measuring the momentum

distribution of the knocked-out proton. As regards the exclusive cross sections, they can

be obtained from γ-ray tagging, as shown in the next section.

Finally, the cross section to populate any final bound state, called inclusive cross

section, is simply the sum of all exclusive cross sections:

σinc =
∑

J
πf
f

σexc(J
πf

f ) =
∑

J
πf
f

Sk σ
k
sp with j

(−1)lk

k = J
πf

f (1.16)

but it can also be determined independently by measuring the number of reactions in the

target, as explained in section 5.4.1.

1.5.2 In-beam γ-ray spectroscopy

The knockout reaction often populates a final excited state of the residue which will

decay through γ-ray emission so quickly that there is not enough time to stop the nucleus:

the γ rays are emitted in flight. Using an appropriate detector, it is possible to efficiently

perform the necessary Doppler correction and to build the level scheme of the nucleus,

using the intensity of the transitions and looking at γ-γ coincidence relations, when several

γ rays are emitted in cascade. We recall here some useful properties of γ emissions.
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Chapter 1. Shell evolution towards 78Ni

Selection rules

In the nucleus frame, the energy of the emitted γ ray is equal to the energy difference

between the energies of the final and initial states (the recoil of the emitting nucleus can

be neglected here). For angular-momentum conservation reasons, the angular momentum

L transfered by the photon satisfies

|Ji − Jf | ≤ L ≤ Ji + Jf (L 6= 0) (1.17)

with Ji (Jf ) the spin of the initial (final) state. The transitions can be of two types:

electric (E), where the parity between the initial and final states is changed by (−1)L,

and magnetic (M), for which the parity associated is (−1)L+1. Therefore, depending on

the parity of the initial (πi) and final (πf ) states, we can have the following transitions:

πi = πf even electric, odd magnetic (M1, E2, M3, E4, ...)

πi = −πf odd electric, even magnetic (E1, M2, E3, M4, ...)
(1.18)

and generally, the kind of transition with the lower L is dominant.

Transition probability and nature of states

The probability of a transition of type σ = E orM and angular momentum L between

two states is given by [64]

λ(σL; i→ f) =
8π

ℏ

L+ 1

L[(2L+ 1)!!]2
k2L+1B(σL; i→ f) (1.19)

with k = Eγ

ℏc
, Eγ the energy of the emitted photon, and B(σL; i → f) the reduced

transition probability. The latter depends on the nature of the initial and final states:

while single-particle transitions involve only one nucleon by definition, collectives states

entail in general several particles, making the transition probability larger in the second

case than in the first one. As a consequence, the degree of collectivity of the states

in a given transition can be quantified by comparing the observed transition probabil-

ity to the single-particle transition probability, the latter being given by the Weisskopf

estimates [64]:

B(E L; i→ f) =
1

4π

(

3

L+ 3

)2

(1.2A1/3)2j

B(M L; i→ f) =
10

π

(

3

L+ 3

)2

(1.2A1/3)2j−2

(

ℏ

2mpc

)2
(1.20)

with mp the proton mass. The probability of a transition in Weisskopf units (W.u.) is the

ratio between the experimental value and the Weisskopf estimate. A pure single-particle
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1.5. Study proposed in the present work

transition has a transition probability close to 1 W.u., while collective transitions have a

much higher value.

Branching ratios

The intensity of the γ rays emitted is a crucial information as it allows to calculate the

branching ratios, i.e. the knockout feeding to each level, which is directly linked to the

exclusive cross section. The relative branching ratio of a state Jπ is given by the intensity

of the outgoing γ-rays (Iγout) minus the intensity of the incoming ones (Iγin), divided by

Nnuclei, the number of nuclei produced:

b.r. (Jπ) =

∑

γout
Iγout(J

π)−∑γin
Iγin(J

π)

Nnuclei

(1.21)

with
∑

b.r. (Jπ) = 100%, and the exclusive cross section can be derived from the inclusive

one as follows:

σexc (J
π) = b.r. (Jπ)× σinc (1.22)

Therefore, this gamma-tagging technique is a key tool in knockout experiments to

find the different levels of the nucleus, make assumption on their spin and extract the

spectroscopic factors.
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Chapter 2

Experimental setup

The experiment was part of the first Seastar (Shell evolution and search for two-plus

energies at the RIBF) campaign, an experimental program that aims at investigating

very neutron-rich nuclei produced through proton knockout by means of in-beam γ-ray

spectroscopy. It was performed during 5 days at the Radioactive Isotope Beam Factory

(RIBF) of RIKEN, Japan, combining the MINOS device, a liquid-hydrogen target coupled

to a vertex tracker, and the DALI2 scintillator array. The different parts of the setup are

described in this chapter.

2.1 Beam production

The beam production is based on the in-flight separation technique. A 238U primary

beam collides with a 9Be target, producing a cocktail of exotic nuclei sorted in flight by

a magnetic spectrometer, creating the secondary beam used for the experiment.

2.1.1 Heavy-ion accelerating system

The RIBF accelerating system [65] as used in the experiment for the production of a

high-energy 238U primary beam is shown in figure 2.1.

Figure 2.1 – Schematic diagram of the RIBF heavy-ion accelerator system for the radioactive-
ions beam generation at 345 MeV per nucleon. Image taken from reference [66].
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Chapter 2. Experimental setup

The 238U ions are extracted in an Electron Cyclotron Resonance Ion Source (ECRIS)

and go into the RILAC linear accelerator. The latter is used as a first injector for the

four-cyclotron sequence constituted of RCC, fRC, IRC and finally SRC, a superconducting

cyclotron driving the beam up to 345 MeV per nucleon. Two strippers are placed upstream

and downstream fRC. Once the beam leaves the SRC, it is sent on the primary target

at the entrance of the BigRIPS separator. The intensity of the 238U beam was 12 pnA,

which corresponds to 7.5× 1010 particles per second (pps).

2.1.2 BigRIPS

The BigRIPS spectrometer [67] is a two-stage radioactive ion beam separator, placed

after the accelerating system. It is made of fourteen superconducting triplet quadrupoles

(STQs) that focus the beam and six room-temperature dipoles with a bending angle of

30°, distributed between eight foci (F0 to F7) over a length of 78.2 m. Its horizontal

and vertical angular acceptances are ±40 and ±50 mrad, respectively, and its momentum

acceptance is ±3%.

The first stage of BigRIPS, from F0 to F2, consists in producing the secondary RI-

beam and selecting the nuclei of interests with the Bρ -∆E-Bρ method. The identification

of the isotopes is performed in the second stage, from F3 to F7, with the TOF-Bρ -∆E

method. The secondary beam is then sent into the different experimental beam-lines of

the RIBF, as shown in figure 2.2.

Figure 2.2 – Schematic view of the RIBF experimental lines. Image taken from reference [67].
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2.1. Beam production

Production and selection of the secondary beam

The 238U primary beam is sent on a 3-mm thick 9Be primary target set at the entrance

of BigRIPS (F0) for in-flight fission, creating a wide range of nuclei. These nuclei are fully

stripped, meaning that their charge corresponds to their proton number Z. The selection

of the nuclei of interest is made through a technique called momentum-loss achromat [68],

based on a Bρ -∆E-Bρ selection using two dipoles (D1 and D2) separated by a degrader

placed at F1. An illustration of this method is shown in figure 2.3.

Figure 2.3 – Schematic representation of the momentum-loss achromat technique. The beam
can be purified by stopping unwanted isotopes (dashed line) in the F2 slits after
Bρ -∆E-Bρ selection. Image taken from reference [69] and modified.

In a constant magnetic field ~B, the trajectory of an ion with a mass number A, charge

Q = Ze and momentum P is described by the magnetic rigidity

Bρ =
P

Q
=
γmv

Ze
=
u c

e
βγ

A

Z
(2.1)

where ρ is the curvature radius of the ion, v = βc its velocity, m ≈ Au its mass,

u ≈ 931.5 MeV the atomic mass unit, c the speed of light and γ = (1−β2)−1/2. Then, the

first dipole (D1) separates the beam through βγA/Z selection. A beam dump is placed

just after D1 in order to stop the remaining primary beam.

This selection in Bρ is not enough as several nuclei can have a similar βγA/Z. There-

fore, an aluminium degrader is placed in F1, where the beam is going to lose energy as

described by the relativistic Bethe formula

∆E =
4π e4 n z Z2

meβ2c2

[

ln
2meβ

2c2

I
− ln(1− β2)− β2

]

(2.2)

with z, n and I the atomic number, atomic density and mean excitation potential of

the aluminium degrader. The energy loss of the fragments in the degrader depends on

(A,Z, β) in a different manner than Bρ. Thus, two different isotopes with the same Bρ
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will be discriminated thanks to the degrader because they will not lose the same amount

of energy. Finally, another selection in Bρ is done after the degrader, through the second

dipole (D2). The thickness of the degrader varies with the horizontal position at F1. This

ensures that the full D1-degrader-D2 setup is achromatic: the position of the isotopes in

the F2 focal plane does not depend on their momentum, only on their nature. Slits are

then adjusted in F2 to purify the beam.

Identification of the secondary beam

The second stage of BigRIPS, from F3 to F7, serves to identify the fragments leav-

ing the first stage. Another degrader is located at F5 to improve the separation of the

secondary beam. The particle identification is made through the TOF-Bρ-∆E method:

the time of flight, magnetic rigidity and energy loss of the isotopes are measured to de-

duce their mass-to-charge ratio A/Q and their atomic number Z. More details about this

method are given in section 3.1.2.

The time of flight of each nucleus is calculated thanks to two plastic scintillation coun-

ters located at F3 and F7, corresponding to a flight path of 46.6 m. The time resolution

is approximately 40 ps [70]. This corresponds to a relative time-of-flight resolution of

0.016% for the 80Zn secondary beam of interest at 270 MeV per nucleon. The positions

(x, y) of the fragments in F3, F5 and F7 focal planes are measured by two sets of double

position-sensitive parallel plate avalanche counters (PPACs) [71,72]. This gives the angles

(θ, φ) of the ion trajectory with respect to the optical axis (z-axis) in the (xz) and (yz)

planes, respectively. These (x, θ, y, φ) coordinates are necessary to determine the Bρ of

the ions, as explained in section 3.1.1. Finally, the energy loss of the isotopes is measured

with a tilted electrode gas ionization chamber [73] located at F7.

After the second stage of BigRIPS, the nuclei went to the MINOS target, placed in

F8, at the entrance of the ZeroDegree spectrometer.

Beam intensity and energy

The mean intensity and energy of the primary and secondary beams are given in

table 2.1. The beam setting in BigRIPS was tuned for 79Cu but in our case, the nucleus

of interest is 80Zn. Both total and 80Zn values are indicated for the secondary beam.

Beam Intensity (pps) Energy (MeV/n)

Primary (238U) 7.5×1010 345

Secondary (80Zn) ∼2.6×102 270

Secondary (Total) ∼5.5×103 250 to 280

Table 2.1 – Mean intensity and energy of the primary and secondary beams.
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2.2 MINOS

MINOS (MagIc Numbers Off Stability) [74] is a liquid-hydrogen target used for nucleon-

removal from very exotic nuclei, coupled to a proton tracker made for reaction-vertex

reconstruction. The principle of this device is described in figure 2.4.
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Figure 2.4 – Schematic view of the MINOS device.

2.2.1 Liquid-hydrogen target

The cylindrical target cell is made of polyethylene terephthalate (PET) and is filled

with pure liquid hydrogen at 20 K. The entrance window has an effective diameter of

38 mm and is 110-µm thick, while the diameter of the exit window is 52 mm for a 150-µm

thickness. The cell was placed in a 2-mm thick aluminum pipe of 72-mm inner diameter

with two PET windows of 150 µm thickness at each end, allowing a vacuum of ∼10−6 mbar

in the reaction chamber.

In this experiment, the target length was measured to be 100(1) mm when it was

empty. An additional 2 to 3 mm has to be taken into account because of the deformation

of the entrance window when the target is filled, due to the pressure difference. The

density of the liquid hydrogen was 70.97 kg/m3.

2.2.2 Vertex tracker

The target chamber is surrounded by a cylindrical time-projection chamber (TPC) of

300-mm length, with an inner diameter of 80 mm and an outer diameter of 178.8 mm.

The TPC is filled with a gas mixture of Ar (82%), CF4 (15%) and isoC4H10 (3%) at room

temperature and atmospheric pressure. This mixture was found to be the best compromise

between low average energy to produce an electron/ion pair, high drift velocity of the
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electrons and amplification of the avalanche process at the anode. The gas flow in the

TPC was from 7 to 10 liters per hour, in order to avoid a rise of water and oxygen

impurities as they decrease the electron drift velocity. An electric field of 185 V/cm was

applied alongside the beam direction.

After the proton knockout of the secondary beam in the liquid-hydrogen target, the

scattered proton and the removed one leave the reaction chamber and pass through the

TPC, ionizing the atoms of the gas. The released electrons drift towards the anode

following straight lines due to the applied electric field. The electron signal is amplified at

the anode by a bulk-Micromegas detector [75,76]: a thin micro-mesh is placed at 128 µm

from the anode and a strong electric field of 36 kV/cm is applied in this gap, inducing

electron avalanches whose charge is collected by the anode. This anode is segmented

into 4608 pads equally divided into 18 rings and each pad has an area of about 4 mm2.

This segmentation allows to reconstruct the proton trajectory in the (xy) plane. The

information about the z-coordinate is given by the drift time of the electrons in the TPC.

From two proton trajectories or from one proton trajectory and the beam direction,

it is possible to reconstruct the reaction vertex in the MINOS target. The efficiency

of reconstruction for events with one or two protons is 95%, while the vertex position

resolution along the beam axis is 5 mm FWHM (full width at half maximum).

2.2.3 Beam tracker

When only one proton is seen in the TPC, the vertex can still be reconstructed if the

trajectory of the nucleus in the target is known. The beam trajectory can be extracted

from the position information given by the two PPACs placed at F8. In order to increase

the precision and efficiency of this trajectory measurement, a double sided silicon strip

detector (DSSSD) was set 458-mm upstream from the target. This DSSSD was 300-µm

thick and had 128 strips both horizontally and vertically, for an area of 10×10 cm2. The

beam direction is then given by the DSSSD and one of the two F8 PPACs.

2.3 DALI2

DALI2 (Detector Array for Low Intensity radiation 2) [77] is a γ-ray detector made of

186 NaI(Tl) scintillators. It has been designed for in-beam γ-ray spectroscopy experiments

with high-velocity beams (β ∼ 0.6).

2.3.1 Geometry

In the geometry used in the experiment, shown in figure 2.5, the crystals were arranged

into ten cylindrical layers plus a wall for forward-angle measurements. Each layer was

made of 10 to 14 crystals with dimensions of 45×80×160 mm3 or 40×80×160 mm3 and
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the wall was formed by 64 crystals, half measuring 40×80×160 mm3 and half measuring

60× 60× 120 mm3. This geometry has been chosen to maximize the detection efficiency,

especially at forward angles because of the Lorentz boost, and the segmentation allows

to reduce the angular resolution to 7° FWHM. The angular resolution is crucial for an

accurate Doppler correction. The MINOS device was placed at the entrance of DALI2:

the beginning of the target was 8 mm upstream the edge of the first layer of the array.

The angular coverage of DALI2 in this configuration went from 11° to 95° at the center

of the MINOS target. An energy threshold of about 150 keV was set in order to reduce

background events.

Figure 2.5 – DALI2 configuration. (Left) Picture of DALI2 with MINOS inside. (Top right) Lay-
out of the layers, that are made of 10 to 14 crystals, and (bottom right) placement
of the 64 crystals of the wall, at forward angles. The image on the right is taken
from reference [77].

The performances of this configuration have been obtained with Geant4 simulations [78],

described in section 3.5, using experimental conditions. For a velocity βin = 0.62 at

the entrance of the target, the energy resolution at 500 keV (1 MeV) is found to be

σE/E = 5.4% (4.3%) and the photopeak efficiency is 30% (19%). We show in section 3.3.3

how this efficiency can be increased up to 38% (27%) with the add-back procedure, by

summing the energies received by neighboring crystals.
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2.3.2 Typical response function

The response of DALI2 to radiations depends on the detector geometry and resolution,

and on the three main interactions between the γ rays and the crystals: photoelectric

absorption, Compton scattering and pair production. We present here the case of an

emitting source at rest and a moving source, using experimental conditions.
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Figure 2.6 – DALI2 response functions for a 2-MeV transition emitted by (a) a source at rest
and (b) a moving source entering the 102-mm thick target with βin = 0.62. In the
latter case the Doppler correction is done, and the add-back procedure is used for
both. The different parts of the spectra are described in the text.

Source at rest

A typical response function of DALI2 after add-back for a 2-MeV transition emitted by

a source at rest is shown in figure 2.6(a). It has been obtained from simulations including

the 150-keV energy threshold.

The photopeak (1) is named after the photoelectric effect, in which the γ ray is fully

absorbed by an atom of the crystal. Its width depends on the intrinsic resolution of the

detector. The photoelectric absorption dominates for energies up to about 200 keV.

Above 200 keV, the Compton scattering prevails and is responsible of the contin-

uum (2). This continuum is not uniform as the cross section of Compton scattering,

given by the Klein-Nishina formula, depends on the scattering angle and the initial en-

ergy. From the Compton-scattering formula, that we recall:

E ′
γ =

Eγ

1 + Eγ

mec2
(1− cos θ)

(2.3)

it can be seen that the scattered photon has an energy E ′
γ in the range from the initial

energy Eγ (θ = 0°, meaning no interaction) down to Eγ/(1 + 2Eγ

mec2
) = 227 keV in our
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case. Therefore, the continuum goes from Eγ - E ′
γ
max = 0 to Eγ - E ′

γ
min = 1773 keV, the

latter value corresponding to the Compton edge (3). The fact that the photopeak is not

fully separated from the Compton edge has two origins: the resolution of the crystals, that

induces a significant width of both the photopeak and the Compton edge, and the multiple

Compton events, when two or more Compton interactions happen in the same crystal or

in two neighboring crystals whose energies are summed in the add-back procedure. Also

from equation 2.3, we can note that scattering angles greater than 120° lead to scattered

photons with a similar energy, between 227 and 291 keV. Due to the geometry of DALI2,

these backscattered photons can be detected and they form the backscatter peak (4)

around 250 keV.

Although not predominant below several MeV, the pair-production process plays a

role in the interaction of γ rays when Eγ > 2mec
2, like in our example. After the pair

production, the positron will annihilate with an electron in the crystal, creating two

photons of 511 keV. Sometimes one or two of these photons escape from the crystal,

inducing an incomplete detection and creating the so-called single (Eγ - 511 keV) and

double (Eγ - 1022 keV) escape peaks. The single escape peak (5) can be clearly seen at

1489 keV. Once again, because of the array geometry, the escaping 511-keV γ ray (6)

can be detected. As regards the double escape peak, that should be at 978 keV, nothing

emerges clearly from the continuum. But as both 511-keV photons are emitted in op-

posite directions, it is very likely that one of them is detected in a neighboring crystal,

whose collected energy will be summed to the first-interaction crystal with the add-back

procedure, reducing the intensity of the double escape peak.

Moving source

Concerning the response of DALI2 in experimental conditions, a simulated energy-

spectrum after add-back and Doppler correction for a 2-MeV transition emitted by a

moving source, with a velocity at the entrance of the target βin = 0.62, is shown in

figure 2.6(b).

Due to the Doppler effect, the energy Eγ seen by the detector is shifted from the energy

E0 in the nucleus reference frame by a factor that depends on the angle of emission θ in

the laboratory frame and on the nucleus velocity β. Considering the geometry of the

setup, a 2-MeV γ ray in the nucleus frame reaches DALI2 with an energy between 1.5

and 4.0 MeV. This effect can be corrected with the Doppler formula:

E0 = Eγ
1− β cos θ
√

1− β2
(2.4)

Consequently, all events that are not subject to the Doppler effect will be wrongly

shifted, using the velocity of the nucleus and an emission angle that is not relevant. For

example, the 511-keV peak is spread between 250 and 700 keV. As regards the backscatter
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peak, whose energy is almost constant when the incident-photon energy is above 1 MeV

as it can be noted from equation 2.3, it is shifted and broader but it is not spread like the

511-keV one because at such a low energy (∼250 keV), the wrong shift is only between

about -120 to +100 keV.

The non-observation of a single escape peak and the persistence of the Compton edge

are directly linked to the previous explanations. The Compton edge corresponding to the

incident energy Eγ (1.5 to 4.0 MeV) minus Eγ/(1+
2Eγ

mec2
) (218 to 240 keV), after Doppler

correction it is equal to the true corrected energy E0 minus a wrongly shifted 218 to

240 keV transition: we are in the same case than for the backscatter peak and therefore

the Compton edge is simply shifted and broader. At the contrary, the single escape peak

is equal to Eγ minus 511 keV, meaning that after Doppler correction it corresponds to E0

minus 250 to 700 keV and is spread over the continuum.

Finally, the width of the photopeak is larger for two reasons. The first one is that due

to the Lorentz boost, most of the γ rays are emitted forward, i.e. with a higher energy in

the laboratory frame, and the intrinsic resolution σE increases with the energy. Secondly,

as explained in section 3.5.3, the errors made on the Doppler correction deteriorate the

resolution.

2.4 ZeroDegree

The identification of the reaction products after MINOS is done with the ZeroDegree

spectrometer [67], shown in figure 2.2. ZeroDegree is made of six STQs and two dipoles

of the same type as those of BigRIPS. It has four foci (F8 to F11) for a total length

of 36.5 m. In the Seastar campaign, ZeroDegree was used in its large acceptance mode:

the angular acceptance was ±45 mrad horizontally and ±30 mrad vertically, while the

momentum acceptance was ±3%. The setting in ZeroDegree was tuned for 78Ni. The

mean rate and energy of nuclei arriving at the end of ZeroDegree are given in table 2.2.

Both total and 80Zn(p,2p)79Cu rates are mentioned.

Nucleus in F11 Nucleus selected in BR Intensity (pps) Energy (MeV/n)

79Cu 80Zn ∼0.5 180

All None ∼380 180 to 200

Table 2.2 – Mean rate and energy of the isotopes arriving at the end of ZeroDegree (F11). For
79Cu, it takes into account a selection on 80Zn in BigRIPS.

Like for BigRIPS, the TOF-Bρ -∆E method is used for the identification. The time

of flight is measured between two plastic scintillator counters placed at F8 and F11, the

trajectory is determined by two double PPACs at F8, F9 and F11, and the energy loss is

recorded into the ionization chamber located at F11.
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2.5 Data acquisition

The recording of the events is done using the RIBF data-acquisition system [79]. For

dead time and disk-space saving reasons, it is necessary to optimize the data acquisition

to focus on the interesting events only. In the experiment, this was done according to the

logic described as follows.

When a nucleus passes through the F7 plastic scintillator, it creates a F7-trigger signal.

If this nucleus, or the reaction product if a reaction happened in the target, reaches the

F11 plastic scintillator, a F11-trigger signal is created and combined to the F7-trigger one,

giving the F7×F11 signal. When a γ ray is detected in DALI2, the output signal from the

photomultipliers of the crystals is sent into an amplifier and split in two branches, one for

the energy and one for the time. In the time branch, the signal goes through a constant

fraction discriminator (CFD) where an energy threshold of around 150 keV is applied in

order to reduce low-energy background events. For an energy above this threshold, the

signal output of the CFD is used as a γ-trigger signal and is combined to the F7×F11

one if it exists. Finally, the data acquisition starts if either one or both of the following

conditions is fulfilled:

� The F7 plastic scintillator triggered, disregarding if the nucleus reaches the end

of ZeroDegree or not. This is the F7DS trigger, downscaled (DS) by a factor 40

for avoiding to record too many events. This trigger is used for the transmission

measurement and cross section calculation, as explained in section 3.7.

� Both F7 and F11 plastic scintillators triggered and at least one γ ray was detected

in DALI2. This is the F7×F11×γ trigger, used for the γ-spectroscopy analysis.

The acquisition system works with a common-dead-time system, i.e. the detector with

the largest dead time determines the dead time of the whole setup. The mean dead time τ

of DALI2 is about 100 µs and is similar for MINOS, while it can go up to 200 µs for some

of the beam detectors. The average rate of events recorded per second was R = 400 Hz.

The fraction of events lost due to the dead time being given by Rτ [80], we can therefore

estimate it at 8%.
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Data analysis

In this chapter, we describe how we reconstruct the variables of interest from the raw

data recorded during the experiment. Firstly, the identification of the nuclei is done to

select the reaction channel of interest. Secondly, the MINOS TPC is calibrated to re-

construct the knocked-out proton trajectories and obtain the interaction vertex. Thirdly,

the calibration of DALI2 is performed and the simulation of its response, used in a later

stage for fitting the γ-ray energy spectra, is described. Two reference cases, 78,80Zn, are

used to benchmark the whole analysis procedure. Finally, we measure the ZeroDegree

spectrometer transmission, needed to calculate cross sections.

3.1 Particle identification

The first step of the analysis is to identify the isotopes in the BigRIPS and ZeroDegree

spectrometers. This identification is done event by event, by reconstructing the trajectory

of the particles and using the TOF-Bρ -∆E method.

3.1.1 Trajectory reconstruction

The trajectory reconstruction in the spectrometers is necessary to determine Bρ. The

path of an ion in a spectrometer is described by an ion-optical transfer matrix that links

the input and output coordinates. For example, the position coordinate in the horizontal

plane at F5 depends on the coordinates at F3 through a power series [81]:

x5 =
∑

i,j,k,l,m

Tijklm xi3 θ
j
3 y

k
3 φ

l
3 δ

m
35 (3.1)

where the Tijklm coefficients are the transfer matrix elements, x and θ the position and

angle in the horizontal plane, y and φ the position and angle in the vertical plane, and

δ35 = (Bρ35 − Bρ0)/Bρ0 the relative Bρ deviation of the ion from the central value Bρ0
between F3 and F5. Then, by measuring (x3, θ3, y3, φ3, x5) with the PPACs in F3 and F5,

we can deduce δ35 and so Bρ35. The first-order matrix elements (i + j + k + l +m = 1)
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have been determined in previous experiments, while higher-order corrections are applied

empirically in order to improve the mass-to-charge ratio (A/Q) resolution, as explained

further in this section.

3.1.2 TOF-Bρ -∆E method

The particle identification in the BigRIPS and ZeroDegree spectrometers is based on

the TOF-Bρ -∆E method [70]. On a event-by-event basis, the atomic number Z and the

mass-to-charge ratio A/Q of the nuclei are deduced from the measurement of their time

of flight (TOF), magnetic rigidity Bρ and energy loss ∆E, using the following equations:

TOF =
L

βc
(3.2)

Bρ =
γmuβ

c

A

Q
(3.3)

∆E =
4π e4 n z Z2

meβ2c2

[

ln
2meβ

2c2

I
− ln(1− β2)− β2

]

(3.4)

with L the flight-path length, β = v/c the velocity of the particle, c the speed of light,

γ = 1/
√

1− β2 the Lorentz factor, mu = 931.494 MeV the atomic mass unit, me the

electron mass, e the elementary charge. In the Bethe formula, describing the energy loss

in equation 3.4, z, n and I are the atomic number, atomic density and mean excitation

potential of the material penetrated by the particle.

3.1.3 Identification in BigRIPS

In the BigRIPS spectrometer, the particle identification is performed from F3 to F7,

as shown in figure 3.1. Two sets of PPAC detectors in F3, F5 and F7, are used for the

trajectory reconstruction and Bρ calculation. The time of flight is measured between two

plastic scintillation counters in F3 and F7. The energy loss is recorded in the ionization

chamber located in F7.

Figure 3.1 – Schematic view of the BigRIPS spectrometer. The section from F3 to F7 is used
for particle identification. Image taken from [70].
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Z and A/Q reconstruction

Because of the degrader placed in F5, there is an important energy loss during the

flight path. As a consequence, it is necessary to measure Bρ before and after the degrader.

Then, from equations 3.2 and 3.3, we have:

TOF =
L35

β35c
+
L57

β57c
(3.5)

(

A

Q

)

35

=
c

mu

Bρ35
γ35β35

(3.6)

(

A

Q

)

57

=
c

mu

Bρ57
γ57β57

(3.7)

where subscripts 35 and 57 correspond to a variable measured in F3-F5 and F5-F7 parts of

BigRIPS, respectively. If we assume no charge change at F5, we have (A/Q)35 = (A/Q)57
and from equations 3.6 and 3.7 we deduce:

β35γ35
β57γ57

=
Bρ35
Bρ57

(3.8)

Thanks to equations 3.5 and 3.8, we can obtain the velocities β35 and β57 before and

after the degrader, from the Bρ35, Bρ57 and time of flight values that were measured. The

A/Q value is then derived using equation 3.3 and the atomic number Z from equation 3.4,

using the measured ∆E and β57 values. These two variables, A/Q and Z, allow an

unambiguous identification of the incoming nuclei.

Background removal

Some background events can appear on the identification diagram due to reactions in

the materials of the beam line, incorrect detector responses or charge changes in the F5

degrader. Their removal is discussed in the following.

Plastic scintillation counters

When a particle passes through a plastic scintillation counter, the scintillation signal

is detected by two photomultipliers (PMs) located on each side of the detector. It can be

shown, as for example in reference [70], that there is following correlation:

ln

(

qL
qR

)

∝ tR − tL (3.9)

with qL and qR the charge-integated signals and tL and tR the timing information obtained

from the left and right PMs, respectively. Consequently, a correlation plot of ln(qL/qR)

versus tR − tL can be used to remove inconsistent events, as shown in figure 3.2(a).
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PPAC detectors

As described in reference [72], the PPAC detectors use the delay-line read-out method.

The signal induced by the passage of a particle is split and collected at both ends of the

delay-line, giving two timing signals T1 and T2. The sum of the delay times, Tsum = T1+T2
is constant and does not depends on the position of the incident particle. Inconsistent

events like events caused by δ-rays can be removed as their Tsum value is different the

Tsum value of normal events, as shown in figure 3.2(b).

Correlation between ∆EIC and the signal of the plastic scintillation counters

The correlation between the energy loss in the ionization chamber and the charge-

integrated signal in the plastic scintillator counter in F7 can also be used for rejecting

background events. Such a correlation is shown in figure 3.2(c), where we can see pileup

events in the ionization chamber.

