T. Spectral, 166 B.3.1 Herglotz maps and representation, p.166

A. Avila and J. Bochi, Trieste Lectures Notes on Lyapunov Exponents Part I, 2008.

A. Avila, S. Jitomirskaya, and C. Sadel, Complex one-frequency cocycles, Journal of the European Mathematical Society, vol.16, issue.9, pp.1915-1935, 2014.
DOI : 10.4171/JEMS/479

URL : http://arxiv.org/pdf/1306.1605

A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Annals of Mathematics, pp.911-940, 2006.

M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivations, Communications in Mathematical Physics, vol.44, issue.2, pp.245-278, 1993.
DOI : 10.1051/jphyslet:019830044011041100

W. Philip and . Anderson, Absence of diffusion in certain random lattices, p.1492, 1958.

J. Bourgain and M. Goldstein, On Nonperturbative Localization with Quasi-Periodic Potential, The Annals of Mathematics, vol.152, issue.3, pp.835-879, 2000.
DOI : 10.2307/2661356

J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, Journal of statistical physics, vol.108, pp.5-61203, 2002.

J. Bourgain, Green's Function Estimates for Lattice Schrodinger Operators and Applications.(AM-158), 2004.
DOI : 10.1515/9781400837144

J. Bourgain and W. Schlag, Anderson Localization for Schr??dinger Operators on ??? with Strongly Mixing Potentials, Communications in Mathematical Physics, vol.215, issue.1, pp.143-175, 2000.
DOI : 10.1007/PL00005538

R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, 2012.

V. Chulaevsky and T. Spencer, Positive Lyapunov exponents for a class of deterministic potentials, Communications in Mathematical Physics, vol.97, issue.3, pp.455-466, 1995.
DOI : 10.1007/978-1-4615-6927-5

D. Damanik and R. Killip, Almost Everywhere Positivity of the Lyapunov Exponent for the Doubling Map, Communications in Mathematical Physics, vol.89, issue.2, pp.287-290, 2005.
DOI : 10.1007/s00220-004-1261-x

L. Håkan, . Eliasson, B. Sergei, and . Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Communications in Mathematical Physics, vol.286, issue.1, pp.125-135, 2009.

L. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schr??dinger equation, Communications in Mathematical Physics, vol.46, issue.3, pp.447-482, 1992.
DOI : 10.1007/BF02097013

J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Communications in Mathematical Physics, vol.4, issue.2, pp.151-184, 1983.
DOI : 10.1088/0022-3719/4/4/007

H. Furstenberg, Noncommuting random products. Transactions of the, pp.377-428, 1963.
DOI : 10.1090/s0002-9947-1963-0163345-0

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Annals of Mathematics, pp.155-203, 2001.

M. Hermann, Sur la Conjugaison Diff??rentiable des Diff??omorphismes du Cercle a des Rotations, Publications math??matiques de l'IH??S, vol.28, issue.4, pp.5-233, 1979.
DOI : 10.1002/cpa.3160280104

R. Michael and . Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractere local d'un théoreme d'Arnold et de Moser sur le tore de dimension 2, Commentarii Mathematici Helvetici, vol.58, issue.1, pp.453-502, 1983.

D. Hundertmark, A short introduction to Anderson localization Analysis and stochastics of growth processes and interface models, pp.194-219, 2008.

Y. Kifer, Ergodic theory of random transformations, 2012.
DOI : 10.1007/978-1-4684-9175-3

F. John and . Kingman, The ergodic theory of subadditive stochastic processes, Journal of the Royal Statistical Society. Series B (Methodological), pp.499-510

H. Krüger, Multiscale Analysis for Ergodic Schrödinger operators and positivity of Lyapunov exponents, pp.343-387, 2011.

H. Kunz and B. Souillard, Sur le spectre des op??rateurs aux diff??rences finies al??atoires, Communications in Mathematical Physics, vol.49, issue.2, pp.201-246, 1980.
DOI : 10.1007/BF02819607

F. Ledrappier, Quelques propriétés des exposants caractéristiques In École d'Été de Probabilités de Saint-Flour XII-1982, pp.305-396, 1984.

D. Malicet, Exposants de Lyapunov de systèmes dynamiques aléatoires sur le tore, 2012.

J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Commentarii Mathematici Helvetici, vol.59, issue.1, pp.39-85, 1984.
DOI : 10.1007/BF02566337

P. Mörters and Y. Peres, Brownian motion, 2010.
DOI : 10.1017/CBO9780511750489

L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, 1992.
DOI : 10.1007/978-3-642-74346-7

T. Ransford, Potential theory in the complex plane, 1995.
DOI : 10.1017/CBO9780511623776

M. Reed and B. Simon, IV: Analysis of Operators, 1978.

M. Reed and B. Simon, Methods of modern mathematical physics, 1979.

M. Reed and B. Simon, Methods of modern mathematical physics, 1980.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2013.

E. Sorets and T. Spencer, Positive Lyapunov exponents for Schr??dinger operators with quasi-periodic potentials, Communications in Mathematical Physics, vol.320, issue.3, pp.543-566, 1991.
DOI : 10.1007/978-3-642-81291-0_28

C. Sadel and H. Schulz-baldes, Scaling Diagram for the Localization Length at a Band Edge, Annales Henri Poincar??, vol.8, issue.8, pp.1595-1621, 2007.
DOI : 10.1007/s00023-007-0347-3