]. P. Bibliographie1, M. Radvanyi, L. Bordry, P. P. Et-son-histoire, L. Radvanyi et al., [3] V. E. Oberacker, « Nuclear and Heavy-Ion Theory ». [En ligne] Disponible sur: http://www.vanderbilt Disponible sur: http://isolde.web.cern.ch/. [5] « ISAC Facilities for Rare-Isotope Beams | TRIUMF : Canada's National Laboratory for Particle and Nuclear Physics, The ISOLDE Radioactive Ion Beam facility | ISOLDE ». [En ligne], 1984.

M. Lebois and P. Bricault, Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility, Journal of Physics: Conference Series, vol.312, issue.5, p.52013, 2007.
DOI : 10.1088/1742-6596/312/5/052013

H. J. Woo, Overview of the ISOL facility for the RISP, Journal of the Korean Physical Society, vol.66, issue.3, pp.443-448
DOI : 10.3938/jkps.66.443

A. Andrighetto, Production of high-intensity RIB at SPES, 754c?757c, mars 2010. [9] « SPIRAL2 ? GANIL ». [En ligne]. Disponible sur
DOI : 10.1016/j.nuclphysa.2010.01.137

S. Essabaa, « The radioactive beam facility ALTO », Nucl. Instrum, Methods Phys. Res. Sect. B Beam Interact. Mater. At. Part B, vol.317, pp.218-222, 2013.
DOI : 10.1016/j.nimb.2013.06.029

H. L. Ravn, Radioactive ion beams available at on-line mass separators, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.26, issue.1-3, pp.72-85, 1987.
DOI : 10.1016/0168-583X(87)90735-X

I. E. Campbell and E. M. Sherwood, High-Temperature Materials and Technology, Journal of The Electrochemical Society, vol.115, issue.4, 1967.
DOI : 10.1149/1.2411177

P. Pascal, Nouveau Traite De Chimie Minerale: Uranium Et Transuraniens, Anybook Ltd, vol.15, 1962.

L. Margrave, « The Characterization of High-Temperature Vapors, Science, vol.161, issue.3841, pp.562-563, 1968.

M. Fujioka and Y. Arai, Diffusion of radioisotopes from solids in the form of foils, fibers and particles, Nuclear Instruments and Methods in Physics Research, vol.186, issue.1-2, pp.409-412, 1981.
DOI : 10.1016/0029-554X(81)90933-2

A. Étilé, Etude de la structure nucléaire de noyaux exotiques à ALTO : développements et résultats de deux nouvelles installations, 2014.

I. Deloncle, scintillators, Journal of Physics: Conference Series, vol.205, issue.1, p.12044, 2010.
DOI : 10.1088/1742-6596/205/1/012044

URL : https://hal.archives-ouvertes.fr/in2p3-00610370

B. Roussière, Half-life measurements of 137, 139Cs excited nuclear states, The European Physical Journal A, vol.80, issue.9, p.106, 2011.
DOI : 10.1103/PhysRevC.80.044314

B. Roussière, Cs, Journal of Physics: Conference Series, vol.366, issue.1, p.12038, 2012.
DOI : 10.1088/1742-6596/366/1/012038

D. Testov, Effect of shell closure N = 50 and N = 82 on the structure of very neutron-rich nuclei produced at ALTO : measurements of neutron emission probabilities and half lives of nuclei at astrophysical r-processes path, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01059803

W. T. Diamond, A radioactive ion beam facility using photofission, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.432, issue.2-3, pp.2-3, 1999.
DOI : 10.1016/S0168-9002(99)00492-1

Y. T. Oganessian, RIB production with photofission of uranium, Nuclear Physics A, vol.701, issue.1-4, pp.87-95, 2002.
DOI : 10.1016/S0375-9474(01)01553-6

L. Maunoury, Production de faisceaux d'ions radioactifs multicharges pour SPIRAL : Etudes et realisation du premier ensemble cible-source », phdthesis, 1998.