Charge changes in the F5 degrader

If there is a change of the charge state in the F5 degrader, the equation 3.8 is not valid

anymore and the β35 and β57 values are not correctly reconstructed. In order to avoid

such events, the correlation between Bρ35 and Bρ57 is checked. In the degrader, when
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Figure 3.2 – Background removal techniques for the particle identification. (a) Removal of in-
consistent events in the F3 plastic scintillation counter. (b) Tsum peak selection in
the F3 PPAC detector, ± 3σ. (c) Charge-integrated signal in the F7 plastic scin-
tillator counter versus energy loss in the ionization chamber. The tail on the right
part corresponds to pileup events. (d) Diagram of Bρ35 versus Bρ35/Bρ57.
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there is no charge change, the particle Bρ is modified only by a decrease of the velocity.

For a given isotope, we therefore expect the ratio of Bρ before and after the degrader

to be constant. Inconsistent events having different ratio can be removed. A diagram of

Bρ35 versus Bρ35/Bρ57 for 80Zn is shown in figure 3.2(d) as an example.

Final identification diagram and A/Q resolution

The Z versus A/Q identification diagrams for BigRIPS before and after background

removal are shown in figure 3.3. Although the background reduction is very important in

some regions, there is only a decrease of 7% of the statistics in the part corresponding to
80Zn.
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Figure 3.3 – Particle identification in BigRIPS, before (a) and after (b) background reduction.

A projection in A/Q is done for the zinc isotopes and shown in figure 3.4. For 80Zn,

we find a A/Q sigma resolution of 0.073(1)%, good enough to clearly separate it from

other isotopes.
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Figure 3.4 – A/Q projection for zinc isotopes in BigRIPS.
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3.1.4 Identification in ZeroDegree

The particle identification in the ZeroDegree spectrometer is done between F8 and

F11, in the same way than for BigRIPS. But this time, corrections have to be applied for

a better isotope separation, i.e. to reach a sufficient A/Q resolution.

A/Q corrections

Empirical corrections are made to improve the A/Q resolution, following the method

explained in reference [70]. This method is equivalent to an adjustment of the transfer

matrix elements in equation 3.1: if the trajectory is correctly reconstructed, the A/Q

value of an isotope should not depend on its position nor on the angle of its trajectory.

The applied corrections focus on the copper isotopes, in particular 79Cu. In a first

phase, we check the dependence of A/Q with the x-position in the F9 focal plane (called

F9X), shown in figure 3.5(a). This dependence is reduced by applying corrections in

F9X up to the third order, as shown in figure 3.5(b). In this case, we have the following

correction: (A/Q)corr. = A/Q− 0.00000045× (F9X)2 + 0.000000004× (F9X + 10)3.
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Figure 3.5 – (a) F9X dependence of A/Q for the copper isotopes. (b) Reduction of this depen-
dence after corrections up to the third order in F9X.

This procedure is also applied to the F9 trajectory angle, as well as to the position and

angle in the F11 focal plane. The Z versus A/Q identification diagrams for ZeroDegree

before and after optical corrections are shown in figure 3.6.
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Figure 3.6 – ZeroDegree particle identification diagrams, before (a) and after (b) corrections
in A/Q. The background removal methods have been applied on both diagrams.

A/Q resolution

The projection in A/Q is done for the copper isotopes before and after corrections,

and is shown in figure 3.7. For 79Cu, we find a A/Q sigma resolution of 0.134(1)% after

corrections, sufficient to separate it from other isotopes.
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Figure 3.7 – A/Q projection for copper isotopes before (blue) and after (red) optical projections.
The corrections have been optimized on 79Cu, inducing a shift for some other
isotopes like 75Cu, on the left of the figure.

We can now select the reaction channel of interest by applying a cut on 80Zn in BigRIPS

and on 79Cu in ZeroDegree.
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3.2 MINOS calibration

The next analysis step is the reconstruction of the interaction vertex in the MINOS

target. The principle of the tracking algorithm used is briefly described here, as well

as the method for determining the drift velocity of the electrons in the TPC along the

experiment.

3.2.1 Tracking algorithm

When a proton passes through the TPC, it ionizes the atoms of the gas and the

ionization electrons drift towards the anode following straight lines, due to the applied

electric field. The signals recorded from each pad of the anode allow the reconstruction of

the proton trajectory thanks to a tracking algorithm. This algorithm was part of the PhD

work of C. Santamaria (CEA, France) [82]. It works on an event by event basis and is made

of four main steps: (i) identification of tracks in the (x, y) anode-plane, (ii) determination

of the z-coordinate along the TPC associated to each fired pad, (iii) track filtering and

(iv) interaction-vertex reconstruction.

(i) In the first step, the x and y coordinates of the pads that received a signal above

a given threshold are collected. A modified Hough transform [83], whose principle is

described in figure 3.8, is applied to all (xpad,ypad) points. This transform is used to
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Figure 3.8 – Example of a modified Hough transform for an event with two tracks in the TPC.
(a) Principle of the modified Hough transform. All the possible tracks passing
through each (xpad,ypad) point (like the blue, orange and violet tracks) are deter-
mined by a set of (θint,θext) parameters. The range of θint and θext is in brown, it
delimits the tracks crossing the inner and outer cylinders of the TPC. (b) The two
tracks (red and green) and some background (black) in the (x, y) plane. (c) The
same event in the (θint,θext) Hough space. A point and a straight line in the
(x, y) space correspond respectively to a line and a point in the Hough space. The
two tracks correspond to the intersection of most of the lines (red and green circles)
while noise in the (x, y) space is represented by uncorrelated (θint,θext) lines.
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3.2. MINOS calibration

recognize straight lines in an image and allow us both to identify the projection of the

tracks on the anode and to reject background events. Each of these 2D-tracks must be

formed by least 10 fired pads, including more than 2 of them in the four first inner rings,

otherwise it is rejected and considered as noise.

(ii) In the second step, the electronic signal of each pad that is part of the 2D-tracks

found in the first step is fitted by the following formula [74]:

q(t) = qa exp

(

−3
t–tpad
τ

)

sin

(

t–tpad
τ

)(

t–tpad
τ

)3

+ qb (3.10)

with qa the signal amplitude, tpad the pad trigger time, τ the shaping time and qb the

signal baseline. tpad is relative to the acquisition trigger time and is delayed by a time t0
that depends on the acquisition electronics. It can be converted in a drift distance:

zpad = (tpad – t0) vdrift (3.11)

with vdrift the drift velocity of the electrons in the gas, determined in the next section.

zpad is the coordinate along the beam axis of the place where the ionization electrons that

reached the pad were created.

(iii) This step allows to discard wrong tracks created by δ-electrons. Standard Hough

transforms are applied in the (xy), (xz) and (yz) planes for each identified tracks. A

track is rejected if less than 15 of the 18 anode rings were fired. The latter condition does

not apply in case of low scattering-angle protons, which cross the cathode, as they do not

pass through all the rings.

(iv) In the last step, the final tracks are fitted by straight lines. The interaction

vertex is taken as the middle of the minimum distance between them. If only one proton

trajectory is reconstructed, the beam trajectory is used. The tracking of the beam is done

by using the PPAC detectors in F8 and the DSSSD.

3.2.2 Drift velocity

The drift velocity of the electrons in the TPC is affected by the rate of impurities in

the gas, which is not constant. Therefore, the drift velocity has to be monitored along

the experiment. For a given run, we plot the measured trigger times tpad of every pad and

for all the events, with the condition to have less than ten pads hit per ring in order to

reduce background events. This gives the drift-time distribution shown in figure 3.9(a).

Electron ionizations that happen near the Micromegas have a drift time equal to

zero, while the maximum drift time corresponds to an electron that went across the

whole 300-mm TPC. Therefore, the minimum trigger time t0, already mentioned in equa-

tion 3.11, depends only on the acquisition electronics and is constant over the experiment.

It is defined by the nub at the beginning of the rise of the drift-time distribution. The
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Figure 3.9 – (a) Drift-time distribution in the MINOS TPC for a run of one hour, with the t0
and tmax values used for calculating the drift velocity. (b) Evolution of the drift
velocity over time during the experiment, each point corresponding to one run.
The uncertainty is of the order of the hundredth of cm/µs. The drop of the drift
velocity after 70 hours corresponds to a change of the gas bottle: the impurity rate
increased for a moment because of this change, slowing down the electrons.

maximum drift time tmax corresponds to the midpoint of the sharp drop of the distribution

and is determined by fitting the slope with a Fermi function:

f(t) =
p0

exp[(t–tmax)/p1] + 1
+ p2 (3.12)

This process is applied to find tmax for each run. The corresponding drift velocity is

simply calculated as follow:

vdrift =
LTPC

tmax − t0
(3.13)

and its evolution over the experiment is shown in figure 3.9(b). One can note that there is

a drop of the drift velocity after 70 hours: this corresponds to a change of the gas bottle

that increased the rate of impurities in the TPC, slowing down the electrons. Then, the

gas flow has been adjusted to come back to a stable drift velocity.

Once the drift velocity is determined, the interaction vertex can be reconstructed with

the tracking algorithm described in the previous section. The coordinate of the vertex

along the beam axis zvertex, needed for the Doppler correction, can also be used to check

the consistency of the reconstructed target length over the experiment. An example of a

zvertex distribution is shown in figure 3.10(a). Each side of the distribution can be fitted

by a Fermi function in order to find the midpoint of the slope, corresponding to the edges

of the target. The difference between zmax and zmin gives the reconstructed target length,

whose evolution over time is shown in figure 3.10(b).
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Figure 3.10 – (a) Example of a zvertex distribution with zmin and zmax used for reconstructing
the target length. (b) Reconstructed target length over the experiment. For each
point, the uncertainty is of the order of 1 mm.

For most of the runs, the reconstructed target length is found in the interval 102±1 mm,

which is consistent with the 100(1)-mm value measured for the empty target plus the tar-

get window deflection of two to three millimeters induced by the pressure when the target

is filled. At most, the reconstructed target length differs by 2 mm from this 102-mm central

value, but this is below the 5-mm FWHM vertex resolution mentioned in section 2.2.2.

3.3 DALI2 calibration

Energy and time calibrations of DALI2 are needed, as we use both information. Once

the crystals are calibrated, the add-back procedure is applied in order to increase the

efficiency of the array.

3.3.1 Energy calibration

The 186 crystals of DALI2 are calibrated in energy by using three reference γ-ray

sources, for a total of five γ-ray transitions: one transition at 662 keV from 137Cs, two

transitions at 898 and 1836 keV from 88Y and two transitions at 1173 and 1332 keV from
60Co. The sources were placed at the end of the MINOS pipe. Seven sets of calibration

runs were performed, one per day from the beginning to the end of the experiment. Each

set comprises a run of at least thirty minutes per source.

The gain of the ADC modules was adjusted to reach energies up to around 8 MeV and

the energy information was distributed over 4096 channels. For every crystal, each photo-

peak of the calibration transitions is fitted with a Gaussian function and an exponential

background. The five centroids obtained are then associated to their corresponding energy

and a linear fit is performed to determine the calibration relation between ADC channel

and energy. An example of the procedure is shown in figure 3.11.
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Figure 3.11 – DALI2 energy-calibration procedure. (a) Raw spectrum of 137Cs after a calibra-
tion run, whose photopeak is fitted with a Gaussian function and an exponential
background. (b) Linear relation between ADC channel and energy obtained from
the five calibration points.

Once the energy calibration is applied to all crystals, the photopeaks of the calibrated

spectra are fitted with a Gaussian function and an exponential background. A verification

of the quality of the calibration is done by plotting the difference between the measured

energy of the five transitions and the value from literature, i.e. the residuals, as shown

in figure 3.12(a). For most of the crystals, this difference is lower than 1%. A projec-

tion of the energy difference over all crystals is done for estimating the deviation of its

distribution. From figure 3.12(b), we find that more than 80% of the energy differences

are within ±5 keV. The latter value is then used as an overall calibration error for the

measured energies of the experiment. A last check of the calibration is done using the

2734-keV transition from the 88Y source: it is not possible to fit it for each crystal be-

cause its intensity is too low, but when summing all crystals after calibration, a fit can

be performed and we find an energy of 2732(3) keV, which is in good agreement with the
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Figure 3.12 – (a) Difference between measured and literature energies of the calibration tran-
sitions for each crystal. The uncertainty of each point is of the order of 1 keV.
(b) Projection of the energy difference over all crystals.
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3.3. DALI2 calibration

tabulated value. Finally, five crystals (31, 48, 63, 132 and 167) have been removed from

the analysis because either they had a strong non-linear behavior or the gain drift was

too important.

The energy resolution of the photopeaks for each crystal is shown in figure 3.13(a).

The first 20 crystals have the worst resolution and have been placed backward, where the

Doppler shift reduces the energy in the laboratory frame. Crystals 125 to 144 also have a

worse resolution than the others. They are located on the outer part of the forward wall

and are shadowed by other crystals. Therefore, they receive much less γ-rays and their

contribution to the overall resolution is small. The overall σE/E resolution of the DALI2

array is found to be 3.3% and 2.8% at 898 and 1173 keV, respectively, in good agreement

with the expected value of 3.0% at 1 MeV [77].
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Figure 3.13 – (a) Energy resolution (σ) of each crystal for the calibration transitions. The
uncertainty of each point is below 2 keV. (b) σ resolution as a function of the
energy for one crystal, with a fit using equation 3.14.

As the resolution is proportional to the square-root of the energy [80], the evolution of

the resolution as function of the energy, shown in figure 3.13(b), is fitted by the following

function:
σE = k

√
E (3.14)

and the k-value of each crystal will be used as an input in the simulation described in

section 3.5.

3.3.2 Time alignment

The time information given by DALI2 can be used to remove γ rays uncorrelated

in time from the beam. When a nucleus passes through the F7 plastic scintillator, the

acquisition starts to record the information from the DALI2 crystals. The nuclei need

a time t ± ∆ t to reach the target, ∆ t depending of ∆β between the fastest and the

slowest nuclei. If a γ ray is detected before t−∆t or after t +∆t, it is rejected. t is the
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difference between the starting time given by the F7 plastic scintillator and the stopping

time from the crystal hit by a γ-ray, with an additional delay that depends on the crystal

electronics. Therefore, it is necessary to align all crystals. In figure 3.14(a) is shown a

time spectrum obtained from one crystal, taking into account γ energies above 200 keV.

This spectrum is fitted by a Landau function in order to determine the centroid. Then,

by convention, the mean value of each crystal is set to zero by applying an offset. Once

this alignment is done for the whole array, we can plot the time information versus the

energy of the detected γ-rays, as shown in figure 3.14(b). This allows us to check that

there is no energy dependence of the time. Such a dependence can be observed below

200 keV, this must be an electronic effect but not a physical one as there is a sharp cutoff

at 200 keV. A time gate ±3σt, with σt the time resolution given below, is then applied to

remove uncorrelated events.
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Figure 3.14 – DALI2 time alignment. (a) Time spectrum of one crystal for energies above
200 keV, fitted with a Landau function in order to determine the centroid.
(b) DALI2 time after alignment as a function of the energy. A time cut in the
interval from -5 ns to +5 ns, i.e. ±3σt, is applied to remove uncorrelated events.

Although the time spectrum shown in figure 3.14(a) is not Gaussian, we can estimate

the time distribution width by fitting the left part of the distribution with a Gaussian.

We find σt ∼ 1.7 ns. This width depends on ∆ t, mentioned above, and on the time

resolutions of the crystal considered and the F7 plastic scintillator. The β distribution

of the incoming nuclei has a width σβin
∼ 0.004 centered on β = 0.63 and the flight

path between the F7 plastic scintillator and the target is 12 m. This corresponds to a

time width σβin

t ∼ 0.8 ns. The time resolution of the plastic scintillator, a few tens of

picoseconds [70], can be neglected. The time resolution of the crystal can therefore be

estimated as:
σcrystal
t =

√

(σt)2 − (σβin

t )2 ∼ 1.5 ns (3.15)

which is of course only an order of magnitude as it may vary from one crystal to another.

Such a value is in agreement with the time resolution of a NaI(Tl) crystal, of the order

of one to a few nanoseconds, found in the literature [80].
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3.4. Doppler correction

3.3.3 Add-back

In the range of energies we are looking at, from a few hundreds of keV up to some MeV,

Compton scattering is the dominant interaction of γ-rays with the detector. As a conse-

quence, the crystals will often receive only a part of the γ-ray energy. If a γ ray deposits

its energy in several crystals close enough to each other, the energies will be summed to

reconstruct the initial energy: this is the add-back procedure.

The mean interaction point in each crystal has been determined by simulations of

DALI2, described in section 3.5. When a crystal is fired by a γ ray, all other crystals

whose mean interaction point is distant by less than 15 cm are taken into account for

the add-back. This maximum distance has been chosen as a compromise between gain of

photopeak efficiency and inclusion of crystals hit by another γ ray. The first interaction is

assumed to take place in the crystal receiving the largest part of the reconstructed energy.

Below 400 keV, NaI crystals have an non-linear behavior [84]. The effect of the non-

linearity on the add-back has been studied in reference [85] and was evaluated to induce

a shift up to 5 keV on the reconstructed photopeak. In our case, the shift should be

lower as we limit the add-back for energies above 200 keV, to exclude the important low-

energy background described in section 3.6. This error due to non-linearity is neglected

because the peaks that are well resolved can be fitted without add-back, and statistical

error dominates in the case of high-energy peaks, as we discuss in section 3.5.3.

The difference of photopeak efficiencies with and without add-back is discussed in

section 3.5.2.

3.4 Doppler correction

The energies seen by DALI2 are Doppler-shifted due to the velocity of the nuclei. This

effect is corrected using MINOS tracking information.

3.4.1 Doppler effect

When light is emitted by a moving source, its wavelength in the laboratory frame

is subjected to a shift that depends on the source velocity and the emission angle. In

our case, the nuclei are fast (β ∼ 0.6) and the energy measured by DALI2 are strongly

Doppler-shifted. A Doppler correction is applied as follow:

E0 = Eγ
1− β cos θ
√

1− β2
(3.16)

with E0 the corrected energy (i.e. the energy in the nucleus frame), Eγ the energy

measured, β the velocity of the nucleus when emitting the γ ray and θ the emission angle

in the laboratory frame.
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As there is no information about the half-lives of the emitting levels, all decays are

considered to be prompt: the emission point is taken as the interaction vertex, recon-

structed by MINOS, and β is taken at the velocity βv at this vertex. Therefore, the

direction of the γ-ray emission corresponds to the line between the interaction vertex and

the mean interaction point of the crystal hit. θ is the angle between this direction and the

direction of the emitting nucleus, the latter being taken as the beam direction because

the residue angle from the reaction is neglected. βv is calculated using the following linear

interpolation:

βv = βin −
(

zvertex
Ltarget

+ 0.5

)

(βin − βout) (3.17)

with βin and βout the velocities at the entrance and exit of the target, respectively, Ltarget

the target length and zvertex going from −Ltarget/2 to Ltarget/2. As shown in figure 3.15,

we calculate a difference of less than 1% between this linear interpolation and βv estimated

from energy-loss calculations performed with LISE++ [86].
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Figure 3.15 – Differences in βv between the linear interpolation from equation 3.17 and the
energy-loss calculations, depending on zvertex. The change of atomic number Z at
the reaction vertex is taken into account in the calculations.

A non-zero half-life of the emitting levels would affect both the emission angle and the

velocity, as the produced nucleus travels before emitting a γ ray, inducing a bias in the

correction. Such an effect on the corrected energy is discussed in sections 3.5.2.

3.4.2 β corrections

As seen in equation 3.17, we need the velocities of the nuclei at the entrance and exit

of the target, βin and βout, in order to determine βv for the Doppler correction. In the

experiment, we only measure βBR in BigRIPS and βZD in ZeroDegree, and so we have

to take into account the extra materials before and after the target. βBR corresponds to

the velocity after the F5 degrader and is higher than βin because between the degrader
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and the target, the nuclei pass for example through the DSSSD and the entrance window

of the target. βZD corresponds to the velocity at the D7 dipole and is lower than βout
as there are materials between the target and the D7 dipole, such as the exit window

of the target.

The corrections on the β values are estimated using LISE++ [86]. First, we take the

mean value of the βBR distribution. Then we calculate the energy loss of a 80Zn nucleus

with a velocity βMean
BR in the extra materials before the target. This gives βCalc.

in . Then,

the energy loss of a 80Zn nucleus with a velocity βCalc.
in in half the liquid-hydrogen target

is calculated, giving βCalc.
middle. We use the latter value for the velocity of a 79Cu nucleus of

which we compute the energy loss in the other half of the liquid-hydrogen target. This

time, we obtain βCalc.
out . Finally, βin and βout are calculated as follow:

βin = βBR − βMean
BR + βCalc.

in < βBR (3.18)

βout = βZD − βMean
ZD + βCalc.

out > βZD (3.19)

which is basically a shift of the experimental βBR and βZD distributions.

We verified the consistency of the energy-loss calculation: the final velocity calculated

for a nucleus with an initial velocity βBR after passing through the extra materials and the

target must correspond to the measured βZD. A run without target was performed and

used to check the energy loss in the extra materials only. The result of this verification

is shown in table 3.1. In all cases, the difference is below 0.2%, lower than the error due

the linear extrapolation of βv, indicating that both target and material energy-losses are

well reproduced.

In BR In ZD Target βMeas.
ZD βCalc.

ZD ∆β

80Zn 80Zn no 0.6148 0.6158 0.16%
79Cu 79Cu no 0.6085 0.6096 0.18%
80Zn 80Zn yes 0.5517 0.5521 0.07%
79Cu 79Cu yes 0.5462 0.5453 - 0.16%
80Zn 79Cu yes 0.5484 0.5487 0.05%

Table 3.1 – Measured and calculated values of βZD for different reaction channels, with or with-
out the target. ∆β = (βCalc.

ZD − βMeas.
ZD )/βMeas.

ZD is the difference in percent.

Once this verification is done, we can extract βCalc.
in and βCalc.

out . The measured and

computed β values are given in table 3.2. The mean value of the βBR and βZD distributions

are shifted by -1.8% and 1.5%, respectively.

βMean
BR (80Zn) βCalc.

in (80Zn) βCalc.
out (79Cu) βMean

ZD (79Cu)

0.6342 0.6228 0.5566 0.5484

Table 3.2 – Calculated velocities at the entrance and exit of the target compared to the values
measured in BigRIPS and ZeroDegree.
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3.5 Geant4 simulations

DALI2 simulations using Geant4 [78] are performed in order to obtain the response

functions of the array at different energies. These response functions will be used to fit

the γ-ray spectra and extract the intensities of the transitions.

3.5.1 Simulation code

The DALI2 simulation code [87] has been developed by P. Doornenbal (RIKEN,

Japan). It takes into account experimental conditions like the geometry of the detector,

the target thickness and the beam energy, as well as the lifetime of excited states. These

simulations are crucial as they take into account the anisotropy of the γ rays emitted by

the moving nuclei, due to the Lorentz boost. The code is divided into two steps.

In the first step, the interaction between the ion beam and the 102-mm thick liquid-

hydrogen target is simulated. It calculates the energy loss in the target before (80Zn)

and after (79Cu) the knockout reaction, and takes into account the half-life of the excited

states before γ-ray emission. The inputs are the beam velocity, taken as βCalc.
in from

table 3.2 with a distribution width corresponding to the experimental one, the energy of

the different γ transitions to be simulated and the half-life of the de-exciting state.

The second step simulates the interaction of the γ rays from the first step with the

DALI2 crystals. The geometry of DALI2 during the experiment is used. The experimen-

tal resolution of each crystal, measured with calibration sources at rest as described in

section 3.3.1, is set as an input. The beam pipe is also included in the simulation as it

can have an impact on low-energy transitions.

Finally, we perform the analysis of the simulated events exactly like in the treatment

of real data, namely: (i) Doppler correction of the γ rays, (ii) add-back procedure and

(iii) removal of defective crystals. The final output is the response function of DALI2 for

a given simulated transition.

3.5.2 DALI2 energy resolution and efficiency

Once the simulations are performed, we can characterize the DALI2 response in ex-

perimental conditions. The shape of the response functions as a function of the energy is

shown in figure 3.16(a), assuming emitting levels with a zero half-life. One can note that

the photopeak progressively merges with the Compton edge because of the low resolution

and that above 2.5 MeV there is no more a clear photopeak even with add-back. In fig-

ure 3.16(b) is plotted the σ energy resolution of the array. As regards the efficiency, shown

in figure 3.16(c), we can see the clear improvement due to the add-back procedure. For

example, there is a gain of more than 50% of photopeak efficiency for a γ ray of 2 MeV.
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Figure 3.16 – Characteristics of DALI2 for γ rays emitted in experimental conditions. (a) DALI2
response functions with add-back for γ transitions between 0.5 and 5 MeV, by
step of 0.5 MeV. (b) Energy resolution (σ) of the photopeaks, with add-back.
(c) Efficiency with and without add-back.

The half-life of the emitting levels has an impact on the reconstructed energy as the

residue travels before emitting the γ ray while the Doppler correction is applied at the

interaction vertex. Considering the geometry of the setup, a half-life of several tens of

picoseconds shifts the energy of the transitions towards lower energies by a few percent

and also increases the width of the photopeak. The effect of different level half-lives on a

γ ray of 1 MeV is shown in figure 3.17.
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Figure 3.17 – Half-lives effect on a 1-MeV transition. (a) Energy shift of the photopeak.
(b) Increase of the photopeak resolution compared to the case of a zero half-life.
The resolution starts to increase only above a half-life of 50 ps.
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3.5.3 Energy errors

Several sources of errors participate to the deterioration of the energy resolution. Once

they are identified, it is possible to evaluate the contribution of each of them thanks to

the simulations. From the Doppler-correction formula, given in equation 3.16, we see that

there are three parameters that are subject to error measurement: Eγ, β, θ. The error on

the corrected energy E0 due to β and θ are given by

σβ
E =

∂E0

∂β
σβ = Eγ

β − cos θ

(1− β)3/2
σβ = E0

β − cos θ

(1− β2)(1− β cos θ)
σβ (3.20)

σθ
E =

∂E0

∂θ
σθ = Eγ

β sin θ
√

1− β2
σθ = E0

β sin θ

(1− β cos θ)
σθ (3.21)

with σβ and σθ the errors on the velocity and the emission angle, respectively.

σβ contains the resolution on the TOF measurement, i.e. the statistical error on

βBR and βZD, the error on the calculated βin and βout, and the error due to the linear

interpolation discussed in section 3.4.1. The latter contribution dominates, as seen by

comparing figure 3.15 and table 3.1, and we can estimate that at most σβ ∼ 0.004.

θ being the angle between the residue trajectory and the direction of γ-ray emission,

σθ depends on the trajectory resolution, the vertex resolution and the error made by

taking the average interaction point of each crystal instead of the real interaction point.

For solid-target experiments, the average σθ is of the order of 3° [77]. In our case, we

have a 102-mm thick target with a vertex resolution of 5-mm FWHM, meaning that the

average σθ should be slightly higher.

A last source of statistical error comes from the intrinsic resolution of the crystal

σint
E . The intrinsic resolution of each crystal has been determined in section 3.3.1, but

the average σint
E of the whole array for a moving source can be determined only with the

Geant4 simulations.

The total statistical error on the energy σE is the convolution of the three statistical-

error sources:

σE =

√

(σβ
E)

2 + (σθ
E)

2 + (σint
E )2 (3.22)

and it should correspond to the energy resolution given in figure 3.16(b), found by fit-

ting the photopeaks simulated in experimental conditions (with the three error sources

included). The contribution to the energy resolution of each error source has been simu-

lated for three different γ-ray energies and the results are given in table 3.3. The σE from

equation 3.22 is compared to the resolution σall from figure 3.16(b).

One can note that the contribution of σβ
E is negligible, while σθ

E and σint
E are in com-

petition: up to 1 MeV, the intrinsic resolution dominates, while the angular resolution

dominates for higher-energy γ rays. The compatibility of σE and σall simply shows the

consistency of the procedure: taking the quadratic sum of each error is equivalent to

consider all errors together.

54
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E0 = 500 keV E0 = 1000 keV E0 = 2000 keV

σβ
E 2.7(1) 5.3(1) 10.3(2)

σθ
E 16.2(1) 28.5(6) 53.1(1.2)

σint
E 21.2(3) 31.0(5) 44.1(1.0)

σE 26.8(3) 42.4(8) 69.8(1.6)

σall 27.0(2) 42.3(4) 69.3(8)

Table 3.3 – Contribution to the total energy resolution of the three statistical error sources:
β (σβ

E), θ (σθ
E) and intrinsic (σint

E ) resolutions. All values are given in keV. The
energy resolution σE calculated from the three error sources is compared to the
resolution σall from figure 3.16(b).

Concerning statistical errors, the error made on the mean value of a peak is given by

σE/
√
N , with N the number of counts in the peak. When fitting a spectrum, the error on

the mean value σfit
E can be higher: the fit is based on a statistical method, described in

section 4.1.1, taking into account σE but also the function used for the fit, the error on N ,

etc. σfit
E will be even higher in the case of two peaks close to each other or if there is some

background below the peak. Moreover, σE, defined as the resolution of the photopeak, is

meaningless above 2.5 MeV, and only a fit with response functions can give an estimate

of the energy error as it takes into account all statistical error sources at the same time.

Besides σfit
E , there is the 5-keV source of error σcal

E coming from the calibration and

described in section 3.3.1. σfit
E and σcal

E are added quadratically in order to estimate the

total error on the energy.

3.6 Two reference cases: 78,80Zn

The 78,80Zn isotopes have been produced in different reaction channels during the ex-

periment. Several of their γ transitions are already known [31,32,36] and these transitions

are used to benchmark the overall analysis.

The γ-ray spectra of 80Zn(p,p2n)78Zn and 81Ga(p,2p)80Zn, with and without add-

back, are shown in figure 3.18. These channels have been chosen because they have

large statistics. On the spectra, an important background can be observed at low energy.

It corresponds mainly to atomic background [88]. Among this, there is Bremsstrahlung

coming from electrons knocked-out in the collisions between the beam nuclei and the atoms

of the target or some material of the beam line nearby the detection setup. There are

also X-rays emitted during the rearrangement of electrons in the atoms of the materials

after ionization. Of course, this region also contains the Compton continuum of the

γ transitions. The add-back technique improves significantly the peak-to-total ratio as it

induces a reduction of this continuum and an increase of the photopeak intensities.

