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Abstract:

The magnetic field measured at the Earth's surface is the superposition of a plurality of sources, the main component of which 
originates in the core. The core field is generated by a natural dynamo mechanism, which evolves on a variety of time scales. Its 
longer term dynamics are only accessible by indirect observations, the archeomagnetic data. The heterogeneous spatial and 
temporal character of the archeomagnetic data catalog, however, does not allow for a well-constrained inversion of the core field. 
Instead, the inverse problem is generally regularized by imposing prior constraints limiting the complexity of the field. Here we 
introduce the concept of using prior information derived from numerical models of the Earth's dynamo. This study is divided into 
two parts. The first part considers the static aspects of this inversion and its consequences for archeomagnetic field modeling. The 
prior information, built on a dynamo model, is connected to the surface data in terms of the directions and intensity of the field, 
by means of nonlinear and linearized observation operators. This yields an estimate, or analysis, of the core field given the 
available data. By means of these two pieces of information and the archeomagnetic dataset from the last three thousand years it 
is possible to quantify the archeomagnetic data resolution. Our results show that the archeomagnetic field is well-resolved up to 
spherical harmonic degree 3 for the first millennium BC, up to degree 4 for the first millennium AD and close to degree 5 for the 
past thousand years. The second part of the study explores how a sequential data assimilation framework can help improving the 
estimation of the field in the archeomagnetic context. In this case, the static inversion performed in the first part of the thesis is 
propagated in time by the numerical dynamo model in a sequence of forecast-and-analysis cycles. This methodology allows for 
the estimation of not only the observable, but also of the hidden variables of the dynamo system, the magnetic field in depth, the 
flow throughout the core and the density anomalies for instance. The assimilation, tested in the framework of closed-loop experi-
ments for archeomagnetic-like synthetic observations, shows good performance in terms of accuracy and precision of the core 
state estimation. In particular, the assimilation is robust even in the case where observations are only available over one hemis-
phere. This thesis opens the possibility for the assimilation of real archeomagnetic observations and the subsequent estimation of 
the physical processes operating in the core on secular time scales.
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Résumé :

Le champ magnétique mesuré à la surface de la Terre résulte de la superposition de plusieurs sources, dont la principale est celle 
du noyau. Le champ magnétique du noyau terrestre est généré par une dynamo naturelle qui évolue sur différentes échelles de 
temps. Pour extraire des informations sur les phénomènes se déroulant à des échelles de temps séculaires à millénaires, nous 
utilisons des données archéomagnetiques. L'inhomogénéité spatio-temporelle des données archéomagnetiques actuellement 
cataloguées fait pourtant obstacle à une inversion robuste du champ magnétique du noyau. Pour modéliser ce champ, des 
contraintes a priori sur la complexité du champ sont généralement imposées. Nous proposons une alternative en introduisant des 
informations a priori issues de simulations numériques de la dynamo terrestre. Cette étude est divisée en deux parties. Dans la 
première partie, les aspects statiques de cette inversion sont étudiés ainsi que leurs impacts sur la modélisation du champ archéo-
magnétique terrestre. L’information a priori, créée à partir d’un modèle de dynamo, est reliée aux données en surface d’orientation 
et d’intensité du champ magnétique par des opérateurs d’observation non-linéaires ou linéarisés. Le champ moyen est ainsi estimé 
(ou analysé) à l’issue de cette expérience. En combinant les résultats obtenus aux données archéomagnetiques des trois derniers 
millénaires, il est possible de quantifier leur capacité à reconstruire le champ magnétique. Les résultats ont démontré que le 
champ archéomagnétique est bien reconstruit jusqu’au degré 3 d’harmoniques sphériques pour le premier millénaire avant JC, 
jusqu’au degré 4 pour le premier millénaire après JC et jusqu’au degré 5 pour le dernier millénaire. La seconde partie de cette 
étude explore les apports de l’utilisation des méthodes séquentielles d’assimilation de données sur l’estimation du champ archéo-
magnétique. Dans ce contexte, l’inversion effectuée dans la première partie de la thèse est propagée dans le temps par un modèle 
numérique de la dynamo terrestre en cycles consécutifs de prévisions et analyses. L’utilisation de cette méthode a permis l’estima-
tion non seulement des variables observables, mais aussi de celles typiquement inaccessibles, telles que le champ magnétique en 
profondeur, l’écoulement au noyau et la anomalie de densité. Cette assimilation fut testée dans le contexte d'expériences jumelles 
en utilisant des données synthétiques de type archéomagnétique, Les résultats obtenues se sont montrés performants en terme de 
précision sur l’état du noyau, même quand les observations n'étaient disponibles que dans un seul hémisphère. Ceux-ci devraient 
permettre l'utilisation de vraies observations archéomagnétiques et d’étudier ainsi les processus physiques ayant lieu dans le 
noyau sur des échelles temporelles séculaires.

Mot clés : archeomagnétisme, problème inverse, assimilation de donées, simulations numériques de la dynamo 
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suivi de thèse” composed by Sacha Brun, Emmanuel Cosme and Yves Gallet. Their
different fields of expertise provided many different points-of-view to the thesis which
enriched my scientific arsenal and allowed me to resolve the problems I encountered. I
would also like to thank the dynamo team from the ISTerre at Grenoble, mostly Nico-
las Gillet, Nathanael Schaeffer, Dominique Jault, Phillip Cardin, Claire Bouligrand and
Olivier Barrois for the many discussions during the AVSgeomag meetings. I am grateful
as well to the the planetology team from Nantes, Hagay Amit, Benôıt Langlais and Erwan
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Chapter 1

Introduction

1.1 Early ideas on the Earth’s magnetic field

One of the first documentations on the magnetic properties of certain types of rock, known
as lodestones, is credited to the philosopher Thales de Miletus around 600 BC. It was said
at the time, that the lodestones, relatively abundant in the region of Magnesia in Asia
Minor, had a magnetic soul, through which they interacted with iron objects. In the
following centuries, the lodestones were independently studied in China, where they were
carved into thin objects, which led to the discovery of their close alignment with the
geographic poles. The applicability of this discovery for geographical orientation, which
generated the first compasses, was widely spread around 1000 AD. In Europe, compasses
facilitated the exploration of the unknown world, triggering the Age of Discovery. In the
following are listed three early studies that led to the development of the current theories
on the Earth’s magnetic field.

1.1.1 Pierre de Maricourt

Despite numerous subsequent records on the magnetic compass, the earliest scientific doc-
ument related to magnetism is credited to Pierre de Maricourt’s (also known as Petrus
Peregrinus) 1269 AD letter Epistola de Magnete (Radelet-de Grave and Speiser, 1975).
Differing from the general speculative texts of the epoch and displaying a similar structure
as today’s scientific reports, the Epistola (Figure 1.1a) presents a series of experiments on
the attraction and orientation of the lodestone. Maricourt defined the notion of the mag-
netic poles of a spherical lodestone, and suggested that the lodestone poles are connected
to the celestial sphere and its rotation around the Earth. Although not elaborating about
the source of interaction between the celestial sphere and the lodestone, he does seem to
imply a notion of magnetic filling of the space, resembling the modern idea of a magnetic
field. Perhaps due to its assumed celestial origins, Maricourt asserts perfect symmetry
to the magnetic interactions, which would be the cause of the coincidence between the
magnetic and geographical meridians.

Breaking the symmetry ideal assumed by Maricourt, it was discovered around 1450 AD
that the magnetic and geographic meridians are misaligned. The angle between the

1



1.1. Early ideas on the Earth’s magnetic field 2

Figure 1.1: Early documentation on the Earth’s magnetic field and its origins. a) The
Epistola de Magnete (1269 AD) of Pierre de Maricourt; b) Gilbert’s Terrella, showing
the inclination of a small magnetic needle as dependent on the lodestone latitude, as
documented in his De Magnete (Gilbert, 1600); c) Halley’s scheme of his theory of the
concentric differentially rotating magnetized shells of the Earth’s interior, responsible for
the secular variation of the magnetic field (Halley, 1692).

geographic and the magnetic North was initially named the magnetic variation. Magnetic
compasses of the epoch were commonly calibrated within a systematic variation, later
known as declination, in order to be used for orientation. Almost a century after the
British compass manufacturer Robert Norman discovered that the magnetic needle is not
only misaligned with the geographic North, it is misaligned with respect to the horizon as
well. The considerable dip of the needle discovered by Norman is known as the magnetic
inclination, which was seen to be higher at high latitudes and smaller near the equator.

1.1.2 William Gilbert

After the change from Geo to Heliocentrism on the 16th century, William Gilbert pre-
sented his masterpiece De Magnete (Gilbert, 1600). Gilbert describes the use of a spherical
lodestone as the prototype of a small Earth, the Terrella, and studies its interaction with
a small iron needle assuming the role of a compass. Due to the pattern of inclination
of the needle depending on its position over the Terrella, as well as the similarity with
the latitude-dependent pattern of inclination measured around the Earth, he implies that
the Earth itself is a magnet1(Fig. 1.1b). Gilbert’s theory was important for bringing the
magnetic field from the perfect celestial sphere to the Earth’s interior. This theory is,
however, not the only one in Gilbert’s De Magnete.

Gilbert also suggests that the close overlapping of the magnetic and geographical
poles of the Earth is not a coincidence, that instead rotation and magnetism are closely
connected in the universe. This idea, although not having enough contemporary reper-
cussion, is presently acknowledged, as it will be further discussed. Furthermore, Gilbert

1Interestingly, the renowned statement ”the terrestrial globe is itself a big magnet”, generally at-
tributed to Gilbert, is actually a citation of a paraphrase of Alexander von Humboldt (Sluijs, 2014).

2



1.1. Early ideas on the Earth’s magnetic field 3

also proposes that the declination of the compass is an effect of topological imperfections
on the surface of the magnetic Earth, spoiling the perfect magnetic dipole. For Gilbert,
the Earth’s magnetic field was unchangeable in time.

In addition to the magnetism of the Earth, Gilbert documents in his book his ex-
periments on the effects of temperature on the magnetization of iron-based objects. In
synthesis, when the object is heaten up to very high temperatures it looses its previous
magnetization, and when cooled down it acquires a new magnetization. Already men-
tioned by Maricourt, this notion anticipates the definition of the Curie temperature, a
critical point linked to the physical properties of materials.

Contemporary to Gilbert, Guillaume de Nautonier came onto the same conclusions on
the Earth as a magnet explored in De Magnete. He also incorporated numerous declina-
tion measurements around the globe to defend the idea of the magnetic poles being tilted
relative to the Earth rotation axis (Courtillot and Le Mouël, 2007). The attention given
to measurements by Nautonier is a sign of the change in paradigm of the 17th century,
when diverse mathematical breakthroughs allowed a transition from purely qualitative to
quantitative theoretical developments. Based on 50 years of declination measurements,
Henri Gellibrand discovered in 1634 AD that the magnetic field presented temporal vari-
ability. This discovery, now known as the secular variation of the Earth’s magnetic field,
opposed Gilbert’s ideal of an immutable magnetic field. The secular variation, shortly
after confirmed in a worldwide sense, induced an awareness in the scientific community
on the need of more measurements of the magnetic field. Subsequently, within a broad
directional dataset, Peter Perkins introduced in 1680 AD the idea that the magnetic field
would be better described in terms of a more complex system, formed by a superposition
of two misaligned dipoles.

1.1.3 Edmond Halley

Based on Perkins’ idea, Edmond Halley proposed in 1692 AD an ingenious theory of a
magnetic Earth which accounted both for the multipolarity of the magnetic field and the
temporal variations in declination (Halley, 1692). Disposing of a variety of declination
data, he observed a general but complex westward tendency of the declination variation
in Europe, Africa and the South Atlantic. From these observations he concluded that the
magnetic field generated by the Earth bore a dynamic nature and proposed therefore a
model of a dynamic Earth. In Halley’s model, the magnetic field at the Earth’s surface was
the contribution of concentric magnetized spherical shells composing the internal layers of
the Earth rotating at different rates (Fig. 1.1c). In his simple two-layer model, the external
shell, which humanity inhabit, would have its North magnetic pole underneath North
America. The inner layer would be rotating in a lower rate, with a North pole localized
underneath Europe. The differential rotation of the spheres in Halley’s model would under
such configurations create a westward drift of the magnetic declination within a periodicity
of approximately 700 years. Halley also suggested that additional data would perhaps
reveal an increasingly complex stratification of the Earth’s interior, and moreover, that
the layers could comprise inner atmospheres. The diffusion of the atmospheres between
layers would be in his view a possible origin for the creation of the Northern Lights, better
known as Auroras. Even though an exaggerated extrapolation of his theory, it was the
first scientific work linking the Auroras to magnetic phenomena.
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1.2. Solar inspiration: the dynamo theory 4

Although Halley was the first one to link the Auroras with the Earth’s magnetism,
it was the clock-maker George Graham who presented clear evidences on the matter. In
1723 AD, he discovered by the use of an extremely precise compass that the declination
presented daily perturbations at specific times of the day, around noon. This phenomenon
suggested that the magnetic field was subject to a diurnal variation. Together with
observers of the diurnal variation in Sweden, he noticed as well that the perturbations were
latitude-dependent, and were stronger when Auroras were observed. These perturbations,
often of very high amplitude and frequency, introduced the idea of geomagnetic storms.

1.2 Solar inspiration: the dynamo theory

In the days following September 1st of 1859, intense geomagnetic storms were recorded,
generating very bright Auroras, able to be observed even in unusual low-latitudes loca-
tions, like the Caribbean, Hawaii and central Africa. The geomagnetic storm was so strong
it affected telegraph networks all over Canada and Northern US. The amateur astronomer
Richard Carrington had observed, the day before the beginning of the magnetic storms, a
bright burst of light emitted in the vicinity of a sunspot group (Carrington, 1859); it was
the first observation of a solar flare. The coincidence of the two phenomena suggested a
solar-terrestrial connection of electric and magnetic nature, which was more evidenced in
the following years by the joint monitoring of sunspot number and geomagnetic indices in
magnetic observatories.2 Evidence of the Sun being magnetic came almost five decades
later, within the discovery of very strong magnetic field of sunspots (of the order of 103

G = 105µ T, approximately 104 times bigger than the Earth’s magnetic field)3 by the
Zeeman effect (Hale, 1908).

The discovery of the magnetism of the Sun puzzled the scientific community at the
time, since the Earth’s magnetic nature was still thought to originate from the magnetiza-
tion of its rocky structure. Joseph Larmor proposed in 1919 a new theory on the source of
the solar magnetism, suggesting that the dynamical magnetic field seen in sunspots had
its origin in electromagnetic induction (Larmor, 1919). He suggested that the motion of
the electrically conducting solar plasma under a background magnetic field would induce
electric currents, which would in turn interact with the background magnetic field. There-
fore, for a small seed magnetic field, such a system could generate a natural ’self-excited’
dynamo. Larmor also said the same principle could be applied to the Earth, but that
would require part of the Earth’s interior to be fluid. In fact, magnetic fields generated
by natural dynamos are known to be ubiquitous in the universe, not being restricted only
to the Sun and the Earth. Within subsequent decades after Larmor’s dynamo theory, the
basics of magnetohydrodynamics (MHD) begun to be explored, and with it the study of
the conditions for natural dynamo action. Although it is clear that natural dynamos are
possible within fluidity and rotation (Moffatt, 1978), modeling dynamo systems proved
to be extremely challenging.

In 1933 Thomas Cowling published what is now known as the first anti-dynamo the-
orem (Cowling, 1933). The theorem states that an axisymmetric flow cannot maintain a

2Even though many lines of evidence supported the solar-terrestrial electromagnetic link, Carrington
himself was skeptical about it, having said on the matter ”one swallow does not make a summer”.

31 T = 104 G.
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1.3. The terrestrial interior 5

steady axisymmetric magnetic field by dynamo action. The very specific character of the
theorem, focused on steadiness and axisymmetry, seemed to discredit the possibilities of
dynamo action in the Sun and the Earth, given the nearly axisymmetrical character of
the solar and terrestrial magnetic fields. The subsequent family of anti-dynamo theorems
created a hiatus in solar and terrestrial magnetic field theory development. What was not
accounted for at the time was the importance of the departure from symmetry for dynamo
action, which would lead to the need of considering the three-dimensional structure of the
problem.4

1.3 The terrestrial interior

The Earth’s internal structure began to be truly unveiled within the work of Emil Wiechert,
by means of comparisons of surface rocks densities with the mean density of the Earth.
Wiechert created in 1897 the first quantitative model of the Earth, composed of a silicate
mantle of rock and a deep and denser metallic core, similar in composition to iron me-
teorites. The core-mantle boundary (CMB) was then hypothesized as a discontinuity in
density from the two main layers of the Earth. Wiechert speculated that such a region
could be found by the propagation pattern of seismic waves originating from earthquakes,
which inspired the beginning of seismologic imaging of the Earth. The existence of the
core was confirmed by Richard Oldham in 1906 by a study of seismic P and S waves
arrivals, and further estimation of the CMB depth (approximately 2,900 km, Figure 1.2)
was made by Beno Gutemberg in 1912. In the next decade, the fluid nature of the core
was revealed, and further, in 1936, Inge Lehman discovered yet another discontinuity, the
existence of a solid inner core within the fluid outer core (Fig. 1.2).

After considerable developments in the analysis of seismological observations, com-
prising wave propagation and the normal modes of the Earth, as well as its mass and
inertia moment, Dziewonski and Anderson (1981) built the Preliminary Reference Earth
Model (PREM). Besides the seismic velocity estimates, the isotropic model specified the
mean density variations with depth, shown in Figure 1.3. Despite the big density jump at
the CMB and the smaller one at the inner core boundary (ICB), the density in the core
does not vary much in the PREM. From density, the gravity and pressure throughout the
core can be estimated as well (Fig. 1.3).

The discovery of the fluid outer core revived the ideas proposed by Larmor and paved
the way for exploring the possibility of dynamo action within the Earth’s interior. In 1946
Walter Elsasser proposed a first dynamo model, in which convection within the fluid outer
core would sustain the magnetic field through electromagnetic induction compensating the
Ohmic dissipation. He also introduced the different geometries of the core’s magnetic field,
poloidal and toroidal, which would interact generating the dynamic field we observe at the
Earth’ surface. Although Elsasser’s work consisted of finding whether prescribed steady
flows could sustain large-scale magnetic fields (what is known as the kinematic dynamo
problem), it was the first step on the MHD modeling of the core.

4Despite Cowling’s anti-dynamo theorem, nearly-axisymmetric 2D dynamo models are able to sustain
dynamo action. Such models, generally in the mean-field context, manage to circumvent Cowling’s
theorem by the inclusion of a non-axisymmetric term based on the action of the Coriolis force, generically
known as an α-effect.
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Figure 1.2: Scheme of the main layers composing the Earth’s interior. From Glatzmaier
and Olson (2005).

Figure 1.3: Seismic velocities through the Earth interior and its derived properties from
the PREM model. The left figure shows the seismic P and S waves and density with
depth, while the right figure shows the variability of pressure and gravity. From Olson
(2015), based on Dziewonski and Anderson (1981).

1.3.1 Mantle processes

Since its formation, the Earth has been loosing its heat to the surrounding space. This
process, known as secular cooling, is key to understanding the thermal state of the planet
and therefore its dynamic behavior. The Earth’s two major internal heat sources consist
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in radiogenic heat within the mantle and crustal rocks as well as the primordial heat
trapped within the Earth since its formation from the planetary nebula. Independently
from the origin, heat can be transported either by radiation, conduction or convection.
Convection, in particular, plays a key role on the whole Earth dynamics. Plate tectonics
is, for example, the surface manifestation of mantle convection. The mantle, although in
solid state, is at sufficiently high temperatures for the rocks to present a ductile behavior
over geological time scales. The thermal gradient between the colder top and its hotter
base create slow convective motions, generating shear on the lower crust. This shear is
responsible for many surface phenomena, like the spread of oceanic ridges and subduction
of denser cold plates. Subduction of the cold plates results in a heterogeneous temperature
and composition in the mantle, reinforcing the convective patterns (see Ricard, 2015, and
references therein for a review on the physics of mantle convection).

Although the tracking of the sinking cold tectonic slabs is straightforward in the upper
mantle, it is difficult to estimate the depth to which they survive within the mantle. Some
studies reveal that such heterogeneities do make it to the lower mantle (Bercovici, 2015),
and therefore determine a heterogeneous heat flux distribution at the CMB. Such lateral
heterogeneities, in terms of temperature, phase and composition, reveal the complexity
of the CMB. At the CMB, a certain degree of interchange in composition is supposed to
happen, affecting the lowermost part of the mantle, the D” layer, and the upper part of
the outer core, possibly creating a stratified layer (Buffett and Seagle, 2010; Gubbins and
Davies, 2013; Souriau and Calvet, 2015).

1.3.2 The dynamic Earth’s core

The CMB controls the rate at which the core is losing heat, playing a key role on the
dynamics of the core. As mentioned before, in contrast to the silicate rich rocky mantle,
the core is mainly composed of molten iron. The viscosity of iron at the pressure and
temperature corresponding to the outer core is counterintuitively small, comparable to
the viscosity of water at the Earth’s surface (Poirier, 1988). The high fluidity of the outer
core allows for thermal convection transporting heat from the hotter ICB to the cooler
CMB.

Due to its relative abundance in chondritic iron meteorites, which are supposed to
be residuals from the planetary core of protoplanets, there is strong evidence that the
Earth’s core might consist mostly of iron (Birch, 1952), or most probably a Fe-Ni alloy.
High pressure mineral physics experiments evidence that lighter elements must constitute
an important part of the core composition, for observations show a core with lower den-
sity than the one formed by the pure Fe-Ni alloy (Alfè et al., 2003). Lighter elements
like oxygen, silicon and sulfur are strong candidates for the core’s density deficit, but
their proportion and even the possibility of the presence of carbon and hydrogen is still
controversial (Hirose et al., 2013). The lighter elements are important not only for recon-
structing the history of the Earth’s formation but also have an important impact on core
convection.

Given the secular cooling of the Earth, the inner core is also losing its heat, which im-
plies it is progressively growing with time as result of the crystallization of the lowermost
part of the outer core. Since the heavier elements in the core have a lower freezing temper-
ature, the crystallization of the core implies a solidification of the heavy elements and the
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release of liquid lighter elements into the outer core. This phase change is exothermic, re-
leasing latent heat and low density, therefore buoyant, elements in the outer core. Such a
phenomenon triggers what is known as thermochemical convection. Chemical convection
by the crystallization of the inner core is though to be responsible for 80% of the whole
convection in the outer core, while thermal convection would amount to the remaining
20%. However, a relatively new hypothesis for the core’s convective mechanism considers
the precipitation of magnesium (O‘Rourke and Stevenson, 2016), a scenario which remains
to be explored.

Still, independently of the driving mechanism, the convective pattern of the outer core
is tightly constrained by the Earth’s rotation. Theoretical fluid dynamics, confirmed by
laboratory experiments and numerical simulations, state that homogeneous steady flows in
a rotating spherical shell tend to be organized in columnar structures parallel to the rota-
tion axis (the Taylor-Proudman theorem, Taylor, 1922). Such two-dimensional columnar
flow structure is known as geostrophic. In presence of convection, the geostrophic columns
display helicity, that is, an additional perpendicular component to vortical motions.

The flow inside the outer core is believed to be approximately geostrophic, in which
case the region defined by the continuation of the inner core equatorial boundary through
the rotation axis creates a region in the core known as the tangent cylinder (TC), il-
lustrated in Figure 1.4. Although the columns outside the TC are continuous along the
equatorial plane, the columns inside the North hemisphere TC do not necessarily imply
a direct connection with their southern counterparts. The different flow regimes in the
outer core are key to the Earth’s dynamo mechanism.

1.4 The geodynamo

The electrical conductivity of the molten iron at outer core temperature and pressure con-
ditions is currently estimated at 1.4×106 S/m (Pozzo et al., 2012), two times higher than
previous estimates.5 Such high conductivity favors the generation of electrical currents
which interact with the embedding magnetic field. This phenomenon, the electromagnetic
induction, has its basis in the laws of electrodynamics, rooted on Maxwell’s equations.
As shown in Fig. 1.4, the rotating flow under convection provides the generation of heli-
cal flows, closely aligned with the Earth’s rotation axis. The relative movement of flow
and seed magnetic field induces electrical currents, generating secondary magnetic field
which in turn interacts with the flow. Given the helical flow configuration, the resulting
magnetic field generated by the geodynamo is nearly dipolar.

The electromagnetic induction on a dynamo mechanism depends on two main phenom-
ena, advection and diffusion of the magnetic field. If advection is ignored, the magnetic
field variability is related to the diffusion of the magnetic field by the Joule effect. For
the largest spatial scale of the magnetic field, the dipole, that would imply a free decay
time of 50 ka. The fact that the magnetic field has been shown to be much older than
this time interval, estimated through paleomagnetic observations to be as old as ∼ 4.0 Ga
(Tarduno et al., 2015), points to the important role of the inductive advection mechanism.
On the contrary, if magnetic diffusivity is ignored, which is the case if the fluid is a perfect

5Iron at room temperature and pressure has 1× 107 S/m conductivity.
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Figure 1.4: Basic features of the dynamo mechanism at work in the Earth’s core. The
secular cooling of the Earth provides the driving mechanism for core convection in the
outer core, where the fluid tends to be organized in an helical flow due to the planet’s
rotation. Although different regimes are found for the interior and exterior of the tangent
cylinder, the electrically conducting columnar flow tends to arrange the overall magnetic
field in a dipolar configuration.

conductor, the magnetic field would be ’frozen’ in the fluid and would then flow given its
inertia. This condition is known as the ’frozen flux’ hypothesis. Estimates of the flow
velocities at the CMB using this hypothesis give a mean advection speed of 15 km/year
(or 0.5 mm/s) (Holme and Olsen, 2006).

Another possibility is that the flow field in the outer core is close to geostrophic,
embedded in a magnetic field frozen in the flow. A given rotational instability of the
cylinders with respect to each other would generate a shear in the magnetic field lines
perpendicular to the rotation axis. Since nature opposes changes in magnetic flux, as
stated by Lenz’s law, the magnetic field would impose a feedback reaction on the flow,
the Lorentz force, generating the so called torsional oscillations. Such interactions would
produce a wave-like pattern in the magnetic field lines reaching the Earth’s surface. The
interpretation of torsional oscillation time scales are still under debate. Gillet et al. (2010)
support a periodicity of 6 years for the core torsional oscillations, while older estimates
based on the root mean squared magnetic field at the core-mantle boundary suggests
larger decadal time scales.

Many different features of the geodynamo are therefore still not fully understood. In
order to investigate the diverse physical processes of the dynamo system, one has to resort
to the MHD equations describing the laws of conservation of the different fields: the in-
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duction equation, the Navier-Stokes equations and the heat and compositional transport.
Given the complexity of such a system of equations governing the main physics of the
dynamo, together with the uncertainty related to its underlying parameter regimes, there
is a great interest in tackling the problem numerically. The different aspects of numerical
dynamo modeling will be explored in more detail in Chapter 2. However, before entering
the discussion on the mechanisms responsible for driving the core magnetic field, it must
be acknowledged that a considerable amount of information from the dynamo can be
retrieved from Earth surface observations of the magnetic field.

1.5 The present geomagnetic field

The present magnetic field is currently monitored by a variety of networks involving
different types of data. Local and regional monitoring are made by airborne, ship and
field surveys and are very important in retrieving small spatial scales of the Earth’s
magnetic field. Such small scales are generally associated with the near surface signal of
the magnetic crust, and therefore deliver little information about the magnetic field of the
deep Earth. The global magnetic field can be directly monitored mostly by two different
sources of data.

1.5.1 Geomagnetic data

Magnetic observatories

The first magnetic observatory was created in the German city of Göttingen by Carl
Friedrch Gauss and Wilhelm Weber in 1832. It registered the intensity F of the magnetic
field B and its horizontal component H. Since then, many new observatories have been
created, measuring not only the intensity of the magnetic field but also its independent
vector components, X (north), Y (east) and Z (downward). A scheme of the different
components of the magnetic field vector is shown in Figure 1.5. The magnetic observatory
network is nowadays organized by INTERMAGNET6, where data are easily obtained.

Although worldwide, the geographical distribution of geomagnetic observatories is in-
evitably poorly distributed, as besides the obvious bias toward continental areas, the
observatories are mainly concentrated in Europe for historical reasons. In order to com-
pensate for this bias, many observatory-like measurements are performed in under sampled
areas. Those measurement sites are called geomagnetic repeat stations.

Satellite missions

Since the dawn of the space age in 1957, scientists have been interested in obtaining satel-
lite data of geophysical relevance. With the Russian satellite Sputnik 3 it became possible
to contemplate the first satellite magnetic data (although the sampling was limited to So-
viet Union territory), paving the way to new magnetic satellite missions. The missions

6http://www.intermagnet.org/
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1.5. The present geomagnetic field 11

Figure 1.5: The different components of the magnetic field vector B and its additional
elements, as measured at and beyond the Earth’s surface. X, Y and Z are the northward,
eastward and downward components of the magnetic field vector, respectively. Addition-
ally, F represents the intensity of the magnetic field, D the declination (the angle between
the horizontal projection H of the magnetic field vector and the true north) and I the
inclination (the dip angle of the magnetic field vector).

of most relevance were POGO (1965-1971), Magsat (1979-1980), Ørsted (1999–present),
CHAMP (2000-2010) and SAC-C (2001-2004) (see Friis-Christensen et al., 2009, for more
details on the satellite missions for monitoring of the magnetic field). The continuity
of the previous missions is now given by the Swarm satellite constellation. Launched in
2013, Swarm monitors the magnetic field in terms of vectorial and intensity data within
so far unreached resolution.

The global coverage offered from the satellites tracks is by far the best amongst the
various magnetic data types. However, since the satellites are constantly moving with
respect to the Earth, there is an inherent difficulty in assessing the origins of the variations
of the magnetic field registered by the data. Also, due to the satellite’s altitude, placing
them in between the ionospheric and magnetospheric typical layers, the separation of
sources between the external magnetic field and the main field is difficult.

1.5.2 External and internal sources

The Earth’s magnetic field is a superposition of many different sources. Beyond the core’s
magnetic field, there are magnetic sources of different natures in the mantle, lithosphere,
oceans, atmosphere and beyond. A review of the different sources is given in the following.

11
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Ionosphere

Above the Earth’s surface, electrical currents can flow in the atmosphere, such as the ones
related to electrical discharges in thunderstorms. Further on, at the upper layers of the
atmosphere, particles are easily ionized by the UV solar input, generating a plasma region
which is called the ionosphere (Kivelson and Russell, 1995). Due to the dependency on
the solar irradiation, the ionosphere changes in accordance to the hour of the day, gener-
ating the diurnal variation mentioned in Section 1.1. Apart from the radiation, the solar
activity can also produce additional features on the ionosphere, specially in its uppermost
layers, like the Equatorial Electrojet (EEJ). However, the effects of the solar activity are
mainly felt on the boundaries of the Earth’s magnetic field, the magnetosphere. A simple
description of the localization and geometry of such sources is given in Figure 1.6a.

Figure 1.6: The different sources of the Earth’s magnetic field and its variations. a)
shows the illustrative stratification of the Earth from its deep internal layers to the higher
parts of the atmosphere and beyond. The induced currents in the magnetosphere, crust,
oceans and mantle, as well as the crustal magnetization, contribute to the magnetic signal
measured by satellites, magnetic observatories, airborne and ship surveys. b) shows how
the magnetic field of the Earth (Fig. 1.4) is distorted by the solar wind, shaping the
magnetosphere.

Magnetosphere

The magnetosphere is the region enveloping the Earth which corresponds to the bow shock
resulting from the solar wind deflection by the terrestrial magnetic field. It compares in
shape to a distorted dipole of roughly 10 times the Earth’s radius on the day side. The
solar wind is a supersonic stream of plasma coming from the upper layers of the Sun,
modulated by its magnetic activity. It is generally stronger when associated with Coronal
Mass Ejections (CMEs), generally of higher frequency in times of high solar activity, like
the Carrington event mentioned in Section 1.2. The solar wind is embedded in a magnetic
field configuration resulting from its ejection from the Sun’s magnetic field. The complex
Sun-Earth interaction produces a variety of large-scale electric currents in very different
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configurations around the magnetospheric environment. Also, due to the Lorentz force,
the ionized particles composing the solar wind are deflected from their initial path and
follow the Earth’s magnetic field lines (Fig. 1.6b). Some of those particles follow specific
magnetic field lines which converge to the Earth’s magnetic poles, and when interacting
with the upper atmosphere, they produce the already mentioned polar Auroras.

Lithosphere and mantle

Going back to the solid Earth, it must be acknowledged that electric currents can also flow
in the lithosphere and mantle, due to their finite, but low, electrical conductivity. Such
induced currents are the feedback effect from changes in the embedding magnetic field,
either from the core’s secular variation or the external field variability. The combination
of such feedback currents in the solid Earth and oceans is generically called the ’induced
internal field’ (Fig. 1.6a). In the oceans, the electric currents are generated not only by
electric induction, but also due to the global oceanic circulation. This signal is, therefore,
partially modulated by a seasonal signal. In addition to the induced magnetization, the
uppermost part of the lithosphere, the crust, can also bear remanent magnetization.

The electrical conductivity of the lowermost part of the mantle is supposed to be quite
a bit higher than the overall mantle (Ohta et al., 2010). This has important implications
for the core field, for it would imply that the base of the mantle acts like a filter of the high
frequency magnetic signal of the core due to the skin-effect. The electrical conductivity of
the mantle is, however, poorly known, leaving the issue of high frequency core magnetic
field variability as an open discussion.

1.5.3 Magnetic field models

Despite the difficulty in modeling the Earth’s magnetic field due to the superposition of
sources embedded in all geomagnetic data, there exist different techniques that can be
applied to separate and construct global models of the magnetic field. In particular, the
decomposition in spherical harmonic functions developed by Gauss in 1838, deals with
the problem of dividing the external and internal components of a potential field. In the
case of the magnetic field it is derived in the following.

As already mentioned, the magnetic field vector B at a radius a representing the mean
radius of the Earth’s surface is the superposition of different sources of the magnetic field.
B can therefore be represented as the sum of sources external and internal to the surface
defined by the radius a

B(a, θ, φ, t) = Bi(a, θ, φ, t) + Be(a, θ, φ, t), (1.1)

where θ and φ are spherical geocentric angular coordinates, the colatitude and longitude
respectively, and t the time.

At the Earth’s surface, the intensity of the external field is small compared to the
internal one. Additionally, the external field varies on very short time scales, from seconds
to months, while the variations from the core measured at the Earth’s surface range from
decadal to secular time scales. The purpose of this study is to focus on the core’s magnetic
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field and its secular variability, so the external sources of the magnetic field are going to
be considered as negligible. In this case, the magnetic field vector can be expressed as the
gradient of an internal magnetic potential Vi, which in spherical coordinates is given by

Bi(a, θ, φ, t) = −∇Vi(a, θ, φ, t). (1.2)

As the potential Vi satisfies Laplace’s equation, the solution can be expressed in terms of
the spherical harmonic (SH) basis

Vi(r, θ, φ, t) = a
∞∑
`=1

∑̀
m=0

(a
r

)`+1

[gm` (t) cosmφ+ hm` (t) sinmφ]Pm
` (cos θ), (1.3)

where ` and m are respectively the degree and order of the SH expansion, gm` (t) and hm` (t)
the time-dependent Gauss coefficients and Pm

` the Schmidt quasi-normalized associated
Legendre functions.7 Since it is not possible to actually compute a model with the infinite
expansion, a given truncation L is chosen based on the expected resolution of the data.
The largest scale coefficient groups are called the dipole (for which ` = 1), the quadrupole
(` = 2) and octupole (` = 3). The case m = 0 corresponds to zonal, or axisymmetric,
modes, and the other extreme, for which ` = m, corresponds to sectoral, or meridional,
modes. If the lithosphere and mantle are considered as electrical insulators, the global
magnetic field calculated from Equations 1.2 and 1.3 can be downward continued to the
CMB, below which one must take into account the electric currents generated by the
geodynamo.

The Gauss coefficients gm` (t) and hm` (t) can be retrieved given the set of available
observations, that is, either X, Y, Z,H,D, I or F data (Fig. 1.5). Such retrieval consists
in solving the geomagnetic inverse problem, extensively explored in the literature (e.g.
Parker, 1994), which will be described in Chapter 4. Many models of the main geomag-
netic field are available, differing basically in the dataset, time-span, inverse method and
prior information. The main field model with a large projection outside the geomagnetic
community is the International Geomagnetic Reference Field (IGRF). The IGRF consists
of 5 year updates of the main field and of its secular variation. The models are derived
from various candidate models from different teams around the globe, and the final esti-
mate is a weighted mean. The IGRF model for the year 2015 (Thébault et al., 2015) can
be seen in Figure 1.7.

The discrimination of the different internal sources of the magnetic field can be seen by
means of the spatial power spectrum, also known as the Mauersberger-Lowes spectrum.
This spectrum is calculated by

W i
` = (`+ 1)

(a
r

)2`+4 ∑̀
m=0

[(gm` )2 + (hm` )2], (1.4)

at any radius r in the current-free zone of the Earth’s interior. Figure 1.8 shows an
example of the power spectra as seen at the Earth’s surface and at the top of the core. At
the Earth’s surface, the magnetic field is seen to be mainly dipolar, with an exponentially
decreasing intensity towards the smaller scales. However, at around degrees 13 and 14,

7The coefficients gm` and hm` have the same units as the observed magnetic field vector, and are
generally given in [nT] or [µT].
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Figure 1.7: The IGRF model for the year 2015. The maps show the radial magnetic field
a) at the Earth’s surface and b) at the CMB (units displayed in µT).

this tendency is broken by a close-to-flat contribution. This change is better observed
in the downward continued spectra, where it is seen to drastically and unrealistically
increase for smaller scales. This change in regime corresponds to the contamination of
the crustal magnetization in the internal magnetic field signal. The magnetic field of the
core is therefore inevitably masked beyond SH degrees 13 or 14, what is known as the
’magnetic curtain’ (Roberts and King, 2013).