R. Kirchner, K. Burkard, W. Hüller, and E. O. Klepper, Ion source development for the on-line isotope separator at GSI, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.70, issue.1-4, pp.56-61, 1992.
DOI : 10.1016/0168-583X(92)95909-B

U. Köster, Resonance ionization laser ion sources, Resonance ionization laser ion sources, pp.441-451, 2002.
DOI : 10.1016/S0375-9474(01)01625-6

R. Kirchner and . On, On the thermoionization in hot cavities, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.292, issue.2, pp.203-208, 1990.
DOI : 10.1016/0168-9002(90)90377-I

S. Sundell and H. Ravn, Ion source with combined cathode and transfer line heating, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.70, issue.1-4, pp.160-164, 1992.
DOI : 10.1016/0168-583X(92)95926-I

R. Kirchner and E. , A novel isol ion source, Nuclear Instruments and Methods, vol.139, pp.291-296, 1976.
DOI : 10.1016/0029-554X(76)90687-X

S. Franchoo, The Alto Tandem and Isol Facility at IPN Orsay, Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014), 2015.
DOI : 10.7566/JPSCP.6.020041

P. Y. Chevalier and E. Fischer, Thermodynamic modelling of the C???U and B???U binary systems, Journal of Nuclear Materials, vol.288, issue.2-3, pp.2-3, 2001.
DOI : 10.1016/S0022-3115(00)00713-3

URL : https://hal.archives-ouvertes.fr/hal-00340672

E. K. Storms, The refractory carbides, 1967.

T. B. Massalski, H. Okamoto, P. R. Subramanian, and E. L. Kacprzak, Binary Alloy Phase Diagrams, 1990.

R. Benz and J. D. Farr, X-ray diffraction of UC-UC2 and UC-UN alloys at elevated temperatures, Journal of Nuclear Materials, vol.42, issue.2, pp.217-222, 1972.
DOI : 10.1016/0022-3115(72)90027-X

F. , L. Guyadec, X. Génin, J. P. Bayle, O. Dugne et al., Ablitzer, « Pyrophoric behaviour of uranium hydride and uranium powders, J. Nucl. Mater, vol.396, issue.2, pp.294-302, 2010.

J. Laugier, P. L. Blum, and U. Le-diagramme-metastable, Le diagramme metastable UC-UC2, Journal of Nuclear Materials, vol.39, issue.3, pp.245-252, 1971.
DOI : 10.1016/0022-3115(71)90143-7

F. Mazaudier, C. Tamani, A. Galerie, and E. Y. Marc, On the oxidation of (U,Pu)C fuel: Experimental and kinetic aspects, practical issues, Journal of Nuclear Materials, vol.406, issue.3, pp.277-284, 2010.
DOI : 10.1016/j.jnucmat.2010.07.041

URL : https://hal.archives-ouvertes.fr/hal-00559575

H. P. Nawada, P. S. Murti, G. Seenivasan, S. Anthonysamy, and C. K. Mathews, Thermogravimetric study of the oxidation behaviour of uranium dicarbide, Thermogravimetric study of the oxidation behaviour of uranium dicarbide, pp.1145-1155, 1989.
DOI : 10.3327/jaesj.9.2

K. A. Gschneidner and F. W. Calderwood, The carbon-rare earth systems, Bulletin of Alloy Phase Diagrams, vol.80, issue.5, pp.421-436, 1986.
DOI : 10.1007/BF02884845

D. Spall and R. Villarreal, « Selection of Actinide Chemical Analogues for WIPP Tests: Potential Nonradioactive Sorbing and Nonsorbing Tracers for Study of Ion Transport in the Environment, 1998.
DOI : 10.2172/1249

S. Fernandes, « Submicro-and Nano-Structured Porous Materials for Production of High- Intensity Exotic Radioactive Ion Beams, 2010.