55



Chapter 3. Data analysis

0 500 1000 1500 2000 2500
Energy (keV)

10
3

10
4

C
ou

nt
s 

(2
0 

ke
V

/b
in

)

(p,p2n)
78

Zn, no add-back

(p,p2n)
78

Zn, with add-back

0 500 1000 1500 2000 2500
Energy (keV)

10
3

10
4

C
ou

nt
s 

(2
0 

ke
V

/b
in

)

(p,2p)
80

Zn, no add-back

(p,2p)
80

Zn, with add-back

a) b)

Figure 3.18 – γ-ray spectra of 80Zn(p,p2n)78Zn (a) and 81Ga(p,2p)80Zn (b), with and without
add-back. The add-back technique improves significantly the signal-to-noise ratio
and is necessary to identify the transition around 2.6 MeV in the 80Zn spectrum.

Three peaks in the 78Zn spectrum and five in the 80Zn one have enough statistics to be

fitted. The extracted energies are in good agreement within error bars with the literature

values, as shown in table 3.4. In the case of 80Zn, the 482-keV transition comes from

a level having a half-life of 136+92
−67 ps [36], inducing a shift towards lower energies: the

real emission point is further away from the interaction vertex, the Doppler correction

is not correctly applied. From the simulation, such a half-life of 136 ps shifts a 482-keV

peak by -21(1) keV, which is compatible with the measured value of 456(5) keV. This

482-keV transition decays on top of the 1492-keV level, which itself decays directly to the

ground state. Therefore, in the case of a 482-1492 γ-cascade, the 1492-keV transition is

also subject to the 136-ps half-life: it is shifted by -55(2) keV according to the simulation.

The 1492-keV level can also be populated directly in the reaction, emitting a 1492-keV

γ-ray with no lifetime shift. The superposition of both effects explains the measured value

of 1460(6) keV. Finally, the 729.6-keV transition is emitted by a level having a half-life of

18.0(4) ps [89], but the effect is small enough to be within error bars.

As regards the resolution of these transitions, the simulated values are compatible

with the measured ones, as shown in table 3.4. For lifetime reasons, the resolution of

the 482-keV peak is worse than expected, as an incorrect Doppler correction increases

the width of the photopeak. The increase is strong enough in the case of the 1492-keV

peak so that it is not Gaussian anymore. Concerning the 1195-keV peak, it is indirectly

affected by the lifetime: it is not possible to determine precisely its width as it overlaps

with the large 1492-keV one.
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3.7. Beam-line transmission

Isotope Etab (keV) Emeas (keV) σmeas (keV) σsim (keV)

580(9) 571(5) 33(4) 31.2(5)
78Zn 729.6(5) 726(5) 34.8(9) 34.3(5)

889.9(5) 884(5) 41(3) 39.3(7)

482(7) 456(5)∗ 32.7(6)∗ 27.0(2)

841(13) 834(5) 37(2) 37.2(4)
80Zn 1195(18) 1199(8) -∗ 50.4(6)

1492(1) 1460(6)∗ -∗ 57.1(5)

2627(39) 2570(30) 88(10) 84(2)

Table 3.4 – Comparison between tabulated, measured and simulated observables for several
transitions of 78,80Zn. Values inconsistent due to lifetime effects are marked with a
star (∗). Tabulated energies are taken from references [31, 32, 36].

3.7 Beam-line transmission

In order to calculate reaction cross sections, it is necessary to determine the overall

transmission of the experimental beam line.

3.7.1 Principle

The overall transmission of the beam line is given by

T = εline εloss εtr (3.23)

with εline the efficiency of the beam-line detectors, εloss the losses due to scattering in the

MINOS target and εtr the transmission due to the Bρ selection in the dipoles. Each of

these three contributions depends on the considered reaction channel.

The calculation of T requires to know the total number of particles arriving from

BigRIPS (F7) in order to compare it with the number of nuclei transmitted until the

end of ZeroDegree (F11). Therefore, we use the F7DS (downscaled) trigger described

in section 2.5, which records events passing through the F7 plastic, disregarding if they

reach the end of the beam line.

We determine the transmission components using the x-position distribution of the

isotopes in F5, named F5X, given by the PPAC detectors. The F5 plane is used because it

belongs to BigRIPS and is momentum dispersive: looking at F5X allows to determine εtr,

as a Bρ selection is equivalent to a momentum selection.
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Chapter 3. Data analysis

3.7.2 Efficiency of the beam-line detectors

Before the experiment, a run without the liquid-hydrogen target was performed, with

BigRIPS and ZeroDegree having the same central Bρ. In this case, we have εtr = 1 and

for a given isotope, the number of particles in ZeroDegree NZD is simply the number of

particles in BigRIPS NBR multiplied by the efficiency of the beam-line detectors:

NZD = NBR εline (3.24)

The F5X distributions of 80Zn and 79Cu are shown in figure 3.19. In both cases the

distribution with an isotope selection in BigRIPS only is compared to the distribution with

a selection in both spectrometers. The scaling factor between both distributions gives εline
for the isotope considered. We find εline (

80Zn) = 80.6(5)% and εline (
79Cu) = 78(4)%.
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Figure 3.19 – F5X distributions for 80Zn (a) and 79Cu (b) without the liquid-hydrogen target,
when the isotope is selected in BigRIPS only (blue) and in both BigRIPS and
ZeroDegree (red). The insets show the ratio between the two distributions, which
allow to extract εline by fitting the constant part.

3.7.3 Losses from scattering in the target

When using the physics runs, i.e. with the target, the relation between NZD and NBR

for a given isotope is

NZD = NBR εline εloss εtr (3.25)

with εline calculated above.

The corresponding F5X distributions of 80Zn and 79Cu are shown in figure 3.20. This

time, a scale factor would not be enough to overlap both curves. ZeroDegree is centered
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3.7. Beam-line transmission

on (A,Z-1) compared to BigRIPS and the liquid-hydrogen target induces a momentum

spread. If the Bρ of the isotopes varies too much from the central Bρ, they are stopped in

the dipoles. This is the effect of εtr, which is not constant over F5X and which explains

the cut on the left side of the F5X distributions. As regards εline and εloss, they are

globally constant over F5X: the momentum spread induced by the target is not important

enough for having large variations of the number of nuclei lost due to the beam-line

efficiency and the scattering in the target. Therefore, on the right side of the distributions,

where εtr = 1, the scaling factor between them corresponds to εline εloss for 80Zn. We

obtain εline εloss (
80Zn) = 60.3(2)%.
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Figure 3.20 – F5X distributions for 80Zn (a) and 79Cu (b) with the liquid-hydrogen target, when
the isotope is selected in BigRIPS only (blue) and in both BigRIPS and Zero-
Degree (red). The insets show the ratio between the two distributions, which not
constant as the target induces a momentum change and reduces the transmission
in the dipoles. εline εloss can be determined by fitting the constant part of the ratio
in the case of 80Zn. For 79Cu, the four maximum values are taken into account.

As regards 79Cu, the effect of εtr < 1 can be seen on both sides. The origin of this cut

is not fully understood but is observed only when the nucleus selected in BigRIPS is more

exotic than 80Zn. When selecting 79Cu in ZeroDegree and 80Zn in BigRIPS, this cut on

the right disappears. We explain in the next section that this cut is therefore not a critical

point for the calculation of cross section. If we take the small part in F5X where the ratio

seems constant, for F5X between 38 and 54 mm, we find εline εloss (
79Cu) = 58.9(1.6)%,

which is compatible with the value for 80Zn as expected: εline εloss does not vary signifi-

cantly between the different isotopes we produced because they have a high velocity and

are close in (A,Z). From the εline values found above, we can calculate the losses in the

target: εloss (
80Zn) = 74.8(5)% and εloss (

79Cu) = 76(4)%.
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3.7.4 Number of nuclei

We calculated the ratio between the number of particles in BigRIPS and in Zero-

Degree for the same isotope selected in both spectrometers. This ratio was equal to the

transmission of the beam line. Now we focus on the reaction of interest, 80Zn(p,2p)79Cu,

with 80Zn selected in BigRIPS and 79Cu selected in ZeroDegree. The corresponding F5X

distributions are shown in figure 3.21. The ratio between both distributions in the part

where εtr = 1, i.e. where the ratio is constant, is proportional to εline εloss but also to the

reaction cross section. We find:

NZD (79Cu)

NBR (80Zn)
= 2.01(7)× 10−3 (3.26)

and this value will be used in section 5.4 for the cross section calculation.
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Figure 3.21 – (a) F5X distribution for 80Zn selected in BigRIPS only (blue) and 80Zn selected
in BigRIPS plus 79Cu selected in ZeroDegree (red). (b) Ratio between both dis-
tributions with a fit in the constant part for determining NZD(

79Cu)/NBR(
80Zn).

The cut observed in figure 3.20(b) does not affect this calculation because the Bρ

distribution in BigRIPS is that of 80Zn and not of 79Cu. As the effect of εtr is non-

linear, we would see a decrease on the right part of the ratio in figure 3.21(b) if there

was a cut. Moreover, as said before, we have εtr = 1 for F5X from 38 to 54 mm in

figure 3.20(b): the same range in F5X in figure 3.21(b) corresponds to the constant

part of the fit used for obtaining the ratio in equation 3.26, and using only this part

would give the same value but with a larger error bar because there is less statistics:

NZD (79Cu) /NBR (80Zn) = 2.02(11)× 10−3 in this case.
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3.8. Limit of the analysis

3.8 Limit of the analysis

By measuring the parallel momentum distribution of the residue after the (p,2p)

knockout, one can access to the angular momentum l of the removed proton, i.e. of its

orbital [62]. This gives a clue on the spin of the populated states. The total momentum p

can be obtained by subtracting the momentum poutv of the (A− 1) residue to the momen-

tum of the incoming nucleus pinv at the reaction vertex. Unfortunately, several limitations

happen and degrade the resolution of the momentum distribution:

� The energy straggling of the beam in the thick target increases the uncertainty on

the velocities;

� The resolution on the reconstructed vertex in the target which also induce an un-

certainty on the velocity calculation;

� The absence of residue-angle measurement prevents us from making a projection on

the residue trajectory and access to the parallel momentum.

A study of these limitations was performed by C. Santamaria (CEA, France) [82] and

the conclusions are that the poor resolution of the experimental momentum distribution

does not allow to dinstinguish between a l = 0 and a l = 3 theoretical distributions.

Moreover, in order to determine the momentum distribution for a given populated state,

one must know the branching ratio to this state. We show in section 5.4.2 how large

are the errors on the branching ratios in our case, which would make even worse the

momentum distributions.
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Procedure for building level schemes

In this chapter, we describe the procedure we established for building level schemes

from our data. We first present the method used for fitting the spectra and the different

steps of the procedure, before to apply them to a known case, 81Ga, for validation. These

steps will be applied to 79Cu in the next chapter.

4.1 General overview

4.1.1 Method of fit

The spectra shown in the following are always fitted in the same way: we use a double-

exponential function, commonly used for reproducing the background in the DALI2 spec-

tra [35–37,88], and for each suspected transition, we include a simulated response function

of DALI2 at the corresponding energy in the fit. Each response function has two degrees

of freedom, one for the energy and one for the intensity, as shown in figure 4.1(a).
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Figure 4.1 – (a) Energy and intensity degrees of freedom for each response function. (b) Ratio
of the intensities for a response function at 1040 keV and another one at 1000 keV
shifted by σE = 40 keV. Above 300 keV, i.e. after the backscattered peak, the
difference is already less than 10%, and above 500 keV the ratio is 0.98(1).
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Energies

In the fit, each response function is let free to shift in a range ±σE, the energy resolu-

tion, around its simulated energy for a better agreement with the data. This is justified

since the energy resolution does not vary rapidly with the energy, as shown in section 3.5.2,

and so the response functions at E and E ± σE have similar shapes. The only limitation

is at low energy, below 300 keV, because the backscattered peak will also be shifted while

its location is almost independent on the energy, as explained in section 2.3.2. This issue

can be bypassed by fitting the spectrum above 300 keV only or by using a smaller range

of shift. The latter option is preferable in case of low-energy peaks.

Intensities

The intensity of each transition is simply given by the scale factor applied to its

response function for reproducing the data, multiplied by the number of events simulated.

By doing so, all detection-efficiency effects are taken into account by the simulation. The

statistical error on this intensity depends on:

� The number of counts in the energy range of the transition;

� The intensity of the other transitions present in the spectrum;

� The background.

The efficiency given by the simulation agrees within 5% with the calibration-source

measurements from previous experiments that used solid target. In our case, the large

thickness of the target and its surrounding chamber makes impossible to perform precise

efficiency measurements. Therefore, we allow a larger margin of 10% error to be safe.

These 10% are added quadratically to the statistical error given by the fit.

The error made on the intensity due to the shift of the response functions is neg-

ligible compared to the other error sources because the change of efficiency betwen E

and E ± σE is small, as shown in section 3.5.2. An example of such a difference is shown

in figure 4.1(b).

Likelihood fits

We are dealing with low-statistics spectra obeying Poisson statistics and therefore we

use the principle of maximum likelihood for fitting histograms. As described in refer-

ence [90], a likelihood χ2 to be minimized can be defined as

χ2
λ = 2

∑

i

yi – ni + ni ln(ni/yi) (4.1)

with ni the true number of counts and yi the number of counts estimated by the response

function in the ith bin.
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4.1. General overview

This method takes into account empty bins and fits better histograms with low statis-

tics than the Pearson’s χ2
P minimization method, which assumes Gaussian-statistics his-

tograms, while both methods give the same results in case of high statistics per bin.

An example of simulated low-statistics histogram fitted using both methods is shown in

figure 4.2.
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Figure 4.2 – Histogram resulting from the simulation of 500 γ rays of 3 MeV emitted in experi-
mental conditions and fitted using both χ2

P and χ2
λ minimization methods. We find

an intensity of 419(26) and 484(27), respectively.

We simulated γ rays of different energies emitted in experimental conditions with

different intensities in order to quantify the limit of statistics that can be correctly fitted

using simulated DALI2 response functions. The results are shown in table 4.1. We

found that the likelihood method gives the correct intensity within the statistical error

bars for intensities down to 200 counts, while the Pearson’s χ2
P minimization method

underestimates significantly the intensities for γ rays above 1 MeV.

0.5 MeV 1 MeV 2 MeV 3 MeV 4 MeV

Counts IP Iλ IP Iλ IP Iλ IP Iλ IP Iλ

200 -4(9) 5(9) -30(8) 1(9) -13(10) -8(9) -13(9) -1(9) -2(11) -7(9)

500 1(5) 4(6) -2(6) 4(6) -28(5) -10(5) -16(5) -3(5) -14(6) -5(6)

1000 -1(4) 1(4) -4(4) 2(4) -17(4) -5(5) -15(4) -3(4) -20(4) -5(4)

Table 4.1 – Results from χ2
P and χ2

λ fits of simulated low-statistics histograms, with 200, 500
and 1000 events. The difference between the true number of events and the inten-
sity obtained from each method, respectively IP and Iλ, is given in percent. The
statistical uncertainty in also given.
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Color code

We use a uniform color code for the different graphs we show. The data points are in

black, the double-exponential background is a blue dashed-line, the simulated response

functions are in indigo and the total fit, which is the sum of the background and all

response functions, is in red.

4.1.2 Criteria for peaks identification

When dealing with low-statistics, the question of the significance of a peak arises.

For the fits we performed, we consider a transition as real if it responds to the following

criteria:

� Adding the corresponding response function in the fit improves χ2
λ;

� The width of the possible peak agrees with the resolution expected at this energy;

� The intensity of the peak obtained from the fit must be at least twice greater than

its statistical uncertainty (criterion that we call “2σ significance”).

In the next pages, we fit the spectra with the minimum of transitions fulfilling these

three criteria. Although this avoids to consider statistical artefacts as physical transitions,

it also implies that we can miss some low-intensity γ rays. We discuss in more detail this

point at the end of this chapter.

4.1.3 Steps of the procedure

The procedure we established for extracting as much information as possible from our

data consists in performing a reliable identification of many transitions, determining their

coincidence relations and estimating their intensities. With these information, we can

then build level schemes. We can summarize the procedure as follow:

� Step 1: perform γ-γ coincidences without background subtraction;

� Step 2: use special multiplicity conditions in order to identify transitions to the

ground state;

� Step 3: fit the spectrum with the γ transitions found in steps 1 and 2;

� Step 4: estimate the influence of the discrepancies between the fit and the data on

the intensity of the transitions;

� Step 5: calculate the amount of background below each peak;

� Step 6: perform γ-γ coincidences with background subtraction, in order to confirm

or invalidate the coincidence relations found in step 1.
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4.2 Application to a known case: 81Ga

Our procedure for building level schemes should be tested to a known case in order to

verify its accuracy. The ideal case would be an even-odd nucleus, as such isotopes present

a higher density of states and are closer to 79Cu than even-even nuclei. In the data set,

there is the same amount of statistics in the 82Ge(p,2p)81Ga channel than for copper.

Moreover, the second Seastar campaign was performed in similar conditions (same setup)

and offers a variety of channels leading to 81Ga. We have therefore the possibility to carry

out a last check that there is no bias in our analysis and that all steps described in the

previous section are consistent, disregarding the data set we consider.

4.2.1 82Ge(p,2p)81Ga from the first campaign

The γ-ray spectrum of (p,2p)81Ga, coming from the same experiment than 79Cu, is

shown in figure 4.3. The add-back is done up to 15 cm and multiplicities below four are

considered, for a better peak-to-total ratio. A peak is clearly visible around 350 keV,

while several structures are present at higher energy, especially between 1 and 1.6 MeV.

The peak below 200 keV is not a physical transition but corresponds to the background

already described in section 3.6.
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Figure 4.3 – γ-ray spectrum of 82Ge(p,2p)81Ga after add-back and Doppler correction.

Step 1 We start with the γ-γ coincidence spectrum for a gate set on the 350-keV peak,

that we fit with a double-exponential background and several response functions that obey

the criteria defined in section 4.1.2, as shown in figure 4.4. We identify five transitions

at 460(8), 910(10), 1110(10), 1360(20) and 1600(20) keV, as well as the auto-coincidence.

It is normal that the 350-keV transition is in coincidence with itself as no background
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Chapter 4. Procedure for building level schemes

subtraction has been performed: the part of the Compton continuum of other peaks that

is below the 350-keV peak induces false coincidences and is responsible of such an auto-

coincidence. The spectrum is flat at higher energy than 1.6 MeV. Unfortunately, no other

peak than the 350-keV one is resolved enough for performing γ-γ coincidences.
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Figure 4.4 – Fit of the γ-γ coincidence spectrum for a gate set on the 350-keV transition.

Step 2 γ-γ coincidences are very powerful, but they do not allow to identify transitions

that would directly go to the ground state. It is possible to observe such peaks using

only events that have special conditions on the multiplicity. We select events with a

multiplicity equal to one but with a number of fired crystals above one, giving the spectrum

in figure 4.5. In this way, we favour:

� Transitions that are not in coincidence with other transitions, as a multiplicity equal

to one means only one transition per event (after add-back);

� High-energy γ-rays, as a number of fired crystals above one means γ rays that have

Compton-scattered.

This method is less precise than γ-γ coincidences, as we need to have 60 keV per bin

due to the low statistics, but it is highly selective: as seen in figure 4.5, the statistics in

the region from 1.2 to 1.6 MeV compared to the 350-keV peak is considerably higher than

in figure 4.3. The 350-keV peak corresponds to only one bin as we use a low binning. An

intense peak is observed around 1350 keV and a similar transition was seen in the γ-γ

coincidence spectrum. Another peak is also present on its right side, around 1.5 MeV. Two

structures are visible above 2 MeV, but they are too large to correspond to single peaks:

it is not possible to identify any transitions there. Considering the spectrum in figure 4.3,

the intensity of these transitions is low compared to the transitions below 2 MeV.
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Figure 4.5 – γ-ray spectrum of (p,2p)81Ga for multiplicity = 1 and more than one crystal fired.

Step 3 In total, seven transitions have been found. We now use the seven corresponding

response functions to fit the spectrum of 81Ga, as shown in figure 4.6. There are slight

discrepancies between the fit and the data around 600 keV and 1250 keV, as well as above

2 MeV due to high-energy transitions that are not identified. However, in the latter

case, these transitions are far enough from the other peaks so that their contribution to

the background below 2 MeV is a flat Compton tail that is taken into account by the

exponential curve.
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Figure 4.6 – Fit of the γ-ray spectrum of 82Ge(p,2p)81Ga after add-back and Doppler correction,
for multiplicities below four. Discrepancies between the data and the fit are due to
unidentified transitions.
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Chapter 4. Procedure for building level schemes

Step 4 In order to estimate the effect of unidentified transitions on the intensities,

two response functions are added in the fit at 600 and 1250 keV, i.e. where there are

discrepancies, as shown in figure 4.7. The corresponding transitions do not appear to

be intense. The intensities of the transitions identified in the 81Ga spectrum are given in

table 4.2, with (corrected intensities) and without (maximum intensities) the two addition-

nal response functions. One can see that the latter have a low impact on the intensities,

within the error bars. The precise energy of the clear peak is found to be 344(5) keV.
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Figure 4.7 – Fit of γ-ray spectrum of 82Ge(p,2p)81Ga with two additionnal response functions
(cyan) to remove the discrepancies observed previously below 2 MeV.

Energy (keV) Maximum Iγ (%) Corrected Iγ (%)

344(5) 94(10) 100(11)
456(6) 16(3) 16(3)
910(10) 11(2) 10(2)

1110(10) 13(2) 11(3)
1360(20) 39(6) 35(7)
1470(20) 33(5) 31(6)
1600(20) 41(6) 40(6)

Table 4.2 – Transitions seen in the 82Ge(p,2p)81Ga spectrum. The maximum intensities come
from the fit of the spectrum with the identified transitions only, while the corrected
intensities come from the fit taking into account the discrepancies. All intensities
are normalized with respect to the corrected intensity of the 344-keV transition.

Step 5 The γ-γ relations found previously may not be all true coincidences as no back-

ground subtraction was performed so far. Now that we quantified the intensity of the

344-keV transition, we can determine the amount of background below this peak, as

shown in figure 4.8. The false coincidences due to this background is estimated by setting
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4.2. Application to a known case: 81Ga

gates on both sides of each peak and the number of events contained in these two gates

is normalized to the real amount of background. The spectra obtained from the gates are

then added in order to obtain the background spectrum. The background gates are taken

as a compromise between being close to the peak and not taking too much signal from

the 344-keV peak itself nor the 456-keV one.
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Figure 4.8 – Background below the 344-keV peak in the spectrum with multiplicities 2 and 3.
In cyan, the double-exponential function plus the other response functions than the
peak considered. In orange, the gate used for the γ-γ coincidences. In maroon, the
gates for the background to subtract.

Step 6 As opposed to standard analysis of γ-γ coincidences, we do not extract informa-

tion directly from the coincidence spectrum after background subtraction. Indeed, such a

spectrum cannot be fitted as it does not obey Poisson statistics anymore (the likelihood

fit described in section 4.1.1 cannot be used) and it has low statistics (the standard χ2

method is not suitable). Moreover, there is no guarantee that the response functions after

background subtraction have the same shape than the response functions simulated in a

standard decay process. Therefore, in the same way than before, the background spec-

trum is fitted with response functions plus a double-exponential background, as shown

in figure 4.9. Then, we can subtract the intensity of the transitions in the background

spectrum to the intensity of the same transitions in the coincidence spectrum. Finally,

the 2σ-significance criterion is applied: a transition is considered to be in coincidence with

the peak for which the gate is set when its intensity after subtraction is at least two times

greater than the statistical uncertainty.

After subtraction, we find that the 1360-keV transition is rejected (I = 1.5σ), it is not

in coincidence with the 344-keV transition, as well as the auto-coincidence. As regards

the other transitions, we find I = 3.7σ, 4.3σ, 3.0σ and 2.7σ for the 460, 910, 1110 and
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Chapter 4. Procedure for building level schemes

1600-keV peaks, respectively. The coincidence spectrum after background subtraction is

shown in figure 4.10, where the fit is given as an illustration but was not used to extract

information.
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Figure 4.9 – (a) Coincidence spectrum before background subtraction for a gate set on the
344-keV peak and (b) the associated background spectra to subtract.
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Figure 4.10 – γ-γ coincidence spectra after background subtraction for a gate set on the 344-keV
peak. The fit is given as an illustration.
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4.2. Application to a known case: 81Ga

Summary The transitions identified in the 82Ge(p,2p)81Ga γ-ray spectrum are given

in table 4.3, with their intensity and indicating whether they are in coincidence with the

344-keV transition.

Energy (keV) Intensity (relative)

344(5) 100(11)
456(6)∗ 16(3)
910(10)∗ 10(2)

1110(10)∗ 11(3)
1360(20) 35(7)
1470(20) 31(6)
1600(20)∗ 40(6)

∗Transitions in coincidence with the 344-keV transition.

Table 4.3 – Transitions seen in the 82Ge(p,2p)81Ga spectrum. The maximum intensities come
from the fit of the spectrum with the identified transitions only, while the corrected
intensities come from the fit taking into account the discrepancies. All intensities
are normalized with respect to the corrected intensity of the 344-keV transition.

Building of the level scheme
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Figure 4.11 – Proposed level scheme for 81Ga in this first analysis.

The level scheme built for 81Ga from this analysis is shown in figure 4.11. The 344-keV

transition is by far the most intense one and so we place a level at 344(5) keV. The 1360(20)

and 1470(20)-keV transitions are not seen in coincidence with the 344-keV one and they

are seen in the spectrum favoring the ground-state decays, in figure 4.5. As a consequence,
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Chapter 4. Procedure for building level schemes

we place two levels at 1360(20) and 1470(20) keV. The 456 and 910-keV transitions are

in coincidence with the 344-keV one, but as we cannot exclude them to be in coincidence

with other transitions, we cannot place them firmly: we put them on top of the 344-keV

and create two levels in dashed line at 800(8) and 1254(11) keV, respectively. The same

reasoning works for the 1110(10)-keV transition, and we notice that the sum of the 344

and 1110-keV transitions gives 1454(11), which could correspond to the level at 1470(20)

that we already built. Finally, the 1600(20)-keV transition can be either on top of the

355-keV level or on top of the 1470-keV one because of the 1110-keV transition. The

coincidence of the 1600-keV transition with the 344-keV one would not be fulfilled if the

former was on top of the 1360-keV level and its intensity is too large to place it somewhere

else. A level in dashed line is then placed at 1944(20) keV.

4.2.2 Multi-channel to 81Ga from the second campaign

The second seastar campaign took place one year after the first one, with the same

experimental setup. We performed the data analysis for the second campaign follow-

ing the same steps than described in chapter 3, taking into account the little changes

(liquid-hydrogen target 3-mm thinner, DALI2 crystals organized in a different way, no

DSSSD before the target, different energy thresholds). The 81Ga isotope was not produced

from the (p,2p) reaction but from several other channels: 87As(p,3p4n), 86As(p,3p3n),
86Ge(p,2p4n), 85Ge(p,2p3n), 84Ge(p,2p2n), 84Ga(p,p3n) and 83Ga(p,p2n). As there is not

enough statistics in each channel for performing γ-γ coincidences, we use all channels

together. We have the risk to increase the density of states and this is therefore a good

test case for the robustness of our procedure. The resulting γ-ray spectrum of 81Ga is

shown in figure 4.12, with multiplicities up to three.
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Figure 4.12 – γ-ray spectrum of 81Ga after add-back and Doppler correction. (Inset) Low-energy
part with a higher binning to show the peak at 450 keV.
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4.2. Application to a known case: 81Ga

At first, the spectrum looks simpler than in the case of (p,2p). There are two well-

resolved peaks, at 350 and 600 keV, and another one at 450 keV that can be seen by

increasing the binning, as shown in the inset of figure 4.12. There is also a structure

between 1.2 and 1.6 MeV, but no transition seems to be present at higher energy.

Setp 1 The γ-γ coincidence spectra for a gate set on the 350, 450 and 600-keV peaks,

shown in figure 4.13. In addition to the auto-coincidence, we identify seven transitions for

a gate set on the 350-keV peak: 450(10), 550(10), 640(10), 930(20), 1130(20), 1310(20)

and 1450(20) keV. For a gate set on the 450-keV peak, there are three transitions observed

at 345(6), 630(20) and 1330(20) keV. Finally, for the last gate, we see peaks at 346(8),

480(20), 760(10), 990(20) and 1360(20) keV. Nothing is observed above 1.5 MeV in any

of the three spectra.
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Figure 4.13 – Fit of the γ-γ coincidence spectra for a gate set on the (a) 350, (b) 450 and
(c) 600-keV peaks.
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Chapter 4. Procedure for building level schemes

Step 2 The γ-ray spectrum of 81Ga for multiplicities limited to one and with at least

two crystals fired is shown in figure 4.14. One can see a little accumulation of statistics

at 600 keV and a very intense peak at 1350 keV. A structure is visible between 2 and

3 MeV, but nothing emerges clearly. As there is no indication for a peak a such energies

in the spectrum shown in figure 4.12, and considering the low intensity of this region, we

prefer not to draw any conclusion above 2 MeV.
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Figure 4.14 – γ-ray spectrum of 81Ga for multiplicity = 1 and more than one crystal fired.

Steps 3 and 4 We now use the response functions corresponding to the nine transitions

identified to fit the spectrum of 81Ga, around 350, 450, 550, 630, 760, 950, 1130, 1330

and 1450 keV. The result is shown in figure 4.15. There is no disrepancies between the

fit and the data, the whole spectrum is well reproduced. The intensities of the different

transitions are shown in table 4.4, normalized to the intensity of the 344-keV transition,

even if here this is not the most intense transition.

Energy (keV) Intensity (relative)

344(5) 100(11)
445(9) 24(5)
540(20) 10(5)
620(10) 41(8)
770(10) 18(5)
930(10) 17(5)
1130(20) 19(5)
1340(20) 114(18)
1460(20) 74(13)

Table 4.4 – Transitions observed in the 81Ga spectrum, with their intensity. Intensities are
normalized with respect to the intensity of the 344-keV transition.
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Figure 4.15 – Fit of the γ-ray spectrum of 81Ga after add-back and Doppler correction, for
multiplicities below four.