Figure 1.8: Magnetic field power spectra, or Lowes spectra, based on Magsat data. The
power spectra is calculated both at the Earth’s surface (open circles) and at the CMB
(filled circles). The change in slope for both spectra shows the contribution of the crust
magnetization to the core magnetic field, creating the ’magnetic curtain’. From Langel
and Estes (1982).
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Finally, as mentioned before, the magnetic field varies in a broad range of time scales.
Although the external magnetic field, and also the induced internal magnetic field, are
able to display decadal variability, due to the long-term modulation of the solar activity,
the intensities changes are small compared to the secular variations of the magnetic field.
The most dramatic example of such changes are the polarity reversals and excursions
of the core magnetic field, with periods of thousand to million years (see Constable and
Korte, 2015, and references therein for a review on secular to millennial variations of the
magnetic field). On shorter, secular, time scales, the magnetic field displays variations
originating from the advection of the field by the core flow.

1.6 Archeomagnetism

Magnetic field observations did not exactly begin with the establishment of magnetic
observatories. Before that, historical measurements were registered, for instance, in nav-
igational logbooks. This valuable record can extend the catalog of direct magnetic field
observations into the past four centuries (e.g. Jackson et al., 2000). But in order to ex-
plore the longer-term behavior of the core’s magnetic field and the dynamo, one has to
face the problem of unavailability of direct observations of the magnetic field. However,
indirect information from the magnetic field can be found in the locking of the magnetic
signal in specific geological materials and some types of human artifacts, generally called
archeomagnetic data.

1.6.1 Magnetic remanence

It has been long known that the magnetic field of certain rocks and artifacts depend on
temperature. Bricks, for example, loose their magnetic signal when fired and acquire a
magnetization when cooled. The fundamentals of this process are the following. When
above a certain temperature known as the Curie point, the thermal energy of the given
material is too high to allow for a memory of the ambient magnetic field. In this case, only
induced magnetic fields are possible. After transitioning below the Curie temperature,
however, the magnetic carriers embedded in the material, generally iron oxides as mag-
netite and hematite, remain roughly aligned with the ambient magnetic field directions.
This process is known as thermal remanent magnetization (TRM), and is ubiquitous in
igneous deposits such as volcanic rocks, as well as in fired clay-based archeological items
(Figure 1.9a and 1.9b). In principle, the registered TRM of a volcanic rock or human
artifact can be used to retrieve information from the past states of the magnetic field
(Thellier and Thellier, 1959).

The directions of the fossil magnetic field vector can only be found in oriented samples,
for example pieces composing ancient kilns and furnaces used to, amongst other things,
harden clay in order to fabricate bricks and pottery. The retrieval of the full fossil magnetic
vector information is not simple. In the archeological context, for instance, the directions
of the original field cannot be accessed from portable objects like pottery. Those objects
can therefore only give values of the field archeomagnetic intensity F . They are, however,
important markers of the archeointensity variability on the secular time scale. Such
information can be used to construct ‘master curves’ of the secular variation at a specific
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Figure 1.9: Different types of archeomagnetic data. a) Lava flow (Morales et al., 2006),
b) human artifacts (Genevey et al., 2009) and c) sedimentary cores.

location where archeomagnetic data are numerous (e.g. Gallet et al., 2002). In the case
where the age of the magnetized object is not known, the master curves can serve as a tool
for what is called archeomagnetic dating, frequently used for archeological reconstructions.

Figure 1.10: Archeosecular variation master curves for Paris from Gallet et al. (2002)
for the magnetic a) declination and b) inclination. Also shown is the comparison with
estimates from English lake sediments.

Furthermore, the information of the magnetic signal can be imprinted on materials by
other processes, like for example depositional and detrital remanence (see Merrill et al.,
1996, for more details). Detrital magnetic remanence (DRM) occurs in the context of
lake or marine sediments (Fig. 1.9c), connected to the systematic alignment of magnetic
carriers with the ambient magnetic field during sedimentary deposition. Due to orien-
tation and measuring issues, magnetic declination and intensity from sediment cores are
generally given in terms of relative values. Despite their relative character and other
challenging characteristics, sediment data are, however, utterly valuable due to their con-
tinuous recording of the paleosecular variation (see for example Fig. 1.10).

Although simple, the primary magnetic register of the magnetized rock or artifact is
hard to assess, for often the samples are seen to have more than one magnetic component,
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which could correspond to secondary processes leading to weaker remagnetizations or
chemical alteration of the material. In order to retrieve the different components of a
magnetized sample, the sample has to pass through careful laboratory protocols (Tauxe
and Yamazaki, 2015, for a review on the measuring of archeointensity).

1.6.2 Chronology and uncertainties

The chronology of archeomagnetic data can be derived by various relative and absolute
methods (Noller et al., 2000). In the case of human artifacts, archeological constraints
based on either the stratigraphy of the archeological site or the specific style of the ar-
tifact are used to estimate the object age. Typical uncertainties for archeological dating
generally are of the order of a few decades. In the case of lava flows, precise dating can
be performed given the historical documentation of witnessed eruptions. Otherwise, the
most frequently used source of paleomagnetic dating consists in radiometric methods,
such as radiocarbon dating. Although not as frequent as archeologic dating, radiocarbon
techniques are sometimes also applied for human artifacts. Radiogenic dating generally
gives age uncertainties of the order of centuries. For sediments, varve counting can serve
as a fine chronological tuning, improving the estimates from radiocarbon dating of cer-
tain stratigraphic layers with organic material. For non-varved sediments, however, age
estimation can become difficult due to uncertainties on depositional rates.

A detailed description of paleomagnetic measurements can be found in Turner et al.
(2015). The uncertainties in archeomagnetic data depend on both sampling and labora-
tory conditions and are generally given by a measure of the dispersion of a large number
of specimens characterizing a given sample. In the case of directional measurements, the
quality of observations is given by the α95 parameter, typically ranging from 1◦ to 2◦ (as it
will be seen in Section 5.5). For archeointensity measures, the uncertainties are typically
of a few µT. See Constable and Korte (2015) for a discussion on the many uncertainties
affecting paleomagnetic studies.

1.6.3 Databases

There have been numerous archeo and paleomagnetic databases, differing in data type,
data component, time span and regional or global character. Since the interest in this
manuscript relies on global representations of the Earth’s magnetic field, the focus is drawn
to world-wide compilations. One of the first efforts in gathering globally distributed data is
the PSVMOD1.0 (Constable et al., 2000), spanning the last 3 kyr and comprising archeo-
magnetic data as well as directional data from lake and marine sediments. Afterwards,
the ArcheoInt compilation (Genevey et al., 2008), which as the name suggests focused
on new archeointensities spanning the last 50 kyr, was incorporated to the contemporary
database Geomagia50 (Donadini et al., 2006). The expanded version Geomagia50.V2
(Donadini et al., 2009), completed with available directional data, with complementary
metadata, provides easy online access. A newer version, Geomagia50.V3 (Brown et al.,
2015), extended the dataset to comprise sedimentary data as well. The different versions
of the archeomagnetic dataset from Geomagia50 are shown in Figure 1.11.
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Figure 1.11: Global distribution of archeomagnetic data from the Geomagia50 compi-
lation, corresponding to expansions of the dataset for different database versions: Geo-
magia50 (black), Geomagia50.V2 (blue) and Geomagia50.V3 (red). From Brown et al.
(2015).

As can be seen in the figure, the archeomagnetic global database of Geomagia50 shows
a clear hemispherical dichotomy. The data are concentrated mainly in Europe and western
Asia, due to the availability of archeological artifacts, good historical documentation and
proximity with more developed laboratories. The African continent, in contrast, is the
least well sampled, despite its proximity with Europe. In general the Southern hemisphere
is scarce in data, with a few intensity data, most of all in Brazil and Peru. In total, 95%
of the data corresponds to the Northern hemisphere, possibly biasing estimates of the
archeomagnetic field. However, the sampling of the archeomagnetic dataset is not as
intuitive as one might think.

1.6.4 Sampling of the core

As mentioned in the previous section, archeomagnetic data are given by incomplete in-
formation of the magnetic vector by either its directions or its intensity. Those elements,
the declination, inclination and intensity (Fig. 1.5), are given by

F =
√
X2 + Y 2 + Z2, (1.5)

I = arctan
Z

H
, −π

2
≤ I ≤ π

2
(1.6)

D = arctan
Y

X
, −π ≤ D ≤ π (1.7)

These data are nonlinear functionals of the vector components of the magnetic field at the
Earth’s surface. For the vector components, it is possible to represent them in terms of
their corresponding Green functions. For example, following Gubbins and Roberts (1983),
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the downward component of the magnetic field at a given location of the Earth’s surface
Z(rs) can be written in terms of the response from the source radial magnetic field at the
CMB Br(rc), such that

Z(rs) =

∫
Ω

GZ(rs|rc)Br(rc)dΩ, (1.8)

where GZ(rs|rc) is the Green function, or data kernel, over the CMB surface Ω which
describes the mapping of Z(rc) into Br(rs).

8 This assumption is of course valid assuming
the mantle is an electric insulator.

The Green functions for each component of the magnetic field vector can be found in
Constable et al. (1993) and are further discussed in Chapter 3. They describe the way
each observation samples the top of the core, which is shown in Figure 1.12 for X, Y and Z
observations at high latitudes. It is interesting to see how Z observations sample the top of
the core directly underneath the observation site. X and Y observations, however, sample
the top of the core within a certain angular distance, of approximately 23◦ (Gubbins and
Roberts, 1983).

Figure 1.12: Sampling of the core by a) X, b) Y and c) Z geomagnetic surface observations
at 45◦N and the Greenwich meridian.

As the directions and intensity are nonlinear functions of the magnetic field vector
components, they can not be described as a direct convolution of Br(rc) as in Eq. 1.8.
Johnson and Constable (1997) proposed linearized sensitivity kernels with respect to
changes in Br(rc) that approximate Green functions for declination and inclination. The
same formalism can be easily extended to intensity. The corresponding linearized Green
functions GD, GI and GF are shown in Figure 1.13, in the case of changes with respect to
an axial dipolar core magnetic field. As the archeomagnetic Green functions are linearized,
and therefore depend on the underlying magnetic field configuration, they vary with the

8The radial component is sufficient to derive the magnetic potential within an additive constant
(Gubbins and Roberts, 1983).
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observation position, as it can be seen in Figure 1.14, for observations at lower latitudes.
Such rich sampling of the CMB can allow for a certain compensation of the uneven
sampling of the archeomagnetic data at the Earth’s surface (Fig. 1.11) and the estimation
of global models of the archeomagnetic field.

Figure 1.13: Same as Fig. 1.12, but for a) D, b) I and c) F observations.

Figure 1.14: Same as Fig. 1.13, but for observations located at the equator.

1.6.5 Models of the archeomagnetic field

Given the general scarcity of archeomagnetic data, some models seek to reconstruct the
more basic aspects of the archeomagnetic field. The virtual axial dipole moment (VADM),
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virtual dipole moment (VDM) and virtual geomagnetic pole (VGP) are examples of ex-
trapolations of the magnetic field assuming the non-dipolar features can be neglected (e.g.
Genevey et al., 2008; Valet et al., 2008; Nilsson et al., 2010).

Going further, global reconstructions of the archeomagnetic field are possible using
the same methodology described in Subsection 1.5.3, based on the spherical harmonic
description. Since the first low resolution model from Hongre et al. (1998), many higher
resolution models have been published given the increase in paleo and archeomagnetic
data during the last two decades, focusing on different details of the modeling strategy
and data handling. One of the most notable global models of the magnetic field are
the Continuous Archeomagnetic and Lake Sediment (CALS) series. The series comprises
different models depending on duration, data type and year of publication. To cite, Korte
et al. (2009) presents the archeomagnetic model ARCH3k.1, the sediment-based model
SED3k.1 and archeomagnetic and sediment-based model CALS3k.1 for the last 3 millennia
using Geomagia50.V2 database and a truncation of L = 10. In line with the CALS models,
but within different strategies in data and modeling errors, Licht et al. (2013) produce
an ensemble of archeomagnetic models with a lower truncation of L = 5. Panovska et al.
(2012) and Nilsson et al. (2014, with the archeomagnetic field model pfm9k) have in turn
addressed the issue of dating of sedimentary data and their respective uncertainties. The
most recent models of the archeomagnetic field correspond to Pavón-Carrasco et al. (2014)
SHA.DIF.14k and Panovska et al. (2015).

The different truncation of the archeomagnetic field models points to the uncertainty
regarding the resolution allowed to the model due to the sparse and biased spatial distri-
bution of the archeomagnetic dataset. In order to mitigate the uncertainty regarding the
smaller and probably unresolved features of the archeomagnetic field, the model strate-
gies generally use prior information from physical approximative constraints that acts as
to damp the smaller scale features. However, one may argue that such regularization
imposes too strong constraints in the archeomagnetic model solutions.

An alternative methodology can be used to provide additional information from the
magnetic field, known generically as data assimilation. In this context, all the information
available from the system, namely the geomagnetic data and numerical dynamo simula-
tions, would be used in order to estimate the state of the core generating the observed
magnetic field and understand its dynamics. Although data assimilation has already been
introduced in geomagnetism (see Fournier et al., 2010, for a review of the state of the
art), it is still in its first steps. In particular, little attention has been given to the use
of actual geomagnetic observations in the geomagnetic assimilation. Instead, focus has
been driven to the assimilation of parameterized models like the ones mentioned in the
last paragraph.

1.7 Objectives and outline of the manuscript

The objective of this thesis is to introduce the use of physical information about the geo-
dynamo from its numerical approximation in the archeomagnetic context. In other words,
it aims at studying how to use the information from, on the one hand, the archeomagnetic
observations and, on the other hand, numerical dynamo models, in a data assimilation
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framework. From the joint analysis of observations and models, it is possible to estimate
not only the observable field, but also the hidden variables of the dynamo system.

This manuscript is organized as follows. In Chapter 2, the essential physics of the
geodynamo and its numerical approximation are introduced and discussed. Chapter 3
introduces the main concepts of the data assimilation framework, followed by a discus-
sion of its applicability to the archeomagnetic context. Chapter 4 presents a prelude
to archeomagnetic data assimilation, by introducing the use of a dynamo-based prior in
archeomagnetic inverse modeling. This study allows for the quantification of the reso-
lution of the archeomagnetic dataset. Chapter 5 consists in a series of experiments on
the assimilation of synthetic data closely related to the archeomagnetic dataset scenario.
Finally, Chapter 6 summarizes the main conclusions of the present study, their relevance
to the community and future perspectives.
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Chapter 2

Numerical simulations of the
geodynamo

The first efforts in numerical dynamo modeling considered the kinematic dynamo problem,
in which different fluid flows were tested for their ability to sustain a magnetic field, aiming
to overcome the generality of Cowling’s anti-dynamo theorems (Section 1.2). Once the
kinematic dynamo problem was shown to succeed for some prescribed flows (e.g. Backus,
1958), it set up a new aspiration, to understand the origin and form of the underlying
outer core flow and its interactions with the magnetic field. The dynamo problem had
therefore to increase in complexity from two-dimensional mean-field kinematic regimes in
order to consider the full set of magnetohydrodynamical interactions.

Full three-dimensional MHD dynamo simulations became proeminent with the self-
excited spontaneously reversing dynamo of Glatzmaier and Roberts (1995). Since then,
geodynamo modeling has generated an assortment of different dynamo regimes, exten-
sively studied and compared to the known properties of the observed core magnetic field
(see for example Christensen and Wicht, 2015, for a review). Although most geodynamo
models are based on the same magnetohydrodynamic principle, they may differ in terms
of the underlying numerical method, the approach towards compressibility, heat sources,
boundary conditions, couplings, choice of control parameters and resolution. In this chap-
ter, the main ideas behind numerical geodynamo modeling are introduced. Attention is
given to the discussion of the general morphology and dynamics of the core through sim-
ulations, and their implications for retrieving information from the state of the Earth’s
core.

2.1 Geometry of the core

In order to describe the core state, the following settings are considered in terms of the
spherical coordinates (r, θ, φ), with r the radius, θ the colatitude and φ the longitude.
The basic geometry for the geodynamo can be approximated by a spherical shell of inner
radius ri, outer radius ro, with D = ro − ri as the radial length of the outer core. As
displayed in Figure 2.1, the shell is set to rotate with an angular velocity Ω = Ωẑ, where
ẑ is the unitary vector parallel to the rotation axis, assumed invariant through time.
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2.2. Flow in a rotating spherical shell 26

Figure 2.1: Spherical shell representing the basic aspects of a dynamo simulation in
the outer core. Also shown is the geometry of the tangent cylinder associated with the
existence of the inner core. From Christensen and Wicht (2015).

2.2 Flow in a rotating spherical shell

Let us consider a homogeneous fluid of density ρ filling the spherical shell. The conserva-
tion of mass of the core’s fluid demands that

∂ρ

∂t
+∇ · ρu = 0, (2.1)

where u is the flow velocity. If the fluid is incompressible, ρ = ρ0 is constant through the
shell, so Equation 2.1 imposes a certain restriction on the flow, namely

∇ · u = 0. (2.2)

When dealing with a continuum medium permeated by a velocity field u, it is more
practical to study the system’s dynamics with respect to the moving flow. The rate of
change of a certain property of the moving infinitesimal parcel of the fluid is given by the
’Lagrangian’ or material derivative D/Dt ≡ {∂/∂t+u ·∇}. The momentum conservation
for an infinitesimal newtonian fluid parcel moving with the flow per unit volume is given
by

ρ
Du

Dt
= −∇p+ ρν∇2u + fb, (2.3)

where p is the pressure, ν the kinematic diffusivity1, and fb volumetric body forces acting
on the infinitesimal fluid volume in question.

Under the system rotation with angular velocity Ω, it is interesting to choose a ref-
erence frame rotating along with the shell. In this case, ’fictitious’ forces appear in the

1Counterintuitively, the kinematic viscosity of the outer core is relatively low, being equivalent to that
of water at room conditions (Dormy, 1997).
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preceding momentum equation from the fact that the reference frame is non-inertial. In
consequence, for the fluid parcel at a position r, the momentum equation will be

ρ

[
Du

Dt
+ 2Ω× u + Ω× (Ω× r)

]
= −∇p+ ρν∇2u + fb. (2.4)

The second term on the left-hand side is called the Coriolis force and the third is the
centrifugal acceleration. The centrifugal term can be written as the gradient of a scalar
and is supposed to be small in the core. The Coriolis force, on the other hand, is expected
to have an important role on the geodynamo. Having established the inertial terms,
the other relevant forces to the system must be defined. The body forces fb include for
instance the gravitational force, fg = ρ∇ψ, where ψ is the gravitational potential.

Equation 2.4, together with the corresponding mass conservation equation, are the
Navier-Stokes equation for a rotating flow volume. The appropriate boundary conditions
are discussed further. The equations do not yet take into account, however, the effects of
convection supposed to power the dynamo.

2.2.1 Buoyancy force

Given a difference in temperature difference ∆T between the inner and outer boundaries
of the shell, one must consider the variation in density imposed by the expansivity of the
fluid and the further effect of buoyancy, by means of the Archimedes force. From PREM
(see Section 1.3) the density of the outer core is supposed to vary only by 20% through
the whole outer core. Under this condition, one can suppose that the flow can still be
treated as an incompressible fluid in the sense that density variations are only important
within the buoyancy force. This approximation is known as Boussinesq.

The volumetric buoyancy force is related to variations in density by δρgr̂, where g =
g(r) is the gravity acceleration, assumed to have only a negative radial component, and
r̂ the radial unitary vector. Considering that the variations in density depend only on
temperature changes, one can write the density fluctuation ρ′ as the background density
ρ0 plus a variation in density δρ = ρ0αT

′, where T ′ is temperature fluctuation and α the
thermal expansion coefficient. In other words, ρ′ = ρ0(1−αT ′). The volumetric buoyancy
force can then be written as

fA = ρ0αgT
′r̂. (2.5)

Based on PREM, g is supposed to vary approximately linearly through the fluid outer
core. This allows one to write gr̂ = g0r/ro, where g0 is the gravity at the outer boundary
radius ro and r the radius vector.

2.2.2 Lorentz force

When an electrically conductive fluid is embedded in a magnetic field B, relative motions
of the flow and field will generate electric currents in order to restore the magnetic flux,
as stated by Lenz’ Law. Expressing the electric current density j in terms of the magnetic
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field by means of Ampères’ law, for which µ0j = ∇ × B, the feedback of the magnetic
field on the flow, known as Lorentz (or Laplace) force, can be written as

fL = j×B =
1

µ0

(∇×B)×B, (2.6)

where µ0 is the magnetic permeability of the vacuum.

Rearranging Eq. 2.3 and inserting the buoyancy term in Eq. 2.5 and the Lorentz force
in Eq. 2.6 in place of the body forces fb, we have that

∂u

∂t
+ u · ∇u + 2Ω× u = −∇π

ρ0

+ αgT ′r̂ +
1

ρ0µ0

(∇×B)×B + ν∇2u, (2.7)

where the terms have been rearranged in order to separate the inertial terms (on the left
hand side) from the other forces (on the right hand side) and the centrifugal accelera-
tion and the kinematic pressure have been regrouped into the scalar π. This equation
represents the momentum conservation in the Boussinesq approximation for an electri-
cally conducting fluid in a rotating spherical shell (a good description on the different
geodynamo approximations can be found in Jacobs, 1987; Braginsky and Roberts, 1995).

2.2.3 Mechanical boundary conditions

If we are to consider there is no penetration of the fluid across the boundaries, the radial
component of u must be zero at the inner and outer boundaries. In general, the natural
boundary conditions for the flow is that of no-slip, u(ri, θ, φ) = u(ro, θ, φ) = 0, the fluid
adheres to the boundary.

2.3 Convection in the core

The outer core is generally supposed to be under vigorous convection, which implies the
fluid to be considered as ’well-mixed’. In this case, entropy is approximated as constant,
and the state of the core can be defined as adiabatic (isentropic). The value of tem-
perature, entropy S and pressure can be therefore be defined as fluctuations around the
adiabatic state

T = Ta + T ′, S = Sa + S ′, ρ = ρa + ρ′, (2.8)

where the subscript a denotes adiabaticity. It is assumed that the fluctuations are small
compared to the reference state. The adiabat represents the heat propagated by conduc-
tion, and fluctuations about this adiabat are responsible for driving the onset of convec-
tion.

Given the dependency of the momentum conservation equation on T , it is necessary
to describe the essential thermodynamics of the system. The equation of energy can be
written in many forms, for example involving the internal energy U and entropy S of the
system, as dU + pdV = TdS. The conservation of energy can then be written as

ρT
DS

Dt
= −∇ · q + s, (2.9)
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where q is the heat flux and s a given heat source (Jacobs, 1987). Using Fourier’s law,
the heat flux can be written as q = −k∇T for an isotropic fluid, where k is the thermal
conductivity. Substituting the equations and neglecting lower order terms,

ρaTa
DS

Dt
= ∇ · (k∇T ) + s. (2.10)

Note that it was also implicitly assumed that the variability of thermal state of the core is
negligible on short time scales and that the adiabatic temperature gradient is smooth. In
such case where density variations are small, the entropy fluctuations can be approximated
in terms of the temperature S ′ ∼ CpT

′/Ta. Substituting S ′ in Eq. 2.10,

∂T ′

∂t
+ u · ∇T ′ = κ∇2T ′ + s′, (2.11)

where κ = k/ρCp is the thermal diffusivity, and s′ represents the heat sources, for example
from radioactive decay. The aforementioned approximations are a simplification of the
Boussinesq approximation introduced in the previous section. In synthesis, the Boussinesq
approximation considers the situation where the convective fluid can be approximated as
incompressible, except from the term of the buoyancy force in the momentum equation,
and that the variations in density are only dependent on variations in temperature. For
a more detailed derivation of the Boussinesq equations and a discussion on its relevance
to the modeling of the geodynamo see Anufriev et al. (2005).

2.3.1 Thermal boundary conditions

Thermal boundary conditions are typically set as constant temperatures Ti and To at
the inner and outer boundaries, respectively. However, in order to better represent the
physical aspect of the secular cooling of the core, heat-flux based conditions should be
applied. Moreover, seismic tomography of the Earth’s mantle (e.g. Masters et al., 1996)
has provided an idea of the heterogeneous distribution of heat flux at the top of the
core, based on the distribution of higher and lower seismic velocities at the lower mantle.
Olson and Christensen (2002) have studied the impact of heterogeneous CMB heat-flux
conditions on dynamo simulations, suggesting the control of the mantle on high-latitude
flux patches and secular variation localization. Compared to the CMB, however, the inner
core boundary is much less constrained and understood.

2.3.2 Codensity

The inner core boundary corresponds to the conditions for solidification of the iron alloy
in the core. Such solidification occurs by means of a differential cristalization, whereby
the solidification is favored for heavy elements of the alloy, leaving place for a release of
lighter elements as well as latent heat into the outer core (Sumita and Bergman, 2015).
This process comprises an additional source for convection, in which the light elements
enhance buoyancy, due to their lower density (as mentioned in Subsection 1.3.2). The
resulting chemical convection can be modeled by a similar equation to Eq. 2.11, but for
the fluctuations in light element mass fraction ξ′. Assuming the thermal and chemical
diffusivities as equivalent, both temperature and composition fluctuations can be grouped
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into one single variable called the codensity, or density anomaly C (Braginsky and Roberts,
1995), given by

C = αρT ′ + ∆ρξ′, (2.12)

where ∆ρ is the density variation between the light and heavy elements in the alloy. The
diffusivity is then assumed to be an ’effective’ one, comprising the effect of turbulence.
The equation for the thermochemical convection is then

∂C

∂t
+ u · ∇C = κ∇2C + ST ′/ξ′ . (2.13)

The term ST ′/ξ′ represents the sources and sinks of the codensity in order to assure the
mass conservation of the system (Aubert et al., 2009).

2.3.3 Compositional boundary conditions

The boundary conditions at the CMB become more complex for the codensity, for despite
the heat being able to cross the boundary, the fluid is not allowed to penetrate the
interfaces. This is generally described by prescribing a heat flux amplitude and pattern
along the CMB. At the ICB, however, heat and light element flows are thought to be
coupled due to the continuous crystallization of the inner core boundary.

Seismological evidence support anisotropies in the inner core properties (see Souriau
and Calvet, 2015, for a recent review), which are supposed to be connected with a trans-
lational mode of the inner core, generating melting on the eastern inner core hemisphere
and solidification on the western one (Alboussiere et al., 2010; Monnereau et al., 2010).
As the inner core translation is thought to occur on geological time-scales, the codensity
flux at the ICB is generally considered constant in numerical simulations.

2.4 Electromagnetic induction

The magnetic field is essentially solenoidal, and can be written as

∇ ·B = 0. (2.14)

The magnetic field sources in the electrodynamics context are electric currents, as ac-
knowledged by Ampère’s law in the MHD approximation (the case when u� c, where c
is the speed of light, neglecting the displacement currents), writing

∇×B = µ0j, (2.15)

already mentioned in Section 2.2.2. The electric currents, by Ohms law, can be written
in terms of B and the electric field E as

j = σ(E + u×B), (2.16)
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where σ is the electrical conductivity of the medium. The electric field can also be
generated by variations in the magnetic field by means of the electromagnetic induction,
described by Faraday’s law

∇× E = −∂B

∂t
, (2.17)

Substituting 2.16 in Equation 2.15 and using the identity in 2.17, one is able to write the
induction equation

∂B

∂t
= ∇× (u×B)−∇× (η∇×B), (2.18)

where η = 1/σµ0 is the magnetic diffusivity. The electrical resistivity of the iron alloy
is responsible for the diffusivity of the magnetic field, supposed to be many orders of
magnitude higher than the viscous and thermal diffusivities (Dormy, 1997). Considering
an homogeneous magnetic diffusivity, the induction equation can be simplified to

∂B

∂t
= ∇× (u×B) + η∇2B. (2.19)

The induction equation relates the variability of the magnetic field to the phenomena of
advection of the field by the flow (first term of the right hand side of the equation) and
magnetic diffusion (second term on the right hand side), discussed in Section 1.4.

2.4.1 Magnetic boundary conditions

As mentioned before, for simplicity, the mantle is often considered as an electric insulator.
Under such conditions, in order to match a self-excited dynamo, the magnetic field is
generally set to meet the conditions of a potential field at the CMB. However, the lower
mantle is thought to have a moderate conductive layer at its base. In such case, electrical
currents would be able to trespass from the core to the lower mantle, generating large
scale Lorentz forces which would results in important torques between the core and mantle.
Such torques are suspected to be relevant to justify decadal changes in the length-of-day
(LOD) of the Earth (Holme, 1998).

In a similar way, the inner core is sometimes presumed to be an insulator. Some
studies, however, allow for viscous and magnetic torques between inner and outer core
which generate a rotation of the inner core. Numerical models of the dynamo show
that such magnetic and viscous couplings tend to entrain the inner core eastwards at
different rates either steadily or in an oscillatory way (Aubert and Dumberry, 2011). The
eastward rotation of the inner core generates the so-called thermochemical winds near
the ICB, creating cyclonic movements inside the tangent cylinder. Evidence of inner
core differential rotation (with respect to the mantle reference frame, also called super-
rotation) from seismic observations supports a small but non-zero mean eastward rotation
with greater decadal fluctuations around this mean (Tkalčić et al., 2013).

2.5 Geodynamo equations and parameters

The main physical ingredients of the geodynamo in the Boussinesq approximation are
given by the equations for mass conservation 2.2, momentum conservation 2.7, codensity
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transport 2.13, solenoidal magnetic field 2.14 and magnetic induction 2.23. In order not to
deal directly with each variable dimension involved in a simulation, it is practical to resort
to a non-dimensional form of the equations. This is done by rescaling the dimensional
variables in terms of the most relevant values in the problem. Taking, for example, the
thickness of the spherical shell D as the typical length scale, Ω−1 as the typical time scale
and (σµ0)1/2ΩD as the magnetic induction, the former equations can be rewritten as

∂u

∂t
+ u · ∇u + 2ẑ× u = −∇π + Ra

r

r0

C + (∇×B)×B + E∇2u, (2.20)

∇ · u = 0, (2.21)

∂C

∂t
+ u · ∇C =

E

Pr
∇2C + S ′, (2.22)

∂B

∂t
= ∇× (u×B) +

E

Pm
∇2B, (2.23)

∇ ·B = 0. (2.24)

The dimensionality of the variables is replaced by four dimensionless parameters E,Ra,Pr
and Pm which represent ratios between the different time scales of the system, which are
summarized in Table 2.1. The Ekman number E

E =
ν

ΩD2
(2.25)

represents the ratio between the rotational and viscous time scales, or in an equivalent way,
the ratio of the viscous to Coriolis forces. In the Earth’s core, this number is very small,
of the order of 10−15, giving an idea of the striking difference in time scales involved
on the geodynamo. It is important to note that although viscous effects are of minor
importance on the bulk of the main flow, they play a key role near the boundaries, like
in the Ekman layer. A very small E indicates very small Ekman layers (δE ∼ E1/2D),
which for the Earth’s core would imply a thickness of around 10 cm. Considering the
lower bound estimation by Dormy (1997) of 10 grid-points in the layer, the amount of
resolution needed to account for a dynamo numerical simulation based on a realistic E
is far from being computationally feasible (the Ekman number is typically 10−5 in high
resolution numerical simulations, which either means a very slow rotation or very high
viscosity compared to that of the core). Even by substituting the ’molecular’ viscosity
ν by an ’effective’ viscosity, parameterizing the role of turbulence, the Ekman number
would still be overestimated by a factor of 104 (Glatzmaier, 2002).

The mass anomaly flux Rayleigh number Ra (Aubert et al., 2009) is given by

Ra =
gof

ρΩ3D2
, (2.26)

where f is the mass anomaly flux at the ICB, represents the vigor of the thermochemical
convection. The other two parameters, the Prandtl number

Pr =
ν

κ
, (2.27)

and the magnetic Prandtl number

Pm =
ν

η
, (2.28)
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relate to the ratio between the thermal τκ and ohmic dissipation time scales τη and viscous
diffusion time τν , respectively. Due to the similarity between τκ and τν , Pr ≈ 1. They
are, however, significantly bigger than τη in the core, resulting in Pm � 1 (Dormy and
Le Mouël, 2008).

Table 2.1: Dimensionless numbers representing the control and diagnostic parameters
relevant to the geodynamo equations, their range estimated in the core and their typical
value in geodynamo simulations.

Symbol Name Definition Core Simulations
E Ekman ν/ΩD2 10−15 10−3 − 10−7

Ra Rayleigh gof/ρΩ3D2 10−12 10−4 − 10−6

Pr Prandtl ν/κ 10−1 1
Pm Magnetic Prandtl ν/η 10−6 0.1–1
Re Reynolds u0D/ν 109 102

Rm Magnetic Reynolds u0D/η 103 102 − 103

The dynamo models can also be characterized by their output parameters, representing
a diagnostic of the solution regime. Taking the root-mean-squared flow field through the
core, u0, one can calculate the Reynolds number

Re =
u0D

ν
(2.29)

and the magnetic Reynolds number

Rm =
u0D

η
(2.30)

which are diagnostics of the core flow regime. Re is estimated to be very high in the
core, which gives an idea of the level of turbulence (Re � 100). Rm is of particular
importance for the analysis of the self-sustainable dynamo onset, generally corresponding
to an Rm ≈ 50.

2.5.1 Poloidal-toroidal and spectral decomposition

The solenoidal form of both the magnetic and flow fields (Eqs. 2.21 and 2.24), allows for
its description in terms of its poloidal and toroidal parts

B(r, θ, φ) = ∇×∇× [Bp(r, θ, φ)r] +∇× [Bt(r, θ, φ)r], (2.31)

u(r, θ, φ) = ∇×∇× [up(r, θ, φ)r] +∇× [ut(r, θ, φ)r], (2.32)

where the subscript p and t correspond to the poloidal and toroidal components of the
fields (Dormy, 1997). Since the temperature/codensity field is scalar, there is no sense
in applying such a decomposition. Due to the dimension reduction of the field repre-
sentation, the poloidal-toroidal decomposition is regularly used in numerical simulations
of the geodynamo. The field components, as well as the codensity field, can be further
expanded in a spherical harmonic basis. For example, the poloidal and toroidal scalars of
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the magnetic field at a given radius r can be expressed as

Bp(r, θ, φ) =
L∑
`=1

∑̀
m=−`

Pm` (r)Y m
` (θ, φ) (2.33)

Bt(r, θ, φ) =
L∑
`=1

∑̀
m=−`

T m` (r)Y m
` (θ, φ) (2.34)

where Y m
` = eimφPm

` (cos θ) are the fully normalized surface spherical harmonic functions,
and Pm

` are the associated Legendre functions. The same expansion holds for the flow
fields and the codensity. The geodynamo Boussinesq equations 2.20–2.24 can be therefore
be put in terms of the poloidal-toroidal spectral decomposition and solved numerically.

2.6 Numerical simulations

Given the complex nature of the geodynamo model described in the previous section, the
system’s evolution is simulated numerically. Different numerical methods can be used to
simulate the dynamo system (see Christensen and Wicht, 2015, for a review), amongst
which the spectral methods are the most popular. One example is the Parody code
(Dormy et al., 1998; Aubert et al., 2008), used throughout this work.

Parody is based on a spherical harmonic decomposition of the flow, magnetic and
temperature/codensity fields for the lateral directions and a second-order finite-difference
scheme on the radial direction. The radial grid is non-uniform, being compressed near
the boundaries to ensure an accurate resolution of the Ekman layers. The code is written
in fortran and it is parallelized for the radial part within MPI and by Open-MP on
the calculations involving the colatitude in physical space. Parody participated in the
geodynamo benchmark from Christensen et al. (2001).

2.6.1 Boundary conditions

As mentioned above, the dynamo parameters in numerical simulations are not representa-
tive of that of the Earth’s core. The smallness of the core’s viscous diffusivity, for example,
suggests an important role of the small spatial and temporal flow scales on the core dy-
namics. Numerical simulations are not capable of resolving such small-scale turbulent
eddies, however, which are thought to be specially important in the domain of boundary
layers. In particular, the too high viscosity from the simulations ends up producing very
deep Ekman layers, which tend to generate unrealistically strong torques in between the
boundaries. In order to avoid such strong torques, the Ekman layers are in some cases
artificially suppressed by imposing the condition of vanishing shear in the boundaries
(Kuang and Bloxham, 1997). This condition is called ’stress-free’ and substitutes the
physical mechanic ’no-slip’ condition presented in Section 2.2.
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2.6.2 Earth-likeness

Although geodynamo simulations lie far away from the true control parameters, many
have been considered as being Earth-like with respect to the observable magnetic field.
Christensen et al. (2010) introduced a way of quantifying such Earth compliance, by means
of the parameter χ2. This parameter is defined in terms of dipolarity, symmetry, zonality
and flux concentration of the magnetic field at the CMB. By systematically diagnosing
a large number of simulations, they found a specific wedge of compliance, bounded by
Em < 10−4, where Em is the magnetic Ekman number Em = E/Pm, and Rm > 102.
Simulations lying outside this wedge tend to be either too dipolar for lower Rm or too
multipolar for higher Em. Such results suggests a compensation for the unrealistic Ekman
number used in the numerical simulations by a high magnetic Prandtl number. One
could assume the transition from the Earth-like simulations parameter range to the core
conditions to be continuous, meaning that the underlying dynamo mechanism would be in
line with that of the real geodynamo. This line of thought is however highly controversial,
for either the transition of parameters might imply a disconnection in the dynamo regime
or the Earth-likeness condition being shared by different possible underlying dynamo
configurations.

Figure 2.2: Diagram of Earth-like numerical simulations from Christensen et al. (2010)
as function of the Reynolds and Ekman magnetic numbers and comparison with core
conditions. Earth-like simulations are shown as shaded symbols and the + symbolizes the
core situation in the parameter space.

Despite Christensen et al. (2010) having revealed the basic conditions for Earth-like
dynamos based on the magnetic field average morphology, no systematic study has been
made to analyze the Earth-likeness of the magnetic field secular variation. Additionally,
a study of the Earth-likeness of reversing dynamos is still needed.
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2.7 Time and magnetic field rescaling

Application of dynamo simulations in data assimilation require the consideration of the
magnetic field variables with the proper dimensions to match that of the observed field.
The formalism presented in Section 2.5 suggests a direct substitution of the scaling values
in order to redimensionalize the dynamo system. However, as dynamo simulations are not
generally holding to Earth-like control parameters, their rescaling for comparison with the
observable magnetic field is not obvious, and somewhat arbitrary.