M. Menna, « Nuclear and radiochemistry at CERN-ISOLDE : target synthesis and diffusion studies, 1997.

U. Köster, Yields and spectroscopy of radioactive isotopes at LOHENGRIN and ISOLDE, 1999.

U. Köster, Progress in ISOL target???ion source systems, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.19-20, pp.19-20, 2008.
DOI : 10.1016/j.nimb.2008.05.152

S. Carturan, Synthesis and characterization of lanthanum dicarbide-carbon targets for radioactive ion beams generation via the carbothermal reaction, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.583, issue.2-3, pp.2-3, 2007.
DOI : 10.1016/j.nima.2007.09.037

L. Biasetto, Lanthanum carbide-based porous materials from carburization of lanthanum oxide and lanthanum oxalate mixtures, Journal of Nuclear Materials, vol.378, issue.2, pp.180-187, 2008.
DOI : 10.1016/j.jnucmat.2008.06.016

L. Biasetto, Fabrication of mesoporous and high specific surface area lanthanum carbide???carbon nanotube composites, Journal of Nuclear Materials, vol.385, issue.3, pp.582-590, 2009.
DOI : 10.1016/j.jnucmat.2009.01.035

L. Biasetto, Developing uranium dicarbide???graphite porous materials for the SPES project, Journal of Nuclear Materials, vol.404, issue.1, pp.68-76, 2010.
DOI : 10.1016/j.jnucmat.2010.06.032

S. Corradetti, Study and development of high release refractory materials for the SPES project, Disponible sur, pp.22-2013

S. Corradetti, L. Biasetto, M. D. Innocentini, S. Carturan, and P. Colombo, Andrighetto, « Use of polymeric fibers to increase gas permeability of lanthanum carbide based targets for nuclear physics applications, Ceram. Int, vol.42, pp.15-17764

S. Corradetti, Graphene derived lanthanum carbide targets for the SPES ISOL facility, Ceramics International, vol.43, issue.14
DOI : 10.1016/j.ceramint.2017.05.106

Y. Peng, Thermodynamic modeling of the C???RE (RE=La, Ce and Pr) systems, Calphad, vol.35, issue.4, pp.533-541
DOI : 10.1016/j.calphad.2011.09.002

M. Tonezzer, Thermal treatments and characterizations of pellets for SPES direct target, The European Physical Journal Special Topics, vol.150, issue.1, pp.281-282, 2007.
DOI : 10.1140/epjst/e2007-00324-3

V. Hanemaayer, P. Bricault, and E. M. Dombsky, Composite ceramic targets for high power proton irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.19-20, pp.4334-4337, 2008.
DOI : 10.1016/j.nimb.2008.05.094

V. V. Akhachinskii and S. N. Bashlykov, Systems of uranium and plutonium with carbon, oxygen, and nitrogen: Phase diagrams and methods of production, Soviet Atomic Energy, vol.I, issue.6, p.1317, 1969.
DOI : 10.1007/BF01118656

S. Tusseau-nenez, Characterization of uranium carbide target materials to produce neutron-rich radioactive beams, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.370, pp.19-31, 2016.
DOI : 10.1016/j.nimb.2015.12.043

URL : https://hal.archives-ouvertes.fr/hal-01254808

G. Danger and J. Besson, Etude cinetique de la carboreduction du dioxyde d'uranium, Journal of Nuclear Materials, vol.54, issue.2, pp.190-198, 1974.
DOI : 10.1016/0022-3115(74)90129-9

F. Poncet, F. Valdivieso, and E. M. Pijolat, Influence of texture and physical mixture of UO3 and C for carboreduction of UO3 into UO2, Journal of Nuclear Materials, vol.256, issue.2-3, pp.155-165, 1998.
DOI : 10.1016/S0022-3115(98)00061-0

URL : https://hal.archives-ouvertes.fr/emse-00610111

J. Harrison, The irradiation-induced swelling of uranium carbide, Journal of Nuclear Materials, vol.30, issue.3, p.319, 1969.
DOI : 10.1016/0022-3115(69)90248-7