Step 5 The gates used for the γ-γ coincidences and the background subtraction are

shown in figure 4.16, as well as the amount of background below the three peaks. One

can see that several peaks in this range of energy are rather close to each other, which

implies that the background gates for a given transition contain a part of the surrounding

peaks. This could lead to the rejection of weak but true coincidences. Nevertheless, the

background subtraction is essential to avoid false coincidences.
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Figure 4.16 – Background below the (a) 344, (b) 445 and (c) 620-keV peaks in the spectrum
with multiplicities 2 and 3. In cyan, the double-exponential function plus the
other response functions than the peak considered. In orange, the gates used for
the γ-γ coincidences. In maroon, the gates for the background to subtract.
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Chapter 4. Procedure for building level schemes

Step 6 The γ-γ coincidence spectra corresponding to the three gates and their associated

background spectra are shown in figure 4.17. The results of the subtraction is given in

table 4.5. One can note that the 990(20)-keV peak in coincidence with the 620-keV

transition is a bit far from the value found in the fit of the full spectrum, which is

930(10). Adding a peak at 990-keV does not improve the fit shown in figure 4.15, on the

contrary, it is rejected by the 2σ-significance criterion. For now we consider that both

energies correspond to the same peak and we will come back on this difference latter in

this chapter. To finish, the coincidence spectrum after background subtraction is shown

in figure 4.18.
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Figure 4.17 – Coincidence spectra before background subtraction for a gate set on the (a) 344,
(c) 445 and (e) 620-keV peaks and their corresponding background spectra (b),
(d), (f), respectively.
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4.2. Application to a known case: 81Ga

γ-γ 344 keV 445 keV 620 keV

344(5) - 2.9 1.4
445(9) 2.4 - 0.2
540(20) 3.9 - -
620(10) 0.7 0.0 -
770(10) - - 2.1
930(10) 1.1 - 2.9∗

1130(20) 2.2 - -
1340(20) 0.8 1.7 2.6
1460(20) 1.3 - -

∗Seen at 990(20) keV.

Table 4.5 – Intensity of the peaks in coincidence after background subtraction, given in terms of
Iγ/σIγ . Only values in bold type mean true coincidence (2σ-significance criterion).
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Figure 4.18 – γ-γ coincidence spectra after background subtraction for a gate set on the (a) 344,
(c) 445 and (e) 620-keV peaks. The fit is given as an illustration.
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Summary The transitions identified in the 82Ge(p,2p)81Ga γ-ray spectrum are given

in table 4.6, with their intensity and indicating whether they are in coincidence with the

344-keV transition.

Energy (keV) Intensity (relative)

344(5) 100(11)†

445(9) 24(5)∗

540(20) 10(5)∗

620(10) 41(8)
770(10) 18(5)‡

930(10) 17(5)‡

1130(20) 19(5)∗

1340(20) 114(18)‡

1460(20) 74(13)
∗Transitions in coincidence with the 344-keV transition.
†Transitions in coincidence with the 445-keV transition.
‡Transitions in coincidence with the 620-keV transition.

Table 4.6 – Transitions observed in the 81Ga spectrum, with their estimated intensity and co-
incidence relations. Intensities are normalized with respect to the intensity of the
344-keV transition.

Building of the level scheme

The level scheme built for 81Ga from this analysis is shown in figure 4.19. The 344

and 1340-keV transitions are the most intense ones and are not in coincidence, so we

place a level at 344(5) keV and another one at 1340(20) keV. The 445-keV transition

is in coincidence only with the 355-keV one, we put it on top of the 344-keV level,

creating a second excited state at 789(10) keV. Although the 540-keV transition is in

coincidence with the 355-keV one, we put the level at 884(21) keV in dashed line because

we cannot exclude that this transition happens higher in the level scheme: we cannot

perform γ-γ coincidences with it and it is the weakest transition, which implies that it

could be located above another transition also in coincidence with the 355-keV one. The

620-keV transition is placed on top of the 1340-keV state, considering their coincidence

relations and their intensities. The 1460-keV transition is not in coincidence with any of

the three transitions we looked at and this, together with its strong intensity, makes that

it can either fall on the ground state or on the 1340-keV level. The 1130-keV transition

is in coincidence with the 355-keV one but not with the one at 445-keV, and appears to

be more intense than the 540-keV transition. We therefore place it on top of the 344-keV

level, emitted from a state at 1474(21) keV. This value is very close to the 1460(20)-keV

transition, favoring the placement of the latter as a direct decay to the ground state.

Finally, two transitions at 770 and 990 keV are found to be in coincidence with the

80
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Figure 4.19 – Proposed level scheme for 81Ga in this second analysis.

620-keV one, but not with the 344 and 445-keV transitions. We place them on top of the

1960-keV state, emitted from two levels in dashed line: these transitions are unlikely to

be emitted by the 1340-keV level, as we would otherwise have seen the complementary

transitions to reach the ground state, but considering their similar intensity we cannot

exclude that they are in coincidence with each other. The question whether the 930 and

990-keV transitions are the same, mentioned in step 6, rises here: if they are different, it

is not possible to place the 930-keV transition on the level scheme as we cannot perform

reliable γ-γ coincidences by setting a gate on it and it has not been seen in coincidence

with any of the three transitions used in this analysis. The impossibility to disentangle

this issue is not of primary importance, but shows the limitation of our method, probably

due to the low statistics and the poor resolution.
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4.3 Comparison with literature

Figure 4.20 – Level scheme built from the β-decay study in reference [91].
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Figure 4.21 – Level schemes of 81Ga obtained in the (a) first and (b) second analysis. In red,
the levels already known from literature [91].
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4.3. Comparison with literature

The 81Ga nucleus has already been studied in several experiments, like for example in

references [51, 52, 91, 92], and some of its excited states are already known. We show in

figure 4.20 the level scheme published for 81Ga from a β-decay study [91] and in figure 4.21

the level scheme obtained from the two analysis we performed, with in red the levels and

transitions already known. The energy uncertainties in the literature scheme are lower

than 2 keV for the states below 2 MeV, and the intensity of each transition is indicated.

To begin, we can make two observations. First, the three firm excited states and

their four related decays in the scheme built from the first analysis are coherent with

the corresponding ones found in the second analysis. Secondly, when the transitions

are already known, the energies found in both analysis are in good agreement with the

literature scheme, within error bars. The 344-keV transition is the exception, its value

being slightly lower than expected even considering the uncertainty. This difference prob-

ably comes from lifetime effects, discussed in section 3.5.2, but we exclude a problem from

the analysis as in both data sets we find the same shift. The non-linearity of the crystals

below 400 keV can also be excluded because due to the Lorentz boost, most the γ-rays

are emitted at forward angles, i.e. at higher energy than in the rest frame.

In the scheme (a), the three levels in dashed line correspond to excited states already

observed. Although we could not be certain of their placement, because it would require

to perform more γ-γ coincidences, we correctly identified the corresponding transitions

and deduced their coincidence with the 344-keV one. We did not identify the decay of the

1944-keV level to the ground state, which exists according to figure 4.20. The intensities

measured in reference [91] for the 1585 and 1936-keV transitions are similar but with

important error bars, leading to a ratio between both intensities very large: 0.9(7). If the

real value of this ratio is close to its upper limit (1.6), and as the efficiency and resolution

for the photopeak are worse at 1.9 MeV than at 1.6 MeV, we can indeed miss it. Moreover,

from the spectrum in figure 4.5, there is an accumulation of statistics around 1.9 MeV

that could correspond to the 1936-keV transition.

In scheme (b), the possibility to perform γ-γ coincidences using the 445-keV transition

allowed us to firmly place a state at 789 keV, in agreement with the level at 802 keV found

in β decay. The difference between both values is explained with the statistical uncer-

tainty and the slight shift of the first-transition energy mentioned above. The coincidence

spectrum of the 620-keV transition was used to firmly place the latter on the scheme.

The 990-keV transition does not correspond to the 916-keV one in figure 4.20 that would

be shifted, as it is not in coincidence with the 344-keV transition.

Finally, the 1108 and 1458-keV transitions are emitted from the same level and we

identified them in both cases. The ratio between their intensities should be the same dis-

regarding how the 1458-keV level was populated. We found a ratio between the intensities

of these two transitions equal to 0.35(12) and 0.26(8), respectively in the first and second

analysis, which is coherent. In the literature, the intensity of both transitions has large

error bars and the ratio is 1.0(9), meaning that our values are compatible.
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As a conclusion, we performed two analysis of the same nucleus using different reaction

channels and data sets coming from two independent experiments based on the same

setup. In the first analysis, the statistics was similar than for 79Cu and there was half as

much in the second one. We therefore tested the procedure we established for building

the level scheme a first time in similar conditions than for 79Cu and a second time in

different conditions, leading to results for 81Ga that are coherent and compatible with

what is known from previous studies. The limitations of this procedure, inherent to the

low statistics and the poor resolution of the γ array, as well as to the large background,

induce sometimes the impossibility to place some transitions on the level scheme. Our

philosophy is to build a true level scheme even if it is not complete and this procedure

appears to be robust enough for this purpose.
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Chapter 5

Results

This chapter deals with the experimental results for the 80Zn(p,2p)79Cu reaction

channel. The γ-ray spectrum of 79Cu is presented and we apply the procedure described in

the previous chapter for building its level scheme. The last part focuses on the calculation

of inclusive and exclusive cross sections.

5.1 γ-ray energy spectrum

The γ-ray energy spectrum of 79Cu obtained from the (p,2p) reaction channel after

add-back and Doppler correction is shown in figure 5.1. The multiplicity is limited to a

maximum of three γ rays per event for a better signal-to-noise ratio. Events with one or

two protons detected in the MINOS TPC are taken into account.
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Figure 5.1 – γ-ray energy spectrum of 80Zn(p,2p)79Cu after add-back and Doppler correction.
Multiplicities below four are considered.
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Chapter 5. Results

Two clear transitions are found around 650 keV and 850 keV, while there are three

structures in the ranges 1.0 to 1.5 MeV, 2.0 to 3.4 MeV and 3.4 to 4.5 MeV. Above

4.5 MeV, no transition is seen. The peak below 200 keV is not a physical transition but

corresponds to the background already described in section 3.6.

5.2 Application of the procedure

We can now apply to the 79Cu data the procedure that we established and validated

in the last chapter.

5.2.1 γ-γ coincidences without background subtraction

In a first phase, we analyze the γ-γ coincidences. The γ-γ coincidences matrix, built for

events with two or three γ rays detected in DALI2 after add-back, is shown in figure 5.2.

As the 650 and 850-keV peaks are well separated from the other transitions and contain

enough statistics, we can make projections of the γ-γ matrix with a gate set on these two

peaks. The corresponding spectra can be fitted by the DALI2 response functions in order

to extract the energy of the coincident transitions.
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Figure 5.2 – γ-γ coincidences matrix of (p,2p)79Cu, for multiplicities two and three.
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5.2. Application of the procedure

Gate on the 650-keV peak

The coincidence spectrum obtained for a gate set on the 650-keV peak is shown in

figure 5.3. First, we consider a double-exponential background, as shown with the blue

dashed-line. The background at high energy is obtained by fitting an exponential function

between 4 and 6 MeV. The exponential function for the low-energy background is fitted

between 200 and 300 keV. Once the response functions are added, the Compton tail of

the peaks contributing to the background at low energy, the exponential function have to

be fitted again.
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Figure 5.3 – γ-γ coincidence spectrum for a gate set on the 650-keV peak with a fitted double-
exponential background. (Inset) Low-energy part with a higher binning.

A priori, there is sufficient statistics for having several peaks between 650 and 3100 keV.

We start fitting the spectrum above 2.1 MeV in order to determine the number of peaks

needed to reproduce the region between 2.1 and 2.8 MeV, and we include a response func-

tion fitting for the peak at 3.1 MeV as its Compton tail has an influence on the transitions

at lower lower energy. The results of a fit with two and three response functions between

2.1 and 2.8 MeV are shown in figure 5.4.

The values of χ2
λ divided by the number of degrees of freedom are given for different

numbers of peaks in table 5.1. These values are an indicator of the goodness of fit: the

closer to one it is, the better the fit is. The best fit is achieved for three transitions

between 2.1 and 2.8 MeV and fulfills the criteria defined in section 4.1.2, while the second

best fit does not respect the 2σ-significance criterion for one of the four transitions.

# of peaks 1 2 3 4

χ2
λ/NDF 2.31 1.46 1.03 1.14

Table 5.1 – Goodness of fit for different number of peaks between 2.1 and 2.8 MeV.
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a) Two peaks + 3.1 MeV b) Three peaks + 3.1 MeV

Figure 5.4 – Coincidence spectrum fitted between 2.1 and 3.3 MeV with two (a) and three (b)
transitions plus a peak around 3.1 MeV.

Once the high-energy part of the coincidence spectrum is untangled, we can fit all the

spectrum in order to complete the list of γ rays in coincidence with the 650-keV transition.

The final fit is shown in figure 5.5, with in inset a focus on the low-energy part with a

higher binning.
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Figure 5.5 – Fit of the γ-γ coincidence spectrum for a gate set on the 650-keV peak. (Inset) Low-
energy part with a higher binning.

At lower energy than 2.1 MeV, peaks around 650, 750, 860 and 1220 keV are needed

for a good fit of the spectrum. It is normal that the 650-keV transition is in coincidence

with itself as no background subtraction has been performed: the part of the Compton

continuum of other peaks that is below the 650-keV peak induces false coincidences and

is responsible of such an auto-coincidence.
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The addition of other response functions than those shown in figure 5.5 would lead to

the non-respect of at least one of the three criteria defined in section 4.1.2. For example,

despite the apparent structures in the region between 1.4 and 2 MeV, the addition of

peaks in this interval violates the 2σ-significance criterion as all the statistics is explained

by the Compton tail of the higher-energy peaks.

To summarize the results of the fit, the following peaks are found in the γ-γ coincidence

spectrum for a gate set on the 650-keV without background subtraction, besides the auto-

coincidence: 750(20), 860(10), 1220(30), 2240(40), 2440(40), 2600(40) and 3070(30) keV.

The significance of these transitions, defined as the intensity divided by the statistical

uncertainty Iγ/σIγ , is given in table 5.2.

Energy (keV) 750(20) 860(10) 1220(30) 2240(40) 2440(40) 2600(40) 3070(30)

Significance 3.7 5.6 4.6 3.3 3.8 4.6 8.8

Table 5.2 – Statistical significance of the transitions seen in the coincidence spectrum for a gate
set on the 650-keV peak, defined as Iγ/σIγ .

Gate on the 850-keV peak

The same method is applied on the γ-γ coincidence spectrum obtained with a gate

on the peak at 850 keV. The result is shown in figure 5.6, with in inset a focus on the

low-energy part with a higher binning. Peaks at 660(20), 760(30), 1250(30), 2360(30)

and 3050(30) keV, as well as the auto-coincidence of the 850-keV transition, are observed.

The significance of these transitions is given in table 5.3.
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Figure 5.6 – Fit of the γ-γ coincidence spectrum for a gate set on the 850-keV peak. (Inset) Low-
energy part with a higher binning.
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Energy (keV) 660(20) 760(30) 1250(30) 2360(30) 3050(30)

Significance 8.0 3.5 3.9 3.9 12.4

Table 5.3 – Statistical significance of the transitions seen in the coincidence spectrum for a gate
set on the 850-keV peak, defined as Iγ/σIγ .

5.2.2 Decays to the ground state

It is possible to identify transitions that would directly go to the ground state, which

cannot be observed with γ-γ coincidences, using only events that have special conditions

on the multiplicity. We select events with a multiplicity equal to one but with a number

of fired crystals above one, giving the spectrum in figure 5.7. In this way, we favour:

� Transitions that are not in coincidence with other transitions, as a multiplicity equal

to one means only one transition per event (after add-back);

� High-energy γ-rays, as a number of fired crystals above one means γ rays that have

Compton-scattered.

Although this method is less precise than γ-γ coincidences, due to the low statistics

that require to have 60 keV per bin, it is highly selective: as seen in figure 5.7, the statistics

in the region from 3.4 to 4.5 MeV compared to the 650-keV peak is considerably higher

than in figure 5.1. Significant accumulation of statistics is found around 640, 840, 1220,

2580, 2940, 3800 and 4300 keV. The three last peaks were not identified in the coincidence

spectra and are considered as coming from levels decaying directly to the ground state.

The presence of the four other γ rays already identified in coincidence is normal since a

γ cascade is sometimes only partially detected in DALI2.
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Figure 5.7 – γ-ray spectrum of (p,2p)79Cu for a multiplicity equal to one and a number of fired
crystals above one.
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5.2.3 Intensities estimation

In total, twelve transitions have been found. The spectrum of 79Cu shown in figure 5.1

can then be fitted with the corresponding response functions plus a double-exponential

background. It has to be noted that the 2360(30)-keV transition is in between the close

2240(40) and 2440(40)-keV transitions, with a separation of only 80(50) keV with the

latter, i.e. 1.0(6) σE in terms of energy resolution. Such a proximity may imply difficulties

for fitting accurately, like the rejection of one of the two transitions. Thus, we remove the

2360-keV transition from the fit and we justify this choice a posteriori in section 5.3.1.

The result of the fit with eleven response functions is shown in figure 5.8. The two

response functions above 3.4 MeV are enough to fit the region between 3.4 and 4.5 MeV,

so we let the intensity and energy parameters free in the fit: we find 3880(40) and

4300(40) keV. Below 3.4 MeV, there are discrepancies between the fit and the data due to

non-identified transitions, so the intensities and energies of the response functions must

be fixed manually. The intensities found for the transitions below 3.4 MeV using this

procedure have to be seen as an upper limit.
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Figure 5.8 – Fit of the γ-ray spectrum of (p,2p)79Cu after add-back and Doppler correction, for
multiplicities below four. The discrepancies between the data and the fit are due
to unidentified transitions.

In order to estimate the effect of unidentified transitions on the intensities, we added

response functions where there are discrepancies. The fit of the spectrum obtained from

this exercise is shown in figure 5.9. Four transitions are needed at least to avoid discrep-

ancies, including three transitions in the region between 1 and 1.5 MeV. This has to be

taken carefully as it does not mean that we missed four transitions in the spectrum. Of

course, this exercise cannot take into account any doublet, unresolved by DALI2.
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Figure 5.9 – Fit of the γ-ray spectrum of (p,2p)79Cu adding transitions (in cyan) where there
were previously discrepancies.

The transitions identified in the (p,2p)79Cu spectrum and their respective intensities

from the fits with (corrected intensities) and without (maximum intensities) the four

added transitions are listed in table 5.4, taking into account all multiplicities. The uncer-

tainty on the maximum intensities does not take into account any statistical uncertainty

as they are fixed manually, except for the 3880 and 4300-keV transitions. The precise

energy of the two clear peaks are found to be 656(5) and 855(6) keV, respectively.

Energy (keV) Maximum Iγ (%) Corrected Iγ (%)

656(5) 107(11) 100(11)
750(20) 11(1) 9(2)
855(6) 41(4) 33(4)
1220(30) 29(3) 16(4)
2240(40) 7(1) 4(2)
2440(40) 23(2) 21(3)
2600(40) 44(4) 40(7)
2940(60) 42(4) 33(6)
3070(30) 39(4) 28(6)
3880(40) 34(4) 34(4)
4300(40) 31(4) 31(4)

Table 5.4 – Transitions seen in the 80Zn(p,2p)79Cu spectrum. The maximum intensities come
from the fit of the spectrum with the identified transitions only, while the corrected
intensities come from the fit taking into account the discrepancies. The error bars
for the intensity include the 10% uncertainty from the simulation. All intensities
are normalized with respect to the corrected intensity of the 656-keV transition and
take into account all multiplicities.
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5.2. Application of the procedure

The intensity correction is very important for the 1220-keV transition as it is located

in the region where there are the biggest discrepancies between the spectrum and the

fit, as shown in figure 5.8. Moreover, several transitions are significantly affected by the

addition of the response function at 3.3 MeV, due to the Compton tail of this transition

that is important at such energies. The intensity of the 3880 and 4300-keV transitions

remains unchanged as no discrepancy is found above 3.4 MeV.

5.2.4 γ-γ coincidences with background subtraction

Many transitions belonging to 79Cu were found but the γ-γ relations from section 5.2.1

may not be all true coincidences as no background subtraction was performed so far. Now

that we quantified the intensity of the 656 and 855-keV transitions, we can determine

the amount of background below these two peaks, as shown in figure 5.10. The false

coincidences due to this background are estimated by setting gates on both sides of each

peak and the number of events contained in these two gates is normalized to the real

amount of background. The spectra obtained from the gates are then added in order to

obtain the background coincidence spectrum.
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Figure 5.10 – Background below the (a) 656 and (b) 855-keV peaks in the spectrum with multi-
plicities 2 and 3. In cyan, the double-exponential function plus the other response
functions than the peak considered, in orange, the gates used for the γ-γ coinci-
dences and in maroon, the gates used for the background to subtract.

Contrary to standard analysis of γ-γ coincidences, we do not extract information

directly from the coincidence spectrum after background subtraction: such a spectrum

cannot be fitted as it does not obey Poisson statistics anymore (the likelihood fit described

in section 4.1.1 cannot be used) and it has low statistics (the standard χ2 method is not

suitable). Moreover, there is no guarantee that the response functions after background
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subtraction have the same shape than the response functions simulated in a standard

decay process. Therefore, in the same way than in section 5.2.1, the background spec-

trum is fitted with response functions plus a double-exponential background, as shown

in figure 5.11. Then, we can subtract the intensity of the transitions in the background

spectrum to the intensity of the same transitions in the coincidence spectrum. Finally,

the 2σ-significance criterion is applied: a transition is considered to be in coincidence with

the peak for which the gate is set when its intensity after subtraction is at least two times

greater than the statistical uncertainty.

The significance of each coincidence is given in table 5.5. The results show that all

coincidences found in the coincidence spectra of section 5.2.1 are true coincidences, except

the auto-coincidences and the 2360-keV transition in case of a gate on the 855-keV peak.

The 750-keV peak is not seen in the two background spectra, which explains why the

significance for this transition is the same before and after subtraction.
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Figure 5.11 – Coincidence spectra before background subtraction for gates on the 656-keV (a)
and the 855-keV (b) peaks and the associated background spectra to subtract,
respectively (c) and (d).

Eγ (keV) 656 750 855 1220 2240 2360 2440 2600 3070

Coinc. 656 0.6 3.7 3.1 2.6 2.3 - 3.3 2.9 4.3

Coinc. 855 2.6 3.5 0.8 2.2 - 1.4 - - 6.5

Table 5.5 – Statistical significance (Iγ/σIγ ) of the coincidences with the 656 and 855-keV
transitions, after background subtraction. The coincidences rejected are in bold.
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5.2. Application of the procedure

The coincidence spectrum after background subtraction is shown in figure 5.12. The

fit is given as an illustration but is not used to extract information, as explained before.
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Figure 5.12 – γ-γ coincidence spectra after background subtraction for a gate set on the 656-keV
(a) and 855-keV (b) transitions. The fit is given as an illustration.

Limitations

Taking the background on both sides of the peak in this case has two limitations.

On the left side of the 656-keV peak, there is its own Compton tail that will induce

true coincidences in the background spectrum, and on the right side, there is a part of the

750-keV peak that induces an excess of coincidences that are not linked to the background.

These two limitations are present on the left side of the 855-keV peak, plus the possible

presence of a peak on its right side. The consequence of such limitations is that it could

overestimate the intensity of some peaks in the background coincidence spectrum and

thus lead to the rejection of a weak but true coincidence.

Finally, due to the low statistics, we could have statistical fluctuations leading to the

misidentification of coincidences that should normally be rejected. To prevent that, we

tried different gates for the background to subtract, that we shifted up to 50 keV from

the gates shown in figure 5.10. Some examples of coincidence spectra after subtraction

are shown in figures 5.13 and 5.14. In each case, the coincidences previously established

are confirmed, only the relative intensities between the transitions vary. We also tested

different gate widths, and there is no impact on the conclusions.
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Figure 5.13 – γ-γ coincidence spectra after background subtraction for a gate set on the 656-keV
peak, using different gates for the background. Although the intensities of the
transitions in coincidence may vary, they remain present.
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Figure 5.14 – γ-γ coincidence spectra after background subtraction for a gate set on the 855-keV
peak, using different gates for the background. The coincidence with the 2360-keV
transition always disappears while the other coincidences are confirmed.
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5.2.5 Summary

The information extracted from this procedure is summed up in table 1 and will be

used for building the level scheme in the next section. The discrepancies between the fit

and the data indicate that other transitions are present in the spectrum. As it was not

possible to identify them, and in order to avoid wrong guesses, we did not try to speculate

on the number of missing peaks nor their energy.

Energy (keV) Intensity (relative)

656(5)† 100(11)

750(20)∗,† 9(2)

855(6)∗ 33(4)

1220(30)∗,† 16(4)

2240(40)∗ 4(2)

2440(40)∗ 21(3)

2600(40)∗ 40(7)

2940(60) 33(6)

3070(30)∗,† 28(6)

3880(40) 34(4)

4300(40) 31(4)

∗Transitions in coincidence with the 656-keV transition.
†Transitions in coincidence with the 855-keV transition.

Table 5.6 – Transitions firmly identified in the 80Zn(p,2p)79Cu spectrum, with their estimated
intensity and their coincidence relations. Intensities are normalized with respect to
the intensity of the 656-keV transition.
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5.3. Level scheme

5.3 Level scheme

The proposed level scheme for 79Cu, based on the γ-γ coincidences and the intensities

given in table 1, is shown in figure 5.15.

 

Exp.
E

[keV]

0   

 656   

 1511   

 (2260)   

 (2730)   

 2900   

 2940   

 3100   

 3260   

 3880   

 4300   

 4580   

  6
56

  

  8
55

  

  7
50

  

  1
22

0 
  

  2
24

0 
  

  2
94

0 
 

  2
44

0 
 

  2
60

0 
 

  3
88

0 
   4

30
0 

 

  3
07

0 
 

Figure 5.15 – Proposed level scheme for 79Cu.

5.3.1 Placement of the transitions

656 and 855-keV transitions

Considering the intensities of the 656 and 855-keV transitions and their coincidence

relations, the latter is placed on top of the former. No γ transition was seen below 656 keV,

while it was possible elsewhere in the data set to detect peaks down to 200 keV, like for

example in 77Cu and 81Ga as shown in figure 5.16. Therefore, we place the first excited

state of 79Cu at 656(5) keV and the second one at 1511(8) keV. A direct decay of the
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Chapter 5. Results

1511-keV level to the ground state cannot be excluded but has not been observed: if such

a transition exists, its intensity is at least three times smaller than the intensity of the

855-keV transition, considering the statistics around 1.5 MeV that we see the spectrum

in figure 5.8. Such a transition could also explain the slight excess of statistics visible at

1.5 MeV in figure 5.7.
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Figure 5.16 – Low-energy (p,2p) spectra of 77Cu, 79Cu and 81Ga coming from the same data
set. Despite the important background, peaks can be observed at low energy. A
scale factor has been applied to the 77Cu spectrum for the sake of clarity.

Transitions in coincidence with both the 656 and the 855-keV ones

The 750, 1220 and 3070-keV transitions, found in coincidence with both the 656 and

855-keV transitions, are placed on top of the 1511-keV level. This gives three levels at

2260(20), 2730(30) and 4580(30) keV respectively. The 2260 and 2730-keV levels are

shown as dashed lines because they could be situated higher up in the level scheme since

we cannot exclude the coincidence of the 750 and 1220-keV transitions with other γ rays

due to low statistics and resolution: γ-γ coincidences with a gate on the 750-keV peak

cannot be performed as it is mixed with the edges of the 656 and 855-keV peaks, and

the 1220-keV peak is in a region where we cannot determine precisely the amount of

background.

Looking at the γ-γ coincidences matrix in figure 5.2, we can see a accumulation of

statistics at the junction of the 1.1-1.5 MeV and 2.4-3.0 MeV intervals. This could in-

dicate a possible coincidence of the 1220-keV transition with some γ rays between 2.4

and 3 MeV. In figure 5.17, two coincidence spectra without background subtraction are

shown, one with a gate on the 1220-keV peak and another one on its right side, around

1.4 MeV. There is no evidence for a 750-keV peak in the spectra, which excludes a 750-

1220 coincidence. A transition at 2740(30) keV is observed but we cannot confirm this
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5.3. Level scheme

coincidence relation as this transition is also seen for the gate set around 1.4 MeV and

the background is not quantified below the 1220-keV peak, preventing us from making

any reliable background subtraction. Although the energy of 2740 keV corresponds to the

sum of 656+855+1220 keV within the error bars, we prefer not to place this transition in

the level scheme because the coincidence relations are unconclusive.
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Figure 5.17 – γ-γ coincidence spectra for gates set on the 1220-keV transition (left) and around
1400 keV (right). A 2.7 MeV transition can be seen in both spectra.

Transitions to the ground state

The 2940, 3880 and 4300-keV transitions are not seen in the 656 and 855-keV coin-

cidence spectra and were observed in the spectrum that favours high-energy transitions

to the ground state shown in figure 5.7. Therefore, we place three levels at 2940(60),

3880(40) and 4300(40) keV that decay directly to the ground state.

Transitions in coincidence with the 656-keV one only

The 2240, 2440 and 2600-keV transitions were found in coincidence with the 656-keV

transition only. No reverse gate can be set in this energy range of the spectrum because of

the large overlap of the peaks. But according to the γ-γ coincidences matrix in figure 5.2,

there is no coincidence between any of these three transitions and another transition than

the 656-keV one: the accumulation of statistics at the junction of the 2.2-2.6 MeV and

0.8-1.5 MeV intervals is due to the Compton tail of other transitions, like the 2740 and

3070-keV ones that are mentioned in the previous paragraph, and no such accumulation

is observed at higher energy than 1.5 MeV. Therefore, the 2240, 2440 and 2600-keV

transitions are placed on top of the 656-keV level, creating excited states at 2900(40),

3100(40) and 3260(40) keV respectively. One can notice that the 2900(40)-keV level

could correspond to the 2940(60)-keV one as the error bars are large.

