D. W. Haslam and W. James, Obesity, The Lancet, vol.366, issue.9492, pp.1197-1209, 2005.
DOI : 10.1016/S0140-6736(05)67483-1

E. Demarchi, F. Baldassari, A. Bononi, M. R. Wieckowski, and P. Pinton, Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C, Oxid Med Cell Longev, vol.2013, p.564961, 2013.

M. Genestra, Oxyl radicals, redox-sensitive signalling cascades and antioxidants, Cellular Signalling, vol.19, issue.9, 2007.
DOI : 10.1016/j.cellsig.2007.04.009

R. B. Mikkelsen and P. Wardman, Biological chemistry of reactive oxygen and nitrogen and radiationinduced signal transduction mechanisms; Oncogene, pp.5734-5754, 2003.

J. L. Martindale and N. J. Holbrook, Cellular response to oxidative stress: Signaling for suicide and survival, Journal of Cellular Physiology, vol.12, issue.1, pp.1-15, 2002.
DOI : 10.1042/bj3330291

C. A. Dinarello, The IL-1 family and inflammatory diseases, Clin Exp Rheumatol, vol.20, pp.1-13, 2002.

N. Gerdes, G. K. Sukhova, P. Libby, R. S. Reynolds, J. L. Young et al., Expression of Interleukin (IL)-18 and Functional IL-18 Receptor on Human Vascular Endothelial Cells, Smooth Muscle Cells, and Macrophages, The Journal of Experimental Medicine, vol.89, issue.2, pp.245-57, 2002.
DOI : 10.1161/01.ATV.19.12.2847

F. Martinon, K. Burns, and J. Tschopp, The Inflammasome, Molecular Cell, vol.10, issue.2, pp.417-426, 2002.
DOI : 10.1016/S1097-2765(02)00599-3

C. Janeway and . Jr, The immune system evolved to discriminate infectious nonself from noninfectious self, Immunology Today, vol.13, issue.1, pp.11-16, 1992.
DOI : 10.1016/0167-5699(92)90198-G

G. L. Horvath, J. E. Schrum, D. Nardo, C. M. Latz, and E. , Intracellular sensing of microbes and danger signals by the inflammasomes, Immunological Reviews, vol.63, issue.Suppl, pp.119-135, 2011.
DOI : 10.1002/art.30241

F. Martinon and J. Tschopp, NLRs join TLRs as innate sensors of pathogens, Trends in Immunology, vol.26, issue.8, 2005.
DOI : 10.1016/j.it.2005.06.004

T. Jin, A. Perry, P. Smith, J. Jiang, and T. Xiao, Structure of the Absent in Melanoma 2 (AIM2) Pyrin Domain Provides Insights into the Mechanisms of AIM2 Autoinhibition and Inflammasome Assembly, Journal of Biological Chemistry, vol.40, issue.19, pp.13225-13260, 2013.
DOI : 10.1038/nature03465

J. Tschopp, F. Martinon, and K. Burns, NALPs: a novel protein family involved in inflammation, Nature Reviews Molecular Cell Biology, vol.95, issue.2, pp.95-104, 2003.
DOI : 10.1146/annurev.immunol.19.1.331

V. A. Rathinam, Z. Jiang, S. N. Waggoner, S. Sharma, L. E. Cole et al., The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses, Nature Immunology, vol.52, issue.5, pp.395-402, 2010.
DOI : 10.1084/jem.20061845

J. L. Poyet, S. M. Srinivasula, M. Tnani, M. Razmara, T. Fernandes-alnemri et al., Identification of Ipaf, a Human Caspase-1-activating Protein Related to Apaf-1, Journal of Biological Chemistry, vol.57, issue.30, 2001.
DOI : 10.1038/26239

E. D. Boyden and W. F. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin, Nature Genetics, vol.7, issue.2, pp.240-244, 2006.
DOI : 10.1042/bj3200687

B. Faustin, L. Lartigue, J. M. Bruey, F. Luciano, E. Sergienko et al., Reconstituted NALP1 Inflammasome Reveals Two-Step Mechanism of Caspase-1 Activation, Molecular Cell, vol.25, issue.5, pp.713-724, 2007.
DOI : 10.1016/j.molcel.2007.01.032

L. C. Hsu, S. R. Ali, S. Mcgillivray, P. H. Tseng, S. Mariathasan et al., A NOD2-NALP1 complex mediates caspase-1-dependent IL-1b secretion in response to Bacillus anthracis infection and muramyl dipeptide, Proc Natl Acad Sci, 2008.

L. Franchi, A. Amer, M. Body-malapel, T. D. Kanneganti, N. Ozoren et al., Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1b in salmonellainfected macrophages, Nat Immunol, 2006.

F. S. Sutterwala, Y. Ogura, M. Szczepanik, M. Lara-tejero, G. S. Lichtenberger et al., Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive Immunity through Its Regulation of Caspase-1, Immunity, vol.24, issue.3, pp.317-327, 2006.
DOI : 10.1016/j.immuni.2006.02.004

Y. Zhao, J. Yang, J. Shi, Y. N. Gong, Q. Lu et al., The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus, Nature, vol.74, issue.7366, pp.596-600, 2011.
DOI : 10.1128/AEM.00531-08

T. Suzuki, L. Franchi, C. Toma, H. Ashida, M. Ogawa et al., Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages, PLoS Pathogens, vol.202, issue.8, p.111, 2007.
DOI : 0022-1007(2005)202[1235:IOCWCP]2.0.CO;2

S. Mariathasan, K. Newton, D. M. Monack, D. Vucic, D. M. French et al., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf; Nature, pp.213-218, 2004.

S. Nordlander, J. Pott, and K. J. Maloy, NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen, Mucosal Immunology, vol.17, pp.775-785, 2014.
DOI : 10.1038/nm.2470

D. R. Mcilwain, T. Berger, and T. W. Mak, Caspase Functions in Cell Death and Disease, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, 2013.
DOI : 10.1101/cshperspect.a008656

O. Sandanger, T. Ranheim, L. E. Vinge, M. Bliksøen, K. Alfsnes et al., The NLRP3 inflammasome is upregulated in cardiac fibroblasts and mediates myocardial ischemia-reperfu sion injury, Cardiovasc Res, vol.199, pp.164-74, 2013.

J. A. Kummer, R. Broekhuizen, H. Everett, L. Agostini, L. Kuijk et al., Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-specific Role in the Inflammatory Response, Journal of Histochemistry & Cytochemistry, vol.591, issue.5, 2007.
DOI : 10.1016/0006-8993(92)90981-E

H. M. Hoffman, J. L. Mueller, D. H. Broide, A. A. Wanderer, and R. D. Kolodner, Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome, Nature Genetics, vol.29, issue.3, pp.301-305, 2001.
DOI : 10.1038/ng756

O. Gross, C. J. Thomas, G. Guarda, and J. Tschopp, The inflammasome: an integrated view, Immunological Reviews, vol.126, issue.Suppl, pp.136-151, 2011.
DOI : 10.1016/j.cell.2006.07.033

J. Masumoto, T. A. Dowds, P. Schaner, F. F. Chen, Y. Ogura et al., ASC is an activating adaptor for NF-??B and caspase-8-dependent apoptosis, Biochemical and Biophysical Research Communications, vol.303, issue.1, pp.69-73, 2003.
DOI : 10.1016/S0006-291X(03)00309-7

S. L. Masters, A. Simon, I. Aksentijevich, and D. L. Kastner, : The Molecular Pathophysiology of Autoinflammatory Disease, Annual Review of Immunology, vol.27, issue.1, pp.621-668, 2009.
DOI : 10.1146/annurev.immunol.25.022106.141627

J. Y. Bae and H. H. Park, Crystal Structure of NALP3 Protein Pyrin Domain (PYD) and Its Implications in Inflammasome Assembly, Journal of Biological Chemistry, vol.9, issue.45, pp.39528-39536, 2011.
DOI : 10.1126/science.1156995

L. Wang, J. K. Yang, V. Kabaleeswaran, A. J. Rice, A. C. Cruz et al., The Fas???FADD death domain complex structure reveals the basis of DISC assembly and disease mutations, Nature Structural & Molecular Biology, vol.276, issue.11, pp.1324-1329, 2010.
DOI : 10.1038/ni0706-681

T. Fernandes-alnemri, J. Wu, J. W. Yu, P. Datta, B. Miller et al., The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation, Cell Death and Differentiation, vol.78, issue.9, pp.1590-1604, 2007.
DOI : 10.1016/j.cell.2004.05.004

G. M. Cohen, Caspases: the executioners of apoptosis, Biochemical Journal, vol.326, issue.1, pp.1-16, 1997.
DOI : 10.1042/bj3260001

M. G. Netea, C. A. Nold-petry, M. F. Nold, L. A. Joosten, B. Opitz et al., Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages, pp.2324-2335, 2009.