Lhuillier et al. (2011b) investigated the typical time scales of the magnetic power
spectra in modern and historical models of the magnetic field at the CMB as well as those
of representative dynamo simulations. They showed that a simple scaling law of

τ` =
τSV
`

(2.35)

satisfies well the correlation time scales of the observed magnetic spectrum.2 For the
Earth, the secular variation time scale is estimated from satellite observations to be around
415 years. The calibration of the time axis of any numerical geodynamo simulations can
then easily be done by multiplying the simulation time by the ratio between the τSV
from the core (expressed in years) to that estimated from the inverse linear fit to the
dynamo model (non-dimensional). In synthesis, it would correspond to calibrating the
non-dimensional time tnd of the simulation as

t′ =
τ⊕SV
τ simSV

× tnd, (2.36)

where τ⊕SV and τ simSV are the secular variation characteristic time of the Earth’s core and
of the numerical simulation in question, respectively. Since τSV ∝ Rm−1, this also corre-
sponds to the ratio between the magnetic Reynolds numbers, and therefore to matching
the magnetic turbulence level of the simulation to that of the Earth (Lhuillier et al., 2011a;
Davies and Constable, 2014).

The magnetic field rescaling can be done by using a scaling law connecting the magnetic
field to the dynamo convective power (Christensen and Aubert, 2006). An example of
this rescaling is given by Aubert (2013). Otherwise, an easier calibration of the magnetic
field can be done by comparing the mean spatial spectrum of the core’s magnetic field
and that of numerical simulations, or even simpler, the axial dipole intensity.

2.8 Examples of dynamo models

A simple geodynamo model can be built by considering the thermochemical convection-
based dynamo, following Equations 2.20–2.24, which will be here called STD (for ’stan-
dard’) model throughout. The basic configuration for STD consists on ’no-slip’ at the
ICB and ’stress-free’ at the CMB mechanical boundary conditions, a conductive inner
core and an insulating lower mantle. A homogeneous heat flow is selected for the CMB,
and a homogeneous codensity flow at the ICB. The model then allows for a magnetic

2The dipole is in general not considered in the scaling law.
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Figure 2.3: Secular variation time scales from the Earth and from numerical simulations,
fitted by the inverse-linear law in Eq. 2.36, for a) the CHAOS-3 model (reference), b)
the historical gufm1 model (Jackson et al., 2000), c) the instantaneous spectrum for a
dynamo simulation similar to STD, and d) to the mean spectrum over a long run of the
simulation. From Lhuillier et al. (2011b).

coupling of the inner core with the outer core and viscous coupling at the CMB. The
native truncation of the model is Lmax = 133, which gives 480× 200 horizontal grid reso-
lution, with 160 levels on the radial grid. Rescaling of STD time is made by the secular
variation time scale described in Eq. 2.36. The magnetic field is calibrated by means of
the adjustment of the mean axial dipole from STD by the mean axial dipole from an
archeomagnetic field model (as will be explained in Chapter 4). Further information on
the STD model is displayed in Table 2.2.

Table 2.2: Dynamo simulations mentioned throughout this manuscript. The codes STD
means ’standard’ dynamo simulation, while CE is the ’Coupled Earth’ model from Aubert
et al. (2013). CEL is a ’lighter’ version, in terms of resolution, of the CE model. The
Prandtl number is not shown, for all models have an underlying Pr = 1. τc and βc are
respectively the time and magnetic field rescaling factors.
Code E Ra Pm Re Rm τc(yr) βc(µT) χ2 Lmax ∆t
STD 3× 10−5 2.7× 10−5 2.5 370 926 42347 1033.0 2.8 133 1× 10−7

CE 3× 10−5 2.7× 10−5 2.5 377 943 56113 850.6 1.3 133 1× 10−7

CEL 1× 10−4 5× 10−6 10 55.5 555 9545 544.36 3.3 85 2× 10−6

Figure 2.4 shows a comparison between the radial magnetic field at the CMB from
historical model gufm1 (Jackson et al., 2000) for the year 1990 and the STD dynamo
model at the gufm1 truncation and the native model resolution. One can easily spot
common features between gufm1 and STD (Figs. 2.4a and 2.4b, respectively), like the
mainly dipolar character of the magnetic field. There is also the presence of high latitude
intense magnetic flux patches underneath what would be the intersection between the
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tangent cylinder and the CMB, as well as the low magnetic field intensity around the poles.
Those features correspond to the cyclonic dynamics of upwellings and downwellings on
and around the tangent cylinders. Fig. 2.4c reveals the great amount of detail underneath
the magnetic crustal curtain (recall Section 1.5).

Figure 2.4: Radial magnetic field at the CMB given by a) gufm1 (Jackson et al., 2000) for
the year 1990, and the STD numerical simulation of the geodynamo b) limited to gufm1
truncation (L = 14) and c) for the native truncation of degree 133. All quantities are
shown in µT.

Although reasonably compliant relative to the morphological Earth-likeness parame-
ter χ2 of Christensen et al. (2010) (see Table 2.2), the STD model displays a not very
Earth-like secular variation pattern. In general, geodynamo simulations have a tendency
to display a greater secular variation at high latitudes, without a preferential direction
(eastward or westward). Such a pattern strongly contrasts with the secular variation
registered by gufm1 (Jackson et al., 2000), which is concentrated at low latitudes prefer-
entially on the Atlantic hemisphere (Finlay and Jackson, 2003). This disparity in secular
variation can be seen in Figure 2.5.

The recent dynamo model from Aubert et al. (2013) manages to retrieve an Earth-
like secular variation pattern by incorporating two complexities related to the inner core
and lower mantle. The first one is a gravitational coupling in between the inner core
and lower mantle, considering their heterogeneous mass anomaly distribution. Since the
thermal winds tend to entrain the inner core to the east, the gravitational torque acts
to align the mantle with the inner core. The inner core and mantle being entrained to
the east, the conservation of angular momentum of the system consists in a westward
rotation of the outer core at low latitudes near the CMB, creating a large-scale sheet-
like gyre (Aubert et al., 2013). Secondly, it uses an asymmetric mass anomaly release
at the top of the inner core, representing a differential inner core growth, as proposed
by seismic studies (Monnereau et al., 2010, and references therein). The asymmetric
buoyancy pattern generated by such inner boundary conditions acts to distort the gyre,
creating higher secular variation underneath specific zones on the outer core (Aubert
et al., 2013). The secular variation resulting for the coupling of those features match

38



2.9. The e-folding time and predictability 39

Figure 2.5: Secular variation localization in a) latitude and b) longitude for a similar
model as STD, the CE dynamo model and the historical model gufm1 (Jackson et al.,
2000). From Aubert et al. (2013).

remarkably well that shown by gufm1, as can be seen in Fig. 2.5. The model, coined as
’Coupled Earth’, will be abbreviated by CE throughout.

Envisaging the applicability of an Earth-like dynamo model in a data assimilation
scheme, we are particularly interested in the use of a model with lower resolution, in order
to speed-up the calculations. We introduce such model as the CEL, and its specifications
are given in Table 2.2.

2.9 The e-folding time and predictability

Due to the important non-linearities in the governing dynamo equations and the expected
turbulent level at its smaller spatial scales, the geodynamo is a chaotic system (Ryan and
Sarson, 2008). A clear evidence of its chaotic nature relies on the non-periodic character
of the dipole reversals. A chaotic system can be essentially described by its sensitivity to
perturbations. That is, given an initially small perturbation, the system will evolve in such
a way as to amplify the perturbation until a time when the perturbed and unperturbed
solutions diverge. The characteristic time for the exponential amplification of an initial
perturbation ε0 at the time t0 is given by the e-folding time τe, is connected to the
normalized difference between the solutions ∆ by

∆(t) = ε0e
(t−t0)/τe . (2.37)

For the geodynamo, the e-folding time is dependent on the advective regime of the dynamo
(Hulot et al., 2010), in the same way as τSV .Hulot et al. (2010) found an asymptotic limit
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of τe = 0.05τSV , with a corresponding e-folding time of τe ≈ 30 yr for the Earth’s dynamo.
From Equation 2.37, we have that at the time interval after which the perturbed solution
diverges from the initial one (∆ = 1), substituted by τf = t− t0, is given by

τf = −τe log ε0. (2.38)

The characteristic time τf is often called the predictability limit of a system, and it is
specially important when it comes to estimating the system’s state, by means of data
assimilation techniques, for example. In order to visualize the e-folding time of a dynamo
model, Figure 2.6a and 2.6b show the axial dipole and equatorial dipole of the poloidal
magnetic field at the top of the core from an ensemble of CEL solutions, departing from
small perturbations in the initial axial dipole conditions. It is interesting to see how the
perturbations, initially affecting only the axial dipole, are propagated to the equatorial
dipole, leading to the divergence of the once very close solutions of the ensemble. After
roughly 1000 years, the models are seen to diverge from each other, showing independent
behaviors. Such divergence can be monitored through the spread of the ensemble, shown
in Fig. 2.6c.

The predictability limit shows that even in a hypothetical situation where the un-
derlying physics of the dynamo is perfectly known, important errors would arise by the
discretization of the model, as well as the impossibility of perfectly observing the whole
system. For the geodynamo, this is a specially difficult quantity to estimate, for the ob-
servable part of the dynamo system consist only of the largest scales of the magnetic field
at the Earth’s surface. It can be estimated, however, based on the e-folding time from
Hulot et al. (2010). In an archeomagnetic context, taking into account solely the error
level of 1 µT (Section 1.6) as the main uncertainty entering ε0 based on a magnetic field of
around 40 µT, this predictability limit would be of around 100 years. This limit would be
considerably reduced if one considers the uneven spatial distribution of archeomagnetic
data as well, which could amount to reducing the predictability limit at least by a half.
Notwithstanding such rather pessimistic scenario, it can be mitigated by the data assimi-
lation techniques, specifically by applying successive corrections from the observations at
different times, bringing the dynamo system closer to its true state. A more elaborate
discussion on data assimilation and its applicability to the dynamo problem is provided
in the next chapter.
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Figure 2.6: Ensemble of CEL models departing from small differences in the initial con-
dition of the axial dipole of the poloidal magnetic field. The evolution in time of the
ensemble is shown in terms of the a) axial and b) equatorial dipole of the poloidal mag-
netic field at the top of the core. Shown in c) is the ensemble spread of the full models
around the ensemble mean.
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Chapter 3

Overview of data assimilation

Data assimilation refers to a diverse group of methodologies applied to even more diverse
fields. In its fundamentals, it involves using all the available information of a physical
system in order to estimate its past, present or future state. Traditionally, such informa-
tion comes on one hand from approximations of the physical system given by a numerical
model, and on the other hand from sparse observations of such system. Data assimilation
differs, therefore, from traditional inverse problems through its use of prior information
strongly based on numerical models and the inclusion of physical based time-dependency.

Mainly known by its connection to meteorology in general and Numerical Weather
Prediction (NWP) in particular (see Kalnay, 2003, for an extensive review), data assim-
ilation has begun to be applied to many different geophysical areas in the last decade
(glaciology, landscape formation, seismology, etc). Inside its general purpose of estimat-
ing the state of a system, there lies a variety of objectives in data assimilation: study its
dynamical aspects, retrieve its hidden variables, estimate the underlying parameters of
the system and acquire the ability to hindcast and forecast a model.

This chapter presents a brief overview of the basics of data assimilation, focusing on
the formalism given by sequential algorithms. Special attention is given to its applicability
in geophysics, and geomagnetism in particular.

3.1 State and observations of a system

Consider x as the continuous state (in space and time) of the physical system we aim at
estimating. The system is dynamic, and it evolves in accordance with the physical laws in
the form of (non-linear) partial differential equations, here synthesized by the functional
g

∂x
∂t

= g(x ). (3.1)

Due to the impossibility in describing such continuous complex fields, one must resort to
its temporal discretization in terms of g

xi+1 = g(xi), (3.2)
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where the subscript i represents time, and spatial discretization, by projecting the con-
tinuous state into its discrete form xt with the operator Π as

xt = Π(x ). (3.3)

The superscript t implies the state is the discretized ’true’ state. Since the model is
dynamic, the discretized propagation of such state is described by

xti+1 = Π[g(xi)]. (3.4)

In the discrete case (Cohn, 1997), this would be equivalent to propagating the state by a
numerical model M connecting the states at time i and i+ 1, following

xti+1 = Mi,i+1(xti) + ηi,i+1. (3.5)

Here ηi,i+1 is the model error

ηi,i+1 = xti+1 −Mi,i+1(xti) (3.6)

comprising different sources, like the error arising from the discretization of the model
and state and from misrepresentations of the physical processes (e.g. approximations and
unresolved scales, since g is not perfectly known). The model errors can be associated
with an error covariance matrix Qi+1.

We can define the observations of the system x as a mapping by the functional h

y = h(x ). (3.7)

Whenever the system is observed, however, measurement errors εm contaminate the real
observation h(x )

yo = h(x ) + εm. (3.8)

Also, errors in the formulation of how the system is observed can compromise the knowl-
edge of h . An observation of the discretized state ignoring the measurement errors can
be written as

yo = HΠ(x ), (3.9)

where H is the discretized observation operator. The error regarding the representative-
ness of the observation can be described by

εr = h(x )−H[Π(x )]. (3.10)

The combination of both sources of error are incorporated into the observation error
εo = εm + εr, which allows us to redefine the observation vector as

yo = Hxt + εo. (3.11)

The observation errors can be written in terms of the observation error covariance matrix
R.

The model and observation errors can be considered as stochastic perturbations (Cohn,
1997) in Eq. 3.5 and Eq. 3.11, respectively. Such supposition supports the interpretation
of both model state and observations as random variables, allowing for a probabilistic
description of the problem.
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3.2 Stochastic estimation

Given the attributed stochasticity of the model state and observation, one can define
their respective probabilities. The probability density function (pdf) p characterizing the
multivariate model state is assumed to be Gaussian, given by

p(x) =
1

(2π)n/2(detP)1/2
exp

{
−1

2

[
(x− µ)TP−1(x− µ)

]}
, (3.12)

where µ is the expectation value, P is the covariance matrix related to x and det is the
determinant. This is summarized by writting that the vector variables follow a normal
distribution x ∼ N (µ,P). Disposing of a set of observations y, we aim at estimating the
system’s state x by means of the conditional probability p(x|y) (the probability of the
model state given its observations). For that, we can make use of the marginalization rule

p(y) =

∫
p(x,y)dx =

∫
p(y|x)p(x)dx (3.13)

and Bayes’ theorem

p(x|y) =
p(y|x)p(x)

p(y)
, (3.14)

where is p(x|y) the posterior distribution, p(y|x) is the likelihood of the set of observations
given the model, and p(x) is the prior (or background) distribution. The choice of the
prior is connected to a given prior knowledge of the system state in question. Denoting xb

and Pb as the background associated mean and covariance, we have that x ∼ N (xb,Pb),
which gives

p(x) ∝ exp

{
−1

2

[
(x− xb)TPb−1

(x− xb)
]}
. (3.15)

The observations follow yo ∼ N (Hx,R), for which the likelihood can be written as

p(yo|x) ∝ exp

{
−1

2

[
(yo −Hx)TR−1(yo −Hx)

]}
, (3.16)

where H is considered to be linear. Solutions for x in light of y can be sought by
constraining the posterior probability given by

p(x|yo) ∝ exp{−J }, (3.17)

for which

J =
1

2

[
(yo −Hx)TR−1(yo −Hx) + (x− xb)TPb−1

(x− xb)
]
. (3.18)

The solution x̂ can be sought in many ways, generally pursuing optimality, which
is somewhat subjective. One can define the optimal solution as the one that gives the
minimum posterior variance, by assigning ∇x̂J (x̂) = 0, for example. Other estimation
methods are the maximum a posteriori estimation, and the maximum likelihood, for which
the latter corresponds to ignoring the prior information.
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3.2.1 The best linear unbiased estimate

We can instead focus on some basic assumptions on the form of the final estimate in order
to estimate xt. Assuming that the background and observations are unbiased, for which
the covariances are representative of the uncertainties, and the observation operator is
linear, we have that

xb = xt + εb, (3.19)

〈εb〉 = 0, (3.20)

Pb = 〈εbεbT 〉, (3.21)

yo = Hxt + εo, (3.22)

〈εo〉 = 0, (3.23)

R = 〈εoεoT 〉, (3.24)

where 〈〉 denotes the expectancy. We choose the estimate to be a linear combination of
both background state and observations, writting

xa = Axb + Kyo, (3.25)

where the superscript a denotes the final estimates, here called the ’analysis’. Here A and
K are linear and to be determined following the optimality criteria. Choosing the final
estimate to be unbiased and of minimum variance (optimal accuracy), we assume

〈εa〉 = 0, (3.26)

tr(Pa) → minimum, (3.27)

where tr() is the trace and εa = xt − xa and Pa are the errors and covariance of the
analysis. Using the unbiased hypothesis,

A = I−KH, (3.28)

K = PbHT (HPbHT + R)−1, (3.29)

where K is generally known as the ’Kalman gain’, the matrix which takes into account
the information on the accuracies of both background and observations to compose the
estimate (see Cohn, 1997, for the derivation of the Kalman gain matrix). The best linear
unbiased estimator (BLUE) has therefore the form

xa = xb + K(yo −Hxb), (3.30)

Pa = (I−KH)Pb, (3.31)

where the quantity (yo−Hxb) is called the ’innovation’, which characterizes the distance
between the observations and background model in the observation space.

It is worth noticing that the BLUE corresponds to the minimum variance estimate
mentioned in the previous section (in the case the pdf follows a Gaussian distribution)1,
and also similar to the generalized least-squares solution (Talagrand, 1997).

1The assumption of Gaussianity is widely used due to the fact that the first two moments are sufficient
to completely represent the estimate.

46



3.2. Stochastic estimation 47

3.2.2 The resolution matrix

The analysis error covariance in Equation 3.31 can be written as Pa = (I− S)Pb, where

S = KH = PbHT (HPbHT + R)−1H, (3.32)

is known as the model resolution matrix. It represents how much the estimate is sensitive
to the background information. It also shows how the statistics of the background model
are affected by the new information provided by the observations after the analysis. An
illustrative example is given in the following.

For a model parameter i, the ith diagonal component of the resolution matrix can be
approximately written as

Sii ∼
σbi

σbi + σym
, (3.33)

where σbi is the uncertainty affecting the ith model variable and σym a representation of
the data uncertainties in model space. In the case where σb � σy, S ≈ 0 and Pa ≈ Pb,
therefore the update is negligible. Otherwise if σb ∼ σy, S ∼ 1/2 thus Pa ∼ 0.5Pb. In
the best case scenario, however, σb � σy, S ∼ 1 and Pa ∼ 0, for which the observations
fully constrain the model estimation.

It is worth noting that in Eq. 3.33, the information represented by σym does not only
bear information on the observation uncertainties, but also of the observation type and
distribution present on the observation operator H (Eq. 3.32). Finally, the trace of the
model sensitivity matrix is a very useful diagnostic, as it can be interpreted as the number
of resolved parameters (e.g. Backus, 1988).

Different to the model resolution matrix, the data resolution matrix HK represents
the sensitivity of the final estimate to the observations in data space. Cardinali (2013)
gives the details of the data resolution matrix, both for the least-squares estimation and
the data assimilation formalism.

3.2.3 The Kalman filter algorithm

The Kalman filter algorithm (Kalman, 1960) consists in the application of the BLUE in
a dynamical sense, and it can be described by the repetition of two successive steps, the
forecast and the analysis. Here, the background state xb will be given by the forecast
of a dynamical model xf , say, a numerical simulation, where the superscript represents
’forecast’. The model state xf has dimension nx, while the observations of the system yo

have dimension ny.

Forecast

The forecast consists in the propagation of the state (as described by Eq. 3.5) by the
underlying model, here represented by the linear model operator M

xfi+1 = Mi,i+1x
f
i . (3.34)
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Given the error covariance at time i as Pf
i , the error propagation is written as

Pf
i+1 = Mi,i+1P

f
i M

T
i,i+1 + Qi+1, (3.35)

for the error has two components, one from the propagation of the initial error and another
Q from the model error itself discussed in Section 3.1.

Analysis

Whenever observations are available, at a given time i+1 for example, the BLUE equations
(Eqs. 3.30 and 3.31) will be applied based on the information from the forecast i+1. This
step will then consist on the computation of

Ki+1 = Pf
i+1H

T
i+1(Hi+1P

f
i+1H

T
i+1 + Ri+1)−1, (3.36)

xai+1 = xfi+1 + Ki+1(yoi+1 −Hi+1x
f
i+1), (3.37)

Pa
i+1 = (I−Ki+1Hi+1)Pf

i+1. (3.38)

A good diagnostic of the the analysis is the ’residual’, given by ri+1 = yoi+1 −Hi+1x
a
i+1.

This two-step algorithm is then repeated for a sequence of analysis cycles, whenever
observations of the system are available. This method is also called ’sequential data
assimilation’, for which a simple scheme is presented in Figure 3.1.

Further considerations

An important drawback of the sequential algorithm as it is described above is the compu-
tational infeasibility considering the typical dimensions of the problem (depending on the
application). In the geomagnetic case nx ∼ 106, which means there is a need of computing
and possibly storing a 106 × 106 covariance matrix Pf

i . Besides the storage problem, the
propagation of the Pf

i matrix by Eq. 3.35 implies two applications of the forecasting lin-
ear operator, it is 2×nx computationally more expensive than the simple model forecast.
Such drawbacks make the Kalman filter application unfeasible. The computational cost
can be reduced by the use of a frozen covariance matrix, a method known as Optimal
Interpolation (OI). Although easy to apply, the OI obviously suffers from the absence of
dynamical information on the error statistics.

3.3 Dealing with non-linearities

The formulation of the BLUE and therefore of the Kalman filter considered the case
where the model propagator and observation operator are linear, given by M and H,
respectively. However, in many situations they are known to be non-linearly related to
the state vector. This situation spoils the optimality of the aforementioned estimators,
for the Gaussian assumption is not likely to hold in such case. Another drawback is
that in the nonlinear case, the model and/or observation operators cannot be written in
simple matrix form, therefore not allowing for a description of the operator transpose.
There are two methods derived from the Kalman filter that can handle different levels of
nonlinearities.
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Figure 3.1: The main steps in a sequential data assimilation algorithm. a) An uncon-
strained model trajectory for the interval and a set of observations of the real system
distributed over different times of the interval. b) The forecast step consists in the propa-
gation of the unconstrained model up to a certain time where observations are available.
c) Given the uncertainties in both the forecast and the observations and the innovation,
an analysis is computed. d) The analysis is then propagated by the numerical model until
new observations are available. From Fournier et al. (2010).

3.3.1 The Extended Kalman Filter

In the case the model propagator and observation operator, M and H, are weakly non-
linear, they can be well represented by their tangent linear approximation, M′ and H′

respectively, around a given reference state x0. They can be written as

M′ =
∂M
∂x

∣∣∣
x0

, (3.39)

H′ =
∂H
∂x

∣∣∣
x0

. (3.40)

The Kalman filter algorithm can be extended to the use of those operators, a formulation
known as the Extended Kalman filter (EKF), explained in the following.

Forecast

The model state forecast is performed by the non-linear numerical simulation, while the
covariance forecast is approximated by the use of the tangent linear operator

xfi+1 = Mi,i+1(xai ), (3.41)

Pf
i+1 = M′

i,i+1P
a
iM

′T
i,i+1 + Qi+1. (3.42)
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Analysis

The calculation of the Kalman gain is done with the tangent linear observation operator,
while the innovation is calculated by using the non-linear projector

Ki+1 = Pf
i+1H

′T
i+1(H′i+1P

f
i+1H

′T
i+1 + Ri+1)−1, (3.43)

xai+1 = xfi+1 + Ki+1[yo −Hi+1(xfi+1)], (3.44)

Pa
i+1 = (I−Ki+1H

′
i+1)Pf

i+1. (3.45)

Further considerations

The EKF can be expanded to the Iterated Extended Kalman filter (IEKF), in which, as
the name suggests, the solution is sought iteratively. This small modification allows for
better approximation of the linearization process. A description of the iterative solution
for a non-linear observation operator can be found in Cohn (1997).

3.3.2 The Ensemble Kalman Filter

In the case of stronger non-linearities, the higher order terms on the expansion of Eqs. 3.39
and 3.40 play a significative role, compromising the EKF performance. Another possibility
to account for the non-linearities of the problem is to conceive an ensemble of model states
instead of a single state vector describing the system. This corresponds to a Monte-Carlo
sampling of the model pdf, which is the idea behind the Ensemble Kalman filter (EnKF)
proposed by Evensen (1994, 2009).

In synthesis, the EnKF consists in gathering at random an ensemble of models {xf1 , ...,xfNe
}

of Ne ensemble members. We can define a mean background state 〈xfi 〉 and sample co-
variance matrix Pf given by

〈xfi 〉 =
1

Ne

Ne∑
e=1

xfi,e, (3.46)

Pf
i =

1

Ne − 1

Ne∑
e=1

(xfi,e − 〈xfi,e〉)(xfi,e − 〈xfi,e〉)T , (3.47)

where the subscript e refers to each ensemble member. Those two pieces of information
relating to the first two moments of the background pdf are further incorporated on the
Kalman filter algorithm. The observations yo are set to match the random variables
defining the model, therefore they should be as well defined as random variables (Burgers
et al., 1998). For that reason, each ensemble member will assimilate the observation set
at a time i assigned with different errors,

yoi,e = yoi + εoi,e, (3.48)

where εe
o is the observation error added to a random perturbation with mean and standard

deviation defined by the observation uncertainty εo.
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Forecast

The forecast step is simple, consisting of a simple forwarding of the ensemble by the
underlying model

xfi,e =Mi,i−1(xai−1,e). (3.49)

Analysis

Equations 3.46 and 3.47 are then used to calculate the mean 〈xfi 〉 and the covariance Pf
i .

The Kalman gain matrix Ki can be calculated with the application of the direct nonlinear
observation operator with the following steps

HiP
f
i =

1

Ne − 1

Ne∑
e=1

[
Hi(x

f
i,e)−Hi(〈xfi 〉)

] [
xfi,e − 〈xfi 〉

]T
, (3.50)

HiP
f
i H

T =
1

Ne − 1

Ne∑
e=1

[
Hi(x

f
i,e)−Hi(〈xfi 〉)

] [
Hi(x

f
i,e)−Hi(〈xfi 〉)

]T
, (3.51)

Ki = Pb
iH
†
i (HiP

b
iH

T
i + R)−1, (3.52)

(Nerger, 2004). The analysis is then performed for each ensemble member

xai,e = xfi,e + Ki(y
o
i,e −Hix

f
i,e). (3.53)

The analysis estimate is then given by the mean analysis 〈xai 〉 and the sample analysis
covariance Pa

i is updated implicitly by means of the ensemble

〈xai 〉 =
1

Ne

Ne∑
e=1

xai,e, (3.54)

Pa
i =

1

Ne − 1

Ne∑
e=1

(xai,e − 〈xai,e〉)(xai,e − 〈xai,e〉)T . (3.55)

Further considerations

One of the practical aspects of the EnKF is the way the covariances are handled. Since
they depend only of the Ne model states, they do not need to be stored or even explicitly
computed. Also, model uncertainty estimation is a rather difficult task, and the ensemble
spread is easy to compute and thought to be a good first order proxy. It is important
to note that for a sufficiently large ensemble, the analysis sample covariance converges to
that of the classic Kalman filter (Burgers et al., 1998).

The number of ensemble members needed for the EnKF corresponds to O(102), since
the error in sampling decreases as N−1/2 (Evensen, 1994). This somehow negatively
impacts the ease of dealing with the forecast covariance matrix. Such problem can be
minimized, however, by a parallelization of the ensemble forecast itself (Nerger, 2004).
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An alternative approach for dealing with a nonlinear observation operator consists in
artificially augmenting the state vector. In such a case, the state vector is extended in
order to admit the observation vector. As a result, the effective observation operator is
linear and affects only the extended part of the state vector. This approach leads to the
same performance as the EnKF.

3.4 Comparison with the variational approach

Data assimilation is essentially divided between two different methodologies, the sequen-
tial Kalman filter-based algorithm and variational methods. While sequential assimilation
is based on estimation theory, the variational methods are based on optimal control theory.
The variational methods (3D-Var or 4D-Var, depending if the problem is time-dependent),
aim at minimizing the functional in Eq. 3.18, generally called the ’cost’, or ’objective’,
function. If the observations are time-dependent, the adjustment of the model given the
observations is performed over the whole interval, meaning that the model is influenced
by all the available observations at once.

An important control parameter for a numerical model is its initial condition x0. In the
variational approach, it is possible to determine it from all subsequent data considered
over a given time interval. A scheme of the variational data assimilation is showed in
Figure 3.2a. As for the minimum variance estimate, the estimation is done by seeking the
inflection point of the cost function, by means of ∇x0J (x0) = 0. For a situation where
the state vector is large, the brute force calculation of the gradient is ruled out, since the
model would have to be forwarded nx times. Instead, most variational algorithms are
based on the adjoint method (for a good and simple description of the adjoint method,
see Talagrand, 1997). In this situation, the backwards calculation of the adjoint field is
needed, based on the adjoint tangent linear model operator MT . The derivation of the
adjoint model by hand is a rather difficult task, possibly becoming unfeasible depending on
the complexity of the forward model. Instead, one can resort to automated differentiation
algorithms in order to calculate the adjoint model from a specific code (e.g. Sambridge
et al., 2007).

The variational approach can easily be extended in order to adjust not only the model
initial conditions, but also its underlying control parameters and boundary conditions.
However, there are two strong drawbacks with respect to the sequential algorithms. One
is that the variational formalism generally assumes the model as perfect (that is, η = 0).
The other is the absence of analysis error statistics, although recent applications (Eg-
bert et al., 1994) impose additional constraints on the cost function in order to estimate
the a posteriori uncertainties. It is interesting to note, however, that both sequential
and variational algorithms are convergent in terms of their estimates at the end of the
assimilation period, in the case of linear operators, perfect model and Gaussian statis-
tics (Talagrand, 1997). Moreover, despite the considerable computational cost of both
variational and sequential assimilation algorithms, 4D-Var and EnKF for example, their
operational performance in terms of forecast are seen to be equivalent for NWP (Buehner
et al., 2008).

Also, a big advantage of the variational approach with respect to the sequential one is
that in the former, the information from the observations is propagated backwards as well
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Figure 3.2: Variational data assimilation and sequential smoother. In the variational
approach a) the background is adjusted within all set of observations spanning the whole
time interval by an iterative scheme in order to better fit the observations and through
that find the model initial condition x0. The sequential smoother b) is performed on top of
the already performed sequential analysis, retropropagating the observation information
in time. From Fournier et al. (2010).

as forward (compare Fig. 3.2a and Fig. 3.1). This, however, can be compensated by the
use of the Kalman smoother (KS) in sequential methods. In the KS, once the sequential
forward assimilation is performed, a second backwards sequential assimilation is applied,
retropropagating the information of the observations into the past (Cohn et al., 1994). A
scheme of the KS algorithm is shown in Figure 3.2b. In fact, filtering is one of the many
aspects of the sequential estimation problem, in which observations up to a given time k
are used to estimate the state of the system at all times until and including k. Smoothing
is the case for which observations before and after k are used to constrain the state at the
time k. Prediction, finally, is when observations at the time k are used to estimate the
state after k.

3.5 Applications

Although data assimilation has flourished in the atmospheric science context, it has begun
inspiring diverse scientific fields when it comes to understanding the evolution of a given
physical system and predicting its behavior. Widely known from NWP (Kalnay, 2003),
where the main objective is predicting the short-range dynamics of the atmosphere, data
assimilation has been extended for longer time scales of the atmosphere dynamics, in
the field of climatology (Dee et al., 2011). Climatology research is important in face of
the observed current climate changes, and has lead to the creation of the IPCC (Inter-
governmental panel on climate change) whose reports on the estimated future evolution
of climate due to human activity and carbon gas emissions are strongly based on data-
assimilation and ensemble methods (Knutti and Sedláček, 2013).

However, climate itself is strongly dependent on the state of the ocean, and the in-
creasing interest in unraveling the ocean dynamics motivated progresses in oceanographic
data assimilation (Ghil and Malanotte-Rizzoli, 1991). Given the big technical improve-
ments for the acquisition of indirect data which recorded the history of the states of the
atmosphere and the oceans, the use of reanalysis and smoothing has been of particular
interest to oceanographic data assimilation (e.g. Carton and Giese, 2008; Cosme et al.,
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2010).

While the big scales of modeling of the Earth’s climate can be found through cou-
pling ocean and atmospheric models, the accurate prediction of its subsystems requires
researchers to further specialize in fields such as hydrology, sedimentology, ecology, con-
tinental surfaces studies and glaciology. All these fields are currently using data assimi-
lation either for reanalysis or parameter estimations (Rodell et al., 2004). Additionally,
the applications of data assimilation on surface and near-surface processes also cross into
monitoring natural resources (Nævdal et al., 2005) with potential applications both for
the industrial sector and for environmental impact studies.

The study of fields of geoscience that are less dependent on human activity also have
benefited from using data assimilation techniques. For instance, mantle convection models
have been combined with tectonic data (like surface kinematics and seafloor age distribu-
tion) with promising results (Bunge et al., 2003; Bocher et al., 2016). The study of the
ionosphere, has been using data assimilation to incorporate variations of the GPS signal
intensities to better estimate its evolution (Bust et al., 2004).

A decade ago, data assimilation was also introduced in astrophysics, in particular
on solar dynamo research by Brun (2007). Solar dynamo data assimilation would have
particular importance in space weather, due to the strong link between the terrestrial
magnetic environment and the solar activity. The first efforts in solar data assimilation
were made by Kitiashvili and Kosovichev (2008), followed by Dikpati et al. (2014), in
a sequential approach, and by Jouve et al. (2011) in a variational one. Going beyond
prediction of the solar magnetic field, Hung et al. (2015) enhanced the latter variational
framework in order to constrain the underlying flow in the solar convection zone.

The dynamo models used in the aforementioned examples are mean-field models (e.g.
Sanchez et al., 2014b), mentioned in Section 1.2. Their relative simplicity due to the
reduced dimension imposed by axisymmetry is the reason for their use in solar data
assimilation. Given their relevance to solar activity prediction, it is important to ac-
knowledge the existence of a predictability limit (recall Section 2.9) of such mean-field
based solar data assimilation. Such study was performed by the author at the beginning
of the thesis project described in this manuscript. The results, shown in Sanchez et al.
(2014a), pointed to a forecast horizon of ∼ 3 solar cycles. This article is presented in
Appendix A.

At about the same time data assimilation was introduced in the solar dynamo, it
begun to draw attention to the geomagnetic and geodynamo context, as detailed in the
following.

3.6 Geomagnetic assimilation: state of the art

As stated in Fournier et al. (2010), geomagnetic data assimilation is still in its infancy.
Preliminary studies of simple one-dimensional versions of the MHD dynamo equations
mimicking the geomagnetic data assimilation case have been introduced in a variational
form by Fournier et al. (2007) and EnKF context by Sun et al. (2007). Furthermore, a
more complex geodynamo model (like the ones described in the previous chapter) has
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been used in the specific sequential context of OI by Liu et al. (2007); Kuang et al. (2008)
and EnKF (Fournier et al., 2013), confirming the feasibility of sequential geomagnetic
assimilation. The variational route by the adjoint method has also been further explored
in terms of a quasi-geostrophic model by Canet et al. (2009) and by a simplified 3D MHD
dynamo introduced by Li et al. (2011, 2014). All such studies are closed-loop experiments
(also known as twin or fraternal experiments, or even OSSE’s, observing system simula-
tion experiments), where synthetic data is generated from a reference numerical model
(characterized as the true state) so the assimilation performance can be directly assessed.

Given the relative success of geomagnetic data assimilation in twin scenarios, different
methodologies have been applied to ’real’ geomagnetic data (Kuang et al., 2009; Tangborn
and Kuang, 2015), sometimes with the objective to contribute to new IGRF models and
its short term predictions (Kuang et al., 2010; Gillet et al., 2015; Fournier et al., 2015).
Longer term predictions of the Earth’s magnetic field have also been performed, showing a
probable continuation of the decrease in the axial dipole moment intensity and westward
drift of the South Atlantic magnetic anomaly (Aubert, 2015, where the secular variation
is also considered as an observation).

However, all studies aforementioned do not directly assimilate proper geomagnetic
data, that is, the components of the magnetic field vector at the Earth’s surface or in
altitude. Instead, they consider Gauss coefficients from inverse models of the magnetic
field at the CMB (introduced in Section 1.5) as proxy to geomagnetic observations. Such
’level-2’ observations (in the space agency community jargon) are privileged for two main
reasons. One is that since most dynamo codes are written in spectral form, the observation
operator in order to assimilate ’level-2’ observations consists in a simple diagonal matrix
(see for example Kuang et al., 2009). The second reason is that such observations are
already pre-processed in order to isolate the core’s signal from all other magnetic field
sources, like the magnetosphere, ionosphere and induced currents in the mantle. However,
the use of ’level-2’ observations should be performed with caution in the assimilation
exercise. Since such observations are the result of inverse modeling of the magnetic field of
the CMB, they are subject to the influence of regularization, generally acting to damp the
smaller scales of the observable core’s magnetic field. Also, the assessment of observational
errors is not evident for the ’level-2’ observations, although recent models have drawn
specific attention to the matter (Gillet et al., 2013). All in all, following the reasoning
from Talagrand (1997), direct (raw) observations should always be privileged in entering
the data assimilation exercise, an idea which should be extended to geomagnetism.

3.7 Assimilating real geomagnetic observations

As seen in Section 1.5, the assumption of an electrically insulating mantle is appropriate
at first order. In this case, a vector component α of the magnetic field at or above the
Earth’s surface at a radius ro is connected to the magnetic field at the CMB by Eq. 1.8.
The equation can be rewritten as

Bα(ro, θo, φo) =

∫
Gα(ro, θo, φo|rc, θ, φ)Br(rc, θ, φ)r2

c sin θdθdφ, (3.56)

where α = {X, Y, Z} is the vector component, (ro, θo, φo) are the coordinates at which
the observation is made and rc, the radius of the CMB, and Gα is the corresponding data
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kernel, or Green function, corresponding to the α observation. The Green functions for
the vector components of the magnetic field for a given a location at the Earth’s surface

GZ =
1

4π

[
ρ2 − ρ2(1− ρ2)

f 3

]
(3.57)

GX =
1

4π

[
ρ3(1 + 2f − ρ2)

f 3(1 + f − ρµ)

]
r̂c · θ̂o (3.58)

GY = − 1

4π

[
ρ3(1 + 2f − ρ2)

f 3(1 + f − ρµ)

]
r̂c · φ̂o. (3.59)

where f =
√

1− 2µρ+ ρ2, ρ = rc/ro and µ = r̂c · r̂o (see Constable et al., 1993, for the
derivation of the Green functions, and Fig. 1.12 for their graphical representations).