2360-keV transition

Finally, a transition at 2360 keV was observed in the coincidence spectrum for a gate

set on the 855-keV peak, but the coincidence relation between them was rejected after
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background subtraction. Moreover, there is no 2360-keV peak observed in the spectrum

favouring high-energy transitions to the ground state shown in figure 5.7. This means

either that the transition is too weak to be observed in such a spectrum or that we missed

coincidence relations with this 2360-keV transition. Therefore, its placement being too

uncertain, we decided not to put it on the level scheme. This is also why we did not

include this transition in the fit of the spectrum in figure 5.8, where we used only firm

transitions that we can place on the level scheme, at least tentatively.

5.3.2 Influence of levels half-lives

No information about the half-lives of levels was available and therefore we considered

all decays to be prompt: the Doppler correction is applied by taking the reaction vertex

as the emission point. Considering the geometry of the setup, a half-life of several tens

of picoseconds shifts the energy of the transitions toward lower energies by a few percent.

It also increases the width of the photopeak. As an example, the effect of the half-

life on a 650-keV transition was simulated and is shown in figure 5.18(a). In case of a

perfect Doppler correction, the corrected energy should be the same whatever the angle

of γ emission. Consequently, comparing the peaks from the spectra obtained with the

DALI2 crystals at backward and forward angles can give hints on the half-life of the 656

and 855-keV peaks. From the spectra in figure 5.18(b), there is a difference of 8(7) keV

between backward and forward angles for the 656-keV peak, and 11(9) keV for the 855 keV

one. This corresponds respectively to a half-life of 50+60
−50 and 40+50

−40 ps according to the

simulation and such large error bars prevent us from any conclusion. But if such a half-life

effect could induce an energy-shift of a few percent, it would not affect the placement of

the transitions in the level scheme.
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Figure 5.18 – (a) Simulated response functions of a 650-keV transition for different half-lives.
(b) γ-ray spectrum of (p,2p)79Cu obtained with 60 backward (in red) and 60 for-
ward (in blue) crystals of DALI2. The backward peaks have a larger width because
backward crystals have a worse intrinsic resolution.
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5.3.3 Knockout feeding

The knockout feeding of the 656-keV level, obtained by subtracting the intensities of

the transitions going in (855, 2240, 2440 and 2600 keV) to the intensity of the 656-keV

transition going out, is compatible with zero: we find 2(14), from the intensities given in

table 1. Because of the large uncertainty, we cannot exclude direct knockout feeding to

this level. A transition at 2360 keV and one at 2740 keV would imply a lower intensity

for the 2440-keV and 2600-keV transitions, respectively, increasing the feeding value of

the 656-keV level. In this perspective, the intensities of the 656 and 855-keV transitions

are reliable as the peaks are well defined, but the intensities of the other transitions have

to be seen as maximum values.

As regards the knockout feeding of the 1511-keV level, we obtain a negative value

of -20(8). Three possibilities can explain the negative feeding. (i) There is possible

existence of a 1511-keV transition to the ground state, for which we find an upper limit

of 10(2) for its intensity if we include a 1.5-MeV response function to the fit in figure 5.8.

(ii) If the 750 or 1220-keV transitions are located higher up in the level scheme, the

knockout feeding would increase. (iii) As said before, the intensities of the 750, 1220

and 3070-keV transitions are maximum values that could be lowered by non-identified

transitions. On the other hand, a strong knockout population of this level is unlikely as it

is fed by the intense 3070-keV transition. We therefore consider that the 1511-keV level

have a knockout feeding compatible with zero.

Concerning the states above 1.5 MeV, we do not observe any transition between them.

The knockout feeding of each level is then taken as the intensity of its emitted γ-ray,

keeping in mind that unidenfied transitions could alter these values.

5.4 Cross sections calculation

5.4.1 Inclusive cross sections

The cross section is an effective area representing the probability of interaction between

two particles. In the case of the 80Zn(p,2p)79Cu knockout reaction, its probability is given

by the inclusive cross section:

N(79Cu) = σinc nt N(
80Zn) (5.1)

with N(80Zn) the number of 80Zn nuclei entering the MINOS target, N(79Cu) the number

of 79Cu nuclei produced in the target and nt the number of target nuclei per cm2 in the

target, given as follow:

nt =
ρtarget LtargetNA

MH

= 4.32(4)× 1023 cm−2 (5.2)
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with ρtarget = 70.97 kg/m3 the target density, Ltarget = 102(1) mm the target length,

NA = 6.02 × 1023 atoms/mol and MH = 1.008 g/mol the hydrogen molar mass. As

explained in section 3.7, N(80Zn) and N(79Cu) are not accessible directly as we measure

only the number of 80Zn nuclei in BigRIPS and the number of 79Cu in ZeroDegree, and we

have to take into account the transmission of the beam line. The inclusive cross section

is therefore

σinc =
NZD(

79Cu)

NBR(80Zn)

1

T

1

nt

(5.3)

with T = εtr εline εloss the total transmission of the beam line. We explained in sec-

tion 3.7.4 how we measure εline εloss as well as NZD(
79Cu)/NBR(

80Zn) when εtr = 1, and

we obtain the following inclusive cross section for the 80Zn(p,2p)79Cu knockout reaction

in our experiment:

σinc = 7.9(4) mb (5.4)

This value takes into account all final states populated in 79Cu and is the starting

point for calculating exclusive cross sections.

5.4.2 Exclusive cross sections

The exclusive cross section represents the probability to populate directly a given state

in a reaction. It is therefore a fraction of the inclusive cross section, which is the total

probability of the reaction disregarding the final state of the created nucleus. As explain

in section 1.5.1, we can write it as

σexc (J
π) = b.r. (Jπ) σinc =

∑

γout
Iγout(J

π)−∑γin
Iγin(J

π)

Nnuclei

σinc (5.5)

with Iinγ and Ioutγ the intensity of the γ rays that feed and leave the Jπ state, respectively,

and Nnuclei the total number of 79Cu nuclei produced in the (p,2p) channel, including

events with a multiplicity equal to zero (no γ ray observed in DALI2). We immediately

see that the exclusive cross-sections calculation requires a precise measurement of the

γ-rays intensities, which is a limitation in our case. The exclusive cross sections of each

state is given in table 5.7, and we put the value for the 1511-keV to zero. These values

will be compared to theoretical calculations in the next chapter, but we can already make

a few comments.

The exclusive cross sections of the 3880 and 4300-keV levels are the safest to calculate.

Indeed, these states being close to the evaluated neutron separation energy (esimated

Sn = 5310(590) keV [24]), they are less subject to feeding from states lying at higher

energy. Moreover, the two transitions at 3880 and 4300-keV are enough to fit the spectrum

in the interval between 3.4 and 4.5 MeV and are sufficiently separated for giving an

intensity more precise than for example the 3070-keV transition which is close to the

104



5.4. Cross sections calculation

2940-keV transition. For the other states that those at 3880 and 4300 keV, one has to be

more carefull about the exclusive cross sections since they are subject to all uncertainties

discussed for γ-ray intensities. For the ground state, we can calculate an upper limit: in

this case, the knockout feeding corresponds to the total number of 79Cu nuclei minus the

intensity of the 656, 2940, 3880 and 4300-keV transitions, and could be lower if we did

not identify some transitions to the ground state.

Energy levels (keV) σexc (mb)

0 < 3.8(8)

656(5) 0.04(29)

1511(8) 0

2260(20) 0.19(4)

2730(30) 0.33(9)

2900(40) 0.08(4)

2940(60) 0.69(13)

3100(40) 0.44(7)

3260(40) 0.84(15)

3880(40) 0.71(9)

4300(40) 0.65(9)

4580(30) 0.58(13)

Table 5.7 – Exclusive cross sections from the (p,2p)79Cu reaction for each state. The values are
subject to be influenced by non-observed transitions.
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Chapter 6

Interpretation and discussion

This last chapter deals with the comparison of our experimental results with shell-

model calculations. The interpretation of the level scheme is done, as well as tentative

calculations of spectroscopic factors. The final part summarizes both experimental and

theoretical facts, and we conclude on the nature of the 79Cu nucleus.

6.1 Monte-Carlo shell-model calculations

Monte-Carlo shell-model (MCSM) calculations [93,94] were performed by Y. Tsunoda

and T. Otsuka (University of Tokyo, Japan). We present briefly the interaction used,

before giving the results for the case of 79Cu.

6.1.1 Valence space and interaction

The calculations were performed considering an inert core of 40Ca plus 9 valence

protons and 30 valence neutrons. The valence space, called pfg9d5, was composed of

the 1f7/2, 1f5/2, 2p3/2, 2p1/2, 1g9/2, 2d5/2 orbitals for both protons and neutrons, without

any truncation within this space. This large valence space allows particle-hole excitations

across the Z = 28 and N = 50 gaps, which were found to be needed for a correct

description of experimental data, as explained in section 1.4.

The interaction used in this model space was the A3DA effective interaction [94],

whose part of the two-body matrix elements (TBME) are taken from already existing

interactions: the TBME of the pf shell come from the GXPF1A interaction [95], originally

developped for light pf shell nuclei like neutron-rich titanium and calcium isotopes, and

those of the f5pg9 related to the g9/2 orbital are taken from the JUN45 interaction [58],

already mentioned in section 1.4. Previous experimental results obtained in the vicinity

of 78Ni are correctly reproduced within this theoretical framework, like the yrast states in

the neutron-rich nickel isotopic chain [96] and the structure of 80,82Zn [36] and of 77Cu [49].
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6.1.2 Results for 79Cu

The energy levels obtained for 79Cu by the MCSM calculations are compared to our

experimental level scheme in figure 6.1.
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Figure 6.1 – Experimental level scheme (left) of 79Cu compared to the Monte-Carlo shell-
model (MCSM) calculations (right).

The calculated occupation numbers of neutron and proton orbits for the wave functions

of the ground state of 80Zn as well as for the lowest and the three first 7/2− states in 79Cu

are given in table 6.1. Spectroscopic factors, defined in section 1.5.1 and corresponding

in our case to the overlap between the 80Zn (initial) and 79Cu (final) wave functions,

are also given. The ground state of 80Zn has the νg9/2 and πf7/2 orbitals almost full, as

expected in the extreme shell-model representation, and two protons located in the πf5/2
and πp3/2 orbitals.
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6.1. Monte-Carlo shell-model calculations

E (MeV) Jπ πf7/2 πf5/2 πp3/2 πp1/2 πg9/2 πd5/2 νg9/2 νd5/2 Sth

79Cu

0 5/2− 7.73 1.05 0.15 0.02 0.03 0.01 9.83 0.21 1.33

0.294 3/2− 7.73 0.17 1.02 0.03 0.04 0.01 9.85 0.19 0.57

1.957 1/2− 7.57 0.47 0.29 0.62 0.03 0.01 9.06 0.97 0.04

2.035 7/2− 6.82 1.49 0.57 0.04 0.07 0.01 9.72 0.31 5.58

2.645 7/2− 7.22 1.09 0.61 0.03 0.04 0.01 9.26 0.78 0.15

2.992 7/2− 7.54 1.00 0.37 0.05 0.03 0.00 9.02 1.01 0.43

80Zn 0 0+ 7.66 1.43 0.73 0.06 0.10 0.01 9.81 0.23 —

Table 6.1 – Occupation numbers of the pfg9d5 proton orbits and g9d5 neutron orbits, along
with the calculated spectroscopic factors (Sth), for the lowest and the three first
7/2− calculated states in 79Cu, as well as for the ground state of 80Zn.

The dominant configurations that compose the wave function of the ground state of
80Zn and of the lowest states in 79Cu are given in table 6.2. We can notice that 69% of the

wave function of the 80Zn ground-state is built from a pair of protons either in the πf5/2 or

the πp3/2 orbitals. The 31% left contain many different configurations with particle-hole

excitations across the Z = 28 and/or N = 50 gaps leading to a spin 0+, but none of these

configurations taken individually exceeds 4% of the total wave function. The first four

calculated states for 79Cu have an important single-particle (single-hole) character, while

the calculated states above 2.6 MeV shown in figure 6.1 are mainly core-coupling states,

i.e. resulting from the coupling of a proton to an excited 78Ni core.

E (MeV) Jπ Composition

79Cu

0 5/2− 75% |0+ ⊗ πf5/2〉
0.294 3/2− 74% |0+ ⊗ πp3/2〉
1.948 1/2− 48% |0+ ⊗ πp1/2〉
2.043 7/2− 64% (πf5/2p3/2)

2 πf−1
7/2

80Zn 0 0+
47% |πf 2

5/2〉0+
22% |πp23/2〉0+

Table 6.2 – Dominant component of the wave functions the lowest calculated states in 79Cu and
for the ground state of 80Zn.

The evolution of the proton ESPE, defined in section 1.1.3, in the nickel chain when

filling the νg9/2 orbital is shown in figure 6.2. The inversion of ground-state spin measured

in 75Cu [46] is correctly repoduced by the MCSM calculations, but the inversion of the

πp3/2 and πf5/2 ESPE is predicted to happen in 77Cu. This means that the use of such

a large valence space as pfg9d5 includes further correlation effects, in comparison to the

previous calculations described in section 1.4, which are reflected in the multipole inter-
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action. In other words, the wave-function of the 5/2− ground-state in 75Cu is calculated

to have a significant collective character. The calculations predict that this collectivity is

reduced in 77,79Cu and consequently, for these two isotopes, the first 3/2− and 5/2− are

mainly single-particle states, as reflected in their wave function components given in ta-

ble 6.2 for 79Cu. As explained in section 1.4, this inversion of the πp3/2 and πf5/2 orbitals

is found to be mainly due to the tensor force, which reduces the energy gap between the

πf7/2 and πf5/2 orbitals when filling the νg9/2 one.

40 42 44 46 48 50
Neutron number

-28

-26

-24

-22

-20

-18

-16

P
ro

to
n 

E
S

P
E

 (
M

eV
)

1f7/2

1f5/2

1p3/2

1p1/2

Figure 6.2 – Evolution of the proton ESPE as a function of the neutron number in the nickel
isotopic chain.

6.2 Interpretation of the level scheme

As explained in section 3.8, it was not possible to measure the spin of the states in this

experiment. Nevertheless, we can still derive an interpretation of the level scheme from

both experimental arguments and shell-model calculations. As mentioned previously, the

ground state of 80Zn is characterised by a proton component distributed over the πf5/2 and

πp3/2 orbitals in the calculations. The unpaired proton in 79Cu is thus expected to reside

mainly in the pf orbitals after one-proton removal from 80Zn, and therefore generates

negative-parity final states.

6.2.1 Ground state and first excited state

We propose a 5/2− spin for the ground state of 79Cu and a 3/2− spin for the first

excited state at 656 keV from the systematics of the copper isotopic chain, shown in

figure 6.3, as well as the systematics of the N = 50 isotonic chain above 79Cu [12,51,52].
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The possibility to populate such a 3/2− exited state in this experiment is confirmed by

the observation in the same data set of the ground state transition of the first 3/2− state

in 77Cu and 81Ga, at 293 [49] and 351 keV [51] respectively, as shown in figure 5.16 in the

previous chapter.
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Figure 6.3 – Systematics of the first 3/2− and 5/2− states in neutron-rich copper isotopes from
N = 40 to N = 50. The error bars are smaller than the data points. Data taken
from references [43, 46–50] and this work.

The present MCSM calculations support this proposed assignment for the two lowest

levels, as shown in figure 6.1. The calculated wave functions for these two 5/2− and

3/2− states, given in table 6.2, have a strong πf5/2 (75%) and πp3/2 (74%) single-particle

character, respectively. The population of such a πp3/2 single-particle state in the knock-

out reaction is made possible by the wave function of the 80Zn ground state that has a

non-negligible component built from two protons in the πp3/2 orbital, while it would be

impossible in the extreme shell-model representation.

To conclude, from the comparison with 77Cu [48, 49], the 3/2− level is seen to rise,

illustrating the continuation of the inversion between the πp3/2 and πf5/2 orbitals known

from the preceding copper isotopes.

6.2.2 Second excited state

For the second excited state at 1511 keV, the MCSM calculations offer two possibilities:

a 1/2− state at 1957 keV, with a significant πp1/2 single-particle character of 48%, or a

7/2− state at 2035 keV, whose 64% of the wave function is built from a πf−1
7/2 hole and two

protons in πf5/2p3/2. The absence of direct feeding to the 1511 keV state in the knockout

reaction disfavours the 7/2− assignment, for which the calculated spectroscopic factor is

very large: 5.58 over a total of 8 maximum. With such a high value, we would expect an
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important knockout population that we do not observe. In addition, this absence of direct

feeding is in agreement with the zero spectroscopic factor calculated for the 1/2− state.

Another argument comes from the transition rates for a de-excitation of the 1511-keV

state to the first 3/2− level and the 5/2− ground state. From the B(M1) and B(E2) values

calculated by the MCSM and using equation 1.19 with both experimental and calculated

energies, we obtain the expected transition rates given in table 6.3.

i→ f B(M1) (µ 2
N) B(E2) (e2 fm4) λ(Eth) (ps

−1) λ(Eexp) (ps
−1)

1/2−1 → 5/2−gs — 317.3 10.91 3.06

1/2−1 → 3/2−1 0.078 166.9 8.74 0.95

7/2−1 → 5/2−gs 0.063 17.5 10.18 3.98

7/2−1 → 3/2−1 — 16.7 0.33 0.01

Table 6.3 – Reduced transition probabilities calculated by the MCSM and the corresponding
transition rates, λ = λ(M1) + λ(E2), using calculated and experimental energies.

The ratios of these calculated transition rates as well as the experimental value are

given in table 6.4 for comparison. We also mention the ratios in case of pure single-

particle states, obtained from the Weisskopf estimates given in equation 1.20. As already

explained in section 5.3.3, a 1511-keV transition cannot be excluded and we found an

upper limit of 10(2) for its intensity, compared to 33(4) for the 855-keV transition. This

corresponds to a maximum ratio of 0.30(7), which is much closer to the expected value

for 1/2− than for 7/2−.

Ratio MCSM (Eth) MCSM (Eexp) Pure s.p. This work

λ(1/2−1 → 5/2−gs)

λ(1/2−1 → 3/2−1 )
1.2 3.2 0.01

< 0.30(7)
λ(7/2−1 → 5/2−gs)

λ(7/2−1 → 3/2−1 )
31 427 9393

Table 6.4 – Ratio of the transition rates, considering the MCSM calculations, the Weisskopf
estimates and the value from this work.

Thus, we suggest a spin 1/2− for the 1511-keV state and the low ratio of 0.30(7) is

compatible with the significant πp1/2 single-particle character predicted by the MCSM.

In the case of a collective 1/2− state with a mixed wave function, we would not expect

such a clear preference for the 1/2−1 → 3/2−1 transition over the 1/2−1 → 5/2−gs one. This

state is therefore unlikely to be of the same nature as the strongly collective 1/2− state

seen at low energy in 71,73,75Cu [45,47].
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6.2.3 Multiplet of states

Between 2.3 and 3.3 MeV, we observe several levels rather close to each other. We

interpret this multiplet of states as the coupling of a proton in the πp3/2 or πf5/2 orbital

with the first 2+ state of 78Ni, in agreement with the MCSM calculations for which most

of the calculated states shown above 2.6 MeV are core-coupling states. Such couplings to

the core can lead to excited states having the following spins:

|2+1 ⊗πp3/2〉 → 1

2

−

,
3

2

−

,
5

2

−

,
7

2

−

and |2+1 ⊗πf5/2〉 → 1

2

−

,
3

2

−

,
5

2

−

,
7

2

−

,
9

2

−

(6.1)

We did not necessarily populate all these nine states in the experiment and we cannot

say firmly which ones we observed. The levels belonging to the |2+1 ⊗ πp3/2〉 coupling

are more likely to decay through a transition to the first excited state (πp3/2 character),

analog to a de-excitation of the 78Ni core from 2+1 to 0+1 . A transition to the ground

state would require an additional de-excitation of the last proton from the πp3/2 orbital

to the πf5/2 one. A similar reasoning works for the levels from the |2+1 ⊗ πf5/2〉 coupling
that would rather de-excite through a transition to the ground state. The latter type of

transition is more difficult to observe in our case: the energies are likely to be similar

than those of the transitions already identified through γ-γ coincidences. It is therefore

possible that we missed some transitions to the ground state in the range between 2.3

and 3.3 MeV that would belong to the multiplet.

In the extreme shell-model representation, it is not possible to populate such core-

coupling states in the knockout reaction. But due to correlations, none of the levels

observed has a pure wave function and we can have a mixing between both sets of states,

as well as a mixing between the 7/2− states of the multiplet and the πf−1
7/2 single-particle

wave function. Thus, we can access these multiplet states through the components of their

wave function that overlap to those of the 80Zn ground state wave function. Another

possibility is the presence of transitions that we did not identify from the three states

above 3.3 MeV, discussed after, to the multiplet. The region of the spectrum between 1.0

and 1.5 MeV could contain good candidates for such transitions. We also cannot exclude

transitions within the multiplet.

In figure 6.4, we compare the spectrum of 79Cu to the (p,2p) ones of 77Cu and 81Ga,

respectively two neutrons less and two protons more than 79Cu, obtained from the same

data set. We notice that in both 77Cu and 81Ga spectra, there are several transitions

next to the energy of the 2+1 state of 76Ni and 80Zn, respectively. Moreover, the intense

transitions between 2.0 and 3.4 MeV are present only in 79Cu, while there is no transition

at this energy in the 77Cu spectrum and at most some weak transitions in the 81Ga one.

These two facts show the possible observation of core-coupling states using the knockout

reaction.
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Figure 6.4 – γ-ray spectra of 77Cu, 79Cu and 81Ga obtained from the (p,2p) reaction in the same
data set. In the 77Cu and 81Ga spectra, there are several transitions around the
energy of the 2+1 state of 76Ni and 80Zn, respectively, indicating that we observed
transitions from core-coupling states. In 79Cu, such an accumulation of transitions
is seen between 2.0 and 3.4 MeV. A scale factor has been applied to the 77Cu
spectrum for the sake of clarity.

Such core-coupling states between a proton in the πp3/2 or πf5/2 orbital with the

2+1 state of 78Ni allow us to estimate the latter at about 3 MeV of excitation energy,

in accordance with the MCSM calculation and other theoretical studies [23, 60, 96, 97].

As shown in figure 6.5, such a 3-MeV 2+1 -state in 78Ni compared to the previous nickel

isotopes indicates a good shell closure at N = 50. A direct spectroscopy of this state

would be necessary for final confirmation.
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Figure 6.5 – Systematics of the first 2+-state in nickel isotopes, from N = 40 to N = 50. The
value at N = 50 corresponds to an estimation based on this work, the limits being
taken as the lower and upper states of the multiplet observed between 2.3 and
3.3 MeV. Data taken from references [27–30] up to N = 48.
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6.2.4 Higher-energy levels

In the experimental level scheme, we find that the knockout of a proton results in

a final 79Cu nucleus at high excitation energy, populating several structures. Because

of the composition of the wave function of the 80Zn ground-state, we may expect the

reaction to populate the πf−1
7/2 f

2
5/2 and πf−1

7/2 p
2
3/2 holes. As mentioned earlier, the πf−1

7/2

single-particle wave function will mix with the 7/2− members of the π(f5/2, p3/2) ⊗ 2+

multiplets, resulting in a fragmentation of the strength over different levels. This was

already observed in 69,71Cu where several states were found to have a significant πf−1
7/2 hole

character [50, 53, 55]. In 79Cu, three states lie above 3.3 MeV and are clearly separated

from the multiplet, two of them decaying directly to the ground state through the most

energetic γ-rays identified in the spectrum, 3.9 and 4.3 MeV. Such states could be good

candidates for carrying a part of the πf−1
7/2 strength, but not the 4.6-MeV level as it decays

to the 1/2− one.

In the (p,2p)77Cu spectrum, as shown in figure 6.4, an intense peak can be seen

around 2 MeV. It is the most intense transition in the spectrum and is well isolated

from the others, meaning that it can be easily fitted with a response function and an

exponential background. A quick look to its coincidence relations confirms that, besides

its large intensity, there is no ambiguity in placing it to the ground state because it is not

in coincidence with any other transition. We find an energy of 2070(10) keV, in very good

agreement with the energy of 2068 keV observed very recently in a β-decay study [49].

The latter transition was placed directly the ground state and the authors assigned a

tentative spin 7/2− to the 2068-keV state, based on the log ft value, and considered it as

a possible candidate for the πf−1
7/2 hole state. The observation of such an intense 7/2− state

in the (p,2p) reaction is in favour of a πf−1
7/2 hole character.

Assuming that the 2068-keV level in 77Cu is a πf−1
7/2 hole state and considering that

it is strongly populated in the (p,2p) reaction, we can legitimately wonder where is such

a state in 79Cu, for which apparently nothing is populated so strongly. If we normalize

the number of counts of (p,2p)77Cu to the one of (p,2p)79Cu, as made in figure 6.4, we

find that the sum of the intensities of the 3.9 and 4.3-MeV transitions is equal to 72(12)%

of the intensity of the 2068-keV one. If they do not emerge clearly in the spectrum, it

is because of the low efficiency and the absence of photopeak at 4 MeV, as explained in

section 3.5.2. Moreover, the transitions from core-coupling states are much below 2 MeV

in 77Cu while they go up to 3 MeV in 79Cu, meaning that we can more easily have mixing

of the core-coupling and single-hole characters in the multiplet. Therefore, the πf−1
7/2 hole

states are likely to be present, as expected, but we cannot firmly identify them. All we

can say is that there is not a significant part of the strength below 2.2 MeV as the two

first excited states and the ground state were assigned to be of different nature than πf−1
7/2.

It could be tempting to push the lower limit higher up, at 2.7 MeV, considering that the

2260 keV tentative state is unlikely to have a πf−1
7/2 hole character as it de-excites through
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a transition to the 1/2− state, but above 2.2 MeV, i.e. at the rise of the second structure

in the spectrum, we can have transitions to the ground state that we missed, like the

2360 keV one that we prefered not to place on the scheme.

In the MCSM calculations for 79Cu, almost all the πf−1
7/2 strength goes in one state,

at 2 MeV. It has to be noted that in the case of 77Cu, for which the same MCSM

calculations have been performed, there is a also level carrying most of the strength at

1389 keV [49]. Such a low energy can be explained as follows: the calculations predict a

pure 2 particles-1 hole (2p1h) πf−1
7/2 f

2
5/2 state at 3.38 MeV, but the mixing of the possible

2p1h configuration, e.g. the J = 0+ pairing of the two protons in the πf5/2 orbital,

reduces it at 2.55 MeV. The addition of proton 3p2h, 4p3h, etc., and neutron 1p1h, etc.,

configurations pushes it down to 2 MeV. Experimentally, we find that the πf−1
7/2 states

are above this value and a possible explanation could be that such correlations are less

important than predicted. However, the πf−1
7/2 strength seems to be more fragmented than

in the calculations. Further experimental work would be required to clarify this point.

As a conclusion, despite the impossibility to identify firmly a πf−1
7/2 hole state in

79Cu,

we can put a lower limit of 2.2 MeV for the πf−1
7/2 strength. The 3.9 and 4.3-MeV levels

are good candidates to carry a part of this strength.

6.3 Exclusive cross sections

As explained in section 1.5.1, we can in principle extract spectroscopic factors from the

exclusive cross sections. Although we cannot assign firmly spins to the different levels, we

can do the two exercises presented here using the exclusive cross section given in table 5.7,

to give some indications about the πf−1
7/2 strength we may have observed. We shall stress

that this part does not aim to establish firm conclusions beyond what is feasible.

First of all, single-particle cross sections for the (p,2p) reaction were calculated by

K. Ogata (Osaka University, Japan), using the distorted-wave impulse approximation

(DWIA) formalism [98]. The results are given in table 6.5 and are averaged over the

beam energy covered by our target, like our experimental exclusive cross sections. In this

calculation, the ground state and first excited state were assumed to have a spin 5/2− and

3/2−, respectively, and a spin 7/2− was considered for the states at 3880 and 4300 keV.

We note that the single-particle cross section to remove a proton in the f7/2 orbital does

not appear to change much with the energy of the final state populated in 79Cu.

Orbital σsp (mb)

πf5/2 (E = 0 keV) 2.07

πp3/2 (E = 656 keV) 2.61

πf7/2 (E = 3880 keV) 2.29

πf7/2 (E = 4300 keV) 2.27

Table 6.5 – Single-particle cross sections calculated for the (p,2p)79Cu reaction with the DWIA
formalism.
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6.3. Exclusive cross sections

We can estimate the theoretical inclusive cross section of the (p,2p)79Cu reaction,

considering that a proton is removed in the f7/2f5/2p3/2 orbitals, as follows:

σinc =
∑

k

Sk σ
k
sp = 18.3 mb (6.2)

where the spectroscopic factors Sk are taken from the MCSM calculations and are given in

table 6.1. This value is significantly higher than the experimental inclusive cross section

of 7.9(4) mb: we find a ratio experiment over theory equal to 0.43(2).

Such a reduction is common in knockout reactions. The difference between theoretical

and experimental spectroscopic factors, refered as reduction factor Rs, has been much

discussed in the literature over the past few years, like in references [99–102]. Although

a pure argument of lack of short and long-range correlations in shell-model calculations

was claimed at first, the trend of Rs over the proton-neutron asymmetry could also be

explained by limits in reaction modeling [100]. For example, this trend was found to be

different between knockout studies [99, 102] and transfer reactions [101]. No systematic

study of Rs for (p,2p) knockout studies using the DWIA formalism, employed for cal-

culating the values in table 6.5, has been published so far, but such a reduction has to

be expected at least due to the lack of correlations in the shell-model calculations [103].

Therefore, we use in the following Rs ≈ 0.55(15), corresponding to the reduction factor

found in (e,e’p) studies for stable nuclei.

We can now calculate the spectroscopic factors of the different levels mentioned in

table 6.5 including this reduction factor:

Sexp(J
π) =

σexc(J
π)

σsp

1

Rs

(6.3)

and compare these values with the summed MCSM spectroscopic strength (for example

for the 7/2− states,
∑

Sth(7/2
−) = 5.58+0.15+0.43 = 6.16 according to table 6.1). The

results are shown in table 6.6.

Level Sexp

∑

Sth(J
π) Ratio exp/th (%)

5/2−, E = 0 keV < 3.30(1.12) 1.33 < 248(84)

3/2−, E = 656 keV 0.03(22) 0.57 5(39)

7/2−, E = 3880 keV 0.56(17) 6.16 9(4)

7/2−, E = 4300 keV 0.52(16) 6.16 9(4)

Table 6.6 – Comparison between experimental, including the reduction factor Rs, and theoreti-
cal spectroscopic factors.