S. Mariathasan, D. S. Weiss, K. Newton, J. Mcbride, K. O-'rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP; Nature, pp.228-232, 2006.

F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp, Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature, vol.20, issue.7081, pp.237-241, 2006.
DOI : 10.1016/S1074-7613(04)00046-9

K. Yamasaki, J. Muto, K. R. Taylor, A. L. Cogen, D. Audish et al., NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury, J Biol Chem, 2009.

F. Sutterwala, Y. Ogura, M. Szczepanik, M. Lara-tejero, G. S. Lichtenberger et al., Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive Immunity through Its Regulation of Caspase-1, Immunity, vol.24, issue.3, pp.317-327, 2006.
DOI : 10.1016/j.immuni.2006.02.004

T. D. Kanneganti, M. Body-malapel, A. Amer, J. H. Park, J. Whitfield et al., Critical Role for Cryopyrin/Nalp3 in Activation of Caspase-1 in Response to Viral Infection and Double-stranded RNA, Journal of Biological Chemistry, vol.245, issue.48, pp.36560-36568, 2006.
DOI : 10.1038/nature00873

T. D. Kanneganti, N. Ozoren, M. Body-malapel, A. Amer, J. H. Park et al., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3, Nature, vol.430, issue.7081, 2006.
DOI : 10.1038/nature02664

D. Paolo, N. C. Miao, E. A. Iwakura, Y. Murali-krishna, K. Aderem et al., Virus binding to a plasma membrane receptor triggers interleukin-1 alphamediated proinflammatory macrophage response in vivo, pp.110-121, 2009.

D. A. Muruve, V. Petrilli, A. K. Zaiss, L. R. White, S. A. Clark et al., The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response, Nature, vol.440, issue.7183, pp.103-107, 2008.
DOI : 10.4049/jimmunol.174.11.7310

C. Dostert, V. Petrilli, R. Van-bruggen, C. Steele, B. Mossman et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica; Science, pp.674-677, 2008.
DOI : 10.1126/science.1156995

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396588/pdf

V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nature Immunology, vol.109, issue.8, pp.847-856, 2008.
DOI : 10.1016/0008-8749(88)90236-5

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834784/pdf

M. Kool, V. Petrilli, D. Smedt, T. Rolaz, A. Hammad et al., Cutting Edge: Alum Adjuvant Stimulates Inflammatory Dendritic Cells through Activation of the NALP3 Inflammasome, The Journal of Immunology, vol.181, issue.6, pp.3755-3759, 2008.
DOI : 10.4049/jimmunol.181.6.3755

C. Dostert, V. Petrilli, R. Van-bruggen, C. Steele, B. T. Mossman et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica; Science, pp.674-677, 2008.

S. L. Cassel, S. C. Eisenbarth, S. S. Iyer, J. J. Sadler, O. R. Colegio et al., The Nalp3 inflammasome is essential for the development of silicosis, Proceedings of the National Academy of Sciences, vol.105, issue.26, pp.9035-9040, 2008.
DOI : 10.1074/jbc.M403046200

C. M. Cruz, A. Rinna, H. J. Forman, A. L. Ventura, P. M. Persechini et al., ATP Activates a Reactive Oxygen Species-dependent Oxidative Stress Response and Secretion of Proinflammatory Cytokines in Macrophages, Journal of Biological Chemistry, vol.8, issue.5, pp.2871-2879, 2007.
DOI : 10.1172/JCI200318174

O. Gross, A. S. Yazdi, C. J. Thomas, M. Masin, L. X. Heinz et al., Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1; Immunity, pp.388-400, 2012.

J. E. Vince, W. W. Wong, I. Gentle, K. E. Lawlor, R. Allam et al., Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation; Immunity, pp.215-227, 2012.

Z. Zhong, Y. Zhai, S. Liang, Y. Mori, R. Han et al., TRPM2 links oxidative stress to NLRP3 inflammasome activation, Nature Communications, vol.40, p.1611, 2013.
DOI : 10.1016/j.ceca.2006.04.016

D. Perregaux and C. A. Gabel, Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity, J Biol Chem, vol.269, issue.21, pp.15195-203, 1994.

V. Petrilli, S. Papin, C. Dostert, A. Mayor, F. Martinon et al., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration, Cell Death and Differentiation, vol.282, issue.9, 2007.
DOI : 10.1128/MCB.26.3.735-742.2006

P. Pelegrin and A. , Pannexin-1 mediates large pore formation and interleukin-1?? release by the ATP-gated P2X7 receptor, The EMBO Journal, vol.312, issue.21, pp.5071-5082, 2006.
DOI : 10.1152/physrev.00015.2002

T. D. Kanneganti, M. Lamkanfi, Y. G. Kim, . G. Chen, J. H. Park et al., Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling; Immunity, pp.433-443, 2007.

K. E. Lawlor and J. E. Vince, Ambiguities in NLRP3 inflammasome regulation: Is there a role for mitochondria?, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1840, issue.4, pp.1433-1440, 2014.
DOI : 10.1016/j.bbagen.2013.08.014

M. Rossol, M. Pierer, N. Raulien, D. Quandt, U. Meusch et al., Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors, Nature Communications, vol.179, p.1329, 2012.
DOI : 10.4049/jimmunol.179.6.4239

G. S. Lee, N. Subramanian, A. I. Kim, I. Aksentijevich, R. Goldbach-mansky et al., The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP; Nature, pp.123-127, 2012.

A. J. Kowaltowski, N. C. De-souza-pinto, R. F. Castilho, and A. E. Vercesi, Mitochondria and reactive oxygen species, Free Radical Biology and Medicine, vol.47, issue.4, pp.333-343, 2009.
DOI : 10.1016/j.freeradbiomed.2009.05.004

A. Halle, V. Hornung, G. C. Petzold, C. R. Stewart, B. G. Monks et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-??, Nature Immunology, vol.17, issue.8, pp.857-865, 2008.
DOI : 10.1126/science.1067081

K. Shimada, T. R. Crother, J. Karlin, J. Dagvadorj, N. Chiba et al., Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis; Immunity, pp.401-414, 2012.

M. F. Mcdermott and J. Frenkel, Hereditary periodic fever syndromes, The Netherlands Journal of Medicine, vol.59, issue.3, pp.118-125, 2011.
DOI : 10.1016/S0300-2977(01)00149-8

F. French and . Consortium, A candidate gene for familial Mediterranean fever, The French FMF Consortium, Nature Genet, vol.17, pp.25-31, 1997.