P. Rodriguez, Mixed plutonium-uranium carbide fuel in fast breeder test reactor, Bulletin of Materials Science, vol.74, issue.3, pp.215-220, 1999.
DOI : 10.1524/ract.1991.55.1.29

G. Bart, F. B. Botta, C. W. Hoth, G. Ledergerber, R. E. Mason et al., AC-3-irradiation test of sphere-pac and pellet (U,Pu)C fuel in the US Fast Flux Test Facility, Journal of Nuclear Materials, vol.376, issue.1, pp.47-59, 2008.
DOI : 10.1016/j.jnucmat.2008.01.022

H. Matsui, M. Horiki, and E. T. Kirihara, Irradiation of Uranium Carbides in JMTR, Journal of Nuclear Science and Technology, vol.102, issue.10, pp.12-922, 1981.
DOI : 10.1016/0022-3115(73)90163-3

A. H. Evensen, Release and yields from thorium and uranium targets irradiated with a pulsed proton beam, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.126, issue.1-4, pp.160-165, 1997.
DOI : 10.1016/S0168-583X(96)01086-5

B. Hy, An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.288, pp.34-41
DOI : 10.1016/j.nimb.2012.04.031

URL : https://hal.archives-ouvertes.fr/hal-00816939

G. Lhersonneau, Tests of high-density UC targets developed at Gatchina for neutron-rich radioactive-beam facilities, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.19-20, pp.4326-4329, 2008.
DOI : 10.1016/j.nimb.2008.05.033

URL : https://hal.archives-ouvertes.fr/in2p3-00294850

V. N. Panteleev, Studies of uranium carbide targets of a high density, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.19-20, pp.19-20, 2008.
DOI : 10.1016/j.nimb.2008.05.045

URL : https://hal.archives-ouvertes.fr/in2p3-00159387

V. N. Panteleev, Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions, The European Physical Journal A, vol.73, issue.3, pp.495-501, 2009.
DOI : 10.1063/1.1427345

URL : https://hal.archives-ouvertes.fr/in2p3-00401530

A. Kronenberg, Yields of fission products from various uranium and thorium targets, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.19-20, pp.4267-4270, 2008.
DOI : 10.1016/j.nimb.2008.05.047

D. W. Stracener, Status of radioactive ion beams at the HRIBF, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.204, pp.42-47, 2003.
DOI : 10.1016/S0168-583X(02)01888-8

J. A. Turnbull and C. A. Friskney, The relation between microstructure and the release of unstable fission products during high temperature irradiation of uranium dioxide, Journal of Nuclear Materials, vol.71, issue.2, pp.238-248, 1978.
DOI : 10.1016/0022-3115(78)90421-X

C. J. Orth, Diffusion of Lanthanides and Actinides from Graphite at High Temperatures, Diffusion of Lanthanides and Actinides from Graphite at High Temperatures, pp.417-420, 1961.
DOI : 10.13182/NSE61-A25905

L. C. Carraz, I. R. Haldorsen, H. L. Ravn, M. Skarestad, and E. L. Westgaard, Fast release of nuclear reaction products from refractory matrices, Nuclear Instruments and Methods, vol.148, issue.2, pp.217-230, 1978.
DOI : 10.1016/0029-554X(70)90171-0

L. C. Carraz, S. Sundell, H. L. Ravn, M. Skarestad, and E. L. Westgaard, High-temperature carbide targets for fast on-line mass separation of alkali and noble gas elements, Nuclear Instruments and Methods, vol.158, pp.69-80, 1979.
DOI : 10.1016/S0029-554X(79)90595-0

Y. Kawai, G. D. Alton, and J. C. Bilheux, An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.241, issue.1-4, pp.991-995, 2005.
DOI : 10.1016/j.nimb.2005.07.159

D. Bhowmick, Preparation and optimization of targets for the production of radioactive ions at VECC, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.539, issue.1-2, 2005.
DOI : 10.1016/j.nima.2004.10.022