One can see that the value for the ground state is considerably overestimated: even

taking the extreme shell-model value of 2 for the number of protons in the πf5/2 orbital

for the ground state of 80Zn, the ratio would still be equal to 165(56)%. This is a strong

indication that indeed we missed transitions to the ground state. As regards the two levels
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at high energy, 3880 and 4300 keV, we find a total of 18(6)% of the expected spectroscopic

strength calculated by the MCSM, which is not negligible.

We can try another exercise. Considering that all knockout feeding that does not go

into the ground state and first excited state comes from a proton removed in the πf7/2
orbital, we have at least σexc(πf

−1
7/2) = 4.1(9) mb. Comparing this with the calculated

σsp = 2.29 mb and taking into account the reduction factor, we find a spectrosopic

strength of at least 3.3(1.2). This corresponds to 54(19)% of the MCSM strength, and

this value would automatically increase if the ground state feeding was lower. This means

that we surely populated the πf−1
7/2 hole, but the strength seems to be more fragmented

that expected, as said before.

In the case of (p,2p)81Ga, presented in section 4.2.1, we find an inclusive cross section

of 8.3(1.8) mb, among which an upper limit of 68(21)% is found for the direct feeding

to the ground state. This means that the important ground-state direct feeding of 79Cu,

with an upper limit of 48(10)% of the inclusive cross section, is not an isolated case. It

is possible that in our analysis procedure we induce a systematic bias in the fit of the

background, both at low and high energy: the minimization algorithm looks for the best

agreement between the fit and the data, which can lead to an underestimation of the

intensity for the numerous reponse functions that we include in the fit and an overesti-

mation of the background. This mechanically favours the ground-state direct population.

Another possibility, already mentioned in the case of 79Cu, is the non-identification of

some transitions to the ground state: such transitions would induce a decrease of the

ground-state exclusive cross section.

These two exercises show that in our case it is difficult to discuss quantitatively the

πf−1
7/2 strength that we have populated and that the lower limit of 2.2 MeV mentioned

in the previous section is more reliable. It would be interesting to study more in detail

the 77Cu nucleus from (p,2p) channel, and in particular to do the same exercises with

the supposedly 7/2− state at 2 MeV, in order to compare with 79Cu. The analysis of

this nucleus is ongoing and is currently performed by K. Hadynska-Klek (LNL, Italy) and

E. Sahin (University of Oslo, Norway).

6.4 79Cu: a valence proton outside a 78Ni core

The level scheme of 79Cu established in this work shows a first excited state at 656 keV,

with a proposed spin 3/2−, and second one at 1511 keV, with a proposed spin 1/2−,

interpreted together with the 5/2− ground state as having an important single-particle

character from the experimentally observed feeding pattern and transition intensities as

well as the present MCSM calculations. Together these results indicate that, while single-

particle and collective states coexist at low energy in lighter copper isotopes, their single-

particle character is restored in 79Cu.
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6.4. 79Cu: a valence proton outside a 78Ni core

Above 2.2 MeV, we observe a multiplet of states up to 3.3 MeV, interpreted as levels

coming from the coupling of the first 2+-state of 78Ni and a proton in the πf5/2p3/2
orbitals to which πf−1

7/2 hole-states probably mix. Several states were also observed in

the spectra of 77Cu and 81Ga, produced by the same knockout reaction, around the value

of the first 2+-state of 76Ni and 80Zn, respectively, meaning that we indeed have access

to core-coupling states. We conclude that the first 2+-state of 78Ni is located at around

3 MeV of excitation energy, which compared to previous nickel isotopes suggests a good

shell-closure at N = 50.

The Z = 28 gap in 79Cu corresponds to the ESPE splitting between the πf5/2 and

πf7/2 orbitals, as the πp3/2 and πf5/2 ones are inverted. The MCSM calculations put this

gap at 4.9 MeV compared to 6.7 MeV in 69Cu, i.e. at N = 40, as it can be seen from

figure 6.2. Experimentally, although we cannot assign firmly the spins, we determined a

lower limit of 2.2 MeV for the πf−1
7/2 strength, implying that it remains large. None of

the excited states appears to be significantly more directly populated than the others,

meaning that this strength appears to be fragmented, as it was observed in 69,71Cu from

transfer reactions, and we possibly have populated fragments up to 4.3 MeV. Thus, even if

experimental levels are only first indications of the possible location of the ESPE because

of the correlations in the nucleus, both experiment and theory show that despite the

change of orbital content of the Z = 28 gap along the copper isotopic chain, its magicity

persists.

Therefore, it appears that the 79Cu nucleus is well depicted in terms of a valence proton

outside a 78Ni core, which presents us with an indirect evidence of the magic character of

the latter.
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In this work, we performed the first spectroscopy of the 79Cu nucleus, having one

proton more than 78Ni, that was produced at RIKEN through proton knockout from

a 80Zn beam at 260 MeV per nucleon. An analysis procedure allowed us to build a

level scheme up to 4.6 MeV and the results were compared to Monte-Carlo shell-model

calculations. Firstly, we concluded on the restoration of the single-particle nature of the

low-lying states in copper at N = 50. Secondly, we estimated the 2+1 (
78Ni)-state energy

within an interval between 2.3 and 3.3 MeV from the multiplet of states we observe.

Thirdly, we determined a lower limit of 2.2 MeV for the πf−1
7/2 strength, indicating that

the Z = 28 gap remains large at N = 50. These conclusions are fully in line with a 78Ni

nucleus that would be doubly magic.

One of the main limitations in the analysis was the intrinsic resolution of DALI2,

which prevented us from a complete identification of the many transitions present in the

spectrum. By coupling MINOS to a segmented germanium array such as AGATA [104],

the photopeak efficiency would be reduced by about an order of magnitude, depending

on the geometry and position of the array, but this would be largely compensated by the

very high resolution. We also point out that the 238U primary beam at RIKEN is now

four times more intense than during our experiment, counterbalancing partially the low

germanium efficiency.

This was a first spectroscopy of 79Cu and further studies would be necessary for clarifi-

cation, especially to answer the following question: where exactly does the πf−1
7/2 strength

lie? A transfer reaction from a beam of 80Zn could bring many clues, following the ex-

ample of the 70,72Zn(d,3He)69,71Cu experiments [53,55]. Some facilities can provide a 80Zn

beam with the energy required, up to a few tens of MeV per nucleon, like ISOLDE or

RIKEN when the OEDO beam-line [105], developed for decelerating the fast beams com-

ing from BigRIPS, will be ready. We can try to estimate the counting rate we would have

in both cases.

A simple calculation was done using the TWOFNR code [106] in order to obtain the

order of magnitude of the single-particle cross sections for the 80Zn(d,3He)79Cu reaction,

having a very negative Q-value equal to -11.6 MeV. The best beam-energy to populate

L = 3 states was found to be 45 MeV per nucleon. With HIE-ISOLDE [107], we can

121



Conclusion and outlook

expect soon a 80Zn beam at 10 MeV per nucleon with an intensity on target of around

104 pps. In the case of RIKEN, the deceleration of the 80Zn beam down to 45(1) MeV

per nucleon will be possible with an efficiency of 60%. The kinematic lines of the light

ejectile for such beam energies is shown in figure 1. Considering the energy of the 3He

particles, we cannot use a thick target because of the energy-loss in it. We make the

exercise both using a solid target of CD2 with a thickness of 0.3 mg/cm2, like in the
72Zn(d,3He)71Cu experiment, and the MUST2 detector [108], or using instead the active

target ACTAR [109], that we supposed to be 25-cm long and filled with a D2 gas at

atmospheric pressure.
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Figure 1 – Kinematics of the (d,3He)79Cu, (d,t)79Zn and (d,d)80Zn reactions, using a 80Zn beam
at (a) 10 A MeV and (b) 45 A MeV. The dots correspond to the angle in the center-
of-mass frame, by steps of 10◦.

The angular distributions calculated using the TWOFNR code are given in figure 2.

We consider a geometrical detection efficiency above 10◦ in the laboratory frame of 60%

and 80% for MUST2 and ACTAR, respectively. This is a typical value for an array of

four MUST2 telescopes at forward angles, while it is somehow approximate for ACTAR,

as it depends on the reaction vertex, but we expect the active target to be efficient.
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a 80Zn beam at (a) 10 A MeV and (b) 45 A MeV.
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All these information are summarized in table 1, in which we calculate the number

of counts expected after 5 days of experiment. We consider a 5/2− spin for the ground

state, 3/2− for the state at 656 keV and a 7/2− state at 4 MeV. We used the spectroscopic

factors from the Monte-Carlo shell-model calculations.

80Zn(d,3He)79Cu ISOLDE RIKEN

Beam energy (A MeV) 10 45

Beam intensity (pps) ∼104 ∼6×102

Target type CD2 (solid) D2 (gas) CD2 (solid) D2 (gas)

Target thickness (mg/cm2) 0.3 4.1 0.3 4.1

# target nuclei (cm−2) 2.2×1019 1.3×1021 2.2×1019 1.3×1021

Detector MUST2 ACTAR MUST2 ACTAR

εgeo (> 10◦ lab. frame) ∼60% ∼80% ∼60% ∼80%

Sthσsp (f5/2) (mb) 5×10−4 3×10−1

Sthσsp (p3/2) (mb) 7×10−4 2×10−1

Sthσsp (f7/2) (mb) 2×10−8 1.2

Counts (f5/2), 5 days 0 2 1 81

Counts (p3/2), 5 days 0 3 1 54

Counts (f7/2), 5 days 0 0 4 323

Total, 5 days 0 5 6 458

Table 1 – Information used for the calculation of the number of counts expected in the
80Zn(d,3He)79Cu reaction, during 5 days of experiment. The number of counts may
vary by an order of magnitude considering our approximations.

We clearly see that despite the high beam intensity, the energy provided by ISOLDE

is too low for this reaction, due to the very negative Q-value. As regards RIKEN, the

use of ACTAR seems to provide a sufficient number of counts in each state. But three

remarks must be done. Firstly, if the πf−1
7/2 strength is fragmented, as we found in our

work, this will spread the counts over several peaks. Secondly, it also depends on the

excitation-energy resolution, we cannot identify the 7/2− peaks if they are too close to

each other. Thirdly, this estimation may vary by an order of magnitude considering the

approximations we made. But it seems that such a reaction is almost within reach.
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Concerning the results that are not published yet but that should be available within

the next months, we can mention three very interesting cases. The first one is the spec-

troscopy of 78Ni that was also produced through proton knockout in the first Seastar

campaign. There are still some discussions about the spin of the different levels popu-

lated but the final level scheme with the interpretation should be available soon. Secondly,

a Coulomb-excitation experiment was performed at RIKEN to measure the reduced tran-

sition probabilities between low-lying states in 77Cu. The results will be of great help to

better quantify the evolution of the collectivity of these states. Finally, a proton-knockout

experiment was performed at the NSCL in order to study the hole states in copper up

to N = 48. The high resolution γ-array GRETINA [110] was used and the momentum

distributions were measured. This will provide crucial information on the πf−1
7/2 strength

in 73,75,77Cu.

To finish, it would be also interesting to study the structure of 81Cu, beyond the

N = 50 shell gap, to see if the addition of two neutrons in the νd5/2g7/2 orbitals may

induce an abrupt change like the sudden drop of the first 5/2− level in 71Cu, two protons

above N = 40. The RIBF facility can deliver a 82Zn beam with an intensity of 10 pps.

Considering a similar setup and beam time than in our experiment, we would have 25

times less statistics for 81Cu than for 79Cu, allowing to identify only a transition such

as the intense 656-keV one in 79Cu. But there is still a lot of work to do in the copper

isotopic chain up to N = 50 while waiting for future upgrades of worldwide facilities that

will permit the study of more neutron-rich isotopes.
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Appendix A. Publication

❛�✁ ◆ ➻ ✺✂✱ ❡✈❡� ✐❢ r❡✄❡�☎ s☎✆✁✐❡s ❤✐�☎ ❛☎ ❛ ♣✝ss✐✞✟❡

✇❡❛✠❡�✐�❣ ✝❢ ☎❤❡ ◆➻✺✂ ♠❛❣✐✄ �✆♠✞❡r ✞❡✟✝✇ ✼✡☛✐

❬☞✌✱☞✍✎✳ ❖� ☎❤❡ ✄✝�☎r❛r❝✱ ☎❤❡ ❤❛✟❢✏✟✐❢❡ ✝❢ ✼✡☛✐ ✇❛s ✁❡☎❡r✏

♠✐�❡✁ ❛☎ ✶☞☞✳☞✑✒✳✶✮ ♠s✱ s✆❣❣❡s☎✐�❣ ❛ s✆r✈✐✈❛✟ ✝❢ ♠❛❣✐✄✐☎❝

❬☞✒✎✱ ❛�✁ ✄❛✟✄✆✟❛☎✐✝�s ♣r❡✁✐✄☎ ❛ ❢✐rs☎ ❡①✄✐☎❡✁ s☎❛☎❡ ✐� ✼✡☛✐

❛✞✝✈❡ ☞ ▼❡✓ ❬☞✍✱☞✔➊☞✷✎✳ ❇✆☎ s✝ ❢❛r �✝ ✝☎❤❡r ✐�❢✝r♠❛☎✐✝�

❛✞✝✆☎ ✼✡☛✐ ✐s ❛✈❛✐✟❛✞✟❡✱ ✇✐☎❤ ☎❤❡ ❡①✄❡♣☎✐✝� ✝❢ ✐�✁✐r❡✄☎ ✝�❡s
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❚❤❡ s✐✗❡ ✝❢ ☎❤❡ ❩ ➻ ✘✙ ❣❛♣ ♠✐❣❤☎ ✞❡ ❛❢❢❡✄☎❡✁ ✞❝ ❛ ✁r✐❢☎ ✝❢

☎❤❡ s✐�❣✟❡✏♣❛r☎✐✄✟❡ ❡�❡r❣✐❡s✳ ❲❤❡� ❛✁✁✐�❣ �❡✆☎r✝�s ✐� ☎❤❡

✚✛✕❂✜ ✝r✞✐☎❛✟ ❛✞✝✈❡ ☎❤❡ ◆ ➻ ✹✂ s✆✞s❤❡✟✟ ❣❛♣✱ ☎❤❡r❡ ✐s ❛
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✟❡✈❡✟s ❛r❡ ✟✐�✠❡✁ ☎❤r✝✆❣❤ ☎❤❡ ♠❛✐� ✄✝♠♣✝�❡�☎s ✐� ☎❤❡✐r

r❡s♣❡✄☎✐✈❡ ✇❛✈❡ ❢✆�✄☎✐✝�s ✇✐☎❤ ☎❤❡ ✪✥❂✜ ❛�✁ ✫✩❂✜ ♣r✝☎✝�

s✐�❣✟❡✏♣❛r☎✐✄✟❡ s☎❛☎❡s ❬✶✷✱✌☞✱✌✌✎✳

❚❤❡ ✞❡❤❛✈✐✝r ✝❢ ☎❤❡ ✬✫✼❂✜ s♣✐�✏✝r✞✐☎ ♣❛r☎�❡r ✐s ♠✝r❡

✁✐❢❢✐✄✆✟☎ ☎✝ ✁❡☎❡r♠✐�❡✳ ❚❤✐s ✝r✞✐☎❛✟ ✐s ✝❢ ♣r✐♠❛r❝ ✐♠♣✝r☎❛�✄❡

❛s ✐☎ ✐s ✝�❡ ✝❢ ☎❤❡ ☎✇✝ ✝r✞✐☎❛✟s ✁❡❢✐�✐�❣ ☎❤❡ ❩ ➻ ✘✙ ❣❛♣✳

❆✄✄❡ss ☎✝ ☎❤✐s ❤✝✟❡ s☎❛☎❡ ✐s ♣✝ss✐✞✟❡ ☎❤r✝✆❣❤ ♣r✝☎✝� ☎r❛�s❢❡r

✝r ✠�✝✄✠✝✆☎ r❡❛✄☎✐✝�s ❬✌✍✎✳ ❲❤✐✟❡ s♣❡✄☎r✝s✄✝♣✐✄ ❢❛✄☎✝rs

❡①☎r❛✄☎❡✁ ✐� ♣r✝☎✝� ♣✐✄✠✆♣ r❡❛✄☎✐✝�s ❛✟✟✝✇ ✐� ♣r✐�✄✐♣✟❡ ❢✝r

☎❤❡ ♠❡❛s✆r❡♠❡�☎ ✝❢ s☎r❡�❣☎❤ ❢✆�✄☎✐✝�s✱ ✐☎ ✐s ❛ ✄❤❛✟✟❡�❣❡ ☎✝

✐✁❡�☎✐❢❝ ☎❤❡ s♠❛✟✟❡s☎ ✄✝♠♣✝�❡�☎s ✝r ☎❤✝s❡ ☎❤❛☎ ❛r❡ s✐☎✆❛☎❡✁

❛☎ ❤✐❣❤ ❡①✄✐☎❛☎✐✝� ❡�❡r❣❝✳ ▼✝r❡✝✈❡r✱ ❛✇❛❝ ❢r✝♠ ☎❤❡ ✈❛✟✟❡❝

✝❢ s☎❛✞✐✟✐☎❝✱ ☎❤❡ r❡s✝r☎ ☎✝ ✐�✈❡rs❡ ✠✐�❡♠❛☎✐✄s ✇✐☎❤ r❛✁✐✝❛✄☎✐✈❡

✐✝� ✞❡❛♠s ✟✐♠✐☎s ☎❤❡ ✄✝✆�☎ r❛☎❡ ❛s ✇❡✟✟ ❛s ☎❤❡ r❡s✝✟✆☎✐✝�

☎❤❛☎ ✄❛� ✞❡ ❛✄❤✐❡✈❡✁✳ ❚✝✁❛❝✱ ✁❛☎❛ ❛r❡ ❛✈❛✐✟❛✞✟❡ ❢✝r ☎❤❡
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☎✐✝�s✱ ✝� ✞✝☎❤ s✐✁❡s ✝❢ ☎❤❡ ◆ ➻ ✹✂ s✆✞s❤❡✟✟ ❣❛♣✳ ❚❤❡

♠❡❛s✆r❡✁ ♣❛r☎ ✝❢ ☎❤❡ ✬✫✣✤
✼❂✜ ✄❡�☎r✝✐✁ ✇❛s s❡❡� ☎✝ r❡♠❛✐� ❛☎
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➈➍➎ ➌➐➈➑

➆➍➅➋ ➆➐➈➑
➈➃➌➅ ➋➐➈➑

➈➄➎➅ ➋➐➈➑
➈➄➋➋ ➅➐➈➑
➈➏➍➋ ➍➐➈➑
➈➍➍➈ ➋➐➈➑
➌➆➅➏ ➌➐➈➑
➌➈➅➄ ➅➐➈➑
➌➎➃➅ ➌➐➈➑
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➎➅➏➈ ➆➐➈➑

➒➓
➒
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➓
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➔ ➣

➙ ➜
➣➣
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→➣

➝✧➞★ ❧★ ➟✩✯❇✯✬s❖ ❏s❵s❏ ✬❊ts❍s ♦✯✩ ❂❃❄❅★ ✢ts s➠❇s✩✭❍s✫✮✪❏

✩s✬❅❏✮✬ ❫❏s♦✮❴ ✪✩s ❊✯❍❇✪✩s❖ ✮✯ ➡✯✫✮s ❄✪✩❏✯ ✬ts❏❏❱❍✯❖s❏ ❫➡❄➢➡❴

❊✪❏❊❅❏✪✮✭✯✫✬ ❫✩✭❪t✮❴★

➤➥▲ ➦➦➧➨ ✶✛✷✎✏✶ ✗✷✏✶✟✘
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Appendix A. Publication