F. International and . Consortium, Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever; Cell, pp.797-807, 1997.

L. Cuisset, J. P. Drenth, J. M. Berthelot, A. Meyrier, G. Vaudour et al., Genetic Linkage of the Muckle-Wells Syndrome to Chromosome 1q44, The American Journal of Human Genetics, vol.65, issue.4, pp.1054-1059, 1999.
DOI : 10.1086/302589

H. M. Hoffman, F. A. Wright, D. H. Broide, A. A. Wanderer, and R. D. Kolodner, Identification of a Locus on Chromosome 1q44 for Familial Cold Urticaria, The American Journal of Human Genetics, vol.66, issue.5, pp.1693-1698, 2000.
DOI : 10.1086/302874

J. Feldmann, A. M. Prieur, P. Quartier, P. Berquin, S. Certain et al., Chronic Infantile Neurological Cutaneous and Articular Syndrome Is Caused by Mutations in CIAS1, a Gene Highly Expressed in Polymorphonuclear Cells and Chondrocytes, The American Journal of Human Genetics, vol.71, issue.1, pp.198-203, 2002.
DOI : 10.1086/341357

C. Miceli-richard, S. Lesage, M. Rybojad, A. M. Prieur, S. Manouvrier-hanu et al., Card 15 mutations in Blau syndrome, Nature Genetics, vol.29, issue.1, pp.19-20, 2001.
DOI : 10.1038/ng720

L. Agostini, F. Martinon, K. Burns, M. F. Mcdermott, P. N. Hawkins et al., NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder; Immunity, pp.319-325, 2004.

S. L. Masters, A. A. Lobito, J. Chae, and D. L. Kastner, Recent advances in the molecular pathogenesis of hereditary recurrent fevers, Current Opinion in Allergy and Clinical Immunology, vol.6, issue.6, pp.428-433, 2006.
DOI : 10.1097/ACI.0b013e3280109b57

M. F. Mcdermott and . J. Tschopp, From inflammasomes to fevers, crystals and hypertension: how basic research explains inflammatory diseases, Trends in Molecular Medicine, vol.13, issue.9, pp.381-388, 2007.
DOI : 10.1016/j.molmed.2007.07.005

J. Liu, C. L. Smith, D. Deryckere, K. Deangelis, G. S. Martin et al., Structure and Function of Cdc6/Cdc18, Molecular Cell, vol.6, issue.3, pp.637-648, 2000.
DOI : 10.1016/S1097-2765(00)00062-9

A. Mayor, F. Martinon, D. Smedt, T. Petrilli, V. Tschopp et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses, Nature Immunology, vol.8, issue.5, pp.497-503, 2007.
DOI : 10.1038/ni1459

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis; Circulation, pp.1355-1374, 1995.

O. Adeyi, O. Smith, and S. Robles, Public policy and the challenge of chronic noncommunicable diseases The World Bank 83-WHO.; The global burden of disease; Geneva: World Health Organization; 2008b. 84-WHO.; World health statistics; Geneva: World Health Organization Preventing chronic diseases: A vital investment, p.85, 2005.

R. Beaglehole and R. Bonita, Global public health: A scorecard; Lancet, pp.1988-1996, 2008.
DOI : 10.1093/acprof:oso/9780199236626.001.0001

P. Libby, S. J. Warner, and G. B. Friedman, Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids., Journal of Clinical Investigation, vol.81, issue.2, pp.487-98, 1988.
DOI : 10.1172/JCI113346

P. Gillian and C. D. Richards, Physiologie Humaine : Les fondements de la médecine, pp.284-285

J. Camilleri, C. L. Berry, J. Fiessinger, and J. Bariéty, Les maladies de la paroi artérielle; pp : 2; Médecine-Sciences Flammarion, 1987.

F. Don, W. Jensh, and P. R. , Histologie: L'essentiel, Editions Maloine, pp.199-200, 2002.

H. Watkins and M. Farrall, Genetic susceptibility to coronary artery disease: from promise to progress, Nature Reviews Genetics, vol.3, issue.3, pp.163-73, 2006.
DOI : 10.1016/j.atherosclerosis.2004.02.004

L. Gu, Y. Okada, S. K. Clinton, C. Gerard, G. K. Sukhova et al., Absence of Monocyte Chemoattractant Protein-1 Reduces Atherosclerosis in Low Density Lipoprotein Receptor???Deficient Mice, Molecular Cell, vol.2, issue.2, pp.275-81, 1998.
DOI : 10.1016/S1097-2765(00)80139-2

J. H. Qiao, J. Tripathi, N. K. Mishra, Y. Cai, S. Tripathi et al., Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice, Am J Pathol, vol.150, issue.5, pp.1687-99, 1997.

M. Hanyu, N. Kume, T. Ikeda, M. Minami, T. Kita et al., VCAM-1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits ?????? a potential role in vein graft atherosclerosis, Atherosclerosis, vol.158, issue.2, pp.313-322, 2001.
DOI : 10.1016/S0021-9150(01)00446-4

R. G. Collins, R. Velji, N. V. Guevara, M. J. Hicks, L. Chan et al., ???Deficient Mice, The Journal of Experimental Medicine, vol.12, issue.1, pp.189-94, 2000.
DOI : 10.1007/s001090050087

G. Fager, G. Camejo, U. Olsson, G. Ostergren-lundén, F. Lustig et al., Binding of platelet-derived growth factor and low density lipoproteins to glycosaminoglycan species produced by human arterial smooth muscle cells, Journal of Cellular Physiology, vol.86, issue.2, pp.380-92, 1995.
DOI : 10.1016/0167-4889(92)90128-X

A. Chait, C. Y. Han, J. F. Oram, and J. W. Heinecke, Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease?, Journal of Lipid Research, vol.19, issue.3, pp.389-403, 2005.
DOI : 10.1074/jbc.M306336200

Z. M. Dong, S. M. Chapman, A. A. Brown, P. S. Frenette, R. O. Hynes et al., The combined role of P- and E-selectins in atherosclerosis., Journal of Clinical Investigation, vol.102, issue.1, pp.145-52, 1998.
DOI : 10.1172/JCI3001

M. Ritter, C. Buechler, T. Langmann, E. Orso, J. Klucken et al., The Scavenger Receptor CD163: Regulation, Promoter Structure and Genomic Organization, Pathobiology, vol.67, issue.5-6, pp.5-6257, 1999.
DOI : 10.1159/000028105

Y. Yamada, T. Doi, T. Hamakubo, and T. Kodama, Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system, Cellular and Molecular Life Sciences (CMLS), vol.54, issue.7, 1998.
DOI : 10.1007/s000180050191

J. H. Campbell and G. R. Campbell, Cell biology of atherosclerosis, J Hypertens, vol.12, issue.10, pp.129-161, 1994.

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis : A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.15, issue.9, pp.1512-1543, 1995.
DOI : 10.1161/01.ATV.15.9.1512

H. C. Stary, Changes in components and structure of atherosclerotic lesions developing from childhood to middle age in coronary arteries, Basic Res Cardiol, vol.89, issue.1, pp.17-32, 1994.
DOI : 10.1007/978-3-642-85660-0_2

H. Bogren and K. Larsson, An X-ray-diffraction study of crystalline cholesterol in some pathological deposits in man, Biochimica et Biophysica Acta, vol.75, pp.65-69, 1963.
DOI : 10.1016/0006-3002(63)90580-8

Y. I. Miller, S. Viriyakosol, C. J. Binder, J. R. Feramisco, T. N. Kirkland et al., Minimally Modified LDL Binds to CD14, Induces Macrophage Spreading via TLR4/MD-2, and Inhibits Phagocytosis of Apoptotic Cells, Journal of Biological Chemistry, vol.1589, issue.3, pp.1561-1568, 2003.
DOI : 10.1172/JCI8472

K. S. Michelsen, M. H. Wong, P. K. Shah, W. Zhang, J. Yano et al., Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E, Proceedings of the National Academy of Sciences, vol.163, issue.7, 2004.
DOI : 10.1126/science.1698311

H. Bjorkbacka, V. V. Kunjathoor, K. J. Moore, S. Koehn, C. M. Ordija et al., Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways, Nature Medicine, vol.10, issue.4, 2004.
DOI : 10.1038/nm1008

J. Tschopp and K. Schroder, NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?, Nature Reviews Immunology, vol.181, issue.3, pp.210-215, 2010.
DOI : 10.4049/jimmunol.181.6.3755