S. Gosse, C. Gueneau, T. Alpettaz, S. Chatain, C. Chatillon et al., Kinetic study of the UO2/C interaction by high-temperature mass spectrometry, Kinetic study of the UO, pp.2866-2876, 2008.
DOI : 10.1016/j.nucengdes.2008.01.019

L. Biasetto, Gas permeability of lanthanum oxycarbide targets for the SPES project, Journal of Nuclear Materials, vol.440, issue.1-3, pp.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.04.038

D. Bernache-assollant and J. Bonnet, « Frittage : aspects physico-chimiques -Partie 1 : frittage en phase solide, p.2005

G. Champion, Magnesiothermic Reduction Process Applied to the Powder Production of U(Mo) Fissile Particles, Advanced Engineering Materials, vol.397, issue.4, pp.257-261
DOI : 10.1016/j.jnucmat.2009.11.026

URL : https://hal.archives-ouvertes.fr/hal-01069856

D. Salvato, Innovative preparation route for uranium carbide using citric acid as a carbon source, Ceramics International, vol.42, issue.15, pp.16710-16717
DOI : 10.1016/j.ceramint.2016.07.138

URL : https://doi.org/10.1016/j.ceramint.2016.07.138

D. Salvato, J. Vigier, M. Cologna, L. Luzzi, J. Somers et al., Spark plasma sintering of fine uranium carbide powder, Spark plasma sintering of fine uranium carbide powder, pp.866-869
DOI : 10.1016/j.ceramint.2016.09.136

URL : https://doi.org/10.1016/j.ceramint.2016.09.136

«. European-commission, CORDIS : Projects & Results Service : Final Report Summary -FIRST- NUCLIDES (Fast / Instant Release of Safety Relevant Radionuclides from Spent Nuclear Fuel)

K. Forsberg and A. R. Massih, Kinetics of fission product gas release during grain growth, Modelling and Simulation in Materials Science and Engineering, vol.15, issue.3, pp.335-353, 2007.
DOI : 10.1088/0965-0393/15/3/011

H. Matzke, Application of ???channeling??? techniques to fission gas release studies, Journal of Nuclear Materials, vol.30, issue.1-2, pp.1-2, 1969.
DOI : 10.1016/0022-3115(69)90173-1

J. P. Greene, A. Levand, J. Nolen, and E. T. Burtseva, Uranium carbide fission target R&D for RIA - an update, Nuclear Physics A, vol.746, pp.425-428, 2004.
DOI : 10.1016/j.nuclphysa.2004.09.130

M. Golkovsky, V. Gubin, O. Alyakrinsky, and S. P. Bardakhanov, « About Carbides-made Nanoceramics Fission Target for RIB Production », présenté à EPAC, 2008.

O. Alyakrinskiy, K. Gubin, P. Martyshkin, and E. L. Tecchio, Influence of grain size and porosity on the release of radioactive isotopes from target materials with high open porosity, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.267, issue.15, pp.15-2554, 2009.
DOI : 10.1016/j.nimb.2009.05.050

C. Duguay and G. Pelloquin, Fabrication of mixed uranium???plutonium carbide fuel pellets with a low oxygen content and an open-pore microstructure, Journal of the European Ceramic Society, vol.35, issue.14, pp.14-3977
DOI : 10.1016/j.jeurceramsoc.2015.05.026

D. Scarpa, Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype, The European Physical Journal A, vol.382, issue.3, p.32, 2011.
DOI : 10.1016/S0168-9002(96)00632-8

S. Corradetti, Temperature dependence of yields from multi-foil SPES target, The European Physical Journal A, vol.126, issue.10, p.119, 2011.
DOI : 10.1016/S0168-583X(97)01083-5

C. Arigon, « Chap 3 : paragraphe 3.5 : Appareils de laboratoire, Les Techniques III/IV, pp.78-82, 1996.

E. Romilliat, « Etude des modes d'action d'agents de mouture sur le broyage du clinker, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006.

