Développement préclinique de sondes fluorées utilisées dans l’imagerie moléculaire des pathologies neurodégénératives
Anne-Sophie Brun-Salabert

To cite this version:

HAL Id: tel-01630168
https://tel.archives-ouvertes.fr/tel-01630168
Submitted on 7 Nov 2017
THÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :
Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue par :
Anne-Sophie BRUN-SALABERT
le jeudi 08 octobre 2015

Titre :
Développement préclinique de sondes fluorées utilisées dans l’imagerie moléculaire des pathologies neurodégénératives.

École doctorale et discipline ou spécialité :
ED GEET : Radio-physique et Imagerie Médicale

Unité de recherche :
UMR 825 : Imagerie cérébrale et handicap neurologique

Directeur/trice(s) de Thèse :
PAYOUX Pierre (PU-PH Université de Toulouse)
FONTA Caroline (DR2 CNRS)

Jury :
GUILLOTEAU Denis (PU-PH Université de Tours) - Rapporteur
LE BARS Didier (MCU-PH Université de Lyon) - Rapporteur
DELISLE Marie-Bernadette (PU-PH Université de Toulouse) - Président du jury
QUELVEN-BERTIN Isabelle (MCU-PH Université de Limoges) - Examinatrice
TAFANI Mathieu (MCU-PH Université de Toulouse) - Membre invité
Remerciements

J’adresse tout d’abord mes profonds remerciements aux membres du jury pour avoir accepté de lire et juger ce travail de thèse et de venir assister à la soutenance. Un grand merci à Mrs Guilloteau et Le Bars pour avoir accepté d’être rapporteurs. Merci à Mme Delisle d’avoir accepté de présider ce jury. Merci à Isabelle Quelven d’avoir accepté d’être examinateur. Merci à Mathieu Tafani d’avoir accepté d’être membre invité, j’aurais souhaité que tu sois examinateur, mais la composition d’un jury de thèse n’est pas chose aisée et le jury était trop chargé en Toulousains. Merci de m’avoir formée et poussée à faire de la recherche en radiopharmacie. Merci pour ton soutien.

Je remercie tout particulièrement mes deux directeurs de thèses. Caroline Fonta et Pierre Payoux. Merci pour votre soutien, votre enthousiasme, vos conseils...Vous avez su, grâce à vos grandes qualités humaines, me donner envie de persévérer encore et encore. Votre passion pour la science est contagieuse et j’espère pouvoir continuer à travailler avec vous. Caroline, merci de m’avoir ouvert les portes de l’animalerie du CERCO, de m’avoir formée à certaines techniques d’histologies... Ta rigueur et ta perspicacité sont un exemple. Pierre, tu m’as permis de faire cette thèse, tu m’as accueillie à l’U825 où j’ai passé 3 années enrichissantes. J’ai beaucoup appris à ton contact, tu as su me guider et m’aider dans ces travaux. Merci de m’avoir fait confiance.

Je tiens à remercier Mathieu Alonso qui m’a tout appris sur l’automate de synthèse et sur le cyclotron. Grâce à toi j’ai acquis de nombreuses compétences très originales pour un pharmacien.

Merci à toute l’équipe de radiopharmacie et l’équipe de médecine nucléaire (Médecins, internes, manips, secrétaires ...). Vous avez suivi et subi mes expérimentations, mes joies et mes peines. Vous êtes une équipe formidable ! J’espère qu’un jour je pourrais faire partie de l’équipe pour de bon.

J’exprime mes remerciements au Dr Hafid Belhadj pour son idée de travail sur la mémantine et à M2I pour le développement des composés froids.
Je voudrais également remercier Carine Pestourie pour son aide sur l’ancien ENI, et pour nos projets dans le nouvel ENI.

J’exprime également mes remerciements au Laboratoire d'Anatomie Pathologique, Neuropathologie humaine et expérimentale du CHU de Toulouse pour m’avoir permis de travailler avec eux. Je remercie tout particulièrement Mme Delisle pour son accueil et son interprétation des lames, Najat pour sa gentillesse et pour tout le travail technique effectué.

Merci à Laurence Vaysse : un peu de bio dans ce monde de traitement d’image, quel bonheur ! Merci de m’avoir aidé à encadrer Marie ! Et merci à Marie de m’avoir supporté !

Je remercie avec chaleur toute l’équipe du pavillon Baudot (UMR 825 et CERCO) ! Chercheurs, ingénieurs, doctorants et ex doc (Dji, Pierre, Charlotte, Boris, Carole, Lola, Sophie, Débo, Mélanie,.....).

Je remercie naturellement ma famille pour leurs encouragements et leur présence au quotidien ainsi que mon mari pour sa patience et son soutien.

Bien évidemment, je remercie le labex iron ANR-11-LABX-0018-01, qui a financé ce projet et m’a permis de mener cette thèse dans de bonnes conditions.
DÉVELOPPEMENT PRE-CLINIQUE DE SONDES FLUORÉES UTILISÉES DANS L’IMAGERIE MOLÉCULAIRE DES PATHOLOGIES NEURODÉGÉNÉRATIVES.

INTRODUCTION .. 13

1. PROBLÉMATIQUE ... 14
2. IMAGERIE MOLECULAIRE IN VIVO ET TEP .. 20
3. OUTILS ET PERSPECTIVES D’ÉTUDE DES MALADIES NEURODEGENERATIVES 22

REVUE DE LA LITTERATURE .. 24

1. PRINCIPES DE L’IMAGERIE MOLECULAIRE .. 24
 1.1. Définition .. 24
 1.2. Qualités requises pour être un bon radiotracer ... 24
2. PRODUCTION D’UN RADIOTRACEUR FLUORE .. 28
 2.1. Émetteurs de positons .. 28
 2.1.1. Principes physiques .. 28
 2.1.2. Les principaux émetteurs de positons utilisés en médecine nucléaire .. 30
 2.1.3. Avantage et production du [18F] ... 31
 2.2. Radiochimie dans un module de synthèse .. 36
 2.2.1. Stratégie de marquage au [18F] ... 36
 2.2.2. La substitution nucléophile .. 37
 2.2.3. Purification et mise en forme .. 39
 2.3. Contrôle qualité .. 42
3. L’AUTORADIOGRAPHIE SUR COUPES DE TISSU CEREBRAL .. 47
 3.1. Principe .. 47
 3.2. Matériel .. 47
 3.3. Autoradiographie avec radiomarquage « in vitro » ... 48
 3.4. Autoradiographie ex vivo .. 49

AXE 1 : SYNTHESE DE LA [18F]-FNM ET EVALUATION DE SON INTERET POUR L’ETUDE DE L’HYPERACTIVATION DES RECEPTEURS NMDA IN VIVO ... 50

1. CONTEXTE .. 50
 1.1. Le récepteur au glutamate de type NMDA .. 50
 1.1.1. Les sous-unitéé du Récepteur NMDA, leur structure et leur assemblage ... 51
 1.1.2. Activation et perméabilité des récepteurs NMDA ... 57
 1.2. Conséquences fonctionnelles de l’activitation des récepteurs NMDA .. 60
 1.2.1. Activité synaptique .. 60
 1.2.2. Plasticités synaptiques .. 60
 1.2.3. Récepteurs NMDA synaptiques et neuroprotection ... 62
 1.2.4. Rôles physiologiques des récepteurs NMDA extra-synaptiques .. 63
 1.2.5. Récepteurs NMDAR extra-synaptiques et pathologies .. 66
 1.3. Contrôle et régulation de l’activité des récepteurs NMDA ... 69
 1.3.1. Contrôle par les modulateurs allostériques ... 69
 1.3.2. Antagonistes pharmacologiques du site PCP .. 70
 1.4. Historique des radioligands du site PCP .. 74
2. RADIOTRACEURS DERIVES DE LA MEMANTINE .. 76
3. PARTIE EXPERIMENTALE .. 77
 3.1. Matériel et méthode .. 77
 3.1.1. Radiosynthèse ... 79
 3.1.2. Propriétés physicochimiques ... 85
 3.1.3. Etudes précliniques sur le rongeur .. 88
3.2. Résultats .. 94
3.2.1. Radiosynthèse .. 94
3.2.2. Propriétés physico-chimiques de la molécule fluorée ... 95
3.2.3. Etudes précliniques ... 98
4. Discussion Axe 1 ... 108

AXE 2 : IMAGERIE TAU : SYNTHÈSE DE L’[18F]-AV1451 EN CONDITION PHARMACEUTIQUE ET TEST DE
CONDITIONS D’AUTORADIOGRAPHIES .. 114
1. Contexte .. 114
1.1. Les protéines tau ... 114
1.2. Structure et rôle des différents domaines des protéines tau chez l’humain .. 114
1.3. Modifications post traductionnelles : ... 117
1.3.1. Phosphorylation ... 117
1.3.2. O-glycosylation .. 118
1.4. Agréation pathologique de protéine tau : ... 120
1.4.1. Formation de l’agrégat ... 120
1.4.2. Propagation ... 122
1.4.3. Recherche des agrégats à l’aide d’anticorps ... 122
1.5. Toxicité de tau .. 125
1.5.1. Perte de fonction de tau, déstabilisation des MTs et altération du transport axonal 125
1.5.2. Inhibition du transport axonal suite à un excès de tau sur les MTs .. 126
1.6. La maladie d’Alzheimer ... 127
1.6.1. Les plaques séniles ... 128
1.6.2. La dégénérescence neurofibrillaire (DNF) .. 130
1.7. Historique des radionucléides de la DNF ... 133
1.7.1. Le FDDNP (famille des aminonaphtalènes) .. 135
1.7.2. [(13)C]-lansoprazole (famille des benzothiazoles) .. 136
1.7.3. Famille THK (benzimidazole et quinoline) ... 136
1.7.4. Le [(11)C] PPB3 ... 137
1.7.5. Famille des benzimidazoles pyrimidine ... 138
1.8. Les primates non humains .. 144
1.8.1. Le marmouset (Callithrix jacchus) .. 145
1.8.2. Etude du vieillissement chez le marmouset ... 146
1.8.3. Recherche de plaques amyloïdes et DNF chez les PNH .. 147
1.8.4. Le marmouset : modèle pour l’étude de la neurodégénérescence ... 149
2. Partie expérimentale ... 150
2.1. Matériel et méthode .. 150
2.1.1. Synthèse de l’[(18)F]-AV1451 en condition pharmaceutique .. 150
2.1.2. Échantillons de cerveaux humains et de marmousets .. 160
2.2. Résultats ... 165
2.2.1. Synthèse du [(18)F]-AV1451 ... 165
2.2.2. Détectection de DNF sur coupes de tissu cérébral par [(18)F]-AV1451 .. 169
3. Discussion Axe 2 ... 174

Discussion générale .. 178

Bibliographie ... 183

Listes des publications et communications .. 206

Résumé : ... 208
ABREVIATIONS

AA: Angiopathie amyloïde
µA : microampère
ABX: society Advanced biochemical compound
ACH: acetylcholine
ABD Agoniste Binding Domain
ADN Acide désoxyribonucléique
AMM : autorisation de mise sur le marché
AMPA Récepteur glutamatergique sensible au acide 2-amino-3-(5-méthyl-3-hydroxy-1,2-oxazol-4-y1) propanoïque
AMPc : Adénosine monophosphate cyclique
ANSM : Agence nationale de sécurité du médicament
Apo E : Apo lipoprotéine E
APP: Précurseur de la protéine amyloïde
ARNm Acide ribonucléique messager
AV45 : Florbétapir
AVC : accident vasculaire cérébral
Aβ: peptide A beta
BACE enzyme beta secrétase 1
BDNF : Brain-Derived Neurotrophic Factor
BHE : Barrière Hémato-encéphalique
BOC : Di-tert-butyl dicarbonate
Bq : Becquerel
CA : Corne d’Ammon
CCM : Chromatographie Couche Mince
CHU : Centre Hospitalier Universitaire
CPG: Chromatographie en Phase Gazeuse
CPM Coups par minute
CPP : Comité de protection des personnes
CQ : Contrôle qualité
CSP : Code de la Santé Publique
DFT : Démence fronto-temporale
DI/g : Dose injectée par gramme
DLT Dépression à long terme
DME : Dossier de Médicament expérimental
DMSO Diméthylsufoxyde
DNF : dégénérescence neurofibrillaire
DTA : Démence type Alzheimer
DLU Digital light unit
EOS: End of synthesis
ERLM Ecran radio luminescent à mémoire
eV: Electron volt
FDA: Food and Drug Administration
FDDNP: 2-6-[(2-fluoroéthyl) (methyl) amino]-2-naphthyléthylidène) malononitrile
FDG: Fluorodésoxyglucose
FET: Fluoroéthyltyrosine
FMISO: Fluoromisodazole
FNM Fluoroéthynormémantine
FMEM Fluoromémantine
GABA : Acide γ-aminobutyrique
GluN : Récepteurs NMDA
GluN1 Sous unité NR1 du Récepteurs NMDA
GluN2 Sous unité NR2 du Récepteurs NMDA
GluN3 Sous unité NR3 du Récepteurs NMDA
mGluN : Récepteur métabotropique au glutamate
GMP : Good Manufacturing Practice
HPLC: High Performance liquid Chomatography
ICH : International Conference of Harmonisation
ID/g : Dose injectée par gramme de tissu
IRM : Imagerie par résonnance magnétique
Kd : Constante d’affinité
Ki : Constante d’inhibition
K2.2.2 Kryptofix
KO: Knot out
LAL: Limulus Amoebocyte Lysate
LCR : Liquide céphalo-rachidien
LOD : Limite de détection
LOQ : Limite de quantification
MA : Maladie d’Alzheimer
MAP Protéines associées aux Microtubules
MCI : Mild cognitive impairment : déclin cognitif léger
ME : Médicament expérimental
MK-801 Dizocilpine
MRP : Médicament radiopharmaceutique
MRPE : Médicament radiopharmaceutique expérimental
MT(s) : Microtubule(s)
NDMA : N-méthyl-D-aspartate
NO Monoxyde d’azote
NO2 Dioxyde d’azote (groupement nitro)
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTD</td>
<td>N-Terminal Domain</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PCP</td>
<td>Phénycyclidine</td>
</tr>
<tr>
<td>PGP</td>
<td>Glycoprotéine P</td>
</tr>
<tr>
<td>PHF</td>
<td>paire filament hélicoïdaux</td>
</tr>
<tr>
<td>PHRC</td>
<td>Programme Hospitalier de Recherche Clinique</td>
</tr>
<tr>
<td>PIB</td>
<td>composé de Pittsburg. (Utilisant le 11C)</td>
</tr>
<tr>
<td>PLT</td>
<td>Potentialisation à long terme</td>
</tr>
<tr>
<td>PNH</td>
<td>Primate non humain</td>
</tr>
<tr>
<td>PPI</td>
<td>Pour préparation injectable</td>
</tr>
<tr>
<td>PRC</td>
<td>Pureté radiochimique</td>
</tr>
<tr>
<td>PrPc</td>
<td>Protéines prions</td>
</tr>
<tr>
<td>PS</td>
<td>Gènes codant pour les presénilines (protéines transmembranaires indispensables à l’activité γ secrétase)</td>
</tr>
<tr>
<td>PUI</td>
<td>Pharmacie à usage intérieur</td>
</tr>
<tr>
<td>QMA</td>
<td>cartouche contenant une résine échangeuse d’ion</td>
</tr>
<tr>
<td>ROI</td>
<td>Région d’intérêt</td>
</tr>
<tr>
<td>SAR</td>
<td>Relation Structure/ Activité</td>
</tr>
<tr>
<td>SE</td>
<td>Substitution électrophile</td>
</tr>
<tr>
<td>SN</td>
<td>Substitution nucléophile</td>
</tr>
<tr>
<td>SNC</td>
<td>Système nerveux central</td>
</tr>
<tr>
<td>SOD</td>
<td>Super oxyde dismutase</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>SPECT</td>
<td>imagerie en émission mono photonique</td>
</tr>
<tr>
<td>SUV</td>
<td>Standard Uptake Value</td>
</tr>
<tr>
<td>Sv</td>
<td>Sievert</td>
</tr>
<tr>
<td>TCP</td>
<td>Thienylphencyclidine</td>
</tr>
<tr>
<td>TEP</td>
<td>Tomographie par émission de positons</td>
</tr>
<tr>
<td>TEMP</td>
<td>Tomographie monophotonique</td>
</tr>
<tr>
<td>TFA</td>
<td>Acide trifluoroacétique</td>
</tr>
<tr>
<td>THF</td>
<td>Tétrahydrofurane</td>
</tr>
<tr>
<td>TR</td>
<td>Temps de rétention</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>VOI</td>
<td>Volume d’intérêt</td>
</tr>
</tbody>
</table>
INDEX DES TABLEAUX ET FIGURES :

Figures

Figure 1 : TOXICITE DU PEPTIDE AMYLOIDE ... 19
Figure 2 : ROLE DE LA PROTEINE AB DANS L’EXCITOTOXICITE : 20
Figure 3 : SCHEMA DE DESINTEGRATION D’UN EMETEUR β+ .. 28
**Figure 4 : SCHEMA DE DESINTEGRATION DU 18F AVEC E = ENERGIE] 29
Figure 5 : ANNihilation DU POSITON AVEC EMISSION DE 2 PHOTONS DE 511 KEV 29
Figure 6 : SCHEMA GENERAL DU FONCTIONNEMENT DU CYCLOTRON 32
**Figure 7 : ACCELERATION DE L’ION SOURCE ... 33
**Figure 8 : SEPARATION DES ELECTRONS ET DU PROTON AVANT ENVOI DES PROTONS ACCELEREES SUR LA CIBLE ... 35
**Figure 9 : EXEMPLE DE SYNTHESE « UNE ETAPE » .. 38
**Figure 10 : EXEMPLE D’UN CHROMATOCROMME DE SYNTHESE DE PURIFICATION SUR COLONNE SEMI-PREPARATIVE .. 41
Figure 11 : STRUCTURE D’UN GluN COMPOSE DE SOUS UNITES GluN1 ET GluN2. 51
**Figure 12 : STRUCTURE D’UN GluN EN CRISTALLOGRAPHIE AUX RAYONS X 52
**Figure 13 : SECTIONS SAGITALES DE CERVEAUX DE RATS MONTRANT LA REPARTITION DES ARNm DE SOUS-UNITES GluN 54
**Figure 14 : LOCALISATIONS PRINCIPALES DES DIFFERENTES SOUS-UNITES DES GluN2 ET GluN3. ... 54
**Figure 15 : RECEPTEURS SYNAPTiques ET NON SYNAPTiques 56
**Figure 16 : REPRESENTATION SCHEMATIQUE DE L’OUVERTURE DU CANAL IONIQUE NMDA ... 58
**Figure 17 : RESUME DES ACTIONS NEUROPROTECTRICES APRES ACTIVATION DES RECEPTEURS NMDA SYNAPTiques 63
**Figure 18 : REPRESENTATION SCHEMATIQUE DE L’HYPOTHESE YING ET YANG DES RECEPTEURS NMDA .. 66
**Figure 19 : TRANSMISSION DE L’INFLUX NERVEUX .. 67
**Figure 20 : TRANSMISSION DE L’INFLUX NERVEUX ET PROCESSUS DE MEMORISATION ... 67
**Figure 21 : IC 50 DE DIFFERENTS ANTAGONISTES DU SITE PCP DES RECEPTEURS NMDA ... 71
**Figure 22 : IMAGES DE CRISTALLOGRAPHIE EN RAYONS X DU BLOCAGE DES RECEPTEURS NMDA PAR LA MEMANTINE ... 73
**Figure 23 : SELECTIVITE DE LA MEMANTINE POUR LES RECEPTEURS NMDA 73
**Figure 24 : PRECURSEUR MEMANTINE PROTEGE : 1-[N-(TERT-BUTYLOXY) CARBAMOYL]-5-(TOSYL) ETHYL-ADAMANTANE 78
**Figure 25 : FLUOROETHYLNORMEMANTINE OÙ 1-AMINO-3FLUOROETHYL-ADAMANTANE ... 78
**Figure 26 : AUTOMATE RAYEST DANS SA HOTTE BLINDEE VENTILEE 80
**Figure 27 : INTERFACE GRAPHIQUE PILOTANT LE MODULE DE SYNTHESE 81
**Figure 28 : VISUEL INFORMATIQUE DU PARAMETRAGE DES DIFFERENTS DETECTEURS ... 81
**Figure 29 : SCHEMA DE SYNTHESE DE LA 18F-FNM .. 82
**Figure 30 : PURIFICATION DE L’E LIUAT .. 94
**Figure 31 : PURETE RADIOCHIMIQUE DE LA 18F-FMN .. 95
**Figure 32 : ETUDE DE METABOLISATION DE LA 18F-FNM DANS LE PLASMA. 96
**Figure 33 : LIAISON DE LA 18F-FNM AUX PROTEINES PLASMATIQUES 97
**Figure 34 : REPRESENTATION DU POURCENTAGE DE LIAISON DE LA 18F-FNM A DIFFERENTES FRACTIONS DU PLASMA HUMAIN 97
**Figure 35 : EVOLUTION DU RATIO CERVEAU SUR SANG .. 98
**Figure 36 : POULRAGE DE LA Dose INJECTEE PAR GRAMME AU NIVEAU CORTICAL 99
**Figure 37 : COURBE ACTIVITE/TEMPS AU NIVEAU CEREBRAL REPRESENTANT L’EVOLUTION DE LA CAPTATION DE LA 18F – FNM . 100
**Figure 38 : COURBE ACTIVITE/TEMPS AU NIVEAU DU CORPS ENTIER DE L’ANIMAL APRES INJECTION DE 18F – FNM. 101
**Figure 39 : ANATOMIE DU CERVEAU DE RAT ... 102
**Figure 40 : IMMUNOHISTOCHEMIE AVEC UN ANTICORPS PRIMAIRE ANTI NR1. .. 103
**Figure 41 : MARQUAGE DES RECEPTEURS NMDA SUR DEUX SECTIONS ADJACENTES DE CERVEAU DE RAT 104
**Figure 42 : ANALYSE DE L’INTENSITE DU SIGNAL D’AUTORADIOGRAPHIE EX VIVO 105
**Figure 43 : ANALYSE DE L’INTENSITE DU SIGNAL DE FLUORESCENCE DANS LES COUPES D’IMMUNOHISTOCHEMIE 106
**Figure 44 : ANALYSE DE CORRELATION ENTRE LES SIGNALS D’IHC ET D’AUTORADIOGRAPHIE ... 107
**Figure 45 : ANALYSE DE CORRELATION ENTRE LES SIGNALS D’IHC ET D’AUTORADIOGRAPHIE CHEZ LE RAT ANESTHESIE 107
Figure 46 : Représentation schématique du gène humain de la protéine Tau .. 115
Figure 47 : Rôle des protéines Tau dans la stabilisation du cytosquelette ... 116
Figure 48 : Représentation schématique des domaines fonctionnels de la plus longue des isoformes de Tau ... 117
Figure 49 : Ensemble des sites de modifications post-traductionnelle ... 119
Figure 50 : Formation d’oligomères de Tau par création de ponts disulfures intermoléculaires 120
Figure 51 : 80 sites potentiels de phosphorylation (Ser (S) ou Thr (T)) sur la protéine Tau 123
Figure 52 : Phosphorylation normale et pathologique de Tau ... 124
Figure 53 : Profil de fixation des anticorps spécifiques de certains sites de phosphorylation de Tau 125
Figure 54 : Hypothèse de dégénérescence neuronale par un excès de protéine Tau 127
Figure 55 : Voies métaboliques principales de l’APP .. 130
Figure 56 : Caractéristiques histopathologiques correspondant à l’évolution de la maladie d’Alzheimer 131
Figure 57 : Progression des plaques seniles et des DNF au cours de la MA ... 132
Figure 58 : Étude de selectivité du [18F]-AV1451 pour Tau PHF par rapport à AB 139
Figure 59 : Étude de corrélation entre les autoradiographiques avec de l’AV1451 et l’IHC pour (PHF) - Tau 140
Figure 60 : Site de fixation des benzimidazole sur la protéine Tau phosphorylée 141
Figure 61 : Mise en évidence d’une captation du [18F]-AV1451 chez un patient 142
Figure 62 : Relation entre plaques amyloïdes, métabolisme et DNF chez un patient atteint de la MA 143
Figure 63 : Analyse de la survie par age de la colonie de marmousets du SNPRC 146
Figure 64 : Durée de vie des primates non humains correlee à l’âge d’apparition des plaques amyloïdes 150
Figure 65 : Description de la radiosynthèse du [18F]-AV1451 ... 151
Figure 66 : Graphique analytique pour le [18F]-AV1451 et le [18F]-AV1451 L .. 155
Figure 67 : Courbe d’étalonnage réalisée pour la quantification d’AV1451 froid 158
Figure 68 : Courbe d’étalonnage réalisée pour la quantification d’AV1622 froid 158
Figure 69 : Courbe d’étalonnage réalisée pour la quantification du précurseur hydrolyse froid 159
Figure 70 : Schéma recapitulant les types d’échantillons et les différents traitements de l’expérimentation ... 164
Figure 71 : Synthèse du [18F]-AV1451 : graphique représentant la purification de l’éluat 166
Figure 72 : Synthèse du [18F]-AV1451 : chromatogramme de contrôle qualité en HPLC analytique UV et Gamma. 166
Figure 73 : Comparaison marquage AT8 et autoradiographie et le [18F]-AV1451 sur coupes de cerveaux humains . 171
Figure 74 : Autoradiographie avec le [18F]-AV1451 sur les cerveaux de marmouset fixes au PFA- MARMOSET 172
Figure 75 : Coupe frontale d’un hémicycle de marmouset .. 173
Figure 76 : Une combinaison de radiotraces ... 180

Tableaux
Tableau 1 : Principaux emetteurs de positions utilisés à des fins médicales ... 30
Tableau 2 : Avantages et inconvenients d’utiliser du [18F] .. 31
Tableau 3 : Résumé des controles a effectuer lors de la mise au point d’un MRPE fluore 46
Tableau 4 : Permeabilité au calcium des receptrers NMDA ... 59
Tableau 5 : Caractéristiques des candidats radioligands fluores pour les sites PCP du receptrer NMDA 75
Tableau 6 : Protocole d’étude de liaison aux protéines plasmatiques ... 87
Tableau 7 : Protocoles de congelations rapide et de coupes de cerveau sur cryostats 90
Tableau 8 : Résumé de caractéristiques de molécules de la famille de la memantine 109
Tableau 9 : Comparaison de la présence des isoformes de Tau dans différentes formes de tauopathies. 121
Tableau 10 : Caractéristiques d’affinité, de lipophilie et commentaires sur les traceurs ciblant les Tau-PHF 134
Tableau 11 : Classification simplifiée de l’ordre des primates .. 145
Tableau 12 : Comparaison des lesions typiques des processus neurodegeneratifs chez les primates 147
Tableau 13 : Résumé des controles qualité a effectuer sur les lots de validation de production du [18F] AV1451 . 154
Tableau 14 : Matériel et conditions utilisés pour la recherche d’impuretes organiques 157
Tableau 15 : Calcul de la quantité d’AV1451 froid dans les 3 lots de validation de production d’AV1451 167
TABLEAU 16 : CALCUL DE L’ACTIVITE SPECIFIQUE POUR CHAQUE LOT DE PRODUCTION DE 18F AV1451 .. 168
TABLEAU 17 : RECHERCHE D’IMPURETE POUR LES 3 LOTS DE VALIDATION ... 168
TABLEAU 18 : TESTS DE CONTROLE QUALITE OBLIGATOIRES POUR LES 3 LOTS DE VALIDATIONS D’AV1451 169
TABLEAU 19 : RESULTAT DES AUTORADIOGRAPHIES AVEC LE 18F-AV1451 ... 170
TABLEAU 20 : COMPARAISON DE PARAMETRES DE RADIOSYNTHÈSE DU 18F-T807 .. 175

ÉQUATIONS
ÉQUATION 1 : COEFFICIENT DE PARTITION ENTRE UNE PHASE ORGANIQUE ET UNE PHASE AQUEUSE .. 26
ÉQUATION 2 : TRANSFORMATION D’UN PROTON (p) EN UN NEUTRON (n) AVEC EMISSION DE POSITONS (e$^+$) ET DE NEUTRINOS (n). 28
ÉQUATION 3 : FORCE DE LORENTZ ... 34
ÉQUATION 4 : ACCELERATION D’UNE PARTICULE PAR UN CHAMP ELECTRIQUE ... 34
ÉQUATION 5 : RAYON DE LA TRAJECTOIRE DES PARTICULES DANS UN CYCLOTRON ... 34
ÉQUATION 6 : REACTION NUCLEAIRE ABOUTISSANT A LA PRODUCTION DE 18F ... 36
ÉQUATION 7 : CALCUL DU RENDEMENT DE SYNTHESE ... 42
ÉQUATION 8 : PERIODE RADIOACTIVE CALCULÉE .. 44
ÉQUATION 9 : CALCUL DU RATIO CERVEAU /SANG ... 88
ÉQUATION 10 : CALCUL DU PORCENTAGE DE LA DOSE INJECTEE PAR GRAMME DE TISSU ... 88
ÉQUATION 11 : PORCENTAGE DE 18F-FNM PRESENT DANS CHACUNE DES TROIS FRACTIONS PLASMATIQUES 97
DÉVELOPPEMENT PRE-CLINIQUE DE SONDES FLUORÉES UTILISÉES DANS L’IMAGERIE MOLÉCULAIRE DES PATHOLOGIES NEURODÉGÉNÉRATIVES.

