Skip to Main content Skip to Navigation

Deciphering the role of lipid signalling in plant response to environmental stresses and developmental cues

Abstract : Thesis is devoted to the investigation of lipid signaling processes as a universal mechanism mediating cellular responses to phytohormones and elicitors thus playing a key role in cell metabolism remodeling during plant adaptation to environmental changes. Phospholipase D (PLD) and its product phosphatidic acid (PA) were found to be involved to the SA-induced signaling cascades in Arabidopsis thaliana guard cells. Using radioactive labeling of phospholipids we found an activation of PLD and production of PA in leaves of 4-week old plants after salicylic acid (SA) treatment. Using histochemical assay, inhibitor assay and transgenic lines knock-out by different isoforms of NADPH-oxidases, we showed the involvement of PLD and NADPH-oxidase RbohD to PA-mediated superoxide formation in Arabidopsis tissues infiltrated by SA and SA-induced stomatal closure. SA- crosstalk with abscisic acid (ABA) in transcriptome remodeling induced by these hormones was investigated in suspension cell culture. Both SA and ABA inhibited basal activity of phosphatidylinositol dependent phospholipase C (PI-PLC) in vivo, while SA (but not ABA) also induced the phosphorylation of phosphatidylinositols. Total transcriptomes of suspension cells after SA or ABA treatment were compared to those obtained from suspension cells treated with U73122 (PI-PLC inhibitor) or wortmannin (inhibitor of phosphatidylinositol-4-kinases (PI4K) that provide the substrate for PI-PLC catalyzed reactions). We found a specific gene clusters, for those the effect of ABA and inhibitors was similar; SA-dependent genes, regulated via the balance of phosphoinositides, and SA-dependent genes, regulated via PLD-mediated pathway. Based on the bioinformatic analysis of the promoters of all selected gene sets, we claim a phosphoinositides level regulation to be an important factor mediating basal cell transcriptome and expression changes induced by SA and ABA.The effect of bacterial peptide flg22 on phospholipid turnover was detected in both suspension cells and seedlings. Flg22 induced accumulation of PA by the activation of PI-PLC coupled with diacylglycerolkinase (DGK) and a corresponding parallel increase of phosphatidylinositol-4,5-biphosphate content, that is a substrate of PI-PLC. Inhibitor analysis revealed the involvement of Ca2+ ions in lipid signaling enzymes reaction to flagellin treatment. We showed the role of DGK and PI-PLC in production of reactive oxygen species (ROS) induced by flg22. PA-production was placed in signaling cascade downstream of flagellin recognition by FLS2-BAK1 receptor complex receptor, but upstream or ROS formation by NADPH-oxidase RbohD. DGK5 was found to be the main source of the detected PA. The role of DGK5 was characterized in basal transcriptome regulation and its flagellin-induced remodeling; in flg22-induced callose accumulation in apoplast and resistance to biotrophic pathogen Pseudomonas syringae pv tomato DC3000. We proposed a new model of flagellin perception that includes PI-PLC and DGK5. Role of phosphoinositides in auxin and cytokinin signaling cascades was revealed studying root morphogenesis in Arabidopsis mutant pi4kb1b2 deficient for two PI4K genes, and pi4kb1b2sid2 that had additional mutation it key enzyme of SA biosynthesis, thus allowing us to separate SA-dependent and independent effects of the PI4K deficiency. pi4kb1b2 mutant plants exhibit the dwarf phenotype both in leaf and root parts, while pi4kb1b2sid2 show the normal rosette growth compared to WT, but still shorter roots. We analyzed root meristem anatomy, cortical cells elongation, gravitropic response, responses to exogenic hormones and firstly showed the connection of PI4K activity with auxin and cytokinin effects during root morphogenesis and gravitropism. Our results broaden the knowledge about the nature of plant phytohormonal signaling and can be used as a basis for increasing the resistance of agriculturally important crop plants to environmental stresses
Document type :
Complete list of metadatas

Cited literature [187 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, November 7, 2017 - 5:16:07 PM
Last modification on : Monday, December 14, 2020 - 9:44:43 AM
Long-term archiving on: : Thursday, February 8, 2018 - 2:09:46 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01630518, version 1


Tetiana Kalachova. Deciphering the role of lipid signalling in plant response to environmental stresses and developmental cues. Ecology, environment. Université Paris-Est; National academy of sciences (Ukraine). Institute of Bioorganic Chemistry and Petrochemistry, 2017. English. ⟨NNT : 2017PESC1114⟩. ⟨tel-01630518⟩



Record views


Files downloads