C. H. Delegard, A. J. Schmidt, and J. W. Chenault, PNNL-14947 Mechanical Properties of K Basin Sludge Constituents and Their Surrogates, 2004.
DOI : 10.2172/15010706

S. Ouattara, Nanobroyage d'actifs organiques en suspensions concentrées dans un broyeur à billes agité, 2010.

C. Lau, Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides », phdthesis, 2000.

S. Corradetti, M. Manzolaro, A. Andrighetto, and P. Zanonato, Thermal conductivity and emissivity measurements of uranium carbides, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.360, pp.46-53
DOI : 10.1016/j.nimb.2015.07.128

«. Pycnomètre-accupyc, I. , |. Micromeritics, and ». , En ligne] Disponible sur: http://www.micromeritics.fr/Produits/Pycnom%C3%A8tre-AccuPyc-II-1340

G. Heisbourg, Synthèse, caractérisation et études cinétiques et thermodynamique de la dissolution de ThO2 et des solutions solides Th1-xMxO2, 2003.

S. Brunauer, P. H. Emmett, and E. E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

F. Baillon, Sciences et Technologies des Poudres », École des Mines d'Albi -Pôle Numérique Pour La Pédagogie, Disponible sur

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.
DOI : 10.1021/ja01145a126

G. Malvault, Détermination expérimentale de la distribution de taille de pores d'un milieu poreux par l'injection d'un fluide à seuil ou analyse harmonique, 2013.

P. R. Marcoux, « Réactivité et manipulation de nanotubes de carbone monocouches : fonctionnalisation de surface par greffage covalent et mise en oeuvre comme agent structurant. », phdthesis, 2002.

H. M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica, vol.22, issue.1, pp.151-152, 1967.
DOI : 10.1107/S0365110X67000234

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2, pp.65-71, 1969.
DOI : 10.1107/S0021889869006558

URL : http://journals.iucr.org/j/issues/1969/02/00/a07067/a07067.pdf

L. Lutterotti and . Maud, Maud: a Rietveld analysis program designed for the internet and experiment integration, Acta Crystallographica Section A Foundations of Crystallography, vol.56, issue.s1, pp.54-54, 2000.
DOI : 10.1107/S0108767300021954

P. Gravereau, Introduction à la pratique de la diffraction des rayons X par les poudres », lecture, Sciences Chimiques, 2011.

S. Gra?ulis, Crystallography Open Database ??? an open-access collection of crystal structures, Journal of Applied Crystallography, vol.42, issue.4, pp.726-729, 2009.
DOI : 10.1107/S0021889809016690

B. H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder Diffraction, vol.21, issue.01, pp.67-70, 2006.
DOI : 10.1016/0025-5408(88)90019-0

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol.11, issue.2, pp.102-113, 1978.
DOI : 10.1107/S0021889878012844

R. A. Young and . Éd, The Rietveld Method, 1995.

S. Ménard, Fast neutron forward distributions from C, Be, and U thick targets bombarded by deuterons, Physical Review Special Topics - Accelerators and Beams, vol.36, issue.3, p.33501, 1999.
DOI : 10.1016/0092-640X(87)90013-1

B. Saint-cyr, « Modélisation des matériaux granulaires cohésifs a particules non-convexes : Application à la compaction des poudres d'UO2 ». [En ligne, Disponible sur

B. T. Willis, Structures of UO2, UO2+x andU4O9 by neutron diffraction, Journal de Physique, vol.34, issue.A, pp.431-439, 1964.
DOI : 10.1051/jphys:01964002505043100

URL : https://hal.archives-ouvertes.fr/jpa-00205799

J. P. Lauriat, G. Chevrier, and J. X. Boucherle, Space group of U4O9 in the beta phase, Journal of Solid State Chemistry, vol.80, issue.1, pp.80-93, 1989.
DOI : 10.1016/0022-4596(89)90034-0