INTRODUCTION

Avant-Propos

De nombreuses questions persistent encore sur les mécanismes physiopathologiques des maladies neurodégénératives. L’exploration in vitro ou l’utilisation de modèles rongeurs transgéniques ne reflète pas toujours toutes les composantes des maladies à étudier. L’imagerie moléculaire offre une alternative à ces études. En effet, elle permet d’étudier des mécanismes moléculaires : liaison de protéines à un récepteur, quantité de récepteurs ou de protéines chez des sujets sains ou des patients. Elle permet également de faire ainsi un suivi longitudinal de la maladie. L’imagerie moléculaire a besoin de traceurs cibant des mécanismes différents pour étudier la cascade d’événements menant à la neurodégénérescence. Nous allons voir dans cette introduction que pour étudier la neurodégénérescence par imagerie moléculaire, il faut tout d’abord définir des cibles moléculaires caractéristiques de la neurodégénérescence : hypométabolisme glucidique, agrégation de protéines, activation de récepteurs, inflammation Il s’agit ici de détecter les mécanismes aboutissant à la mort neuronale, ceux-ci sont nombreux et nous avons choisi de nous intéresser à deux mécanismes qui seraient acteurs de la mort neuronale : la neurotoxicité par excitotoxicité via les récepteurs NMDA et la neurotoxicité induite par une phosphorylation anormale de la protéine tau provoquant son agrégation. Ces deux phénomènes sont retrouvés dans les mécanismes de mort neuronale des maladies neurodégénératives (maladies d’Alzheimer, Chorée de Huntington, paralysie supranucléaire progressive ...). Ces deux phénomènes de neurotoxicité sont étudiés depuis plusieurs années et il existe déjà des molécules connues capables de se lier spécifiquement au récepteur NMDA et aux agrégats de protéines tau. Nous avons choisi un dérivé d’une molécule antagoniste des récepteurs NMDA pour étudier l’excitotoxicité et un dérivé des benzimidazoles qui a de l’affinité pour les agrégats de protéine tau. Notre objectif a ensuite été de radiomarquer ces molécules. Nous avons choisi de les radiomarquer avec du $[^{18}\text{F}]$, qui
est le radio-isotope le plus utilisé en Tomographie par émission de positons (TEP). Cet isotope est intéressant pour l'imagerie cérébrale car sa petite taille permet de réaliser des marquages de molécules sans trop augmenter son poids moléculaire qui est un frein au passage de la Barrière Hémato-Encéphalique (BHE). Ce travail a pour objectif la mise au point de radiotraceurs radiomarqués au $[^{18}\text{F}]$ ciblant deux mécanismes liés à la neurodégénérescence et l'évaluation de leur intérêt diagnostique dans des modèles précliniques par imagerie in vivo ou par autoradiographie.

Ce projet de développement de radiotraceurs fait partie du Labex « Innovative Radiopharmaceuticals in Oncology and Neurology » (IRON). L’objectif scientifique final est le transfert en clinique des radiopharmaceutiques innovants évalués.

1. PROBLEMATIQUE

Les maladies neurodégénératives forment un sous-groupe de maladies dégénératives affectant le fonctionnement du cerveau de façon progressive au cours de leur évolution. Ces maladies provoquent une détérioration du fonctionnement des cellules nerveuses, en particulier des neurones. La conséquence pour le malade est une altération progressive et souvent irréversible des fonctions nerveuses, qui peut conduire à son décès. Les maladies neurodégénératives les plus fréquentes sont la maladie d'Alzheimer (MA), la maladie de Parkinson (MP) et la sclérose en plaques (SEP) (Brown et al., 2005 ; Emard et al., 1995).

Dans la **Maladie d’Alzheimer**, il existe une dégénérescence neuronale entraînant une altération des facultés cognitives. Le trouble de la mémoire est le plus constant et le plus perceptible des symptômes associés. Néanmoins, il n’en est pas le seul. Les troubles des fonctions exécutives, ainsi que les problèmes d’orientation spatio-temporels sont également révélateurs. La maladie d’Alzheimer se traduit par des troubles progressifs du langage (aphasie), de l’écriture (dysorthographie), du mouvement (apraxie), de la reconnaissance (agnosie) associés à des troubles du comportement et de l’humeur (anxiété, dépression irritabilité). En 2006, 850 000 personnes étaient atteintes de MA en France (Helmer et al., 2006). Les estimations de prévalence ont été réalisées à partir des données de l’étude PAQUID (pour les plus de 75 ans) ; elle serait de 13,2% chez les hommes et de 20,5% chez
les femmes (Helmer et al., 2006). L’incidence augmente avec l’âge et plus particulièrement à partir de 75 ans. Avec le vieillissement de la population française, le nombre de patients atteints de MA risque de fortement augmenter.

La **maladie de Parkinson** est une affection chronique, lentement évolutive, d’origine le plus souvent inconnue. La dégénérescence touche les neurones du locus niger et atteint également les faisceaux nigro-striés. La fonction de ces cellules est de fabriquer et libérer la dopamine, neurotransmetteur indispensable au contrôle des mouvements. La MP impacte fortement la qualité de vie, en raison de ses symptômes moteurs (troubles de la marche, instabilité posturale), de ses troubles végétatifs (digestifs, urinaires, cardio-vasculaires...) et psychiques (anxiété, dépression...). Les facultés intellectuelles restent intactes, sauf au grand âge. Sa prévalence est de 121 cas pour 100 000 habitants en population générale et 1470 cas pour 100 000 habitants chez les plus de 65 ans (von Campenhausen et al., 2005). Elle toucherait 150 000 personnes en France.

La **sclérose en plaques** est une maladie inflammatoire du système nerveux central. L’évolution dans le temps de cette affection est imprévisible et elle se manifeste de manière diverse chez les personnes atteintes. Les principaux symptômes sont une névrite optique, des troubles sensitifs, des troubles de la motricité (faiblesses des membres, trouble de l’équilibre), de la fatigue intense physique et/ou intellectuelle, ou encore des difficultés d’attention, ou de mémoire. La prévalence de cette maladie en France (extrapolée à une étude réalisée en Bretagne) est de 170 cas pour 100 000 habitants, et l’incidence est de 4,4 cas pour 100 000 habitants (Yaouanq et al., 2015). Elle toucherait 85 000 personnes en France.

Ces données révèlent qu’il y a en France plus d’un million de personnes atteintes d’une maladie neurodégénérative. Améliorer la connaissance des mécanismes mis en cause dans ces pathologies est un enjeu de santé publique majeur. Le diagnostique précoce de ces pathologies pourra ouvrir des perspectives thérapeutiques nouvelles notamment l’utilisation de traitements neuroprotecteurs permettant d’agir avant l’apparition de lésions irréversibles.
La neurodégénérescence est un processus pathologique progressif entraînant la mort des cellules nerveuses. Nous nous intéresserons ici, à la neurodégénérescence dans le système nerveux central. Elle est généralement la conséquence d’agressions des cellules nerveuses provoquées par différents mécanismes physiopathologiques dont nombre d’entre eux sont encore mal connus. La mort cellulaire est certainement multifactorielle et il est nécessaire de bien comprendre la cascade d’événements menant à la dégénérescence, et d’évaluer les acteurs de cette cascade : le terrain, le mécanisme déclencheur, la propagation de la toxicité.

Il apparaît ainsi que de nombreuses maladies neurodégénératives du système nerveux central correspondent à l’agrégation d’une ou plusieurs protéines spécifiques. Le peptide β-amyloïde et la protéine tau dans la maladie d’Alzheimer, protéine tau seule dans les démences fronto-temporales ainsi que la paralysie supranucléaire progressive et la dégénérescence corticobasale, l’α-synucléine dans la maladie de Parkinson et la démence à corps de Lewy, la protéine PrPc dans les maladies à prions. Ces protéines signent les maladies mais sont-elles une cause ou une conséquence de la dégénérescence ? Certains auteurs leur attribuent des propriétés « infectieuses » avec des phénomènes de transmission de cellules à cellules (Medina and Avila, 2014). Cependant ces protéines agrégées à elles seules n’expliquent pas la pathologie. Un événement déclencheur de la pathologie pourrait être l’intervention de mécanismes d’excitotoxicité. Cette excitotoxicité proviendrait d’un message pré-synaptique qui générerait un afflux massif de glutamate stimulant, outre les récepteurs NMDA synaptiques, un type de récepteur NMDA extrasynaptique très perméable au Ca²⁺. L’afflux trop important de Ca²⁺ dans la cellule post synaptique serait générateur de nombreux troubles, notamment l’agrégation de protéines tau et la production de radicaux libres (Parsons and Raymond, 2014). Cette libération massive de glutamate s’effectue de manière incontrôlée suite à une dépolarisation neuronale consécutive à un stress. L’inflammation semble ici jouer un rôle de terrain favorisant du stress et serait également une piste intéressante à explorer (Amor and Woodrooife, 2014).
Excitotoxicité

Excitotoxicité est un mot proposé dans les années 1970 par John Olney, à partir d’études sur les effets in vivo du glutamate et de ses analogues sur les neurones (Olney et al., 1973). Olney a proposé l’hypothèse excitotoxique, à savoir, que le glutamate et l’aspartate, les principaux neurotransmetteurs excitateurs dans le système nerveux central, peuvent être responsables de la mort excitotoxique de neurones (Olney, 1993). Ce phénomène a été tout d’abord décrit in vivo dans les événements traumatiques tels que l’Accident Vasculaire Cérébral (AVC). Les phénomènes d’ischémie induisent une forte concentration de glutamate extracellulaire ce qui a comme conséquence l’ouverture excessive de canaux calciques post-synaptiques tels que les récepteurs NMDA. Cet afflux massif et incontrôlé de calcium intracellulaire entraîne un fort stress oxydatif qui stimule la formation de NO et de radicaux libres. Cette neurotoxicité induite par le glutamate explique les différences entre les conséquences directes induites par l’ischémie et les dommages cérébraux qui en découlent.

Ainsi le traitement par un antagoniste des récepteurs NMDA juste après une ischémie, limite l’extension de la lésion (Yang et al., 2003). Récemment, dans un modèle d’ischémie cérébrale chez le rat, une augmentation de phosphorylation de la protéine tau a été observée 7 jours après une lésion dans l’hippocampe (Xu et al., 2015). Cette hyperphosphorylation provenait d’un relargage massif et prolongé de glutamate depuis le cortex entorhinal provoquant dans l’hippocampe une activation des récepteurs NMDA extrasynaptiques et déclenchant le mécanisme d’excitotoxicité et la phosphorylation de tau. Les récepteurs NMDA extrasynaptiques étaient les seuls récepteurs impliqués (Xu et al., 2015). D’autres expérimentations ont démontré qu’une perte de fonction de la protéine prion cellulaire (PrPc) entraînerait une augmentation de sensibilité de tous les récepteurs NMDA qui auraient besoin de moins de glutamate ou de co-agoniste pour s’activer. On a retrouvé une augmentation des courants (en amplitude et en temps) chez des souris KO pour cette protéine (Black et al., 2014). Cette protéine semble être capable de moduler l’activité des récepteurs NMDA.
Dégénérescence du cytosquelette

Les microtubules intracellulaires sont des structures dynamiques constituées d'un grand nombre de molécules protéiques appelées tubulines α et β. Ces longs filaments creux, hautement instables, sont stabilisés grâce à des protéines qui se lient le long des polymères de tubulines; ces protéines sont appelées protéines associées aux microtubules (MAPs). Les protéines tau sont des MAPs. La phosphorylation de tau entraîne son détachement du microtubule. En cas d’hyperphosphorylation de tau, la structure des microtubules est perturbée provoquant une régression des axones (Mandelkow et al., 2003). La question des relations entre les modifications du métabolisme des protéines tau et les mécanismes de dégénérescence neuronale reste posée : sont-elles directement responsables de la souffrance neuronale, ou bien constituent-elles une réponse aspécifique des neurones à des agressions diverses ? Causes ou conséquences, les altérations des protéines tau sont à un moment donné les acteurs de la mort neuronale en altérant le transport axonal indispensable au dialogue corps cellulaire-synapse (Tranchant, 1997).

Ces deux cibles (récepteurs NMDA extrasynaptiques et tau hyperphosphorylé) sont à l’origine d’une hypothèse sur le processus dégénératif dans la maladie d’Alzheimer proposée à partir d’une étude menée sur des neurones en culture (Deleglise et al., 2014). La présence de plaques amyloïdes au niveau d’un neurone cortical pourrait provoquer, par un mécanisme d’excitotoxicité conduit par les récepteurs NMDA, la production de protéine tau hyperphosphorylée au niveau de l’hippocampe. Comme illustré dans la Figure 1, un afflux de glutamate provoque l’hyperphosphorylation de tau et cette phosphorylation est inhibée lorsqu’on utilise un antagoniste des récepteurs NMDA (NMDA inh). La perte synpatique proviendrait de l’augmentation chronique de calcium intracellulaire qui desensibiliserait les récepteurs post synaptiques. Il s’en suit un phénomène de dégénérescence rétrograde commençant par l’axone et remontant jusqu’au neurone cortical.
Récemment, une revue sur la maladie d’Alzheimer s’est focalisée sur la synapse tripartite (Figure 2). Les auteurs ont proposé une séquence de mécanismes entre Aß et tau hyperphosphorylé via les récepteurs NMDA pour expliquer une toxicité des oligomères d’Aß. Cette toxicité commence par une augmentation du relargage de glutamate par le neurone pré-synaptique. En condition physiologique, le glutamate en excès est recapté par les astrocytes via les transporteurs au glutamate GLT-1 et GLAST pour être converti en glutamine. Un autre moyen de dégradation du glutamate est la protéolyse dans la fente synaptique par des enzymes produites par les astrocytes. Le relargage d’enzymes et l’activité de GLT-1 seraient diminués avec l’âge. Ceci expliquerait la plus grande toxicité de cet afflux de glutamate chez les personnes âgées qui n’arrivent plus physiologiquement à réaliser sa dégradation après des agressions excitotoxiques. De plus le peptide amyloïde a également des propriétés inhibitrices de GLAST et GLT-1. C’est ensuite l’entrée massive de Ca²⁺ dans la cellule qui provoquerait la phosphorylation menant à l’agrégation de tau en paire de filaments hélicoidaux (tau PHF)(Rudy et al., 2015).
Figure 2 : Rôle de la protéine Aβ dans l’excitotoxicité : 1) Aβ augmente le relargage intracellulaire de glutamate ; 2) Aβ fait augmenter la concentration de Ca²⁺ intra astrocytaire par son action sur les récepteurs nicotiniques et provoque une relargage de glutamate par l’astrocyte ; 3) Aβ pourrait agir sur la clairance du glutamate par diminution de la recapture par GLT-1 et GLAST ; 4) l’activation prolongée des récepteurs NMDA extrasynaptiques (E-NMDAR) et des récepteurs AMPA (AMPAR) provoque l’internalisation des NMDA synaptiques (S-NMDAR) ; 5) l’activation prolongée des E-NMDAR provoque une augmentation de l’activité kinas sur la protéine tau ; une mort cellulaire, un diminution de la potentialisation à long terme et de la phosphorylation d’un facteur de transcription (CREB) qui ne joue plus son rôle neuroprotecteur.

Par ailleurs, dans la maladie d’Alzheimer, des études in vitro ont montré que l’activation des récepteurs NMDA extrasynaptiques stimulait la production de peptides Aβ, marqueur physiopathologique de la MA (Zhou and Sheng, 2013).

Tous ces mécanismes : excitotoxicité, production d’Aβ, phosphorylation de tau, semblent être liés. Cependant bien que leur chronologie d’apparition et leur co-localisation soient des questions cruciales, l’exploration in vivo n’a pas permis de répondre entièrement à ces interrogations par manque d’outils.

2. **IMAGERIE MOLECULAIRE IN VIVO ET TEP**

L’imagerie moléculaire in vivo peut se définir comme une modalité d’imagerie orientée vers l’étude du fonctionnement cellulaire et moléculaire de l’organisme. L’imagerie anatomique visualise la structure des tissus ou des organes, l’imagerie moléculaire permet de visualiser un mécanisme cellulaire particulier (imagerie fonctionnelle). Plusieurs méthodes d’imagerie
moléculaire existent : celles utilisant des sondes radioactives mais également celles utilisant des procédés optiques, magnétiques ou acoustiques.

L'imagerie nucléaire est une technique d'imagerie moléculaire dont le principe repose sur l'administration, le suivi et l'analyse de la distribution dans l'organisme de molécules marquées à l'aide d'isotopes radioactifs, spécifiques d'une cible, d'une fonction ou d'un processus physiologique particulier. Il existe deux modalités en imagerie nucléaire: la TEP (Tomographie par Emission de Positons) et la TEMP (Tomographie par Emission MonoPhotonique). L'utilisation de l'une ou l'autre modalité se fait en fonction de l'isotope radioactif choisi.

Nous traiterons ici uniquement des techniques utilisant des radioéléments fluorés qui utilisent donc la modalité TEP comme traceurs des mécanismes à explorer.

De nombreux radiotraceurs fluorés sont en développement dans le domaine de la neurologie. Comme exemple nous pouvons citer les traceurs de la plaque amyloïde : Florbetapir, Florbetaben, Flutemetamol (Vandenberghe et al., 2013 ; Mason et al., 2013). Ceux-ci ciblent le peptide Aβ qui s'accumule au niveau cérébral dans la MA. Ces traceurs fluorés développés récemment ont obtenu l'autorisation de mise sur le marché (AMM) en France et en Europe dans le cadre de la recherche d'amylose cérébrale. Leur utilisation dans le cadre d'essais cliniques a permis de montrer que la présence de peptide Aβ était un biomarqueur précoce évoquant une MA. Même si des interrogations demeurent, ils pourraient devenir un outil de diagnostic précoce de MA (Dubois et al., 2013; Jack et al., 2013).

Un autre traceur cérébral en cours de développement est le [18F]-714-DPA, un radiotraceur se liant à TSPO (translocator proteine). En effet, l’activation des cellules microgliales en cas d’inflammation s’accompagne d’une augmentation de l’expression de cette protéine transmembranaire mitochondriale : la TSPO ; longtemps connue sous le terme de récepteur périphérique aux benzodiazépines (PBR). Ce radiotraceur permet d’étudier in vivo la neuroinflammation. Il a été évalué en préclinique sur des modèles murins et des Primates non humains (PNH) et a déjà été testé chez l’homme. Sa captation est étudiée dans de
nombreuses maladies neurodégénératives : maladie d’Alzheimer (Golla et al., 2015) ; sclérose latérale amyotrophique (Corcia et al., 2012) ; encéphalomyélites auto-immunes (Abourbeh et al., 2012) ou dans des maladies aigues comme l’AVC (Zinnhardt et al., 2015 ; Wang et al., 2014).

3. OUTILS ET PERSPECTIVES D’ETUDE DES MALADIES NEURODEGENERATIVES

Il existe déjà des traceurs de la plaque amyloïde, ils ont permis de mettre en évidence une augmentation de l’amylose cérébrale de manière très précoce à l’apparition des premiers symptômes de la maladie (Dubois et al., 2013; Jack et al., 2013). Les traceurs de la protéine tau sont en cours de développement. Les traceurs de l’excitotoxicité médieé par les récepteurs NMDA sont très innovants et encore en phase préclinique. Ces différents outils ne sont pas encore au même stade de développement.

L’utilisation de ces 3 outils (traceur amyloïde, traceur tau et traceur des récepteurs NMDA activés) sur des modèles précliniques pourra nous permettre de répondre à des questions fondamentales en réalisant :

- Des études topographiques :
 o Co-localisation de la captation des traceurs ?
 o Evolution topographique de l’excitotoxicité ?
- Des études longitudinales :
 o Evolution de l’excitotoxicité et de l’agrégation des protéines tau au cours du temps,
 o Détection précoce,
 o Intensités de captation en fonction du stade de la maladie,
 o Etude du vieillissement cérébral non pathologique.

Ces radiotracer utilisés en imagerie moléculaire pourraient contribuer à améliorer la compréhension des mécanismes de base des maladies neurodégénératives, et pourraient aider au développement d’autres biomarqueurs et de nouvelles thérapies. Ces radiotracer pourraient assurer la validation de l’efficacité de médicaments destinés soit à inhiber la
production ou l'agrégation des protéines spécifiquement en cause dans les diverses pathologies (ou de favoriser leur élimination) soit d'inhiber les récepteurs NMDA extrasynaptiques. Les premiers devraient exercer une action ciblée sur les diverses maladies considérées, les seconds agir sur un large spectre de pathologies. Il est en outre concevable d'associer les deux approches.
REVUE DE LA LITTERATURE

1. PRINCIPES DE L’IMAGERIE MOLECULAIRE

1.1. Définition

L'imagerie moléculaire regroupe des techniques d'imagerie ou des associations de différentes techniques permettant de visualiser, in vivo :

- le fonctionnement cellulaire (exemple: captation cellulaire de glucose avec le 18F-FDG)
- des processus moléculaires (interaction ligand récepteur, présence de certaines protéines)

On utilise pour cela deux moyens complémentaires :

- Des marqueurs, sondes ou traceurs, de natures diverses (colorants, produit de contraste, marqueurs radioactifs, protéines fluorescentes éventuellement produites «in situ» par l'organisme. Ces produits (injectés, ingérés ou produits par un organisme génétiquement modifié) visent un organe, un type cellulaire, ou une molécule particulière qui sera ainsi mise en évidence par l'imagerie.
- Des appareils capables de repérer le signal émis par le marqueur au travers du corps (rayon X, ultra-sons, infrarouge, tomographie...). Un des avantages de la Tomographie par émission de positons est que l'épaisseur des tissus à traverser par l'élément émettant le signal n'est pas limitante, permettant ainsi l'utilisation chez l'homme à des fins diagnostiques.

Nous nous intéresserons ici uniquement à l'imagerie moléculaire par utilisation de marqueurs radioactifs émetteurs β^+, ceux-ci émettent des rayonnements de 511 keV décelables par tomographie par émission de positons.

1.2. Qualités requises pour être un bon radiotraceur

Les données d’affinités in vitro pour sa cible ne suffisent pas à affirmer que la molécule sera un bon radiotraceur TEP. Il faut tenir compte du fait qu’un radiotraceur est injecté à des doses « traceuses », c'est-à-dire des concentrations infra-pharmacologiques (quelques
dizaines de µg) au lieu des quelques mg fréquemment utilisés dans des approches pharmacologiques classiques). En effet, on ne cherche qu’à « tracer » le cheminement et le marquage de la cible par la molécule radioactive et non à provoquer une activation ou encore un blocage de cette cible (par exemple un récepteur) en occupant un pourcentage important de ce dernier. Ainsi, plusieurs conditions spécifiques doivent être réunies pour faire d’une molécule candidate un bon radiotracer TEP.

Quelques revues ont résumé les caractéristiques physicochimiques importantes à respecter pour avoir un bon marqueur notamment cérébral (Henriksen et al., 2008 ; Pike, 2009). Ces caractéristiques sont mentionnées ci-dessous :

- **Haute spécificité et affinité pour sa cible:**

 Le traceur doit présenter une affinité suffisante pour sa cible (bonne affinité) et une faible liaison non-spécifique (bonne spécificité). Il est nécessaire d’évaluer in vitro l’affinité de la molécule pour sa cible en faisant des études de binding. On définit alors le coefficient de dissociation (Kd) du traceur qui correspond à la quantité de ligand exprimée en moles se liant à 50 % de la cible. Il est déterminé par étude de saturation en utilisant le ligand étudié qui doit être radiomarqué avec un isotope à demi-vie longue (car il est nécessaire d’attendre le temps au bout duquel l’équilibre de la fixation du ligand sur son récepteur est atteint). Plus le Kd est petit ; plus l’affinité pour la cible est grande.

 L’affinité peut être aussi associée à une concentration inhibitrice (CI50), c’est-à-dire la concentration en ligand qui inhibe 50% de la liaison spécifique et qui correspond à la quantité de ligand nécessaire pour déloger et occuper 50 % de cibles occupées précédemment par un ligand connu radiomarqué. Cette technique utilise un ligand de référence marqué et n’oblige pas à marquer le ligand à étudier. On peut également caractériser sa constante d’inhibition (Ki) qui est une valeur calculée en fonction de la CI 50, du ligand de référence utilisé et du type d’inhibition.

 La bonne affinité pour la cible est une caractéristique que doit avoir tout radiotracer mais c’est particulièrement important en neurologie notamment lorsqu’on étudie des récepteurs.
Passage de la BHE :

Le passage de la BHE par diffusion passive dépend du poids moléculaire et de la lipophilie du radiotracer. Un bon radiotracer cérébral aura un poids moléculaire de 400-600 daltons. Sa lipophilie doit être suffisante pour passer la BHE mais, malgré tout, limitée, afin de ne pas se lier aux protéines plasmatiques ou à toute autre structure lipophile non-spécifique.

Afin d’évaluer la lipophilie du radiotracer, on calcule son Log P (coefficient de partition dans un mélange octanol-eau ; Équation 1) en injectant un échantillon de radioligand dans un mélange contenant de l’octanol et de l’eau. Après agitation, et décantation, les phases sont séparées et les cpm (coups par minutes) correspondants à chaque phase sont comptés. Il existe une variante au log P qui est le log D ; dans ce cas la phase aqueuse est un tampon à pH=7.4.

\[
\text{Log } P = \log \left(\frac{\text{cpm de la phase organique} - \text{bruit de fond}}{\text{cpm de la phase aqueuse} - \text{bruit de fond}} \right) \tag{1}
\]

Équation 1 : Calcul du Log P ou Log D : coefficient de partition entre une phase organique et une phase aqueuse représentant la lipophilie d’un composé

Un Log P compris entre 2 et 3 est approprié (Waterhouse, 2003a) mais non indispensable car il existe des mécanismes de transport facilité pour certaines molécules comme le glucose qui permettent de faire passer la BHE à des molécules non lipophiles (Haberkorn et al., 1994).

Pour avoir une mesure expérimentale du passage de la BHE, des études chez l’animal permettent de calculer le pourcentage d’activité mesurée au niveau du cerveau par rapport à la dose injectée par gramme de tissu cérébral. Pour un marqueur cérébral, il est nécessaire que le passage soit rapide : 4 % de la Dose Injectée par gramme (ID/g) doivent être retrouvées dans le cerveau dans les 5 premières minutes, puis un phénomène de « wash out » doit aboutir à une ID/g supérieure à 0,3 % dans un cerveau de rat au bout d’une heure. Par exemple pour un des traceurs de la plaque amyloïde le % ID/g est de 7 % à 5 min puis de 2 % à 60 min (Sundaram et al., 2015).
• **Possibilité de marquer au ^{18}F et au ^{11}C**

Le radiomarquage par un émetteur de positons doit être chimiquement possible et ce, avec un petit nombre d’étapes. Il doit être chimiquement stable (résistance aux réactions chimiques et biochimiques, au moins pendant 2 heures) et ne doit pas modifier le site actif de la molécule (permettant la liaison à la cible).

• **Paramètres pharmacocinétiques**

Du fait de la demi-vie courte des émetteurs de positons (demi-vie du $^{11}\text{C} = 20,4$ min; $^{18}\text{F} = 109,8$ min), la **pharmacocinétique** doit être adaptée. Ainsi, le passage cérébral du radiotraceur doit être rapide pour atteindre son maximum de fixation spécifique au moment où la composante non spécifique commence à être évacuée du cerveau selon une cinétique supérieure ou égale à la période de décroissance du radioélément utilisé.

L'optimisation de ces critères se fait dans le but d'obtenir des images interprétables, quantifiables, avec un rapport signal spécifique/signal non-sélectif le plus élevé possible.

Le traceur ne doit pas avoir une **cinétique de dégradation** trop rapide. Les éventuels métabolites radioactifs ne doivent pas (ou peu) passer la BHE.

La **toxicité** de la molécule doit être très faible, malgré le fait qu'elle soit injectée à «dose traceuse ». L'activité spécifique est importante, plus elle est élevée et moins il y aura de quantité (μmol) de composé organique pharmacologiquement actif pour une même activité injectée. De manière générale, les quantités injectées en termes de masse (μg) sont très inférieures à celles qui provoquent une toxicité. Comme exemple, nous pouvons citer la ^{18}F-FLT qui lorsqu’elle est injectée une fois pour une imagerie TEP chez l’humain, correspond en μmol à une dose 3000 fois inférieure à la dose minimale retrouvée toxique chez l’animal (Turcotte et al., 2007).
2. PRODUCTION D’UN RADIOTRACEUR FLUORE

Comme pour les autres examens scintigraphiques, la réalisation d’un examen TEP nécessite l’administration d’un Médicament Radiopharmaceutique (MRP). Celui-ci est constitué d’un vecteur moléculaire (substrat, ligand ou autre permettant de cibler une fonctionnalité ou une substance à étudier) et d’un isotope radioactif qui permet de localiser la distribution du vecteur au sein de l’organisme. L’intérêt du 18F est double : il peut facilement être incorporé aux molécules sans altérer leurs propriétés biologiques et encombrer la molécule pour passer la BHE et il permet de réaliser des reconstructions d’image en trois dimensions avec une très bonne sensibilité et résolution.