▼�✁✂✄ ❈☎✆✝� s✞✄✝✝✟✠�✡✄✝ ✭▼❈☛▼☞ ❝☎✝❝✌✝☎✂✍�✁s ✇✄✆✄

❝☎✆✆✍✄✡ �✌✂ ✍✁ ✂✞✄ ♣✎❣✾❂✷❞✺❂✷ ✠�✡✄✝ s✏☎❝✄ �♦ ✏✆�✂�✁s ☎✁✡

✁✄✌✂✆�✁s ✇✍✂✞ ☎✁ ❆✑✒❆ ❍☎✠✍✝✂�✁✍☎✁ ❬✓✔✕✳ P✆✄✈✍�✌s ✆✄s✌✝✂s

☎✆✄ ✆✄✏✆�✡✌❝✄✡ ✇✍✂✞✍✁ ✂✞✍s ✂✞✄�✆✄✂✍❝☎✝ ♦✆☎✠✄✇�✆✖✗ ✝✍✖✄ ✂✞✄

s✂✆✌❝✂✌✆✄ �♦ ✽✘❀✽✷❩✁ ❬✙✙✕ ☎✁✡ ✼✼❈✌ ❬✙✚✕✳ ❈☎✝❝✌✝☎✂✄✡ �❝❝✌✟

✏☎✂✍�✁ ✁✌✠♥✄✆s �♦ ✏✆�✂�✁ �✆♥✍✂s ♦�✆ ✂✞✄ ✇☎✈✄ ♦✌✁❝✂✍�✁s �♦

✂✞✄ ✛✆�✌✁✡ s✂☎✂✄ �♦ ✽✘❩✁ ☎s ✇✄✝✝ ☎s ♦�✆ ✂✞✄ ✝�✇✄s✂ ❝☎✝❝✌✝☎✂✄✡

s✂☎✂✄s ✍✁ ✼✾❈✌ ☎✆✄ ✛✍✈✄✁ ✍✁ ❚☎♥✝✄ ■■✳ ☛✏✄❝✂✆�s❝�✏✍❝ ♦☎❝✂�✆s✗

❝�✆✆✄s✏�✁✡✍✁✛ ✂� ✂✞✄ �✈✄✆✝☎✏ ♥✄✂✇✄✄✁ ✂✞✄ ✍✁✍✂✍☎✝ ✭✽✘❩✁☞ ☎✁✡

♦✍✁☎✝ ✭✼✾❈✌☞ ✇☎✈✄ ♦✌✁❝✂✍�✁s✗ ☎✆✄ ☎✝s� ✛✍✈✄✁✳ ❚✞✄ ✛✆�✌✁✡

s✂☎✂✄ �♦ ✽✘❩✁ ✍s ❝✞☎✆☎❝✂✄✆✍✜✄✡ ♥❜ ☎ ✏✆�✂�✁ ❝�✠✏�✁✄✁✂ ✂✞☎✂ ✍s

✡✍s✂✆✍♥✌✂✄✡ �✈✄✆ ✂✞✄ ✢✎✺❂✷ ☎✁✡ ✢♣✸❂✷ �✆♥✍✂☎✝s✳ ❚✞✄ ✌✁✏☎✍✆✄✡

✏✆�✂�✁ ✍✁ ✼✾❈✌✗ ☎♦✂✄✆ �✁✄✟✏✆�✂�✁ ✆✄✠�✈☎✝ ♦✆�✠ ✽✘❩✁✗ ✍s

✄①✏✄❝✂✄✡ ✂� ✆✄s✍✡✄ ✠☎✍✁✝❜ ✍✁ ✂✞✄ ♣✎ �✆♥✍✂☎✝s ☎✁✡ ✂✞✄✆✄♦�✆✄

✛✄✁✄✆☎✂✄s ✁✄✛☎✂✍✈✄✟✏☎✆✍✂❜ ♦✍✁☎✝ s✂☎✂✄s✳

❲✄ ✏✆�✏�s✄ ☎ ✣✤✥✦ s✏✍✁ ♦�✆ ✂✞✄ ✛✆�✌✁✡ s✂☎✂✄ �♦ ✼✾❈✌ ☎✁✡

☎ ✧✤✥✦ s✏✍✁ ♦�✆ ✂✞✄ ♦✍✆s✂ ✄①❝✍✂✄✡ s✂☎✂✄ ☎✂ ✻✚✻ ✖✄❦ ♦✆�✠ ✂✞✄

s❜s✂✄✠☎✂✍❝s �♦ ✂✞✄ ❝�✏✏✄✆ ✍s�✂�✏✍❝ ❝✞☎✍✁✗ ☎s s✞�✇✁ ✍✁ ❋✍✛✳ ✑✗

☎s ✇✄✝✝ ☎s ✂✞✄ s❜s✂✄✠☎✂✍❝s �♦ ✂✞✄ ◆ ➻ ✣★ ✍s�✂�✁✍❝ ❝✞☎✍✁

☎♥�✈✄ ✼✾❈✌ ❬✙✩✗✙✪✕✳ ❚✞✄ ✏✆✄s✄✁✂ ▼❈☛▼ ❝☎✝❝✌✝☎✂✍�✁s

s✌✏✏�✆✂ ✂✞✍s ❝�✁❝✝✌s✍�✁✳ ❚✞✄ ❝☎✝❝✌✝☎✂✄✡ ✇☎✈✄ ♦✌✁❝✂✍�✁s

♦�✆ ✂✞✄ ✝�✇✄s✂ ✣✤✥✦ ☎✁✡ ✧✤✥✦ s✂☎✂✄s ❝�✆✆✄s✏�✁✡ ❝✝�s✄✝❜ ✂�

✂✞�s✄ �♦ ✂✞✄ ✢✎✺❂✷ ✭✔✚✳✑✫☞ ☎✁✡ ✢♣✸❂✷ ✭✔✙✳✓✫☞ s✍✁✛✝✄✟

✏☎✆✂✍❝✝✄ s✂☎✂✄s✗ ✆✄s✏✄❝✂✍✈✄✝❜✳ ❋✆�✠ ✂✞✄ ❝�✠✏☎✆✍s�✁ ✇✍✂✞ ✼✼❈✌

❬✙✚✗✙✻✕✗ ✂✞✄ ✧✤✥✦ ✝✄✈✄✝ ✍s s✄✄✁ ✂� ✆✍s✄ ☎✁✡ ✍✝✝✌s✂✆☎✂✄s ✂✞✄

❝�✁✂✍✁✌☎✂✍�✁ �♦ ✂✞✄ ✍✁✈✄✆s✍�✁ �♦ ✂✞✄ ✢♣✸❂✷ ☎✁✡ ✢✎✺❂✷ �✆♥✍✂☎✝s

✂✞☎✂ ✍s ✖✁�✇✁ ♦✆�✠ ✂✞✄ ✏✆✄❝✄✡✍✁✛ ❝�✏✏✄✆ ✍s�✂�✏✄s✳

❋�✆ ✂✞✄ s✄❝�✁✡ ✄①❝✍✂✄✡ s✂☎✂✄ ☎✂ ✶✚✶✶ ✖✄❦✗ ✂✞✄ ❝☎✝❝✌✝☎✂✍�✁

�♦♦✄✆s ✂✇� ✏�ss✍♥✍✝✍✂✍✄s✬ ☎ ✮✤✥✦ s✂☎✂✄ ☎✂ ✶✪✚✔ ✖✄❦✗ ✇✍✂✞

✙✩✳✑✫ ✢♣✯❂✷ s✍✁✛✝✄✟✏☎✆✂✍❝✝✄ ❝✞☎✆☎❝✂✄✆✗ �✆ ☎ ✰✤✥✦ s✂☎✂✄ ☎✂

✓✱✑✚ ✖✄❦✗ ✇✞�s✄ ✻✙✳✶✫ �♦ ✂✞✄ ✇☎✈✄ ♦✌✁❝✂✍�✁ ✍s ♥✌✍✝✂ ♦✆�✠ ☎

✢✎✲✯✼❂✷ ✞�✝✄ ☎✁✡ ✂✇� ✏✆�✂�✁s ✍✁ ✢✎✺❂✷♣✸❂✷✳ ❚✞✄ ☎♥s✄✁❝✄ �♦

✡✍✆✄❝✂ ♦✄✄✡✍✁✛ ✍✁ ✂✞✄ ✖✁�❝✖�✌✂ ✆✄☎❝✂✍�✁ ✡✍s♦☎✈�✆s ✂✞✄ ✰✤✥✦

☎ss✍✛✁✠✄✁✂✗ ♦�✆ ✇✞✍❝✞ ✂✞✄ ❝☎✝❝✌✝☎✂✄✡ s✏✄❝✂✆�s❝�✏✍❝ ♦☎❝✂�✆

✍s ✞✍✛✞✳ ❈�✠✏☎✆✍✁✛ ✂✞✄ ✂✆☎✁s✍✂✍�✁ s✂✆✄✁✛✂✞s ♦�✆ ✮✤✥✦ ☎✁✡

✰✤✥✦ s✏✍✁s �♥✂☎✍✁✄✡ ♦✆�✠ ❝☎✝❝✌✝☎✂✄✡ ❇ð✴✮Þ ☎✁✡ ❇ð❊✥Þ

✈☎✝✌✄s ☎✁✡ ✄①✏✄✆✍✠✄✁✂☎✝ ✄✁✄✆✛✍✄s✗ ✇✄ ♦✍✁✡ ✂✞☎✂ ✂✞✄

✆☎✂✍� ✵ð✮✤✥✦✯ ✹ ✣✤✥✦✿❁Þ✤✵ð✮✤✥
✦
✯ ✹ ✧✤✥✦✯ Þ ✄❡✌☎✝s ✑✳✓ ✇✞✍✝✄

✵ð✰✤✥✦✯ ✹ ✣✤✥✦✿❁Þ✤✵ð✰✤✥
✦
✯ ✹ ✧✤✥✦✯ Þ ✍s ✙✓✔✗ s� ✇✄ ✇�✌✝✡

✄①✏✄❝✂ ✂✞✄ ✶✚✶✶✟✖✄❦ ✂✆☎✁s✍✂✍�✁ ✂� ♥✄ s✂✆�✁✛✄✆ ✂✞☎✁ ✂✞✄

✩✚✚✟✖✄❦ �✁✄✳ ❲✄ ✡� ✁�✂ s✄✄ ☎ ✶✚✶✶✟✖✄❦ ✂✆☎✁s✍✂✍�✁ ✂� ✂✞✄

✛✆�✌✁✡ s✂☎✂✄ ♥✄❝☎✌s✄ �♦ ✂✞✄ ✝✍✠✍✂✄✡ ✆✄s�✝✌✂✍�✁✗ ♥✌✂ ✇✄ ❝☎✁

✏✌✂ ☎✁ ✌✏✏✄✆ ✝✍✠✍✂ �♦ ✶✱✭✓☞ ♦�✆ ✍✂s ✍✁✂✄✁s✍✂❜ ❝�✠✏☎✆✄✡ ✂�

✑✑✭✙☞ ♦�✆ ✂✞✄ ✩✚✚✟✖✄❦�✁✄✗ ✁☎✠✄✝❜✗ ☎ ✆☎✂✍� �♦ ✱✳✑✱✭✔☞✳ ❚✞✍s

✍s ❝✝�s✄✆ ✂� ✂✞✄ ✄①✏✄❝✂✄✡ ✈☎✝✌✄ ♦�✆ ✮✤✥✦ ✂✞☎✁ ♦�✆ ✰✤✥✦✳ ■♦

✂✞✍s ✝✄✈✄✝ ✍s ☎ ✮✤✥✦ s✂☎✂✄✗ ✂✞✄ ✝�✇ ✆☎✂✍� �♦ ✱✳✑✱✭✔☞ ✇�✌✝✡

✆☎✂✞✄✆ s✌✏✏�✆✂ ☎ ✢♣✯❂✷ s✍✁✛✝✄✟✏☎✆✂✍❝✝✄ ✁☎✂✌✆✄ ♦�✆ ✂✞✍s s✂☎✂✄✗

✌✁✝✍✖✄ ✂✞✄ s✂✆�✁✛✝❜ ❝�✝✝✄❝✂✍✈✄ ✮✤✥✦ s✂☎✂✄ s✄✄✁ ☎✂ ✝�✇ ✄✁✄✆✛❜

✍✁ ❃✾❀✼✯❀✼✸❀✼✺❈✌ ❬✙✔✗✚✱✕✳

❚✞✄ ✠✌✝✂✍✏✝✄✂ �♦ s✂☎✂✄s ♥✄✂✇✄✄✁ ✓✳✔ ☎✁✡ ✑✳✑ ▼✄❦ ✍s

✍✁✂✄✆✏✆✄✂✄✡ ☎s ✂✞✄ ❝�✌✏✝✍✁✛ �♦ ☎ ✏✆�✂�✁ ✍✁ ✂✞✄ ✢✎✺❂✷ �✆ ✢♣✸❂✷

�✆♥✍✂☎✝ ✇✍✂✞ ✂✞✄ ♦✍✆s✂ ✥þ s✂☎✂✄ �♦ ✼✽❄✍✗ ✍✁ ☎✛✆✄✄✠✄✁✂ ✇✍✂✞ ✂✞✄

✏✆✄s✄✁✂ ▼❈☛▼ ❝☎✝❝✌✝☎✂✍�✁s ♦�✆ ✇✞✍❝✞ ☎✝✝ ❝☎✝❝✌✝☎✂✄✡ s✂☎✂✄s

s✞�✇✁ ☎♥�✈✄ ✓✳✻ ▼✄❦ ☎✆✄ ❝�✆✄✟❝�✌✏✝✍✁✛ s✂☎✂✄s✳ ❲✄ ❝☎✁

✂✞✄✆✄♦�✆✄ ✄s✂✍✠☎✂✄ ✂✞✄ ♦✍✆s✂ ✥þ s✂☎✂✄ �♦ ✼✽❄✍ ☎✂ ☎♥�✌✂ ✑ ▼✄❦

✄①❝✍✂☎✂✍�✁ ✄✁✄✆✛❜✗ ✍✁ ☎❝❝�✆✡☎✁❝✄ ✇✍✂✞ ✂✞✄ ▼❈☛▼ ❝☎✝❝✌✟

✝☎✂✍�✁s ☎✁✡ �✂✞✄✆ ✂✞✄�✆✄✂✍❝☎✝ s✂✌✡✍✄s ❬✓✙✗✓✻➊✓✩✕✳ ☛✌❝✞ ☎

✑✟▼✄❦ ✥
þ
✯ s✂☎✂✄ ✍✁ ✼✽❄✍✗ ❝�✠✏☎✆✄✡ ✂� ✪✪✓ ✖✄❦ ✍✁ ✼❃❄✍ ❬✚✶✕✗

✍✁✡✍❝☎✂✄s ☎ ✛��✡ s✞✄✝✝ ❝✝�s✌✆✄ ☎✂ ◆ ➻ ✣★✳

■✁ ✂✞✄ ✄①✏✄✆✍✠✄✁✂☎✝ ✝✄✈✄✝ s❝✞✄✠✄✗ ✇✄ ♦✍✁✡ ✂✞☎✂ ✂✞✄

✖✁�❝✖�✌✂ �♦ ☎ ✏✆�✂�✁ ✆✄s✌✝✂s ✍✁ ☎ ♦✍✁☎✝ ✁✌❝✝✄✌s ☎✂ ✞✍✛✞

✄①❝✍✂☎✂✍�✁ ✄✁✄✆✛❜✗ ✏�✏✌✝☎✂✍✁✛ s✄✈✄✆☎✝ ❝�✁♦✍✛✌✆☎✂✍�✁s✳

❅✄❝☎✌s✄ �♦ ✂✞✄ s✂✆✌❝✂✌✆✄ �♦ ✂✞✄ ✇☎✈✄ ♦✌✁❝✂✍�✁ �♦ ✂✞✄
✽✘❩✁ ✛✆�✌✁✡ s✂☎✂✄✗ ✇✄ ✠☎❜ ✄①✏✄❝✂ ✂✞✄ ✆✄☎❝✂✍�✁ ✂� ✏�✏✌✝☎✂✄

✂✞✄ ✢✎✲✯✼❂✷✎
✷
✺❂✷ ✞�✝✄ ♥✌✂ ☎✝s� ✂✞✄ ✢✎

✲✯
✼❂✷✎✺❂✷♣✸❂✷ ☎✁✡ ✢✎

✲✯
✼❂✷♣

✷
✸❂✷

❝�✁♦✍✛✌✆☎✂✍�✁s✳ ❚✞✄ ✢✎✲✯✼❂✷ s✍✁✛✝✄✟✏☎✆✂✍❝✝✄ ✇☎✈✄ ♦✌✁❝✂✍�✁

✇✍✝✝ ✠✍① ✇✍✂✞ ✂✞✄ ✰✤✥✦ ✠✄✠♥✄✆s �♦ ✂✞✄ ✢ð✎✺❂✷❉ ♣✸❂✷Þ ●✥þ

✠✌✝✂✍✏✝✄✂s✗ ✆✄s✌✝✂✍✁✛ ✍✁ ☎ ♦✆☎✛✠✄✁✂☎✂✍�✁ �♦ ✂✞✄ s✂✆✄✁✛✂✞ �✈✄✆

s✄✈✄✆☎✝ ✝✄✈✄✝s✳ ❲✄ ✞☎✈✄ ✁� ✄✈✍✡✄✁❝✄ ♦�✆ ☎ s✂✆�✁✛✝❜ ♦✄✡ ✰✤✥✦

s✂☎✂✄ ♥✄✝�✇ ✓✳✓ ▼✄❦ ☎✁✡ ✇✄ ❝�✁❝✝✌✡✄ �✁ ✂✞✄ ☎♥s✄✁❝✄ �♦ ☎

s✍✛✁✍♦✍❝☎✁✂ ✏☎✆✂ �♦ ✂✞✄ ✢✎✲✯✼❂✷ s✂✆✄✁✛✂✞ ♥✄✝�✇ ✂✞✍s ✄✁✄✆✛❜✳

❈�✁❝✄✆✁✍✁✛ ❝✆�ss s✄❝✂✍�✁s✗ ✇✄ ✡✄✂✄✆✠✍✁✄✡ ☎✁ ✍✁❝✝✌s✍✈✄

❝✆�ss s✄❝✂✍�✁ �♦ ✔✳✪✭✙☞ ✠♥ ♦�✆ ✂✞✄ ✽✘❩✁ð♣❉ ✥♣Þ✼✾❈✌ ✆✄☎❝✂✍�✁✗

♥✌✂ ✆✄✝✍☎♥✝✄ ✄①❝✝✌s✍✈✄ ❝✆�ss s✄❝✂✍�✁s ❝�✌✝✡ ✁�✂ ♥✄ ✄①✂✆☎❝✂✄✡

☎s ✂✞✄ ♦✄✄✡✍✁✛ ✆☎✂✍� �♦ ✄☎❝✞ ✝✄✈✄✝ ❝�✌✝✡ ♥✄ ☎♦♦✄❝✂✄✡ ♥❜

✁�✁�♥s✄✆✈✄✡ ✂✆☎✁s✍✂✍�✁s ♥✄✂✇✄✄✁ ✞✍✛✞✟✄✁✄✆✛❜ ✝✄✈✄✝s✳ ❖✁✝❜

☎✁ ✌✏✏✄✆ ✝✍✠✍✂ �♦ ✑✳✩✭✩☞ ✠♥ ♦�✆ ✂✞✄ ✛✆�✌✁✡ s✂☎✂✄ ☎✁✡ ☎ s✠☎✝✝

❏❑▲◗❘ ❙❙❯ ❱❳❳❨❭❪t❫❴❵ ❵❨❛❢❤✐❥ ❴❧ ❭✐❴t❴❵ ❴✐❢❫t❥ ❪❵♠ ❥❭❤❳t✐❴q

❥❳❴❭❫❳ ❧❪❳t❴✐❥ r✉②③ ❧❴✐ t④❤ ⑤❴⑥❤❥t ❪❵♠ t④❤ t④✐❤❤ ❧❫✐❥t ⑦⑧⑨⑩

❳❪⑤❳❨⑤❪t❤♠ ❥t❪t❤❥ ❫❵ ❶❷❸❨❹ ❪❥ ⑥❤⑤⑤ ❪❥ ❧❴✐ t④❤ ❺✐❴❨❵♠ ❥t❪t❤ ❴❧ ❻❼❽❵❯

❘ r❾❤❿③ ➀➁ ➂❶➃➄ ➂➅➃➄ ➆➇➃➄ ➆➈➃➄ ➉❷➃➄ ➋➅➃➄ ✉②

❶❷❸❨

➌ ➍⑧⑨➎ ➏❯➏➐ ➑❯➌➒ ➌❯➑➒ ➌❯➌➓ ➌❯➌➐ ➌❯➌➑ ➑❯➐➐

➌❯➓➔→ ➣⑧⑨➎ ➏❯➏➐ ➌❯➑➏ ➑❯➌➓ ➌❯➌➐ ➌❯➌→ ➌❯➌➑ ➌❯➒➏

➑❯➔➒➏ ↔⑧⑨➎ ➏❯➒➏ ➌❯→↕ ➌❯➓➔ ➌❯➙➓ ➌❯➌➐ ➌❯➌➑ ➌❯➌→

➓❯➌➐➒ ⑦⑧⑨➎ ➙❯↕➓ ➑❯→➔ ➌❯➒➏ ➌❯➌→ ➌❯➌➏ ➌❯➌➑ ➒❯➒↕

➓❯➙→➒ ⑦⑧⑨➎ ➏❯➓➓ ➑❯➌➔ ➌❯➙➑ ➌❯➌➐ ➌❯➌→ ➌❯➌➑ ➌❯➑➒

➓❯➔➔➓ ⑦⑧⑨➎ ➏❯➒→ ➑❯➌➌ ➌❯➐➏ ➌❯➌➒ ➌❯➌➐ ➌❯➌➌ ➌❯→➐

❻❼❽❵ ➌ ➛➜ ➏❯➙➙ ➑❯→➐ ➌❯➏➐ ➌❯➌➙ ➌❯➑➌ ➌❯➌➑ ➝

➞➟ ➞➠ ➞➞ ➞➡ ➞➢ ➤➟

➥➦➧➨➩➫➭ ➭➧➯➲➦➩

➟

➤➟➟

➳➟➟➟

➳➤➟➟

➵
➸➺
➼➺
➽
➾➚
➪
➶
➹

➘➴➷➬ ➮➱✃
❐

➘➴➷➬ ❒➱✃
❐

②❙❮❯ ➐❯ ✉❰❥t❤❛❪t❫❳❥ ❴❧ t④❤ ❧❫✐❥t ➣⑧⑨➎ ❪❵♠ ➍⑧⑨➎ ❥t❪t❤❥ ❫❵ ❳❴❭❭❤✐

❫❥❴t❴❭❤❥❯ Ï❪t❪ t❪Ð❤❵ ❧✐❴❛ Ñ❤❧❥❯ Ò➐➌❹➐➑❹➐➒❹→➒Ó→➏Ô ❪❵♠ t④❫❥ ⑥❴✐Ð❯

❏④❤ ❤✐✐❴✐ ❢❪✐❥ ❪✐❤ ❥❛❪⑤⑤❤✐ t④❪❵ t④❤ ♠❪t❪ ❭❴❫❵t❥❯

PÕÖ ××ØÙ ✶✪✓✚✱✶ ✭✓✱✶✔☞
P ❍Ú ☛ ■ ❈❆Ö ÕÛ❦ ■ Û❲ ÖÛ ❚ ❚ Û Õ☛ ÜÝÝß Ýàáâàã
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✶✪✓✚✱✶✟✙

130



Appendix A. Publication

✈❛�✁✂ ♦✄ ✵☎✵✆✝✞✟✠ ♠✡ ✄♦❢ t☛✂ ✄✐❢☞t ✂①✌✐t✂✍ ☞t❛t✂ ✇✂❢✂ ✄♦✁✎✍✏

�✂❛✈✐✎✑ ❛t �✂❛☞t ✆☎✹✝✟✠ ♠✡ t☛❛t ✇✐�� ♠❛✐✎�✒ ✡✂�♦✎✑ t♦ ☞t❛t✂☞

t☛❛t ✐✎ t☛✂✐❢ ✇❛✈✂ ✄✁✎✌t✐♦✎ ✌♦✎t❛✐✎ ❛ ☛♦�✂ ✐✎ t☛✂ ✓✔✼❂✷

♦❢✡✐t❛�☎ ❚☛✂♦❢✂t✐✌❛� ☞✐✎✑�✂s✕❛❢t✐✌�✂ ✌❢♦☞☞ ☞✂✌t✐♦✎☞ ✇✂❢✂

✌❛�✌✁�❛t✂✍ ✁☞✐✎✑ t☛✂ ✍✐☞t♦❢t✂✍s✇❛✈✂ ✐♠✕✁�☞✂ ❛✕✕❢♦①✐♠❛t✐♦✎

✝✭❲✖✗✠ ✄❢❛♠✂✇♦❢✘ ❬✙✞✚ ❛✎✍ ❛✈✂❢❛✑✂✍ ❛�♦✎✑ t☛✂ t☛✐✌✘

t❛❢✑✂t✏ t☛✂ ✡✂❛♠ ✂✎✂❢✑✒ ✍✂✌❢✂❛☞✐✎✑ ✄❢♦♠ ✞✛✵ t♦ ✹✶✵ ▼✂✜

✕✂❢ ✎✁✌�✂♦✎☎ ❚☛✂ ♦✕t✐✌❛� ✕♦t✂✎t✐❛�☞ ✄♦❢ t☛✂ ✐✎✌♦♠✐✎✑ ✕❢♦t♦✎

❛✎✍ t☛✂ ♦✁t✑♦✐✎✑ t✇♦ ✕❢♦t♦✎☞ ❛❢✂ ♦✡t❛✐✎✂✍ ✡✒ ❛ ♠✐✌❢♦☞✌♦✕✐✌

✄❢❛♠✂✇♦❢✘✢ t☛✂ ▼✂�✡♦✁❢✎✂ ✎✁✌�✂♦✎s✎✁✌�✂♦✎ ●s♠❛t❢✐①

✐✎t✂❢❛✌t✐♦✎ ❬✙✣✚ ✐☞ ✄♦�✍✂✍ ✡✒ ❛ ✎✁✌�✂❛❢ ✍✂✎☞✐t✒ ✌❛�✌✁�❛t✂✍

✇✐t☛ t☛✂ ❇♦☛❢s▼♦tt✂�☞♦✎ ☞✐✎✑�✂s✕❛❢t✐✌�✂ ✕♦t✂✎t✐❛� ❬✙✆✚☎ ✳♦❢

t☛✂ ✑❢♦✁✎✍ ☞t❛t✂✏ t☛✂ �♦✇s�✒✐✎✑ ✓♣✸❂✷ ☞t❛t✂ ❛✎✍ t☛✂ ✘✎♦✌✘♦✁t

♦✄ ❛ ✔✼❂✷ ✕❢♦t♦✎✏ ✇✂ ♦✡t❛✐✎✂✍ ✞☎✹✏ ✞☎✤✏ ❛✎✍ ✞☎✣ ♠✡✏

❢✂☞✕✂✌t✐✈✂�✒✏ ❛✎✍ t☛✂☞✂ ✎✁♠✡✂❢☞ ☞☛♦✁�✍ ✡✂ ♠✁�t✐✕�✐✂✍ ✡✒

t☛✂ ✌♦❢❢✂☞✕♦✎✍✐✎✑ ☞✕✂✌t❢♦☞✌♦✕✐✌ ✄❛✌t♦❢☞ ✄❢♦♠ t☛✂ ▼✥✦▼

✑✐✈✂✎ ✐✎ ❚❛✡�✂ ✖✖☎ ❲✂ ✍✐✍ ✎♦t ✐✍✂✎t✐✄✒ ❛ ☞t❢♦✎✑�✒ ✕♦✕✁�❛t✂✍

✧★✩✪ ☞t❛t✂✢ ♦✁❢ ♦✡☞✂❢✈❛t✐♦✎ ☞☛♦✇☞ ♠♦❢✂ ✄❢❛✑♠✂✎t❛t✐♦✎ ♦✄

t☛✂ ☞✐✎✑�✂s✕❛❢t✐✌�✂ ☞t❢✂✎✑t☛ t☛❛✎ ✕❢✂✍✐✌t✂✍☎ ✗�t☛♦✁✑☛ t☛✐☞

✌♦✁�✍ ✡✂ ✕❛❢t�✒ ✂①✕�❛✐✎✂✍ ✡✒ t☛✂ ✂①✐☞t✂✎✌✂ ♦✄ ✁✎♦✡☞✂❢✈✂✍

✫ ❢❛✒☞✏ ✐t ✐☞ ❛�☞♦ ✕♦☞☞✐✡�✂ t☛❛t ❛ ✕❛❢t ♦✄ t☛✂ ✓✔✬✮✼❂✷ ☞t❢✂✎✑t☛ �✐✂☞

❛✡♦✈✂ t☛✂ ✎✂✁t❢♦✎s☞✂✕❛❢❛t✐♦✎ t☛❢✂☞☛♦�✍☎ ✦♦♠✂✇☛❛t ✍✐☞✌❢✂✕s

❛✎t ✇✐t☛ t☛✂ ✕❢✂☞✂✎t✂✍ ☞☛✂��s♠♦✍✂� ✌❛�✌✁�❛t✐♦✎☞✏ t☛✐☞

♠❛✐✎ ❢✂☞✁�t ✌❛��☞ ✄♦❢ ✄✁❢t☛✂❢ ✂①✕✂❢✐♠✂✎t❛� ❛✎✍ t☛✂♦❢✂t✐✌❛�

✐✎✈✂☞t✐✑❛t✐♦✎☞☎

❚☛✂ ❩ ➻ ✩✯ ✑❛✕ ✌♦❢❢✂☞✕♦✎✍☞ t♦ t☛✂ ✓✔✺❂✷✔✼❂✷ ❊✦✰❊

☞✕�✐tt✐✎✑✏ ❛☞ t☛✂ ✓♣✸❂✷ ❛✎✍ ✓✔✺❂✷ ♦❢✡✐t❛�☞ ❛❢✂ ✐✎✈✂❢t✂✍ ❛✎✍

t☛✂ ▼✥✦▼ ✌❛�✌✁�❛t✐♦✎☞ ✕✁t ✐t ❛t ✆☎✟ ▼✂✜☎ ❊①✕✂❢✐♠✂✎t❛��✒✏

✇✂ ✄♦✁✎✍ ❛ �♦✇✂❢ �✐♠✐t ♦✄ ✞☎✞ ▼✂✜ ✄♦❢ t☛✂ ✓✔
✬✮
✼❂✷ ☛♦�✂

☞t❢✂✎✑t☛☎ ❊✈✂✎ ✐✄ t☛✂ �❛tt✂❢ ✌❛✎✎♦t ✡✂ ✍✐❢✂✌t�✒ ❢✂�❛t✂✍ t♦ t☛✂

❊✦✰❊ ✡✂✌❛✁☞✂ ♦✄ ♠♦✍✂�s✍✂✕✂✎✍✂✎t ✌♦❢❢✂�❛t✐♦✎☞✏ ✡♦t☛

✂①✕✂❢✐♠✂✎t ❛✎✍ t☛✂♦❢✒ ☞☛♦✇ t☛❛t ❛�t☛♦✁✑☛ t☛✂ ♦❢✡✐t❛�

✌♦✎t✂✎t ♦✄ t☛✂ ❩ ➻ ✩✯ ✑❛✕ ✐☞ ✌☛❛✎✑✐✎✑ ❛�♦✎✑ t☛✂ ✌♦✕✕✂❢

✐☞♦t♦✕✐✌ ✌☛❛✐✎✏ ✐t☞ ♠❛✑✐✌✐t✒ ✕✂❢☞✐☞t☞☎ ❚☛✂❢✂✄♦❢✂✏ ✼✱✥✁ ✌❛✎ ✡✂

✍✂☞✌❢✐✡✂✍ ❛☞ ❛
✼✲◆✐ ✌♦❢✂ ✕�✁☞ ❛ ✈❛�✂✎✌✂ ✕❢♦t♦✎☎ ❚☛✐☞ ✐☞ ✐✎

�✐✎✂ ✇✐t☛ t☛✂ ✍✂✕✐✌t✐♦✎ ♦✄ ✲✽✴✎ ❛☞ t✇♦s✕❢♦t♦✎ ✌♦✎✄✐✑✁❢❛t✐♦✎☞

✇✐t☛ ❛
✼✲◆✐ ✌♦❢✂ ❬✆✆✚☎

✖✎ ✌♦✎✌�✁☞✐♦✎✏ ✇✂ ✕✂❢✄♦❢♠✂✍ t☛✂ ✄✐❢☞t ☞✕✂✌t❢♦☞✌♦✕✒ ♦✄
✼✱✥✁ ❛✎✍ ✌♦♠✕❛❢✂✍ t☛✂ ❢✂☞✁�t☞ ✇✐t☛ ▼✥✦▼ ✌❛�✌✁�❛t✐♦✎☞☎

❚☛✂☞✂ ✌❛�✌✁�❛t✐♦✎☞ ☞☛♦✇ t☛✂ ❢✂☞t♦❢❛t✐♦✎ ♦✄ t☛✂ ☞✐✎✑�✂s

✕❛❢t✐✌�✂ ✎❛t✁❢✂ ♦✄ t☛✂ �♦✇s�✒✐✎✑ ☞t❛t✂☞✏ ✇☛✐✌☛ ✐☞ ☞✁✕✕♦❢t✂✍

✡✒ t☛✂ ✂①✕✂❢✐♠✂✎t☎ ❚☛✂❢✂ ✐☞ ✎♦ ☞✐✑✎✐✄✐✌❛✎t ✘✎♦✌✘♦✁t ✄✂✂✍✐✎✑

t♦ t☛✂ ✂①✌✐t✂✍ ☞t❛t✂☞ ✡✂�♦✇ ✞☎✞ ▼✂✜✏ ✐✎✍✐✌❛t✐✎✑ t☛❛t t☛✂

❩ ➻ ✩✯ ✑❛✕ ❢✂♠❛✐✎☞ �❛❢✑✂☎ ❚☛✂ ❛✡✐�✐t✒ t♦ ✍✂☞✌❢✐✡✂ t☛✂
✼✱✥✁

✎✁✌�✂✁☞ ❛☞ ❛ ✈❛�✂✎✌✂ ✕❢♦t♦✎ ♦✁t☞✐✍✂ ❛ ✼✲◆✐ ✌♦❢✂ ✕❢✂☞✂✎t☞ ✁☞

✇✐t☛ ✐✎✍✐❢✂✌t ✂✈✐✍✂✎✌✂ ♦✄ t☛✂ ♠❛✑✐✌ ✌☛❛❢❛✌t✂❢ ♦✄ t☛✂ �❛tt✂❢☎

✦✕✂✌t❢♦☞✌♦✕✒ ❛✎✍ ♠❛☞☞ ♠✂❛☞✁❢✂♠✂✎t ♦✄
✼✲◆✐ ❛❢✂ t☛✂ ✎✂①t

☞t✂✕☞ ✄♦❢ ❛ ✍✐❢✂✌t ✕❢♦♦✄ ♦✄ ✐t☞ ✍♦✁✡�✂ ♠❛✑✐✌✐t✒☎

❚☛✂ ❛✁t☛♦❢☞ ❛❢✂ t☛❛✎✘✄✁� t♦ t☛✂ ❘✖❇✳ ❛✎✍ ❇✐✑❘✖✰✦

t✂❛♠☞ ✄♦❢ t☛✂ ☞t❛✡�✂ ♦✕✂❢❛t✐♦✎ ❛✎✍ ☛✐✑☛ ✐✎t✂✎☞✐t✒ ♦✄ t☛✂

✁❢❛✎✐✁♠ ✕❢✐♠❛❢✒ ✡✂❛♠✏ ❛✎✍ ✕❢♦✍✁✌t✐♦✎ ♦✄ ☞✂✌♦✎✍❛❢✒ ✡✂❛♠☞

✍✁❢✐✎✑ t☛✂ ✂①✕✂❢✐♠✂✎t☎ ❚☛✂ ✍✂✈✂�♦✕♠✂✎t ♦✄ ▼✖◆✻✦ ❛✎✍

t☛✂ ✌♦❢✂ ▼✖◆✻✦ t✂❛♠ ☛❛✈✂ ✡✂✂✎ ☞✁✕✕♦❢t✂✍ ✡✒ t☛✂

❊✁❢♦✕✂❛✎ ❘✂☞✂❛❢✌☛ ✥♦✁✎✌✐� t☛❢♦✁✑☛ t☛✂ ❊❘✥ ✾❢❛✎t

◆♦☎ ▼✖◆✻✦s✞✙✶✙✤✛☎ ✗☎ ✻☎ ✇❛☞ ☞✁✕✕♦❢t✂✍ ✡✒ ❏✦✰✦

�♦✎✑st✂❢♠ ✄✂��♦✇☞☛✐✕ ▲s✹✣✙✞✵ ✄❢♦♠ ✦✂✕t✂♠✡✂❢ ✞✵✹✣ t♦

❏✁✎✂ ✞✵✹✆ ❛t t☛✂ ❘✖✿❊◆ ◆✐☞☛✐✎❛ ✥✂✎t✂❢☎ ✗☎ ✻☎ ✍✂✂✕�✒

t☛❛✎✘☞ t☛✂ ❊❘✥ ❛✎✍ ❏✦✰✦ ✄♦❢ t☛✂✐❢ ☞✁✕✕♦❢t☎ ✥☎ ✦☎ ✇❛☞

☞✁✕✕♦❢t✂✍ ✡✒ t☛✂ ✖✰✗ ✕❢♦✑❢❛♠ ❛t t☛✂ ❘✖✿❊◆ ◆✐☞☛✐✎❛

✥✂✎t✂❢☎ ✗☎ ✻☎ ❛✎✍ ✥☎ ✦☎ ❛❢✂ ✑❢❛t✂✄✁� t♦ t☛✂ ❘✖✿❊◆ ◆✐☞☛✐✎❛

✥✂✎t✂❢ ✄♦❢ ✐t☞ ☛♦☞✕✐t❛�✐t✒☎ ❚☛✐☞ ✇♦❢✘ ✇❛☞ ☞✁✕✕♦❢t✂✍ ✡✒ ❏✦✰✦

✾❢❛✎ts✐✎s✗✐✍ ✄♦❢ ❛ ❏✦✰✦ ❘✂☞✂❛❢✌☛ ✳✂��♦✇ ✝◆♦☎ ✞✤✶✛✹✶✠☎

❚☛✂ ▼✥✦▼ ✌❛�✌✁�❛t✐♦✎☞ ✇✂❢✂ ✕✂❢✄♦❢♠✂✍ ♦✎ t☛✂ ✿ ✌♦♠s

✕✁t✂❢ ❛t ❘✖✿❊◆ ✗✖✥✦ ✝☛✕✹✙✵✞✞✆✏ ☛✕✹✤✵✞✹✹✠☎ ❚☛✐☞ ✇♦❢✘

✇❛☞ ☞✁✕✕♦❢t✂✍ ✐✎ ✕❛❢t ✡✒ t☛✂ ❍✰✥✖ ✦t❢❛t✂✑✐✌ ✰❢♦✑❢❛♠ ✝➇❚☛✂

✻❢✐✑✐✎ ♦✄ ▼❛tt✂❢ ❛✎✍ t☛✂ ❯✎✐✈✂❢☞✂➈✠ ❛✎✍ t☛✂ ➇✰❢✐♦❢✐t✒ ✖☞☞✁✂

♦✎ ✰♦☞ts✿ ✌♦♠✕✁t✂❢➈ ✝➇❊�✁✌✐✍❛t✐♦✎ ♦✄ t☛✂ ✳✁✎✍❛♠✂✎t❛�

▲❛✇☞ ❛✎✍ ❊✈♦�✁t✐♦✎ ♦✄ t☛✂ ❯✎✐✈✂❢☞✂➈✠ ✄❢♦♠ ▼❊❀❚ ❛✎✍

❏✖✥✳✁✦☎ ✴☎ ✭☎ ❛✎✍ ✴☎ ✜☎ ✇✂❢✂ ☞✁✕✕♦❢t✂✍ ✡✒ t☛✂ ✾✖◆✻✰s

✞☎✣☎✣s✹✙s✞✵✹✤s✵✵✵✣✆ ✌♦✎t❢❛✌t☎ ▲☎ ❀☎ ✥☎ ✇♦✁�✍ �✐✘✂ t♦ t☛❛✎✘

▼✻✦❚ ✄♦❢ ✐t☞ ☞✁✕✕♦❢t☎ ▼☎ ▲☎ ❛✎✍ ✜☎❲☎ ❛✌✘✎♦✇�✂✍✑✂ t☛✂

✾✂❢♠❛✎ ❇▼❇✳ ✇✐t☛ t☛✂ ☞✁✕✕♦❢t✐✎✑ ◆♦☎ ✵✙✰✹✙❘✭✳◆✹ ❛✎✍

◆♦☎ ✵✙✰✹✞❘✭✳◆✶☎ ❲✂ t☛❛✎✘ ◆☎ ✰❛✁� ✄♦❢ ☛✂❢ ✌❛❢✂✄✁�

❢✂❛✍✐✎✑ ♦✄ t☛✂ ▲✂tt✂❢☎

❁
P❃❄❅❄❆❈ ❉❋❋❃❄❅❅■ ❑❄❖◗❙❱❖❈❧ ❳❆❅❈❨❈❭❈❄ ❪❉❨❆❧❫ ❴❴❵❜❜ ❪❉❨❆❧❫

❝❄❃◗❉❆❞ ❉❆❋ ❝❡❳ ❑❄❖◗❙❱❖❈❧❧❄❆❈❃❭◗ ❣❤❃ ❡❥❙❦❄❃❨❱❆❄❆❣❱❃♥

❅❥❙❭❆q❫ r✉②❜③ ④❉❃◗❅❈❉❋❈❫ ❝❄❃◗❉❆❞⑤
❺
P❃❄❅❄❆❈ ❉❋❋❃❄❅❅■ ⑥❡⑦❡❪❫ ❳⑦②P⑧♥⑥⑦⑨❡❫ ⑩❆❨❶❄❃❅❨❈❷ P❉❃❨❅♥

❡❭❋❫ ⑩❆❨❶❄❃❅❨❈❷ P❉❃❨❅♥❡❉❥❖❉❞❫ ❜③✉❵r ❸❃❅❉❞ ⑥❄❋❄❹❫ ❻❃❉❆❥❄⑤

❼③❽ ❪⑤ ❝❱❄❾❾❄❃❈♥❪❄❞❄❃❫ P❙❞❅⑤ ⑨❄❶⑤ ❿➀❫ ③❜r❜ ➁③❜✉❜➂⑤

❼②❽ ❸⑤ ❑❉❹❄❖❫ ➃⑤ ❑⑤ ④⑤ ➃❄❆❅❄❆❫ ❉❆❋ ❑⑤ ➄⑤ ❡❭❄❅❅❫ P❙❞❅⑤ ⑨❄❶⑤ ❿➀❫

③➅rr ➁③❜✉❜➂⑤

❼⑧❽ ❸⑤ ❡❱❃❖❨❆ ❉❆❋ ❪⑤♥❝⑤ P❱❃➆❭❄❈❫ P❃❱q⑤ P❉❃❈⑤ ⑦❭❥❖⑤ P❙❞❅⑤ ➉➊❫ r❵②

➁②❵❵➋➂⑤

❼✉❽ ④⑤ ❝❭❨❖❖❄◗❉❭❋♥❪❭❄❖❖❄❃❫ ⑥⑤ ④❄❈❃❉❧❫ ❪⑤ ➌❉❆q❄❶❨❆❫ ❻⑤ ⑦❉❭❖❨❆❫

❪⑤ ❋❄ ❡❉❨❆❈♥❡❨◗❱❆❫ ⑥⑤ ➍❙❨➎❉❭❖❈❫ ❻⑤ ➍❱❭❥❙❉❃❋❫ ❉❆❋ ❪⑤

➄❾❙❄❃❃❄❫ ⑦❭❥❖⑤ P❙❞❅⑤ ➏➐➑➉❫ ⑧➅ ➁③❜➋✉➂⑤

❼❴❽ ➍⑤ ❪❱❈❱➎❉❞❉❅❙❨ ➒➓ ➔→➣❫ P❙❞❅⑤ ➌❄❈❈⑤ ↔ ↕➐➉❫ ❜ ➁③❜❜❴➂⑤
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Résumé en français

Le noyau atomique est un des sytèmes physiques les plus complexes et les plus fasci-

nants, présentant une grande variété de comportements tels que la déformation, les ex-

citations collectives ou encore l’émission de particules. Il est le théâtre d’une intense

compétition entre les interactions forte, faible et Coulombienne. Depuis sa découverte

par E. Rutherford [1] il y a plus d’un siècle, de nombreuses études expérimentales et

théoriques ont été menées pour tenter de comprendre ses nombreuses propriétés. Pour-

tant, aujourd’hui encore, il n’existe pas de théorie unifiée qui rendrait compte de tous

les phénomènes nucléaires et de nombreuses questions restent au mieux partiellement

résolues. Un des problèmes majeurs est celui de la compréhension du comportement de

la matière nucléaire loin de la vallée de stabilité.