K. Rajamaki, J. Lappalainen, K. Oorni, E. Välimäki, S. Matikainen et al., Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation, PLoS ONE, vol.75, issue.8, pp.11765-159, 2010.
DOI : 10.1371/journal.pone.0011765.s001

E. Latz, The inflammasomes: mechanisms of activation and function, Current Opinion in Immunology, vol.22, issue.1, 2010.
DOI : 10.1016/j.coi.2009.12.004

C. A. Dinarello, Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process

G. J. Robertson, S. E. Mcinnes, and I. B. , Interleukin-18, J Leukoc Biol, vol.73, pp.213-224, 2003.

D. Nardo, D. Latz, and E. , NLRP3 inflammasomes link inflammation and metabolic disease, Trends in Immunology, vol.32, issue.8, pp.373-379, 2011.
DOI : 10.1016/j.it.2011.05.004

A. K. Robertson and G. K. Hansson, T Cells in Atherogenesis: For Better or For Worse?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.11, pp.2421-2432, 2006.
DOI : 10.1161/01.ATV.0000245830.29764.84

M. L. Leon and S. H. Zuckerman, Gamma interferon: a central mediator in atherosclerosis, Inflammation Research, vol.54, issue.10, pp.395-411, 2005.
DOI : 10.1007/s00011-005-1377-2

D. Nooijer, R. Thusen-von-der, J. H. Verkleij, C. J. Kuiper, J. Jukema et al., Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-Edeficient mice, Arterioscler Thromb Vasc Biol, 2004.

N. Gerdes, G. K. Sukhova, P. Libby, R. S. Reynolds, J. L. Young et al., Expression of Interleukin (IL)-18 and Functional IL-18 Receptor on Human Vascular Endothelial Cells, Smooth Muscle Cells, and Macrophages, The Journal of Experimental Medicine, vol.89, issue.2, pp.245-257, 2002.
DOI : 10.1161/01.ATV.19.12.2847

M. Banerjee and P. Vats, Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus, Redox Biology, pp.170-177, 2014.

P. R. Njølstad, O. Søvik, A. Cuesta-muñoz, L. Bjørkhaug, O. Massa et al., Neonatal Diabetes Mellitus Due to Complete Glucokinase Deficiency, New England Journal of Medicine, vol.344, issue.21, pp.1588-1592, 2001.
DOI : 10.1056/NEJM200105243442104

E. J. Feskens and D. Kromhout, Glucose tolerance and the risk of cardiovascular diseases: The zutphen study, Journal of Clinical Epidemiology, vol.45, issue.11, pp.1327-1334, 1992.
DOI : 10.1016/0895-4356(92)90173-K

A. Himmelmann, L. Hansson, A. Svensson, P. Harmsen, C. Holmgren et al., Predictors of Stroke in the Elderly, Acta Medica Scandinavica, vol.34, issue.Suppl 3, pp.439-443, 1988.
DOI : 10.1161/01.STR.15.2.244

W. B. Kannel and D. L. Mcgee, Update on Some Epidemiologic Features of Intermittent Claudication: The Framingham Study, Journal of the American Geriatrics Society, vol.245, issue.1, pp.13-18, 1985.
DOI : 10.1001/jama.1981.03310390042019

J. Kuusisto, L. Mykkanen, K. Pyorala, and M. Laakso, Non-insulin-dependent diabetes and its metabolic control are important predictors of stroke in elderly subjects, Stroke, vol.25, issue.6, pp.1157-1164, 1994.
DOI : 10.1161/01.STR.25.6.1157

F. B. Hu, M. J. Stampfer, C. G. Solomon, S. Liu, W. C. Willett et al., The Impact of Diabetes Mellitus on Mortality From All Causes and Coronary Heart Disease in Women, Archives of Internal Medicine, vol.161, issue.14, pp.1717-1723, 2001.
DOI : 10.1001/archinte.161.14.1717

B. Stegmayr and K. Asplund, Diabetes as a risk factor for stroke; Diabetologia, pp.1061-1068, 1995.

S. B. Williams, J. A. Cusco, M. A. Roddy, M. T. Johnstone, and M. A. Creager, Impaired nitric oxidemediated vasodilation in patients with non-insulin-dependent diabetes mellitus, J Am Coll Cardiol, 1996.

M. T. Johnstone, S. J. Creager, K. M. Scales, J. A. Cusco, B. K. Lee et al., Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus; Circulation, pp.2510-2516, 1993.

A. I. Vinik, T. Erbas, T. S. Park, R. Nolan, and G. L. Pittenger, Platelet Dysfunction in Type 2 Diabetes, Diabetes Care, vol.24, issue.8, pp.1476-1485, 2001.
DOI : 10.2337/diacare.24.8.1476

M. E. Carr, Diabetes mellitus, Journal of Diabetes and its Complications, vol.15, issue.1, pp.44-54, 2001.
DOI : 10.1016/S1056-8727(00)00132-X

P. Zimmet, K. G. Alberti, and J. Shaw, Global and societal implications of the diabetes epidemic, Nature, vol.414, issue.6865, pp.782-787, 2001.
DOI : 10.1038/414782a

J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030, Diabetes Research and Clinical Practice, vol.87, issue.1, pp.4-14, 2010.
DOI : 10.1016/j.diabres.2009.10.007

L. Chen, D. J. Magliano, and . P. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus???present and future perspectives, Nature Reviews Endocrinology, vol.14, issue.4, pp.228-264, 2011.
DOI : 10.1093/ije/14.1.32

W. Yang, J. Lu, J. Weng, W. Jia, L. Ji et al., Prevalence of Diabetes among Men and Women in China, New England Journal of Medicine, vol.362, issue.12, pp.1090-1101, 20110.
DOI : 10.1056/NEJMoa0908292

F. Ning, Z. C. Pang, Y. H. Dong, W. G. Gao, H. R. Nan et al., Risk factors associated with the dramatic increase in the prevalence of diabetes in the adult Chinese population in Qingdao, China, Diabetic Medicine, vol.371, issue.9, pp.855-863, 2009.
DOI : 10.1093/qjmed/95.4.241

A. Ramachandran, S. Mary, A. Yamuna, N. Murugesan, and C. Snehalatha, High Prevalence of Diabetes and Cardiovascular Risk Factors Associated With Urbanization in India, Diabetes Care, vol.31, issue.5, 2008.
DOI : 10.2337/dc07-1207

V. Rotter, I. Nagaev, and U. Smith, Interleukin-6 (IL-6) Induces Insulin Resistance in 3T3-L1 Adipocytes and Is, Like IL-8 and Tumor Necrosis Factor-??, Overexpressed in Human Fat Cells from Insulin-resistant Subjects, Journal of Biological Chemistry, vol.10, issue.46, pp.45777-45784, 2003.
DOI : 10.1038/nm724

M. Yuan, N. Konstantopoulos, J. Lee, L. Hansen, Z. W. Li et al., Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikkbeta, Science, vol.293, issue.5535, pp.1673-1677, 2001.
DOI : 10.1126/science.1061620

M. Y. Donath, D. M. Schumann, M. Faulenbach, H. Ellingsgaard, A. Perren et al., Type 2 Diabetes and Islet Inflammation, Diabetes Care, vol.31, pp.161-164, 2008.
DOI : 10.1159/000346508

D. Morgan, H. R. Oliveira-emilio, D. Keane, A. E. Hirata, M. Santos-da-rocha et al., Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line, Diabetologia, vol.49, issue.2, pp.359-369, 2007.
DOI : 10.1042/bj2370111

T. Nishikawa and E. Araki, Impact of Mitochondrial ROS Production in the Pathogenesis of Diabetes Mellitus and Its Complications, Antioxidants & Redox Signaling, vol.9, issue.3, pp.343-53, 2007.
DOI : 10.1089/ars.2006.1458