The information from Eq. 3.56 indicates the basic dependency to enter the observation
operator for raw direct geomagnetic observations. Its form in a data assimilation scheme,
however, will depend on the form of the state vector x. Details on the derivation of the
geomagnetic observation operators HX ,HY and HZ for the outputs from a Parody code
numerical simulation (Section 2.6) state vector are given in the next chapter.

As mentioned in Section 3.2.3, the typical size of a geodynamo simulation-based state
vector is nx ∼ 106. Figure 3.3 shows a histogram of the number of observations for dif-
ferent types of geomagnetic data through the last thousand years. Although existing in a
narrow time window, direct observations of the magnetic field, from magnetic observato-
ries and satellites, are relatively abundant. If we consider, for example, one year of satellite
observation, we would in principle consider an observation vector dimension of ny ∼ 105,
closely matching the size of the state vector. One may think that the tendency of data
quantity to increase in time might lead the system to be finally overdetermined. This per-
ception is, however, misleading due to the magnetic curtain (Section 1.5). In other words,
no matter how copious the magnetic data, the crust magnetization inevitably masks the
core magnetic field beyond spherical harmonic degree 13. Considering that approximately
200 Gauss coefficients are needed to determine the field up until degree 13, the full state
vector x would be sampled up to 0.02% in the best case scenario (Fournier et al., 2010).

As previously stated, one of the main difficulties in assimilating raw geomagnetic
observations is the separating the magnetic field sources. This is specially important
for very precise satellite and observatory data, for which σ ∼ 10 nT. However, for the
archeomagnetic dataset, the observational uncertainties are such that the contamination
of the core signal from different magnetic field sources is negligible in the estimation
problem.

3.8 The case for archeomagnetic observations

As mentioned in Section 1.6, the archeomagnetic catalog consists of indirect observations
of the magnetic field vector. Since it is often given as incomplete information from either
its directions or its intensity, a full vector reconstruction from the database is not possible.
This situation corresponds to the problem of a nonlinear observation operator presented
in Section 3.3. The possibilities in hand are to resort to a linearized observation operator
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Figure 3.3: Histogram of observations from the magnetic field per year through the last
millennium in logarithmic scale. The colors represent the different data catalogs: the
archeomagnetic dataset in orange, the historical dataset (data from navigation logbooks
and magnetic observatories) in black, and the satellite dataset in blue. From Fournier
et al. (2010).

(as in the EKF, Section 3.3.1) or to an ensemble assimilation strategy (as in the EnKF,
Section 3.3.2). A hybrid of those two methodologies is applied for the time-independent
problem of archeomagnetic field modeling in the following part, Chapter 4. This study
makes possible an analysis of the resolution power of the archeomagnetic field observa-
tions, preparing the ground for a sequential assimilation of the archeomagnetic data in
Chapter 5.
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Chapter 4

Dynamo-based archeomagnetic field
modeling

Our knowledge of the core magnetic field in the global scales is based on diverse types
of observations, direct and indirect, at the Earth’s surface. Due to both the uneven
distribution of the magnetic observations in space and time and the contamination of the
magnetic signal by a plurality of sources close to the observation sites, the inverse problem
for modeling the magnetic field of the core is of special complexity. There exist numerous
inverse core field models (as described in Section 1.6.5) differing mainly in resolution, data
catalogs and data processing. The underlying inverse framework remains the same.

This chapter highlights the possibility of changing a key ingredient in such methodol-
ogy, the prior spatial information entering the core field inverse problem. Instead of an
adjustable spatial norm, dynamo-based correlations of the magnetic field at the top of
the core are used to generate the spatial prior. This approach serves as an introduction
to the use of data assimilation in geomagnetism, preparing the ground for a sequential
assimilation algorithm as the ones described in Chapter 3. Since the interest of this thesis
is to understand the long-term dynamics of the magnetic field, the data entering the in-
verse problem consists of archeomagnetic observations. In particular, this chapter focuses
on archeomagnetic field modeling through the time when archeomagnetic data are more
abundant, between 1200 BC and 2000 AD.

4.1 The general inverse problem

As seen in Section 1.5, the magnetic field is generally represented in a spherical harmonic
basis. A model of the core magnetic field at a given time can be defined as the grouping
of Gauss coefficients x = [..., gm` , h

m
` , ...] up to a given truncation. Given a set of data yo

with error covariance R, connected to the model by H, the traditional inverse problem
involves minimizing the functional

J (x) = [yo −H(x)]TR−1[yo −H(x)], (4.1)

which is equivalent to the cost function introduced by Eq. 3.18, without the prior con-
straint. The solution to the minimization of Equation 4.1 corresponds to the weighted
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least-squares one. Complications arise, however, due to the general non-unique character
of the problem and the instability of the solutions (see Parker, 1994; Gubbins, 2004, for
extensive reviews on inverse theory and applications in geomagnetism). To mitigate those
issues an additional constraint, or regularization, is added to the cost function based on
some prior information of the model. A specific model norm is then added to Eq. 4.1 to
stabilize the solutions, as in

J (x) = [yo −H(x)]TR−1[yo −H(x)] + xTλC−1x, (4.2)

where C is a matrix defining the model complexity and λ is called the damping parameter.
In the case where λ is big, the solution will favor the information on the model norm, and
conversely, if λ is small, the solution will prioritize the fit to the data.

The damping parameter being adjustable, one generally seeks a compromise solution
between model complexity and data fit. This trade-off between the fit and the norm is
illustrated in Figure 4.1. The matrix C is chosen based on plausible assumptions about the
basic features of the model. In the case of the geomagnetic field, the ’dissipation norm’
is often used, involving an approximated expression for a lower bound for the Ohmic
dissipation at the CMB (Gubbins and Bloxham, 1985). Such norm scan differ, however,
from model to model, mostly in order to mitigate the damping effect on the dipole (e.g.
Korte et al., 2009). Also, an additional model norm can be introduced for treating the
time-dependency of the problem, which for simplicity will be set aside in this chapter.

Figure 4.1: Trade-off curve showing different solutions of the inverse problem depending
on the damping parameter. The error E represents the misfit between the data and model
projection, the first term on the RHS of Eq. 4.2, the norm N the second term on the RHS
of the equation and θ the damping parameter. From Gubbins (2004) .

Since the model norm should represent the basic information from the actual magnetic
field at the core, one may wish to benefit from the prior information given by dynamo
simulations. Recalling the discussions in Chapter 2, many numerical dynamo models are
categorized as morphologically Earth-like, and can therefore be used to bring statistical
information from the magnetic field at the CMB to build C. In this case, the prior
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’dissipation norm’ will be replaced by what is introduced in this chapter as a ’dynamo
norm’.

4.2 Prior information from dynamo models

The prior dynamo information can be given by the mean dynamo state and the covari-
ance between the different variables composing the dynamo system, in a similar way as
introduced in the EnKF formalism in Section 3.3.2. In fact, the mean and covariance can
be calculated from a given ensemble of models originating from a dynamo simulation, like
for example the CE model, following the EnKF approach. Since we are interested in the
time-independent estimation problem, only the observable part of the dynamo system,
that is, the poloidal component of the magnetic field (Eq. 2.33), is important to compose
the model state vector x. Such difference in input information from the ’dissipation’ and
’dynamo’ norm is likely to impose very different spatial correlations, affecting the way
information is propagated from the observations to the model.

4.3 Nonlinear observation operator

The archeomagnetic observations, declination, inclination and intensity, are nonlinearly
related to the radial component of the magnetic field, and therefore to the state vector.
In such case, the two options are either to rely on the use of a linearized observation
operator (as in the EKF approach, Section 3.3.1) or on an ensemble formalism (as in the
EnKF, Section 3.3.2) to mitigate the effects of spoiling the assumed Gaussian statistics
by non-linearities. It is also possible to combine both methodologies, in order to improve
the solution.

As mentioned in Section 1.6, the archeomagnetic dataset can comprise observations
originating from the magnetic remanence of volcanic rocks, archeological artifacts and
sedimentary deposits. In comparison with the first two data, the sedimentary ones are
hard to integrate in terms of observation operator, since often they are given in terms
of relative components. In the following, for simplicity, they will be set aside. The
archeomagnetic dataset mentioned further will imply therefore data only from volcanic
rocks and archeologic artifacts.

4.4 Archeomagnetic resolution

The significant heterogeneity in archeomagnetic data distribution (Fig. 1.11) leaves open
the question to what extent such observations can image the core magnetic field (Donadini
et al., 2009). The resolution of the archeomagnetic data is not only compromised by the
biased sampling of the Earth’s surface but also by the high uncertainties affecting the
indirect data, much higher than the ones from direct observations from the historical
and contemporary record. Additionally, the uncertainties in age attribution for both
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radiochronology and archeologic dating can span decades and even centuries sometimes,
as mentioned in Section 1.6.

Inverse models of the main core field for the archeomagnetic period based on the
adjustable dissipation norm do not directly tackle the quantification of resolution of the
archeomagnetic dataset. Initial archeomagnetic field models supported the impossibility of
going beyond the dipole and quadrupole, truncating the model to low spherical harmonic
degree and order (Hongre et al., 1998). However, this approach allows for features of
higher complexity of the magnetic field to artificially contribute to lower spatial scales,
compromising the low resolution model. As a consequence, more recent models consider
the archeomagnetic field truncation up to degree 5 (Licht et al., 2013) or further up to
degree 10 (Korte et al., 2009). From comparison of the power spectra of archeomagnetic
models and the ones based on historical and satellite data, Korte and Constable (2008)
suggest the former are resolved spatially up to degree 4. However, this criterion does
not take into account the fact that the regularization by the ’dissipation’ norm implies a
damping of the model coefficients, especially the higher degrees. Although initial models
focused on providing snapshots or time averages over some specific intervals (Constable
et al., 2000), current ones apply a temporal regularization imposing a magnetic field with
smooth variations, minimizing the second time derivative of the field at the CMB (Korte
and Constable, 2003). To that matter, Korte and Constable (2008) also suggests a limited
temporal resolution for archeomagnetic data, of the order of 100 years.

In the previous two sections, emphasis was placed on the possibility of describing a
well-defined prior based on Earth-like dynamo simulations and a linearized observation
operator. These two pieces of information allow then for a straightforward calculation of
the model resolution matrix, introduced in Section 3.2.2. The prior being fixed, the quan-
tification of the resolution depends solely on the data quantity, their type (declination,
inclination or intensity), geographic distribution and uncertainty. In order to understand
the weight of this information on archeomagnetic record, we propose an analysis of the
evolution of the archeomagnetic resolution in time.

4.5 A prelude to archeomagnetic data assimilation

The temporal treatment of core field inverse modeling is generally handled by the devel-
opment of each model variable in cubic B-splines functions (e.g. Korte and Constable,
2003), creating a continuous model. The spline knot spacing can vary from model to
model, depending on the assumption in data temporal resolution, discussed in the previ-
ous section. This temporal dependency is then regularized by the assumption that the field
must evolve smoothly in time, by means of the minimization of the second time derivative
of the field. Alternatively, the ’smooth’ temporal norm can be substituted by defining
the time variability of the model coefficients as stochastic processes and calculating their
respective temporal correlation functions, as in Gillet et al. (2013).

From the data assimilation point-of-view, the temporal dependency would enter the
estimation problem by means of the underlying numerical model representing the physics
of the system. In particular for the sequential assimilation (Section 3.2.3), the numerical
model would provide the prior information at analysis time and also a means of propa-
gating the information gained from the data at the forecast stage. Further exploration of
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the temporal evolution would be provided by the exploration of the temporal covariances,
smoothing out the final archeomagnetic model trajectory.

In order to prepare the ground for such a task, the performance of the analysis al-
gorithm should be tested and the spatial resolution of the archeomagnetic observations
should be explored. As an introductory study for archeomagnetic assimilation, the next
section focuses on the time-independent estimation problem. A matlab algorithm based
on the EnKF analysis step was developed by the author in order to estimate the magnetic
field under the dynamo constraints imposed by outputs from a dynamo model. A constant
prior information is given by an ensemble of model states from the CE simulation and
used for estimating the magnetic field at the CMB at different time windows of the recent
archeomagnetic period. Being time-independent, such an estimation represents therefore
the average field for each time window interval.

4.6 Article: Modeling the archeomagnetic field un-

der spatial constraints from dynamo simulations:

a resolution analysis

The following article, currently in minor revision for publication in the Geophysical Jour-
nal International, comprises an introductory approach to archeomagnetic data sequential
assimilation. It can be regarded as an inverse modeling exercise with the innovation of
being based on dynamo spatial covariances as prior information. Such a physically based
prior allows for the possibility of quantification of the archeomagnetic data resolution of
the magnetic field at the CMB. The quantification of resolution of the archeomagnetic
data is very important to any estimation problem, for it makes possible the assessment of
the trustworthiness of the different archeomagnetic core models variables. The algorithm
is used to construct a dynamo-based archeomagnetic field model, the AmR model. In or-
der to validate the results from the archeomagnetic resolution matrix, AmR is compared
to other archeomagnetic field models, ARCH3k.1 from Korte et al. (2009) and AFM from
(Licht et al., 2013). The differences in the models enable the easy distinction between
data-driven and prior-driven periods for the Gauss coefficients, in line with the resolution
of the archeomagnetic data.
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2 Université Grenoble Alpes-CNRS, Grenoble, France

3

March 3, 20164

SUMMARY5

Archeomagnetic observations are key to recovering the behavior of the geomagnetic field6

over the past few millennia. The corresponding dataset presents a highly heterogeneous7

distribution in both space and time. Furthermore, the data are affected by substantial8

age and experimental uncertainties. In order to mitigate these detrimental properties,9

time-dependent global archeomagnetic field models are usually constructed under spa-10

tial and temporal regularization constraints, with the use of bootstrap techniques to11

account for data uncertainties. The models so obtained are the product of an adjustable12

tradeoff between goodness-of-fit and model complexity. The spatial complexity is pe-13

nalized by means of a norm reflecting the minimization of Ohmic dissipation within14

the core. We propose in this study to resort to alternative spatial constraints relying15

on the statistics of a numerical dynamo simulation with Earth-like features. To that16

end, we introduce a dynamo norm in an ensemble least-squares iterative framework,17

the goal of which is to produce single-epoch models of the archeomagnetic field. We18

first validate this approach using synthetic data. We next construct a redistributed19

archeomagnetic dataset between 1200 BC and 2000 AD by binning the data in win-20

dows of 40-year width. Since the dynamo norm is not adjustable, we can legitimately21

calculate a resolution matrix to quantify the resolving power of the available archeo-22

magnetic dataset. Gauss coefficients are resolved up to spherical harmonic degree 3 for23

the first thousand years of the interval, to degree 4 for the next thousand years and to24

degree 5 during the last millennium. These conclusions are based on the distribution25

and uncertainties that characterize the dataset, and do not take into account the pos-26

sible presence of outliers. Comparison between our model, called AmR, and previously27

published archeomagnetic field models confirms the archeomagnetic resolution analysis:28

it highlights the dichotomy between data-driven coefficients for which model predictions29

coincide (within their respective uncertainties), and prior-driven coefficients. This study30

opens the way to physics-based models of the archeomagnetic field; future work will be31

devoted to integrating the framework here introduced into a time-dependent ensemble32

assimilation scheme.33

Key words: Archeomagnetism – Dynamo: theories and simulations – Inverse theory34

– Magnetic field variations through time35

1 INTRODUCTION36

The main source of the Earth’s magnetic field is located in the Earth’s core. Composed mainly of iron, the core is in liquid37

phase in its external part and solid in its interior. The temperature gradient between the inner and outer boundaries, together38

with the release of lighter buoyant elements from the crystallization of the inner core, induces convection inside the outer core.39

Such convective motions of the highly conductive iron flow enable electromagnetic induction, generating thus a magnetic field40

via a dynamo process. This process, affected by the Coriolis force due to the Earth’s rotation, gives place to a mainly dipolar41

structure of the global magnetic field, roughly aligned with the rotation axis. There are, however, important departures from42
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dipolarity, like the presently observed South Atlantic Magnetic Anomaly. The westward drift and spread of this anomaly, as43

well as the intensity decrease of the axial dipole throughout the past hundred years, illustrate the late Secular Variation (SV)44

of the Earth’s magnetic field (Hartmann & Pacca, 2009; Finlay et al., 2010; Jackson et al., 2000).45

Although current direct measurements of the magnetic field offer global coverage in terms of very precise satellite, magnetic46

observatory and survey data, the magnetic field and its SV beyond the past few centuries remain far less constrained. The key47

to unravel it relies on the indirect magnetic field information provided by the remanent magnetization acquired by geological48

deposits (mainly lava flows) and archeological artifacts at the time of their formation, emplacement, fabrication or use. These49

observations are known as archeomagnetic data, which are compiled in global databases, such as GEOMAGIA (Donadini et al.,50

2006), for directional and intensity data covering the past 50 millennia, and ArcheoInt (Genevey et al., 2008) for intensity51

data over the past 10 millennia. Unfortunately, these datasets are clustered around some specific areas of the globe, like52

Europe and Asia, leaving the South Hemisphere practically undocumented. They are also sparse before the last two thousand53

years. Despite the challenging character of archeomagnetic compilations, they have allowed the development of several inverse54

models of the global magnetic field spanning the past few millennia (Korte & Constable, 2005; Korte et al., 2011; Licht et al.,55

2013; Pavón-Carrasco et al., 2014; Nilsson et al., 2014).56

Inverse magnetic field models are the result of a minimization of the misfit between data and model, generally regularized57

in space and time by a certain norm of the model to restrict the solution of such an ill-posed inverse problem (Gubbins &58

Bloxham, 1985). The regularization is based on prior information built on the hypothesis that the core magnetic field varies59

smoothly in time and that the dissipation of magnetic energy at the core-mantle boundary (CMB) is minimum (Gubbins,60

1975; Bloxham & Jackson, 1992). The shorter temporal and spatial scales of inverse geomagnetic field models are consequently61

damped, thereby concealing a possibly more complex behaviour of the geomagnetic field. As an alternative, different constraints62

can be sought in numerical simulations of the Earth’s dynamo, which make it possible to understand the main dependencies63

between the field variables of the dynamo system and also to construct, for instance, the statistics describing the variability64

of the magnetic field at the CMB. Such statistics can be used to define a “dynamo norm” to constrain the archeomagnetic65

inverse problem, in place of the cannonical regularizations discussed above. We shall explore this possibility in this study.66

Different kinds of dynamo models can be built depending on the control parameters and coupling mechanisms within67

the different regions of the deep Earth. Some standard dynamo models, considering thermochemical convection as the driving68

mechanism of the system, succeed in displaying an Earth-like morphology of the magnetic field relative to reference inverse69

models (Christensen et al., 2010), but fail to present an Earth-like SV pattern (Aubert et al., 2013). However, the recent model70

designed by Aubert et al. (2013) is able to reproduce the localized westward drift of low latitude magnetic anomalies, like the71

South Atlantic Anomaly. The model, coined “Coupled Earth”, considers gravitational coupling mechanisms and heterogeneous72

crystallization of the inner core to produce an Earth-like SV. Given its Earth-likeness, the statistical information from Coupled73

Earth can be used as prior information in the problem of estimating the magnetic field at the CMB (e.g. Aubert, 2014).74

Estimating the state of a system given a set of noised observations together with a prior model state is a filtering problem75

(Jazwinski, 1970), for which Kalman filter-based algorithms are largely used. However, while errors are usually prescribed76

for observations, uncertainties affecting the prior information are difficult to assess. An option is to work with an ensemble77

of numerical simulations, a stragegy at the heart of the Ensemble Kalman filter (EnKF) (Evensen, 2003). In this case, the78

prior estimate is given by the mean of an ensemble of model states derived from the numerical integration of the system in79

question, while prior uncertainties are represented by the sample ensemble covariance. Assuming the ensemble covariance is a80

good proxy for model error, the EnKF will update the prior information in light of the observations and produce a posterior81

estimate (also called the analysis), characterized as well by its mean and covariance.82

The EnKF is one example of the many techniques used in the data assimilation framework, the backbone of which relies83

on a dynamical model describing the physics of a system to be updated with information from its observations. Although data84

assimilation has been widely used in meteorology and oceanography (Kalnay, 2003), it has begun to be explored in geophysics85

only recently. In particular, an introduction to data assimilation applied to the specific problematic of the Earth’s magnetic86

field can be found in Fournier et al. (2010). So far, the ongoing work on geomagnetic data assimilation has focused on updating87

a numerical model of the geodynamo with Gauss coefficients of the magnetic field as input data (e.g. Fournier et al., 2013;88

Li et al., 2014; Tangborn & Kuang, 2015). Although the results are promising, in terms of propagation of information from89

the CMB throughout the core (see also Kuang et al., 2009; Aubert & Fournier, 2011, for earlier attempts), in an ideal data90

assimilation scenario raw pointwise observations of the magnetic field should be assimilated in place of field model coefficients.91

We present in this paper a preliminary attempt at assimilating such pointwise observations, whose goal is to model the92

archeomagnetic field at a given time, under the spatial constraint specified by the Coupled Earth dynamo norm. For simplicity,93

we ignore at this stage the possibility of performing a temporal sequence of analyses (as permitted by a full EnKF setup), and94

focus instead on the impact of the dynamo norm on single-epoch field models. In order to ease comparison of our temporally95

unregularized approach with previously published archeomagnetic field models for the period 1200 BC to 2000 AD, we resort96

to the Geomagia50.V2 database of Donadini et al. (2006, 2009) that was used to produce these models (despite the recent97

update of GEOMAGIA by Brown et al., 2015).98

This paper can be summarized as follows. We begin by presenting the estimation method and the dynamo model in99
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Section 2, including details on the archeomagnetic observation operators, the ensemble approach and a synthetic validation test.100

Next, in Section 3 we apply the methodology to an archeomagnetic context, focusing on the resolving power of archeomagnetic101

data. Section 4 describes a dynamo-based archeomagnetic field model relying on a redistributed archeomagnetic dataset, which102

we compare with previously published models. A summary and some perspectives are finally given in Section 5.103

2 METHOD AND MODEL104

2.1 Generalized least-squares iterative framework105

At any given epoch, we wish to minimize a functional J of the form106

J (x) = [y −H(x)]T R−1 [y −H(x)] +
(
x− xb

)T
Pb−1

(
x− xb

)
107

in which the observations y, whose error covariance matrix is denoted by R, are nonlinearly connected with the system108

state x, by means of a nonlinear observation operator H. The initial guess on the state, xb, also called the background, is109

characterized by the background error covariance matrix Pb. Unless otherwise noted, all vectors are column vectors, and110

superscript T denotes transpostion.111

The solution to this problem is sought iteratively, by constructing a sequence of xk such that (Tarantola & Valette, 1982,112

Eq. 23)113

xk+1 = xb + PbHkT
(
HkPbHkT + R

)−1 [
y −H

(
xk
)

+ Hk
(
xk − xb

)]
(1)114

or, equivalently (Tarantola & Valette, 1982, Eq. 24),115

xk+1 = xb +
(
HkTR−1Hk + Pb−1

)−1

HkTR−1
[
y −H

(
xk
)

+ Hk
(
xk − xb

)]
, (2)116

starting in both cases with the initial guess x0 = xb. In these equations, Hk refers to the observation operator linearized117

about the current estimate,118

Hk =
∂H
∂x

∣∣∣∣
x=xk

. (3)119

These two formulations of the iterative algorithm assume that data and background errors are independent. They are120

equivalent mathematically, but their effective cost differs, depending on the respective size of the data and state vectors, ny121

and nx, respectively. Equation 2 should be preferred in situations where ny � nx, while Eq. 1 is more expedient if ny � nx.122

As will be clear form Sections 2.3 and 3.1, the state and observation vectors dimension considered here correspond to the123

latter situation. We therefore choose the algorithm defined by Eq. 1, for which, once convergence is reached, the uncertainty124

affecting the final estimate x̂ is given by the posterior covariance matrix125

P̂ =

[
I−PbĤT

(
ĤPbĤT + R

)−1

Ĥ

]
Pb, (4)126

where I is the identity matrix, and we understand that Ĥ denotes the observation operator linearized about the final estimate127

of the state, x̂. The resolution matrix Ŝ, which relates to how well the final estimate x̂ resolves the true model state xt given128

the observations, is defined as129

Ŝ = PbĤT
(
ĤPbĤT + R

)−1

Ĥ. (5)130

In this nonlinear context, the interpretation of Ŝ is subject to caution, as high-order derivatives of H are neglected in the131

analysis, in the hope that the final estimate is close to the true state. We will check on the validity of this assumption when132

dealing with synthetic data, in Section 2.6 below.133

In standard geomagnetic field modeling, the prior information places regularization constraints on the sought solution,134

by setting135

Pb = λ−1C, (6)136

where λ is an adjustable ‘damping’ parameter and C a suitably chosen matrix, see e.g Bloxham et al. (1989), Eqs. 3.8–3.11.137

The novelty of our approach stands in the prior information we supply, which rests on the statistics of a numerical dynamo138

simulation, a dynamo norm, and in the ensemble approach that we adopt in order to assess the uncertainties of our estimate139

of the archeomagnetic field. We dedicate the next paragraphs to these aspects. We begin by the description of the numerical140

simulation, the choice of which in turn dictates the nature of the state vector x.141
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2.2 A geodynamo model as source of prior information142

The essential physics of the dynamo can be explained by the interaction between the fluid flow, magnetic field, temperature143

and composition within the core. Such interactions are governed by the magnetohydrodynamic (MHD) equations, which144

for the case of the Earth’s core are often considered in the Boussinesq approximation due to the supposedly weak density145

stratification of the outer core (e.g. Braginsky & Roberts, 1995). Given the complexity of the dynamo system, the MHD146

dynamo equations are solved by a numerical approximation in a rotating spherical shell (consult Christensen & Wicht, 2015,147

for a recent review on numerical dynamo simulations). The parameter space reached by numerical simulations is, however,148

restricted by computational feasibility, resting still far away from Earth-like values (Glatzmaier, 2002). Despite this distance149

in parameters, many numerical simulations have been claimed to be Earth-like. To address the issue of semblance between150

simulations and the magnetic field of the Earth, Christensen et al. (2010) defined different morphological criteria to characterize151

the Earth-likeness of the output of numerical dynamo simulations. However, such criteria aim at describing only the static,152

morphological semblance with the Earth’s magnetic field, leaving aside its dynamical aspect.153

2.2.1 The Coupled Earth dynamo model154

Although archeomagnetic field features have been shown to drift both to the west and the east at high latitudes, a system-155

atic westward drift is observed around the equator, especially in the Atlantic hemisphere, most notably in historical data156

(Dumberry & Finlay, 2007; Finlay & Jackson, 2003). Such geographical concentration of the SV strongly suggests a persistent157

heterogeneous control from the upper and/or lower boundaries of the core. Furthermore, the evidence for seismic anisotropy158

at the top of the inner core (e.g. Souriau & Calvet, 2015, for a review) points to a hemispherical dichotomy in terms of inner159

core growth and therefore of buoyancy release at the inner core boundary (Monnereau et al., 2010; Alboussière et al., 2010).160

In light of these studies, Aubert et al. (2013) proposed a bottom-up control of the dynamo by the inner core. The model161

considers an heterogeneous buoyancy control at the inner core boundary (ICB), which, combined with the heterogeneous162

heat-flux control at the CMB, is responsible for a higher SV underneath the Atlantic hemisphere. Moreover, the model also163

includes the gravitational interaction of the lower mantle mass anomalies with the inner core, which results in large scale164

westward flow (and concurrent advection of field structures) beneath the CMB at low latitudes. This so-called ’Coupled-Earth’165

model is referred to as CE henceforth.166

In this study we aim at investigating the influence of the statistical properties of a dynamo simulation, the CE model, on167

the estimation of the magnetic field at the CMB. To that end, we need to find the correspondence between the magnetic field168

strength and its time scales from the numerical simulation (which operates in a non-dimensional world) and those observed.169

As in Aubert et al. (2013), the time scaling of CE is done by calculating the model non-dimensional secular time-scale τm170

and normalizing it to the Earth’s secular variation τ⊕ ≈ 415 years (Lhuillier et al., 2011). The rescaling ratio τ⊕/τm is found171

to be 56113 years. The magnetic field, on the other hand, is calibrated here by adjusting the root-mean-squared axial dipole172

of the simulation to that of the archeomagnetic model A FM-0 of Licht et al. (2013), giving a magnetic field rescaling ratio173

of 850.6 µT. It is important to note that once the calibration is so defined, it leaves no room for an additional adjustable174

parameter factorizing the dynamo norm entering the estimation problem.175

2.2.2 Statistical properties of the Coupled Earth dynamo model176

After rescaling the CE dynamo simulation, we define two basic statistical characteristics of the numerical simulation, namely177

the mean and spread (covariance) of the radial magnetic field Br at the CMB. Instead of considering the whole simulation178

interval, we define an ensemble of 820 states of the radial magnetic field at the CMB by randomly picking snapshots on a long179

sequence of the dynamo simulation, over an interval of about 100,000 years (the value of 820 ensures statistical convergence).180

The mean and spread of this ensemble projected in physical space are shown in Figure 1 for two spherical harmonic truncations181

(5 and 133, the latter being that of the native CE model). The average CE model shows an eccentric axial dipole, concentrated182

underneath northern Asia. Such feature is in agreement with recent and past configurations of the magnetic field; it results183

from the heterogeneous forcing from the inner core, stronger in the eastern hemisphere (Olson & Deguen, 2012). The mean also184

shows an invariance in scale, as seen by the similarity between Figs. 1a and 1c despite the different truncations. In contrast,185

the spread varies with the truncation, in morphology and intensity. As shown by Figs. 1b and 1d, it is mostly concentrated186

underneath the Earth’s North-East quadrant for the larger scales, and around low latitudes in between 90◦W and 90◦E for187

the smaller scales. The biased distribution of the spread illustrates the effect of the combination of heterogeneous thermal188

couplings at the ICB and CMB. These two pieces of information, the mean and covariance of the radial magnetic field at the189

CMB, define the prior information that fuels the iterative procedure outlined in Section 2.1.190
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Figure 1. Mean and spread of the radial magnetic field at the CMB of the Coupled Earth (CE) dynamo model. a) and b) are respectively
the mean and spread truncated at spherical harmonic degree L = 5, with contours every 50 µT; c) and d) are the mean and spread at

the native model truncation, L = 133, with contours every 10 µT. All values in µT.

2.3 The state vector x191

Due to its solenoidal nature, the magnetic field vector B can be described in terms of its poloidal and toroidal components192

BP and BT ,193

B(r, θ, φ) = BP(r, θ, φ) + BT (r, θ, φ) = ∇×∇× [P(r, θ, φ)r] +∇× [T (r, θ, φ)r] , (7)194

where P and T are the poloidal and toroidal scalars and r is the radius vector (e.g. Dormy, 1997). This decomposition is195

used in the CE model, in which the poloidal and toroidal scalars are further projected onto a spherical harmonic (SH) basis196

to account for their horizontal dependency. The poloidal scalar at a given radius r is expressed as197

P(r, θ, φ) =
L∑

`=1

∑̀

m=−`
Pm` (r)Y m` (θ, φ), (8)198

where Y m` = eimφPm` (cos θ) is a complex-valued, fully normalized spherical harmonic of degree ` and order m, and L is the199

truncation of the expansion. As the toroidal field does not have a radial component, it is confined within the core (under the200

assumption that the mantle is an electrical insulator). For that reason, the only observable part of the core field at the Earth’s201

surface is the poloidal field. We consequently define the (column) state vector of our system by202

x ≡ [. . . ,Pm` (rc), . . . ]
T , (9)203

that is, the poloidal scalar in spectral space at the CMB (radius rc = 3485 km), which is a native component of the state vector204

characterizing the full CE simulation, for all admissible values of degree ` and order m below the truncation of degree and205

order L = 133 (nx = 9045). We use the full CE truncation bearing in mind the future application of the present methodology206

to sequential archeomagnetic assimilation, a situation in which the full set of dynamo state variables define the model state207

vector.208

As stated above, our state vector rests on a fully normalized, complex-valued spherical harmonic basis. Consequently, in

order to connect its components with the standard Gauss coefficients g and h (whose definition rests on the use of real-valued

spherical harmonics subject to the Schmidt convention for normalization), one must resort to the following relationships

gm` =

(
rc
ra

)`+2
`
√

2`+ 1

rc
Re [Pm` (rc)], (10)

hm` = −
(
rc
ra

)`+2
`
√

2`+ 1

rc
Im [Pm` (rc)], (11)
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in which Re [] and Im [] denote the real and imaginary parts, and ra is the mean radius of the Earth (ra = 6371.2 km). If g209

represents the vector of Gauss coefficients, one can introduce a matrix Q to represent the above formula210

g = Qx. (12)211

2.4 The observation operator H212

As introduced above, the observation operator H connects the state x we just defined mathematically with the observations213

of the magnetic field, y.214

2.4.1 Linear functionals of Br at the core surface215

The full magnetic field vector observed at the surface of the Earth is described today by its X (north), Y (east) and216

Z (downward) components. Under the assumption of an insulating mantle, each component can be expressed as a linear217

functional of the magnetic field Br at the CMB, by means of the convolution with the adequate Green function for the218

exterior Laplace problem (Gubbins & Roberts, 1983). For example, a measurement of Z at a location (r0, θ0, φ0) at Earth’s219

surface writes220

Z(r0, θ0, φ0) =

∫

S

GZ(r0, θ0, φ0|rc, θ, φ)Br(rc, θ, φ)dS, (13)221

where GZ is the Green function (or data kernel) for a Z datum (e.g. Bloxham et al., 1989; Constable et al., 1993) and S is222

the core surface of radius rc. Using spherical harmonics, Br at the core surface is expressed as223

Br(rc, θ, φ) =
L∑

`=1

∑̀

m=−`
Br

m
` (rc)Y

m
` (θ, φ), (14)224

noting that we have already truncated the expansion according to the native resolution of the CE dynamo model. We can225

now connect each coefficient of this expansion with the poloidal scalar introduced above226

Br
m
` (rc) =

`(`+ 1)

rc
Pm` (rc), (15)227

which then allows us to write formally the link between P and the prediction for the datum Z,228

Z(r0, θ0, φ0) =
1

2rc

L∑

`=1

∑̀

m=0

`(`+ 1)
[
Pm` (rc)GZm` † + Pm` †(rc)GZm`

]
, (16)229

where we have now restricted the sum to positive values of m only, and consequently introduced the † for conjugation (Z230

is real-valued). In this expression, GZm` is the coefficient of degree ` and order m of the spherical harmonic expansion of231

GZ(r0, θ0, φ0|rc, θ, φ). The linear observation operator for a Z measurement, HZ , can then be defined as232

HZ =
1

2rc

[
. . . , `(`+ 1)GZm` †, . . . , `(`+ 1)GZm` , . . .

]
, (17)233

which is applied to the expanded state vector x = [. . . ,Pm` , . . . ,Pm†` , . . . ]T , where m can only take positive values. The same234

formalism can be applied in order to define the operators HX and HY for the North and East measurements of the magnetic235

field, respectively.236

2.4.2 Nonlinear functionals of Br at the core surface237

An important amount of data from the past magnetic field consists of indirect and often incomplete information about the

magnetic field vector. Such information is given in terms of the directions, declination D and inclination I of the vector, or

its intensity F . The directions and intensity are nonlinear combinations of the magnetic field vector components (X,Y, Z),

D = arctan
Y

X
, (18)

I = arctan
Z√

X2 + Y 2
, (19)

F =
√
X2 + Y 2 + Z2. (20)

To calculate the linearized observation operator given by Equation 3, we have to bear in mind that in practice, this operator238

achieves a mapping from the complex-valued x to a real-valued measurement. Real functions of complex variables are not239

holomorphic, and their gradients cannot be consequently defined in standard complex analysis (Hjorungnes & Gesbert, 2007).240

However, a real-valued function f of a complex variable z can be written in terms of z and its complex conjugate z†, in241
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order to get rid of a possible imaginary part of f . If we take z and z† to represent independent variables, the differential of a242

functional f(z, z†) is given by the Wirtinger derivatives243

df =
∂f

∂z
dz +

∂f

∂z†
dz†, (21)244

where ∂f/∂z (∂f/∂z†) is the derivative of f with respect to a reference point for a fixed z† (z).245

Rewriting the expression for the declination in Equation 18, we have246

D
(
. . . ,Pm` , . . . ,Pm†` , . . .

)
= arctan



∑
`,m

1
2rc

`(`+ 1)
(
Pm` GY m` † + Pm†` GY m`

)

∑
`,m

1
2rc

`(`+ 1)
(
Pm` GXm` † + Pm†` GXm`

)


 (22)247

where
∑
`,m is a simplified notation for the previous double summation over ` and m. Differentiating the previous equation248

with respect to Pm′
`′ , around Pm′

`′,0, we have that249

∂D

∂Pm`
=

1

1 + (Y0/X0)2


∑

`′,m′

`′(`′ + 1)

2rc
δ``′δmm′

(
GY m

′
`′
†
X0 − GXm

′
`′
†
Y0

)
 1

X2
0

, (23)250

where δ is the Kronecker symbol and X0, Y0 and Z0 are the magnetic vector components obtained from the reference state251

x0 =
[
. . . ,Pm`,0, . . . ,Pm`,0†, . . .

]T
. Upon simplification, we see that252

∂D

∂Pm`
=

1

H2
0

`(`+ 1)

2rc

(
X0GY m` † − Y0GXm` †

)
, (24)253

in which H0 =
√
X2

0 + Y 2
0 . Differentiating now with respect to Pm′†

`′254

∂D

∂Pm†`
=

1

H2
0

`(`+ 1)

2rc

(
X0GY m` − Y0GXm`

)
. (25)255

The linearization of the nonlinear declination operator, HD(x) around x0, following Equation 3, which we define formally as256

∂HD
∂x

∣∣∣∣
x=x0

≡ HD,0,257

can be written in terms of its Wirtinger derivatives as258

HD,0 =
1

2rcH2
0

[
. . . , `(`+ 1)

(
X0GY m` † − Y0GXm` †

)
, . . . , `(`+ 1) (X0GY m` − Y0GXm` ) , . . .