Il fut observé il y a près de 80 ans que certains noyaux ayant un nombre spécial de

protons et/ou de neutrons présentent d’intéressantes propriétés telles qu’un excès d’énergie

de liaison. Ces nombres, aujourd’hui appelés ”nombres magiques”, sont 2, 8, 20, 28, 50,

82, 126. Cette observation fut interprétée comme une indication que le noyau pouvait être

décrit en termes d’orbitales et de couches, à l’instar des électrons dans l’atome. Différents

modèles de particules individuelles furent rapidement proposés mais tous échouèrent à

reproduire la suite des nombres magiques. Il fallut attendre 1949 pour que ce problème soit

résolu, avec l’introduction dans le potentiel nucléaire d’un terme empirique de spin-orbite

par Goeppert Mayer [4] et Haxel, Jensen et Suess [5]. Néanmoins, avec le développement

des faisceaux radioactifs durant les dernières décennies, il fut observé qu’il peut y avoir

d’importants réarrangements de la structure nucléaire. Les nombres magiques mentionnés

ci-dessus, valides aux alentours de la vallée de stabilité, ne sont pas universels : loin

de la stabilité, certains peuvent disparâıtre et de nouveaux nombres magiques peuvent

apparâıtre. Ceci mène naturellement à un autre problème majeur, celui des forces en jeu

dans l’évolution des couches loin de la stabilité.

Dans cette thèse, nous nous focalisons sur l’évolution de la structure nucléaire côté

protons en allant vers le noyau de 78Ni (Z = 28, N = 50), un des noyaux les plus exotiques

possédant deux nombres magiques conventionels. L’évolution du gap Z = 28 vers N = 50

peut être étudié en sondant le caractère de particule individuelle des niveaux d’énergie
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dans la châıne isotopique de cuivre, ayant un proton de plus que le nickel. Ce travail

porte sur le 79Cu, à N = 50, produit par la réaction de knockout proton (p,2p) et étudié

par spectroscopie γ en ligne.

B.1 Motivation physique

Jusqu’à présent, il n’y a pas eu d’observation d’une disparation des fermetures de

couche à Z = 28 et N = 50. En revanche, certaines études indiquent un possible affaiblis-

sement de ces gaps [19,23,38,59] autour du 78Ni. Comme expliqué dans le chapitre 1, peu

de données expérimentales concernant le 78Ni lui-même existent, seul son temps de demi-

vie est connu [25]. Les isotopes de cuivre permettent de sonder la structure nucléaire côté

protons dans cette région et en particulier de caractériser sa nature de particule indivi-

duelle. Les orbitales d’intérêt pour les protons sont 1f7/2, supposément remplie, et 2p3/2,

1f5/2, 2p3/2. Concernant les neutrons, il s’agit de l’orbitale 1g9/2 qui est pleine à N = 50.

La taille du gap Z = 28 peut être affectée par des dérives monopolaires. En ajoutant

des neutrons dans l’orbitale νg9/2, au delà de N = 40, l’énergie du premier état ex-

cité 5/2− baisse brutalement par rapport à l’état fondamental 3/2− dans les noyaux

de 71,73Cu [43, 44]. L’inversion de ces deux états fut ensuite observée dans le 75Cu, où

le spin de l’état fondamental est 5/2− [46]. Théoriquement, ces niveaux 3/2− et 5/2−

correspondent principalement aux états de particule individuelle p3/2 et f5/2, respec-

tivement [19, 57, 59]. Le comportement de l’orbitale πf7/2, partenaire de spin-orbite de

l’orbitale πf5/2, est plus difficile à déterminer. Cette orbitale est d’une importance majeure

puisqu’il s’agit d’une des deux orbitales délimitant le gap Z = 28. L’accès à cet état trou

est possible par réaction de transfert ou de knockout [63]. Bien que les facteurs spectro-

scopiques extraits dans les réactions de pick-up proton permettent en principe d’accéder

au barycentre de la force πf7/2, c’est un défi d’identifier les plus petites composantes

ou celles situées à haute énergie. Aujourd’hui, des données sont disponibles concernant

les réactions 70Zn(d,3He)69Cu [50, 53] et 72Zn(d,3He)71Cu [55], autour de N = 40. Le

barycentre de la force πf7/2 fut déterminé à 3.8 MeV dans le 71Cu, comparé à une valeur

limite de 2.45 MeV dans le 69Cu. Bien qu’il soit impossible de clarifier dans quelle direc-

tion le barycentre se déplace, il reste suffisamment haut et le gap Z = 28 n’apparâıt pas

fortement affecté. A l’autre bout de la châıne, dans le 79Cu, aucune information spectro-

scopique n’est connue. Étudier le comportement de l’orbitale πf7/2 à N = 50 permettrait

d’obtenir des informations sur la magicité du 78Ni.

B.2 Dispositif expérimental

L’expérience étudiée ici faisait partie la première campagne Seastar (signifiant en

anglais Shell evolution and search for two-plus energies at the RIBF ), un programme
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expérimental visant à étudier par spectroscopie γ en ligne des noyaux riches en neutrons

produits par réaction de knockout proton. Elle s’est déroulée pendant 5 jours au labora-

toire RIKEN, au Japon. Le dispositif expérimental est décrit dans le chapitre 2.

Un faisceau primaire d’238U, accéléré à une énergie de 345 MeV/nucléon et d’une

intensité de 12 pnA, fut envoyé sur une cible de 9Be. La fission en vol des noyaux

d’uranium engendra un coktail d’isotopes radioactifs, identifiés et selectionnés en vol par

le spectromètre BigRIPS [67] pour former le faisceau secondaire. Les noyaux d’intérêts

furent ensuite envoyés sur le dispositif MINOS (MagIc Numbers Off Stability) [74] avec

une vitesse β ∼ 0.6. MINOS est composé d’une cible d’hydrogène liquide de 10 cm de

long, où se déroulent les réactions de knockout, entourée d’une chambre à projection

temporelle (TPC en anglais) servant à reconstruire la trajectoire des protons issus de

la réaction. Cette reconstruction permet de determiner le vertex d’interaction dans la

cible, afin de corriger le plus efficacemment possible l’important effet Doppler affectant

les rayons γ prompts émis par le résidu et détectés par le spectromètre γ DALI2 (Detector

Array for Low Intensity radiation 2 ) [77]. Les résidus furent identifiés par le spectromètre

ZeroDegree [67] situé en sortie de MINOS.

L’intensité moyenne du faisceau secondaire de 80Zn était de 260 particules par se-

conde (pps) tandis que le nombre d’événements correspondant à la réaction (p,2p)79Cu

était de 0.5 pps. Ce faible taux de comptage explique le choix d’un détecteur γ tel que

DALI2, caractérisé par une grande segmentation (186 crystaux) et une grande efficacité

(scintillateurs). La contrepartie est la faible résolution en énergie du détecteur. À 1 MeV,

la résolution était de σE/E = 4.3% pour une efficacité de 27%.

B.3 Analyse et construction des schémas de niveaux

L’analyse des données issues de l’expérience se déroule principalement en effectuant

les étapes suivantes, détaillées dans le chapitre 3 :

� Corrections empiriques pour améliorer l’identification des isotopes dans les spectro-

mètres BigRIPS et ZeroDegree ;

� Étalonnage en temps et en énergie de DALI2 ;

� Étalonnage de la vitesse de dérive des électrons dans la TPC de MINOS ;

� Procédure dite d’add-back, pour reconstruire l’énergie des rayons γ ayant subit une

diffusion Compton ;

� Correction de l’effet Doppler.

Ces étapes, bien que standardes dans une telle expérience, sont cruciales afin d’obtenir

des spectres en énergie fiables. Pour s’assurer de la qualité de l’analyse, une validation est
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effectuée en utilisant des transitions déjà connues [31, 32, 36] des isotopes de 78,80Zn, pro-

duits par différentes voies de réaction durant l’expérience. Nous identifions trois pics dans

le spectre de 78Zn et cinq dans celui de 80Zn : les énergies mesurées sont compatibles avec

celles existantes dans la littérature, à deux exceptions près dues au temps de vie d’un des

niveaux émetteurs dans le 80Zn qui induit fatalement une mauvaise correction de l’effet

Doppler. L’analyse est donc validée mais il faut mentionner que l’énergie mesurée des

transitions peut être décalée de quelques pourcents à cause du temps de vie des niveaux

émetteurs.

Les spectres en énergie sont ajustés par une fonction correspondant à la somme des

fonctions de réponse de DALI2 aux différentes énergies où se trouvent les transitions ainsi

que de deux fonctions exponentielles servant à reproduire le bruit de fond à basse et haute

énergie. Dans le cas du 79Cu, la densité de transition dans le spectre est telle qu’il n’est

pas possible d’identifier a priori le nombre de transitions présentes, ni leur énergie. Nous

avons donc établi une procédure, expliquée dans le chapitre 4, afin d’extraire un maximum

d’information des données. Elle comporte les six étapes suivantes :

1. Coincidences γ-γ sans soustraction du bruit de fond ;

2. Identification des transitions allant directement sur l’état fondamental ;

3. Ajustement du spectre en énergie avec les transitions trouvées lors des étapes 1 et 2 ;

4. Estimation des différences entre l’ajustement et le spectre ;

5. Calcul de la quantité de bruit de fond sous chaque pic utilisé en étape 1 ;

6. Coincidences γ-γ avec soustraction du bruit de fond, pour confirmer ou invalider les

relations trouvées en étape 1.

Nous avons validé cette procédure en utilisant le noyau de 81Ga, produit par la réaction

(p,2p) pendant la première campagne Seastar et par différentes voies de réaction lors de

la seconde campagne qui s’est déroulée un an après. Ceci nous a permis de tester notre

méthode sur deux jeux de données indépendants. Les deux schémas de niveaux construits

sont cohérents entre eux et compatibles avec ce qui existe dans la littérature [91], nous

avons donc appliqué cette procédure sur le 79Cu.
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B.4 Résultats et interprétation

Le spectre en énergie du 79Cu montre deux pics suffisamment isolés pour effectuer

des coincidences γ-γ, à 650 et 850 keV. Ceux-ci nous ont donc servi de point de départ

pour appliquer la procédure décrite précédemment et les résultats sont présentés dans le

chapitre 5. Le schéma de niveaux du 79Cu fut établi pour la première fois, jusqu’à une

énergie de 4.6 MeV, et nous avons pu y placer 11 transitions. Deux autres transitions

furent identifiées mais n’ont pas pu être placées, et quelques autres transitions sont sus-

ceptibles d’exister mais n’ont pas pu être identifiées à cause de la faible statistique et de

la mauvaise résolution propre aux scintillateurs.

Le schéma de niveaux obtenu fut ensuite comparé à des calculs théoriques de modèle

en couche Monte Carlo (MCSM) [93,94]. L’interprétation des résultats est détaillée dans

le chapitre 6. A partir de la systématique des premiers niveaux 3/2− et 5/2− dans la

châıne itosopique de cuivre [43, 46–50], nous avons proposé un spin 5/2− pour l’état

fondamental et un spin 3/2− pour le premier état excité, à 656 keV, ce qui est en accord

avec les calculs du MCSM. Ce dernier prédit un caractère de particule individuelle pour

les deux états. Nous avons suggéré un spin 1/2− pour le deuxième état excité, à partir de

l’absence de population directe de cet état ainsi que par les taux de transitions estimés

expérimentalement et ceux obtenus théoriquement. Nous avons interprété le multiplet

d’états entre 2.3 et 3.3 MeV comme venant du couplage entre le premier état 2+ du 78Ni

avec un proton dans l’orbitale πf5/2 ou πp3/2. Les spectres de 77Cu et 81Ga obtenus

par réaction de (p,2p) au cours de la même expérience présentent plusieurs transitions

autour de l’énergie du premier état 2+ du 76Ni et 80Zn, respectivement, indiquant qu’il

est effectivement possible d’observer des niveaux dus au couplage. Nous avons donc pu

estimer l’énergie d’excitation du premier état 2+ du 78Ni à environ 3 MeV. Comparée à

l’énergie du même niveau dans les isotopes de nickel moins riches en neutrons [27–30],

cette valeur semble indiquer une bonne fermeture de couche à N = 50. Pour finir,

deux niveaux à 3.9 et 4.3 MeV décroissent directement vers l’état fondamental, ce qui

en fait de bons candidats pour porter une partie de la force πf−1
7/2. Bien qu’il ne soit

pas possible d’identifier formellement un état trou πf−1
7/2 dans le 79Cu, nous trouvons une

limite inférieure égale à 2.2 MeV pour le barycentre de la force πf−1
7/2 puisque nous n’avons

aucune indication de la présence d’un état fortement peuplé en dessous. Le nombre de

niveaux indique que la force est probablement fragmentée, même si une partie de cette

fragmentation observée pourrait être due à des transitions non-identifiées dans le spectre

en énergie. Ce résultat semble être en désaccord avec les calculs théoriques et nécessiterait

d’effectuer d’autres études expérimentales et théoriques pour clarifier la situation.

Il apparâıt donc que le noyau de 79Cu est bien décrit en termes d’un proton de valence

au-dessus d’un coeur de 78Ni, ce qui nous donne une preuve indirecte du caractère magique

de ce dernier.
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B.5 Conclusion

Dans ce travail, nous avons réalisé la première spectroscopie γ en ligne du noyau de
79Cu, qui fut produit au RIKEN par réaction de knockout proton à partir d’un faisceau

de 80Zn à 260 MeV/nucléon. Nous avons déterminé une limite inférieure de 2.2 MeV

pour la force πf−1
7/2, ce qui indique que le gap Z = 28 reste important à N = 50. De

futures études seront nécessaires pour savoir où se situe précisemment cette force πf−1
7/2.

Plusieurs pistes sont possibles : une partie pourrait être au-delà du seuil de séparation

d’un neutron, une autre dans le multiplet d’états observés. Une réaction de trans-

fert telle que 80Zn(d,3He)79Cu pourrait apporter de nombreuses réponses, à l’instar des

expériences utilisant les réactions 70,72Zn(d,3He)69,71Cu [53, 55]. En utilisant le faisceau

de 80Zn du RIKEN, aujourd’hui quatre fois plus intense que lors de notre expérience,

il serait possible d’obtenir quelques dizaines d’événements pour chaque état d’intérêt.

Une campagne 74−80Zn(d,3He) est donc envisageable dans peu de temps. De même, une

expérience d’excitation Coulombienne du 79Cu aiderait à quantifier le degré de collectivité

des différents niveaux d’énergie. Une telle expérience fut réalisée au RIKEN pour le 77Cu

et les futures améliorations du système d’accélération visant à augmenter l’intensité du

faisceau incident devraient permettre d’atteindre rapidement le 79Cu. Enfin, la spectro-

scopie du 78Ni apportera des informations clés.
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Université Paris-Sud XI (2015).

[83] P. Hough. Method and means for recognizing complex patterns. U.S. Patent 3,009,654

(1962).

[84] W. R. Leo. Techniques for nuclear and particle physics experiments. Springer-Verlag,

Second revised edition (1994).

[85] S. Takeuchi et al. Low-lying states in 32Mg studied by proton inelastic scattering.

Physical Review C 79, 054319 (2009).

[86] O. B. Tarasov and D. Bazin. LISE++: Radioactive beam production with in-flight

separators. Nuclear Instruments and Methods in Physics Research B 266, 4657

(2008).

144

http://www.sciencedirect.com/science/article/pii/S0168900204019953
http://www.sciencedirect.com/science/article/pii/S0168900204019953
http://epja.epj.org/articles/epja/abs/2014/01/10050_2014_Article_9998/10050_2014_Article_9998.html
http://www.sciencedirect.com/science/article/pii/0168900296001751
http://www.sciencedirect.com/science/article/pii/0168900296001751
http://www.sciencedirect.com/science/article/pii/S0168900205026501
http://www.sciencedirect.com/science/article/pii/S0168900205026501
http://www.sciencedirect.com/science/article/pii/S0168900214008419
http://www.sciencedirect.com/science/article/pii/S0168900214008419
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900210003761
http://www.sciencedirect.com/science/article/pii/S0168900210003761
http://www.sciencedirect.com/science/article/pii/0168900287908667
https://tel.archives-ouvertes.fr/tel-01231191
https://tel.archives-ouvertes.fr/tel-01231191
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.79.054319
http://www.sciencedirect.com/science/article/pii/S0168583X08007969
http://www.sciencedirect.com/science/article/pii/S0168583X08007969


Bibliography

[87] P. Doornenbal. Manual of a GEANT4 simulation code for γ-ray detec-

tors used in the RIKEN-RIBF facility. Unpublished (2011). Available on

www.nishina.riken.jp/collaboration/SUNFLOWER/misc/download/simulation.html.

Visited on April 21th, 2017.

[88] P. Doornenbal. In-beam gamma-ray spectroscopy at the RIBF. Progress of

Theoretical and Experimental Physics 2012, 03C004 (2012).

[89] J. Van de Walle et al. Low-energy Coulomb excitation of neutron-rich zinc isotopes.

Physical Review C 79, 014309 (2009).

[90] S. Baker and R. D. Cousins. Clarification of the use of chi-square and likeli-

hood functions in fits of histograms. Nuclear Instruments and Methods in Physics

Research 221, 437 (1984).

[91] S. Padgett et al. β decay of 81Zn and migrations of states observed near the N = 50

closed shell. Physical Review C 82, 064314 (2010).

[92] E. Sahin et al. Structure of the N = 50 As, Ge, Ga nuclei. Nuclear Physics A 893,

1 (2012).

[93] T. Otsuka et al. Monte Carlo shell model for atomic nuclei. Progress in Particle

and Nuclear Physics 47, 319 (2001).

[94] N. Shimizu et al. New-generation Monte Carlo shell model for the K computer era.

Progress of Theoretical and Experimental Physics 2012, 01A205 (2012).

[95] M. Honma et al. Shell-model description of neutron-rich pf-shell nuclei with a new

effective interaction GXPF1. European Physical Journal A 25, 499 (2005).

[96] Y. Tsunoda et al. Novel shape evolution in exotic Ni isotopes and configuration-

dependent shell structure. Physical Review C 89, 031301(R) (2014).

[97] G. Hagen, G. R. Jansen, and T. Papenbrock. Structure of 78Ni from first-principles

computations. Physical Review Letters 117, 172501 (2016).

[98] T. Wakasa, K. Ogata, and T. Noro. Proton-induced knockout reactions with polarized

and unpolarized beams. Progress in Particle and Nuclear Physics 96, 32 (2017).

[99] A. Gade et al. Reduction of spectroscopic strength: weakly-bound and strongly-bound

single-particle states studied using one-nucleon knockout reactions. Physical Review

C 77, 044306 (2008).

[100] F. Flavigny et al. Nonsudden limits of heavy-ion induced knockout reactions.

Physical Review Letter 108, 252501 (2012).

145

http://www.nishina.riken.jp/collaboration/SUNFLOWER/misc/download/simulation.html
https://academic.oup.com/ptep/article/2012/1/03C004/1578248/In-beam-gamma-ray-spectroscopy-at-the-RIBF
https://academic.oup.com/ptep/article/2012/1/03C004/1578248/In-beam-gamma-ray-spectroscopy-at-the-RIBF
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.79.014309
http://www.sciencedirect.com/science/article/pii/0167508784900164
http://www.sciencedirect.com/science/article/pii/0167508784900164
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.82.064314
http://www.sciencedirect.com/science/article/pii/S0375947412002412
http://www.sciencedirect.com/science/article/pii/S0375947412002412
http://www.sciencedirect.com/science/article/pii/S0146641001001570
http://www.sciencedirect.com/science/article/pii/S0146641001001570
https://academic.oup.com/ptep/article/1563458/New-generation-Monte-Carlo-shell-model-for-the-K
https://epja.epj.org/articles/epja/abs/2005/11/10050_2005_Article_506032/10050_2005_Article_506032.html
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.031301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.172501
http://www.sciencedirect.com/science/article/pii/S0146641017300558
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.77.044306
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.77.044306
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.252501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.252501


Bibliography

[101] F. Flavigny et al. Limited asymmetry dependence of correlations from single nucleon

transfer. Physical Review Letter 110, 122503 (2013).

[102] J. A. Tostevin and A. Gade. Systematics of intermediate-energy single-nucleon

removal cross sections. Physical Review C 90, 057602 (2014).

[103] K. Ogata. Private communication.

[104] S. Akkoyun et al. AGATA - Advanced GAmma Tracking Array. Nuclear Instruments

and Methods in Physics Research A 668, 26 (2012).

[105] OEDO website. www.cns.s.u-tokyo.ac.jp/oedo/wiki. Visited on July 12th, 2017.

[106] J. A. Tostevin. University of Surrey version of the code TWOFNR

(of M. Toyama, M. Igarashi and N. Kishida) and code FRONT.

www.nucleartheory.net/NPG/code.htm. Visited on July 12th, 2017.

[107] M. J. G. Borge and K. Riisager. HIE-ISOLDE, the project and the physics oppor-

tunities. European Physical Journal A 52, 334 (2016).

[108] E. Pollacco et al. MUST2: a new generation array for direct reaction studies.

European Physical Journal A 25, 287 (2005).

[109] ACTAR TPC. pro.ganil-spiral2.eu/laboratory/detectors/actartpc. Visited on July

12th, 2017.

[110] D. Weisshaar et al. The performance of the γ-ray tracking array GRETINA for γ-

ray spectroscopy with fast beams of rare isotopes. Nuclear Instruments and Methods

in Physics Research A 847, 187 (2017).

146

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.122503
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.90.057602
http://www.sciencedirect.com/science/article/pii/S0168900211021516
http://www.sciencedirect.com/science/article/pii/S0168900211021516
http://www.cns.s.u-tokyo.ac.jp/oedo/wiki/
http://www.nucleartheory.net/NPG/code.htm
https://epja.epj.org/articles/epja/abs/2016/11/10050_2016_Article_703/10050_2016_Article_703.html
https://epja.epj.org/articles/epja/abs/2005/11/10050_2005_Article_506162/10050_2005_Article_506162.html
http://pro.ganil-spiral2.eu/laboratory/detectors/actartpc
http://www.sciencedirect.com/science/article/pii/S0168900216312402
http://www.sciencedirect.com/science/article/pii/S0168900216312402




Titre : Structure nucléaire dans la région du 78Ni: spectroscopie γ en ligne du 79Cu
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Résumé : La structure nucléaire en couches évolue en
allant vers des régions de plus en plus exotiques de
la carte des noyaux. Par conséquent, les nombres ma-
giques conventionnels (8, 20, 28, 50, 82, 126) peuvent
disparaître loin de la stabilité, tandis que de nouveaux
nombres magiques peuvent apparaître. Le noyau de
78Ni, avec 28 protons et 50 neutrons, est un des noyaux
supposés doublement magiques les plus exotiques et
est donc d’un grand intérêt. L’évolution de la ferme-
ture de couche à Z = 28 en allant vers N = 50 peut
être étudiée en sondant le caractère de particule indivi-
duelle des niveaux dans la chaîne isotopique de cuivre,
ayant un proton de plus que le nickel. Ce travail porte
sur le 79Cu, à N = 50.

Afin d’effectuer la première spectroscopie γ en
ligne des noyaux autour du 78Ni, une expérience a été
réalisée à la Radioactive Ion Beam Factory du RIKEN,

au Japon. Le noyau de 79Cu était produit par la réac-
tion de knockout (p,2p) à partir d’un faisceau de 80Zn
envoyé sur le dispositif MINOS, une cible d’hydrogène
liquide couplée à une TPC servant à reconstruire la
trajectoire des protons. L’émission de rayons gamma
subséquente était détectée en vol par le scintillateur
segmenté DALI2. Les spectromètres BigRIPS et Zero-
Degree permettaient, respectivement, une identification
sans ambiguïté des noyaux entrants et sortants.

Une procédure d’analyse basée sur des coïncidences
γ-γ a permis de construire le premier schéma de ni-
veau du 79Cu, avec des états jusqu’à 4.6 MeV, et les
résultats ont été comparés à des calculs de modèle en
couches Monte Carlo. Les conclusions montrent que le
noyau de 79Cu est bien décrit en termes d’un proton
de valence en dehors d’un coeur fermé de 78Ni, ce qui
implique le caractère magique de ce dernier.

Title : Nuclear structure in the vicinity of 78Ni: In-beam γ-ray spectroscopy of 79Cu
through proton knockout

Keywords : Nuclear structure, exotic nuclei, 78Ni, in-beam γ-ray spectroscopy, proton knockout

Abstract : The nuclear shell structure is evolving when
going into more and more exotic regions of the chart
of isotopes and consequently, the conventional magic
numbers (8, 20, 28, 50, 82, 126) may disappear far
from stability, while some new magic numbers can ap-
pear. The 78Ni nucleus, with its 28 protons and 50 neu-
trons, is one of the most exotic supposedly doubly-
magic nuclei, making it of great interest. The evolution
of the Z = 28 gap towards N = 50 can be studied
by probing the single-particle character of the states in
the copper isotopic chain, having one proton more than
nickel. This work focuses on 79Cu, at N = 50.

In the aim of performing the first in-beam γ-ray
spectroscopy of nuclei in the close vicinity of 78Ni,
an experiment was carried out at the Radioactive Iso-
tope Beam Factory of RIKEN, in Japan. The 79Cu nu-

cleus was produced through the (p,2p) knockout reac-
tion from a 80Zn beam sent on the MINOS device,
a liquid-hydrogen target coupled to a TPC used for
proton tracking. The subsequent γ-decay was detec-
ted in-beam with the DALI2 scintillator array. The
BigRIPS and ZeroDegree spectrometers allowed an
unambiguous identification of the incoming and out-
going nuclei, respectively.

An analysis procedure based on γ-γ coincidences
permitted to build the first level scheme of 79Cu, with
levels up to 4.6 MeV, and the results were compared
to Monte-Carlo shell-model calculations for interpre-
tation. The conclusions show that the 79Cu nucleus is
well described in terms of a valence proton outside a
closed 78Ni core, implying the magic character of the
latter.
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