E. Junn, S. H. Han, J. Y. Im, Y. Yang, E. W. Cho et al., Vitamin D3 Up-Regulated Protein 1 Mediates Oxidative Stress Via Suppressing the Thioredoxin Function, The Journal of Immunology, vol.164, issue.12, pp.6287-6295, 2000.
DOI : 10.4049/jimmunol.164.12.6287

O. N. Spindel, C. World, and B. C. Berk, Thioredoxin Interacting Protein: Redox Dependent and Independent Regulatory Mechanisms, Antioxidants & Redox Signaling, vol.16, issue.6, pp.587-596, 2012.
DOI : 10.1089/ars.2011.4137

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270053/pdf

R. Zhou, A. Tardivel, B. Thorens, I. Choi, and . Tschopp, Thioredoxin-interacting protein links oxidative stress to inflammasome activation, Nature Immunology, vol.4, issue.2, pp.136-176, 2009.
DOI : 10.1038/sj.cdd.4402142

C. A. Dinarello, M. Y. Donath, and T. Mandrup-poulsen, Role of IL-1?? in type 2 diabetes, Current Opinion in Endocrinology, Diabetes and Obesity, vol.17, pp.314-321, 2010.
DOI : 10.1097/MED.0b013e32833bf6dc

S. L. Masters, A. Dunne, S. L. Subramanian, R. L. Hull, G. M. Tannahill et al., Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1?? in type 2 diabetes, Nature Immunology, vol.47, issue.10, pp.897-904, 2010.
DOI : 10.2337/diabetes.50.11.2514

URL : https://hal.archives-ouvertes.fr/hal-00576089

K. Maedler, J. Størling, J. Sturis, R. A. Zuellig, G. A. Spinas et al., Glucose-and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets; Diabetes, pp.1706-1713, 2004.

D. Guerra, S. Lupi, R. Marselli, L. Marselli, L. Masini et al., Functional and molecular defects of pancreatic islets in human type 2 diabetes; Diabetes, pp.727-735, 2005.

C. Alessandris, F. Andreozzi, M. Federici, M. Cardellini, A. Brunetti et al., Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic betacells, FASEB J, vol.18, pp.959-961, 2004.

V. Poitout and R. P. Robertson, Glucolipotoxicity: Fuel Excess and ??-Cell Dysfunction, Endocrine Reviews, vol.29, issue.3, pp.351-66, 2008.
DOI : 10.1210/er.2007-0023

K. Maedler, J. Oberholzer, P. Bucher, G. A. Spinas, and M. Y. Donath, Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function, pp.726-733, 2003.

R. Lupi, F. Dotta, L. Marselli, D. Guerra, S. Masini et al., Prolonged Exposure to Free Fatty Acids Has Cytostatic and Pro-Apoptotic Effects on Human Pancreatic Islets: Evidence that ??-Cell Death Is Caspase Mediated, Partially Dependent on Ceramide Pathway, and Bcl-2 Regulated, Diabetes, vol.51, issue.5, 2002.
DOI : 10.2337/diabetes.51.5.1437

C. E. Wrede, L. M. Dickson, M. K. Lingohr, I. Briaud, and C. J. Rhodes, Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1)

B. Fraga, Naturel sesquiterpenoides; Nat prod rep, pp.73-92, 1998.

A. Abil-'daeva, . Zh, R. N. Pak, A. T. Kulyiasov, and S. M. Adekenov, Anti-inflammatory effect of arglabin and 11,13-dihydro-13-dimethylaminoarglabin hydrochloride, Eksp Klin Farmakol, 2004.

B. Buchele and T. Simmet, Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photodiode array detection, Journal of Chromatography B, vol.795, issue.2, pp.355-362, 2003.
DOI : 10.1016/S1570-0232(03)00555-5

B. Buchele, W. Zugmaier, and T. Simmet, Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene, Journal of Chromatography B, vol.791, issue.1-2, 2003.
DOI : 10.1016/S1570-0232(03)00160-0

S. A. Morad, C. Schmidt, B. Buchele, B. Schneider, M. Wenzler et al., ,21-triene Induces Cell Cycle Arrest and Apoptosis in Treatment-Resistant Prostate Cancer Cells, Journal of Natural Products, vol.74, issue.8, pp.1731-1736, 2011.
DOI : 10.1021/np200161a

A. Ray and B. N. Dittel, Isolation of Mouse Peritoneal Cavity Cells, Journal of Visualized Experiments, issue.35, p.1488, 2010.
DOI : 10.3791/1488

P. Duewell, H. Kono, K. J. Rayner, C. M. Sirois, G. Vladimer et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals, Nature, vol.464, issue.7293, pp.1357-61, 2010.
DOI : 10.1038/nature08938

E. Bachar-wikstrom, J. D. Wikstrom, Y. Ariav, B. Tirosh, N. Kaiser et al., Stimulation of Autophagy Improves Endoplasmic Reticulum Stress-Induced Diabetes, Diabetes, vol.62, issue.4, 2013.
DOI : 10.2337/db12-1474

URL : http://diabetes.diabetesjournals.org/content/diabetes/62/4/1227.full.pdf

Y. T. Wu, H. L. Tan, G. Shui, C. Bauvy, Q. Huang et al., Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase, Journal of Biological Chemistry, vol.26, issue.14, pp.10850-61, 2010.
DOI : 10.1245/s10434-008-0260-0

P. M. Sullivan, H. Mezdour, S. H. Quarfordt, and N. Maeda, Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2., Journal of Clinical Investigation, vol.102, issue.1
DOI : 10.1172/JCI2673

F. Wiesbauer, H. Blessberger, D. Azar, G. Goliasch, O. Wagner et al., Familial-combined hyperlipidaemia in very young myocardial infarction survivors (<=40 years of age), European Heart Journal, vol.30, issue.9, pp.1073-1079, 2009.
DOI : 10.1093/eurheartj/ehp051

Y. Miki and C. Heller, A homogeneous assay for the selective measurement of LDL-cholesterol in serum. Enzymatic selective protection method, Clin Lab, vol.45, pp.398-401, 1999.

F. B. Bang, A bacterial disease of Limulus polyphemus, Bull Johns Hopkins Hosp, vol.98, issue.5, pp.325-351, 1956.

J. Levin and F. B. Bang, The role of endotoxin in the extracellular coagulation of Limulus blood, Bull Johns Hopkins Hosp, vol.115, pp.265-274, 1964.

F. B. Bang, The toxic effect of a marine bacterium on Limulus and the formation of blood clots, Biol Bull, vol.105, pp.361-362, 1953.

J. Levin and F. B. Bang, A description of cellular coagulation in the Limulus, Bull Johns Hopkins Hosp, vol.115, pp.337-345, 1964.

J. Levin and F. B. Bang, Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin, Thromb Diath Haemorrh, vol.19, pp.186-197, 1968.

Q. Wenying, L. Yu-mi, and L. Myung-shik, Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic ?-cells, Exp Mol Med, vol.44, issue.2, pp.81-88, 2012.