]
. (26)259

In the course of the iterative scheme (Eq. 1), this operator is to be applied to a generic incremental state vector of the form260

dx =
[
. . . ,dPm` , . . . , dPm†` , . . .

]T
.261

Using the same reasoning, we find the following expressions for the linearized inclination and intensity operators, HI,0 and

HF,0:

HI,0 =
1

2rcF 2
0

[
. . . , `(`+ 1)

(
H0GZm` † +

Z0

H0
(X0GXm` † + Y0GY m` †)

)
,

. . . , `(`+ 1)

(
H0GZm` +

Z0

H0
(X0GXm` + Y0GY m` )

)
, . . .

]
, (27)

HF,0 =
1

2rcF0

[
. . . , `(`+ 1)

(
X0GXm` † + Y0GY m` † + Z0GZm` †

)
,

. . . , `(`+ 1) (X0GXm` + Y0GY m` + Z0GZm` ) , . . .

]
. (28)

2.5 An ensemble approach262

We finish this methodological preamble by explaining how we define in practice the background state xb and the background263

error covariance matrix Pb which must be supplied to the iterative algorithm. We resort to an ensemble of Ne state vectors xe264

taken randomly from a 100, 000-yr long integration of the coupled Earth dynamo model. Our estimator is the ensemble mean,265

and the background state is therefore the average of these Ne states,266

xb =
1

Ne

Ne∑

e=1

xe. (29)267

As already stated above, we take Ne = 820 such states in order to get statistical convergence. Let us recall that xb is a268
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Figure 2. Correlations implied by the prior information between the radial magnetic induction at different core surface points. Top row:
correlations underneath Paris (shown with the star) and any point on the core surface for a) prior information supplied by the Coupled

Earth dynamo and b) Prior information supplied by the dissipation norm. Bottom row: same, save that correlations are expressed with

respect to a point underneath São Paulo for c) CE dynamo norm prior and d) dissipation norm prior.

complex-valued field containing the spherical harmonic representation of the poloidal scalar at the core surface. We therefore269

define the background covariance matrix as270

Pb =
1

Ne − 1

Ne∑

e=1

(
xe − xb

)(
xe − xb

)†T
, (30)271

noting that Pb is a complex-valued, Hermitian matrix.272

Implicit is the assumption that these two moments suffice to characterize the prior information. This is only true, however,273

when dealing with Gaussian statistics. Previous studies indicate that the large-scale magnetic field produced by a buoyancy-274

driven dynamo is indeed close to possess Gaussian statistics (Fournier et al., 2011, their fig. 4). In order to gain insight into275

the type of prior information supplied by Pb, we introduce the linear operator M which maps x to a vector vB containing276

the values of Br on a grid approximating the core surface,277

vB = Mx. (31)278

The matrix W ≡MPbM†T then provides us with the covariances contained in Pb expressed in physical space, and we can279

express the correlation ρij between Br at the i-th grid point and Br at the j-th grid point as follows280

ρij =
Wij√
WiiWjj

. (32)281

The first column of Figure 2 shows mappings of the correlations given by ρ between core surface grid-points at specific locations282

(Paris and São Paulo) and every grid-point of the CMB. For comparison, the figure also shows in its second column these283

correlations when the dynamo-based Pb is replaced by the minimum dissipation matrix C of Bloxham et al. (1989), recall284

Eq. 6 above. The prior information supplied by the Coupled Earth dynamo favors antisymmetry with respect to the equator,285

whereas the dissipation norm implies correlations whose geometry reflects that of an inclined dipole piercing through Paris or286

São Paulo.287

The posterior covariance is calculated by solving the iterative algorithm for each member of the ensemble, as would be288

be required in a sequential data assimilation framework based on the EnKF (e.g. Evensen, 2003). If x̂e denotes the estimate289

for each ensemble member e, then one can get P̂ by computing290

P̂ =
1

Ne − 1

Ne∑

e=1

(x̂e − x̂) (x̂e − x̂)†T , (33)291
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where x̂ is the estimator (the mean). For that expression to give a P̂ equal to the one provided by Equation 4, the iterative292

algorithm to apply to each initial xe must write293

xk+1
e = xe + PbHk†T

(
HkPbHk†T + R

)−1 [
y + εe −H

(
xk
)

+ Hk
(
xk − xe

)]
, (34)294

where xk is the ensemble mean at the k-th step of the algorithm, and Hk is the observation operator linearized about this295

ensemble mean. Note that for each ensemble member, the data is noised by an amount εe drawn from a normal distribution296

of zero mean and covariance R (Burgers et al., 1998).297

Finally, let us note that instead of opting for a linearized approach, one could simply compute each state estimate x̂e298

using the nonlinear observation operator, according to299

x̂e = xe +
(
HPb

)†T (
HPbH†T + R

)−1

[y + εe −H (xe)] , (35)300

with

HPb =
1

Ne − 1

Ne∑

e=1

[
H(xe)−H

(
xb
)] [

xe − xb
]†T

, and (36)

HPbH†T =
1

Ne − 1

Ne∑

e=1

[
H (xe)−H

(
xb
)] [
H (xe)−H(xb)

]T
(37)

computed based on the ensemble of states. This strategy has the advantage of expediency, since it only requires one iteration.301

In the context of archeomagnetism, it appears to be slightlty less accurate than the iterative one (see Section 2.6 below).302

2.6 Validation303

With archeomagnetic applications in mind, we proceed with a simple test considering the retrieval of the large scales of304

the magnetic field at the CMB from synthetic data. The synthetic dataset consists of magnetic data at 35 locations spread305

in a close-to-uniform fashion at Earth’s surface, a nearly ideal (and admittedly unrealistic) scenario for the distribution of306

archeomagnetic data, shown in Figure 3a. The number of data locations corresponds to the amount of full vector observations307

necessary to recover the magnetic field up to SH degree L = 5 (35 Gauss coefficients). A reference model state xt is used to308

produce synthetic vector observations at the given locations, to which a 1 µT value is introduced for the data uncertainty.309

The (X,Y, Z) observations are transformed into (D, I, F ) and the uncertainties are propagated and noised with a random310

component drawn from a normal distribution (whose standard deviation is obtained from the uncertainty propagation).311

The observation error covariance matrix R is diagonal, with each diagonal element equal to the variance of each synthetic312

observation.313

In order to quantify the efficacy of the scheme we use three diagnostics for the estimates: the normalized data misfit314

M(x) =

√
1

ny
[y −H(x)]T R−1 [y −H(x)], (38)315

the normalized spread (i.e. the standard deviation) of the ensemble316

S (xe) =

√√√√ 1

nx

1

Ne − 1

Ne∑

e=1

(xe − 〈xe〉)†T Pb
d
−1

(xe − 〈xe〉), (39)317

and the normalized error with respect to the known true state xt318

E(x) =

√
1

nx
(x− xt)†T Pb

d
−1

(x− xt), (40)319

where Pb
d is the diagonal matrix assembled from the diagonal elements of Pb. It is important to note that the spread and320

error are evaluated throughout this paper up to spherical harmonic degree 5, i.e. over that part of the state vector which is321

effectively constrained by observations (as will be clear in Section 3.3). The evolution of these quantities with iteration count322

can be seen in Figure 4, which shows that the algorithm converges after three iterations. The misfit M decreases from 5 to323

around 0.8 with the iterative scheme and 0.95 with the nonlinear one described at the end of Section 2.5, which points to the324

better fit to the dataset of the iterative solution. The iterative solution is also slightly superior in terms of spread S and error325

E, which represent the uncertainty level of the model and its distance with respect to the truth, respectively. It is interesting326

to note the agreement of 20% for the final estimates of S and E, suggesting that the ensemble spread is a good proxy for the327

posterior model error. Additionally, the fast convergence of the iterative scheme indicates the weak nonlinear character of the328

problem at hand, which gives us confidence in the ability of the algorithm to deal with the true archeomagnetic dataset and329

validates the interpretation of the resolution matrix defined in Equation 5.330
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Figure 3. Synthetic directional and intensity dataset and its resolution in model space. a) Distribution of synthetic observations at

Earth’s surface; b) resolution of Gauss coefficients up to degree 5. See text for details.

Figure 4. Convergence of the iterative solutions for the validation test in terms of normalized a) misfit, b) spread of the ensemble and

c) error of the mean estimate. The black curve shows the iterative estimates by means of the linearized observation operator approach,
while the red diamond corresponds to the non-linear observation operator-based analysis. See text for details.

The resolution matrix for the dataset displayed in Fig. 3a is close to diagonal, which is why we will only discuss its331

information content in terms of its diagonal elements. Since the resolution matrix of Eq. 5 represents the ratio between the332

covariances in the background model and data (Ŝi ≈ σbi
2
/(σbi

2
+ σy

2) for a model state variable i), we analyze our results in333

terms of its square-root Ŝ1/2, thereby dealing with standard deviations instead of variances. Projecting the diagonal elements334

of the square-root of the resolution matrix into Gauss coefficients through the Q operator introduced in Section 2.3, we can335

introduce a resolution vector ŝ constructed from the diagonal elements of QŜ1/2Q†T . We show this resolution vector up to336

degree 5 in Figure 3b. Also plotted is the resolution vector at the first iteration s1, which closely resembles the resolution vector337

of the final estimate, ŝ. The resolution vector coefficients are of order unity up to degree 3, meaning that the data constrain338

the corresponding Gauss coefficients almost to 100%. Degree 4 and 5 are constrained up to 97% and 90%, respectively. The339

relative lack of resolution of the m = 0 zonal coefficients (such as g04 and g05), reflects the small amount of data underneath340

polar regions, precisely where associated Legendre functions of order 0 reach their maximum amplitudes. Since the resolution341

vector is seen not to change considerably from the first to the last iteration, we will consider the resolution vector at the first342

iteration, s = s1, as representative of the model resolution throughout this paper. The interest in this choice is that s1 depends343

only on the data and prior information, allowing us to appreciate the resolution before performing the iterative estimation344

per se.345

The sum of the elements of the vector ŝ, corresponding to the trace of the square-root of the resolution matrix, is 33. This346

figure corresponds to the number of resolved degrees of freedom of the model, given the dataset in question. Note that an347

independent validation of the results discussed in this paragraph was carried out by a brute force calculation of the tangent348

observation operator, for a state vector made directly of Gauss coefficients. The weakly nonlinear character of the problem349

at hand as well as the satisfactory behavior of the scheme in this academic test prompt us to exercise it further in the more350

realistic and challenging context of archeomagnetic observations.351
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3 ARCHEOMAGNETIC RESOLUTION ANALYSIS352

3.1 Archeomagnetic database353

The archeomagnetic dataset used in this proof-of-concept paper relies on the Geomagia50.V2 database (Donadini et al., 2009)354

for the period from 1200 BC to 2000 AD. Geomagia50.V2 consists of directional and intensity data spanning the past 50355

millennia that derive from the analysis of the remanent magnetization carried by volcanic deposits and archeological artifacts,356

like bricks, pottery, ovens, etc. This version of the database is not the newest one, but is sufficiently mature to help illustrate357

the fundamental aspects of the method we designed. Using it allows us to compare our findings with models previously358

published relying on practically the same dataset.359

The dataset clearly shows that the available archeomagnetic data present a very uneven temporal and geographical360

distribution. Spatially, most of the data are located in Western Eurasia. In fact, almost all observations are located in the361

Northern Hemisphere, with just 2.5% of the data in the Southern one (Donadini et al., 2009; Licht et al., 2013). At any362

given epoch, we therefore rely on the prior information supplied by the dynamo to recover the field behavior in the Southern363

hemisphere, based on the spatial correlations of the prior (recall Figs. 2a and 2c). Regarding the data, we follow a hybrid364

strategy based on Korte et al. (2009) and Licht et al. (2013) in order to better compare the different models, attributing365

lower bounds for the data uncertainties and asserting uncertainties to data without such information. We arbitrarily choose366

a lower bound of 2 µT for intensity data uncertainties and 3.4◦ for the α95 parameter uncertainties, following the modeling367

errors assigned by Licht et al. (2013) as a consequence of the degree 5 truncation of their modeling strategy. This implies a368

lower bound for the standard deviation of σI = (81/140) × 3.4◦ for the inclination I and σD = (81/140 cos I) × 3.4◦ for the369

declination D. Data with no uncertainty information are assigned an uncertainty of 8.25 µT for intensity and 4.5◦ for α95,370

which amounts to 150% of the average of known uncertainties, as in Licht et al. (2013).371

With regard to ages, results are dated either by radiogenic techniques, generally the case for volcanic data, or by means of372

archeological constraints, in the case of archeological artifacts. These different dating techniques result in different probability373

density functions for the age, Gaussian for radiogenic dating or uniform for archeological dating (e.g. Ramsey, 2009). Age374

uncertainties have been treated in different ways in archeomagnetic field modeling. The most recent global models of Korte &375

Constable (2011), Licht et al. (2013) and Pavón-Carrasco et al. (2014) use different flavors of bootstrap sampling to account376

for errors in age estimations (jointly with measurement errors), while, in a regional context, Hellio et al. (2014) resort to a377

Monte Carlo Markov Chain to sample the space of possible ages of a regional dataset.378

In the single-epoch approach outlined in this study, we do not treat the archeomagnetic field model temporal dependency.379

Instead, we group the data within bins of 40-year width, assuming that the field is constant over that period. The width of380

40 years is a compromise between the shortest time possible (for the assumption of steadiness to hold) and the longest one,381

which will favor a larger number of data (and should therefore improve the accuracy of the model). Over 40 years, one can382

expect that the harmonic components of the field of degree ` ≤ 5 will not undergo significant changes, since their typical time383

scales τ` are thought to vary like τ⊕/`, with a master secular variation coefficient τ⊕ of order 400 years (Lhuillier et al., 2011).384

3.2 Data redistribution based on age uncertainties385

A first dataset can be constructed by taking the mean age of each datum, ignoring the age uncertainties, and rejecting these386

data for which the age uncertainty is either not provided or is strictly larger than ±100 years (total 200 years). Such selected387

and reworked Geomagia50.V2 data is labeled here as the N (native) dataset. Figure 5a shows the histogram of the N dataset388

comprising 2528 declination, 3757 inclination and 2230 intensity data distributed within the 40-year bins through the time389

interval from 1200 BC to 2000 AD, with thus a total of 8515 data.390

Within our snapshot framework, a possibility to deal with age uncertainties would be to draw an ensemble of datasets391

based on the age pdf of each datum, and to apply our framework to each draw. The final archeomagnetic field model (for392

each time bin) would then consist of a weighted average of the ensemble of models, following the procedure detailed by Lanos393

(2004) for the construction of regional archeomagnetic curves. Although we are planning to use that strategy in the future,394

we opt here for a more expedient (and less accurate) strategy of redistribution, whereby each datum is distributed in the395

bins where its age pdf is not zero, with a weight given by the pdf integrated over each bin. For a given datum, the reworked396

uncertainty inside the j-th bin bj , defined by the time window [ti(bj), tf (bj)], is described by397

σbj = σo × w−1/2
bj

, (41)398

where σo is the original uncertainty of the data and the weight wbj is defined by399

wbj =

∫ tf (bj)

ti(bj)

f(σo, to, t)dt, (42)400

where f(σo, to, t) is a function representing the pdf associated with the datum’s age uncertainty (Gaussian or boxcar), to is401

the expected age and t is time. If the redistributed data are counted with respect to their new weights in each bin, the result402
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Figure 5. Histograms of the archaeomagnetic datasets used in this study. a) The native (N) dataset constructed from Geomagia50.V2

(Donadini et al., 2009); b) Redistribution of the N dataset given the re-weighting based on the pdf of the age uncertainty of each
datum, counted by their weights; c) The redistributed (R) dataset, which assumes that the redistributed data are independent, with a

recalibrated measurement uncertainty. See text for details.

is a smoother distribution of the N dataset, as can be seen in Figure 5b. The data redistribution and uncertainty re-weighting403

of the native N dataset leads to a new data group, called R (for redistributed) henceforth. If each redistributed datum in404

each bin is considered as a discrete independent datum, the R dataset comprises 7432 declination, 10055 inclination and 6904405

intensity data, for a total of 24391 data, whose histogram is shown in Figure 5c.406

Although the present archeomagnetic field estimation method does not include a regularization of the model in time, it407

is important to remark that the grouping of data in 40-year bins, the assignment of lower bounds to the uncertainties and the408

further redistribution of the dataset (meaning the transformation of N into R), act effectively as a temporal regularization.409

3.3 Resolution of the archeomagnetic dataset410

Before applying our iterative scheme to the N and R archeomagnetic datasets, let us analyze the impact of the data under411

consideration on our knowledge of the magnetic field at the core surface. We have seen in Section 2.1 that the resolution412

matrix given by Equation 5 quantifies the influence of the properties of the dataset on the model. For simplicity, we resort to413

the resolution vector s after the first iteration (recall the end of Section 2.6) to synthesize the information contained in the414

matrix and to represent the resolving power of the archeomagnetic dataset in each 40-year interval from 1200 BC to 2000 AD.415

The resulting sequence of resolution vectors, which we will call the archeomagnetic resolution matrices throughout, based416

both on the N and R datasets, represents the evolution of the archeomagnetic resolution in time, and is shown in Figure417

6. The similarity between both matrices in Fig. 6a and 6b in terms of amplitude and behavior shows that the increase of418

the uncertainties by the data re-weighting of dataset R is mitigated by the increase in the number of data. The smoother419

character of the R-based resolution matrix is a consequence of the better distribution of the data given their age uncertainties420

information, and therefore, of its effective temporal regularization.421

The key aspect of Fig. 6 is that it demonstrates the inability of the present archeomagnetic dataset to resolve the magnetic422

field at the core surface for spatial scales beyond spherical harmonic degree 5. Due to the smoother character of the R dataset-423

based archeomagnetic resolution matrix, the following description will focus on Fig. 6b. For the whole 3,000 years interval,424

only the dipole and quadrupole are continuously well resolved. The axial dipole g01 is the best constrained coefficient, resolved425

around 90% from 1200 BC to 0 AD and up to almost 100% from 0 AD to 2000 AD. The other components of the dipole,426
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Figure 6. Archeomagnetic resolution matrices, given the Coupled Earth dynamo prior and a) the N or b) the R dataset. The color

scale represents the normalized resolving power of the data on the model state variables, cast here in terms of Gauss coefficients, up to
spherical harmonic degree 6.

together with the quadrupole terms, evolve from roughly 70% up to 85% after 0 AD. The octupole (` = 3) shows a resolution427

of 50% before 0 AD, while after 0 AD the resolution increases up to around 75% at present-day. The degree 4 starts presenting428

resolution lows, meaning that at times the resolution of some coefficients is lower than an arbitrary value of 30%. The period429

after 0 AD presents a reasonable resolution of 50% for degree 4 and after 1000 AD a resolution around 40% for degree 5.430

Beyond degree 5 the model variables display little to no sensitivity to the datasets. For all coefficients of degree higher than431

the quadrupole, the general rule is that the zonal modes (m = 0), are not well constrained within the corresponding degree,432

due to the lack of observations in polar regions. In contrast, sectoral modes (m = `) are best resolved within a given harmonic433

degree family, due to their better sampling of lower latitudes, which coincides with the data spatial distribution.434

In synthesis, we observe a good resolution of the archeomagnetic field up to degree 3 for the period between 1200 BC435
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Figure 7. Diagnostics of the twin experiments in terms of a) the normalized misfit M of the final estimation for the synthetic N dataset
b) normalized misfit M of the final estimate for the synthetic R dataset, c) normalized total spread S for both estimates and d) the

normalized total error E of the background and final estimate for the synthetic N and R datasets. Note that S and E are calculated

considering a degree 5 truncation.

and 0 AD, degree 4 from 0 AD to 1000 AD, and degree 5 from 1000 AD onwards. The trend corresponding to the increase in436

resolving power in time contained in both matrices is related mainly to the increase of data availability in the interval, as can437

be seen by comparing Figures 5a and 6a and Figures 5c and 6b. It is important to note that the archeomagnetic resolution438

matrices shown in Fig. 6 represent an idealization of the model resolution by the data, in the sense that they do not depend439

on data values themselves, and therefore, do not consider the existence and impact of incoherent data, which are likely to be440

present in the real archeomagnetic dataset (e.g. Licht et al., 2013). In order to test the robustness of the conclusions drawn441

from the analysis of the archeomagnetic resolution matrices and to prepare the application of the scheme to real datasets, we442

next design archeomagnetic twin experiments, whereby we can directly assess error on the state estimates based on synthetic443

analogs of the N and R datasets.444

3.4 Twin experiments445

In this twin experiment, like in the validation test of Section 2.6, synthetic data are generated from a reference model446

simulation, the “true” state, which can be directly compared with the estimates of the iterative scheme. The true state447

evolves in time, since it is the product of the integration of the coupled Earth dynamo, and for each 40-year interval it is448
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calculated as the average over 40 years of this integration. In this case, the two archeomagnetic datasets N and R are tested449

to assess the validity of the data regularization by the redistribution and re-weighting based on the ages uncertainties. The450

synthetic observations are based on the original mean age, geographical distribution and age and data uncertainties from the451

two real datasets. The observations are further noised based on a random draw from the data uncertainty distribution. The452

noised synthetic observations are then used to estimate the true state given the background model.453

We proceed with the iterative estimation by applying an outlier rejection scheme, whereby data with misfits larger than 3454

standard deviations after the first estimation are discarded. A second estimation is then produced with the remaining dataset.455

Following this strategy, 22 data were excluded from the N dataset (12 declination, 4 inclination and 6 intensity data) while456

12 data were rejected from the R one (8 declinations and 4 inclinations).457

The quality assessment of our estimates is done by using the three diagnostics introduced in Section 2.6, namely the458

normalized data misfit M , the normalized spread of the ensemble S and the normalized error E. Those are shown in Figure 7.459

Fig. 7a reveals a mean misfit of 0.9 for the N-based estimate. Considering that the background mean misfit is close to 3 (based460

on the average field of figure 1a), the decrease amounts to 70%. Further inspection of Fig. 7a indicates a stronger variability461

of the misfit during the first millennium BC than that prevailing since 0 AD. The R-based misfit shown in Fig. 7b reveals a462

mean of 0.6, which, compared to the background mean misfit of 1.75, reflects a decrease of 63%. The smaller misfit values,463

and weaker variability of the R-based estimates compared with the N-based ones result from the increase in data uncertainties464

implied by the redistribution scheme.465

The normalized spread S is shown in Fig. 7c. The spread level is similar for both N and R-based estimates, around 85%466

at the beginning of the interval, with an almost linear decrease down to 65% at 2000 AD. This decreasing trend reflects the467

increase in data quantity with time (recall the histograms of Figs. 5a and 5c). The spread of the R-based estimate displays a468

smoother variability than the N-based one.469

Variations of the normalized error E are shown in Fig. 7d. The background error Eb fluctuates since the true state470

dynamically evolves over the time interval, while the background state remains the same in our single-epoch analysis approach.471

Eb exhibits long-term millennial scale fluctuations, between 0.8 and 1.2. Although the normalized error for both N and R472

based estimations (EN and ER) presents an irregular behavior through the interval, the mean error value decreases from 1473

for Eb to approximately the same value of 0.8 for the N and R based estimations (interestingly, these values correspond to474

the mean values of the normalized spread we just discussed). The detailed temporal behavior reflects the combination of the475

time-dependency of the true state on the one hand and of the varying distribution and quality of the data on the other hand.476

Sometimes, the initial guess (the background) is rather close to the truth, and the data does not strongly correct the estimate.477

In contrast, like around 0 AD and around 1800 AD, the initial guess is at times far from being optimal, and a substantial478

benefit is then drawn from the data.479

4 STANDARD VERSUS DYNAMO-BASED ARCHEOMAGNETIC FIELD MODELS480

We now move to the application of our iterative approach to the real N and R archeomagnetic datasets. Using the 3σ-rejection481

scheme discussed above, we discard 634 data from the N dataset (114 declinations, 302 inclinations and 218 intensities) and482

826 data from the R dataset (136 declinations, 369 inclinations and 321 intensities). Figure 8 shows the normalized misfit483

M for the final estimations based on the N and R datasets. We see in Fig. 8a that the N misfit does not differ substantially484

from that computed for the twin experiments, showing again a larger degree of variability during the first millennium BC485

(especially during its first half). The decrease from background to final estimation in misfit is of 57% in this case, lower than486

that of the twin experiment. This lower performance in the misfit decrease indicates that the real archeomagnetic dataset is487

penalized by a number of data whose “real” values lie outside their error bars. The R dataset normalized misfit in Fig. 8b488

shows an almost constant value over the whole interval, as seen in the corresponding twin experiment in Fig. 7b, albeit at an489

higher level (close to 0.9, to contrast with 0.6), and a decrease of 44% in misfit. In synthesis, the differences between Fig. 8490

and Fig. 7 point to the presence of a certain amount of outliers in the archeomagnetic dataset (see also Licht et al., 2013).491

As the error of the models cannot be directly assessed, we choose the estimate based on the smoother R dataset as our492

reference model in order to compare it with inverse models built using a similar database (Geomagia50.V2). For convenience,493

we use the tag AmR to refer to our archeomagnetic model based on the dataset R and the CE dynamo background, and494

the tag Bm to refer to our background model. Figures 9 and 10 present groups of Gauss coefficients from AmR compared to495

models ARCH3k.1 from Korte et al. (2009) and A FM-0 and A FM from Licht et al. (2013). A brief description of the models496

is provided in the following:497

ARCH3k.1: The ARCH3k.1 model consists of an inverse model built under adjustable temporal and spatial regularization498

truncated to degree 10 using lower bounds for data uncertainties (i.e. σ = 5 µT for intensities and α95 = 4.3◦ for directions)499

and an outlier rejection scheme. The model is derived from an inversion beginning at 2000 BC, the product of which is not500

considered between 2000 BC and 1000 BC in order to avoid spurious spline-end effects. The opposite end of the model is501

drawn towards the gufm1 model (Jackson et al., 2000) after 1650 AD for all non-axial dipole coefficients and after 1840 AD for502
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Figure 8. Normalized misfit M for a) the N and b) the R dataset analysis.

the axial dipole coefficient. Since gufm1 is based on historical, observatory and satellite data, the last 500 years of ARCH3k.1503

result in a more precise estimate in comparison to the rest of the time interval. The model rests on a bootstrap to account504

for the different dataset errors in order to provide a posteriori errors.505

A FM: The A FM models are inverse models under the same general regularization approach as in ARCH3k.1. Acknowl-506

edging the fact that the available database does not allow to resolve field characteristics beyond degree 5, the field models507

are truncated to degree 5. Instead of applying lower bounds to data errors (which implies penalizing data of good quality),508

modeling errors due to the lower degree truncation are introduced in the data errors. Following a philosophy of using all509

information provided by the data, the model applies an outlier re-weighting instead of a rejection scheme. While A FM-0 is a510

direct inversion of the A dat dataset (restricted to volcanic and archeological data), the A FM model consists of an ensemble511

of models generated by a similar bootstrap technique as in Korte et al. (2009).512

AmR: The AmR model is the result of an inverse scheme regularized by a non-adjustable spatial dynamo norm provided by513

the CE dynamo, using the full truncation of the latter. With respect to ARCH3k.1 and A FM, it considers a hybrid approach514

to the handling of lower bounds/modeling errors relative to the data uncertainties (see Subsection 3.1). The redistributed R515

dataset, from which the model is derived, is described in Section 3.2.516

The differences between ARCH3k.1, A FM and AmR are illustrated in Fig. 9 for the dipole and quadrupole terms and517

Fig. 10 for coefficients of degree 3 and above. AmR exhibits frequencies higher than those displayed by ARCH3k.1, A FM,518

and A FM-0, pointing to a weaker effective temporal regularization. As can be seen in Fig. 9a, the four models concur519

on the intensity decrease of the axial dipole g01 over the past millennium. The axial dipole shows a considerable decrease520

in the standard deviation from the background model Bm to the posterior model AmR, which could be expected from the521

archeomagnetic resolution matrix (recall the first line in Fig. 6b). The general agreement of all models for g01 reflects its control522

by the dataset. Such a statement can also be made for the equatorial dipole coefficients, g11 and h1
1 in Figs. 9b and 9c. The523

uncertainty levels of the (g01 , g
1
1 , h

1
1) triplet of the AmR model are in line with those predicted by A FM and ARCH3k.1, except524

over 1600 AD-2000 AD when the latter is constrained by gufm1. Again, this agreement highlights the robust characterization525

of model uncertainties, strongly controlled by the characteristics of the common dataset. The quadrupole coefficients (shown in526

Fig. 9d-h) present more variability between models, in particular during the first millennium BC. In this case, the disagreement527

underlines the larger influence of the prior information supplied to the inversion scheme.528

Higher order coefficients are exhibited in Figure 10. They essentially show that before 0 AD, AmR is not properly529

updated from the background model Bm, both in terms of its mean value and respective uncertainty level. This indicates530

a poor sensitivity of the model to the data; see for instance the zonal coefficient g04 in Fig.10c. Here, as in many other531

instances in Fig. 10, the estimate is strongly driven by the CE dynamo model. Periods of model-driven versus data-driven532

coefficient estimates are easy to assess, and they follow the information conveyed by the archeomagnetic resolution matrix533

(recall Figure 6b). In contrast, such distinction is less straightforward to make for ARCH3k.1 and A FM. For instance, they534

do not show any significant increase of uncertainty estimates at times of paucity of data (see for instance the first 1000 years of535

g04 in Fig. 10c). Since these models prioritize fitting the data, they are prone to displaying a variability relatively higher than536
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Figure 9. Gauss coefficients of the dipole and quadrupole magnetic field at the CMB. The background model Bm (yellow) is shown

together with model AmR (blue). Both estimations are shown in terms of their mean and standard deviation calculated from the ensemble
spread. Also shown are the AFM-0 model (red dashed curve), AFM-M model (red curve and shading) of Licht et al. (2013) and ARCH3k.1

model (black curve and shading) of Korte et al. (2009).
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Figure 10. Continuation of Fig. 9 for higher order Gauss coefficients.

that of our estimate, which on the contrary favors geomagnetic quiescence (within the background uncertainty) at periods537

poorly documented by observations.538

In order to further discuss the accuracy of the models in light of the available data, we show in Figure 11 model predictions539

at Paris and São Paulo. In Fig. 11, left column, we report the direction and intensity data lying inside a circular region of540

300 km radius around Paris. All models display a rather good agreement with the data, and a similar behavior after 0 AD.541

The most significant difference among models is observed for intensity during the first millennium BC. This reflects a period542

poorly constrained by data, which puts consequently more weight to the prior chosen to construct any given model. Posterior543

model uncertainties vary considerably among models, regardless of the epoch. As stressed above, this is a consequence of544

different strategies to handle posterior model uncertainties: while the error on AmR is estimated from the standard deviation545

of the ensemble spread, ARCH3k.1 provides the error by propagating the coefficient uncertainties, and A FM directly adds546

modeling errors to the ensemble standard deviation.547

A different situation is found in Fig. 11, right column, where we show the model projections at São Paulo. Each model548

provides different evolutions, clearly in relation with the lack of data in the Southern hemisphere. This is particularly evident549

for the declination: both ARCH3k.1 and A FM give large amplitude fluctuations on centennial to millennial time scales,550

while AmR predictions favor geomagnetic quiescence, namely weak fluctuations around the background state, within the551

prior uncertainties. This contrasting behavior must arise from the regional propagation of information by means of the prior552

correlations previously discussed in Section 2.5 and shown in Fig. 2.553
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Figure 11. Projection of the ARCH3k.1 (black line with gray shadings), A FM-M (red line with shadings), AFM-0 (red dashed line),
AmR (blue line with shading) and Bm (yellow line with shading) models in PAris and São Paulo, and comparison with the available

archeomagnetic data. a) Declination, c) inclination and e) intensity at Paris (location 48.85◦N 2.35◦E), for which data was collected over
a disk of radius 200 km centered on Paris. b) Declination, d) inclination and f) intensity at São Paulo (location 23.54◦S 46.63◦W), for

which data was collected over a disk of radius 300 km centered on São Paulo.

Finally, a comparison of the radial induction Br mapped at the CMB averaged over a time window of width 40 years554

centered on 1700 AD between A FM, ARCH3k.1 and AmR is shown in Figure 12. We use that specific time interval in order555

to compare the situation in which one of the models, ARCH3k.1 (Fig. 12a), is regularized by gufm1, while A FM and AmR556

are built exclusively with archeomagnetic data. The three models show northern high latitude flux lobes underneath North557

America and Asia. Yet, the intensity and the location of the lobes predicted by AmR differ from those given by the other558

two models. In particular, the eastward offset of the American flux lobe in AmR might be interpreted as the influence of559

an eastward pull by the prior (see Fig. 1a), for which an intense flux patch is localized underneath North-East Asia. While560

the intensity of AmR seems reduced in comparison with the others, the general morphology of the field remains the same in561

all models. Still, the main differences between A FM and ARCH3k.1 on the one hand, and AmR on the other hand occur562

mostly in the Southern hemisphere, as shown in Figs. 12b and 12d. Differences with ARCH3k.1 are more pronounced around563

Southernmost America and the South Pacific (but also on the Northernmost and central west Pacific), while the largest564

differences with A FM occur in South Africa and the southern Indian ocean. The magnitude of these regional discordances565

are within the characteristic posterior uncertainties of the AmR model, whose standard deviation is mapped in Fig. 12f.566
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Figure 12. Different models of the magnetic field at the CMB for the time interval between 1680 AD and 1719 AD and its differences

and uncertainties. a), c) and e) show the average field for the 40 year interval from the inverse models ARCH3k.1, AFM-M and our
AmR model respectively, with contours every 50 µT; b) shows the absolute difference ||ARCH3k.1−AmR|| while d) shows the absolute

difference ||AFM-M−AmR||, with contours every 25 µT; f) the standard deviation associated to the ensemble spread of AmR, with

contours every 10 µT, overlapped by the R dataset showing redistributed data, with high uncertainties, (in white) and non redistributed
data, with small uncertainties (in black). All values in µT.

5 SUMMARY AND PERSPECTIVES567

The main objective of this study is to present a framework for modeling the archeomagnetic field at single epochs, in which568

a set of directional and intensity data is complemented by the prior information from a geodynamo simulation. Here, the569

background information is represented by the mean and covariance of an ensemble of magnetic field states extracted from the570

long integration of a dynamo model, in this instance the Coupled Earth model (Aubert et al., 2013). These statistics are used571

to define a spatial norm that enters the inverse archeomagnetic problem. The dynamo norm considered in this work contrasts572

with the regularization norm based on minimum Ohmic dissipation used in standard inverse archeomagnetic models. As shown573

in Fig. 2a and 2c, the dynamo norm places strong antisymmetrical constraints on the sought solution, as a consequence of the574

dominant axial dipolarity of the geodynamo. On the contrary, standard regularization norms lead to the spatial correlations575

implied by a dipole whose axis passes through the observation site. Besides, once the simulation outputs are rescaled, the576

physics-based dynamo norm needs no further adjustment of the trade-off between goodness-of-fit and model complexity.577

One of the most important aspects of using a dynamo norm in the inverse archeomagnetic problem is that it enables a578

straightforward computation of the resolution matrix associated with archeomagnetic data. In this study we use the GEOMA-579

GIA50.V2 database (Donadini et al., 2009) to ease comparison with previously published archeomagnetic field models. Since580

these field models are constructed using some form of temporal regularization, we perform a redistribution of the archeo-581

magnetic dataset in a discretized time interval from 1200 BC to 2000 AD, based on age uncertainties, thereby creating the582

R dataset. The resulting archeomagnetic resolution matrix, shown in Fig. 6, allows us to distinguish, for each coefficient,583
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data-driven from prior-driven periods. The dipole, quadrupole, and to some extent the octupole, appear well resolved over the584

whole period. From 0 AD to 2000 AD, the degree 4 is resolved as well, whereas from 1000 AD onward, resolution is achieved585

up to degree 5. In both cases, an enhanced resolution is observed for sectoral coefficients. Beyond degree 5, the archeo-586

magnetic dataset has almost no influence on coefficient estimates. It is noteworthy that the recent update of the database587

(GEOMAGIA50.V3 Brown et al., 2015) does not alter significantly these conclusions (results not shown).588

We choose the R dataset to build up a preliminary model, referred to as AmR. Comparison of Gauss coefficients predicted589

by AmR and ARCH3k.1 (Korte et al., 2009), AFM and AFM-0 (Licht et al., 2013) is in line with what is to be expected590

from the archeomagnetic resolution matrix, despite the presence of outliers in the dataset. In general, when coefficients are591

resolvable from the data, similar estimates are obtained, regardless of the model and methodology. Most differences are592

observed for those coefficients which are prior-driven. In the same way, pointwise predictions are in rough agreement in those593

regions where data are abundant, whereas stark differences are found in poorly documented areas.594

In this study, attention was drawn to a sequence of independent snapshot analyses of the magnetic field through the last595

3,000 years, assuming a constant background state. The next step will be to consider the temporal aspect of this scheme, and596

therefore the estimation of the state via a sequence of analysis cycles. More specifically, in a data assimilation framework such597

as the EnKF, an ensemble of states will be forecasted using the underlying numerical model, and this ensemble of forecasts598

will be used in conjunction with data (whenever they are available) to produce an ensemble of analyses, whose mean will599

hopefully be closer to the true state of Earth’s core. In parallel, this novel approach will be strengthened by our ability to600

mitigate the impact of the strongly heterogeneous properties of the catalog of data at our disposal.601
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4.7 Further considerations

The objective of the article presented in the previous section is twofold: to quantify the
resolution power of the archeomagnetic data in providing information of the magnetic
field at the CMB, and pave the way for the basic analysis algorithm which will enter the
archeomagnetic sequential assimilation framework. Both objectives are closely connected
to the exploitation of prior information from dynamo simulations entering the estimation
problem.

4.7.1 Robustness of the dynamo prior

The prior information based on dynamo models has the advantage of relying on the known
basic physics of the core magnetic field. The criterion of Earth-likeness is essential to the
choice of an appropriate background model to provide reliable statistic information to
enter the estimation problem. Given the broad range of simulations capable of displaying
an Earth-like morphology (Fig. 2.2), many models can be used as reliable first guess of the
state of the magnetic field at the CMB.1 An Earth-like criterion for the secular variation,
on the contrary, has not been explored so far. However, the Coupled Earth model (Aubert
et al., 2013) succeeds at displaying a secular variation pattern close to that observed for
the last 400 years (Jackson et al., 2000). The different secular variation pattern displayed
by the CE model reflects richer dynamics, and therefore different spatial interdependencies
amongst the model variables in comparison with other models. The mean and covariance
matrix of a long run of CE is then assumed a robust source of prior information, mainly
for the calculation of the data resolution.