2.1. Émetteurs de positons

2.1.1. Principes physiques

Les émetteurs de positons sont des atomes caractérisés par un excès de charges positives dans leurs noyaux. Ils se désintègrent vers un état stable par transformation d’un proton (p) en un neutron (n) qui conduit à l’émission d’un positon (e^+) et d’un neutrino (ν) (Équation 2).

$$p \rightarrow n + e^+ + \nu \quad (2)$$

Équation 2 : Transformation d’un proton (p) en un neutron (n) avec émission d’un positon (e^+) et d’un neutrino (ν).

Le positon (pouvant être symbolisé par e^+ ou β^+) est de masse égale à celle d’un électron mais de charge opposée.

Les transferts d’énergie sont symbolisés sur la Figure 3 ci-dessous :
L’atome X dont le nombre de masse (nombre de nucléons) est A et le nombre de protons est Z, se désintègre en transformant un proton en neutron, l’atome X devient X’ (dont le nombre de protons est Z-1), et il y a émission d’un positon.

La Figure 4 représente la désintégration de l’isotope le plus utilisé en TEP : le ^{18}F. En se désintégrant, le ^{18}F émet un positon avec une énergie de 633 keV.

Une fois émis, le positon parcourt quelques millimètres dans les tissus, au cours desquels il perd toute son énergie cinétique. Quand le positon a terminé son parcours, il interagit avec un électron libre du milieu, ce qui conduit à une annihilation au cours de laquelle les deux particules se transforment en deux photons gamma de 511 keV, émis à 180 ° dans la même direction mais en sens opposé (coïncidence) (Figure 5).
Le principe de base de la TEP est de détecter ces deux photons de 511 keV pour déterminer le lieu de l’annihilation.

Les principaux émetteurs de positons utilisés en TEP ainsi que leurs caractéristiques sont résumés dans le Tableau 1 :

2.1.2. Les principaux émetteurs de positons utilisés en médecine nucléaire

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>11C</th>
<th>13N</th>
<th>15O</th>
<th>18F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie cinétique maximale des β^+ (en MeV)</td>
<td>0,98</td>
<td>1,19</td>
<td>1,72</td>
<td>0,63</td>
</tr>
<tr>
<td>Libre parcours maximal dans l’eau ou les tissus (en mm)</td>
<td>3,9</td>
<td>5</td>
<td>7,9</td>
<td>2,3</td>
</tr>
<tr>
<td>Période des radioéléments (min)</td>
<td>20,4</td>
<td>10</td>
<td>2,1</td>
<td>109,8</td>
</tr>
</tbody>
</table>

Tableau 1 : Principaux émetteurs de positons utilisés à des fins médicales.

Le $^{[11]}$C, le $^{[13]}$N et le $^{[15]}$O ont une demi-vie très courte, ce qui impose que la production des isotopes, la synthèse du MRP et son injection au patient se fassent sur le même site. Concernant le $^{[18]}$F, sa demi-vie, un peu plus longue, a permis la mise en place d’un réseau de distribution de MRP. Les centres cliniques ne possédant pas de cyclotron peuvent aussi bénéficier de MRP fluorés.
2.1.3. Avantage et production du 18F

Il existe plusieurs isotopes β^+, cependant, nous n’allons considérer ici que le 18F dont les avantages et les inconvénients sont résumés dans le Tableau 2. Le fluor est un halogéné qui a l’avantage de ne pas avoir un encombrement stérique important et il peut s’intégrer sur une molécule par l’intermédiaire d’une liaison covalente.

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
</table>
| Deux formes disponibles : anion ou cation, permettant de faire de la Substitution Electrophile ou de la Substitution Nucléophile.
Nombreuses méthodes de radio fluoration
Liaison Carbone-Fluor souvent stables in vivo (liaisons covalentes)
Période 109 min : utilisation en dehors des sites de production → distribution dans des sites dépourvus de cyclotrons
Pour la forme fluoreur, faible volatilité → risque de contamination plus faible qu’avec le 11C
Production de fortes activités | Pour certaines synthèse : nécessité d’activation → synthèses directes impossibles. Donc obligation d’utilisation de méthode multi-étage
Certaines molécules d’intérêt peuvent ne pas être fluorées (perte des propriétés pharmacologiques du ligand d’origine)
Risque radiochimique si production de fluor électrophile → forme gazeuse |

Tableau 2 : Avantages et inconvénients d’utiliser du 18F

➢ Production du fluor 18

Comme mentionné précédemment, le fluor 18 est l’isotope le plus utilisé en TEP. C’est un isotope artificiel qui doit être synthétisé à l’aide d’un accélérateur de particules. Nous allons prendre comme exemple la production de fluor 18 par le cyclotron IBA du CHU de Toulouse.

➢ Principe de fonctionnement

Le cyclotron est un accélérateur électromagnétique de haute fréquence mis au point en 1929 par E.O. Lawrence aux Etats-Unis. C’est un accélérateur de particules chargées destiné à produire un faisceau de particules rapides (H$^+$) dans notre cas, mais il peut s’agir d’autres particules. Ces particules sont ensuite utilisées comme projectiles pour « bombarder » certains atomes et engendrer une réaction nucléaire. Nous allons décrire dans l’ordre
chronologique les différentes séquences qui amènent à cette production de fluor 18 (Figure 6).

Figure 6 : Schéma général du fonctionnement du cyclotron IBA du CHU de Toulouse avec 5 étapes aboutissant à une réaction nucléaire de type (p, n). Les étapes sont notées par des triangles jaunes.

- Production de l’ion source (étape 1+2 de la figure 5)

Cet ion source constitue la particule chargée à accélérer qui va bombarder la cible. Les deux ions sources les plus souvent utilisés sont l’hydrogène H- et le deutérium D-. Le choix de l’ion source se fait en fonction du radioélément que l’on souhaite produire. Le principe de production des sources d’ions est le suivant : un volume de gaz (H₂ ou D₂) est transféré dans une chambre soumise à un champ électrique statique. Sous l’effet de ce champ, le gaz va s’ioniser. Le plasma ainsi obtenu est stabilisé par le champ magnétique. Les ions produits sont ensuite extraits de cette chambre afin de les transférer vers la zone d’accélération.
La zone d’accélération est formée de deux cavités en forme de demi-cylindres (les "Dees"), séparées par un petit intervalle (Figure 7). L’injection de l’ion source dans cette zone est réalisée en son centre. L’ensemble est soumis à un vide poussé et est placé entre deux électro-aimants qui produisent le champ magnétique désiré.

Les particules chargées vont être mises en mouvement. Leur vitesse initiale est celle du transfert vers le système depuis la chambre d’ionisation. Elles sont accélérées parallèlement au champ électrique appliqué entre les deux Dees. Leur mouvement est ensuite courbé grâce au champ magnétique appliqué entre les électro-aimants entourant les deux Dees.

- **Champ électrique**

Le champ électrique \vec{E} est dû à une tension alternative U appliquée entre les deux Dees. La particule est alors successivement attirée par un champ électrique positif puis repoussée par un champ électrique négatif. Il a donc pour effet d’accélérer les particules, qui reçoivent à chaque passage un « quantum d’énergie », ce qui augmente leur vitesse. Elles sont
accélérées une fois par demi-tour soit deux fois par tour, à chaque passage dans la zone entre chaque Dee (Zone « inter-dee »).

A l’intérieur des Dees, la particule de charge q subit la force de Lorentz (Équation 3) :

\[\vec{F} = q \vec{v} \times \vec{B} \]

Équation 3 : Force de Lorentz (v= vitesse de la particule, q = charge de la particule, \(\vec{B} \) = Champs magnétique)

Entre les Dees, la particule est accélérée par la force électrique (Équation 4) :

\[\vec{F} = q \vec{E} \]

Équation 4 : Accélération d’une particule par un champ électrique (q = charge de la particule ; \(\vec{E} \) = Champs électrique)

○ Champ magnétique

Lorsque les particules entrent dans l’une des Dees, elles ne sont plus soumises au champ électrique mais au seul champ magnétique, qui leur impose une trajectoire circulaire de rayon R (Équation 5).

\[R = \frac{mv}{qB} \]

Équation 5 : Rayon de la trajectoire des particules dans un cyclotron
(R= Rayon; m = masse de la particule ; v= vitesse de la particule, q = charge de la particule, \(\vec{B} \) = Champs magnétique)

La vitesse angulaire est indépendante du rayon de la trajectoire, donc finalement de la vitesse linéaire des particules. Quelle que soit leur vitesse, les particules mettent le même temps pour décrire un demi-cercle.

Elles décrivent donc une succession de demi-cercles de rayon R en augmentation, jusqu’à leur sortie du dispositif. Leur vitesse est alors directement liée au rayon du dernier demi-cercle.
Le vide

Lorsque les ions sont accélérés, ceux-ci ne doivent pas interagir avec d’autres molécules. Pour éviter ce phénomène, la zone d’accélération des ions est soumise à un vide poussé qui doit être inférieur à 4×10^{-5} mbar.

- L’extraction du faisceau de proton

Une fois que les ions sont accélérés, les électrons périphériques de ceux-ci doivent être éliminés de façon à ne conserver que le proton. Cette élimination est obtenue par l’interposition d’une fine feuille de carbone (stripper) devant le faisceau d’ions, capable de stopper les électrons mais laissant pénétrer les protons (Figure 8). Il en résulte en sortie un faisceau constitué uniquement de protons. Ces particules seront éjectées de l’accélérateur avec l’énergie adéquate à partir de la dernière trajectoire, puis guidées et focalisées jusqu’à la cible.

![Diagram](image_url)

Stripper = feuille de carbone qui soustrait les 2 électrons

Figure 8 : Séparation des électrons et du proton avant envoi des protons accélérés sur la cible

- Bombardement de la cible

Ce faisceau de protons va ensuite interagir avec la cible. La cible est constituée d’un petit réservoir creux parfaitement étanche contenant la substance à bombarder. Dans notre cas, il
s’agit d’une cible constituée d’eau enrichie à 95 % en oxygène 18 : H$_2$18O. Une réaction de type (p, n) générant le Fluor 18 se produit alors : 18O (p, n) 18F (Équation 6).

Cette réaction peut aussi s’écrire :

$$^{18}_8O + ^1_1p \rightarrow ^{18}_9F + ^1_0n$$

Équation 6 : Réaction nucléaire aboutissant à la production de $[^{18}\text{F}]$

Les conditions d’utilisation du cyclotron IBA cyclone 10/5 du CHU de Toulouse sont les suivantes :

Le radionucléide 18F est produit par la réaction nucléaire 18O (p,n) 18F induite par un faisceau de protons d’énergie de 10 MeV sur une cible constituée de 2.5 mL d’eau enrichie à 95 % en isotope 18O.

Les conditions typiques d’irradiation sont :

- Intensité de courant 37,5 μA (régime simple faisceau)
- Durée d’irradiation 60 min

Ceci permet d’obtenir approximativement 37 GBq de $[^{18}\text{F}]$. Immédiatement après la fin du « tir », la solution d’eau enrichie irradiée contenant le $[^{18}\text{F}]$ sous forme de fluorure est transférée sous pression d’hélium vers l’entrée du module de synthèse.

2.2. Radiochimie dans un module de synthèse

2.2.1. Stratégie de marquage au $[^{18}\text{F}]$

Etant donné l’intensité des activités mises en œuvre, l’automatisation des processus de synthèse est obligatoire. Ceci permet de garantir non seulement la sécurité du personnel en termes de radioprotection mais aussi la reproductibilité de la synthèse.

On peut définir un automate de synthèse comme un appareil qui réalise automatiquement toutes les étapes de synthèse d’un MRP, depuis la préparation et la purification de l’isotope
jusqu’à la production d’une solution-mère, étape intermédiaire avant la mise en forme finale qui précède l’injection du MRP au patient. Différents modules ayant chacun des méthodologies de fluoration différentes existent sur le marché car plusieurs voies de synthèse et plusieurs possibilités de purification peuvent être envisagées. Il existe deux types d’utilisation du fluor suivant la forme dans laquelle le fluor est produit; s’il est produit sous forme F^{-}; le fluor sera ajouté au composé d’intérêt par substitution nucléophile ; s’il est sous forme F^{+}; il sera ajouté au composé d’intérêt par substitution électrophile. Nous n’aborderons ici que la voie nucléophile, qui est celle utilisée pour la production des deux composés fluorés décrits dans cette thèse.

2.2.2. La substitution nucléophile

Cette méthode permet de produire une grande variété de MRP, avec des rendements et des activités spécifiques élevés. Elle permet d’utiliser le $[^{18}\text{F}]$ sous forme fluorure ($^{18}\text{F}^{-}$), que l’on obtient tel quel lors d’une production cyclotron utilisant une réaction nucléaire de type $^{18}\text{O} (p, n) ^{18}\text{F}$. Le $[^{18}\text{F}]^{-}$ est ensuite séparé de l’eau enrichie dans laquelle il est en solution par l’intermédiaire d’une résine échangeuse d’ions (ces résines sont sous formes de cartouches sep pack appelées QMA). Cette séparation a deux objectifs : récupérer l’eau enrichie non utilisée et obtenir le fluorure sous forme anhydre. En effet le fluorure n’étant réactif qu’en milieu organique, il est nécessaire d’éliminer l’eau afin qu’il y ait une substitution nucléophile.

Pour extraire le fluor de la résine on utilise du $\text{K}_{2}\text{CO}_{3}$ concentré qui déplace la liaison du fluorure sur la cartouche. Enfin pour le dissoudre dans un milieu organique, on utilise des sels de tétra-alkyl ammonium ou des aminopolyéthers (kryptofix 2.2.2). Ceux-ci jouent également le rôle de « catalyseur » car ils vont activer le fluor en encageant l’ion alcalin (ici K$^{+}$), rendant le fluor disponible pour des réactions radiochimiques.

Le milieu organique le plus fréquemment utilisé est l’acétonitrile. Après ajout du précurseur, une réaction de substitution nucléophile se produit alors dans ce milieu en chauffant entre
80 °C et 160 °C pendant 10 à 30 min (les conditions expérimentales sont à redéfinir pour chaque précurseur). La Figure 9 illustre un exemple de radiosynthèse utilisant le groupement tosylate qui sera substitué par le fluor.

![Figure 9 : exemple de synthèse « une étape » ; il s'agit d'une substitution nucléophile de groupement tosylate par le fluor 18. Le composé de gauche correspond au précurseur de synthèse du FDDNP et le composé de droite correspond au radioligand ([18F]-FDDNP)](image)

Le précurseur doit impérativement avoir un groupe « partant » situé à l’endroit où l’on souhaite introduire le [{superscript}18F]. Les groupes partants les plus utilisés sont les triflates, les tosylates, les mésylates et les nosylates.

Si la substitution nucléophile doit être réalisée au niveau d’un noyau aromatique, les groupements partants sont souvent le nitro (NO₂), le triméthylammonium ou le {superscript}19F et le noyau aromatique doit être activé par la présence en ortho ou para de groupes électronégatifs.

Si le précurseur possède des sites, qui doivent rester intacts, possiblement attaquables par la substitution nucléophile, il est nécessaire que le précurseur possède des groupements protecteurs. Ces groupements doivent être facilement hydrolysables après substitution nucléophile.
2.2.3. Purification et mise en forme

- La purification sur cartouche SPE

C'est la méthode la plus utilisée pour purifier le \([^{18}\text{F]}\)-FDG. On utilise des cartouches à usage unique ayant des capacités de rétention différentes.

L'extraction en phase solide ou SPE est une technique de plus en plus utilisée en raison de sa rapidité et de son efficacité. Le principe est simple : on adsorbe les composés à extraire sur une phase stationnaire contenue dans une cartouche puis on les récupère lors de l'élution. Des lavages permettent d'éliminer les impuretés. L'extraction se décompose en 4 étapes :

- « conditionner » la cartouche en faisant percoler un volume donné de solvant ou de plusieurs solvants afin d’activer le support. La cartouche ne doit pas sécher avant le dépôt de l'échantillon,
- déposer l’échantillon,
- laver la cartouche en faisant circuler un solvant éluant les composés indésirables sans éluer le composé d’intérêt,
- éluer le composé d’intérêt avec un faible volume de solvant approprié.

Le choix des solvants et de la phase stationnaire est très important et nécessite souvent plusieurs essais. Cependant, l'approche est identique à celle de la chromatographie puisque les interactions mises en jeu sont identiques.

Prenons l’exemple du FDG : selon la méthode classique d’Hamacher (Le Bars, 1998) ; le sucre fluoré et hydrolysé passe successivement :

- sur une colonne de résine retardatrice d’H⁺ afin d’augmenter la valeur du pH.
- sur des colonnes de type Sep-Pak d’alumine (qui piégent les traces de fluorures) et de C18 (pour bloquer les résidus non totalement hydrolysés).

Le FDG est ensuite élué pour passer à l’étape suivante qui est la mise en forme pharmaceutique.
Cette purification SPE peut également être utilisée en complément de la purification HPLC.

Soit avant celle-ci : il s’agit d’une pré-purification, cette étape peut permettre de se débarrasser des impuretés présentes en très grandes quantités qui pourraient endommager la colonne HPLC.

Soit après une purification HPLC, dans le but de se débarrasser du solvant d’élution de l’HPLC qui n’est pas toujours compatible avec une mise en forme pharmaceutique en vue d’une injection patient.

➢ Purification HPLC

Les composés à séparer sont mis en solution dans un solvant. Ce mélange est introduit dans la phase mobile liquide. Suivant la nature des molécules, elles interagissent plus ou moins avec la phase stationnaire (colonne chromatographique). La phase mobile, en phase isocratique, poussée par une pompe sous haute pression, parcourt le système chromatographique.

Les composés en solution se répartissent alors suivant leur affinité entre la phase mobile et la phase stationnaire. En sortie de colonne, grâce à un détecteur approprié (gamma pour les composés fluorés et UV pour les composés non radioactifs), les différents composés du soluté sont caractérisés par un pic (Figure 10). Cette méthode permet de séparer les différents composés. Grâce à des essais préalables, on connaît le temps de rétention de la molécule d’intérêt, du fluor libre et des autres impuretés avec un solvant donné. Ceci permet alors de sélectionner le pic de notre composé d’intérêt et ainsi de pouvoir le collecter en sortie de colonne. Le composé est ainsi caractérisé et dissous dans le solvant d’élution.
Une fois le radiopharmaceutique collecté, il doit être formulé dans un solvant biologiquement compatible afin d’être considéré comme un produit injectable.

Plusieurs solutions sont à envisager suivant la composition de la phase mobile HPLC. Si cette phase mobile ne contient pas de solvants nocifs, on utilise directement la fraction collectée et on l’additionne à des solutions biologiquement compatibles pour ajuster le pH (bicarbonate par exemple) ou l’osmolalité (sérum physiologique par exemple).

Si la phase mobile contient des solvants nocifs (acétonitrile, méthanol ...), il est nécessaire de les éliminer. On utilise le plus souvent une cartouche SepPak qui retient le radiopharmaceutique puis l’éluion est réalisée avec un solvant non nocif comme de l’éthanol. Ensuite le pH et l’osmolalité sont ajustés.
Les solvants utilisables ainsi que la teneur maximale de ces solvants en solution font l’objet d’une norme (Lignes directrices de l’ICH : international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use).

Il est également nécessaire de procéder à une stérilisation du MRP obtenu. Celle-ci est réalisée grâce à une filtration stérilisante à l’aide de filtres dont les pores sont de 0.22 µm de diamètre. Cette filtration doit être réalisée à l’intérieur d’une enceinte classe A (classification relative au niveau particulaire dans l’air de l’enceinte).

Le rendement de la radiosynthèse est obtenu en utilisant l’Équation 7.

\[
\text{Rendement (%)} = \frac{\text{Activité mesurée du MRP synthétisé à } T_{\text{cal}}}{\text{Activité de fluor calculée à } T_{\text{cal}}} \times 100
\]

Équation 7 : Calcul du rendement de synthèse

L’activité du MRP est mesurée dans un activimètre après sa mise en forme pharmaceutique. (Tcal). L’activité du fluor est calculée à partie de l’activité initiale corrigée de la décroissance du \(^{18}\text{F}\) produit par le cyclotron. Il s’agit donc de l’activité \(^{18}\text{F}\) théorique à Tcal.

2.3. **Contrôle qualité**

Selon les Good Manufacturing Practice (GMP), publiées par la Food and Drug Administration (FDA) américaine, les tests à réaliser sur le produit fini ainsi que les spécifications devant être respectées doivent être établis par le producteur du radiopharmaceutique. Les tests doivent être validés, et la méthode utilisée peut dépendre de l’appareillage de chaque site. A titre de référence, le fabricant doit respecter les directives des monographies correspondantes dans la pharmacopée européenne ou française si elles existent (Sánchez et al., 2008).

Globalement, les tests à réaliser sur le produit fini appartiennent à deux catégories : les tests à réaliser en routine et les tests supplémentaires à réaliser lors de la validation du procédé de fabrication. Nous n’aborderons pas la thématique de la production pour l’usage humain dans cette thèse. Nous nous contenterons de mentionner que pour être autorisé à utiliser un MRP expérimental, il est nécessaire d’avoir effectué une validation du procédé de
fabrication grâce à la production de 3 lots qui subiront en plus des tests de routines, des tests complémentaires (Tableau 3).

Les contrôles à réaliser en routine sur chaque production de lot de MRP sont les suivants :

✓ **Apparence de la solution** : Par inspection visuelle
✓ **pH** : Le contrôle du pH est effectué par bandelette pH de sensibilité 1 unité pH. 10 µL de solution finale sont déposés sur le papier pH. La couleur obtenue est comparée à l’échelle de couleur fournie par le fabricant.
✓ **Pureté radiochimique** : La pureté radiochimique est déterminée par chromatographie HPLC.

Procédure : 500 µL de la solution finale sont injectés dans le système HPLC équipé d’une colonne greffée en C18. Les constituants de la solution sont séparés sur la colonne HPLC et détectés par un détecteur de radioactivité ainsi que par un détecteur UV monté en série. La pureté du composé d’intérêt est déterminée en calculant le rapport de l’aire du pic correspondant à ce composé à la somme des aires de l’ensemble des pics. L’attribution du pic lié au composé d’intérêt est faite par comparaison avec le temps de rétention obtenu avec la référence standard non radioactive.

✓ **Pureté chimique** :

Détection de résidus de Kryptofix par un test comparatif colorimétrique.

Ce composé utilisé lors des premières étapes de synthèse pour encager les ions positifs est normalement éliminé dans l’étape de purification HPLC. C’est un composé toxique (Baudot et al., 1977) et on le recherche spécifiquement à l’aide d’un test colorimétrique.

Procédure : Test avec de l’acide iodoplatinique selon la méthode décrite par Mock.(Mock et al., 1997). Ce procédé est identique à celui de la Pharmacopée européenne concernant la recherche de kryptofix dans une solution injectable de FDG (07/2008 ; n° 1325). La norme fixée est : < 2.2 mg / Vmax
Détection des autres impuretés en HPLC analytique couplée à un spectrophotomètre UV :

Elle permet d’identifier et de quantifier les substances non radioactives présentes dans l’échantillon (test de matière première, produits secondaires de synthèses etc...).

✓ **Activité volumique** : L’activité volumique est déterminée par la mesure de la radioactivité de la solution à l’aide d’un appareil calibré et par la mesure du volume. Le rapport de la radioactivité mesurée sur le volume total donne la concentration en GBq/mL.

✓ **Test d’intégrité des filtres stérilisants** : Ce test correspond au test du point bulle qui est décrit dans la pharmacopée européenne, 01/2005 : 50101, 5.1.1 « Methods of preparation of sterile products » p 445-447. Le filtre doit résister jusqu’à une certaine pression indiquée par le fabricant ; s’il n’y résiste pas ; cela indique qu’il a été endommagé avant ou pendant la filtration et que cette filtration risque de ne pas avoir été efficace.

✓ **Pureté radionucléidique** :

Par décroissance radioactive :
Le calcul de la demi-vie est une indication de la pureté radionucléidique.

Procédure : La radioactivité de 400 µL de solution finale est mesurée, à l’aide d’un appareil calibré, à deux temps différents t1 et t2. Nous obtenons alors deux valeurs d’activité respectivement A1 et A2 mesurées en MBq. La formule suivante permet de calculer la période du radioélément contenu dans l’échantillon mesuré (Équation 8) :

\[Période = \frac{\ln 2 \times (t_2 - t_1)}{\ln \left(\frac{A_2}{A_1}\right)} \]

(8)

Équation 8 : Période radioactive calculée à partir de la mesure d’un échantillon (A1 et A2) à deux temps donnés respectivement (t1 et t2).

Si la période n’est pas comprise entre [105-115min], l’échantillon est peut être contaminé avec d’autres radio-isotopes de périodes différentes de celle du fluor 18.

Par spectrométrie gamma :
L’identification radio nucléidique est une autre indication de la pureté radio nucléidique.
Procédure : quelques µL de solution finale sont placés devant un spectrophotomètre gamma calibré (NaI (Tl) ou germanium). Un pic unique doit être observé à 511 keV. La même procédure est répétée après décroissance du fluor (24 h) : aucun pic ne doit être visualisé sur le spectre.

Procédure : La mise en culture se fait sur milieux spécifiques pour bactéries aérobies, anaérobies et mycologiques. 1 mL de solution finale est mis en culture dans chaque milieu : un tube thioglycolate à 37 °C (aérobies), un tube trycase soja à 30-35 °C (anaérobies sous atmosphère de CO2) et un tube Saboureau à température ambiante. Aucun trouble des milieux ne doit être observé après 14 jours. Une mise en culture témoin avec de l’eau PPI est faite selon un procédé identique. Ce test est qualifié de test différé puisque le résultat est connu après que la solution a été injectée au patient.

✓ **Dosage des endotoxines** :

Le test LAL (Limulus Amoebocyte Lysate test) consiste à doser les endotoxines bactériennes dans un échantillon de solution. Le résultat du dosage doit être inférieur à 17,5 UI / mL. (UI= Unité infectieuse)

✓ **Présence de solvants résiduels** :

Ces dosages ne sont pas réalisés à toutes les productions mais uniquement lors de la validation du processus de fabrication sur 3 lots de validation.

Selon les solvants utilisés pour la fabrication et pour la purification HPLC, il est nécessaire de doser par CPG les traces éventuelles de ces solvants dans la solution finale injectable. Les taux limites sont renseignés dans les lignes directrices de l’ICH.
<table>
<thead>
<tr>
<th>Tests</th>
<th>Méthodes</th>
<th>Spécifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôles Qualités réalisés en routine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparence de la solution</td>
<td>Inspection visuelle</td>
<td>Solution limpide et incolore, exempte de particules</td>
</tr>
<tr>
<td>Identification radionucléidique</td>
<td>Décroissance du fluor</td>
<td>105-115 min</td>
</tr>
<tr>
<td></td>
<td>Spectrométrie gamma</td>
<td>Pic à 511 keV</td>
</tr>
<tr>
<td>pH</td>
<td>Papier pH</td>
<td>4 - 8</td>
</tr>
<tr>
<td>Activité volumique</td>
<td>Calcul</td>
<td>A définir selon le composé</td>
</tr>
<tr>
<td>Concentration radioactive</td>
<td>Chambre d’ionisation</td>
<td>A définir selon le composé</td>
</tr>
<tr>
<td>Pureté radiochimique</td>
<td>HPLC et CCM</td>
<td>>95 %</td>
</tr>
<tr>
<td>Pureté chimique :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryptofix 222</td>
<td>Spot test</td>
<td>≤ 2.2 mg / Vmax</td>
</tr>
<tr>
<td>Impuretés UV</td>
<td>HPLC</td>
<td>A définir selon le composé</td>
</tr>
<tr>
<td>Stérilité</td>
<td>Inoculation directe</td>
<td>stérile</td>
</tr>
<tr>
<td>Endotoxine bactérienne</td>
<td>Test LAL</td>
<td>< 17.5 UI/mL</td>
</tr>
<tr>
<td>Test d’intégrité des filtres</td>
<td>Point de bulle</td>
<td>> 50 Psi (ou 3.45 Bars)</td>
</tr>
<tr>
<td>Tests complémentaires en validation de procédé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pureté chimique :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvant résiduels</td>
<td>CPG</td>
<td>Normes ICH</td>
</tr>
</tbody>
</table>

Tableau 3 : Résumé des contrôles à effectuer lors de la mise au point d’un MRPE fluoré

Au cours de cette thèse nous avons synthétisé deux radioligands :

- la $^{[18]}$F-FNM, qui est encore en phase expérimentale et son utilisation est actuellement réservée à l’expérimentation in vitro ou animale. Pour cette molécule, nous n’avons pas réalisé de filtration stérilisante, ni de tests de solvants résiduels.
- l’$^{[18]}$F-AV1451, qui est un radioligand dont le développement est plus avancé et qui est destiné à être utilisé à très court terme dans le cadre d’essais cliniques. Nous avons réalisé tous les contrôles mentionnés dans ce récapitulatif afin que ce traceur puisse être considéré comme un MRPE (Médicament Radiopharmaceutique Expérimental).
3. **L'AUTORADIOGRAPHIE SUR COUPES DE TISSU CÉRÉBRAL**

3.1. **Principe**

L'autoradiographie est une technique d'imagerie d'émission réalisée à partir d'une source radioactive placée au contact d'une émulsion ou d'un film photographique. Comme l'indique le préfixe auto-, la source de rayonnement n'est pas une source externe (de rayons X par exemple), mais elle est incluse dans l'échantillon dont on produit une image. Une structure radiomarquée (organisme, cellule, molécules...) est mise en contact avec un film sensible aux radiations : les radiations qu'elle émet vont imprimer le film (argentique) et y provoquer une réaction de précipitation. Ces zones noircies par la réaction de précipitation vont ainsi permettre de localiser la structure recherchée. Une technique plus récente a remplacé le film argentique, le tissu à étudier peut maintenant être mis en contact avec un phosphorscreen.