S. Li, L. Du, L. Zhang, Y. Hu, W. Xia et al., Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line, Journal of Biological Chemistry, vol.2012, issue.42, pp.30094-104, 2013.
DOI : 10.1161/CIRCRESAHA.111.243212

T. E. Shaikenov, S. M. Adekenov, R. M. Williams, N. Prashad, F. L. Baker et al., Arglabin-DMA, a plant derived sesquiterpene, inhibits farnesyltransferase., Oncology Reports, vol.8, pp.173-179, 2001.
DOI : 10.3892/or.8.1.173

B. Büchele, W. Zugmaier, O. Lunov, T. Syrovets, I. Merfort et al., Surface plasmon resonance analysis of nuclear factor-??B protein interactions with the sesquiterpene lactone helenalin, Analytical Biochemistry, vol.401, issue.1, pp.30-37, 2010.
DOI : 10.1016/j.ab.2010.02.020

H. Ait-oufella, S. Taleb, Z. Mallat, and A. Tedgui, Recent Advances on the Role of Cytokines in Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.5, pp.969-979, 2011.
DOI : 10.1161/ATVBAHA.110.207415

A. R. Brasier, The nuclear factor-??B-interleukin-6 signalling pathway mediating vascular inflammation, Cardiovascular Research, vol.86, issue.2, pp.211-218, 2010.
DOI : 10.1093/cvr/cvq076

E. Latz, T. S. Xiao, and A. Stutz, Activation and regulation of the inflammasomes, Nature Reviews Immunology, vol.285, issue.6, pp.397-411, 2013.
DOI : 10.1074/jbc.M109.082305

B. Razani, C. Feng, T. Coleman, R. Emanuel, H. Wen et al., Autophagy Links Inflammasomes to Atherosclerotic Progression, Cell Metabolism, vol.15, issue.4, pp.534-544, 2012.
DOI : 10.1016/j.cmet.2012.02.011

URL : https://doi.org/10.1016/j.cmet.2012.02.011

W. Martinet, D. Meyer, I. Verheye, S. Schrijvers, D. M. Timmermans et al., Druginduced macrophage autophagy in atherosclerosis: for better or worse?, Basic Res Cardiol, 2013.

A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki et al., Bafilomycin A1 Prevents Maturation of Autophagic Vacuoles by Inhibiting Fusion between Autophagosomes and Lysosomes in Rat Hepatoma Cell Line, H-4-II-E Cells., Cell Structure and Function, vol.23, issue.1, pp.33-42, 1998.
DOI : 10.1247/csf.23.33

Z. Mallat, S. Besnard, M. Duriez, V. Deleuze, F. Emmanuel et al., Protective Role of Interleukin-10 in Atherosclerosis, Circulation Research, vol.85, issue.8, pp.17-24, 1999.
DOI : 10.1161/01.RES.85.8.e17

A. J. Schottelius, M. W. Mayo, R. B. Sartor, A. Baldwin, and . Jr, Interleukin-10 signaling blocks inhibitor of Kappa B kinase activity and nuclear factor kB DNA binding, J Biol Chem, 1999.

P. K. Henke, L. A. Debrunye, R. M. Strieter, J. S. Bromberg, M. Prince et al., Viral IL-10 Gene Transfer Decreases Inflammation and Cell Adhesion Molecule Expression in a Rat Model of Venous Thrombosis, The Journal of Immunology, vol.164, issue.4, pp.2131-2141, 2000.
DOI : 10.4049/jimmunol.164.4.2131

J. R. Hessler, D. W. Morel, L. J. Lewis, and G. M. Chisolm, Lipoprotein oxidation and lipoproteininduced cytotoxicity; Arteriosclerosis, pp.215-222, 1983.
DOI : 10.1161/01.atv.3.3.215

URL : http://atvb.ahajournals.org/content/atvbaha/3/3/215.full.pdf

J. W. Heinecke, H. Rosen, and A. Chait, Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture., Journal of Clinical Investigation, vol.74, issue.5, pp.1890-1894, 1984.
DOI : 10.1172/JCI111609

U. P. Steinbrecher, S. Parthasarathy, D. S. Leake, J. L. Witztum, and D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids., Proceedings of the National Academy of Sciences, vol.81, issue.12, pp.3883-3887, 1984.
DOI : 10.1073/pnas.81.12.3883

J. L. Witztum and D. Steinberg, The Oxidative Modification Hypothesis of Atherosclerosis Does It Hold for Humans?, Trends in Cardiovascular Medicine, vol.11, issue.3-4, pp.3-493, 2001.
DOI : 10.1016/S1050-1738(01)00111-6

F. K. Swirski, P. Libby, E. Aikawa, P. Alcaide, F. W. Luscinskas et al., Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, Journal of Clinical Investigation, vol.117, issue.1, pp.195-205, 2007.
DOI : 10.1172/JCI29950

Y. H. Adijiang, A. Vandanmagsar, B. Burk, D. Ravussin, A. Dixit et al., Elimination of the NLRP3-ASC Inflammasome Protects against Chronic Obesity-Induced Pancreatic Damage; Endocrinology, pp.4039-4045, 2011.

W. W. Wong and H. Puthalakath, Bcl-2 family proteins: The sentinels of the mitochondrial apoptosis pathway, IUBMB Life, vol.97, issue.6, pp.339-390, 2008.
DOI : 10.1002/iub.51

C. He and B. Levine, The Beclin 1 interactome, Current Opinion in Cell Biology, vol.22, issue.2, pp.140-149, 2010.
DOI : 10.1016/j.ceb.2010.01.001

S. Huang and P. J. Houghton, Mechanisms of resistance to rapamycins, Drug Resistance Updates, vol.4, issue.6, 2001.
DOI : 10.1054/drup.2002.0227

F. Zheng, S. Xing, Z. Gong, W. Mu, and Q. Xing, Silence of NLRP3 Suppresses Atherosclerosis and Stabilizes Plaques in Apolipoprotein E-Deficient Mice, Mediators of Inflammation, vol.7, issue.2, p.507208, 2014.
DOI : 10.3109/10409231003627991

K. Peng, L. Liu, D. Wei, L. V. Yuncheng, G. Wang et al., P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation, International Journal of Molecular Medicine, vol.35, issue.5, pp.1179-1188, 2015.
DOI : 10.3892/ijmm.2015.2129

B. H. Kwok, B. Koh, M. I. Ndubuisi, M. Elofsson, and C. M. Crews, The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits I??B kinase, Chemistry & Biology, vol.8, issue.8, pp.759-766, 2001.
DOI : 10.1016/S1074-5521(01)00049-7

A. J. García-pineres, V. Castro, G. Mora, T. J. Schmidt, E. Strunck et al., Cysteine 38 in p65/NF-??B Plays a Crucial Role in DNA Binding Inhibition by Sesquiterpene Lactones, Journal of Biological Chemistry, vol.12, issue.43, pp.39713-39720, 2001.
DOI : 10.1016/S0006-2952(01)00714-6

S. X. Weng, M. H. Sui, S. Chen, J. A. Wang, G. Xu et al., Parthenolide inhibits proliferation of vascular smooth muscle cells through induction of G0/G1 phase cell cycle arrest, Journal of Zhejiang University SCIENCE B, vol.10, issue.7, pp.528-535, 2009.
DOI : 10.1631/jzus.B0820351

J. Ch, T. Fernandes-alnemri, J. Wu, P. Datta, L. Solorzano et al., Anti-inflammatory Compounds Parthenolide and Bay 11-7082 Are Direct Inhibitors of the Inflammasome, J Biol Chem, vol.285, issue.13, pp.9792-9802, 2010.

H. Kiuchi, T. Takao, K. Yamamoto, J. Nakayama, Y. Miyagawa et al., Sesquiterpene Lactone Parthenolide Ameliorates Bladder Inflammation and Bladder Overactivity in Cyclophosphamide Induced Rat Cystitis Model by Inhibiting Nuclear Factor-??B Phosphorylation, The Journal of Urology, vol.181, issue.5, pp.2339-2387, 2009.
DOI : 10.1016/j.juro.2009.01.015

M. Sheehan, H. R. Wong, P. W. Hake, V. Malhotra, M. O-'connor et al., Parthenolide, an Inhibitor of the Nuclear Factor-kappa B Pathway, Ameliorates Cardiovascular Derangement and Outcome in Endotoxic Shock in Rodents, Molecular Pharmacology, vol.61, issue.5, pp.953-63, 2002.
DOI : 10.1124/mol.61.5.953

O. Lopez-franco, P. Hernandez-varglabineas, G. Ortiz-munoz, G. Sanjuan, Y. Suzuki et al., Parthenolide Modulates the NF-??B-Mediated Inflammatory Responses in Experimental Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.8, pp.1864-1870, 2006.
DOI : 10.1161/01.ATV.0000229659.94020.53