Another argument for the robustness of the dynamo norm is that after proper rescaling
of the non-dimensional variables, it is non-adjustable. Discussion might arise, however,
on the rescaling itself, in particular for the magnetic field amplitude. As the resolution
analysis is carried out as balance between the magnetic field prior and data uncertainties,
the prior scaling directly affects the outcome. Since the rescaling the background model
corresponds well to that of the Earth, the rescaling allows for a good comparison of the
power spectra.

The question of the dependency on the background model might arise, since it is
natural to think different dynamos models would give different background information.
Although this argument is fair, there is increasing evidence that the dynamo models in the
Earth-like parameter range show similar large-scale spatial structures (Davidson, 2013).
Since the larger scales, up to degree 5, are the only ones resolved by the archeomagnetic
dataset, an invariance of the spatial correlations would imply retrieving the same archeo-
magnetic resolution matrix. In order to test this hypothesis, the same resolution analysis
performed in Section 3.3 of the article was made using the STD model (recall Chapter 2.8)
instead. The comparison of the resolution matrices from CE and STD in terms of the
trace of the archeomagnetic resolution matrix, tr(s), is shown in Figure 4.2, evidencing
the convergence of the estimates and the robustness of the resolution analysis.

1One should take into account, however, that such Earth-like criteria is based on the morphological
analysis of inverse models of the magnetic field, which are themselves submitted to regularization and
limitation in resolution by the available data.

87



4.7. Further considerations 88

Figure 4.2: Trace of the archeomagnetic resolution matrix based in different priors. The
black curve represents the CE dynamo-based resolution and the grey curve the STD
dynamo-based resolution. Dashed lines represent the corresponding SH degree ` associ-
ated with the respective trace.

4.7.2 Archeomagnetic resolution

The simple inspection of the highly heterogeneous geographical and temporal distribution
of the archeomagnetic dataset at the Earth’s surface, shown in Figure 1.11, anticipates its
limited influence in imaging the magnetic field at the top of the core. The objective quan-
tification of this influence is given by the resolution matrix, connecting the information
from the data distribution and uncertainty by means of a proper observation operator to
that information from the prior uncertainty. The archeomagnetic resolution matrix for
both the native N and redistributed R datasets derived from Geomagia50.V2 (Donadini
et al., 2009), shown in Figure 6 of the article, corresponds well to the initial suspicion
from Korte and Constable (2008) of an archeomagnetic resolution reduced to spherical
harmonic degree 4. What is seen in more detail is the quantification of resolution as
well as its distribution amongst the different model coefficients and its evolution in time.
The trace of the archeomagnetic resolution matrices for the N and R datasets is shown
in Figure 4.3. The figure confirms the previous conclusions from the resolution matrices,
indicating mainly the increasing ladder-like character of the resolution in time. It is also
worth noticing that the trace from the R dataset is higher than the one based on the
N dataset. This suggests that the information of age uncertainties, which is taken into
account on the R dataset, is highly valuable for the resolution. Although the jump in
resolution around 0 AD is evident, the one around 1000 AD is somewhat less clear and
seems to show a smoother tendency.

It is important to acknowledge the fact that lower bounds were asserted to the data
uncertainties of the original Geomagia50.V2 dataset to construct the N and R datasets
discussed in the article. Such uncertainty reworking was applied in order to provide a
equivalent database as the ones used from the reference models ARCH3k.1 (Korte et al.,
2009) and AFM (Licht et al., 2013) for the sake of model comparison under similar
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Figure 4.3: Trace of the resolution matrices based on the N (black curve) and R (grey
curve) datasets with the CE prior, indicating the approximative degree up to which the
field can be resolved for different times. As in Fig. 4.2, the dashed lines represent the
corresponding SH degree ` associated with the respective trace.

data constraints. The uncertainty lower bounds are generally used due to the suspicion
of overestimated confidence in very precise data. Such lower bounds in uncertainties
act therefore to penalize what is thought to be high quality data. Although discussion
can arise wether precision indeed indicates really high quality, this penalization strongly
impacts the resolution power of the dataset. As seen in Figure 4.4, the original version
of the Geomagia50.V2 dataset, non penalized by uncertainty lower bounds, resolves the
model considerably better than the N dataset.2

Also shown in Fig. 4.4 is the native dataset without lower bounds of the newest version
of the Geomagia database, Geomagia50.V3 (Brown et al., 2015). Although the additional
data does improve the archeomagnetic resolution for the time window of the last three
thousand years, the gain is relatively small. The small changes despite the high amount
of data incorporated in the last version might reflect the fact that data is still biased to
denser data regions and scarce on the Southern hemisphere (around 5% of the database).

Although the results from the archeomagnetic resolution matrices are objective with
respect to the influence on observations on the model, it is important to keep in mind that
they represent an upper bound for the real archeomagnetic resolution. Such optimistic
case reflects the situation in which the observation errors would be coherent with their
uncertainty bounds, either for the data themselves and their age. The archeomagnetic
dataset is known to have an important amount of such incoherent data, characterized in
inverse modeling as outliers. Licht et al. (2013) estimates around 10% of outliers in the
construction of the ensemble of archeomagnetic models.

2The dataset is again restricted to data possessing age uncertainties, as in the N dataset.
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Figure 4.4: Trace of the resolution matrix for the N dataset, without uncertainty lower
bounds, based on Geomagia50.V2 (Donadini et al., 2009) (black curve) and Geoma-
gia50.V3 (Brown et al., 2015) (black dashed curve). The resolution estimation for the
R-based Geomagia50.V2 datase with uncertainty lower bounds in also shown for compar-
ison (grey curve).

4.7.3 Connection with sequential archeomagnetic assimilation

Even though the archeomagnetic resolution matrix provides an upper bound to the
amount of detail that can be imaged by the archeomagnetic data using an inverse tech-
nique, it does not necessarily apply to a data assimilation estimation. In particular for the
sequential assimilation, where observations are fed frequently to the dynamically evolving
model, information can be propagated between spatial scales. This information cascade
can possibly allow for an improvement in data resolution, and therefore an increment to
our knowledge of the archeomagnetic field.
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Chapter 5

Sequential geomagnetic data
assimilation

As introduced in Chapter 3, data assimilation has been explored so far in the context
of geomagnetism by means of the incorporation in inverse models, in the form of spec-
tral coefficients of the magnetic field at the top of the core, as observations. Although
the different assimilation schemes show promising results, little attention has been given
to the possibility of assimilating actual observations of the geomagnetic field instead of
parameterized models. The favoring of the assimilation of raw observations instead of
inverse models is also strongly supported in other fields of research the (e.g. in meteorol-
ogy, Talagrand, 1997). The main reason behind this favoring is that substitution of raw
observations by observation-derived models, like inverse magnetic field maps at the CMB,
could suffer from serious biasing of the initial signal as well as unreliable uncertainties,
depending on the definition of the prior information (discussed in Chapter 4). One could
argue that such biasing could be small in the case where observations resolve well the
model, like in the modern satellite and observatory era. However, this is not the case for
the archeomagnetic period.

As seen in the previous chapter, the archeomagnetic dataset has the power to resolve
the magnetic field at the CMB up to spherical harmonic degree 3 or 5 depending on the
time period. This lack of resolution, together with its heterogeneous character amongst
the different harmonic degrees, leaves place for a biasing by the inverse method prior infor-
mation. In the raw, point-wise, geomagnetic data assimilation case, the observations are
connected to the underlying physical model by a proper observation operator consisting
on the Green functions associated to the measurement type and position (Subsection 1.6.4
and Section 3.7). This observation operator bypasses the need for using inverse models as
observations and can therefore open the way for direct assimilation of geomagnetic data.

This chapter presents a sensitivity study of the assimilation of point-wise geomagnetic
observations and its comparison with the assimilation of spectral observations. Although
consisting of closed-loop experiments, this study focuses in case scenarios closely repre-
sentative of what would be the assimilation of archeomagnetic data through the last three
millennia.
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5.1 The EnKF and Parody-PDAF

As previously described, data assimilation comprises a variety of methods used to handle
different characteristics of the time-dependent estimation problem. For the geomagnetic
case, two of the main challenging components are the size of the problem (the dimension
of the state vector) and the non-linear character of the dynamo model. Focusing on the
sequential methods, the EKF or EnKF would be best suited to deal with the non-linear
aspect. The EKF (Subsection 3.3.1) would imply an impractical calculation of the forecast
covariance matrix, due to the linearization of the dynamo model. Moreover, the EKF is
supposed to perform well in the case of weak non-linearities only. Differently, the EnKF
(Subsection 3.3.2) deals with the non-linearity of the model by means of working with an
ensemble of models. Although it is supposed to handle reasonably well stronger non-linear
behavior, at a first glance the ensemble of models considerably enlarges the problem size.
The model error propagation is, however, far less expensive than in the EKF. In this
study, we choose the EnKF as the sequential data assimilation method to be applied to
the point-wise geomagnetic data assimilation.

Instead of forecasting the model statistics by means of the linearized model operator,
in the EnKF the background statistics are provided by the model ensemble. The analysis
step (presented in Section 4.6), is performed for each ensemble member, and the analysis
error given by the new ensemble covariance. An illustrative example of the EnKF algo-
rithm is shown in Figure 5.1. In order for the EnKF to be of practical implementation
for large-size assimilation problems, the algorithm must profit from parallel computing in
the calculation of the ensemble integration.

Figure 5.1: Scheme of the forecast and analysis step of the EnKF. An initial ensemble
of models at time t−∆t with covariance matrix Pa

t−∆t is forecasted up to the time step

t, when the covariance matrix has evolved to Pf
t . Given the set of observations at time

t with a error covariance Rt, the analysis step is performed and the ensemble state is
updated, within a new covariance Pa

t . The analysis is then forecasted up to subsequent
times continuing the EnKF analysis cycle.

Given the broad applicability of the diverse data assimilation strategies, Nerger and
Hiller (2013) developed the Parallel Data Assimilation Framework (PDAF). This suite of
routines parallelized in MPI can be attached to the code simulating the physical system
in question, usually also parallelized. Although initially put in place for oceanographic
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problems, it has been been further applied to the Parody code (Dormy et al., 1998; Aubert
et al., 2008) by Fournier et al. (2013). The EnKF is one of the many different Kalman
filter-based algorithms proposed by PDAF (Nerger and Hiller, 2013). The resulting EnKF
Parody-PDAF combines the forecast of the ensemble of models based on the Parody code
(the forecast phase is parallelized in a second level by PDAF), to the subsequent analysis
performed on the go by PDAF. An important adaptation of PDAF to the geomagnetic
context is the transformation from transpose operations to transpose conjugate, since
Parody, as many spectral dynamo methods, rely on complex-valued variables. More
details can be found in Fournier et al. (2013).

5.2 Model and state vector

In order to enter the assimilation problem, the numerical model must reflect the basic
aspects of the known characteristics of the observed magnetic field. Those are the mor-
phological criteria by Christensen et al. (2010) and the localization of the secular variation
(Aubert et al., 2013). The obvious candidate would be the CE model (Section 2.8), but
its high resolution implies a model dimension of approximately 107. In order to decrease
the computational cost of an ensemble calculation with an Earth-like numerical model,
preference is given to a lower resolution version of CE. The characteristics of the lower
model version, CEL, are listed in Table 2.2.

Differently from the formalism presented in Chapter 4, where the state vector com-
prised the poloidal magnetic field at the CMB, the present state vector now takes into
account all the variables of the dynamo model. Recalling the introduction of Section 2.6,
Parody, as many spectral codes, work with the spectral decomposition of its field vari-
ables, decomposed in poloidal and toroidal components. Here, the poloidal and toroidal
spectral coefficients of the magnetic field are defined by P and T , the poloidal and toroidal
spectral coefficients of the velocity field by V and U, and the spectral coefficients of the
codensity field by C . The full state vector of the dynamo system is then written as

x(t) =
[
..., Pm

`,k(t), ..., T m
`,k(t), ...,Vm

`,k(t), ...,Um
`,k(t), ..., Cm`,k(t), ...

]T
, (5.1)

for all `, m and k, which represent respectively the degree, order and radial level. Following
the resolution of the CEL model, the state vector has a size close to 2.6× 106.

5.3 True state and initial ensemble

As we are interested in assessing the performance of the assimilation by twin experiments,
a reference trajectory of the CEL has to be defined. In order to compute this reference
trajectory, a long integration corresponding to 20,000 years (using the time rescaling
described in Section 2.7) of CEL has been performed. This discretized sequence of states,
called the truth, or true state xt, is used to generate synthetic observations.

Together with the true state, a initial condition should be fed to the ensemble of
models to enter the EnKF assimilation. The initial ensemble {...,x0

e, ...}, where e is the
ensemble index, is chosen to consist in a broad variety of states, representing a large initial
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spread. In order to test the performance of the algorithm in a case other than the ideal,
the initial ensemble is chosen in a biased way. The bias is chosen based on the axial dipole
coefficients. From the long run, only model states which axial dipole were higher than
the axial dipole of the initial true state xt0 were allowed to compose a pre-selection of the
ensemble of initial states. Finally, a random draw of the pre-selected states was made to
create the initial ensemble of Ne = 512 states.

The number of ensemble states Ne was selected based on the sensitivity study of
Parody-PDAF by Fournier et al. (2013). The authors show that for a simpler geodynamo
model, the assimilation system reaches statistical convergence for ensemble sizes greater
than 480, as can be seen in Figure 5.2. We choose therefore Ne based on the 480 lower
bound and the characteristics of the computing resources available for the calculations.
Also shown in the figure is the characteristic time for the convergence of the assimilation,
in terms of the field errors. This time-scale is known as the spin-up time of the system.
For the case studied in Fournier et al. (2013), corresponding to the assimilation of spectral
coefficients up to degree L = 13 and analysis cycles spaced by 25 years, the spin-up time
corresponds to roughly 1,000 years (Fig. 5.2). This estimate, however, should not be
regarded as universal in the geomagnetic assimilation. It depends both on the underlying
model and the assimilation parameters like the observation vector spatial resolution and
frequency. The dynamo model used by Fournier et al. (2013) is also more laminar (less
turbulent) than CEL. The transfer of information, dictated by the rate of propagation
between the different spatial scales, is supposed to be greater in CEL, therefore yielding
a shorter spin-up time. This subject will be further explored in Section 5.6.

Figure 5.2: Spin-up time of a closed-loop assimilation experiment from Fournier et al.
(2013). The left and right figures show the normalized error of the magnetic field and
flow field, respectively, of the assimilation of spectral coefficients up to degree L = 13 in
time windows of 25 years.
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5.4 Observation operators

Although the mantle has finite conductivity by which it impacts the temporal magnetic
signal of the core (Jault, 2015), this contribution is generally assumed as negligible when
it comes to modeling the magnetic field of the core. Given the approximation of negligible
influence of the mantle, the magnetic field signal at the Earth’s surface can be directly
connected to the observable part of the dynamo system, poloidal magnetic field at the
top of the core. The connection between observations and the state vector must therefore
depend only of Pm

` (rc).

5.4.1 Gauss coefficients

In the assimilation studies mentioned in Section 3.6, spectral coefficients of the magnetic
field at the CMB are used as observations of the magnetic field. In such a case, the
observation operator is linear and diagonal, only non-zero in the part affecting the radial
level k = rc of the poloidal magnetic field. Next, one must acknowledge that the resolution
of the observable core magnetic field is limited either by the crustal magnetic curtain
(Subection 1.5.3) in the case of recent observations, or due to data scarcity in the case
of historical and paleo and archeomagnetic periods. Given such limitation, the ’spectral
data’ must be truncated up to a certain maximum observable degree Lo. The final spectral
observation operator Hs to be applied to the full state vector in Eq. 5.1 will have the form

Hs =

{
1, for x = Pm

`,k, where ` ≤ Lo,m ≤ `, k = rc
0, all other variables

(5.2)

Note that in this case, the assimilated spectral coefficients do not correspond to the
real-valued Gauss coefficients gm` and hm` introduced in Subection 1.5.3. Instead, they
correspond to the Parody code state vector, composed of complex variables. Therefore,
in the case of assimilation of spectral observations, Hs performs a direct mapping C→ C.

5.4.2 Point-wise data

As presented in the article in Section 4.6, the actual observations of the dynamo system
consist of point-wise data, in the form of the vector components of the magnetic field at
the Earth’s surface. Since such data are real-valued, the observation operators in question
must connect real-valued variables with the complex-valued Parody code variables.

XYZ observations

In synthesis, the linear X, Y and Z observations consist of the real part of the convolution
between the radial component of the poloidal field at the top of the core and the Green
function corresponding to the data type and location. The details on the form of the
observation operator for the components of the magnetic field vector, HX ,HY and HZ

are given in the appendix of the article in Section 4.6.
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Although the assimilation algorithm involves the use of well defined matrices, as de-
scribed in the analysis step in Section 3.2.3, some matrix products can be written in a
much more practical way. As noted in Subsection 3.3.2 In the EnKF, for example, the
matrix products HPf and HPfH can be calculated directly, which apart from avoiding
the calculation and storage of the forecast covariance matrix also allows an easy imple-
mentation of the analysis process in the underlying code.

DIF observations

Since the angular and intensity data are non-linear combinations of the magnetic field
vector components, attention must be given on how they enter the assimilation scheme.
In the article presented in Section 4.6, two approaches were compared in the framework of
the single-epoch EnKF, the iterative linearized approach and the direct application of the
nonlinear observation operators. Due to the C → R form of the non-linear observation
operators HD, HI and HF , in order to linearize them one needs to calculate the Wirtinger
derivatives of the operator and apply it to an expanded state vector (Subsection 2.4.2 of
article in Section 4.6 for more details).

Recalling Figure 4 of Section 4.6, we see that the iterative framework based on the
linearized observation operators shows a superior performance to the application of the
nonlinear operators. Such improvement in accuracy is however small, suggesting the weak
non-linear character of the observation operators. Combined with this is the fact that the
calculations of the linearized observation operator based on the Wirtinger derivatives in
an iterative framework would considerably slow the analysis step in the assimilation.

That being said, the direct application of the non-linear observation operators HD, HI

and HF is more suited for the assimilation of point-wise archeomagnetic-like observations
through the EnKF. The analysis step is therefore also performed by the algorithm shown
in Section 3.3.2. The next Sections are dedicated to the description of the synthetic
observations and the characterization of their respective uncertainties entering the EnKF
twin experiments.

5.5 Synthetic observations

In order to test the sensitivity of the assimilation scheme to the nature of the different
geomagnetic data, three types of synthetic observations were derived from the true state
(Section 5.3). The first type consists of the spectral coefficients of the radial poloidal
magnetic field at the CMB truncated up to a certain degree Lo. The second type consists
in point-wise data linearly related to the magnetic field of the core. They correspond
to the X, Y and Z components of the magnetic field vector at a certain location beyond
the Earth’s surface. The third type consists in point-wise data non-linearly related to
the magnetic field of the core. They are the directional and intensity information of the
magnetic field vector also at a certain site above the Earth’s surface.

96



5.5. Synthetic observations 97

5.5.1 Geographical distribution

The core magnetic field has been modeled up to different degrees depending on the epoch
and therefore on the amount of available observations. In the recent times of satellite
and observatory measurements, this resolution is thought to reach the magnetic curtain,
that is, up to spherical harmonic degree L = 13 or 14. For the archeomagnetic period,
however, this resolution is limited by the much lower amount of data, its bad spatial
distribution and higher uncertainties, reaching at maximum resolution of degree L = 5
(recall Chapter 4). Since the objective of this chapter is to test the performance of the
geomagnetic EnKF to different types of data, it is interesting to define a simple link
between the point-wise data resolution and the spherical harmonic one.

In a well-posed inverse problem, the number of variables of the model must correspond
to the number of data. In terms of Gauss coefficients up to a certain degree Lmax, this
equivalence corresponds to

Nd = (Lmax + 1)2 − 1, (5.3)

where Nd is the number of data available. Although objective, the relation in Equation 5.3
does not take into account important information such as the spatial distribution of ob-
servations and their corresponding weight, or uncertainties. However, it is evident that
data distribution over the Earth’s surface close to a uniform one will favor a better reso-
lution of the magnetic field. A close-to-uniform distribution algorithm (as the tessellation
used in Constable et al., 1993) is used to provide a number of locations at the Earth’s
surface corresponding to the data needed to model the magnetic field up to degree Lmax.
Figure 5.3 represents a close-to-uniform data distribution for three situations, one with 35
data, in which the magnetic field is resolved up to degree L = 5, another with 195 data, in
which the magnetic field resolution reaches up to degree L = 13, and finally for 22 data,
corresponding roughly to L = 4 but with a biased distribution towards one hemisphere.

It is important to remark that each data point corresponds to full vector information
on the magnetic field. That is, in the case of a model resolution of L = 5, for example,
the 35 locations displayed in Fig. 5.3 correspond each to X, Y and Z or D, I and F
measurements. The grids are then used to construct a dataset of synthetic observations
at different times spaced by a given time window ∆ta.

5.5.2 Uncertainties

The uncertainties affecting the data are, together with the spatial distribution, a crucial
information for the assimilation into the physical model. Since in this study the inter-
est is in assessing the feasibility of archeomagnetic data assimilation, it is important to
know beforehand the information from the typical uncertainties of the archeomagnetic
dataset. Figures 5.4a, 5.4b and 5.4c show the histogram of the uncertainties affecting
the declination, inclination and uncertainty data from the last three millennia from the
Geomagia50.V2 (Donadini et al., 2009) database. The corresponding modes for the dec-
lination, inclination and intensity data are respectively 1◦, 2.5◦ and 1µ T.

A first approximation of synthetic data uncertainties can be done by means of the
standard deviation σo of the time variability of a point-wise observation at a given grid
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Figure 5.3: Close-to-uniform global coverage of the synthetic point-wise observations for
different resolutions at the Earth’s surface. In a) the 35 locations are chosen to be rep-
resentative in resolution to the spherical harmonic degree L = 5. In b) the same, but for
195 locations associated to degree L = 13. In c) 22 observations are distributed only over
the North Hemisphere, corresponding to L = 4 according to Eq. 5.3.

point. For long intervals, like 10,000 years, the distributions are convergent, Gaussian
and present high standard deviation. These values represent the characteristic variabil-
ity of the observations in the context of the dynamo model. They are, however, high
compared to the archeomagnetic typical uncertainties. Choosing shorter time windows
for the uncertainty calculation yields generally smaller σo, for the variability of the larger
scales of the magnetic field will be reduced (Fournier et al., 2013). The time window of
500 years of the CEL simulation was chosen amongst others to derive the σo in view of
the resemblance with that of the archeomagnetic case. The histograms of the σo from the
synthetic observations for the grid of Fig. 5.3a are shown in Figure 5.4a, 5.4b and 5.4c.
They show a mode of 1◦, 0.7◦ and 1.3 µT for the declination, inclination and intensity,
respectively. For simplicity, the uncertainties of the synthetic observations are considered
to be constant for each grid location.

5.5.3 Datasets

Having prepared the synthetic point-wise observations and their respective uncertainties,
it is important to recall that real data are not perfect. Every observation of a physical
system is supposed to bear errors, either from the action of measuring or the represen-
tativeness of the connection to its source (recall the ideas introduced in Section 3.1). In
order to add observation errors to the synthetic dataset, the observations are contami-
nated with an error associated to its uncertainty. Specifically, the noise comes in the form
of a random draw from a normal distribution whose standard deviation corresponds to
the datum uncertainty estimate σo.
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Figure 5.4: Archeomagnetic and synthetic data uncertainties σo histograms for decli-
nation, inclination and intensity measurements. The top row shows the distributions
corresponding to the GeomagiaV2 database, while the bottom row corresponds to the
synthetic data discussed in the text.

Although explained only for the synthetic point-wise DIF dataset, the same grid spec-
ification, uncertainty definition and noising were also applied to prepare the synthetic
point-wise XYZ dataset. In the case of spectral observations, the synthetic dataset, here
coined SPC, is associated with uncertainties corresponding to the standard deviation of
each spectral coefficient of the poloidal magnetic field at the top of the core over a 500
year CEL simulation interval and noised. These three types of data, XYZ, DIF and SPC
are further fed into the EnKF assimilation algorithm supplied by the Parody-PDAF in
order to test the sensitivity of the framework.

5.6 Assimilation results

In order to test the performance of different assimilation configurations, in terms of data
type, assimilation window, resolution and observation bias, a reference case is chosen.
The monitoring of the assimilation scheme can be done by different diagnostics. As an
ensemble framework, the EnKF formalism describes the precision in the model by means
of the standard deviation of the ensemble, assuming the corresponding pdf is Gaussian.
Therefore, as in Chapter 4, the spread of the ensemble plays a key role on the description
of the model’s uncertainty. However, since here the underlying background model varies
in time, the spread will not be normalized by the background uncertainties as in Eq. 39 of
the article in Section 4.6. Instead, the non-normalized standard deviation S of the state
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vector is used, as in

S =

√√√√ 1

nx

1

Ne − 1

Ne∑
e=1

(xe − 〈x〉)†I(xe − 〈x〉). (5.4)

Note here that by including the identity matrix I, only the diagonal terms, that is, the
model variables variances, are used to calculate the spread. The spread S can be computed
at any time based on the EnKF estimate, the ensemble mean 〈x〉, either in its forecast or
analysis stages. However, attention is generally given to the spread at the analysis steps
〈xa〉.

Further on, since the following tests are closed-loop experiments, it is possible to
calculate the total error of the scheme, meaning the difference between the assimilation
estimate and the true state. The normalized error E is written as

E =

√
(〈x〉 − xt)†(〈x〉 − xt)

xt†xt
. (5.5)

As for the spread, if otherwise not mentioned, the error is always computed for the analysis
estimate. The error E and spread S are therefore diagnostics of the accuracy and precision
of the assimilation scheme, respectively.

It is important to keep in mind that since the true state is actually what one wants
to retrieve in the estimation problem, the error E is only accessible in closed-loop experi-
ments. It is therefore essential to use as well assimilation diagnostics based on the errors
connected to the observable part of the system. The observable error can be given by
the difference between the system’s observation yo and the projected observation by the
forecast estimate. This forecast difference, called the innovation vector d, is written as

d = yo −H(〈xf〉), (5.6)

and its norm given by d = ‖d‖. In case the assimilation scheme is not biased to a certain
state regardless of the observation input, the innovation vector should converge to zero
after many analysis cycles (Talagrand, 2003). One way to monitor this convergence is by
means of the cumulative innovation dc, given by

dc =

wwwww 1

Nc

Nc∑
i=1

di

wwwww , (5.7)

where Nc is the number of analysis cycles up to the present analysis.

The quality of the analysis can be measured similarly to the innovation, by the ob-
servable analysis error. This quantity, called the residual r, is written as

r = yo −H(〈xa〉), (5.8)

and the residual norm as r = ‖r‖. In a well-behaved assimilation scheme, one expects
r < d.

In the following, the aforementioned assimilation diagnostics are evaluated for differ-
ent closed-loop EnKF experiments, summarized in Table 5.1. The different experiments
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Table 5.1: List of closed-loop EnKF assimilation experiments. The experiments vary in
terms of data type, interval between observation availability and resolution.

Code Data ∆ta Resolution
dif10yl5 DIF 10 yr 35 sites
dif10yl5b DIF 10 yr 22 sites
dif10yl13 DIF 10 yr 195 sites
dif40yl5 DIF 40 yr 35 sites
xyz10yl5 XYZ 10 yr 35 sites
spc10yl5 SPC 10 yr Lo = 5

allow for an introductory sensitivity analysis of the assimilation scheme relevant to the
geomagnetic case. As a side note, given the synthetic character of the experiments there
is no specific need for rescaling the variables strength, like the magnetic field, velocity,
codensity, etc. The time, however, is rescaled in order for the reader to appreciate the
time-scales involved and its consequences for the real assimilation of geomagnetic data.
The typical assimilation length used here is the same as in the previous chapter, that is
3,000 years.

5.6.1 Reference assimilation case

Since the intention of this chapter is to assess the feasibility of the assimilation in the
context of archeomagnetism, a synthetic case of a DIF assimilation scheme is taken as
a reference case and closely inspected. The reference assimilation experiment is labeled
here as dif10yl5 (Table 5.1), which corresponds to the assimilation of DIF data over an
analysis cycle of ∆ta = 10 yr and 35 observation sites corresponding to a L = 5 sampling
(see Fig. 5.3a).

For the reference case, therefore, the initial ensemble described in Section 5.3 is con-
fronted with the first set of surface DIF noisy observations after a forecast phase of 10
yr. The observations being connected with the poloidal magnetic field at the CMB are
expected to directly influence the part of the state vector corresponding to the radial
magnetic field at the top of the core. This is verified in Figure 5.5a–d by means of the
comparison between the mean forecast, the mean analysis, the difference between both
and the true state. The mean forecast is seen to be close to an axial dipole configuration,
contrasting with the true state where many non-dipolar features of the magnetic field can
be found over different spatial scales. The retrieval of such features is not perfect, since
the data are finite and bear considerable uncertainties, as seen by the comparison between
the analysis and the true state. However, the large scale features of the magnetic field
like the intense flux patch beneath southern South America are well captured.

Still, since the assimilation scheme connects the different variables of the state vector
by means of the covariance matrix Pf , the analysis can propagate information into the
hidden variables of the system. This is seen, for example, for the azimuthal velocity field
at the top of the core uφ(rc) in Fig. 5.5e–h. While the mean estimate of the system consists
of a closely axisymmetric flow composed by a westward flow spread along a latitudinal
band between 45◦N and 45◦S, the true estimate presents a rich signature of the different
columnar flows underneath the core surface. The true state, as well as the forecast state,
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Figure 5.5: Comparison between mean forecast, mean analysis and true state for the first
assimilation step of the dif10yl5 assimilation scheme at the top of the core. The a) mean
forecast, b) mean analysis c) difference between forecast and analysis and d) true state
is shown for the radial magnetic field at the top of the core. The same is shown in e),
f), g) and h), but for the azimuthal flow at the top of the core. Since this is a synthetic
experiment, continent contours are shown only in order to compare spatial scales and
refer to features of the fields in the text.

shows high equatorial symmetry, that is, an apparent high degree of equatorial symmetry.
Interestingly, the main features of the true azimuthal flow at the CMB are also well
captured in the analysis, like the stronger westward drift of the flow underneath the
western Pacific.

In fact, the analysis update not only consists of a propagation of information through
the hidden system’s variables, but it also extends to the different depths. This is observed
in Figure 5.6, where the mean forecast, analysis and true state are again shown, but
for the radial magnetic field at mid-depth in the core. Departing from weak dipolar
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magnetic field in the mean forecast, the analysis consists of miscellaneous flux patches.
The amplitudes of the mean analysis are small, however, compared to those of the true
state. This indicates that the information injected into the system is propagated in a
limited way in depth.

Figure 5.6: Comparison between mean forecast, mean analysis and true state for the first
assimilation step of the dif10yl5 assimilation scheme under the core surface. The radial
magnetic field at mid-depth in the core is shown in terms of the a) mean forecast, b) mean
analysis, c) difference between forecast and analysis and d) the true state.

The effects of the analysis throughout the core are better seen in an equatorial view
of the simulation. Figure 5.7 shows the azimuthal flow, radial flow and density anomaly
in the equatorial plane. The azimuthal velocity in Fig. 5.7a–b is in line with the CMB
estimates presented in Fig. 5.5. In particular, one can see in Fig. 5.7a the extent of
the smooth and nearly axisymmetric westward drift of the flow. The analysis update
in Fig. 5.7b, shows a considerably larger amount of corrections in the flow with depth,
including a heterogeneous eastward drift close to the ICB, similar to the true state one.

The radial velocity flow ur, shown in Fig. 5.7d–f, is very weak in the mean forecast,
indicating the randomness in the flow downwellings and upwellings. The mean analy-
sis, although also weak, is generally coherent with the structure found in the true core
flow. The codensity C, shown in Fig. 5.7d–f, corresponds to the density anomalies in
the core. The mean forecast, displaying a simple structure concentrated along one of the
hemispheres of the inner core, contrasting with the existence of structures coherent with
the downwellings and upwellings seen in the radial flow. The mean analysis manages to
capture only a reduced amount of such features on the codensity. It is important to recall
that the comparisons showed in Fig. 5.5, Fig. 5.6 and Fig. 5.7 correspond to the first
analysis of the assimilating scheme, when the model trajectory is supposedly far from
the true state. The consecutive analysis cycles act to constantly update the ensemble of
models, leading to an improving estimation of the model subsequent states.

An example of the temporal evolution of the assimilating closed-loop system is shown
in Figure 5.8, by means of the monitoring of the total magnetic and kinetic energy of the
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Figure 5.7: Comparison of the mean forecast, mean analysis and true state for different
fields on the equatorial plane for the dif10yl5 assimilation. a), b) and c) show the mean
forecast, mean analysis and true state of the azimuthal flow. d), e) and f) show the same,
but for the radial velocity field. g), h), i) show the same, but for the density anomalies.

models. The start of the assimilation has the interesting effect of decreasing the total
magnetic energy and increasing the kinetic energy of the ensemble mean. After some
assimilation cycles, however, the ensemble begins to converge into the reference state
from which the synthetic observations were created. Although the mean is not exactly
coincident with the model trajectory, the latter is generally within the bounds of the
ensemble. The energy profiles shown in Fig. 5.8, includes all the spatial scales composing
the dynamo model, and it is natural that the incomplete and noisy observations do not
affect the small scales of the system. If the monitoring is done in terms of the large scales
of the fields, the estimation is found to be much more precise and accurate. Figure 5.9
shows the axial and equatorial dipole coefficients of the poloidal magnetic field at the
CMB, evidencing that the assimilation succeeds in estimating the main magnetic field
characteristics.

Having shown different aspects of the trajectory of the assimilating system, the qual-
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Figure 5.8: Total a) magnetic and b) kinetic energy of the dif10yl5 assimilation experi-
ment. The ensemble of models of the EnKF is shown by the grey curves, the mean of the
ensemble by the black curve, and the true trajectory, from which the synthetic data are
generated, by the red curve.

ity of the scheme is quantified by means of the different diagnostics mentioned at the
beginning of the present section. Figure 5.10 presents the total normalized error (Eq. 5.5)
and spread (Eq. 5.4) of the previously discussed dif10yl5 assimilation test. As seen in the
figure, the initial error of the ensemble starts at relatively small normalized error of 0.27.
During the assimilation, this error is decreased and generally maintained under the 0.2
accuracy level, with small sharp variations around this mean. These sharp variations de-
rive from the relatively high errors embedded in the synthetic observations, compromising
the coherence between the observation set at each assimilation step. In order to assess
the performance of the assimilation, the error from a free-run (that is, an unconstrained
ensemble propagation) is also shown in Fig. 5.10.

In contrast to the error, the spread of the ensemble is a smoothly varying quantity,
for it is not directly affected by the errors in the dataset. It depends only on the forecast
uncertainties and the observation set uncertainties and spatial distribution. Fig. 5.10b
shows that after a time span of approximately 500 or 700 years the assimilation system
begins to reach statistical convergence in terms of precision, characterizing the assimilation
spin-up time described in Section 5.3. After this time-window, the ensemble spread stays
at a level defined by the initial spread divided by a factor of two.

Turning now to the diagnostics related to the observable part of the system, the
innovation and residuals are presented in Figure 5.11. It is easy to see in Fig. 5.11a that the
condition r < d holds for the dif10yl5 experiment, confirming the well-behaved character of
the assimilation. The cumulative innovation dc shown in Fig. 5.11b decreases considerably,
by two orders of magnitude, reinforcing the good performance of the assimilation. The
behavior of dc shows an apparent stagnation of towards the end of the assimilation cycle,
implying a possible small bias on the model forecasts. However, a longer assimilation run
is needed to confirm this tendency.

Given the improvement in estimation towards the end of the assimilation experiment
shown in Figs. 5.10 and 5.11, it would be interesting to have a glance on the different field
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Figure 5.9: a) Axial and b) equatorial dipole of the poloidal magnetic field at the top of
the core for the dif10yl5 assimilation experiment. The red curve shows the true state, the
grey curves show the ensemble of models and the black curve, the ensemble mean.

Figure 5.10: Total a) normalized error E and b) spread S of the dif10yl5 assimilation
experiment, representing the accuracy and the precision of the estimates. The red curve
represents a free-run of the ensemble, that is, the evolution of the ensemble members in
case they are not constrained by observations.

variables at the last analysis cycle. Figures 5.12 and 5.13 show a comparison between
the mean analysis and the true state at the end of the assimilation experiment (after 300
assimilation cycles, corresponding to approximately 3,000 years). The comparison shows
the fields are much closer to the true state than in the first analysis, an improvement
originating from the constant feeding of observations into the system and propagation by
the dynamical model. All fields show a considerable degree of detail and, in particular
for the radial field shown in Fig. 5.13, comparable magnitudes. Given the good results
displayed by the assimilation run dif10yl5, other assimilations with different characteristic
are compared to it in order to assess the sensitivity of the method. It is important to
note that this is a work in progress. Some of the assimilation experiments shown in the
following are still under calculation.
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Figure 5.11: Comparison of the a) innovation and residuals and b) cumulative innovation
of the dif10yl5 assimilation.

Figure 5.12: Final analysis of the dif10yl5 assimilation, showing the comparison between
the the analysis (left column) and true state (right column) of different fields. a) and b)
show the radial magnetic field at the top of the core, c) and d) the azimuthal flow also at
the top of the core, and e) and f) the radial magnetic field at mid-depth in the core.
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Figure 5.13: Equatorial views of the final analysis estimate of dif10yl5 in terms of the a)
and b) azimuthal flow, c) and d) radial flow, e) and f) the density anomaly. The analysis
is shown on the left column, while the true state is shown on the right column.