3.2. **Matériel**

Les écrans radioluminescents à mémoire (ERLM), appelés également écrans photo stimulables ou plaques au phosphore photo stimulables ou encore « phosphorscreen », sont aujourd'hui très largement utilisés et ont remplacé les films argentiques. Ils ont la particularité de pouvoir stocker l'énergie transmise par les rayonnements ionisants, tels que les rayons X, dans une structure cristalline radiosensible. Par la suite, cette énergie est restituée par photo stimulation laser.

Brièvement, le cycle d'utilisation d'un ERLM comporte trois expositions : une première exposition aux radiations ionisantes (X, gamma, ..) « écrit » l'image, une seconde exposition à un faisceau étroit de lumière visible « lit » l'image ligne par ligne, et une dernière exposition à une lumière visible intense (typiquement plusieurs tubes néon) « efface » l'image en vue d'un nouveau cycle d'utilisation du même ERLM.

Les rayonnements ionisants incidents génèrent dans le cristal dopé une avalanche d'excitations. Les ions d'europhium bivalents jouent le rôle d'activateurs en libérant un électron dans la bande de conduction du cristal (Eu²⁺ → Eu³⁺). Ces porteurs de charge vont...
pour la plupart être piégés dans des sites métastables référencés sous le nom de « centres PSL ». La concentration locale de centres PSL est proportionnelle à l'énergie déposée par les radiations. L'énergie ainsi stockée constitue l'image latente.

Après l'exposition, la lecture de l'image est réalisée au moyen d'un appareil numérisateur équipé d'un laser de longueur d'onde précise (habituellement dans le rouge, vers 635 nm) qui balaye la surface de l'écran. La plupart des électrons ainsi photo stimulés sont libérés de leurs pièges et se recombinent en émettant un signal de luminescence (généralement dans le bleu, vers 390 nm). La lumière est guidée vers un tube photomultiplicateur pour être à nouveau transformée en électrons. Le signal électrique est ensuite amplifié et numérisé par des composants électroniques. La matrice image obtenue par informatique est composée de pixels dont la taille minimale est de l'ordre de 25 µm (condition définie par le scanner utilisé comme le Typhoon FLA 9400 GE healthcare), et est encodée sous le format « .GEL ». Le signal obtenu s'exprime en DLU (digital Light Unit) et est proportionnel à l'énergie initiale déposée par le radioélément.

Après lecture, l'énergie résiduelle contenue dans les centres PSL qui n'ont pas été relaxés par le laser (soit 10 à 50 % des centres PSL) est totalement libérée par photo stimulation en exposant l'écran à une lumière blanche intense (typiquement une rangée de tubes néons ou une lampe flash). L'ERLM ainsi réinitialisé peut être réutilisé des milliers de fois.

3.3. **Autoradiographie avec radiomarquage « in vitro »**

Cette technique consiste à incuber une section de tissu avec un radioligand spécifique de la fonction à étudier. Cette incubation se fait à température ambiante dans un milieu tamponné proche du pH physiologique (pH= 7.4), pendant un temps dépendant de la rapidité d'interaction entre le ligand et sa cible. Dans ce type de protocole, le radioligand n'est en contact qu'avec la section à étudier, il ne subit pas les phénomènes de distribution, métabolisation, élimination, qu'il subirait in vivo. Après incubation des sections dans le milieu contenant le radioligand, la lame portant la coupe de tissu est lavée pour éliminer la liaison non spécifique. La lame sur laquelle est mise la section de tissu est ensuite mise en contact avec le phosphorscreen.
3.4. **Autoradiographie ex vivo**

Dans cette procédure expérimentale, le radioligand est injecté à l’animal et est donc soumis aux phénomènes de distribution, métabolisation, élimination. Après un temps défini (correspondant au temps présentant le meilleur rapport signal sur bruit après injection), l’animal est sacrifié et l’organe à étudier est prélevé et coupé en fines sections. Ces sections seront ensuite mises en contact avec le phosphorscreen.
1 : SYNTHÈSE DE LA $[^{18}F]$-FNM ET EVALUATION DE SON INTÉRÊT POUR L’ÉTUDE DE L’HYPERACTIVATION DES RÉCEPTEURS NMDA IN VIVO

1. CONTEXTE

1.1. Le récepteur au glutamate de type NMDA

Le récepteur au glutamate de type N-méthyl D-aspartate (GluN) appartient à la famille des récepteurs-canaux des neurotransmetteurs. Il s’agit d’un canal à ouverture conditionnelle, dont l’activation est déclenchée par la fixation de son ligand endogène, le glutamate. Cependant son nom provient du fait qu’il est sélectivement activé par un composé exogène : le N-méthyl D-aspartate.

Ses particularités par rapport aux autres récepteurs au glutamate sont :

- sa perméabilité très importante au calcium,
- sa sensibilité au voltage membranaire.

Son activation nécessite également sa co-activation par un co-agoniste (la glycine ou la sérine selon la composition en sous-unités). L’activation du GluN peut aboutir au passage sélectif de certains cations. Il en découle une perturbation locale du potentiel membranaire, dans le sens d’une dépolarisation lorsque la membrane est au potentiel de repos. C’est pourquoi, le GluN constitue avant tout un transducteur cellulaire qui convertit un signal extracellulaire (libération de glutamate) en une réponse intracellulaire (activation de voies dépendantes du Ca$^{2+}$). Cela explique que le GluN soit étudié de manière approfondie en neurosciences, car il est impliqué dans des phénomènes aussi divers que la plasticité synaptique et les processus mnésiques, la neurogénèse, la migration cellulaire au cours du développement. Il serait également impliqué dans les maladies neurodégénératives telles que la maladie d’Alzheimer ou la chorée de Huntington et les phénomènes ischémiques. Cet éventail très large de fonctions impliquant les GluN est à relier à l’existence d’un très important répertoire de sous-unités qui, en s’associant selon de nombreuses combinaisons possibles, sont à l’origine d’une multiplicité de propriétés et de localisations cellulaires propres (Paoletti and Neyton, 2007).
1.1.1. Les sous-unités du récepteur NMDA, leur structure et leur assemblage

- **Sous-unités du GluN : composition, structure**

Les GluN sont des hétéro-tétramères associant 2 sous-unités GluN1 et deux sous-unités autres (GluN2 ou GluN3). Les GluN1 existent en 8 variants différant par leur partie C-terminale. Le GluN1 est ubiquitaire dans le système nerveux central (SNC) à tout stade du développement. Au contraire, l’expression des sous-unités GluN2, dont il existe 4 variants, se modifie dans le temps et dans l’espace (Paoletti and Neyton, 2007). Seules ou associées entre elles, les différentes GluN 2 sont incapables de former un récepteur fonctionnel. En revanche, lorsqu’elles sont exprimées avec la sous-unité GluN1 chacune d’entre elles (GluN2 ou GluN3) peut former un récepteur opérationnel auquel elle confère des caractéristiques propres. Ces propriétés concernent aussi bien l’affinité pour les agonistes, les antagonistes et autres modulateurs allostériques, que les propriétés de perméabilité et de conductance.

![Figure 11](image_url)

Figure 11 : Structure d’un GluN composé de sous-unités GluN1 et GluN2 (adapté de (Paoletti and Neyton, 2007)). Les flèches blanches indiquent les sites de liaisons d’agonistes et d’antagonistes compétitifs. Le site de liaison « pore blockers » est celui du Mg²⁺ ; de la kétamine, de la mémantine (= site PCP). Les fines flèches oranges indiquent des sites (2, 3, 4) de fixation des modulateurs allostériques. Le Zinc est un modulateur allostérique se fixant sur le site 1 et a une affinité plus importante pour le NR2A que pour le NR2B.
La structure atomique (Figure 11 ; Figure 12) permet d’observer un complexe moléculaire avec une organisation en couche, déjà observée dans d’autres types de récepteurs comme les récepteurs AMPA ou kainate, avec un domaine N-terminal NTD extracellulaire, un domaine transmembranaire et entre les deux, le domaine des sites de liaisons aux agonistes : glycine ou sérine pour les GluN1 et Glutamate pour les GluN2 (Zhu and Paoletti, 2015; Paoletti and Neyton, 2007; Paoletti, 2011). A l’intérieur de la cellule se trouve le domaine C-terminal (CTD).

La famille des sous-unités GluN3, décrite plus récemment (Henson et al., 2010) ; n’est composée pour lors que de deux membres connus, GluN3A et GluN3B. Elles ont toutes les deux la particularité remarquable de n’avoir aucun site de liaison fonctionnel pour le glutamate mais de lier, comme les sous-unités GluN1, les co-agonistes usuels.

- Répartition des sous-unités dans les structures cérébrales au cours de la vie

Les GluN sont localisés essentiellement au niveau de l’hippocampe, de l’hypothalamus, du bulbe olfactif et du cortex (Paoletti, 2011; Laurie and Seeburg, 1994). Ils sont exprimés dans la plupart des neurones du système nerveux central: les cellules pyramidales de la corne D’Ammon, les cellules granulaires du bulbe olfactif, du cervelet et du fascia dentata etc… Comme l’expression des GluN2 est très diverse dans le SNC, dans un type de neurone, ou même dans une synapse, différents sous-types de GluN coexistent. Dans les synapses
adultes, les hétéro-dimères GluN1/ GluN2A et trihétéro-dimères GluN1/GluN2A/GluN2B prédominent. A contrario, dans les sites péri-synaptiques et extra-synaptiques, on retrouve surtout GluN2B associée à GluN1. Cette composition moléculaire n’est pas statique mais varie avec l’âge et l’activité cérébrale (Paoletti et al., 2013). Cette hétérogénéité moléculaire traduit une diversité fonctionnelle avec des propriétés biophysiques et pharmacologiques différentes pour chaque type de GluN (Paoletti et al., 2013; Dalton et al., 2012).

Chez le rat, les sous unités GluN1, obligatoires à la formation des GluN, apparaissent très tôt dans la vie et restent toujours à un niveau élevé. Ce n’est pas le cas pour les GluN2 ; après la naissance, et au cours des 2 semaines qui la suivent, le profil d’expression des différentes sous-unités GluN2 change considérablement. La sous-unité GluN2A, jusqu’alors indétectable, apparaît graduellement à partir de la deuxième semaine post-natale dans le néocortex, l’hippocampe, le bulbe olfactif et le cervelet, pour finalement être abondamment exprimée dans tout le SNC adulte. L’expression de la sous-unité GluN2B, maximale vers 5-10 jours après la naissance (P5-10), est moins marquée après la troisième semaine postnatale, et devient restreinte aux structures télencéphaliques, au stade adulte. La sous-unité GluN2C n’apparaît qu’après la première semaine postnatale et son expression se limite au cervelet et au bulbe olfactif (dans une moindre mesure). La sous-unité GluN2D abondamment exprimée in utero, disparaît après la naissance pour n’être que peu détectable au stade adulte dans le diencéphale et le tronc cérébral (Paoletti, 2011). Ces données sont illustrées Figure 13.
Principalement post-synaptiques, les GluNs ont aussi été détectés sur des sites extra-synaptiques, d’où ils peuvent être recrutés pour remplacer les récepteurs synaptiques (Tovar and Westbrook, 2002). On peut aussi trouver des GluNs sur la membrane présynaptique, où ils peuvent moduler la libération de neurotransmetteurs (Petralia et al., 2010). La composition en sous-unités varie d’un site à l’autre sans pour autant respecter une répartition simple des sous-unités en fonction de la région subcellulaire (Horak et al., 2014). Enfin, les GluN sont présents non seulement dans les neurones mais aussi dans les cellules gliales, notamment dans les oligodendrocytes, où leur composition est enrichie en GluN2 et GluN3A (Dzamba et al., 2013 ; Sasaki et al., 2002).
Localisation extra-synaptique

Les récepteurs extrasynaptiques sont définis anatomiquement comme des récepteurs situés à plus de 100 nm de la densité post-synaptique (Petralia et al., 2010). Ce sont des récepteurs situés hors de portée du glutamate libéré au cours d’événements de transmission synaptique répétés à basse fréquence. Ils représentent environ un tiers de la population totale des GluN sur les neurones pyramidaux de la région CA1 de l’hippocampe au stade adulte (Petralia et al., 2010; Petralia, 2012; Harris and Pettit, 2008). Dans l’hippocampe immature, ils constituereraient plus des trois quarts des GluN totaux (Tovar and Westbrook, 2002). Ils sont équitablement répartis sur le cou des épines dendritiques (50%) et sur les dendrites (50%). Environ un tiers est adjacent à un prolongement glial et deux tiers sont adjacents à des axones. Les premiers travaux proprement consacrés à l’étude de l’organisation des GluN aux sites extra-synaptiques n’ont été publiés qu’en 2010 (Petralia et al., 2010). Ces études complexes suggèrent que les sites extra-synaptiques sont organisés en « clusters » c’est-à-dire qu’ils forment une distribution discrète et non diffuse le long des prolongements dendritiques. En effet, cette équipe les a trouvés accumulés au voisinage de points de contact avec des prolongements de cellules voisines (prolongements neuronaux ou gliaux). Ils seraient donc regroupés et organisés au niveau de sites stratégiques. Dans l’hippocampe adulte, les récepteurs extra-synaptiques seraient essentiellement constitués de la sous-unité GluN2B (Chazot, 2004) cependant d’autres équipes retrouvent des GluN2A et des GluN2B (Harris and Pettit, 2007).

Localisation synaptique

Chez le rat adulte, les GluN synaptiques représentent la majorité (environ 2/3) des GluNs. Ils sont confinés à la synapse et interagissent avec un dense réseau de protéines de la densité post synaptique. Dans les synapses adultes de l’hippocampe de souris, GluN2A est la sous-unité majoritaire (Townsend et al., 2003). Dans le cortex préfrontal, le ratio GluN2B/GluN2A est très corrélé aux performances cognitives (mémoire, flexibilité mentale). Chez le rat, lorsque GluN2B est antagonisé, les mécanismes de potentialisation à long terme sont complètement bloqués (Monaco et al., 2015).
Localisation présynaptique

On peut aussi trouver des récepteurs NMDA sur la membrane présynaptique, où ils peuvent influencer la libération de neurotransmetteurs (Harris and Pettit, 2008; Petralia, 2012). Une étude a apporté la preuve fonctionnelle et immunohistochimique de la présence d’hétérodimères GluN1/GluN2B présynaptiques sur les terminaisons faisant contact avec les cellules en grain du gyrus denté de l’hippocampe adulte (Jourdain et al., 2007). Ils sont concentrés sur la portion péri-synaptique de la terminaison, face aux prolongements astrocytaires contenant des vésicules chargées de glutamate.

Les différentes localisations sont représentées très schématiquement dans la Figure 15. Les GluN1 ne sont pas représentés, ils sont obligatoires pour former un récepteur NMDA et donc forcément présents au niveau de tous les récepteurs.

Figure 15 : Récepteurs synaptiques (contenant sous-unités GluN2A) et non synaptiques (extrasynaptiques) (contenant sous-unité GluN2B) : localisation et fonctions possibles (dessins schématiques). La suractivation des neurones glutamatergiques libère du glutamate (Glu) dans la fente synaptique, qui active alors GluN2A ; ainsi que les GluN extrasynaptiques. Le glutamate est également libéré depuis les cellules gliales (Orellana et al., 2012). Les flèches violettes montrent qu’il y a un trafic entre récepteurs synaptiques et extrasynaptiques. Dans l’hippocampe mature, les récepteurs GluN2B de haute affinité pour le glutamate (Vizi et al., 2010) sont localisés principalement en péri et extrasynaptiques, et leur co-agoniste est la glycine. Inversement, les GluN2A de faible affinité pour le glutamate sont préférentiellement localisés dans la synapse (Balsara et al., 2012) ; leur co-agoniste est la D-sérine (Papouin et al., 2012).
1.1.2. Activation et perméabilité des récepteurs NMDA

L’activation des récepteurs NMDA requiert la présence de deux agonistes, le glutamate et un co-agoniste, la glycine (ou D-sérine). Un obstacle de plus dans l’activation du récepteur est l’ion Mg$^{2+}$. En effet, cet ion se loge à l’intérieur du canal à l’état de repos. Le canal ionique ne peut s’ouvrir qu’après dépolarisation de la membrane, qui élimine le blocage exercé par les ions Mg$^{2+}$ extracellulaires fixés sur le canal. Cette sensibilité au blocage magnésium confère aux NMDA le rôle de détecteurs de coïncidence capables d'intégration synaptique, entre éléments pré et post synaptiques (Gielen, 2010).

De fait, pour qu’il y ait activation des GluN il faut que les éléments présynaptiques libèrent du glutamate, et donc qu’ils soient dépolarisés. Puis pour que les ions traversent le canal, il faut que les éléments post-synaptiques aussi soient dépolarisés pour lever le blocage aux Mg$^{2+}$. Enfin, l’activité des GluN est sujette à de multiples modulations induites par des composés extracellulaires, habituellement des petites molécules ou des ions, dont certains, comme H$^+$ et Zn$^{2+}$ sont présents de façon endogène dans le SNC, agissant sur le récepteur comme modulateurs allostériques.

Le glutamate et la glycine ont montré des effets sur l’affinité du Mg$^{2+}$ à son site liaison, cette affinité voltage dépendante est donc aussi modulée par la liaison de ces substances (Liu et al., 2001). De plus en fonction de la composition en sous-unités, le déblocage du canal en expulsant le Mg$^{2+}$ peut avoir une cinétique plus ou moins lente, les études suggèrent que la liaison au co-agoniste serait impliquée (Clarke et al., 2013).

- Mécanismes d’ouverture du récepteur canal

L’agoniste endogène des GluN, le glutamate, se fixe sur le domaine ABD des sous-unités NR2. L’affinité de ce site pour le glutamate dépend de la composition en sous-unités du récepteur mais reste de l’ordre du micromolaire. En plus de l’agoniste principal (le glutamate ou le NMDA) l’activation du récepteur est dépendante de la liaison simultanée d’un autre agoniste. Ce site co-agoniste, appelé site glycine (mais peut aussi en fonction de la sous unité, être activé par de la sérine), se situe dans le domaine ABD de la sous-unité GluN1.
Les mécanismes d’ouverture du canal ionotrope n’impliquent que les domaines ABD et transmembranaires (TMD).

La séquence classique d’activation du GluN procède comme ceci :

1) Liaison des agonistes sur le site de reconnaissance du domaine ABD,
2) La reconnaissance provoque un mouvement conformationnel qui induit un écartement de la partie inférieure des domaines ABD de chaque dimère,
3) Cette séparation exerce une traction sur la région intermédiaire qui relie les domaines ABD aux segments transmembranaires ce qui, par réorientation d’une hélice transmembranaire, provoque l’ouverture du canal.
4) Cependant, le blocage par le Mg$^{2+}$ empêche tout flux ionique au potentiel électrique de repos des neurones qui est négatif. Il est nécessaire d’avoir une dépolarisation post-synaptique. Si le neurone post-synaptique est excité via d’autres afférences glutamatergiques (récepteurs AMPA et kainates), la dépolarisation résultante peut lever transitoirement le blocage par le Mg$^{2+}$, les ions peuvent alors transiter au travers du canal ionique des récepteurs NMDA (Gielen, 2010).
5) L’activation du GluN se termine par une désactivation c'est-à-dire que le récepteur-canal adopte à nouveau une configuration fermée en dépit de la présence des agonistes. Les cinétiques de désactivation (constantes de temps caractérisant la décroissance du courant induit par le GluN suite à un bref pulse d’agoniste) peuvent varier d’un facteur 50 en fonction de la composition en sous-unités.

(Figure 11 ; Figure 12 ; Figure 16) Les mécanismes d’ouverture du canal ionotrope n’impliquent que les domaines ABD et transmembranaires (TMD).

La séquence classique d’activation du GluN procède comme ceci :

1) Liaison des agonistes sur le site de reconnaissance du domaine ABD,
2) La reconnaissance provoque un mouvement conformationnel qui induit un écartement de la partie inférieure des domaines ABD de chaque dimère,
3) Cette séparation exerce une traction sur la région intermédiaire qui relie les domaines ABD aux segments transmembranaires ce qui, par réorientation d’une hélice transmembranaire, provoque l’ouverture du canal.
4) Cependant, le blocage par le Mg$^{2+}$ empêche tout flux ionique au potentiel électrique de repos des neurones qui est négatif. Il est nécessaire d’avoir une dépolarisation post-synaptique. Si le neurone post-synaptique est excité via d’autres afférences glutamatergiques (récepteurs AMPA et kainates), la dépolarisation résultante peut lever transitoirement le blocage par le Mg$^{2+}$, les ions peuvent alors transiter au travers du canal ionique des récepteurs NMDA (Gielen, 2010).
5) L’activation du GluN se termine par une désactivation c'est-à-dire que le récepteur-canal adopte à nouveau une configuration fermée en dépit de la présence des agonistes. Les cinétiques de désactivation (constantes de temps caractérisant la décroissance du courant induit par le GluN suite à un bref pulse d’agoniste) peuvent varier d’un facteur 50 en fonction de la composition en sous-unités.

Figure 16 : Représentation schématique de l’ouverture du canal ionique NMDA après liaison par ses agonistes.(Gielen, 2010)
Perméabilité

Le canal ionique des récepteurs NMDA est perméable aux cations monovalents (Na⁺ et K⁺) ainsi qu’aux ions Ca²⁺. Les ions monovalents K⁺ et Na⁺, se déplacent de part et d’autre de la membrane en suivant leur gradient électrochimique. La perméabilité relative aux ions Ca²⁺ varie de 0,8 à 10,4 (Perméabilité au Ca²⁺/Perméabilité aux ions monovalents), ce qui classe ces récepteurs parmi les récepteurs les plus perméables au Ca²⁺. La perméabilité est fonction de la localisation du récepteur ainsi que de sa composition en sous-unités comme mentionné dans Tableau 4. Les récepteurs AMPA et Kainate sont beaucoup moins perméables au Ca²⁺.

<table>
<thead>
<tr>
<th>Récepteurs</th>
<th>Perméabilité relative (PCa/Pmono)</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Récepteurs recombinants GluN1/GluN2A</td>
<td>10.4</td>
<td>(Burnashev et al., 1995)</td>
</tr>
<tr>
<td>Récepteurs recombinants GluN1/GluN2C</td>
<td>2.7</td>
<td>(Burnashev et al., 1995)</td>
</tr>
<tr>
<td>Récepteurs recombinants GluN1/GluN3A</td>
<td>0.8</td>
<td>(Sasaki et al., 2002)</td>
</tr>
<tr>
<td>Récepteurs NMDA des neurones pyramidaux de la zone CA1</td>
<td>4.2</td>
<td>(Spruston et al., 1995)</td>
</tr>
<tr>
<td>Récepteurs NMDA des neurones pyramidaux du néocortex</td>
<td>7.5</td>
<td>(Palygin et al., 2011)</td>
</tr>
<tr>
<td>Récepteurs GluN1/GluN2/GluN3A (neurones corticaux)</td>
<td>3.2</td>
<td>(Tong et al., 2008)</td>
</tr>
<tr>
<td>Récepteurs NMDA astrocytes corticaux</td>
<td>3.4</td>
<td>(Palygin et al., 2011)</td>
</tr>
<tr>
<td>Récepteurs AMPA</td>
<td>0.4-1.6</td>
<td>(Burnashev et al., 1995)</td>
</tr>
<tr>
<td>Récepteurs Kainate</td>
<td>1.2</td>
<td>(Burnashev et al., 1995)</td>
</tr>
<tr>
<td>Récepteurs Neuronaux à l’ACh dans l’hippocampe</td>
<td>6.1</td>
<td>(Castro and Albuquerque, 1993)</td>
</tr>
</tbody>
</table>

Tableau 4 : Perméabilité au calcium des récepteurs NMDA en comparaison avec les récepteurs AMPA, Kainate et récepteurs à l’acétylcholine calculée selon la formule de Goldman-Hodgkin-Katz (Cavara et al., 2010). Ce tableau est adapté des travaux de (Pankratov and Lalo, 2014).
1.2. Conséquences fonctionnelles de l’activitation des récepteurs NMDA

1.2.1. Activité synaptique

➤ Les GluN: détecteurs de coïncidences temporelles

Les GluN participent peu à la transmission synaptique de base car leur activation fonctionnelle est conditionnée par trois prérequis. Pour assurer un flux ionique transmembranaire ces récepteurs-canaux nécessitent :

- l’activation du site agoniste
- l’activation simultanée du site co-agoniste
- La libération du blocage magnésium par dépolarisation membranaire

Le récepteur fonctionne donc comme un « détecteur de coïncidence » qui témoigne du fait que ces trois conditions sont réunies simultanément. Il joue ainsi le rôle d’intégrateur de l’activité de trois « acteurs » a priori indépendants : celui qui est la source de l’agoniste, du co-agoniste, de la dépolarisation (Papouin et al., 2012).

1.2.2. Plasticités synaptiques

➤ Plasticités synaptiques à court terme

Les récepteurs NMDA sont impliqués dans la plasticité à court terme. Au niveau post-synaptique, des stimulations répétées à intervalles proches peuvent suffire à lever le blocage par le magnésium subi par les récepteurs NMDA. Ainsi, si les courants induits par les récepteurs NMDA ne sont pas détectables après les premières stimulations, ils contribuent largement aux réponses consécutives en les augmentant. Par simple levée d’inhibition du magnésium, les récepteurs NMDA post-synaptiques sont donc susceptibles d’induire une potentialisation à court terme (Paoletti and Neyton, 2007).

➤ Plasticités synaptiques à moyen et long terme

Les connexions synaptiques non seulement fonctionnent comme des relais dans le transfert d’informations entre les neurones, mais peuvent aussi stocker cette information. Ce stockage se traduit électrophysiologiquement par une modification de l’efficacité de la
transmission synaptique : soit sous forme d’un renforcement de la transmission synaptique (potentialisation long terme : PLT) soit par une réduction de celle-ci (dépression à long terme). Ces modifications de la puissance de la transmission synaptique au sein d’un réseau neuronal pourraient constituer la base physiologique des processus mnésiques. Dans le SNC, des modifications plastiques à long terme de ce type ont particulièremment été étudiées au niveau de la formation hippocampique car cette structure limbique est connue pour sa participation dans les processus d’apprentissage.

La PLT est définie comme une augmentation de l’efficacité de la réponse synaptique induite par l’application d’un train de stimulus de haute fréquence ou de certaines substances. Après cette stimulation, les potentiels évoqués restent augmentés pendant plusieurs heures voire plusieurs jours. Les acides aminés excitateurs, par le biais des récepteurs NMDA pourraient jouer un rôle dans l’induction de la PLT. Pendant la phase d’induction de la PLT, il y a une augmentation transitoire de la libération de glutamate et d’aspartate dans la région stimulée. D’ailleurs la PLT est bloquée chez les animaux ou sur des tranches de tissus traitées par des antagonistes des récepteurs NMDA. L’activation des récepteurs NMDA aurait pour principale conséquence d’augmenter la concentration intra cellulaire de calcium qui serait l’élément déclencheur de la PLT. Le mécanisme de maintenance de la PLT est encore en cours d’étude, il pourrait s’agir d’une augmentation durable de la libération de transmetteurs ou bien d’une augmentation de sensibilité de la membrane post-synaptique aux transmetteurs (Collectif and Epelbaum, 1995 ; Aksoy-Aksel and Manahan-Vaughan 2013).