A. F. Andresen, determined by neutron diffraction, The structure of U3O8determined by neutron diffraction, pp.612-614, 1958.
DOI : 10.1107/S0365110X5800164X

L. Lynds, W. A. Young, J. S. Mohl, and G. G. Libowitz, X-Ray and Density Study of Nonstoichiometry in Uranium Oxides, Nonstoichiometric Compounds, pp.58-65, 1963.
DOI : 10.1021/ba-1964-0039.ch005

H. Fadhel and C. Frances, Wet batch grinding of alumina hydrate in a stirred bead mill, Powder Technology, vol.119, issue.2-3, pp.2-3, 2001.
DOI : 10.1016/S0032-5910(01)00266-2

K. Ollila and K. Lindqvist, Air-oxidation tests with Gd-doped UO2. Finland: Posiva, 2003.

R. J. Mceachern, A review of kinetic data on the rate of U3O7 formation on UO2, Journal of Nuclear Materials, vol.245, issue.2-3, pp.238-247, 1997.
DOI : 10.1016/S0022-3115(96)00733-7

R. J. Mceachern and P. Taylor, A review of the oxidation of uranium dioxide at temperatures below 400??C, Journal of Nuclear Materials, vol.254, issue.2-3, pp.2-3, 1998.
DOI : 10.1016/S0022-3115(97)00343-7

G. Rousseau, A detailed study of UO2 to U3O8 oxidation phases and the associated rate-limiting steps, Journal of Nuclear Materials, vol.355, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.jnucmat.2006.03.015

URL : https://hal.archives-ouvertes.fr/hal-00115276

K. Yamada, S. Yamanaka, T. Nakagawa, M. Uno, and E. M. Katsura, Study of the thermodynamic properties of (U, Ce)O2, Study of the thermodynamic properties of (U, Ce)O2 », pp.289-292, 1997.
DOI : 10.1016/S0022-3115(97)00076-7

K. Kurosaki, Y. Saito, H. Muta, M. Uno, and E. S. Yamanaka, Nanoindentation studies of UO2 and (U,Ce)O2, Journal of Alloys and Compounds, vol.381, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.jallcom.2004.03.084

R. G. Robins, P. J. Baldock, and . Uranium-oxide-cleavage, Uranium Oxide Cleavage, Journal of the American Ceramic Society, vol.42, issue.5, pp.228-228, 1960.
DOI : 10.1111/j.1151-2916.1960.tb12989.x

L. Desgranges, Influence of the U3O7 domain structure on cracking during the oxidation of UO2, Journal of Nuclear Materials, vol.402, issue.2-3, pp.2-3, 2010.
DOI : 10.1016/j.jnucmat.2010.05.014

URL : https://hal.archives-ouvertes.fr/hal-00772188

J. Guillot, Study of uranium oxide milling in order to obtain nanostructured UC x target, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.374, issue.120, p.116, 2016.
DOI : 10.1016/j.nimb.2016.01.004

N. Hingant, Synthèse, frittage et dissolution de solutions solides d'oxydes mixtes de thorium et d'uranium(IV) : influence de la méthode de préparation du précurseur, 2008.

V. Tyrpekl, J. Vigier, D. Manara, T. Wiss, O. D. Blanco et al., Low temperature decomposition of U(IV) and Th(IV) oxalates to nanograined oxide powders, Journal of Nuclear Materials, vol.460, pp.200-208, 2015.
DOI : 10.1016/j.jnucmat.2015.02.027

J. Guillot, Synthesis and caracterisation of LaC2 pellets in order to produce Ba and Cs beams, 2014.

J. Guillot, « Synthèse et caractérisation de pastilles de LaC2 en tant qu'analogue structurel de l, 2013.

S. Fernandes, Microstructure evolution of nanostructured and submicrometric porous refractory ceramics induced by a continuous high-energy proton beam, Journal of Nuclear Materials, vol.416, issue.1-2, pp.1-2, 2011.
DOI : 10.1016/j.jnucmat.2011.02.048