5.6.2 Sensitivity to the data type

Figure 5.14 shows the sensitivity of the assimilation to the data type, XYZ, DIF and SPC.
Although for the XYZ-based assimilation the error starts quite smaller than the DIF-based
one, they seem to be equivalent in the long term. The similarity between both solutions
is even higher in terms of spread, pointing to the equivalence in the assimilation of the
different geomagnetic data. Indeed, the invariance of the assimilation in terms of data type
shows in particular the weak non-linear character of the indirect observation operators
HD, HI and HF , already discussed in the article in Section 4.6. The differences might
be due to the fact that the observation errors are not originated by error propagation
following the spectral, XYZ and DIF sequence. Instead, they are computed for each
dataset independently considering the same method discussed in Section 5.5.3.

The assimilation of spectral coefficients, however, does not corresponds as well as the
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Figure 5.14: Comparison of the total a) normalized error E and b) spread S of the
assimilation experiments differing on the data type.

point-wise assimilation experiments. Although the spread reveals a less precise estimation
than that of DIF and XYZ, the accuracy stays around the same level. The length of the
assimilation is, however, too short to allow for any conclusion.

5.6.3 Dependency on the assimilation window

The sensitivity of the assimilation to different time windows is shown in Figure 5.15 for
the DIF dataset. In the figure, the DIF reference assimilation with an analysis window
of ∆ta = 10 yr is compared with the DIF assimilation with ∆ta = 40 yr. Although the
spread of the dif40yl5 assimilation is similar to the dif10yl5 one, the error is considerably
higher. In fact, at some intervals the assimilation errors of dif40yl5 reach close to those of
the free-run simulation, despite the good departure of the first analysis. The decrease in
performance of the ∆ta = 40 yr assimilation points to the impact of the predictability limit
of the dynamo model. The impact of analysis time intervals shorter than 40 years should
therefore be carried out in the near future in order to assess the practical predictability
limit of the archeomagnetic-like assimilations studied here.

Figure 5.15: The same ad Fig. 5.14, but comparing the influence of the analysis cycle
interval.
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5.6.4 Impact of data distribution

Intuitively, one might think that an increase in the data quantity would increase the
quality of the model. Figure 5.16 shows that this is not exactly the case. The assimilation
of 195× 3 observations corresponding to a field coverage of SH degree L = 13, dif10yl13,
displays the same accuracy level of the assimilation of data from 35 × 3 observations
corresponding to the SH degree L = 5, dif10yl5 (Fig. 5.3). The precision, however, is
slightly better in the former case. This result suggests that for the error uncertainty level
used in the present closed-loop assimilation (see Fig. 5.4), there is a substantial limit in
resolution. Improving the data availability does seem to improve the precision, but does
not improve the accuracy level.

Figure 5.16: The same ad Fig. 5.14, but comparing the influence on the data quantity.

Finally, the assimilation strategy is tested for the case of a biased distribution of
the surface data. The biased distribution is the one shown in Fig 5.3, depleted of data
over the South Hemisphere. Such a biased sampling represents a first approximation of
the archeomagnetic dataset configuration, strongly biased towards the North Hemisphere
(Fig. 1.11). It can be seen in Figure 5.17 that although dramatic, the hemispherical
bias does not compromise the general behavior of the assimilation. The precision of the
assimilation is slightly decreased in dif10yl5b due to the lower amount of data compared to
dif10yl5 (see Table 5.1), but there is no great change in the spin-up time of the assimilation.

5.7 Summary and discussion

The state of the art of geomagnetic assimilation, presented in Section 3.6, is restricted
to the assimilation of spectral coefficients of the magnetic field. The present study aims
at introducing the idea of the feasibility of assimilating direct and indirect magnetic ob-
servations in a context close to the archeomagnetic one. The algorithm used here is an
adaptation of the Parody-PDAF code (Fournier et al., 2013). This newer version consists
in the development of observation operators corresponding to the point-wise direct and
indirect observations of the magnetic field at the surface. The EnKF framework is chosen
in order to deal with the nonlinearities of both model and observation operator (in the
case of indirect magnetic data). Closed-loop, or twin experiments, were carried out in
order to assess the performance of the assimilation experiments. For that, synthetic noisy
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Figure 5.17: The same as Fig. 5.14, but comparing the influence on the geographic dis-
tribution of the dataset.

observations were created from a reference model trajectory of the CEL dynamo intro-
duced in Section 2.8. The uncertainty affecting the data was chosen to be approximately
representative of the archeomagnetic dataset.

The assimilation results of the closed-loop experiments show a remarkably good per-
formance, both in terms of accuracy, precision and data fit. Comparison of the different
fields composing the state vector reveals that the update of information given by the syn-
thetic data set not only constrains well the observed part of the state vector, the poloidal
magnetic field at the top of the core, but also the hidden variables of the system, like the
magnetic field at depth, the flow field and the density anomaly. The good propagation
of information between the different fields is possible due to two main aspects of the as-
similation algorithm. One is the use of the correlations between the different variables
embedded in the forecast covariance matrix in the analysis. The other is the propagation
of information from the dynamical model.

The statistical convergence of the assimilation in terms of the precision proxy, the
spread, suggests an assimilation spin-up time of the order 500 to 700 years (for the ref-
erence run dif10yl5, Fig. 5.10). After this time window, the accuracy of the assimilation
reaches an error stagnation around a 0.2 level, and the precision decreases from the initial
spread by a factor of two. The cumulative innovation points to the good forecast quality
of the assimilation, but suggests a small bias ∼ 10−1 after 1,000 years. This issue remains
to be investigated for a longer run of the assimilation experiment.

Given the good results of the reference assimilation test, the algorithm was tested
for its sensitivity to the dataset characteristics and assimilation parameters. It was seen,
for instance, that the assimilation is not sensitive to the data type, whether it consists
of XYZ or DIF observations, at least for the case in which the point-wise observations
uniformly sample the Earth’s surface. The spectral assimilation showed different results,
but is still too short in order to give any conclusions. Moreover, the analysis window, has
an important impact on the assimilation. The assimilation with analysis cycle of ∆ta = 40
yr shows a considerable decrease in accuracy, despite maintaining a similar, but slightly
lower, precision than that of the reference case. This results shows that shorter intervals
for the analysis window are best suited for the archeomagnetic-like dataset. The sensitivity
test of the analysis cycle time window should be further expanded to shorter times, in
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order to assess the practical predictability limit of the archeomagnetic assimilation.

Finally, the increase in data availability for the same archeomagnetic-like uncertainties
is seen to not considerably influence the accuracy of the assimilation, although its precision
is slightly increased. This conclusion points to the limit in resolution affected by the
data uncertainties. It is likely that increasing the data quantity even more would not
considerably improve the accuracy, while a general decrease in the data uncertainties most
probably would. Still in terms of data availability, it was seen that a biased hemispherical
observation distribution did not strongly affect the assimilation accuracy. This particular
result has very important implications for real archeomagnetic data assimilation. It shows
that the absence of observations over one of the hemispheres (Fig. 1.11 and Fig. 5.3), does
not weaken the assimilation. Instead, the propagation of observation seems to profit from
the high level of equatorial symmetry displayed by the model (see Fig.5.5 and Fig. 5.12).
The extension of this conclusion to the real archeomagnetic assimilation is tempting.
However, the degree of geostrophy on the core must be taken into account.
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Chapter 6

Conclusions and perspectives

Inverse modeling of the archeomagnetic field is an important but difficult task which can
allow for a deepening in our understanding of the processes responsible for the dynamics of
the core. This thesis focuses on the inverse problem framework known as data assimilation
to propose new ways of modeling the archeomagnetic field. It can be separated into two
main parts, for which the main difference lies in the temporal aspect. The first part,
detailed in Chapter 4, describes the static inverse problem by using prior information from
numerical dynamo models. In this part, attention is drawn to the influence of the spatial
correlations imposed by the prior and how it allows a robust analysis of the resolution of
a given dataset, making possible the quantification of the archeomagnetic data resolution.
The second part, presented in Chapter 5, introduces the time-dependent inverse problem
in terms of a sequential assimilation framework. In this part, closed-loop experiments
are used to assess the performance of the sequential assimilation of archeomagnetic-like
synthetic observations. Both parts are summarized and discussed in the following.

6.1 Static modeling of the archeomagnetic field

It is evident from the heterogeneous distribution of the archeomagnetic data catalog, that
it is not possible to reliably constrain the archeomagnetic field without the complement of
additional information. Such information is classically based on an approximate condition
for the minimization of Ohmic dissipation at the CMB, entering the inverse problem as an
adjustable spatial model norm. In this thesis, that norm is substituted by dynamo-based
statistical information. The resulting ’dynamo norm’ consists of well-defined information
about the correlations of the different spatial scales of the magnetic field, in this case,
based on the Coupled Earth dynamo model (Aubert et al., 2013). Since the large spatial
structures of the magnetic field are suspected to be invariant for models bearing the same
magnetic turbulence level (Davidson, 2013), the dynamo norm is considered to be robust.

The dynamo norm being non-adjustable once the magnetic field rescaling is defined,
it allows for the calculation of the resolution matrix, which represents the extent to which
the data can resolve the model. It is found that the archeomagnetic data based on the
GeomagiaV2 dataset (Donadini et al., 2009) resolves the magnetic field at different de-
grees given the studied time period of the last 3,000 years. For the first millennium BC,

113



6.2. Sequential archeomagnetic assimilation 114

the field is constrained up to spherical harmonic degree 3. This resolution increases to
degree 4 for the first millennium and closely reaches degree 5 for the second millennium
AD. GeomagiaV3 (Brown et al., 2015) is seen to improve this resolution estimate, but
within a narrow contribution. The archeomagnetic resolution matrix provides the abil-
ity to differentiate data-driven from prior-driven conditions for the model variables with
time. The prior-driven coefficients therefore differ for models derived from different in-
verse modeling strategies. The comparison between the dynamo-based archeomagnetic
field model AmR and well-known inverse archeomagnetic models (ARCH3k.1 and AFM)
confirms the dichotomy between data-driven and prior-driven estimates.

The framework used in this time-independent study provided the possibility of vali-
dating different aspects of inverse modeling, for instance the observation operators cor-
responding to the archeomagnetic data. Such observation operators, projecting the field
model variables into declination, inclination and intensity of the magnetic field at the
Earth’s surface, are nonlinearly related to the core magnetic field. Tested in the context
of a closed-loop experiment, it was seen that the observation operators are weakly non-
linear. In an ensemble framework, the results from the direct application of the nonlinear
observation operator were very similar to the ones calculated with an iterative scheme
based on the linearization of the observation operator.

Given the robustness of the time-independent approach of the dynamo-based archeo-
magnetic field modeling, the next direction to go was that of the implementation of the
temporal dependency of the model.

6.2 Sequential archeomagnetic assimilation

The temporal dependency in the data assimilation framework comes from the physical
model in question itself, in its numerical approximation. In the geomagnetic case, this
model is provided by numerical dynamo simulations. A lower resolution version of the
Coupled Earth model, CEL, was chosen to represent the dynamo model used to serve as
the dynamic prior in the assimilation. In order to handle the nonlinearities of model and
observation operator, an ensemble framework, the Ensemble Kalman Filter, was chosen as
the assimilating algorithm. In synthesis, the EnKF assimilates, in a sequence of analysis
cycles, the observations by means of an ensemble of models describing the model statistics.
The adaptation of the EnKF for the geomagnetic case was provided by the machinery
behind the Parody-PDAF code (Fournier et al., 2013).

Since the state of the art of geomagnetic data assimilation rests on the assimilation
of inverse field models, the risk is that the assimilated models display important bias
towards its prior-driven parameters. That being said, actual point-wise measurements of
the magnetic field at the surface should be assimilated instead. This problematic lead to
the development of a modified version of Parody-PDAF which allows the assimilation of
point-wise observations. In order to validate the algorithm in an archeomagnetic context,
a series of closed-loop assimilation experiments was performed.

The assimilation of noisy synthetic declination, inclination and intensity data with a
global surface close-to-uniform coverage corresponding to 35 observation sites every 10
years has shown a good performance in retrieving the hidden variables of the dynamo
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model. The assimilation spin-up time of the system was seen to range from 500 to 700
years, after which the accuracy of the assimilation stays at a mean value of approximately
20% and the precision increases by a factor of two with respect to its initial value. It is
worth mentioning that keeping the same archeomagnetic-like uncertainties of the synthetic
dataset but increasing data quantity was seen to not significantly improve the accuracy
of the assimilation.

The main conclusion of the closed-loop experiments lies in the good response of the
assimilation in the case of a strong bias in the geographic distribution of the synthetic
data. Considering the data localized only on one hemisphere, the assimilation algorithm
manages to show a level of accuracy and precision close to that when data from both
hemispheres are used. The reason behind this good result is probably related to the high
degree of equatorial symmetry displayed by the CEL model. In this case, information
updated from observations over the North Hemisphere would be propagated to the South
Hemisphere by means of the closely cylindric columns of the flow field. This conclu-
sion opens important perspectives for the assimilation of real archeomagnetic data. Its
feasibility, however, should be confronted with the uncertainties regarding the degree of
geostrophy displayed by the core (Baerenzung et al., 2014).

6.3 Perspectives

This study paves the way for a series of perspectives associated with the use of the
resolution of the archeomagnetic dataset and the reconstruction of the state of the core
for the archeomagnetic period.

The archeomagnetic resolution matrix represents the degree of influence of the archeo-
magnetic observations on the magnetic field variables at the top of the core. The formalism
used to construct such a matrix could be in principle used in the inverse problem with
the purpose of searching for the best way to expand the archeomagnetic dataset. Given
a set of constraints imposing the feasible locations for the archeomagnetic sampling and
uncertainty of observations, the conditions embedded on the observation operator could
be estimated by maximizing the resolution matrix. Such a framework could provide
guidance for future archeomagnetic missions and help optimizing the expansion of the
archeomagnetic databases.

From a methodological point-of-view, the sequential EnKF assimilation explored in
the present study could be further improved, for example, by means of algorithms relying
on the retrospective analysis of the model state. Given that the archeomagnetic databases
(e.g. GeomagiaV3) are constantly being expanded, new data can be used in the reanalysis
and smoothing of the previously analyzed archeomagnetic model trajectory.

The closed-loop assimilation experiments performed in this study serve as an intro-
duction on the feasibility of sequential assimilation of archeomagnetic-like observations.
Further testing of the framework should be extended to assess the sensitivity of the as-
similation to the observation uncertainties, to even more biased scenarios for the data
distribution and more important, to the model itself. In order to reveal the sensitivity
of the data assimilation to the underlying model, the scheme should be tested in a fra-
ternal experiment. In such case, one type of dynamo model is used to be the reference,
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or true, solution, while another type of dynamo is used to provide the ensemble forecast
information. The monitoring of the assimilation in the fraternal context would give an
idea of the expected performance of the assimilation in the case of real archeomagnetic
data assimilation. In the positive case, the real archeomagnetic assimilation could help
to unveil the hidden processes in the core responsible for the observed secular variation
of the Earth’s magnetic field.

Finally, the geomagnetic sequential data assimilation framework can also be extended
to other types of observation beyond the archeomagnetic data. Historical and modern
observatory and satellite data are able to register, for instance, shorter time scale varia-
tions of the magnetic field than the archeomagnetic one, like decadal variations. Decadal
time scales are particularly interesting for the unveiling of the core processes, since their
origins bear a certain degree of uncertainty, either thought to be the contribution of dy-
namo waves or from advective motions in the core. The investigation of such question
through geomagnetic data assimilation could help increase our understanding of the core
dynamics over shorter time scales.
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ABSTRACT

Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean
amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo.
Interested in the forecast horizon of such studies, we quantify the predictability window of a representative,
advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control
parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial
perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τe. The
e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the
imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average
estimate for τe equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in
this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After
reviewing these, we discuss their implications for solar cycle prediction.

Key words: chaos – dynamo – Sun: activity

Online-only material: color figures

1. INTRODUCTION

The Sun is a magnetic active star, which undergoes successive
phases of high and low magnetic activity with a quasi-periodicity
of approximately 11 yr, powered by a natural dynamo mecha-
nism (Moffatt 1978). This magnetic activity encompasses the
recurrent manifestation of dynamical phenomena at the solar
surface and in its atmosphere, such as sunspots, flares, and coro-
nal mass ejections (Priest 1982). In addition to its remarkable
regularity, solar activity exhibits longer term (decadal to centen-
nial) fluctuations (Hathaway 2009), and occasional periods of
long-lasting near-quiescence, such as the Maunder Minimum.
Since the solar cycle affects the energy radiated by the Sun,
its understanding is key in elucidating the potential control of
solar activity on the long-term variability of the Earth’s climate
(Haigh 2003).

Solar activity influences the terrestrial environment in other
important aspects, connected with the operation of satellites
(Baker 2000), and the occurrence of geomagnetic storms, which
can damage electric power grids and interfere with radars and ra-
dio communications. These important issues highlight the strong
need for an accurate prediction of solar magnetic phenomena,
which is one of the main goals of space weather (Pulkkinen
2007). Until recently, such forecasting exercises were mostly
conducted within an entirely data-driven framework, based, for
instance, on geomagnetic precursors methods (Hathaway 2009;
Wang & Sheeley 2009). It is sensible to believe, though, that
more accurate and effective predictions could be obtained by
combining these data with physical models of the Sun, using
data assimilation (e.g., Talagrand 1997). The most salient illus-
tration of the application of data assimilation emanates every
day from numerical weather prediction (NWP) centers, in the
form of weather forecasts (consult, e.g., Kalnay 2003 for a his-
torical perspective on NWP). Application of data assimilation
in geoscience also include oceanography (e.g., Brasseur 2006),
the study of air quality (e.g., Elbern et al. 2010), and land sur-
faces (e.g., Houser et al. 2010). In a context similar to that of the
solar dynamo, data assimilation has also recently come to the
fore for the study of the Earth’s dynamo, a surge motivated by

our increased ability to observe and simulate the geomagnetic
field (e.g., Fournier et al. 2007, 2010, 2013; Aubert & Fournier
2011). Over the past 15 yr, the study of the solar dynamo has
witnessed an even more spectacular increase in its observational
and modeling capabilities. The question of the feasibility of ap-
plying data assimilation techniques to the solar dynamo was
asked a few years ago (Brun 2007), and was followed by a
series of studies bearing promises (Kitiashvili & Kosovichev
2008; Jouve et al. 2011; Dikpati & Anderson 2012).

The physical model of the solar dynamo that should enter
this inverse problem machinery remains to be defined. Forward
modeling of the solar dynamo has shed light on the main
physical processes believed to be responsible for the solar
cycle (see Charbonneau 2005 for a review). Kinematic dynamo
theory stresses that these processes are connected with the
continuous transformation of poloidal magnetic energy into
toroidal magnetic energy (the P → T conversion), and vice
versa (the T → P conversion, necessary to close the dynamo
loop). There is now little doubt that the Ω-effect, which denotes
the shearing action of the differential rotation of the plasma
flow, is responsible for the P → T conversion. Through the
advent of helioseismology, the large-scale, interior, differential
rotation was mapped in detail (Tomczyk et al. 1995), which
made it possible to infer that the most likely location of the
Ω-effect is the base the convection zone, a region known as the
tachocline (Howe et al. 2000). There is less consensus regarding
the processes at work behind the T → P conversion. The mean-
field α-effect (Parker 1955), and the Babcock-Leighton (BL)
mechanism (Babcock 1961; Leighton 1969) are two commonly
envisioned possibilities. The former rests on the large scale
effect of small scale turbulent motions whose twisting action
can transform a toroidal field line into a poloidal field line. The
latter relies on empirical evidences of the process of diffusion
and reconfiguration of the magnetic field of sunspots. The
three aforementioned processes (α-effect, Ω-effect, and BL
mechanism) are illustrated in Figure 1.

The ambiguity between the α-effect scenario and the BL
mechanism would disappear, should one be in a position
to carry out the full three-dimensional numerical integration
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Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.

(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may
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(a) (c)(b)

Figure 2. Components defining the class of solar dynamo models used in this study. (a) Isocontours of the angular velocity Ω; (b) Meridional circulation streamlines;
(c) radial profiles of the α-effect and Babcock-Leighton poloidal source terms; (d) radial profiles of the magnetic diffusivities. In each panel, the shaded regions
symbolize the tachocline. Aside from the differential rotation, whose amplitude remains fixed in this study, we vary the magnitude of these various components, whose
relative contributions are described by a suite of non-dimensional numbers (see the text for details).

(A color version of this figure is available in the online journal.)

still hope that the short-term prediction of at least some of the
features of the solar cycle (e.g., duration and mean amplitude)
is possible.

Knowledge of the modulations and mean intensity of the up-
coming solar cycles from mean-field models may serve as an
important input for more specific space weather considerations.
In this study, we therefore wish to adopt an operational perspec-
tive. Assuming that mean-field models will be effectively used
to forecast solar activity, our goal here is to quantify their in-
trinsic limit of predictability τ (the equivalent of the two weeks
discussed above for the atmosphere), following the methodol-
ogy proposed recently by Hulot et al. (2010) and Lhuillier et al.
(2011) in order to estimate τ for the Earth’s dynamo.

This paper is organized as follows. In Section 2, we describe
our working mean-field model and detail its numerical imple-
mentation. We next inspect the sensitivity of this model to its
control parameters in Section 3. Section 4 presents the system-
atic study of the error growth between twin trajectories. This
allows us to evaluate τ , and to assess its sensitivity to its con-
trol parameters. Finally, we discuss in Section 5 the influence
of modeling and observational errors on the practical limit of
predictability of the model.

2. THE MODEL AND ITS NUMERICAL
IMPLEMENTATION

Our flux-transport model is the one presented by Sanchez et al.
(2014); it includes both the α and BL scenarios for the T → P
conversion. The first reason for adding an α-effect to a standard
BL flux-transport model is that a dynamo running on a BL
mechanism alone cannot recover from a quiescent phase devoid
of sunspots. As reported by Sanchez et al. (2014), the model set-
up enables the appearance of a long-term variability (succession
of active and quiet phases), which can then be interpreted as the

result of the competition between the α-effect operating at the
tachocline and a BL mechanism operating at the solar surface.
In addition, a deep location of the α-effect is known to favor the
sought antisymmetrical evolution of the magnetic field in the
Northern and Southern hemispheres (Dikpati & Gilman 2001;
Bonanno et al. 2002).

Let us now write accordingly the modified mean-field in-
duction equation (Moffatt 1978) for the large-scale magnetic
field B

∂B
∂t

= ∇ × [U × B − η∇ × B + αB + SBLBϕ êϕ], (1)

where U is the prescribed flow, η is the turbulent diffusivity, α
is the turbulent magnetic helicity, and SBLBϕ êϕ is the BL source
term (êϕ is the unit vector in the direction of longitude). We
will specify the profiles of these various physical fields in the
following. The definitions that we will need are summarized in
Table 1 and the profiles shown in Figure 2.

Under the assumption of axisymmetry, the magnetic and flow
fields are further expressed in terms of their poloidal and toroidal
components in spherical coordinates (r, θ, ϕ) as

B(r, t) = ∇ × [Aϕ(r, t)êϕ] + Bϕ(r, t)êϕ, (2)

U(r) = up(r) + r sin θ Ω(r)êϕ, (3)

in which Aϕ is the poloidal potential and Bϕ is the toroidal
field. The prescribed time-independent flow is defined by the
angular velocity Ω and the meridional circulation up, shown
in Figures 2(a) and (b), respectively. Helioseismic data pro-
vide strong constraints on Ω, which will thus remain fixed
in the remainder of this work, and approximated using the
analytic formula of Dikpati & Charbonneau (1999). On the
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Table 1
Summary of the Mathematical Symbols Used in the Model, Their Values and a Brief Explanation of Their Meaning

Symbol Value Interpretation

rtc 0.7 R� Radial location of the center of the tachocline
δr 0.05 R� Thickness of the tachocline
Ωeq 2π × 460.7 nHz Rotation rate at the equator
α0 0.34–1.03 m s−1 Strength of the α-effect
SBL0 0.02–0.06 m s−1 Strength of the Babcock-Leighton mechanism
u0 13.27–17.68 m s−1 Velocity of the superficial meridional flow at mid-latitude
ηr 5 × 108 cm2 s−1 Effective diffusivity near the radiative zone
ηcz 1 × 1010 cm2 s−1 Effective diffusivity at the bottom of the convection zone
ηs 3 × 1011 cm2 s−1 Effective diffusivity at the solar surface

contrary, the large-scale meridional circulation up remains
poorly constrained. For the sake of simplicity, we will fol-
low the one-cell per hemisphere description of Dikpati &
Charbonneau (1999).

The poloidal–toroidal decomposition of the magnetic and
flow fields prompts us to define poloidal and toroidal com-
ponents for the turbulent diffusivity η, denoted by ηp and ηt ,
respectively. This distinction rests on the analysis made by
Chatterjee et al. (2004), who pointed out that the toroidal field
strength is expected to be much larger than the poloidal field
strength throughout the convection zone. This should decrease
notably the efficiency of toroidal turbulent diffusion compared
with its poloidal counterpart. With this distinction at hand, in-
jection of Equations (2) and (3) into Equation (1) gives rise to a
set of two coupled partial differential equations for Aϕ and Bϕ

∂Aϕ

∂t
+

up

r sin θ
· ∇(r sin θAϕ) = ηp

(
∇2 − 1

r2 sin2 θ

)
Aϕ

+ α(r, θ;Bϕ)Bϕ

+ SBL
(
r, θ;Btc

ϕ

)
Btc

ϕ , (4)

∂Bϕ

∂t
+ r sin θ∇ ·

(
upBϕ

r sin θ

)
= ηt

(
∇2 − 1

r2 sin2 θ

)
Bϕ

+
1

r

∂ηt

∂r

∂(rBϕ)

∂r
+ r sin θ (∇ × Aϕ êϕ) · (∇Ω),

(5)

where Btc
ϕ = Bϕ(r = rtc, θ, t) is the toroidal field at the

tachocline, defined in this work as the spherical shell of
mean radius rtc = 0.7 R�, with a thickness δr = 0.05 R�.
The dependency of the SBL term in Equation (4) expresses
the non-local character of the BL source term. Even if it is
active within the surface layers, the BL regeneration process
is thought to originate from processes occurring in the vicinity
of the tachocline—numerical models indeed indicate that the
formation of tilted bipolar regions at the surface is mostly
controlled by the strength of toroidal flux tubes prior to their
buoyant instability (D’Silva & Choudhuri 1993). Their finite
rise time should induce a time lag between the onset of the
instability and the formation of the bipolar regions, on the order
of some days to a few weeks (Jouve et al. 2010). We will neglect
this delay on the account of it being small compared to the
timescales of interest here.

Turning now our attention to the α-effect, we use the standard
formula of α-quenching, which is written as

α(r;Bϕ) = α0

1 +
(

Bϕ

Beq

)2 fα(r), (6)

in which α0 is a typical magnitude, Beq = 104 G (Fan 2009) and
fα(r) restricts the α-effect to the mid-latitudes of the tachocline,
according to

fα(r) = 1

4

[
1 + erf

(
r − r1

d1

)][
1 − erf

(
r − r2

d2

)]
cos θ sin θ,

(7)

where r1 = rtc − δr/2, r2 = rtc + δr/2, and d1 = d2 = 0.01 R�.
The radial variations of fα are shown in Figure 2(c).

The BL SBL source term operates within bounds of the mag-
netic field strength (D’Silva & Choudhuri 1993), specifically
between Btc

ϕ,min = 104 G and Btc
ϕ,max = 105 G. Denoting the

magnitude of this source term by SBL0 , we write accordingly

SBL
(
r;Btc

ϕ

) = SBL0

4

[
1 + erf

(
Btc 2

ϕ − Btc 2
ϕ,min

)]
× [

1 − erf
(
Btc 2

ϕ − Btc 2
ϕ,max

)]
fBL(r). (8)

The radial and latitudinal distribution fBL(r) is in turn given by

fBL(r) = 1

4

[
1 + erf

(
r − r3

d3

)]

×
[

1 − erf

(
r − r4

d4

)]
cos θ sin θ, (9)

where r3 = 0.95 R�, r4 = R� and d3 = d4 = 0.01 R�. The
radial distribution of fBL is shown in Figure 2(c).

The poloidal and toroidal diffusivities in Equations (4)
and (5), are written as

ηp(r) = ηr + ηs

1

2

[
1 + erf

(
r − r5

d5

)]
, (10)

ηt (r) = ηr + ηcz

1

2

[
1 + erf

(
r − r6

d6

)]

+ ηs

1

2

[
1 + erf

(
r − r7

d7

)]
, (11)

in which r5 = 0.7 R�, r6 = 0.72 R�, r7 = 0.95 R�, d5 =
d6 = d7 = 0.025 R�, ηr is the diffusivity at the boundary
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with the radiative zone, ηcz is the diffusivity in the turbulent
convection zone, and ηs is the diffusivity in the surface lay-
ers (which applies to the poloidal field over the entire convec-
tion zone). The radial profiles of the diffusivities are shown in
Figure 2(d). This model pertains to the generic class of
advection-dominated models: owing to the low values of the
diffusivities throughout the convection zone, the coupling be-
tween the regions where the poloidal and toroidal fields are
generated is ensured by the meridional circulation. In diffusion-
dominated models (e.g., Chatterjee et al. 2004), this coupling is
on the contrary accomplished by turbulent diffusion.

In order to express the dynamo equations in their nondimen-
sional form, we choose the solar radius R� as the length scale
and the magnetic diffusion time R2

�/ηs as the timescale (roughly
equal to 500 yr). This yields

∂Aϕ

∂t
+

Rm

r sin θ
ũp · ∇(r sin θAϕ) = η̃p

(
∇2 − 1

r2 sin2 θ

)
Aϕ

+ Cαα̃ Bϕ + CBLS̃BL Btc
ϕ ,

(12)

∂Bϕ

∂t
+ Rm r sin θ∇ ·

(
ũpBϕ

r sin θ

)
= η̃t

(
∇2 − 1

r2 sin2 θ

)
Bϕ

+
1

r

∂η̃t

∂r

∂(rBϕ)

∂r
+ CΩ r sin θ

× (∇ × Aϕ êϕ) · (∇Ω̃). (13)

Equations (12) and (13) contain six nondimensional numbers
characterizing the relative importance of each term in the
equations

Rm = uoR�/ηs, (14)

CΩ = ΩeqR
2
�/ηs, (15)

Cα = α0R�/ηs, (16)

CBL = SBL0R�/ηs, (17)

the ratio ηr/ηs, (18)

and the ratio ηcz/ηs. (19)

The magnetic Reynolds number Rm is associated with the
amplitude of the large-scale meridional flow, u0. The three
following coefficients CΩ, Cα , CBL, respectively, express the
ratio of the equatorial rotation, turbulent and BL timescales
to the diffusive timescale. In these expressions, Ωeq is the
equatorial rotation rate, and α0 and SBL0 are the amplitudes
of the α and BL terms seen above. The remaining two terms
ηr/ηs and ηcz/ηs are magnetic diffusivity ratios entering the
nondimensional forms of Equations (10) and (11). The ∼ in
Equations (12) and (13) denotes normalization with respect
to those quantities. Note that a suitable rescaling of Aϕ can
decrease the number of control parameters by one, as it can
scale either Cα or CBL out of the problem (it is the ratio of
these two that would remain). Albeit more elegant, we did not
consider this possibility. We shall therefore analyze the α and
BL effects independently in the remainder of this study.

Finally, our formulation has to be complemented with bound-
ary and initial conditions. The inner boundary condition is that
of a perfect conductor. An approximation of this condition is
that

Aϕ = Bϕ = 0 at the inner radius

r = 0.6 R� (Chatterjee et al. 2004). (20)

The outer boundary condition corresponds to the interface with
an insulating medium, and requires matching of the internal
solar field with a potential field (Dikpati & Charbonneau 1999).

As an initial condition, we choose a dipolar field confined
inside the convection zone. In this case,

Aϕ(r, t = 0) = sin θ/r2 for 0.7 R� � r � R�, (21)

Aϕ(r, t = 0) = 0 elsewhere, (22)

Bϕ(r, t = 0) = 0 everywhere. (23)

The numerical approximation of the problem at hand is
based on the Parody code, which was originally designed
for three-dimensional geodynamo simulations (Dormy et al.
1998; Aubert et al. 2008), and successfully passed the dynamo
benchmark of Christensen et al. (2001). The magnetic field is
expanded according to the three-dimensional poloidal-toroidal
decomposition

B = ∇ × ∇ × (Pr) + ∇ × (T r), (24)

where the poloidal and toroidal scalar potentials P and T are
further expanded upon an axisymmetric spherical harmonic
basis Y 0

n (θ ), according to

(P, T )(r, θ, t) =
N∑

n=1

(Pn, Tn)(r, t) Y 0
n (θ ), (25)

and truncated at spherical harmonic degree N. The discretization
is completed by applying a second-order finite differencing in
radius and second order time integration, comprising a Crank-
Nicolson scheme for the diffusive terms and a second order
Adams-Bashforth scheme for the nonlinear terms. The resulting
code was then successfully tested against the reference solutions
of Jouve et al. (2008). Details of this benchmark are provided
in the Appendix. The results presented in what follows were
obtained using N = 65, and Nr = 65 uniform radial levels
in [0.6 R�, R�], and a constant non-dimensional time step size
Δt = 5 × 10−6. A typical run comprised 107 time steps, which
corresponds roughly to 25,000 yr.

3. FORWARD MODELING: MODEL PROPERTIES
AND VARIABILITY

With our operational purpose in mind, a representative
solution of the model should match some of the basic solar cycle
features (Charbonneau 2005): cyclic polarity reversals with
approximately 11 yr periodicity; strong toroidal fields at the base
of the convection zone migrating from mid-latitudes toward the
equator; poleward migration of a weaker high-latitude magnetic
field; phase lag of π/2 between the toroidal field at mid-latitudes
and polar field at the poles; antisymmetry of the magnetic field
between the northern and southern hemispheres; and long-term
variability of the solar cycle.

5



The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

Figure 3. Time-latitude (butterfly) diagrams of the reference solution S, corresponding to Rm = 318, Cα = 8 and CBL = 1. Top: toroidal magnetic field at the
tachocline; bottom: radial magnetic field at the solar surface.

(A color version of this figure is available in the online journal.)

In the following, we will impose the fixity of some of those
non-dimensional numbers appearing in Equations (14)–(19).
As helioseismological data give Ωeq ∼ 2π × 460.7 nHz, we
set accordingly CΩ = 4.7104. In addition, the turbulent diffu-
sivity in the solar interior is not well constrained (Ossendrijver
2003), and we consequently hold for simplicity the ratios ηr/ηs

and ηcz/ηs fixed to values (see Table 1) previously shown to
yield a satisfactory degree of solar semblance (e.g., Dikpati &
Charbonneau 1999). Variations of the remaining free parame-
ters Cα , CBL, and Rm allow for a broad range of solutions. Rm
represents the strength of the meridional circulation and controls
the periodicity of the solar cycle, a well-known characteristic of
flux transport dynamos (Dikpati & Charbonneau 1999). Conse-
quently, and because of the strong observational constraint to
obtain a period close to 11 yr, our family of models works in
relatively narrow range of Rm. As the meridional flow measured
at the solar surface at mid-latitudes has an average magnitude
u0 of 15 m s−1 (Hathaway 1996), we vary Rm between 308 and
378 (u0 ≈ 13 and 17 m s−1, respectively). Within this range,
getting a self-sustained reversing dynamo requires Cα � 2 and
CBL � 0.5.

We pick a reference (standard) solution (labeled S in the
following) which has Rm = 318, Cα = 8 and CBL = 1; it
generates quasi-periodic reversals, separated by approximately
10.95 yr. Figure 3 represents the simulated evolutions of the
toroidal field at the tachocline, Btc

φ , and of the radial field at
the surface, BS

r . It illustrates that the criteria for solar sem-
blance which we listed are essentially met. This does not
include the equatorial antisymmetric field configuration, a
known recurring issue with BL models (Chatterjee et al. 2004;
Charbonneau 2005). In this respect, Dikpati & Gilman (2001)
and Bonanno et al. (2002) previously showed that the addition
of an α-effect in a thin layer above the tachocline (as done here,
recall Figure 2(c)) helps in obtaining antisymmetric solutions.
However, and even if the portion of the dynamical trajectory
represented in Figure 3 does display an antisymmetric magnetic
field configuration, let us stress that there does not seem to ex-
ist a clear preferred mode of operation for the magnetic field:

periods of symmetric, antisymmetric, and out-of-phase modes
alternate over the dynamical trajectory followed by the standard
model.

Long-term variability of the solar cycle is also present in
this reference solution. Charbonneau et al. (2005) point out that
chaotic modulation is a characteristic of BL models in which the
BL term includes a lower operational threshold, as is the case in
our model. Short periods of weaker than average activity level,
lasting for approximately three cycles, are frequently found
in our simulations, over a vast range of input parameters. In
addition to this short-term variability, some of the solutions
we obtain (including the reference solution S) display as well
long periods of grand minima, lasting for several centuries,
during which the cycle is not fully developed, but persists with
a residual activity (see Sanchez et al. 2014 for more details).
The occurrence of long periods of minimum activity is rare in
our simulations; we chose accordingly to focus on their regular,
quasi-cyclic behavior to carry out the predictability analysis
exposed below.

The quantities Cα and CBL (recall their definition in
Equations (16) and (17)) are less tightly constrained by observa-
tions than Rm, and they will constitute the effective degrees of
freedom of our class of models when we investigate its horizon
of predictability in the following section. Variations in Cα and
CBL affect the overall morphology of the solar cycle in different
ways. While an increase in Cα tends to excite higher frequencies
during the solar cycle, it does not result in strong alterations of
the magnetic field strength and cycle periodicity. On the other
hand, the intensity of the magnetic field is strongly and irregu-
larly sensitive to variations of CBL—the overall trend is that it
grows with CBL. Increasing CBL also usually results in the ap-
pearance of a feature respecting the Gnevyshev-Ohl rule, which
is the persistent pattern of alternating high and low amplitudes
of the solar cycles (Hathaway 2010). A too large an increase,
though, gives rise to intermittent, non-solar-like, solutions. This
forces us to define an upper bound of 2 for any admissible CBL.
On the other hand, as the main role of Rm is that of setting the
pace of the solar cycle, increasing its value leads to a shortening
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of the simulated periodicity (note that the first columns of
Table 3, which we will discuss further below, document in detail
this variability).

4. PREDICTABILITY ANALYSIS

4.1. Methodology

Our mean-field solar dynamo model is a dynamical system,
characterized by a limited range of predictability, owing to its
chaotic nature (Lorenz 1963). As stated in the Introduction, two
initially very close, twin, dynamical trajectories are bound to
diverge in a finite time τ . The analysis of the divergence between
these twin trajectories forms the backbone of our methodology;
it is based on the work carried out by Hulot et al. (2010) and
Lhuillier et al. (2011) to study the limit of predictability of the
geodynamo.