Les 3 types de récepteurs impliqués dans la PLT sont des récepteurs au glutamate
- Les récepteurs AMPA interviennent dans la transmission rapide;
- Les récepteurs NMDA n’entrent en jeu que si l’activité du neurone présynaptique est élevée (forte libération de glutamate) : l’ouverture du canal provoque une entrée massive de Ca$^{2+}$;
- Les récepteurs métabotropiques couplés à une protéine G : ils provoquent la mobilisation du Ca$^{2+}$ stocké dans le réticulum.
La forte concentration intracellulaire en calcium déclenche une série de réactions :
Il y aura activation de protéines kinases qui sont des enzymes catalysant une réaction de phosphorylation de protéines. Ces kinases phosphorylent des récepteurs AMPA et NMDA et augmentent leur sensibilité. Elles vont être également actrices dans l’envoi de messages vers le noyau qui feront exprimer des gènes. Il y aura alors libération de messagers rétrogrades qui agissent sur le neurone présynaptique (augmentation de la libération de neurotransmetteur par action de la syntaxine).

➢ Plasticités à très long terme: synaptogenèse

De nombreuses données montrent que les neuromédiateurs peuvent moduler la cytoarchitecture dendritique et l’organisation du réseau neuronal avant d’intervenir dans le codage de l’information (Verstraelen et al., 2014). L’acide glutamique semble aussi jouer un rôle dans la croissance neuritique. Il est également intéressant de noter que lors de l’ontogénèse, la densité de récepteurs NMDA est plus élevée chez les sujets immatures que chez les adultes notamment dans l’hippocampe et le striatum (globus pallidus). Les sites allostériques glycine et PCP suivent en revanche, une évolution différente avec une augmentation progressive pour atteindre des valeurs maximale à l’âge adulte. Cela montre une régulation développementale de différentes composantes du complexe récepteur canal NMDA, et suggère en effet un rôle des sites NMDA dans la maturation, notamment dans les changements structuraux au niveau des neurones ainsi que dans l’établissement de connexions (Shonesy et al., 2014 ; Larson and Munkácsy, 2014).

1.2.3. Récepteurs NMDA synaptiques et neuroprotection

L’activation des récepteurs synaptiques est à l’origine d’un afflux important de Ca²⁺. C’est ce calcium qui va directement servir de messager. En effet, il est utilisé au niveau du noyau cellulaire afin d’activer ou d’inhiber l’expression de gènes. Une des cibles importantes de ce calcium est la Ca²⁺/calmoduline- protéine kinase IV et le facteur de transcription d’AMPc réponse élément binding protéine (CREB). Parmi le pool de gènes régulés par CREB, 10 gènes ont été identifiés comme pourvoyeurs de neuroprotection rendant la mitochondrie plus résistante au stress. De plus, CREB code pour la synthèse du BDNF qui a des propriétés
neuroprotectrices. Un second mécanisme conforte cette neuroprotection, en inhibant cette fois l’expression de gènes pro-apoptotiques. Enfin, l’activité synaptique protège contre le stress oxydatif grâce à son action sur le système thioredoxin- hyperoxidized peroxiredoxine en favorisant la réduction de ce dernier (Hardingham and Bading, 2010). Ces mécanismes sont résumés Figure 17

![Figure 17 : Résumé des actions neuroprotectrices après activation des récepteurs NMDA synaptiques](image)

1.2.4. Rôles physiologiques des récepteurs NMDA extra-synaptiques

A la surface du neurone postsynaptique, les récepteurs NMDA diffusent et s’échangent entre les compartiments synaptiques et extrasynaptiques (Groc et al., 2006; Dupuis et al., 2014). Les extrasynaptiques sont exposés au glutamate d’origine gliale (Angulo et al., 2004; Garcia-Munoz et al., 2015). La concentration de glutamate extracellulaire, maintenue constante à des niveaux bas par les transporteurs gliaux du glutamate, n’est pas suffisante pour engendrer une activation mais peut cependant expliquer l’existence de faibles courants toniques (Herman and Jahr, 2007). En conditions expérimentales, les récepteurs extrasynaptiques peuvent cependant être activés à la suite d’une stimulation de forte
intensité, entrainant une libération excessive de glutamate qui diffuse alors hors de la fente synaptique (Harris and Pettit, 2008). En conditions physiologiques, ce débordement est limité par des transporteurs du glutamate gliaux et neuronaux. La majorité des études décrites ont déterminé les propriétés des récepteurs extrasynaptiques dans diverses structures cérébrales en mesurant la conductance et les propriétés pharmacologiques des courants par des enregistrements électrophysiologiques.

La différence entre les récepteurs synaptiques et extrasynaptiques, suggère que ces récepteurs ont des fonctions différentes selon leur localisation. Les récepteurs extrasynaptiques ne sont activés que lors d’une libération massive de neurotransmetteur et seraient donc impliqués dans des processus d’adaptation intervenant suite à une suractivation synaptique. Les récepteurs extrasynaptiques semblent aussi être plus faciles à désensibiliser que les récepteurs synaptiques (Bard et al., 2010). Cette propriété de désensibilisation (qui semble être altéré dans les états pathologiques) pourrait représenter un mécanisme protecteur limitant les dommages subis par le neurone lors d’une stimulation neuronale excessive. D’autre part, l’activation des extrasynaptiques peut également induire une modification de la composition des récepteurs AMPA synaptiques. Ils peuvent aussi agir sur l’activité de réseau et sur la plasticité synaptique. Ainsi, leur activation consécutive à la libération de glutamate par les astrocytes adjacents favorise l’activité synchrone des neurones de CA1 (Fellin and Carmignoto, 2004). De plus, ils semblent impliqués dans la LTP que ce soit par recrutement et mouvement vers la synapse ou par activation directe. (Chalifoux and Carter, 2011 ; Harney et al., 2008). Les récepteurs extrasynaptiques possèdent donc la propriété de moduler l’excitabilité neuronale et d’activer des processus d’adaptation tels que la plasticité synaptique.

Les récepteurs extrasynaptiques sont largement impliqués dans les processus d’excitotoxicité et de mort neuronale. Le modèle qui prédomine à l’heure actuelle (Hardingham and Bading, 2010) suggèrent que l’activation des récepteurs synaptiques serait associée à des voies de signalisation favorisant la survie neuronale alors que l’activation des récepteurs extrasynaptiques induirait des voies de signalisation entraînant la mort neuronale. En effet, de manière assez étrange, les récepteurs NMDA extrasynaptiques
provoquent l’effet inverse des synaptiques. Ils diminuent la transcription des gènes de survie. Ici, les FOXO migrent dans le noyau où ils agissent comme activateurs de la transcription, déclenchant ainsi une multitude de réponses cellulaires pouvant provoquer l’apoptose du neurone. Ils jouent aussi sur le système calpain –STEP (STriatal-Enriched protein tyrosine Phosphatase) qui agit sur des MAP kinases provoquant aussi une cascade pro-apoptotique (Hardingham and Bading, 2010). Ce rôle opposé des récepteurs NMDA synaptiques et extrasynaptiques dans l’induction de la transcription a particulièrement été étudié au niveau du gène codant pour le facteur de transcription CREB, impliqué dans la transcription du gène codant pour le BDNF. Ces deux protéines jouent un rôle dans les processus de survie neuronale.

Néanmoins, des observations remettent en cause cette hypothèse et tendent à montrer que la composition en sous-unité GluN2 serait le déterminant de l’induction de la survie ou de la mort neuronale. En effet, il apparaît que les cellules ganglionnaires de la rétine, qui ne possèdent que des récepteurs NMDA extrasynaptiques, sont insensibles à l’excitotoxicité induite par une application en bain de NMDA (1h, 10mM) (Ullian et al., 2004). D’autre part, les récepteurs synaptiques peuvent également provoquer une mort cellulaire (Papouin et al., 2012). Enfin, il semble que l’activation des récepteurs contenant la sous-unité GluN2A soit neuroprotectrice tandis que celle des récepteurs contenant la sous-unité GluN2B soit pro-apoptotique. En effet, plusieurs études montrent que l’induction de la mort neuronale est induite par la sous-unité GluN2B alors que les effets neuroprotecteurs sont dus à la sous-unité GluN2A (Paoletti et al., 2013). Etant donnée la distribution préférentielle de la sous-unité GluN2B au niveau extrasynaptique et de la sous-unité GluN2A au niveau synaptique, il est probable que ses deux modèles décrivent en fait le même processus.

Il apparaît difficile de tirer une conclusion évidente de l’ensemble de ces études, d’autant que la multitude de protocoles employés pour induire les processus d’excitotoxicité rend parfois ces études difficilement comparables. En effet, ces protocoles utilisent des applications en bain de glutamate ou de NMDA, ainsi que des modèles d’hypoxie (privation d’oxygène et de glucose) ou de stress oxydatif. D’autre part, certaines études utilisent des protocoles qui activent spécifiquement les récepteurs NMDA extrasynaptiques alors que
d’autres stimulent la totalité des récepteurs NMDA. Malgré cette hétérogénéité, on peut toutefois retirer un modèle majeur (Figure 18) mettant en avant un rôle des récepteurs extrasynaptiques dans l’activation de voies conduisant à la mort cellulaire (Hardingham and Bading, 2010; Hardingham and Bading, 2003). Mais il semble peu probable que ces signalisations soient activées en conditions physiologiques.

![Figure 18](image.png)

Figure 18 : Représentation schématique de l’hypothèse Ying et Yang des récepteurs NMDA (Hardingham and Bading, 2003) Cette hypothèse propose que ce sont les activités synaptiques faibles et les activités extrasynaptiques fortes qui sont pathologiques.

1.2.5. Récepteurs NMDAR extra-synaptiques et pathologies

Les récepteurs NMDA extrasynaptiques ont été impliqués dans de nombreux processus pathologiques mais également dans divers troubles neurologiques et psychiatriques. Nous allons développer leur rôle à titre d’exemple dans certaines maladies.

- Maladie d’Alzheimer

La lésion physiopathologique caractéristique de la maladie d’Alzheimer est la présence au niveau cérébral de peptides amyloïdes regroupés sous forme de plaques. Des quantités élevées de peptide β-amyloïde réduisent la transmission glutamatergique et inhibent la plasticité synaptique. L’effet du peptide β-amyloïde sur les récepteurs NMDA et l’implication de ces derniers dans la maladie d’Alzheimer ont été très étudiés ces dernières années (Figure 19 ;Figure 20), faisant récemment l’objet d’une revue détaillée (Danysz and Parsons, 2012).
Le peptide amyloïde semble induire une suractivation tonique des récepteurs NMDA (Figure 20), entraînant leur internalisation. Par ailleurs, ce peptide pathologique ayant été prélevé sur des échantillons cérébraux post-mortem de malades, a été capable de bloquer la LTP,
augmenter la LTD et réduire la densité d’épines dendritiques dans des tranches d’hippocampe de rat (Shankar et al., 2008).

Ce mécanisme est dévastateur car non seulement il provoque de la neurodégénérescence mais est impliqué dans la formation du peptide toxique qui l’a causé. La dérégulation de l’homéostasie calcique affecte le métabolisme du précurseur de la protéine amyloïde (APP)(Bordji et al., 2011), ce qui aboutit à l’augmentation de la formation d’amyloïde-β et contribue à l’évolution vers la maladie d’Alzheimer. Une étude récente a établi le rôle sélectif des récepteurs NMDA extra-synaptiques dans l’émergence des précurseurs de cette pathologie (Bordji et al., 2011). Il semble en effet que l’entrée de calcium par ces récepteurs, mais non par leurs homologues localisés à la synapse, provoque une dérégulation du métabolisme de l’APP et augmente très fortement la production de peptides amyloïdes.

- Maladie de Huntington

La maladie de Huntington est une maladie neurodégénérative héréditaire entraînant des déficits cognitifs et moteurs. Une extension polyglutamique du gène codant pour la huntingtine a été identifiée comme la cause de la maladie. Cette maladie est caractérisée par une perte des neurones GABAergiques du striatum entre autres, causée par la suractivation des récepteurs NMDA conduisant à un phénomène d’excitotoxicité. En effet, l’injection d’agonistes des récepteurs NMDA dans le striatum reproduit les lésions observées dans la maladie de Huntington (Ladepeche, 2012). De même, dans un modèle murin de la maladie de Huntington, la surexpression de la sous-unité GluN2B dans les neurones du striatum augmente leur dégénérescence. La réduction de l’activité des récepteurs NMDA extrasynaptiques par l’application d’une faible concentration d’un antagoniste permet de réduire la toxicité du mutant de l’huntingtine et les déficits comportementaux qui en résultent (Okamoto et al., 2009). Ces données suggèrent que ces troubles sont liés à une perturbation de l’équilibre entre activité synaptique et extrasynaptique des récepteurs NMDA.
Schizophrénie

La schizophrénie est une pathologie neuropsychiatrique complexe caractérisée par une hyperfonction dopaminergique (Grace, 2012). Le rôle de la transmission glutamatergique dans le dérèglement de la fonction dopaminergique a reçu une grande attention ces dernières années. Un déséquilibre de la balance dopamine/glutamate a été mis en cause dans la genèse des symptômes caractéristiques de la schizophrénie tels que la stéréotypie motrice ou le retrait social (Lisman et al., 2008). Cela a fait émerger l’hypothèse d’une hypofonction des récepteurs NMDA (Cohen et al., 2015). Il s’avère en effet que des souris, dont l’expression de la sous-unité GluN1 est réduite ou déficiente dans les interneurones de l’hippocampe (Belforte et al., 2010) reproduisent les traits comportementaux des modèles de schizophrénie, suggérant qu’un dysfonctionnement dans le trafic des récepteurs NMDA pourrait contribuer à cette maladie.

Ces exemples ne sont pas exhaustifs, on suspecte un dérèglement de l’homéostasie des récepteurs NMDA dans la MP (Zhang and Chergui, 2015), dans les encéphalites auto-immunes (anti-NMDA) (Venkatesan and Benavides, 2015), dans les douleurs neuropathiques (Lefèvre et al., 2015), dans l’aggravation de lésions après un traumatisme crâniens (Shohami and Biegon, 2014) ou un AVC (Xu et al., 2015b).

1.3. Contrôle et régulation de l’activité des récepteurs NMDA

1.3.1. Contrôle par les modulateurs allostériques

De nombreuses études ont montré que l’activation ou encore « l’activabilité » des récepteurs NMDA dépendait de multiples modulations positives ou négatives par des composés extracellulaires. C’est une caractéristique supplémentaire qui les distingue des autres récepteurs ionotropiques du glutamate. Ces modulateurs sont le plus souvent de petites molécules, et certaines d’entre elles sont présentes de manière endogène dans le SNC, telles que les protons (indissociables du pH du milieu extracellulaire) ou les ions zinc mais aussi les polyamines, les neurostéroïdes ou les acides gras. Ces composés agissent, par définition, sur des sites de liaison qui diffèrent des sites réservés aux agonistes (Figure 11 sites 1, 2, 3,4).
Les protons, H⁺

Les récepteurs NMDA sont sujets à une inhibition tonique et partielle par les protons H⁺. Elle peut aller jusqu’à confiner le récepteur dans un état fermé ce qui le rend complètement inhibé à certains pH. Cette inhibition par les ions H⁺ constitue certainement une boucle de rétrocontrôle négatif qui diminue de manière directe et endogène l’intensité du flot calcique à travers les récepteurs NMDA (Jang et al., 2004; Zhu and Paoletti, 2015).

Les ions zinc, zn²⁺

Le zinc inhibe les récepteurs GluN1/GluN2A avec une haute affinité (IC 50 = 10 nM) (Sirrieh et al., 2013). Cette modulation revêt probablement une importance physiologique car du zinc est coaccumulé avec le glutamate dans les vésicules d’exocytose de certaines terminaisons glutamatergiques, et pourrait donc être libéré à la synapse pour inhiber les réponses NMDA. Le site de liaison du zinc a été identifié : il s’agit du NTD de la sous-unité GluN2A, la poche de fixation étant localisée dans la crevasse interlobes de ce domaine. Ceci suggère que la liaison du zinc provoque la fermeture du NTD de la même manière que le glutamate provoque la fermeture de l’ABD. Cette fermeture du NTD entraînerait à son tour l’inhibition du récepteur, c’est-à-dire la fermeture du canal ionique. Paradoxalement, en parallèle de son effet inhibiteur, le zinc augmente l’affinité apparente des récepteurs GluN1/GluN2A pour le glutamate. Le zinc fait donc entrer ces récepteurs dans un état inactif présentant une affinité augmentée pour l’agoniste caractéristique des états désensibilisés (Gielen, 2010).

1.3.2. Antagonistes pharmacologiques du site PCP.

Le site de liaison à la phencyclidine, site PCP du récepteur NMDA est un site intra-canal qui recouvre partiellement le site de fixation du Mg²⁺ au niveau du « pore domaine » entre le domaine ABD et le domaine C-terminal. Il est donc nécessaire que le Mg²⁺ ne soit pas dans le canal pour que des ligands se fixent au site PCP. Les antagonistes se liant sur le site PCP (kétamine, mémantine, etc...) se lient sur un site asparaginase tout prêt de la localisation de l’ion Mg²⁺ qui réalise le blocage (Chen and Lipton, 2006). Aux concentrations physiologiques de Mg²⁺ (1nM), il existe une baisse de 20 fois de l’inhibition des récepteurs GluN1/N2B par
la mémantine par rapport aux mêmes expérimentations réalisées sans Mg$^{2+}$. Sur les GluN1/N2C ou N2D, cette baisse d’inhibition par le Mg$^{2+}$ n’a été que d’un facteur 3. Des résultats similaires on été obtenus avec la kétamine (Kotermanski and Johnson, 2009).

Le grand intérêt de ce site est qu’il n’est accessible que lorsque le récepteur est en conformation « ouverte » c’est-à-dire lorsqu’une dépolarisation primaire a relargué le Mg$^{2+}$ à l’extérieur du canal ionique. Lorsque l’antagoniste est sur le site PCP, le passage de Ca$^{2+}$ ne peut plus avoir lieu. Les antagonistes agissant ainsi sont qualifiés de « trapping blockers » (Traynelis et al., 2010).

Ce site PCP est un site de liaison pour de nombreux antagonistes non compétitifs des récepteurs tels que la phencyclidine, le MK801, la kétamine ou encore la mémantine. La mémantine et la kétamine sont des médicaments à usage humain ayant une autorisation de mise sur le marché.

![Figure 21 : IC 50 de différents antagonistes du site PCP des récepteurs NMDA. Ces IC ont été mesurées en l’absence de Mg$^{2+}$ dans le milieu sauf précision (Traynelis et al., 2010)](image)

La Figure 21 montre que les antagonistes du site PCP ne sont pas sélectifs d’une sous unités (donc d’une sous population de GluN qui serait localisée). Le blocage du canal par ces « trapping blockers » est lent à inverser et exige une réactivation du récepteur par des agonistes pour que l’antagoniste puisse se dissocier. Les études structure-activité montrent que la nature de la liaison est indépendante de la lipophilie et que ces antagonistes ne sont pas capables de passer au travers de la membrane cellulaire. La plupart de ces antagonistes
sont non sélectifs d’une sous unités en particulier ou faiblement sélectif comme la (-) kétamine qui a 10 fois moins d’affinité pour les GluN2A que pour les autres GluN2; ou encore la mémantine qui a 10 fois plus d’affinité pour les GluN2A et GluN2B que pour les GluN2C et GluN2D en présence de Mg$^{2+}$.

La kétamine est un médicament utilisé comme anesthésique. C’est un anesthésique général non barbiturique, d’action rapide, administrable par voie IV ou IM. Il entraîne une anesthésie particulière, dite dissociative, par diminution de l’activité au niveau du néocortex et des structures sous-corticales (thalamus) et augmentation de l’activité au niveau du système limbique et de la substance réticulée. Il est particulièrement adapté aux interventions de courte durée, il permet également, grâce à des injections répétées ou à son utilisation en perfusion intraveineuse, d’obtenir une anesthésie prolongée durant plusieurs heures ; soit comme inducteur d'anesthésie avant l'administration d'autres agents anesthésiques soit comme potentialisateur d'agents anesthésiques de faible puissance, tel le protoxyde d’azote.

La mémantine est un antagoniste voltage-dépendant non compétitif des récepteurs NMDA d’affinité modérée. Elle module les effets de taux élevés pathologiques de glutamate qui pourraient aboutir à un dysfonctionnement neuronal. C’est un médicament qui a l’AMM en France et dont l’indication concerne la maladie d’Alzheimer à un stade avancé. Après étude de sa cinétique, son interaction avec les récepteurs NMDA se ferait principalement sur les canaux ouverts en présence d’une élévation prolongée de la concentration de glutamate (à l’échelle de plusieurs minutes, ce qui est le cas au niveau des récepteurs extrasynaptiques). L’interaction entre la mémantine et le récepteur n’a pas lieu lorsque le glutamate est élevé uniquement pendant quelques millisecondes (ce qui est le cas dans la transmission synaptique). Aux concentrations thérapeutiques la mémantine bloque préférentiellement les récepteurs extrasynaptiques et cette balance synaptique / extra-synaptique expliquerait que cette molécule soit mieux tolérée que les autres antagonistes des récepteurs NMDA (Xia et al., 2010). La mémantine est donc un cas particulier car elle a une action « clinique » beaucoup plus faible que les autres bloqueurs de récepteurs NMDA (contrairement à la kétamine qui a un effet anesthésiant) alors qu’elle se lie elle aussi sur le site PCP (Figure 22).
Cependant, lorsqu’elle est présente à de fortes concentrations (à partir de 10^{-5} M dans le cerveau comme indiqué dans la Figure 23), la mémantine manque de « sélectivité » et peut se lier à de nombreuses cibles du système nerveux central : les récepteurs nicotiniques à l’acétylcholine, les récepteurs à la sérotonine, les récepteurs sigma-1 (Johnson et Kotermanski, 2006).

Figure 22 : Images de cristallographie en Rayons X du blocage des récepteurs NMDA par la mémantine et la kétamine. Les points rouges représentent la localisation approximative de la mémantine et la kétamine au niveau du site de liaison PCP. Les sites aminés (NH$_2$ ou NH) des molécules sont placés proches des sites asparagines du récepteur (Johnson et al., 2015).

Figure 23 : Sélectivité de la mémantine pour les récepteurs NMDA (Parsons et al., 1999). À de faibles concentrations, la mémantine se lie aux récepteurs NMDA ; à de fortes concentrations, elle se lie aux récepteurs nicotiniques, serotoninergiques et sigma-1.
1.4. Historique des radioligands du site PCP

De nombreux antagonistes non compétitifs du site de PCP ont été identifiés, et plusieurs radioligands potentiels ont déjà été synthétisés avec différents radio-isotopes ([¹¹C], [¹²³I] [¹⁸F]) et récemment commentés dans plusieurs revues (Sobrio, 2013; Waterhouse, 2003b; Majo et al., 2013). Les premiers dérivés d’antagonistes testés sont les analogues du MK-801 (Blin et al., 1991), de la kétamine (Shiue et al., 1997), et de la phencyclidine ou thiénylephencyclidine (Orita et al., 1993) puis enfin de la mémantine (Ametamey et al., 2002; Ametamey et al., 1999 ; Samnick et al., 1998), parce qu’ils sont des antagonistes bien connus des récepteurs NMDA. Cependant, la plupart de ces composés n’a pas été utilisée chez l’homme. Les expérimentations in vivo ont révélé, une faible liaison spécifique, et une rétention cérébrale faible indiquant un mauvais franchissement de la barrière hémato-encéphalique. Une autre classe de ligands (benzoquinoliziniums) a également été testée, mais n’a pas montré de qualités intéressantes en tant que vecteur d’imagerie en raison d’une faible capacité à traverser la barrière hémato-encéphalique (Sasaki et al., 2002; Sasaki et al., 2001). D’autres classes de composés sont encore en cours d’étude, comme les fluoroalkyles diarylaguanidines (Robins et al., 2010). Un composé de cette famille, un analogue fluoré du CNS5161 a récemment été injecté chez l’homme et a donné des résultats prometteurs (McGinnity et al., 2014). Ce traceur, le [¹⁸F] -PK209, un nouveau dérivé de la famille des diaryguanidine fluoroalkyle, avait déjà montré des résultats intéressants en termes d’affinité et sélectivité durant des expérimentations chez le PNH (Primate non humain) (Golla et al. 2014). L’affinité de ces composés n’a pas encore été testée pour les récepteurs spécifiquement extrasynaptiques. Dans le Tableau 5, nous avons résumé les caractéristiques des familles de radioligands fluorés qui ont déjà été synthétisés pour imager les sites PCP du récepteur NMDA. Un grand nombre de ces composés a maintenant été abandonné.
Tableau 5 : Caractéristiques des candidats radioligands fluorés pour les sites PCP du récepteur NMDA.

L'affinité est représentée par la constante de dissociation (Kd) ou la concentration inhibitrice 50 (IC50). Le passage de la BHE est évalué par les paramètres de lipophilie et de poids moléculaire (PM). La lipophilie est représentée par le coefficient de partage octanol/eau (Log P) et le poids moléculaire est exprimé en g/mol. Tous ces éléments nous permettent d'évaluer si ces composés seraient bons radiotracer cérébraux.

<table>
<thead>
<tr>
<th>Famille</th>
<th>Affinité</th>
<th>Lipophilie</th>
<th>PM g/mol</th>
<th>Référence et caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kd : 38nM</td>
<td>Log P : 4.83</td>
<td>294.5</td>
<td>Forte liaison non spécifique due à sa trop grande lipophilie (Orita et al., 1993).</td>
</tr>
<tr>
<td></td>
<td>IC 50 = 6000 nM</td>
<td>Log P : 2.3-2.6</td>
<td>197.3</td>
<td>Bonne corrélation avec la localisation des récepteurs NMDA mais trop grande captation dans la substance blanche (Samnick et al., 1998; Ametamey et al., 1999).</td>
</tr>
<tr>
<td></td>
<td>IC50 : 47nM</td>
<td>Log P : -1.40</td>
<td>368.46</td>
<td>Pas d'évaluation in vivo Pas de test de passage de la barrière hémato-encéphalique (Sasaki et al., 2001).</td>
</tr>
<tr>
<td></td>
<td>Kd : 2.35nM</td>
<td>Log P : 2.49</td>
<td>383.9</td>
<td>Bons résultats in vivo. Exige une caractérisation plus poussée avec des études in vivo en utilisant des modèles pathologiques (Robins et al., 2010).</td>
</tr>
<tr>
<td></td>
<td>Kd : 18nM</td>
<td>logD : 1.45 logP : 3.75</td>
<td>354.8</td>
<td>Bonne affinité et sélectivité. Métabolisme important in vivo (Golla et al.).</td>
</tr>
</tbody>
</table>
2. **RADIOTRACEURS DERIVES DE LA MEMANTINE**

La mémantine est un antagoniste canal s’intégrant dans le canal du récepteur en le bloquant. Plusieurs études suggèrent que la mémantine a une affinité plus importante pour les récepteurs extrasynaptiques que pour les autres (Hardingham and Bading, 2010 ; Xia et al., 2010). C’est à l’heure actuelle la seule molécule pour laquelle des études électrophysiologiques ont montré ce type de sélectivité. Cette liaison préférentielle aux récepteurs NMDA extrasynaptiques est un atout majeur si on se réfère à l’hypothèse que ce sont ces récepteurs extrasynaptiques et non les synaptiques, qui sont impliqués dans les mécanismes de neurodégénérescences (Hardingham and Bading, 2010).

- **[18F]FMEM : utilisation et difficultés**

Un dérivé de la mémantine ([18F]-FMEM) a déjà été synthétisé (Ametamey et al., 1999) et testé. Ce dérivé possédait des caractéristiques de liaisons in vitro et in vivo très prometteuses chez la souris et les PNH (Samnick et al., 1998), avec une bonne rétention cérébrale. Cependant, lors des expérimentations chez le volontaire sain, ce traceur a montré une distribution ne reflétant pas celle des récepteurs NMDA. En effet, il y avait malheureusement une forte absorption non spécifique dans la matière blanche (Ametamey et al., 2002). Nous avons donc choisi de travailler sur un autre dérivé de la mémantine, la fluoroethylnormemantine ([18F]-FNM) et de tester sa spécificité.
3. **PARTIE EXPERIMENTALE**

3.1. **Matériel et méthode**

La fluoroethynormémantine est un dérivé très proche de la 18F-FMEM. Comme cette dernière, elle possède en effet un groupement amine. Ce groupement amine semble jouer un rôle très important dans l’ancrage de la molécule au site PCP. Elle possède un groupement fluoroéthyl à la place du groupement fluorométhyl, et possède un méthyl de moins. Grâce à son faible poids moléculaire et une lipophile un peu plus modérée que celle de la 18F-FMEM, nous avons pensé que la fluoroéthynormémantine (18F-FNM) serait capable de traverser la BHE. La structure chimique a été peu modifiée par rapport à celle de la mémantine, ceci nous permet d’émettre l’hypothèse d’une liaison préférentielle aux récepteurs extrasynaptiques. Cependant, la liaison préférentielle de la 18F-FNM aux récepteurs extrasynaptiques est juste une hypothèse et dans cette étude nous ne l’avons pas évaluée. Nous espérons que la lipophilie de la 18F-FNM (log P = 1,93) un peu plus faible que celle de la 18F-FMEM (log P = 2,4), permettra de diminuer in vivo la liaison non spécifique.