M. Lamkanfi, J. L. Mueller, A. C. Vitari, S. Misaghi, A. Fedorova et al., Glyburide inhibits the Cryopyrin/Nalp3 inflammasome, The Journal of Cell Biology, vol.299, issue.1, pp.61-70
DOI : 10.1161/CIRCULATIONAHA.108.793869

C. Marchetti, J. Chojnacki, S. Toldo, E. Mezzaroma, N. Tranchida et al., A Novel Pharmacologic Inhibitor of the NLRP3 Inflammasome Limits Myocardial Injury After Ischemia???Reperfusion in the Mouse, Journal of Cardiovascular Pharmacology, vol.63, issue.4, pp.316-322, 2014.
DOI : 10.1097/FJC.0000000000000053

K. Nakahira, J. A. Haspel, V. A. Rathinam, S. J. Lee, T. Dolinay et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nature Immunology, vol.180, issue.3, pp.222-230, 2011.
DOI : 10.1172/JCI32730

R. Emanuel, I. Sergin, S. Bhattacharya, J. N. Turner, S. Epelman et al., Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.34, issue.9, pp.1942-1952, 2014.
DOI : 10.1161/ATVBAHA.114.303342

M. Ouimet, V. Franklin, E. Mak, X. Liao, I. Tabas et al., Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase, Cell Metabolism, vol.13, issue.6, pp.655-667, 2011.
DOI : 10.1016/j.cmet.2011.03.023

X. Liao, J. C. Sluimer, Y. Wang, M. Subramanian, K. Brown et al., Macrophage Autophagy Plays a Protective Role in Advanced Atherosclerosis, Cell Metabolism, vol.15, issue.4, 2012.
DOI : 10.1016/j.cmet.2012.01.022

C. S. Shi, K. Shenderov, N. N. Huang, J. Kabat, M. Abu-asab et al., Activation of autophagy by inflammatory signals limits IL-1?? production by targeting ubiquitinated inflammasomes for destruction, Nature Immunology, vol.442, issue.3, pp.255-263, 2012.
DOI : 10.1074/jbc.M109.054197

Z. Cai, L. Shen, and B. He, Moving with and beyond CANTOS: How to put out the fire of inflammation in atherosclerosis?, International Journal of Cardiology, vol.195, pp.45-47, 2015.
DOI : 10.1016/j.ijcard.2015.05.123

J. L. Boss, Ras gene mutations and human cancer, Mol Gen Can Diag, pp.273-287, 1990.

A. P. Kourounakis, M. G. Katselou, A. N. Matralis, E. M. Ladopoulou, and E. Bavavea, Squalene Synthase Inhibitors: An Update on the Search for New Antihyperlipidemic and Antiatherosclerotic Agents, Current Medicinal Chemistry, vol.18, issue.29, pp.4418-4457, 2011.
DOI : 10.2174/092986711797287557

H. Hiyoshi, M. Yanagimachi, M. Ito, T. Saeki, I. Yoshida et al., Squalene synthase inhibitors reduce plasma triglyceride through a low-density lipoprotein receptor-independent mechanism, European Journal of Pharmacology, vol.431, issue.3, pp.345-52, 2001.
DOI : 10.1016/S0014-2999(01)01450-9

G. Assmann, P. Cullen, C. Fruchart, B. Lewis, M. Mancini et al., Coronary heart disease prevention task force, Eur Heart, vol.20, pp.841-844, 1999.

S. R. Price, S. B. Mizel, and P. H. Pekala, Regulation of lipoprotein lipase synthesis and 3T3-L1 adipocyte metabolism by recombinant interleukin 1, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.889, issue.3, pp.374-381, 1986.
DOI : 10.1016/0167-4889(86)90201-6

M. Kojima, T. Ashino, T. Yoshida, Y. Iwakura, and M. Degawa, Involvement of Interleukin-1 in Lead Nitrate-Induced Hypercholesterolemia in Mice, Biological & Pharmaceutical Bulletin, vol.35, issue.2, pp.246-250, 2012.
DOI : 10.1248/bpb.35.246

J. A. Van-diepen, R. Stienstra, I. O. Vroegrijk, S. A. Van-den-berg, D. Salvatori et al., Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion, Journal of Lipid Research, vol.137, issue.2, pp.448-456, 2013.
DOI : 10.1074/mcp.M800132-MCP200

C. Napoli, F. P. D-'armiento, F. P. Mancini, A. Postiglione, J. L. Witztum et al., Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions., Journal of Clinical Investigation, vol.100, issue.11, pp.2680-2690, 1997.
DOI : 10.1172/JCI119813

Y. Jiang, M. Wang, K. Huang, . Zhangz, N. Shao et al., Oxidized low-density lipoprotein induces secretion of interleukin-1?? by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation, Biochemical and Biophysical Research Communications, vol.425, issue.2, pp.121-126, 2012.
DOI : 10.1016/j.bbrc.2012.07.011

F. J. Sheedy, A. Grebe, K. J. Rayner, P. Kalantari, B. Ramkhelawon et al., CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation, Nature Immunology, vol.41, issue.8, pp.812-820, 2013.
DOI : 10.1083/jcb.200501113

M. Aviram, M. Kaplan, M. Rosenblat, and B. Fuhrman, Dietary Antioxidants and Paraoxonases Against LDL Oxidation and Atherosclerosis Development, Handb Exp Pharmacol, issue.170, pp.263-300, 2005.
DOI : 10.1007/3-540-27661-0_9

N. V. Serbina, T. Jia, T. M. Hohl, and E. G. Pamer, Monocyte-Mediated Defense Against Microbial Pathogens, Annual Review of Immunology, vol.26, issue.1, pp.421-52, 2008.
DOI : 10.1146/annurev.immunol.26.021607.090326

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join-lambert et al., Monitoring of blood vessels and tissues by a population of monocytes with patrolling behaviour, Science, issue.5838, pp.317666-70, 2007.

P. G. Anthopoulos, S. J. Hamodrakas, and P. G. Bagos, Apolipoprotein E polymorphisms and type 2 diabetes: A meta-analysis of 30 studies including 5423 cases and 8197 controls, Molecular Genetics and Metabolism, vol.100, issue.3, 2010.
DOI : 10.1016/j.ymgme.2010.03.008

R. W. Mahley, K. H. Weisgraber, and Y. Huang, Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS, Journal of Lipid Research, vol.40, issue.Supplement, pp.183-188, 2009.
DOI : 10.1097/00041433-199906000-00003

D. Y. Hui, T. L. Innerarity, and R. W. Mahley, Defective hepatic lipoprotein receptor binding of b-very low density lipoproteins from type III hyperlipoproteinemic patients. Importance of apolipoprotein E, J Biol Chem, vol.259, issue.2, pp.860-869, 1984.

L. J. Higgins and J. C. Rutledge, Inflammation associated with the postprandial lipolysis of triglyceriderich lipoproteins by lipoprotein lipase, Current Atherosclerosis Reports, vol.73, issue.1Suppl, pp.199-205, 2009.
DOI : 10.1007/978-1-4615-4793-8_71

A. Harbis, S. Perdreau, S. Vincent-baudry, M. Charbonnier, M. C. Bernard et al., Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects, Am J Clin Nutr, vol.80, issue.4, pp.896-902, 2004.