We create a twin from a reference trajectory by perturbing a
field variable (or control parameter) ξ at a given instant tp in the
following way

ξ (tp) �−→ ξ̃ (tp) = ξ (tp)(1 + ε), (26)

where ξ̃ and ε are the perturbed quantity and the amplitude of
the perturbation, respectively.

Of importance for the assessment of the predictability is the
evolution of the distance between the two trajectories over time.
In order to monitor this distance, we resort to two pointwise
measures, which are related to the toroidal field Bϕ at a point
rtc ≡ (r = rtc, θ = 70o) on the tachocline, and to the radial
field Br at a point rS ≡ (r = R�, θ ∼ 2o) at the solar surface.
These measures write

ΔBϕ(rtc, t) ≡ |Bϕ(rtc, t) − B̃ϕ(rtc, t)|√〈
B2

ϕ(rtc)
〉 (27)

and

ΔBr (rS, t) ≡ |Br (rS, t) − B̃r (rS, t)|√〈
B2

r (rS)
〉 , (28)

respectively. In these two definitions, notice that the distance
is normalized since the brackets 〈·〉 represent time averaging
(which we perform over a period of about 1000 yr after t = tp).
In the following, we will use Δ as a shorthand for ΔBϕ or ΔBr ,
when the distinction need not be made, and we will refer to the
evolution of Δ as the error growth: in a forecasting perspective,
the perturbation which we insert can indeed be interpreted as
the uncertainty affecting the initial condition (or the control
parameters) of the model. In this sense the distance we measure
is analogous to the growth of the forecast error of interest for
the data assimilation practitioner.

Figure 4 shows the typical evolution of the error growth
(measured here in terms of ΔBϕ) in our numerical experiments.
It corresponds to a ε = 10−6 perturbation applied to the spectral
poloidal coefficient P1. The evolution of Δ comprises three
distinct phases. First, both trajectories remain fraternal, as their
distance remain similar to ε (phase I in Figure 4). This is called
the mobilization phase by Lhuillier et al. (2011). Next, the error
enters a phase of exponential growth (phase II), until it reaches
saturation (phase III). From then on, the reference and perturbed
solutions evolve in an uncorrelated way.

Among these three phases, the phase of exponential growth
is the most meaningful to constrain the limit of predictability.

Considering that this phase starts at t = tε with an initial value
ε, the distance evolves according to

Δ(t) = ε eλ(t−tε), (29)

where λ denotes the exponential growth rate. Its inverse λ−1 is
the so-called e-folding time τe, namely the divergence time τ we
discussed above. We set out to estimate λ (or τe) as accurately
as possible for the class of mean-field models considered in
this work. Visual inspection of the time series of Δ allows us
to pick the phase of exponential growth; we next perform a
least-squares analysis to estimate λ (this procedure yields the
purple line in Figure 4).

That estimate may depend on the type and amplitude of the
perturbation, though, which calls for a systematic approach
to evaluating λ. In the next subsection, we use the standard
model S presented in Section 3 to vary extensively the type and
amplitudes of perturbations. Within this single-model context,
we find that the characteristics of the error growth are robust.
Therefore, in order to push the analysis further, we shall consider
in Section 4.3 how λ may be influenced by the values of the
triplet (Rm, CBL, Cα).

4.2. Error Growth in the Standard Model

4.2.1. Magnetic Perturbations

As explained above, we focus here on the standard model
S and begin by examining its response to perturbations of the
magnetic field. We study different scenarios. The perturbation
can affect either the poloidal scalar P or the toroidal scalar T .
It can be either large-scale (restricted to the n = 1 harmonic
degree), in which case it writes

P1(r, tp) �−→ P̃1(r, tp) = P1(r, tp)(1 + ε), (30)

(and the same for T1), or distributed randomly over the entire
spectrum, according to

Pn �−→ P̃n(r, tp) = Pn(r, tp)(1 + γnε), 1 � n � N, (31)

(and the same for Tn), in which the γn are random numbers from
0 to 1 distributed over all the harmonic degrees. In the remainder
of this subsection, the amplitude of the perturbation ε is
set to 10−6.

The pink curves in Figure 5 show that large-scale perturba-
tions of the poloidal or toroidal scalars defined by Equation (30)
yield the same well-defined three phases for the evolution of ΔBr

and ΔBϕ . In addition, each panel of Figure 5 comprises five gray
curves obtained from five random realizations of the small-scale
perturbations defined by Equation (31). Despite some scatter, vi-
sual inspection indicates a common error growth behavior. In
particular, if we were to estimate λ from this catalog of curves,
we would probably get a robust value. This is rather encourag-
ing, but before proceeding with the actual calculation of λ, let
us now inspect in more detail its sensitivity to a broader range
of perturbations.

4.2.2. Systematic Perturbations

We thus investigate now the error growth induced by pertur-
bations of different origins, varying amplitudes ε and different
times of insertion tp on the standard model S. The origin of the
perturbation ξ in Equation (26) can be one of the following: P1,
T1, Pn, Tn (as in the previous section), Ω or up (the flow), α or
SBL (the poloidal source terms), or ηp (the poloidal diffusivity
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Figure 4. Error growth behavior for the reference model S (see Table 3).
Top: toroidal field at 200 latitude on the tachocline. The reference solution
(shown in black) is perturbed at a given instant, shown by the pink arrow, by a
relative amount ε = 10−6. This generates the perturbed solution (purple) which
progressively diverges from the reference one. Bottom: the difference ΔBϕ

between both solutions on a logarithmic scale. The error growth can be separated
in three well-defined stages: (I) a mobilization phase, (II) an exponential growth
phase and (III) a saturated phase. In phase (II), we perform a least-squares
regression (purple line) in order to estimate the error growth rate λ. See the text
for details.

profile). For each of these nine possibilities, we consider pertur-
bations of amplitudes 10−2, 10−4, 10−6, 10−8 or 10−10. Finally,
we perturb the reference dynamical trajectory at three different
times, tp = t1, t2 or t3. We therefore consider 9 (origins) × 5

(amplitudes) × 3 (instants) = 135 ways of perturbing the stan-
dard trajectory. Since both ΔBϕ and ΔBr are used to monitor
the error growth, this allows us to construct a database of 270
estimates of λ. The database is completely described in Table 2.

Figure 6 illustrates the variability within the database of
model S, and shows that regardless of this variability, the error
growth displays a fair amount of dynamical similarity in the
270 scenarios we envisioned. Figure 6(a) shows the evolution
of ΔBϕ , for different origins, times of perturbation insertion and
different perturbation amplitudes. We see that the error growth
is weakly sensitive to the origin of the perturbations. Still, the
mobilization phase seems to vary depending on the way the
perturbations were inserted. For perturbations corresponding to
ξ = α or ξ = up, the mobilization phase lasts longer (several
centuries), and there is a mild dependency of the duration
of that phase on tp. The mobilization phase has a duration
which decreases with ε as well. However, this variability on
the mobilization phase does not strongly affect the estimate of
λ. On another note, it can also be seen that the error growth due
to smaller perturbations can experience secondary mobilization
phases, and resume its exponential growth after some time.

Figure 6(b) presents the distribution of the error growth
rates (one histogram per value of ε, which integrates all other
dependencies) of model S. The exponential growth is steeper
for smaller levels of perturbations (noticing that ε = 10−8 and
ε = 10−10 yield essentially the same behavior, though), that is,
large perturbations lead to smaller values of λ. There is also a
general tendency for the growth to slacken as the error reaches
macroscopic values.

Still, focusing on small to extremely small values of ε (10−6

and less), the estimated λ does not vary by more than 20%. This
robustness suggests the fact that λ is an intrinsic property of
our standard model S: regardless of the perturbation time and
origin, and as long as it is small, the exponential growth of the

Figure 5. Time series of ΔBϕ and ΔBr , following the application of magnetic perturbations of relative amplitude ε = 10−6 on standard model S. The perturbations
are inserted either on the poloidal (left column) or toroidal (right column) component of the magnetic field, and they affect either the first harmonic degree (P1/T1
pink curves) or all the harmonic degrees randomly (Pn/Tn), in which case five curves with different shades of gray are shown in each graph.
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(a)

(b)

Figure 6. Sensitivity of the error growth rate against perturbation types for model S: (a) Error growth considering different origins (ξ = Ω, up, α, SBL, and ηp), times
(tp = t1, t2, and t3) and amplitudes (ε = 10−2, 10−4, 10−6, 10−8, and 10−10); (b) histograms of the exponential growth rates λ from the set of perturbations displayed
in Table 2 ordered by perturbation amplitude. The histograms are modeled by Gaussian curves with mean μ and standard deviation σ .

error is likely to occur on a timescale τ of roughly 40 yr, that is
over slightly more than three simulated cycles. More precisely,
if Tc denotes the period of the simulated cycle and considering a
least-squares analysis of the ε = 10−10 histogram, we find that
τe = (3.34 ± 0.40) Tc.

4.3. Sensitivity of λ to the Control Parameters

We now explore the more general dependency of τe to the
control parameters of our class of mean-field models. Since the
simulated Tc varies with these parameters as well, and since
we wish to express τe in units of Tc, we investigate the joint
dependency of these two quantities on the triplet (Rm, Cα, CBL).

First, we increase the α-effect coefficient from Cα = 8 to
Cα = 16 and consider the same 270 possibilities as the ones
used for the standard model (this new model is labeled T in the
following). Figure 7 illustrates the corresponding database of
model T, and highlights consistent differences when compared
with the standard case S shown in Figure 6. Most notably, the

mobilization phase is in every instance much shorter (not lasting
more than a few decades), while the exponential growth phase
is in all cases much steeper, two effects pointing toward an
increased influence of turbulence as the value of Cα increases,
leading to larger estimates for λ. We still retrieve the tendency
for λ to decrease with increasing ε, while its uncertainties
decrease with ε. Accordingly, we find that for ε = 10−10,
τe = (2.45 ± 0.42) Tc (here, Tc = 10.15 yr).

Next, we carry out a similar sensitivity analysis with differ-
ent triplets (Rm, Cα, CBL). More specifically, we consider the
following possibilities

1. 308 � Rm � 378,
2. 0.5 � CBL � 2,
3. 8 � Cα � 32,

providing a total of 48 different models (including models S
and T). For each model we calculate λ restraining the amplitude
of the perturbation ε to what we consider its most reliable level,
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Table 2
Mean Values of λ and Its Uncertainties σ (in Units of 10−2 yr−1) from the Systematic Perturbation Analysis of the Standard Model S

ΔBϕ ΔBr

ε 10−10 10−8 10−6 10−4 10−2 10−10 10−8 10−6 10−4 10−2

tp ξ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ

t1 P1 3.66 0.07 2.49 0.05 2.52 0.06 1.68 0.09 3.57 0.21 3.69 0.09 2.33 0.06 2.58 0.06 1.44 0.09 4.23 0.35
T1 3.62 0.07 3.20 0.13 1.52 0.05 1.33 0.07 3.82 0.35 3.70 0.09 3.51 0.11 1.51 0.05 1.60 0.09 1.19 0.22
Pn 3.48 0.06 1.49 0.06 1.87 0.08 1.21 0.08 2.76 0.27 3.69 0.08 1.51 0.05 2.05 0.06 1.33 0.07 1.21 0.21
Tn 2.89 0.06 2.12 0.08 1.86 0.11 2.43 0.21 1.61 0.15 3.04 0.06 2.11 0.07 1.89 0.10 2.29 0.14 1.52 0.13
Ω 3.16 0.05 3.82 0.09 2.30 0.06 1.40 0.05 2.11 0.09 3.98 0.10 3.52 0.11 2.90 0.08 2.22 0.06 2.20 0.14
up 1.74 0.03 3.52 0.04 2.90 0.08 3.98 0.06 2.20 0.14 2.57 0.05 3.73 0.07 2.77 0.07 2.43 0.06 2.15 0.13
α 3.12 0.05 2.32 0.04 3.03 0.05 3.98 0.12 2.01 0.05 3.18 0.05 2.28 0.03 3.39 0.05 4.19 0.15 1.62 0.06

SBL 2.73 0.05 3.39 0.08 1.92 0.04 1.91 0.13 4.83 0.25 2.91 0.05 3.58 0.09 1.84 0.05 1.67 0.09 2.18 0.14
ηp 2.66 0.05 2.53 0.05 1.83 0.04 2.22 0.11 1.56 0.28 2.90 0.04 2.31 0.06 1.85 0.05 1.12 0.08 1.12 0.12

t2 P1 2.48 0.04 2.57 0.04 1.37 0.06 1.46 0.04 1.37 0.07 2.50 0.04 2.77 0.05 1.26 0.05 1.15 0.05 1.61 0.14
T1 2.62 0.04 3.69 0.06 3.15 0.10 1.36 0.04 1.39 0.09 2.76 0.04 3.97 0.07 3.91 0.12 1.28 0.07 0.87 0.16
Pn 3.06 0.06 3.92 0.07 1.97 0.08 1.58 0.06 1.81 0.15 2.91 0.10 4.12 0.10 1.84 0.06 1.67 0.05 1.31 0.09
Tn 3.44 0.06 2.87 0.08 2.07 0.08 1.53 0.08 2.10 0.23 3.61 0.08 2.76 0.08 2.48 0.11 1.37 0.06 1.79 0.22
Ω 2.53 0.04 2.71 0.05 3.46 0.07 2.13 0.05 1.43 0.05 2.50 0.04 2.79 0.05 3.93 0.10 2.07 0.05 1.40 0.04
up 2.68 0.04 2.80 0.05 3.47 0.05 2.16 0.11 1.96 0.09 2.67 0.04 2.54 0.04 3.60 0.06 1.32 0.05 2.16 0.10
α 3.11 0.05 2.81 0.05 4.03 0.04 2.65 0.05 3.35 0.09 3.19 0.05 2.83 0.06 2.31 0.04 3.07 0.05 2.57 0.11

SBL 2.65 0.05 3.65 0.06 4.03 0.12 2.34 0.08 1.87 0.17 2.49 0.05 1.68 0.08 3.53 0.12 1.42 0.07 1.30 0.08
ηp 2.47 0.04 3.15 0.04 1.98 0.12 2.22 0.08 1.78 0.08 2.57 0.06 1.42 0.05 1.38 0.04 1.42 0.09 1.98 0.14

t3 P1 2.37 0.04 2.32 0.03 2.85 0.05 2.05 0.12 2.53 0.21 2.75 0.05 2.26 0.03 2.76 0.05 2.94 0.20 3.06 0.35
T1 2.59 0.05 2.57 0.07 3.19 0.07 2.45 0.16 1.37 0.32 2.69 0.06 2.07 0.06 2.61 0.08 3.65 0.25 1.84 0.22
Pn 4.40 0.12 2.48 0.05 2.73 0.14 0.82 0.33 2.00 0.29 2.73 0.06 2.47 0.05 2.45 0.12 2.52 0.20 2.06 0.25
Tn 1.64 0.02 2.81 0.06 2.81 0.10 3.07 0.19 2.72 0.32 1.96 0.04 2.59 0.05 2.48 0.10 3.16 0.24 3.65 0.34
Ω 1.50 0.01 1.87 0.03 3.07 0.08 2.74 0.18 1.98 0.14 1.54 0.01 1.91 0.03 3.29 0.07 2.65 0.13 2.82 0.22
up 2.77 0.06 2.77 0.06 3.53 0.08 3.17 0.06 3.11 0.05 2.70 0.06 2.61 0.06 3.43 0.08 2.96 0.06 2.02 0.05
α 1.76 0.03 3.56 0.09 1.33 0.04 2.10 0.04 2.95 0.05 1.67 0.03 2.66 0.06 1.60 0.02 2.15 0.04 2.57 0.06

SBL 2.42 0.08 2.44 0.07 2.80 0.05 2.84 0.18 4.31 0.35 2.64 0.06 2.03 0.06 2.60 0.07 2.11 0.09 1.51 0.20
ηp 2.74 0.06 3.36 0.06 2.21 0.08 2.75 0.17 3.59 0.21 2.39 0.03 3.26 0.07 1.55 0.05 3.24 0.19 3.46 0.34

Table 3
Summary of the Values of Solar Cycle Periodicity Tc, e-folding Time τe and Its Uncertainty δ, and the Ratio τe/Tc for a Large

Number of Configurations of the Triplet (Rm, Cα, CBL)

CBL Cα Rm Tc τe δ τe/Tc CBL Cα Rm Tc τe δ τe/Tc

0.50 16 308 9.02 24.48 3.50 2.71 1.00 16 368 9.40 42.15 5.50 4.48
0.50 16 318 12.78 23.25 5.94 1.81 1.00 16 378 9.28 46.00 17.59 4.95
0.50 16 328 12.52 23.33 6.79 1.86 1.00 20 318 9.73 23.74 4.77 2.43
0.50 16 338 12.13 25.40 5.61 2.09 1.00 24 308 9.48 20.98 5.80 2.21
0.50 16 348 11.61 26.37 5.74 2.29 1.00 24 318 9.47 19.00 2.72 2.00
0.50 16 358 11.49 29.06 6.61 2.52 1.00 24 328 9.26 19.15 3.67 2.06
0.50 16 368 11.26 26.60 3.29 2.36 1.00 24 338 9.94 20.85 4.02 2.09
0.50 16 378 11.04 42.66 2.52 3.86 1.00 24 348 8.96 21.75 1.67 2.42
0.75 16 318 10.64 28.05 4.62 2.63 1.00 24 358 8.84 19.74 2.81 2.23
1.00 8 308 11.13 32.21 5.67 2.89 1.00 24 368 8.61 25.07 4.39 2.91

S 1.00 8 318 10.95 36.64 4.41 3.34 1.00 24 378 8.52 21.06 2.48 2.47
1.00 8 328 10.77 62.13 14.35 5.76 1.00 28 318 9.32 18.54 2.00 1.99
1.00 8 338 10.50 52.30 9.98 4.98 1.00 32 318 9.28 16.75 2.46 1.80
1.00 8 348 10.30 47.97 7.21 4.65 1.25 16 318 10.19 33.69 10.99 3.30
1.00 8 358 10.17 53.44 19.78 5.25 1.50 16 308 10.13 25.21 2.01 2.48
1.00 8 368 10.08 63.59 3.03 6.30 1.50 16 318 10.30 24.12 2.57 2.34
1.00 8 378 10.07 54.52 3.27 5.41 1.50 16 328 10.14 25.50 3.35 2.51
1.00 12 318 10.53 32.81 3.36 3.11 1.50 16 338 9.45 22.46 7.07 2.37
1.00 16 308 10.18 27.35 2.36 2.68 1.50 16 348 9.56 25.77 4.00 2.69

T 1.00 16 318 10.15 24.94 4.33 2.45 1.50 16 358 9.44 30.21 3.04 3.20
1.00 16 328 9.99 27.95 4.33 2.79 1.50 16 368 9.23 26.78 4.89 2.90
1.00 16 338 9.85 25.44 2.55 2.58 1.50 16 378 9.19 26.05 2.74 2.83
1.00 16 348 9.65 31.90 4.66 3.30 1.75 16 318 10.37 24.91 2.26 2.40
1.00 16 358 9.58 31.63 5.21 3.30 2.00 16 318 10.89 26.21 4.37 2.40

Notes. The letters S and T make reference to the main two models discussed in the bulk of the paper. All the timescales are expressed in years. Boldface
highlights the values of the timescales for the two specific cases (S and T) discussed throughout the text.
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(a)

(b)

Figure 7. Same as Figure 6, for model T which has a stronger α-effect than model S (Cα = 16 instead of Cα = 8), all other control parameters being the same.

namely 10−10. This survey is summarized in Table 3, and the
results (expressed in terms of the corresponding timescales Tc
and τe) are shown in Figures 8 and 9.

When Rm is fixed to its standard value (model S, Rm = 318),
our results show that τe and Tc are mostly sensitive to Cα , and less
affected by variations in CBL. Regarding the former dependency,
it can be seen in Figure 8(a) that both τe and Tc decrease with Cα .
The decrease in τe is a consequence of the stronger destabilizing
effect of turbulence. We also note (Figure 8(a), right) that the
ratio τe/Tc decreases with increasing Cα . In the parameter region
which we explored, τe is thus more sensitive to variations in Cα

than Tc.
According to Figure 8(b), the cycle period Tc displays a

non-monotonic behavior with respect to changes in CBL, which
measures the intensity of the non-local coupling in the governing
Equation (12). It is worth mentioning here that for the lower
value of CBL, the system undergoes a transition to an α-
dominated dynamo, characterized by a longer (and less solar-
like) periodicity of about 13 yr. As indicated by Figure 8(b), the
e-folding time τe does not vary substantially with CBL over our
narrow interval of investigation (recall Section 3). Overall, we

find that the ratio τe/Tc remains approximately constant (equal
to 2.5) over this interval.

Turning our attention to the dependency of Tc and τe on Rm,
we see (Figure 9) that the former decreases with increasing
Rm. The cycle duration scales indeed approximately in inverse
proportion to Rm, as shown in the left panel of Figure 9. On
the other hand, the dependency of τe on Rm is less clear. There
seems to be a mild trend in the cases of low to intermediate values
of Cα (orange and red points in the middle plot of Figure 9),
with τe slightly increasing with increasing Rm. This behavior
can be interpreted as a regulatory effect of the meridional
circulation: as u0 gets larger the meridional circulation tends
to make the system more stable against perturbations. This is
no longer true for a large Cα (dark red points in the middle
plot of Figure 9), which indicates that τe is then controlled by
the α-effect. It is worth mentioning that some realizations of
τe are affected by large uncertainties, mostly in cases with low
values of Cα and CBL, and large values of Rm. These cases
are the less chaotic ones, and the introduction of a perturbation
can sometimes lead to a mobilization phase lasting for more
than 1000 yr.
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(a)

(b)

Figure 8. Solar cycle periodicity Tc, e-folding time τe , and their ratio for (a) (top row) Rm = 318, CBL = 1.0 and a varying Cα and (b) (bottom row) Rm = 318,
Cα = 16, and a varying CBL.

To conclude this analysis, let us stress (as shown in Figure 9,
right) that the τe/Tc ratio is mainly concentrated around two
values, 2.5 and 5, with a larger concentration of points around
the former. Using all the available data at our disposal (as
summarized in Table 3), we can finally calculate a weighted
average for the ratio τe/Tc, and find

τe

Tc

= 2.76 ± 0.05. (32)

5. SUMMARY AND DISCUSSION

Our extensive analysis of the e-folding time τe for our
preferred (in the sense of solar semblance) standard model S
led us to conclude that if the control parameters (Rm, Cα, CBL)
are fixed, then τe can be regarded as an intrinsic property of
the model, regardless of the source of the error, with a small
dependence on its initial magnitude (Section 4.2.2).

In view of using that standard model (or a close version) for
operational forecasting, we extended the analysis to a series of
models, and investigated the sensitivity of τe to (Rm, Cα, CBL)
in detail. Our results reveal three salient properties.

1. A decrease of τe with increasing Cα . This reflects the
influence of the non-linear nature of the quenched α-effect
on the amplification of errors, leading to a more chaotic
(and less predictable) dynamo.

2. An apparent independence of τe on CBL, indicating the
secondary role played by this non-local forcing term on
the error growth. However, let us stress that this may be
caused by the narrow range of possible CBL we explored,
a consequence of the extreme sensitivity of the solar
semblance of the flux-transport model to this parameter.

3. A slight tendency for τe to increase with Rm for those
models with low to intermediate strength of the α-effect,
pointing to a stabilizing role of the meridional circulation
on the system under these conditions.

In addition, the moderate variability of the ratio of τe to the
simulated cycle period Tc in our database of simulations (which
comprises approximately 50 members) prompts us to propose
the master value τ e = 2.76 Tc for the class of mean-field models
we considered, should they be used for operational forecasting

(and keeping in mind that we focused our analysis on the regular
working of those models, not considering extreme events such
as grand minima).

From a practical point of view, the perturbations artificially
inserted into the model in Section 4 can be interpreted as
uncertainties in the measurements or in the model itself, which
are the causes of errors any data assimilation scheme needs to
deal with. These uncertainties are ultimately responsible for the
limited horizon of predictability of the chaotic system we are
interested in. If ε denotes the relative level of these uncertainties,
we derive from Equation (29) that the forecast horizon τf is
given by

τf = −τ e ln ε. (33)

Let us begin by estimating the level of uncertainties on the
measurement side. It is likely that an operational data assimila-
tion scheme will assimilate observations connected with large-
scale maps of Br at the solar surface, BS

r . Such magnetograms
are contaminated by errors, due to limited resolution, asyn-
chronous sampling and sparse polar measurements. A way to
quantify those errors is to analyze the spherical harmonic de-
composition of BS

r . Theory demands the monopole term in this
expansion (g0

0) to be zero; a non-zero g0
0 can consequently be

used as a means to quantify the uncertainty ε(BS
r ) we are after.

Figure 10 shows the time series of the monopole and axial dipole
coefficient (g0

1) derived from the database of magnetograms of
the Wilcox Solar Observatory (WSO).1 The figure shows that
g0

1 evolves in phase with the global poloidal magnetic field—it
changes sign at the time of maximum activity, and is correlated
with the polar flux (DeRosa et al. 2012). The monopole coeffi-
cient g0

0 constantly oscillates around zero. We can therefore use
the ratio of the root-mean-squared (rms) value of g0

0, 〈g0
0〉, to the

rms value of g0
1, 〈g0

1〉, to estimate ε(BS
r ). This yields

ε
(
BS

r

) ≈
〈
g0

0

〉
〈
g0

1

〉 = 0.1535 G

1.2550 G
≈ 12%. (34)

On the model side now, one of the most obvious sources of
errors lies in the large-scale kinematic approximation on which

1 http://wso.standford.edu/Harmonic.rad/ghlist.html
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Figure 9. Solar cycle periodicity Tc, e-folding time τe and their ratio for different values of Cα , CBL and Rm. The magnitude of Cα is color-coded: Cα = 8, orange;
Cα = 16, red; Cα = 24, dark red. Symbols indicate different CBL: CBL = 0.5, circles; CBL = 1.0, squares; CBL = 1.5, diamonds.

Figure 10. Time series of the monopole g0
0 and axial dipole g0

1 Gauss
coefficients derived from the magnetic charts of the Wilcox Solar Observatory
(http://wso.standford.edu/Harmonic.rad/ghlist.html).

our modeling rests. In particular, observations indicate that it
may be inappropriate to assume that the large-scale flow driving
the dynamo is steady. As a consequence, there are errors arising
from the variability of both the patterns of differential rotation
and meridional circulation. Howe et al. (2000) discovered a
persistent pattern of low-amplitude time variation of Ω, δΩ, of
about 6 nHz, due to solar torsional oscillations. Consequently,
we get

ε(Ω) = δΩ
Ωeq

≈ 1%. (35)

This small figure must be contrasted with the one owing to
those uncertainties impacting up. The long-term variability of
the meridional circulation δup has an amplitude δu0 close to
5 m s−1 (Hernández et al. 2006), which yields

ε(up) = δu0

u0
≈ 33%, (36)

if computed based on the mean value of the surface meridional
flow at mid-latitudes, u0 ≈ 15 m s−1. Injecting ε(up) in
Equation (33) yields

τf ≈ 3 Tc. (37)

In addition to these fluctuations in amplitude, there exists con-
siderable uncertainties on the large-scale structure of the merid-
ional circulation itself. The depth at which the equatorward

return flow occurs (Hathaway 2011) and the possible multi-cell
pattern of meridional flow (Zhao et al. 2013) are two examples
illustrating the current lack of robust observational constraints
on up. These cannot be readily incorporated in the current anal-
ysis, for they would require different families of simulations
to be integrated, and their region of solar semblance be iden-
tified in parameter space (in the same way we mapped it for
the ensemble of single-cell, tachocline equatorward return flow
simulations considered here).

Further uncertainties affect the turbulent diffusivity, η(r). As
explained in Section 2, we resort in this study to spherically
symmetric ηp(r) and ηt (r), of relatively low values. Both reach
an amplitude of 3 × 1011 cm s−2 at r = R� (recall Figure 2(d)).
This value has to be contrasted with the value of 1012 cm s−2

used by Choudhuri et al. (2007) for their prediction of cycle 24,
using a so-called diffusion-dominated flux-transport model.
More recently, Miesch et al. (2012) put forward theoretical and
observational arguments in favor of the same figure, 1012 cm s−2,
as a lower bound of this turbulent transport coefficient. The exact
nature of η(r) in the solar interior remains strongly debated, and
no consensus has been reached.

In this study, we opted for an advection-dominated forward
model, on the account of its first order dynamical semblance
with the solar dynamo. If one were to choose instead a diffusion-
dominated model for data assimilation purposes, one would have
to carry out a sensitivity analysis similar to the one pursued
here, in order to compute the e-folding time and estimate the
forecast horizon for that different family of models. In this
respect, note that Karak & Nandy (2012) resorted to a simpler,
correlation-based, analysis in order to study the “memory” of
such a diffusion-dominated model (which includes in their
case turbulent pumping and a stochastic component to the
poloidal source term). Their analysis demonstrates that turbulent
diffusion shortens the memory of the system to less than one
cycle. This preliminary work should be complemented by the
proper derivation of the e-folding time characterizing that class
of models, along the methodological lines presented in this
paper.

Regardless of the model ultimately chosen, one should keep
in mind that data assimilation remains in any case the only
sensible way of testing the compatibility of a given physical
model of the solar dynamo with observations of its dynami-
cal activity. By enabling on-the-fly parameter adjustments (in
addition to state estimation), data assimilation offers in prin-
ciple the possibility of correcting the radial profiles of diffu-
sion coefficients (and those of poloidal source terms). Even if
the advection-dominated model we studied has an optimistic
theoretical predictability limit of three solar cycles, we must
bear in mind that any data assimilation scheme aiming to fore-
cast solar activity will be unperfect, and its effective forecast
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(a) (b)

Figure 11. Convergence tests: critical dynamo numbers Ccrit
α and Ccrit

S and solar cycle periodicity ω for (a) case B and (b) case C, as defined by Jouve et al. (2008).
The resolution is defined by

√
Nr N , where Nr is the number of radial levels and N is the truncation of the spherical harmonic expansion.

(A color version of this figure is available in the online journal.)

Table 4
Comparison of the Critical Dynamo Numbers Ccrit

α,S and Frequency of the Solar Cycle ω in the Benchmark
Cases A, B and C from Jouve et al. (2008)

Case Results Reference

Resolution Δt Ccrit
α,s ω Ccrit

α,s ω

A 71 × 71 5 × 10−5 0.385 158.00 0.387 ± 0.002 158.1 ± 1.472
B 71 × 71 5 × 10−5 0.406 172.01 0.408 ± 0.003 172.0 ± 0.632
C 120 × 120 1 × 10−6 2.545 534.6 2.489 ± 0.075 536.6 ± 8.295

Notes. The spacial and temporal resolutions are given in terms of radial points and harmonic degree (Nr × N ) and time-step Δt .

horizon will consequently decrease. Taking this into account,
one can hope, though, that if such an advection-dominated
model were to be chosen for operational forecasting, its practi-
cal limit of predictability could reach (and perhaps exceed) one
solar cycle.

The authors thank the referee for helpful and constructive
review, and Allan Sacha Brun, Emmanuel Dormy and Martin
Schrinner for enlightening discussions. Sabrina Sanchez also
thanks Oscar Matsuura and Katia Pinheiro for the fruitful
contributions to the beginning of this project, the Observatório
Nacional of Brazil for the initial support, and the Space Physics
and Aeronomy group of the American Geophysical Union for
the student grant award at the 2012 AGU Meeting. Numerical
calculations were performed on IPGP’s S-CAPAD computing
facility. This is IPGP contribution 3459.

APPENDIX

PARODY CODE—MEAN FIELD BENCHMARKING

The Parody code used in this work was originally pro-
posed for full 3D MHD dynamo simulations (ACD code,
benchmarked in Christensen et al. 2001; see Dormy et al.
1998 and Aubert et al. 2008). In order to perform an anal-
ysis of the predictability of standard mean-field solar dy-
namos, it was necessary to ensure the compatibility of the
model with the ones used within the solar dynamo commu-
nity. For such reason, we modified and compared outputs
from our 3D MHD code with a mean-field solar dynamo
benchmark.

The full spherical harmonic expansion of the code writes

(P, T )(r, θ, ϕ, t) =
N∑

n=1

M∑
m=1

(
Pm

n , T m
n

)
(r, t) Ym

n (θ, ϕ), (A1)

truncated at spherical harmonic degree and order N and M,
respectively. As most mean-field models assume axisymmetry,
we set M = 0 throughout.

The original inner boundary conditions of Parody considered
the inner core as an insulating or electrically conducting medium
of finite conductivity (Christensen et al. 2001); in contrast, in
the solar context, the radiative zone is modeled as a perfect
conductor. This last condition requires to impose

P = 0, and (A2)

∂(r T )/∂r = 0 at the inner boundary. (A3)

Further modifications of the code included the incorporation
of the α and BL source terms in the poloidal induction
Equation (12), and the prescription of the flow fields, Ω and
up, and depth-dependent turbulent diffusivities η(r).

The resulting code was tested against published reference
solutions of the mean-field community benchmark effort de-
scribed by Jouve et al. (2008). The benchmarking consists of
computing the critical dynamo numbers Ccrit, and solar activ-
ity cycle frequency ω, for three case studies. The three cases
include two αΩ mean-field dynamos (cases A and B, differing
only by the prescribed η(r)) and a BL dynamo (case C). Table 4
displays the values obtained from our code and the Jouve et al.
(2008) benchmark ones for each case, while convergence tests
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(a) (b)

Figure 12. Butterfly diagrams summarizing two different benchmark cases from Jouve et al. (2008): (a) αΩ dynamo from the supercritical case SB and (b) a
Babcock-Leighton dynamo from the supercritical case SC. For each case, the upper panel displays the toroidal field at the tachocline and the lower one the radial field
at the surface.

(A color version of this figure is available in the online journal.)

of the critical numbers of cases B and C are shown in Figure 11.
In addition, butterfly diagrams for the supercritical cases SB
and SC (the supercritical cases include α and SBL quenching)
are displayed in Figure 12.

Note that in the present study, and compared with the
benchmark cases, we use slightly different inner boundary
conditions, namely

P = 0, and (A4)

T = 0 at the inner boundary, (A5)

as is common in mean-field solar dynamo simulations (e.g.,
Dikpati & Charbonneau 1999). Inspection of results obtained
with both types of inner boundary conditions shows that they
are virtually the same, in agreement with Chatterjee et al. (2004).
An interpretation of this is that the low diffusivity of the radiative
zone and the absence of a deeply penetrating meridional flow
inhibit the penetration of the strong tachocline magnetic field to
the deepermost layers.
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Fournier, A., Aubert, J., and Thébault, E. (2015). A candidate secular variation model
for IGRF-12 based on Swarm data and inverse geodynamo modelling. Earth, Planets
and Space, 67(1):81.

Fournier, A., Eymin, C., and Alboussiere, T. (2007). A case for variational geomagnetic
data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed
mhd system. Nonlinear Processes in Geophysics, 14(2):163–180.

Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert,
J., and Lhuillier, F. (2010). An introduction to data assimilation and predictability in
geomagnetism. Space science reviews, 155(1-4):247–291.

Fournier, A., Nerger, L., and Aubert, J. (2013). An ensemble Kalman filter for the time-
dependent analysis of the geomagnetic field. Geochemistry, Geophysics, Geosystems,
14(10):4035–4043.
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Knutti, R. and Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5
climate model projections. Nature Climate Change, 3(4):369–373.

Korte, M. and Constable, C. (2003). Continuous global geomagnetic field models for the
past 3000 years. Physics of the Earth and Planetary Interiors, 140(1):73–89.

Korte, M. and Constable, C. (2008). Spatial and temporal resolution of millennial scale
geomagnetic field models. Advances in Space Research, 41(1):57–69.

Korte, M., Donadini, F., and Constable, C. (2009). Geomagnetic field for 0–3 ka: 2.
A new series of time-varying global models. Geochemistry, Geophysics, Geosystems,
10(6).

Kuang, W. and Bloxham, J. (1997). An Earth-like numerical dynamo model. Nature,
389(6649):371–374.

Kuang, W., Tangborn, A., Jiang, W., Liu, D., Sun, Z., Bloxham, J., and Wei, Z. (2008).
MoSST-DAS: the first generation geomagnetic data assimilation framework. Commun.
Comput. Phys, 3(1):85–108.

Kuang, W., Tangborn, A., Wei, Z., and Sabaka, T. (2009). Constraining a numerical
geodynamo model with 100 years of surface observations. Geophysical Journal Inter-
national, 179(3):1458–1468.

Kuang, W., Wei, Z., Holme, R., and Tangborn, A. (2010). Prediction of geomagnetic field
with data assimilation: a candidate secular variation model for igrf-11. Earth, planets
and space, 62(10):775–785.

Langel, R. and Estes, R. (1982). A geomagnetic field spectrum. Geophysical Research
Letters, 9(4):250–253.

Larmor, J. (1919). How could a rotating body such as the Sun become a magnet?, concrete
mine timbers. Scientific American, 88:287–287.

Lhuillier, F., Aubert, J., and Hulot, G. (2011a). Earth’s dynamo limit of predictability
controlled by magnetic dissipation. Geophysical Journal International, 186(2):492–508.

Lhuillier, F., Fournier, A., Hulot, G., and Aubert, J. (2011b). The geomagnetic secular-
variation timescale in observations and numerical dynamo models. Geophysical Research
Letters, 38(9).

Li, K., Jackson, A., and Livermore, P. W. (2011). Variational data assimilation for the
initial-value dynamo problem. Physical Review E, 84(5):056321.

Li, K., Jackson, A., and Livermore, P. W. (2014). Variational data assimilation for a
forced, inertia-free magnetohydrodynamic dynamo model. Geophysical Journal Inter-
national, 199(3):1662–1676.

Licht, A., Hulot, G., Gallet, Y., and Thébault, E. (2013). Ensembles of low degree
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Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand,
F., Bondar, T., Boness, A., Brocco, L., et al. (2015). International geomagnetic refer-
ence field: the 12th generation. Earth, Planets and Space, 67(1):1–19.

Thellier, E. and Thellier, O. (1959). Sur l’intensité du champ magnétique terrestre dans
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