Nous avons travaillé en collaboration avec le laboratoire de chimie M2I, qui nous a fourni la référence froide (19F) de la fluoroéthynormémantine et le précurseur permettant la radiosynthèse. Pour réaliser une radiosynthèse dans de bonnes conditions, nous avions besoin d’un composé présentant un groupement partant permettant la substitution nucléophile par le 18F, c’est la raison pour laquelle la molécule a été conçue avec un groupement tosylate en position 11. Nous avions également besoin de protéger la partie aminée, c’est pourquoi il a été inséré un groupement t butoxycarbamoyl (BOC) en position 1N.
Ce précurseur a été synthétisé par M2I et caractérisé en HPLC. Il affiche une pureté de 98.5%, sa structure a été validée par RMN proton.

La référence froide de FNM (Figure 25) fournie ne présente pas de doubles liaisons et est difficilement détectable par UV qui est notre méthode classique de détection post HPLC. Pour la caractériser, il a été nécessaire d’utiliser cette molécule en très forte quantité.

NOTA: La lecture UV a été faite une longueur d’onde de 217 nm.

Cette référence froide a été analysée en CPG et en HPLC ; sa pureté est de 84.6%.
Nous allons décrire ci-dessous le processus de radiosynthèse, et les expérimentations in vitro et ex vivo de liaison que nous avons effectuées pour établir les caractéristiques de liaison spécifique et non spécifique de la $[^{18}\text{F}]$-FNM.

3.1.1. Radiosynthèse

- Production du fluor sur cyclone IBA 10-5

Le CHU de Toulouse possède un cyclotron qui appartient administrativement à la Pharmacie à Usage Intérieur (PUI). C’est un cyclotron de la société IBA appelé cyclone 10/5. La production du fluor 18 nécessaire à la synthèse des MRP fluorés est réalisée par l’équipe radiopharmaceutique qui comprend un détenteur du Certificat d’aptitude à manipuler les appareils de radiologie (CAMARI).

Immédiatement après la fin du « tir », la solution d’eau enrichie irradiée contenant le $[^{18}\text{F}]$ est transférée sous pression d’hélium via un capillaire dans un flacon intermédiaire situé au niveau de l’automate de synthèse.

Chaque production fait l’objet de l’édition d’un rapport contenant les divers paramètres du tir (date, heure, courant cible, pression dans la cible, durée d’irradiation, activité recueillie…) annexé au rapport de préparation du MRP fluoré. Le transfert du fluor 18 de la cible du cyclotron vers l’automate de synthèse ne se fait qu’après accord du radiopharmacien responsable de la préparation du MRP fluoré. Ce transfert est réalisé après fermeture à clef de la hotte blindée contenant l’automate de synthèse.

- Programmation de l’automate Raytest Synchrom®

La radiosynthèse des MRP fluorés est réalisée dans un automate de substitution nucléophile un Raytest Synchrom R&D (Figure 26). Schématiquement, cet appareil est constitué d’un réacteur où se réalise la substitution nucléophile dans lequel divers réactifs et solvants peuvent être ajoutés à partir de 7 containers par pression d’hélium. Le système synchrom R&D® intègre une Chromatographie Liquide Haute Performance (HPLC) de type semi-préparative. La boucle d’injection est de 10 mL, avec un détecteur UV (longueur d’onde : λ =217 nm) couplé à un détecteur de radioactivité (cristal NaI(Tl)). Nous utilisons une colonne
C18 en phase inverse. En condition de synthèse avec le 18F ; les contraintes de radioprotection liées à la manipulation de hautes activités de 18F (plusieurs milliers de MBq) sont importantes et requièrent l’utilisation d’un système qui doit être commandé à distance. L’automate est confiné dans une hotte, blindée, ventilée en dépression et fermée. L’automate est entièrement commandé à distance grâce à un ordinateur réalisant l’interface entre l’automate et le manipulateur (Figure 27). La succession des différentes étapes du procédé de radiosynthèse est réalisée de façon programmée et donc automatique. Cependant un contrôle manuel des différents composants (température du réacteur, électrovannes, pression) reste possible durant toute la synthèse. La méthode de synthèse est écrite via le programme GINA star Synchrom™, la séquence est constituée d’une succession d’événements programmés dans le temps (ouverture et fermeture des vannes, chauffage ou refroidissement du réacteur). Durant la synthèse sept paramètres différents sont enregistrés en continu et sont archivés. Ces paramètres comprennent l’enregistrement de l’activité par quatre détecteurs de radioactivité (Target, Reactor, Product, HPLC) l’enregistrement de la pression et la température dans le réacteur, l’enregistrement du spectre UV à la sortie de l’HPLC (Figure 28).

Figure 26 : Automate Raytest dans sa hotte blindée ventilée
Chaque synthèse fait l'objet de l'édition d’un rapport. La récupération du composé d’intérêt purifié est réalisée grâce à un système de vannes : tant que le solvant sortant de l’HPLC ne contient pas la molécule d'intérêt, ce solvant est dirigé vers une poubelle, dès que le pic correspondant au produit d'intérêt est visualisé, une vanne doit être basculée (non automatisé) et le solvant contenant la molécule synthétisée est dirigé dans le flacon « Product » qui possède une dérivation vers la hotte de mise en forme.

La synthèse automatisée de la 18F-FNM est une réaction en deux étapes, résumée sur la
Figure 29. La première réaction correspond à une substitution nucléophile par fluoruration du 1- [N- (tert-butyloxy) carbamoyl] -3- (tosyle) éthyl-adamantane (1) dans du DMSO (diméthylsulfoxyde). Le composé fluoré de tert-butyl [3- (2-fluoroéthyle) tricyclo [3.3.1.13,7] déc-1-yl] carbamate (2) est hydrolysé par l’acide chlorhydrique à 110 °C en 3- (2-fluoroéthyle) tricyclo [3.3.1.13,7] décan-1-aminium (3), et neutralisé par un mélange d’hydroxyde de sodium et de citrate trisodique, pour obtenir du $[^{18}\text{F}]$-FNM: 3 (2-fluoroéthyle) tricyclo [3.3.1.13,7] décan-1-amine (4).

La durée totale de radiosynthèse est de 80 minutes. Avant l’apport de $[^{18}\text{F}]$ au module de synthèse, les flacons de ce dernier sont remplis de différentes solutions:

- Flacon 1 avec le réactif éluant
- Flacon 2 : 800 µl de DMSO contenant 4 mg de 1- [N- (tert-butyloxy) carbamoyl] -3- (tosyle) éthyl-adamantane,
- Flacon 3 : 860 µl d’une solution d’acide chlorhydrique 6N,
- Flacon 4 : mélange de 960 µl de solution caustique NaOH 6N et 1 mL de solution de citrate 0,5 M trisodique,
- Flacon 5 : 2 mL d’éthanol
- Flacon 6 : 5 mL de l’acétonitrile
- Flacon 7 : 10 mL d'eau

![Figure 29 : Schéma de synthèse de la $[^{18}\text{F}]$-FNM](image)

La première étape du radiomarquage consiste à purifier le fluorure issu du cyclotron : celui-ci est sous forme F^- véhiculé par l’eau dans lequel il a été produit. Afin de séparer le fluor des des impuretés réactionnelles contenues dans la solution (métaux activés par exemple), la
technique la plus communément utilisée est celle du « trapping » du fluor sur une résine échangeuse d’ions nommée QMA. Sous la pression d’un flux d’hélium, l’eau irradiée contenant le fluorure-18 est passée sur une résine échangeuse d’anions de type Sep-Pack Accell Plus QMA (résine C(O)-NH(CH₂)₃N(CH₃)₃⁺Cl⁻). Les anions fluorure-18 sont captés par la cartouche de résine tandis que l’eau enrichie la traverse puis est collectée dans un flacon.

Cette cartouche doit ensuite être éluée pour entraîner le fluor dans le réacteur. L’éluion de cette cartouche doit se faire avec un solvant qui déplace le fluor piégé, donc un solvant ionique concentré qui prendra la place du fluorure sur la résine. Le solvant le plus utilisé est le K₂CO₃. Afin d’obtenir un fluor réactif, nous avons additionné à cette solution de carbontate de potassium, un « cryptant », le K₂.2.2 qui va permettre de piéger le K⁺ et laisser libre le F⁻.

Nous avons la possibilité d’utiliser un solvant prêt à l’emploi vendu par la société ABX : il s’agit de « l’éluent reagent 1.1.1 » de la société ABX utilisé pour la purification du fluor lors de la synthèse du FDG. Il contient du K₂CO₃ capable d’éluer la résine échangeuse d’anion et du K2.2.2. (22 mg Kryptofix 2.2.2 (4, 7, 13, 16, 21,24-hexaoxa-1,10-diazabicyclo-(8.8.8) hexacosane), 7 mg de carbonate de potassium, 0,3 mL d’eau et 0,3 mL d’acétonitrile).

Ces étapes sont suivies d’un séchage azéotropique. Nous avons choisi pour cette étape d’utiliser une température élevée (115 °C) et d’y ajouter des jets d’acétonitrile. Le point d’ébullition de celui-ci étant inférieur à celui de l’eau, son évaporation rapide aura tendance à entraîner le reste de molécules d’eau présentes dans le réacteur. Les produits d’évaporation sont ensuite condensés dans un « cold trap » refroidi à l’azote liquide.

Cette méthode a été choisie car elle avait déjà fait ces preuves lors de radiomarquages réalisés par notre équipe (production de [¹⁸F]FET, de [¹⁸F]-FMISO, de [¹⁸F]-AV45) sur l’automate Raytest® (Benouaich-Amiel et al., 2010 ; Nemmi et al., 2014; Saint-Aubert et al., 2013, 2014).

Après élimination complète du solvant par séchage azéotropique, le précurseur (1) est ajouté au récipient de réaction que l’on va chauffer pendant 20 minutes à 125 ° C. Le mélange réactionnel est ensuite refroidi puis la solution d’hydrolyse est ajoutée. Le récipient
est chauffé pendant 10 minutes à 110 ° C, ce qui permet l'hydrolyse des groupements BOC (tert-butoxycarbonyle). Le mélange réactionnel est ensuite refroidi et neutralisé par addition de NaOH 6 N et de citrate trisodique.

Une pré-purification est réalisée en utilisant une cartouche Sep-Pak: le mélange réactionnel est piégé dans une C18 Sep-Pak Plus et lavé par 10 mL d’eau, ce qui permet le départ des composés hydrophiles tels que le fluor libre. Le composé lipophile piégé dans la cartouche est ensuite élué par 2 mL d’éthanol absolu. L’éluat passe à travers un détecteur de liquide qui contrôle un injecteur automatique envoyant l’éluat vers une purification par HPLC Celle-ci est réalisée sur une colonne semi- préparative (Cluzeau info labo Stabilité de base CIL, 250 x 10 mm, taille de particule 5 µm). La phase mobile est un mélange d’acétate de sodium 1 M et d’éthanol (45/55). Le temps de rétention de la $[^{18}F]$-FNM est de 15 minutes, avec un débit de 2 mL / minute. La fraction d’intérêt est recueillie et transférée dans une cellule de distribution. La radioactivité et le volume du produit sont ensuite mesurés. La solution mère contient de la $[^{18}F]$-FNM: 3- (2-fluoroéthyle) tricyclo [3.3.1.13, 7] décan-1-amine. A la fin de la synthèse (T0), l’activité volumique est mesurée.

Lors des productions pour l’expérimentation animale, cette solution mère a été diluée dans du chlorure de sodium (0,9%) afin d’obtenir une activité volumique de 200 MBq / mL.

- Contrôle qualité sur HPLC et logiciel Acquis

Nous n’avons pas effectué sur ce produit tous les contrôles de qualité requis pour les productions humaine. Nous avons réalisé un contrôle du temps de rétention (coinjection avec la référence froide afin de vérifier que l’on a synthétisé le bon produit) et une mesure des impuretés au niveau analytique pour pouvoir calculer l’activité spécifique de la solution. Le contrôle de la qualité du produit final a été effectué sur une colonne Phenomenex Luna® analytique 4,6 x 150 mm. Le système HPLC est associé à deux détecteurs: un détecteur à scintillation composé d’un cristal de NaI mesure la radioactivité et un détecteur UV mesure un signal avec un réglage de la longueur d’onde à 217 nm. La co-injection du produit final et de la référence $[^{19}F]$-FNM nous a permis de démontrer que le composé synthétisé correspond bien à de la FNM. La phase mobile était un mélange d’éthanol et d’acétate de
sodium (20/80) à un débit de 1.5 mL/min. La même expérience a été répétée à T0 + 4 heures et T0 + 6 heures pour vérifier la stabilité in vitro du radiomarquage. L’acquisition a été réalisée avec AQUIS® (logiciel ICS).

3.1.2. Propriétés physicochimiques

➢ Etude de liaison sur le récepteur NMDA

Les propriétés de liaison de la FNM sur le récepteur NMDA ont été étudiées en collaboration avec le Cerep (Poitiers, France). www.cerep.fr.

Les homogénats membranaires ayant servi à la détermination des IC50 ont été préparés selon ce protocole (Vignon et al., 1986) : des cerveaux de rat sans cervelet ont été rapidement prélevés et homogénisés à 0 °C dans 30 volumes d'un tampon 50 mM Tris-HCl, pH 7,7, avec un Polytron Brinkmann pendant 20 secondes (réglage 6). L'homogénat a été centrifugé à 49 000 x g pendant 15 minutes (correspondant à la fraction P2) et le culot resultant a été mis en suspension dans 30 volumes du même tampon Tris. Les étapes d'homogénisation et de centrifugation ont été effectuées deux fois. Le culot final a été mis en suspension dans un tampon 5 ou 50 mM de Tris-HCl à pH 7,7 et utilisé pour des expériences de liaison sans autre purification.

Les homogénats de membrane de cerveau de rat (140 pg de protéines) ont été incubés pendant 120 minutes à 37 °C avec 10 nM de [3H] TCP (N- (1-[2-thiényl] cyclohexylamino) - 3,4-pipéridine) en présence d'une dose croissante de [19F] -FNM (1,10\(^{-9}\) M 1.10\(^{-5}\) M), dans un tampon contenant 5 mM de Hepes / Tris (pH 7,4) et 0,1 mM d'EGTA. La liaison non spécifique a été déterminée en présence de 10 pM de (+) MK-801 (Le MK-801 est antagoniste de référence du site PCP des récepteurs NMDA). Après incubation, les échantillons ont été rapidement filtrés sous vide à travers des filtres en fibres de verre (GF / B, Packard) pré-imbibés avec 0,3% de PEI et rincés trois fois avec du de Tris-HCl 50 mM glacié. Les filtres ont été séchés, puis comptés dans un compteur à scintillation (TopCount, Packard). Le composé étalon de référence est le (+) MK 801, il a été testé dans chaque expérience à plusieurs concentrations pour obtenir une courbe de compétition à partir de laquelle la valeur de la concentration inhibitrice 50 (CI50) a été calculée. La valeur de la CI50
pour le MK801 est de 5×10^{-9} M. En parallèle, une analyse de liaison a été réalisée dans les mêmes conditions avec la mémantine (gamme de concentration testée : 1×10^{-9} M à 1×10^{-5} M). Les résultats calculés sont en accord : avec les valeurs de CI50 de la littérature : de l’ordre de 1×10^{-6} M (Möbius et al., 2004).

- Lipophilie

Afin d’évaluer la lipophile du composé, nous avons calculé son coefficient de partage log D (Équation 1). 7,4 MBq de $[^{18}F]$-FNM ont été dilués dans 10 mL de tampon phosphate (pH = 7,4). Quatre aliquotes de cet échantillon (1 mL) ont été placées dans quatre tubes de verre. Ces tubes ont été mélangés avec 1 mL d’1-octanol, agités à l’aide d’un vortex pendant 5 minutes, puis centrifugés à 5 g pendant 5 minutes. Les couches ont ensuite été séparées (en haut : organique, au fond : aqueuse) et mis dans des tubes de verre séparés. Les tubes ont été analysés en utilisant un compteur gamma. On a ajouté 1 mL de tampon à la phase organique et réalisé de nouveau le même procédé (Procédé inspiré de (Zhao et al., 2014)).

- Étude de métabolisation

Nous avons incubé 500 µl de plasma humain avec 100 µl (296 kBq) de $[^{18}F]$-FNM à 37°C pendant 4 temps : 10 minutes, 20 minutes, 30 minutes, 2 heures. Après incubation, nous avons ajouté 500 µl d’acétonitrile à ce plasma afin de faire précipiter les protéines et avons centrifugé ces tubes 10 minutes à 4500 rpm. Nous avons ensuite injecté le surnageant dans une colonne HPLC semi préparative. Il s’agissait d’une colonne Prontosil C18 250*9.4, l’éluant utilisé était un mélange d’acétonitrile et d’acétate d’ammonium (60/40) à un débit de 3mL/min. Nous avons utilisé comme référence le composé radiomarqué non incubé. Cette expérience a été réalisée sur trois tubes différents pour chaque temps.
Etude de liaison aux protéines plasmatiques

Nous avons incubé 800 µl de plasma humain et 100 µl de \(^{18}\text{F}\)-FMN 2h à 37°C. Le Tableau 6 résume la procédure suivie. Après chaque ajout de solvant les tubes ont été vortexés 30s puis centrifugés 5 minutes à 4500 rpm. La couche correspondante a été récupérée et le nouveau solvant ajouté au même tube.

<table>
<thead>
<tr>
<th>Départ : 800 µL plasma + 100 µL radioligand</th>
<th>Récupération de la couche octanol = fraction liée aux lipoprotéines</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 200µL de 2-octanol</td>
<td>Séparation Précipité-Reste</td>
</tr>
<tr>
<td></td>
<td>➔ Précipité = fraction liée aux protéines plasmatiques</td>
</tr>
<tr>
<td></td>
<td>➔ Reste = fraction libre</td>
</tr>
</tbody>
</table>

Tableau 6 : Protocole d’étude de liaison aux protéines plasmatiques
3.1.3. Etudes précliniques sur le rongeur

Les protocoles décrits font l’objet d’une autorisation n°. 2014-26 délivrée par le comité d’éthique CEEA122 (France).

- Evaluation du passage de la barrière hémato-encéphalique

Afin d’évaluer le passage de la BHE, nous avons procédé à l’injection intraveineuse (veine caudale) de $[^{18}\text{F}]$-FNM 8,7 MBq (0.024 nmoles) à 6 rats sains (rats Spragues Dawley mâles de 350 g +/-10 g). Nous avons sacrifiés ces rats par une dose létale de pentobarbital à 30 ou 60 minutes après injection. Chaque seringue d’injection a été comptée et pesée afin de maîtriser le plus précisément possible la quantité injectée. Les cerveaux ont été lavés dans une solution saline à 0,9% et disséqués. Les régions suivantes du cerveau ont été isolées: le cortex, le cervelet, les ganglions et le tronc cérébral. Ces quatre régions, ainsi que le sang (obtenu juste avant l’euthanasie), ont été comptés dans un compteur puits calibré pour le $[^{18}\text{F}]$ et pesés. Un échantillon de référence dilué de la dose injectée a été pesé et également mesuré au compteur pour évaluer le pourcentage de la dose injectée (pour éviter d’avoir à corriger la décroissance radioactive). Nous avons également corrigé ce comptage avec l’activité résiduelle restant dans la seringue d’injection.

Nous avons calculé :

- ratio cerveau/sang = \[\frac{cpm}{g} \text{cerveau}} \frac{cpm}{g} \text{sang} \]

Équation 9 : Calcul du ratio cerveau /sang

- % dose injectée /g = \[\frac{cpm}{g} \text{d’échantillon}} {cpm (activité injectée corrigée de la décroissance)} \]

Équation 10 : Calcul du pourcentage de la dose injectée par gramme de tissu
Etude cinétique : utilisation en mode dynamique et logiciel Carimas®

Afin d’évaluer la pharmacocinétique de ce nouveau produit, nous avons procédé à une étude TEP pharmacocinétique chez le rat. Un rat mâle Sprague Dawley (360 g) anesthésié avec 70 mg / kg de thiopental a été injecté avec 85,92 MBq de 18F-FNM. L’acquisition sous la caméra TEP-CT a commencé pendant l’injection de 18F-FNM et a duré 70 minutes (taille de l’image 256 * 300, 2 mm FWHM filtre gaussien, 6 itérations, 16 sous-ensembles).

Etude de colocalisation

- Modèle murin et préparation des échantillons

Nous avons décidé d’étudier la colocalisation entre le radiomarquage et la présence de récepteur NMDA. Les techniques utilisées sont l’autoradiographie ex vivo pour visualiser le radiomarquage et l’immunohistochimie pour visualiser la localisation des récepteurs NMDA. Afin de définir les meilleures conditions expérimentales pour réaliser les coupes de cerveau assujetties à une contrainte de temps (car isotope ayant une demi-vie de 2h), nous avons effectué une revue de la littérature (Tableau 7).
Nous avons choisi d’utiliser un protocole à température proche de celle du cryostat ; en effet, après sacrifice de l’animal injecté, la congélation rapide doit être immédiatement suivie de la coupe cryostat (qui se fait à -20°C). C’est pourquoi, nous avons choisi une température de congélation à -35°C : ainsi, nous attendons moins de temps lors de la mise en place de l’échantillon dans le cryostat et l’échantillon est plus vite à la température recommandée pour la coupe. L’isopentane a été choisi car c’est le solvant le plus utilisé pour faire de la congélation rapide. Pour le transport du site de l’euthanasie jusqu’au cryostat, nous avons utilisé une boîte isotherme contenant de la carboglace.

Le protocole utilisé a donc été le suivant :

Les cerveaux sont congelés rapidement après sacrifice et prélèvement (10 min). Nous avons utilisé un protocole de congélation rapide : chaque cerveau a été introduit dans un tube contenant de l’isopentane refroidi à -35°C dans de la carboglace. Après un bain de 2 min, les cerveaux sont disposés dans un tube vide. Les cerveaux utilisés pour l’autoradiographie ex vivo, sont immédiatement mis dans un cryostat pour amener leur température à -20°C puis ils sont coupés et les sections transférées sur lame. Les coupes sont de 20 µm d’épaisseur et sont réalisées dans un plan sagittal afin d’avoir un maximum de structures cérébrales dans le même plan notamment le cervelet. Ces coupes recueillies ont été mises à sécher 15min à
température ambiante puis ont été mises en contact avec un phosphorscreen toute une nuit.

Certaines coupes ont été gardées (coupes adjacentes à celles utilisées pour l’autoradiographie) pour être utilisées pour l’immunohistologie. Ces lames ont été préfixées 2 heures après la coupe dans un bain d’acétone pendant 10 minutes puis stockées à -20°C jusqu’à utilisation.

- **Autoradiographies ex vivo**

Nous avons effectué ces expériences avec quatre rats Spargues Dawley mâles (350 g) qui avaient été anesthésiés avec de l’isoflurane. La $[^{18}F]$-FNM a été injectée par l’intermédiaire d’un cathéter introduit dans la veine de la queue. Les doses injectées de $[^{18}F]$ -FMN étaient de 92,7 +/- 7 MBq (0,26 nmoles). Les doses étaient plus élevées que celles utilisées pour l’étude du passage de la BHE car nous envisagions d’effectuer des mesures de radioactivité sur des sections de cerveau de 20 µm d’épaisseur et nous avions besoin d’une activité suffisante pour être en mesure de visualiser le signal 40 minutes après l’injection du traceur radioactif.

Les rats ont été euthanasiés par une injection intraveineuse de pentobarbital (100 mg / kg) 40 minutes après l’injection. Après décapitation, leurs cerveaux ont été prélevés, congelés et coupés dans les conditions décrites dans la partie précédente. Ces sections ont été mises en contact une nuit avec un phosphorscreen. Cet écran a ensuite été développé sur un Typhoon FLA 9400 phosphorimager (1 pixel = 25 pm) de la société GEhealthcare. Cette étape nous a permis de tester la spécificité ex vivo et de confirmer le franchissement de la barrière hémato-encéphalique.

De plus nous avons réalisé une expérience « contrôle » avec un rat anesthésié avec de la kétamine (à la place de l’isoflurane précédemment utilisé). La kétamine est un antagoniste bien connu des GluNs, elle se lie sur le même site de liaison que la $[^{18}F]$-FNM. La kétamine a été injectée à une dose pharmacologique (80 mg / kg) afin de saturer les sites de liaison PCP. Cette expérience « contrôle » est destinée à tester la spécificité de la liaison de la $[^{18}F]$-FNM.
Immuno-histologie

L’immunohistologie a été effectuée sur des coupes adjacentes à celles utilisées pour l’autoradiographie. Les coupes conservées à -20°C ont été ramenées à température ambiante et post-fixées avec de l’acétone pendant 10 minutes. Aucune perméabilisation n’a été effectuée. Les lames ont été lavées trois fois (5 minutes) avec une solution saline de tampon phosphate (PBS 50 mM, pH = 7,4) et incubées dans du PBS avec du sérum de chèvre à 3% pendant 30 minutes. Elles ont ensuite été incubées avec l’anticorps primaire monoclonal à la concentration de 1: 100 (Invitrogen ™, souris anti-sous-unité NMDA Receptor GluN1, IgG2a, clone 54.1), pendant 72 heures à 4 °C. Après trois lavages de 5 minutes dans du PBS à température ambiante, les lames ont ensuite été incubées dans du PBS contenant un anticorps secondaire anti-souris fluorescent à la concentration de 1: 1000 (Alexa Fluor® Anti-Mouse 488) pendant 2 heures. Après trois lavages de 5 minutes avec du PBS, une incubation avec du DAPI a été effectuée pendant 10 minutes pour marquer les corps cellulaires. Les lames ont ensuite été lavées trois fois et séchées. Les sections ont enfin été couvertes par un milieu de montage fluorescent (DAKO) permettant la lecture au microscope à fluorescence. Les lames destinées à être lues sur le Typhoon (lecteur laser) n’ont pas été montées.

Recueil des images et fusion des données

Le phosphorscreen exposé et les sections utilisées pour immunofluorescence ont été placés sur la vitre du Typhoon® FLA 9400. Le typhoon est un appareillage mixte capable de photo stimuler les phosphorscreens mais aussi de lire un signal de fluorescence (possède 3 lasers). Les échantillons ont été éclairés avec un laser rouge (633 nm) pour l’écran de phosphore, et un laser vert (495 nm) pour les coupes d’immunofluorescence. Le système optique recueille la lumière émise et le tube photomultiplicateur convertit cette lumière en un courant électrique, qui varie proportionnellement à l’intensité de la lumière collectée. Le signal analogique est ensuite converti en unités de lumière numériques (DLU). Le Logiciel ImageQuant permet de reproduire une image précise de l’échantillon initial. Nous avons ensuite traité les données (images « .gel ») obtenues à partir de sections d’immunofluorescence et d’autoradiographie avec le logiciel ImageJ (développé par le
« National Institutes of Health », USA). Avec le plugin « image stiching » du logiciel ImageJ (Preibisch et al., 2009), les images de deux sections adjacentes (immunofluorescence et autoradiographie) peuvent être automatiquement fusionnées. Nous avons choisi les régions d’intérêt en fonction de la distribution des récepteurs NMDA (Petralia et al., 2010). Les ROI ont été établis sur l’image fusionnée, ce qui nous a permis d'obtenir pour une même zone un signal dans les deux modalités de mesure (fluorescence et autoradiographie). Sur chaque image fusionnée, nous avons tracé 7 ROIs : cortex substance blanche (corps calleux), le tronc cérébral, le cortex, le bulbe olfactif, le thalamus, l’hippocampe et le cervelet. En moyenne, les zones sélectionnées mesuraient 0,0021 cm2. Nous avons choisi un plan de coupe sagittal afin d’être en mesure de comparer l’intensité d’absorption pour différentes structures cérébrales dans une même section. Chaque section contient les sept ROIs.

Les mesures ont été effectuées sur six paires de coupes de cerveaux provenant de deux rats (Sprague-Dawley mâles, 350 g) (trois paires pour le Rat 1 et trois paires pour le Rat 2), choisies au même niveau de coupes dans le cerveau, chaque paire comprenant des sections adjacentes (une immunohistologie; une autoradiographie). Nous avons eu des difficultés à obtenir ce type de paires en raison de la variabilité des étalements de coupes sur lames lors du passage sur le cryostat. Si les lames contenaient trop de plis, les contours n’étaient pas reconnus et la fusion des deux modalités n’était pas réalisable. Pour l’analyse de corrélation avec le rat anesthésié à la kétamine, nous avons utilisé deux paires de coupes de cerveau.