A. A. Rivellese, L. Bozzetto, and G. Annuzzi, Postprandial lipemia, diet, and cardiovascular risk, Current Cardiovascular Risk Reports, vol.18, issue.1, pp.5-11, 2009.
DOI : 10.1080/07315724.2007.10719633

R. M. Gower, H. Wu, G. A. Foster, S. Devaraj, I. Jialal et al., CD11c/CD18 Expression Is Upregulated on Blood Monocytes During Hypertriglyceridemia and Enhances Adhesion to Vascular Cell Adhesion Molecule-1, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, 2011.
DOI : 10.1161/ATVBAHA.110.215434

A. Alipour, V. O. Ajhhm, A. Izraeljan, C. Verseyden, J. M. Collins et al., Leukocyte Activation by Triglyceride-Rich Lipoproteins, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.4, pp.792-797, 2008.
DOI : 10.1161/ATVBAHA.107.159749

URL : http://atvb.ahajournals.org/content/atvbaha/28/4/792.full.pdf

M. Drechsler, R. T. Megens, M. Van-zandvoort, C. Weber, and O. Soehnlein, Hyperlipidemiatriggered neutrophilia promotes early atherosclerosis; Circulation, pp.1837-1845, 2010.
DOI : 10.1161/circulationaha.110.961714

URL : http://circ.ahajournals.org/content/circulationaha/122/18/1837.full.pdf

D. G. Kuhel, E. S. Konaniah, J. E. Basford, C. Mcvey, C. T. Goodin et al., Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice; Diabetes, pp.382-391, 2012.

S. Poels and N. Paquot, Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue; Diabetologia, pp.2487-2497, 2013.

B. Vandanmagsar, Y. H. Youm, A. Ravussin, J. E. Galgani, K. Stadler et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nature Medicine, vol.187, issue.2, pp.179-188, 2011.
DOI : 10.1083/jcb.200903124

N. Esser, S. Legrand-poels, J. Piette, A. J. Scheen, and N. Paquot, Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes, Diabetes Research and Clinical Practice, vol.105, issue.2, pp.141-150, 2014.
DOI : 10.1016/j.diabres.2014.04.006

R. Stienstra, J. A. Van-diepen, C. J. Tack, M. H. Zaki, F. L. Van-de-veerdonk et al., Inflammasome is a central player in the induction of obesity and insulin resistance, Proceedings of the National Academy of Sciences, vol.5, issue.11, pp.15324-15329, 2011.
DOI : 10.1371/journal.pone.0013984

I. Cozar-castellano, M. Weinstock, M. Haught, S. Velázquez-garcia, D. Sipula et al., Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip; Diabetes, pp.70-77, 2006.

E. Hughes and C. Huang, Participation of Akt, menin, and p21 in pregnancy induced beta-cell proliferation; Endocrinology, pp.847-855, 2011.

Y. Liu, J. L. Martindale, M. Gorospe, and N. J. Holbrook, Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway, Cancer Res, vol.56, issue.1, pp.31-35, 1996.

A. M. Hernandez, E. S. Colvin, Y. C. Chen, S. L. Geiss, L. E. Eller et al., Upregulation of p21 activates the intrinsic apoptotic pathway in ??-cells, AJP: Endocrinology and Metabolism, vol.304, issue.12, 2013.
DOI : 10.1152/ajpendo.00663.2012

. Polyphenol, an extract of green tea, increases culture recovery rates of isolated islets from nonhuman primate pancreata and marginal grade human pancreata, Cell Transplant, vol.13, issue.2, pp.145-52, 2004.

I. Boehm, M. R. Schön, A. S. Greenberg, Z. Elazar, N. Bashan et al., Altered autophagy in human adipose tissues in obesity, J Clin Endocrinol Metab, vol.96, issue.2, pp.268-277, 2011.

J. Kosacka, M. Kern, N. Klöting, S. Paeschke, A. Rudich et al., Autophagy in adipose tissue of patients with obesity and type 2 diabetes, Molecular and Cellular Endocrinology, vol.409, pp.21-32, 2015.
DOI : 10.1016/j.mce.2015.03.015

K. Nakahira, J. A. Haspel, V. A. Rathinam, S. J. Lee, T. Dolinay et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nature Immunology, vol.180, issue.3, pp.222-230, 2011.
DOI : 10.1172/JCI32730

C. Ebato, T. Uchida, M. Arakawa, M. Komatsu, T. Ueno et al., Autophagy Is Important in Islet Homeostasis and Compensatory Increase of Beta Cell Mass in Response to High-Fat Diet, Cell Metabolism, vol.8, issue.4, pp.325-332, 2008.
DOI : 10.1016/j.cmet.2008.08.009

T. O. Cri?an, T. S. Plantinga, F. L. Van-de-veerdonk, M. F. Farca?, M. Stoffels et al., Inflammasome-Independent Modulation of Cytokine Response by Autophagy in Human Cells, PLoS ONE, vol.276, issue.4, p.18666, 2011.
DOI : 10.1371/journal.pone.0018666.g006

J. Harris, M. Hartman, C. Roche, S. G. Zeng, A. Shea et al., Autophagy Controls IL-1?? Secretion by Targeting Pro-IL-1?? for Degradation, Journal of Biological Chemistry, vol.180, issue.11, pp.9587-97, 2011.
DOI : 10.1038/ng2032

Y. Kim, B. S. Park, S. K. Bhatia, H. M. Seo, J. M. Jeon et al., Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology, Journal of Microbiology and Biotechnology, vol.24, issue.10, pp.1319-1326, 2014.
DOI : 10.4014/jmb.1403.03024

S. N. Sehgal, H. Baker, and C. Vezina, Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization., The Journal of Antibiotics, vol.28, issue.10, pp.727-732, 1975.
DOI : 10.7164/antibiotics.28.727

E. Bachar-wikstrom, J. D. Wikstrom, Y. Ariav, B. Tirosh, N. Kaiser et al., Stimulation of Autophagy Improves Endoplasmic Reticulum Stress-Induced Diabetes, Diabetes, vol.62, issue.4, 2013.
DOI : 10.2337/db12-1474

E. Bachar-wikstrom, J. D. Wikstrom, N. Kaiser, E. Cerasi, and G. Leibowitz, Improvement of ER stress-induced diabetes by stimulating autophagy, Autophagy, vol.9, issue.4, pp.626-628, 2013.
DOI : 10.4161/auto.23642

G. R. Chang, Y. Y. Wu, Y. S. Chiu, W. Y. Chen, J. W. Liao et al., Long-term Administration of Rapamycin Reduces Adiposity, but Impairs Glucose Tolerance in High-Fat Diet-fed KK/HlJ Mice, Basic & Clinical Pharmacology & Toxicology, vol.7, issue.3, pp.188-198, 2009.
DOI : 10.1111/j.1742-7843.2004.950305.x

S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada et al., Increased oxidative stress in obesity and its impact on metabolic syndrome, Journal of Clinical Investigation, vol.114, issue.12, pp.1752-1761, 2004.
DOI : 10.1172/JCI21625DS1

N. Z. Alsharif and E. A. Hassoun, Protective Effects of Vitamin A and Vitamin E Succinate against 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-Induced Body Wasting, Hepatomegaly, Thymic Atrophy, Production of Reactive Oxygen Species and DNA Damage in C57BL/6J Mice, Pharmacology and Toxicology, vol.49, issue.4, pp.131-138, 2004.
DOI : 10.1016/0300-483X(89)90104-2

J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes, Endocrine Reviews, vol.23, issue.5, pp.599-622, 2002.
DOI : 10.1210/er.2001-0039

P. Rösen, P. P. Nawroth, G. King, W. Mçller, H. J. Tritschler et al., The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored byUNESCO-MCBN, the American Diabetes Association and the German Diabetes Society, Diabetes/Metabolism Research and Reviews, vol.26, issue.3, pp.189-212, 2001.
DOI : 10.1055/s-2007-1001731

M. Fraenkel, M. Ketzinel-gilad, Y. Ariav, O. Pappo, M. Karaca et al., mTOR Inhibition by Rapamycin Prevents ??-Cell Adaptation to Hyperglycemia and Exacerbates the Metabolic State in Type 2 Diabetes, Diabetes, vol.57, issue.4, pp.945-957, 2008.
DOI : 10.2337/db07-0922

J. D. Morrisett, G. Abdel-fattah, and B. D. Kahan, Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients, Transplantation Proceedings, vol.35, issue.3, pp.143-150, 2003.
DOI : 10.1016/S0041-1345(03)00233-1