J. P. Ramos, A. M. Senos, T. Stora, C. M. Fernandes, and E. P. Bowen, Development of a processing route for carbon allotrope-based TiC porous nanocomposites, Journal of the European Ceramic Society, vol.37, issue.13
DOI : 10.1016/j.jeurceramsoc.2017.04.016

A. Gottberg, Target materials for exotic ISOL beams, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.376, pp.8-15, 2016.
DOI : 10.1016/j.nimb.2016.01.020

URL : https://doi.org/10.1016/j.nimb.2016.01.020

J. P. Ramos, « Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production, 2017.

U. Köster, « Intense radioactive-ion beams produced with the ISOL method, Eur. Phys. J. - Hadrons Nucl, vol.15, issue.1?2, pp.255-263, 2002.

B. Roussière, Production of lanthanide molecular ion beams by fluorination technique, Journal of Physics: Conference Series, vol.724, issue.1, p.12042, 2016.
DOI : 10.1088/1742-6596/724/1/012042

K. R. Paton, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials, vol.2, issue.6, pp.624-630, 2014.
DOI : 10.1126/science.1194372

A. E. Austin, Carbon positions in uranium carbides, Carbon positions in uranium carbides, pp.159-161, 1959.
DOI : 10.1107/S0365110X59000445

URL : http://journals.iucr.org/q/issues/1959/02/00/a02464/a02464.pdf

J. Fayos, Possible 3D Carbon Structures as Progressive Intermediates in Graphite to Diamond Phase Transition, Journal of Solid State Chemistry, vol.148, issue.2, pp.278-285, 1999.
DOI : 10.1006/jssc.1999.8448

D. Chateigner, Combined Analysis: structure-texture-microstructure-phase-stressesreflectivity determination by x-ray and neutron scattering, p.496, 2010.
DOI : 10.1002/9781118622506

H. Tagawa and K. Fujii, Formation of U2C3 in the reaction of UC2 with UO2, Journal of Nuclear Materials, vol.39, issue.1, pp.109-114, 1971.
DOI : 10.1016/0022-3115(71)90189-9

M. Wojdyr, : a general-purpose peak fitting program, Journal of Applied Crystallography, vol.101, issue.102, pp.1126-1128, 2010.
DOI : 10.1107/S0021889810030499

D. S. Grebenkov, A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media, Journal of Magnetic Resonance, vol.208, issue.2, pp.243-255, 2011.
DOI : 10.1016/j.jmr.2010.11.009

R. Brun, L. Moneta, «. Root-reference-guide, and ». , Disponible sur: https://root

«. Factominer, Exploratory Multivariate Data Analysis with R ». [En ligne, Disponible sur

S. Lê, J. Josse, E. F. Husson, and . Factominer, An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, issue.1, pp.1-18, 2008.

G. Battistoni, The FLUKA code: description and benchmarking, AIP Conference Proceedings, pp.31-49, 2007.
DOI : 10.1063/1.2720455

V. Vlachoudis and . Flair, A powerful but user friendly graphical interface for FLUKA », Am, Nucl. Soc, vol.42, issue.11, 2009.

F. Cerutti, Photofission cross section of Uranium from Francesco Cerutti on 2015-03-07 (fluka discuss archive) ». [En ligne, Disponible sur

M. and C. Mhamed, Production de noyaux exotiques par photofission : le projet ALTO : premiers résultats. Evry-Val d'Essonne, 2006.

S. Wurth, Utilisation du code FLUKA à des fins de radioprotection / dosimétrie, pp.20-2012

Y. Xu, J. Roques, C. Domain, and E. Simoni, Carbon diffusion in bulk hcp zirconium: A multi-scale approach, Journal of Nuclear Materials, vol.473, pp.61-67, 2016.
DOI : 10.1016/j.jnucmat.2016.02.010

URL : https://hal.archives-ouvertes.fr/in2p3-01339312