- **Analyse des données**

Pour l’analyse des données d’autoradiographie, les différences dans les valeurs de l’intensité de ces régions ont été testées avec une analyse de variance (Anova) et le test t de Student. Nous avons au préalable effectué le test de Kolmogorov-Smirnov afin de tester la normalité de la distribution. Pour l’analyse de corrélation nous avons utilisé le coefficient de corrélation de rang de Spearman (logiciel de statistique XLSTAT2014) avec comme données brutes l’analyse des 7 ROI sur 6 paires = 42 valeurs pour les rats anesthésiés à l’isopentane, et 7 ROI sur 2 paires = 14 valeurs pour le rat anesthésié avec de la kétamine.
3.2. Résultats

3.2.1. Radiosynthèse

Voie de synthèse

Huit synthèses ont été effectuées avec succès. Le rendement de synthèse a été de 10,5% (écart-type : 3%), avec une activité moyenne de 18F-FNM à 3145 MBq (Figure 30). L’activité spécifique de 18F-FNM était supérieure à 355 GBq / µmol (aucun signal UV n’a été détecté au temps de rétention de la 18F-FNM en analytique).

![Figure 30](image30.png)

La purification par HPLC semi-préparative a permis de visualiser deux pics radioactifs (Figure 30) : Le premier pic en gamma correspond au fluor libre, le second, mesuré à 15 minutes, correspond à la 18F-FNM. Aucune autre impureté radioactive n’est apparue sur le chromatogramme, certaines impuretés ont pu être éliminées au cours de la phase de pré-purification. D’après les différents chromatogrammes obtenus, la pré-purification utilisée (cartouche sep pack) ne permet pas de s’affranchir d’une purification HPLC car les résidus de fluor libres restent encore importants ; nous avons en moyenne 10,6 +/- 3,05% de fluor libre sur le graphique de purification lors de la phase semi-préparative.
3.2.2 Propriétés physico-chimiques de la molécule fluorée

Affinité

L’étude de liaison a permis de déterminer que la valeur de la CI50 de la 18F-FNM était égale à $6,1 \times 10^{-6}$ M. La mémantine, utilisée comme un composé de référence pour évaluer l’expérimentation a présenté une valeur de CI 50 de $1,1 \times 10^{-6}$ M. Cette valeur est en accord avec les données publiées dans la littérature (Vignon et al., 1986). Nous avons ensuite calculé les Ki correspondant : K_i FNM = $3,5 \times 10^{-6}$ M et K_i mémantine = $6,5 \times 10^{-7}$ M.
➢ Lipophilie

La détermination du log D a été réalisée sur quatre échantillons de 1 mL, contenant chacun 740 kBq de $[^{18}F]$-FNM. Le résultat moyen pour les 4 échantillons a été de 1,93.

➢ Etude de métabolisation

Notre composé de référence (la $[^{18}F]$ FNM) a montré dans les conditions expérimentales citées un temps de rétention de 4,8 min. La $[^{18}F]$-FNM ne subit pas de métabolisation dans le plasma humain, quel que soit le temps d’incubation. Aucun pic différent du pic de $[^{18}F]$ FNM n’a été détecté. Nous n’observons pas de pic de fluor libre au front de solvant, aucun autre pic entre l’injection et 1h. Nous avons vérifié grâce à un compteur Geiger qu’il n’y avait plus d’activité fixée sur la colonne HPLC. Ces résultats sont illustrés Figure 32.

Figure 32 : Etude de métabolisation de la $[^{18}F]$-FNM dans le plasma. A : pic témoin ; B : après 20 minutes d’incubation ; C : après 30 minutes d’incubation, D : après 2h d’incubation
Etude de liaison aux protéines plasmatiques

Nous avons calculé les pourcentages correspondant à la fraction de \[^{18}\text{F}\]-FNM liée aux lipoprotéines (fraction octanolique), à la fraction de \[^{18}\text{F}\]-FNM liée aux protéines (fraction acétonitrile), et à la fraction de \[^{18}\text{F}\]\(\text{FNM libre (reste du tube}) comme décrit Équation 11:

\[
\% \text{fraction } x = \frac{\text{cpm fraction } x}{\text{cpm totaux (somme de toutes les fractions)}}
\]

\(\text{Équation 11 : Calcul utilisé pour déterminer le pourcentage de } [^{18}\text{F}-\text{FN M present dans chacune des trois fractions plasmatiques.}}\)

Cette étude a permis de montrer que la \[^{18}\text{F}\]-FNM se lie fortement aux lipoprotéines : 42.81 % en moyenne. Ce résultat n’est pas surprenant du fait de sa lipophile (log D = 1,93). En effet, cette molécule étant lipophile, elle aura tendance à se lier préférentiellement aux lipoprotéines du plasma. La fraction libre diffusible est en moyenne de 53%. On note qu’il y a peu de variabilité entre les résultats obtenus sur les 3 échantillons. La liaison totale aux protéines plasmatique est de 46.97% (Figure 33 ; Figure 34).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{lie aux lipoprotéines (cpm)} & \text{lie aux protéines plasmatiques (cpm)} & \text{Reste (cpm)} & \% lie aux lipoprotéines & \% lie aux protéines plasmatiques & \% non lie \\
\hline
13823400 & 1231384 & 15054784,47 & 42,57% & 3,88% & 52,55% \\
6986847 & 522040 & 750887,43 & 42,16% & 3,15% & 54,69% \\
14485800 & 1844239 & 16330039,48 & 42,70% & 5,44% & 51,87% \\
\hline
\text{Moyenne} & 42,81% & 4,16% & 53,04% \\
\text{Ecart-type} & 0,005773835 & 0,009530596 & 0,01199666 \\
\hline
\end{array}
\]

Figure 33 : Liaison de la \[^{18}\text{F}\]-FNM aux protéines plasmatiques : données brutes correspondant aux cpm obtenus dans les différentes fractions de plasma collectées

Figure 34 : Représentation du pourcentage de liaison de la \[^{18}\text{F}\]-FNM à différentes fractions du plasma humain (fraction libre, fraction liée aux protéines, fraction liée aux lipoprotéines)
3.2.3. Études précliniques

- Passage de la BHE

Nous avons calculé le rapport cerveau sur sang (Équation 9) en mesurant l’activité dans ces 2 échantillons au compteur puits (n= 6 animaux). Ce rapport a augmenté de 4,74 à 6,19 (Figure 35) pour les rats euthanasiés soit 30 minutes (3 rats) soit 60 minutes (3 rats) après l’injection.

Ces valeurs ne sont pas significativement différentes d’après le test de Student (p = 0,08), et pour la méthode de permutation. p= 0,067 pour 30 permutations.)

![Figure 35 : Evolution du ratio cerveau sur sang](image)

Soixante minutes après l’injection, 0,34% de la dose injectée par gramme de tissu cérébral étaient retrouvés dans le cerveau (Équation 10), ce qui est significativement différent du % ID/g correspondant au sang (t tests p = 0.0007).

Le plus haut niveau de radioactivité a été trouvé dans le cortex: 0,36% ID / g (Figure 36). La moyenne des % DI/g était supérieure à 60 minutes post injection par rapport aux 30 minutes post injection.

Cette étude suggère que notre composé passe la BHE et est retenu au niveau cérébral. La captation cérébrale augmente entre 30 et 60 minutes ce qui implique qu’il est nécessaire
d’attendre plus de 30 minutes pour avoir un bon rapport signal sur bruit. Cette étude bien qu’utilisant peu d’animaux, a fourni des données intéressantes et nous l’avons complétée par une étude de cinétique de captation en TEP.

Figure 36 : Pourcentage de la dose injectée par gramme au niveau cortical 30 minutes ou 60 minutes après injection (n=3 par temps)
Etude de la cinétique de captation de la \[^{18}\text{F}]\text{FNM.}\n
Nous avons réalisé une acquisition dynamique sur une caméra TEP (n= 1 rat) : La courbe d’activité par rapport au temps au niveau cérébral permet d’observer que l’absorption corticale de la \[^{18}\text{F}]\text{-FNM chez le rat augmente progressivement pendant les 40 premières minutes après injection. Durant cette période, nous avons noté une diminution du signal vasculaire (cœur) (Figure 37).}

![Evolution de la captation de \[^{18}\text{F}]\text{FNM dans le cerveau de rat}](image)

Figure 37 : Courbe activité/temps au niveau cérébral représentant l’évolution de la captation de la \[^{18}\text{F}]\text{--FNM (Corrigé de la décroissance).}

Un bon rapport signal-sur-bruit est obtenu 40 minutes après l’injection. Ces résultats nous ont permis de déterminer le temps optimal de sacrifice des rats pour l’autoradiographie ex vivo à 40 minutes après l’injection (Figure 37). On peut noter que le rein est une voie d’élimination importante. La concentration du traceur est maximale dans le rein (1,12% de la dose injectée par gramme) à 7 minutes, et se réduit à 0,57% à 62 minutes. Nous retrouvons une petite captation dans la rate, et une captation moyenne dans le foie et le poumon.
(Figure 38). Il n'y a pas d'accumulation dans l'os, ce qui suggère qu'il n'y a pas relargage de fluor libre in vivo à partir de ce composé.

Evolution de la captation de $[^{18}F]$,FNM « corps entier » chez le rat.

Figure 38 : Courbe activité/temps au niveau du corps entier de l'animal après injection de $[^{18}F]$,FNM.
Etude de spécificité

Anatomie d’une coupe sagittale de rat

Les autoradiographies réalisées au cours de cette thèse ont été faites sur coupe sagittale comme décrit dans la section matériel et méthode.

Figure 39 : Anatomie du cerveau de rat : A : coloration crésyl violet (http://brainmaps.org); B représentations schématique des régions cérébrales; C Images de l’atlas de Paxinos and Watson’s the brain rat in stereotaxic coordinates

En référence à l’atlas de Paxinos (Paxinos and Watson, 2007)(Figure 39), nous avons pu localiser les différentes zones à étudier et créer des ROI. Le corps calleux qui est composé de fibres nerveuses a été pris pour référence en tant que zone de substance blanche. Nous
avons également analysé les données au niveau du cortex cérébral, du thalamus (diencephalon), du cervelet, de l’hippocampe, du bulbe olfactif. La région d’intérêt appelée « tronc cérébral» a été prise au niveau du rhombomère

- **Résultats d’Immuno-histologie**

En microscopie de fluorescence, le marquage DAPI rend visible en bleu noyaux des corps cellulaires et le marquage de l’anticorps secondaire fluorescent (Alexa 488) rend visible en vert la localisation des GluN1. Le profil de fixation neuronale de l’anticorps anti-GluN1 est variable. Au niveau cytoplasmique, certains neurones ont montré une fixation diffuse, d’autres ont montré une fixation d’aspect granulaire. Les dendrites de certains neurones ont montré une coloration aussi dense que le corps cellulaire alors que dans d’autres neurones la coloration dans le corps cellulaire était plus dense que celle des dendrites (Figure 40). Cette observation est identique à celle réalisée sur du tissu cérébral de rat en utilisant un autre anticorps anti-GluN1 (Petralia et al., 1994).

Nous avons observé la distribution classique de GluN1. Macroscopiquement, le signal était intense dans les régions corticales, ainsi que dans cervelet, l’hippocampe et le thalamus, et faible dans la substance blanche. Ces observations ont été similaires pour les échantillons de rats anesthésiés avec de l’isoflurane et ceux anesthésiés avec de la kétamine (Figure 41 A).

![Figure 40 : Immunohistochimie avec un anticorps primaire anti NR1 (fluorescence verte). Barre d’échelle= 50 µm. A : fluorescence diffuse. B : forte densité de neurones exprimant le GluN1 au niveau de l’hippocampe.](image)

Figure 40 : Immunohistochimie avec un anticorps primaire anti NR1 (fluorescence verte). Barre d’échelle= 50 µm. A : fluorescence diffuse. B : forte densité de neurones exprimant le GluN1 au niveau de l’hippocampe.
Résultats d’autoradiographies ex vivo

Chez les rats anesthésiés à l’isoflurane, nous avons observé un signal diffus mais plus intense dans les régions corticales, le cervelet et l’hippocampe (Figure 41B). Le signal était le plus faible dans la matière blanche.

Chez le rat anesthésié à la kétamine, le signal recueilli était faible, diffus et homogène.

Le signal de l’autoradiographie a été mesuré dans sept régions d’intérêts: le corps calleux (substance blanche), le cervelet, le tronc cérébral, le bulbe olfactif, le thalamus, l’hippocampe et le cortex. Une analyse de la variance sur ces valeurs a montré un effet intergroupe (p = 8,5 \times 10^{-15}). Trois profils d’absorption ont été observés, avec une différence significative dans le test post hoc de t (p <0,005): faible absorption dans la matière blanche, absorption moyenne dans le tronc cérébral, le bulbe olfactif, le thalamus et l’hippocampe, et absorption plus élevée dans le cervelet et le cortex. Aucune différence significative n’a été trouvée entre l’hippocampe, le tronc cérébral, le thalamus et le bulbe olfactif (Figure 42).
Ces données sont assez comparables avec celles obtenues par l’immunohistochimie avec l’anticorps 54.1 anti-GluN1. La même analyse avec l’IHC a révélé une différence d’intensité de captation entre le tronc et le thalamus détecté par l’IHC par rapport à l’autoradiographie, mais cette différence est faible. Le profil de captation reste relativement similaire (Figure 43).
Etude de correlation

Les niveaux d'intensité de fluorescence correspondant à l'immunomarquage ont été évalués sur les sections adjacentes aux sections d'autoradiographie ex vivo. Une analyse de corrélation entre les intensités des deux signaux correspondant à l'autoradiographie d'une part et ceux correspondant à l'immunohistochimie d'autre part a été réalisée (Figure 44). Chez les rats anesthésiés avec de l'isoflurane, le signal d'autoradiographie a été significativement corrélé avec l'intensité de la coloration en immunohistochimie ($R^2 = 0.85$ facteur de fiabilité de la courbe ajustée). Ce résultat a été confirmé par le résultat du test de Spearman sur les 42 données brutes ($r = 0.622$, $p <0.0001$).
La même méthode a été utilisée pour analyser la corrélation entre le signal d’autoradiographie ex vivo du rat anesthésié à la kétamine et les coupes adjacentes utilisées pour faire de l’immunofluorescence. Aucune corrélation entre autoradiographie et IHC n’a été trouvée (Figure 45) ($R^2 = 0.027$; contrôle statistique de non corrélation avec le test non paramétrique de la méthode de permutation: $p = 0.0002$, $R^2 \geq 0.027$). Le résultat du test de
Spearman était $r = -0.527$, $p = 0.067$. Nous avons retrouvé une valeur inexpliquée avec une captation de $[^{18}F]$-FNM anormalement élevée du tronc cérébral. Deux explications peuvent être proposées pour expliquer ce résultat. La composition en sous-unité de cette zone n’est pas favorable à la liaison avec la kétamine mais présente une plus grande affinité pour la $[^{18}F]$–FNM, ou bien le tronc cérébral est une zone riche en un autre type de récepteur envers lequel la $[^{18}F]$–FNM aurait une certaine affinité.

4. **DISCUSSION AXE 1**

La $[^{18}F]$-FNM a été synthétisée avec succès en utilisant le module de radiochimie Raytest®. C’est la première fois que ce dérivé de mémantine est fluoré avec du $[^{18}F]$. Le rendement de la fluorisation est faible, mais l’activité produite est compatible avec l’imagerie préclinique. L’amélioration du processus de synthèse est en cours, notamment en modifiant les temps et la température de l’étape de la substitution nucléophile. Nous avons utilisé un mélange d’acétate de sodium et d’éthanol pour la purification HPLC qui, après formulation pharmaceutique, a donné une solution prête à l’emploi. Nous n’avons pas eu besoin de réaliser une évaporation de solvant dangereux ou une purification sur cartouche afin d’éliminer des solvants tels que l’acétonitrile qui est un cancérigène de classe 3 de l’ICH. En outre, cette méthode est plus rapide (pas besoin d’éliminer l’acétonitrile par évaporation), et a abouti à un produit plus sûr pour les études précliniques. Une impureté non caractérisée a été détectée dans le diagramme d’analyse UV. Bien que cette impureté soit en petite quantité, sa caractérisation doit être réalisée afin d’utiliser en toute sécurité ce traceur radioactif dans les applications cliniques, car elle pourrait être pharmacologiquement active. Nous envisageons également de modifier légèrement nos paramètres de purification afin d’essayer de séparer au niveau des temps de rétention l’impureté et la $[^{18}F]$-FNM.

Concernant les propriétés de ce nouveau radiotraceur, l’affinité de la $[^{18}F]$-FNM pour le récepteur NMDA (Ki: 3.5×10^{-6} M), étudiée par essai in vitro est faible par rapport à celle de la kétamine ou du MK-801 (Ki = 79 nM) (Waterhouse, 2003b; Labas et al., 2011). Ce résultat n’est pas surprenant ; l’affinité retrouvée pour la $[^{18}F]$-FNM est de l’ordre de celle de la
mémantine (Tableau 8). Néanmoins, nous avons choisi de travailler sur cette molécule car elle semble se lier faiblement à la matière blanche et donc avoir un signal aspécifique moins important que les autres traceurs testés en TEP. Nous n’avons pas testé l’affinité du traceur sur d’autres récepteurs. Grâce à des travaux réalisés sur un autre dérivé de la mémantine (Samnick et al., 1998), nous avons des indications sur les liaisons potentielles de notre radioligand avec d’autres récepteurs que le NMDA. Il a été retrouvé une affinité non négligeable (inhibition de 33 % de la liaison [3H] spirenone) au niveau des récepteurs dopaminergique D2. Il est possible que la [18F]-FNM soit dans le même cas et que le signal obtenu proviennent des molécules fixées au récepteur NMDA mais aussi au récepteur D2.

<table>
<thead>
<tr>
<th>Nom et formules</th>
<th>Affinité</th>
<th>Lipophilie</th>
<th>Poids moléculaire</th>
<th>Références and caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ki : 6,5 10^{-7} M</td>
<td>Log P : 3,3</td>
<td>179,30</td>
<td>Structure de base(Hardingham and Bading, 2010)</td>
</tr>
<tr>
<td>![18F]-FMEM](figures-18F-FMEM.png)</td>
<td>IC 50 = 6000 nM</td>
<td>Log P : 2,3-2,6</td>
<td>197,3</td>
<td>Bonne corrélation avec la localisation des récepteurs NMDA mais trop grande captation dans la substance blanche (Samnick et al., 1998; Ametamey et al., 1999; Ametamey et al., 2002)</td>
</tr>
<tr>
<td>![18F]-FNM](figures-18F-FNM.png)</td>
<td>Ki: 3,5 10^{-6} M IC = 6000 nM</td>
<td>Log D : 1,93 (expérimental)</td>
<td>197,3</td>
<td>Bonne corrélation avec la localisation des récepteurs NMDA Faible captation dans la substance blanche, bon signal sur bruit Pharmacocinétique compatible avec de l’imagerie TEP (Salabert et al. 2015)</td>
</tr>
</tbody>
</table>

Tableau 8 : Résumé de caractéristiques de molécules de la famille de la mémantine. En gras sont mentionnées les données acquises au cours de cette thèse.

Les résultats de l’étude de métabolisation sont très encourageants car la molécule n’est pas métabolisée en présence des enzymes plasmatiques humaines. Cependant, cela n’exclut pas une métabolisation hépatique et une étude avec prélèvement sanguin plusieurs temps après

Concernant l’étude de liaison aux protéines plasmatiques, les résultats confirment que la \[^{18}F\]-FNM est lipophile et qu’elle se lie fortement aux lipoprotéines plasmatiques. La liaison totale aux protéines plasmatiques totale est de 46,97%. Ceci est proche des résultats obtenus avec la mémantine puisque la monographie de cette substance indique une liaison aux protéines plasmatiques de 45 % (Monographie de la mémantine).

Les résultats de l’étude de corrélation montrent que la liaison de la \[^{18}F\]-FNM est fortement corrélée à la distribution physiologique (Petralia et al., 1994) des récepteurs NMDA dans le cerveau de rat. Comme indiqué dans la Figure 44, le signal de la \[^{18}F\]-FNM est corrélé avec celui des sous unité GluN1. Nous avons réalisé une expérience contrôle avec un rat anesthésié avec de la kétamine qui sature spécifiquement les sites spécifiques (site PCP des GluN) afin d’obtenir une image de la liaison non spécifique. C’est bien le résultat que nous avons obtenu, car aucune corrélation n’a été trouvée entre les autoradiographies ex vivo et l’immunohistochimie lorsque cet antagoniste a été injecté avant la \[^{18}F\]-FNM. De plus, s’il y a une liaison de la \[^{18}F\]-FNM sur un autre site que les GluN, nous aurions une fixation augmentée sur certaines zones (comme par exemple le caudé et le putamen qui sont des structures riches en D2). Or, nous n’avons pas observé de sites avec une captation accrue à part au niveau du tronc cérébral pour le rat kétamine.

Le test de passage de la BHE a montré que 60 minutes après l’injection, 0,34% DI/g de \[^{18}F\]-FNM était dans le cerveau, avec une captation maximale dans le cortex. Cette valeur est faible mais suffisante pour réaliser de l’imagerie. La synthèse d’autres dérivés de la
mémantine pourrait permettre d’améliorer le passage de la BHE. En effet, une modification chimique même mineure peut moduler l’affinité et le passage de la BHE. Le premier dérivé de la mémantine testé ([18F]-FMEM) avait une lipophilie plus important, traversait mieux la BHE (3,6% ID / g à 60 min chez la souris (Samnick et al., 1998)) et avait une affinité similaire à la [18F]-FMN. Cependant, il a été rejeté en raison de la variation interindividuelle excessive et une fixation aspécifique importante dans la substance blanche (Ametamey et al., 2002). L’autoradiographie a mis en évidence une faible rétention de la [18F]-FMN dans la substance blanche ; ceci suggère que le traceur pourrait être un composé intéressant dans la famille de la mémantine. Cependant, il est nécessaire de poursuivre les investigations.

La [18F]-FMN possède donc de nombreux atouts : elle n’est pas métabolisée dans le plasma, elle passe la BHE, elle se lie peu de manière aspécifique dans la substance blanche, les doses nécessaires et la cinétique de captation sont compatibles avec les contraintes de l’imagerie clinique humaine.

Nous devons toutefois souligner quelques limites rencontrées lors de cette étude. Nous avons comparé ici uniquement les résultats d’autoradiographie et immunohistologie. Nous n’avons pas pu comparer les deux résultats autoradiographie (isoflurane et kétamine) l’un à l’autre en terme d’intensité, ni de localisation du signal bien que les profils de captation de [18F]-FMN semblent très différents entre les rats anesthésiés avec de l’isoflurane et ceux anesthésiés à la kétamine. Cette comparaison ne nous a pas semblée pertinente car l’anesthésique utilisé n’était pas le même. Nombre de médicaments anesthésiques altèrent la circulation sanguine cérébrale et les niveaux de concentration en acides aminés indispensables à la dépolarisation du neurone et donc à l’ouverture du GluN nécessaire pour avoir une liaison au site PCP.

Il a été montré que l’anesthésie induite par la kétamine provoque une diminution significative dans les niveaux de glutamate, d’aspartate et de glycine (Rozza et al., 2000). Une équipe a étudié l’effet des anesthésiques sur le relargage de glutamate, de glycine et d’aspartate. Cette expérience a comparé les niveaux de ces composés avant et après anesthésie, par l’intermédiaire d’un dispositif de microdialyse transcérébrale placé dans la
région frontopariétale de cerveaux de rats. Les échantillons recueillis ont été analysés par HPLC. L’anesthésie par kétamine fait baisser très fortement les niveaux en glutamate, aspartate et glycine (30 à 70 % de baisse). L’halothane et les barbituriques n’engendrent pas d’effet sur les concentrations de ces molécules. On sait pourtant que ces deux substances ont un effet sur la transmission post synaptique médiée par les récepteurs NMDA, mais on voit ici que ce n’est pas par le biais d’une diminution des concentrations de glutamate.(Rozza et al., 2000). Une autre équipe a travaillé sur cette thématique en réalisant des études de liaison (avec ligands tritiés) sur des neurones d’hippocampes : liaison sur le site PCP, liaison sur le site glutamate et liaison sur le site glycine. Ils ont testé ces liaisons en présence d’anesthésiques volatils (notamment les anesthésiques halogénés comme l’isoflurane). Les résultats montrent que la présence de l’anesthésique diminue l’ouverture du canal ionique (site PCP), que la glycine peut partiellement lever cette inhibition et qu’une augmentation de la concentration de glutamate de modifie pas l’inhibition. Les auteurs concluent que les anesthésiques volatils altèrent l’ouverture des récepteurs NMDA grâce à de multiples effets allostériques sur l’activation du récepteur et sur le site de liaison au glutamate. Le pentobarbital et autres barbituriques montrent eux aussi, à concentration anesthésique, une diminution de l’ouverture du canal NMDA et ils altèrent également la transmission par les autres récepteurs au glutamate (kainate et AMPA). Concernant la glycine qui est une molécule abondante dans le liquide céphalo rachidien, les concentrations de cette molécule suggèrent que l’action des anesthésiques sur le NMDA est plus limitée que celles réalisées in vitro avec des quantités limitées en glycine (Martin et al., 1995). Enfin des études récentes ont montré que des souris KO pour le GluN2A étaient résistantes à l’effet hypnotique de la kétamine mais aussi du pentobarbital (alors que cet anesthésique agit sur les récepteurs au GABA) (Petrenko et al., 2014).

On voit bien ici que l’utilisation d’anesthésique peut perturber l’ouverture du récepteur NMDA de différentes manières et avec des intensités différentes en fonction de l’anesthésique utilisé. Par conséquent, comme nous avons utilisé deux médicaments anesthésiques différents (kétamine ou isoflurane), nous avons un impact différent de ces anesthésiques ce qui peut générer des différences soit par altération de la cinétique d’arrivée du produit (baisse du flux sanguin), soit par diminution du nombre de sites PCP.
disponibles (par baisse de la quantité de glutamate et donc d’activation du récepteur). Il existe également une autre limite pour la quantification de l’activité cérébrale; l’euthanasie a été effectuée avec une surdose d’anesthésique (thiopental). Une étude complémentaire utilisant la décapitation pourrait nous permettre de comparer la perturbation occasionnée par la méthode de sacrifice par surdosage d’anesthésique.

Les expérimentations animales réalisées ont été menées avec des rats sains. Aucune situation pathologique n’a encore été étudiée avec la 18F-FNM. Maintenant que nous avons montré que le radiotracer se lie spécifiquement aux récepteurs NMDA ouverts, nous allons pouvoir réaliser des expériences dont le but sera de déterminer si le radiotracer est capable de détecter des états pathologiques. Il a été montré ex vivo qu’il se produisait des modifications dynamiques au niveau des récepteurs NMDA après création d’une lésion cérébrale par traumatisme crânien chez la souris (Biegon et al., 2004). En utilisant un antagoniste tritié des GluN, le 3H PCP permettant ainsi de visualiser ex vivo un passage de l’état fermé (sans choc) à l’état ouvert (choc) des GluN, les auteurs ont décrit une hyperactivation des GluN pour une période très courte (15 minutes) après une blessure, suivie par une hypoactivation durable à 8 h (Biegon et al., 2004). Nous envisageons de réaliser une lésion spécifique générant une hyperactivation des GluN au niveau de l’hippocampe et du cortex chez le rat. Ceci nous permettrait d’avoir un modèle intéressant pour tester si la 18F-FNM est capable de localiser les zones touchées et de tester des médicaments qui réduiraient cette zone.
1. CONTEXTE

1.1. Les protéines tau

Les protéines tau font partie de la famille des Protéines Associées aux Microtubules (MAP). Ces protéines sont retrouvées chez de nombreuses espèces comme la drosophile (Cambiazo et al., 1995; Cambiazo et al., 2000), le poisson rouge (Liu et al., 1997), les rongeurs (Lee et al., 1988; Umahara et al., 2011), les bovins (Himmler, 1989), la chèvre (Nelson et al., 1996), le singe rhesus (Nelson et al., 1996), le chimpanzé (Rosen et al., 2008) et l'humain (Buée et al., 2000). Chez l’humain, elles sont retrouvées dans le neurone bien que d’autres types cellulaires puissent en contenir. Par exemple, les protéines tau humaines peuvent être exprimées dans les cellules gliales principalement en condition pathologique et il est possible de détecter des ARNm de tau et la protéine elle-même dans plusieurs type de tissus comme le tissu myocardique, rénal, pulmonaire, musculaire, pancréatique, testiculaire ou encore dans les fibroblastes (Maj et al., 2010; Gu et al., 1996; Ingelson et al., 1996).

1.2. Structure et rôle des différents domaines des protéines tau chez l’humain

Le gène codant pour les protéines tau est localisé sur le chromosome 17, à la position 17q21. Le transcript primaire contient 16 exons. Dans le cerveau, les exons 4A, 6 et 8 ne sont pas traduits. Les exons 2, 3 et 10 sont épissés de manière alternative et sont spécifiques du tissu cérébral adulte. L'épissage alternatif de ces 3 exons produit 6 combinaisons possibles (2-3-10-; 2+3-10-; 2+3+10-; 2-3+10+; 2+3-10+; 2+3+10+). Il y a six isoformes de protéines tau dans le cerveau adulte. Il faut noter que l'expression des protéines tau est régulée au cours du développement. Ainsi, une seule isoforme est présente à la naissance et ne comporte pas d'inserts codés par les exons 2, 3 ou 10, il s'agit de l'isoforme fœtale. Après la naissance, les autres isoformes vont apparaître au cours du développement. La longueur de leurs séquences varie de 352 à 441 acides aminés. Les 6 formes sont présentes à l’âge adulte. L’expression des isoformes diffère en fonction du stade de développement et du type de neurone ; on ne trouve ainsi aucune forme contenant le R4 dans les cellules granulaires du
gyrus denté ce qui suggère que les fonctions de chaque isoforme doivent être différentes (Buée et al., 2000 ; Himmler, 1989 ; Nelson et al., 1996).

Figure 46 : Représentation schématique du gène humain de la protéine tau, de son transcrit primaire et des 6 isoformes de tau humaines présentes dans le système nerveux central. Le gène contient 16 exons (avec le-1 qui fait partie du promoteur). Le transcrit primaire contient 13 exons, le 4a, 6 et 8 ne sont jamais transcrits chez l’humain. Les exons -1 et 14 sont transcrits mais jamais traduits. Les exons 1, 4, 5, 7, 9, 11, 12,13 sont constitutifs et les exons 2, 3,10 sont alternativement épissés donnant naissance à 6 ARNm différents qui seront traduits en 6 isoformes de protéines tau différentes. Les isoformes diffèrent par la présence d’une ou 2 fois 29 acides aminés codés par les exons 2 ou 3 dans la partie amino-terminale en combinaison avec des régions répétées (boîtes noires R1-R4) dans la partie carboxy-terminale. Adapté de (Buée et al., 2000a).

Les protéines tau sont très acides dans leur domaine N-terminal qui représente le domaine de projection (Figure 46). Le domaine N-terminal est appelé domaine de projection car il fait saillie à la surface des microtubules où il interagit avec d’autres éléments du cytosquelette et de la membrane plasmique. Le domaine de projection détermine l’espace entre le microtubule et la paroi axonale et par la-même le diamètre de l’axone (Shahpasand et al., 2012; Chen et al., 1992). La protéine tau se lie à la spectrine et aux filaments d’actines par les mêmes domaines répétés (Figure 47). Grâce à ces interactions, elle va permettre aux microtubules (MTs) d’être connectés avec d’autres composants du cytosquelette comme les
neurofilaments. Cette propriété est indispensable à la croissance dendritique et axonale (Jaworski et al., 2009). Au cours du développement axonal, il existe une accumulation préférentielle de la protéine tau au niveau des extrémités distales de l’axon (cône d’expansion), qui dépend de l’organisation des microtubules et des filaments d’actine. Les neurones déficients en tau ou en actine voient s’arrêter leur expansion au niveau du cône de croissance (Mohan and John, 2015).

Le rôle du domaine C-terminal (Figure 48) est beaucoup mieux connu puisque les séquences répétitives codées par les exons 9-12, constituent le domaine de liaison aux microtubules. Il existe d’ailleurs une forte homologie de séquences avec les autres membres de la famille des MAP. Les 3 isoformes de protéines tau possédant les quatre domaines de liaison aux microtubules (2-,3-,10+; 2+,3-,10+ et 2+,3+,10+) se lient plus facilement aux microtubules que les isoformes qui n’en possédant que trois (2-,3-,10-; 2+,3-,10- et 2+,3+,10-).
1.3. Modifications post traductionnelles :

Différentes modifications post traductionnelles de la protéine tau sont retrouvées, les modifications majeures sont la phosphorylation et l’O-glycosylation.

1.3.1. Phosphorylation

Il existe une cinquantaine de résidus sérine et thréonine sur les protéines tau. Plus d’une vingtaine se sont révélés être phosphorylés. En particulier, les protéines tau sont phosphorylées de part et d’autre des domaines de liaison aux microtubules. La phosphorylation est la principale modification post-traductionnelle. Elle a une grande importance puisqu’elle permettrait aux protéines tau de réguler la polymérisation des microtubules. En effet, les protéines tau stabilisent les microtubules en se liant à leur constituant majeur, la tubuline, par l’intermédiaire de séquences répétitives Pro-Gly-Gly-Gly présentes dans les quatre domaines de liaison aux microtubules. Tous les sites de phosphorylation sont situés hors du domaine de liaison des microtubules sauf Ser 262, 285, 305, 324, 352 et 356. L’état de phosphorylation dépend évidemment de la balance entre l’activité phosphatase et l’activité kinase sur ces sites (Buée et al., 2000).

Une phosphorylation des protéines tau, en particulier dans la région riche en proline située en amont de ces motifs répétés, diminue leur affinité pour les microtubules entraînant la...
dépolymérisation de ces derniers. La phosphorylation de la Ser262 (selon la numérotation de l’isoforme la plus longue), située dans le premier domaine de liaison, modulerait également l’affinité des protéines tau aux microtubules. Dans la majorité des tauopathie, il existe une hyperphosphorylation sur les résidus sérines et thréonine. Ceci suggère que la forme hyperphosphorylée est une forme prédisposante de l’agrégation (Fontaine et al., 2015).

Kinases

Les kinases impliquées dans la phosphorylation de tau in vitro sont nombreuses. Il en existe trois classes (Fontaine et al., 2015):

- **Kinases prolines dirigées**: GSK3, MAPK : mitogen-activated protein kinases (ERK1, p38 ...); protéine kinase dépendante de la cycline-5.
- **Kinases non-proline dirigées**: tau-tubuline kinase, MARKs : microtubule affinity-regulating kinases; Casein kinase,
- **Kinases tyrosines dirigées**: Src kinases de la famille et c-Ableson (c-Abl)

Les résidus phosphorylés sur les tyrosines sont les plus fréquents dans les agrégats de tau intracellulaires retrouvés dans les modèles murins transgéniques et chez les patients atteints de la maladie d’Alzheimer (Vega et al., 2005).

Phosphatases

Les protéines tau cérébrales sont très rapidement déphosphorylées par des phosphatases endogènes. Ce sont des phosphatases sérine/thréonine PP1, PP2A, PP2B (calcineurin) et PP2C. Chacune de ces phosphatases déphosphoryle des sites spécifiques.

1.3.2. 0-glycosylation

Une autre modification post-traductionnelle des protéines tau a été rapportée (Gong et al., 2004): une O-glycosylation consistant en l’ajout d’un résidu de N-acétyl-glucosamine (GlcNAc) sur des résidus sérine ou thréonine des protéines tau. Il pourrait aussi y avoir une balance phosphorylation-O-glycosylation (Buée et al., 2000). Cette O glycosylation peut
antagoniser la phosphorylation de tau. Il a été retrouvé un fort déficit en forme O-GlcNAc de protéines tau chez les patients atteints de MA (Gong et al., 2004). Cette forme serait donc protectrice d’une hyperphosphorylation, mais pour qu’elle soit présente, il est nécessaire que le métabolisme glucidique soit normal. La baisse de la quantité de la forme tau glycosylée protectrice de l’agrégation semble donc être associée à un hypométabolisme glucidique neuronal (Zhu et al., 2014).

Il existe d’autres modifications post-traductionnelles des protéines tau (Figure 49) comme le clivage, la polyamination, la sumoylation, la glycation, l’acétylation, la nitration (Fontaine et al., 2015). Ces modifications post-traductionnelles sont également retrouvées dans les agrégats de protéines tau. Cependant, comparé à la phosphorylation, il existe beaucoup moins de sites susceptibles d’être affectés par de telles modifications.

Nous allons nous concentrer sur la phosphorylation anormale de cette protéine tau.

La phosphorylation, en fonction du type d’isoforme, peut moduler les propriétés de la protéine tau. A son tour, la protéine tau va moduler les propriétés du microtubule dans sa structure propre et dans ses caractères physicochimiques (rigidité, longueur, stabilité, capacité d’interaction avec d’autres organelles). Donc, en régulant l’assemblage des
microtubules, la protéine tau a un rôle dans la modulation de l’organisation fonctionnelle du neurone, en particulier sur sa morphologie axonale, sa croissance et sa polarité.

1.4. Agrégation pathologique de protéine tau :

1.4.1. Formation de l’agrégat

In vitro, l’agrégation spontanée de tau même à forte concentration, est très lente. La majorité des études utilisent donc des concentrations supraphysiologiques de tau avec des conditions de pH et de température extrêmes. La plupart des équipes ajoutent même aux protéines tau des inducteurs pour accélérer la formation de fibrilles (héparine le plus souvent).

L’étude d’agrégation in vitro a démontré l’existence de trois phases distinctes dans la cinétique de formation des agrégats (Figure 50).

- La première phase correspond au phénomène de nucléation (ou dimérisation). Au cours de cette phase, un pont disulfure intermoléculaire permet de former un premier dimère (ou noyau). Il est possible que la perturbation de potentiel redox cellulaire modifie directement l’état d’oxydation de tau et génère des oligomères neurotoxiques via la formation de liaisons disulfures (Haque et al., 2014).

- La seconde phase détectée correspond au phénomène d’élongation. Les protéines tau monomériques se fixent sur les noyaux. La croissance des oligomères par l’ajout de monomères s’empilant les uns sur les autres peut être observée. Cette phase est facilement détectable et la vitesse d’élongation des fibres est aisément déterminée par des techniques de fluorescence utilisant la Thioflavine S ce qui suggère que les oligomères puis les PHF ont une structure en feuillets β (Xu et al., 2010).

Figure 50 : Formation d’oligomères de tau par création de ponts disulfures intermoléculaires
- La troisième phase consiste en un assemblage des oligomères en fibrilles qui s’accumulent pour former des inclusions filamentueuses ou des PHF (Ramachandran and Udgaonkar, 2013). Dans la maladie d’Alzheimer, l’accumulation intraneuronale de PHF est appelée dégénérescence neurofibrillaire (DNF).

Dans les maladies neurodégénératives, on observe une phosphorylation intense qui va entraîner la formation d’une agrégation d’isoformes de tau. En fonction des différentes tauopathies, on ne retrouve pas les mêmes isoformes impliquées (Tableau 9). Ainsi on retrouve :

- les 6 isoformes impliquées dans l’agrégation présente lors de la MA,
- uniquement 3 isoformes (3R) ne contenant pas le domaine répété R2 dans la démence front temporale avec Parkinson lié au chromosome 17 (Tsuboi et al., 2002),
- uniquement 3 isoformes contenant les 4 domaines répétés (4R) dans la paralysie supranucléaire progressive.(Buée et al., 2010 ; Kovacs, 2015)

<table>
<thead>
<tr>
<th>Maladies</th>
<th>MA</th>
<th>DGA</th>
<th>DCB</th>
<th>PSN</th>
<th>MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3 (3 isoformes)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>R4 (3 isoformes)</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>R3+R4 (6 isoformes)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 9 : Comparaison de la présence des isoformes de tau dans différentes formes de tauopathies. MA = Maladie d’Alzheimer ; DGA = Démence à grain argyrophile ; DCB= Démence cortico-basale ; PSN = Paralysie supra nucléaire, MPI= Maladie de Pick (Kovacs, 2015).

Il a été montré que l’agrégation est due à un mauvais repliement de la protéine. Ce mauvais repliement serait dû à des interactions anormales entre protéines. Il faut savoir que 30 % des protéines natives sont incorrectement repliées et doivent être dégradées en utilisant 3 types de systèmes : soit des chaperonnes qui les remettent dans la bonne conformation (Hartl et al., 2011), soit le protéasome qui les détruit , soit de l’agrégation (Kopito and Sitia, 2000). C’est la raison pour laquelle, de nombreuses équipes pensent que la forme agrégée est une forme « protectrice », la forme toxique étant celle composée d’oligonères.
1.4.2. Propagation

Des études in vitro des mécanismes de la formation de fibrilles à partir de protéines tau (Ramachandran and Udgaonkar, 2013) ont mis en évidence qu’une agrégation primaire de protéine tau (présence d’oligomères) serait un facteur favorisant l’agrégation de nouvelles protéines tau (Phénomène de « seeding »). L’agrégation se transmettrait ensuite à d’autres cellules par externalisation des formes agrégées selon un mécanisme « prion-like » (Medina and Avila, 2014). Un dysfonctionnement dans les réseaux neuronaux et une présence d’agrégats de tau dans les zones connectées a été constatée : une injection d’agrégats de tau dans la région du cortex entorhinal se propageant à l’hippocampe, à l’amygdale et aux régions corticales en quelques mois a été décrit chez la souris (Stancu et al., 2015).

1.4.3. Recherche des agrégats à l’aide d’anticorps

La protéine tau est une phosphoprotéine dont différents sites de fixations ont pu être reconnus spécifiquement par certains anticorps. Mais en post mortem, les phosphatases déphosphorylent très rapidement les sites : 80 % disparaissent en 2h à température ambiante (Buée-Scherrer et al., 1996). Dans les agrégats, les phosphatases n’ont pas accès aux sites phosphorylés qui restent donc conservés. Dans de nombreuses pathologies, les protéines tau s’agrègent en des inclusions filamentueuses intraneuronales. Dans la MA, elles sont appelées paires de filaments hélicoïdaux (PHF). Malgré le fait que de nombreux de sites de phosphorylation soient communs entre les PHF et la protéine tau native, des caractéristiques biochimiques les différencient : leur acidité, leur insolubilité et leur hyperphosphorylation (qui leur conférerait la plus grande acidité).

C’est l’hyperphosphorylation, ou la phosphorylation anormale qui va être reconnue ici par un panel d’anticorps. Ces anticorps dirigés contre différents épitopes qui sont des sites de phosphorylation différents ont permis de mettre au jour les sites de phosphorylation classiques et des sites de phosphorylation anormaux (Figure 51).
Figure 51 : il existe 80 sites potentiels de phosphorylation (Ser (S) ou Thr(T)) sur la protéine tau. Certains sont des sites « normaux » de phosphorylation reconnus par des anticorps anti-tau dépendant de la phosphorylation (AD2, AT8, AT180, AT270 et 12E8). Cette phosphorylation module la liaison de tau aux microtubules. Les sites « pathologiques » sont ceux de la phosphorylation anormale des protéines tau qui caractérise les tauopathies. Trois ont été identifiés et sont reconnus par les anticorps AT100, PHF-27/TG-3 et AP422/988. La numérotation des acides aminés reconnus est celle de l’isoforme la plus longue (441 acides aminés). Adapté de (Buée et al., 2000a).

On a pu ainsi mettre en évidence des immunoréactivités aux anticorps utilisés qui diffèrent suivant les états de phosphorylation de la protéine tau (Figure 52).
Figure 52 : Phosphorylation normale et pathologique de tau. Dans un neurone, la dynamique des microtubules est assurée par un équilibre entre les formes de protéines tau peu ou non phosphorylées et les formes phosphorylées. Les protéines tau présentent donc une immunoréactivité différente pour les anticorps décrits sur la Figure 49. Dans un neurone en dégénérescence neurofibrillaire qui possède des PHF, il y a hyperphosphorylation et/ou phosphorylation anormale des six isoformes de protéines tau et augmentation de l’immunoréactivité des protéines tau pour certains anticorps et/ou apparition de nouveaux épitopes (reconnus par exemple par les anticorps AT100 et 988). schéma tiré de (Buée and Delacourte, 2002).

- : pas de reconnaissance par l’anticorps (absence de phosphorylation) ;
-/+ : faible reconnaissance (faible phosphorylation) ;
± : reconnaissance (phosphorylation) ;
+ : forte reconnaissance (Phosphorylation importante).

L’étude des différents sites de phosphorylation dans des cas de maladie d’Alzheimer à différents stades a montré que le motif de phosphorylation est corrélé avec la perte d’intégrité des neurones (Augustinack et al., 2002). Les études ont utilisé 11 anticorps reconnaissant des épitopes différents et un panel de cas de MA de gravité variable a été évalué et classé en trois groupes selon l’évolution de leurs stade de dégénérescence : pré-DNF (pDNF), intra-DNF (iDNF), et les DNF extra-neuronale (eDNF). Au stade pDNF, dans lequel les neurones ne présentent pas de fibrilles, on observe avec l’Anticorps TG3 12 E 8 une fixation ponctuelle dans le cytoplasme, les dendrites, le soma et le noyau. Dans le stade iDNF les structures fibrillaires sont surtout visibles avec l’anticorps 12 E 8 et AT100. Les dégénérescences extracellulaires eDNF qui contiennent du tau sous forme de filament sont reconnues très fortement par l’AT8, l’AT100, et le PHF-1 qui fixent aussi les fibrilles en intra
cellulaire. Cette séquence de phosphorylation précoce de tau suggère qu'il y a des événements en amont de la formation des filaments qui sont spécifiques et sont détectés par différents anticorps. Des modifications conformationnelles de la molécule provoqueraient donc ces altérations cytopathologiques (Figure 53).

<table>
<thead>
<tr>
<th>Antibody</th>
<th>pNFT</th>
<th>iNFT</th>
<th>eNFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT175/T181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12E8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHF-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 53 : Profil de fixation des anticorps spécifiques de certains sites de phosphorylation de tau en fonction de la stadiification des dégénérescences neurofibrillaires adaptée de (Augustinack et al., 2002).

1.5. Toxicité de tau

1.5.1. Perte de fonction de tau, déstabilisation des MTs et altération du transport axonal

La première hypothèse développée il y a quelques années, postule que dans le cadre de la MA et des autres tauopathies, l’hyperphosphorylation de tau et la séquestration de la protéine tau soluble dans les PHF conduit à son détachement des MTs, et entraîne la fragilisation de ces derniers (Zhang et al., 2005). La perte de fonction de la protéine tau consécutive à son détachement des MTs conduirait à l’altération du cytosquelette microtubulaire, ce qui entraînerait un défaut de structure de la cellule neuronale et une altération du transport axonal.
En effet, diverses études ont montré une diminution précoce de la densité des MTs chez les patients atteints de la MA et une aggravation de cette perte de microtubules au cours du temps (Cash et al., 2003). De plus, in vitro, la protéine tau hyperphosphorylée soluble, extraite de cerveaux de patients atteints de la MA, induit une faible polymérisation des MTs comparée à la protéine tau native. Par ailleurs, lorsqu’elle est sous forme tau-PHF, la protéine tau est incapable, ou presque, d’induire cette polymérisation (Yoshida and Ihara, 1993). Différentes lignées de souris, chez lesquelles le gène tau est invalidé, ont été générées dans le but de vérifier cette hypothèse mais les phénotypes retrouvés n’étaient pas tous identiques. Certaines lignées ne présentaient aucun défaut majeur et d’autres développandaient un défaut moteur et une hyperactivité. Ces expériences suggèrent que la perte de fonction de la protéine tau seule n’est probablement pas la cause majeure de la dégénérescence et du dysfonctionnement neuronal observés dans les tauopathie (Roberson et al., 2011; Yuan et al., 2008).

1.5.2. Inhibition du transport axonal suite à un excès de tau sur les MTs

Une deuxième hypothèse, apparue plus tardivement, suggère que dans la MA, du fait de l’augmentation de la concentration de tau suite à la baisse des mécanismes de dégradation avec l’âge (Pritchard et al., 2011), il aurait un excès de fixation de la protéine tau sur les MTs. La fixation de tau en excès sur les MTs pourrait entraîner une altération du transport axonal. Celle-ci entraîne une perte synaptique et enfin une mort neuronale. Dans ce modèle, l’hyperphosphorylation de tau serait donc un moyen de détacher tau des MTs et de préserver le transport axonal dans les neurones. La surexpression de tau dans les neurones inhibe le transport kinésine-dépendant des organites tels que les mitochondries, les peroxysomes, les neurofilaments et des vésicules qui dérivent du Golgi contenant notamment la protéine membranaire APP (Mandelkow et al., 2003). La délocalisation des mitochondries et du RE entraîne alors un déficit de production d’énergie, une perturbation du mécanisme calcique et de la synthèse lipidique. La perte des peroxysomes dans les neurites rend la cellule vulnérable au stress oxydant conduisant à une neurodégénérescence. Ainsi une équipe a montré que la surexpression de tau induit une détérioration du transport axonal qui pourrait être à l’origine de la perte neuronale observée.
dans la MA (Kopeikina et al., 2012) (Figure 54). Un autre étude vient confirmer cette hypothèse, in vitro (Dixit et al., 2008).

1.6. La maladie d’Alzheimer

En 1907, Aloïs Alzheimer publiait un article dans lequel il démontrait l’existence d’une pathologie démentielle organique, caractérisée par la présence de deux lésions cérébrales : les plaques séniles (plaques amyloïdes) et la dégénérescence neurofibrillaire (DNF). Ces lésions ont des localisations différentes : les plaques sont situées dans le domaine extra cellulaire du parenchyme nerveux de l’écorce cérébrale tandis que la DNF correspond à l’accumulation de filaments pathologiques (tau-PHF) dans les neurones en dégénérescence. Cette maladie recevra quelques années plus tard le nom de maladie d’Alzheimer.
Plus de 100 ans après cette découverte, les mécanismes d’action de formation de ces lésions sont partiellement élucidés mais d’autres processus ont été mis en évidence et méritent encore de nombreuses investigations. Un grand nombre d’articles ont été publiés sur le sujet et, l’état de la recherche ayant beaucoup évolué durant ces dix dernières années, il est nécessaire de sélectionner et trier les différentes informations. Nous avons choisi de nous concentrer sur 5 faits incontestables reconnus par la communauté scientifique (Delacourte, 2006) :

1) Les plaques amyloïdes sont constituées d’un peptide, appelé Aβ, qui dérive d’une protéine précurseur nommée APP
2) Les PHF qui forment la dégénérescence neurofibrillaire sont constituées de protéines tau.
3) Une majorité des formes familiales autosomiques dominantes sont dues à des mutations trouvées sur les gènes APP1 ou PS1 ou PS2.
4) APP est un élément central dans la physiopathologie, PS1 et PS2 étant des protéines impliquées dans sa coupure protéolytique.
5) Le facteur de risque majeur est l’âge, puis vient le génotype ε4 de l’Apolipoprotéine E. La conformation de cette protéine mutée favoriserait le passage de peptide Aβ42 en intracellulaire et provoquerait une toxicité plus précoce (Argyri et al., 2014).

1.6.1. Les plaques séniles
La plaque sénile se compose en son centre d’un dépôt amyloïde d’environ 10 à 20 mm de diamètre. La nature « amyloïde » du dépôt central a été affirmée par coloration au rouge Congo qui se fixe sur les plaques amyloïdes et induit une biréfringence verte en lumière polarisée. Elle peut également être visualisée à l’aide d’anticorps spécifiques en immunohistochimie.

Il peut exister également des dépôts amyloïdes dans la paroi des artères et des veines, méningées ou parenchymateuses, ainsi que des capillaires. La prévalence de cette angiopathie amyloïde au cours de la maladie d’Alzheimer est diversement interprétée : elle est en tout cas fréquente, sinon constante. De manière générale, les substances amyloïdes,
qu’elles soient déposées au sein des plaques séniles ou dans la paroi artérielle ou veineuse, ont en commun leur structure chimique, en feuillets β plissés, qui les rend insolubles (Glenner, 1980a,b). Le peptide contenu dans la substance amyloïde de la maladie d’Alzheimer, aujourd’hui connu sous le nom d’Aβ, a été initialement isolé à partir de vaisseaux. Il est constitué de 40 à 42 acides aminés.

Il existe deux voies de métabolisations schématisées dans la Figure 55:

- La voie amyloïdogénique qui conduit à la production et à la sécrétion du peptide Aβ, consécutive à l’action de deux sécrétases (BACE1 et la gamma sécrétase),
- La voie non-amyloïdogénique consécutive à une coupure d’APP par l’alpha sécrétase.
Aβ serait l’élément neurotoxique déclencheur qui provoquerait les mécanismes l’excitotoxicité par le biais des récepteurs NMDA aboutissant à la phosphorylation anormale de tau et à la formation de PHF. C’est la théorie de la cascade amyloïde de Hardy (Hardy and Allsop, 1991). De plus l’analyse des métabolites de l’APP indique que le fragment sécrété N-terminal sAPPα possède des fonctions neurotrophiques tandis que le fragment intracellulaire AICD serait un facteur de transcription (Delacourte, 2006).

1.6.2. La dégénérescence neurofibrillaire (DNF)

Il s’agit d’une accumulation de protéines tau intraneuronale sous forme de paquets de filaments pathologiques : les PHFs. La protéine tau sert à stabiliser les microtubules, qui sont à la fois les rails du transport intra neuronal et les structures de soutien de l’espace tridimensionnel du neurone. Plus la protéine est phosphorylée, plus l’interaction avec les microtubules va diminuer. Nous avons vu précédemment deux hypothèses sur les causes et conséquences de ces PHF (Duyckaerts et al., 1999). La majorité des syndromes démentiels sont associés, directement ou indirectement, à un défaut métabolique de la protéine tau. La maladie d’Alzheimer associe les deux lésions illustrées par la Figure 56.
Les colorations argentiques furent les premières à permettre de visualiser la pathologie neurofibrillaire. Avec cette méthode, l’accumulation de matériel fibrillaire dans le corps cellulaire du neurone est soulignée par le dépôt d’argent métallique. Des anticorps spécifiques anti-tau peuvent également être utilisés. Différents stades de la maladie ont été décrits au niveau anatomo-pathologique et sont illustrés Figure 56.

Figure 56 : Caractéristiques histopathologiques correspondant à l’évolution de la maladie d’Alzheimer préclinique. Le stade 0 (A et B) se réfère à des cas sans amylose cérébrale. (A) en marquant le peptide Aβ en IHC (B) en marquant les DNF par PHF-1 / phospho-tau IHC (contre-colorées avec de l’hématoxyline). Dans le stade 1, il existe des plaques amyloïdes diffuses, IHC (C), mais ces plaques ne sont pas associées avec des DNF qui seraient détectables en utilisant une coloration à l’argent Bielschowsky (D). Dans le stade 2, il y a des plaques amyloïdes diffuses (E) et aussi quelques plaques avec une composante neuritique (flèche bleue dans F). Au stade 3, il y a des caractéristiques généralement observées dans la MA. Les régions du lobe temporal médian telles que l’amygdale (G) peuvent avoir de nombreuses plaques amyloïde et DNF comme montré ici avec une coloration à l’argent(Gallyas). Dans le cortex temporal, on observe la présence de neurones en dégénérescence (H). Les barres d’échelle: (A) 500 µm; (B) de 1 mm; (C-F) 100 pm; (G) 50 µm; (H) 30 µm (Jicha et al., 2012).
Braak et Braak (Braak and Braak, 1995) ont montré que les DNF avaient une densité et une distribution différentes selon le stade de la maladie. Elles réalisent ainsi un parcours progressif finissant par un envahissement important du cortex. Ils ont ainsi pu distinguer 6 stades corrélés aux dysfonctionnements cognitifs (Figure 57 : seuls 3 stades sont représentés).

Au stade entorhinal, les DNF apparaissent d'abord dans la région transentorhinale (la région intermédiaire entre le cortex entorhinal et l'isocortex temporal adjacent) (stade I). Puis elles envahissent la couche II du cortex entorhinal et le secteur CA1 de l'hippocampe (stade II). Au stade limbique le nombre de DNF augmente dans les régions déjà affectées, et elles s'étendent dans l'amygdale et le néocortex temporal adjacent (stade III) puis dans le subiculum (stade IV). Finalement au stade néocortical, les DNF augmentent dans les régions déjà affectées et se développent dans le néocortex associatif (stade V) puis dans le néocortex sensoriel et moteur (stade VI) (Braak and Braak, 1995).

La démence ne se manifeste que lorsque les DNF envahissent le néocortex associatif.

![Figure 57 : Progression des plaques séniles et des DNF au cours de la MA. (a) : les dépôts d'amyloïde-β (plaques séniles) dans le néocortex d'un patient atteint de la MA. (b) : Dégénérescences neurofibrillaires dans un neurone du néocortex d'un patient atteint de la MA. (e) et (f) : Évolution dans le temps des caractéristiques protéiques spécifiques dans la MA (e : progression de l'amylose, f : progression des DNF), déduites de l'analyse post-mortem de cerveaux. Trois stades sont présents, avec des flèches blanches indiquant la propagation putative des lésions (Jucker and Walker, 2013).](image)

De nombreuses hypothèses ont été émise sur la propagation intracérébrale de cette maladie et l’hypothèse d’une propagation de type prion est de plus en plus évoquée. En effet, des auteurs ont montré que l’ajout de la protéine tau dans sa conformation phosphorylée et
agrégée entraînait une propagation des lésions aux cellules alentour qui allaient elles mêmes produire des tau phosphorylées (Falcon et al., 2015; Ridley et al., 2006 ; Jucker and Walker, 2013; Brettschneider et al., 2015).

1.7. **Historique des radiotraceurs de la DNF**

L’imagerie de la protéine tau est considérée en tant que telle comme ayant une importance capitale pour faire progresser les diagnostics actuels vers des diagnostics plus précoces et plus précis de tauopathies, ainsi que pour le suivi des interventions thérapeutiques et le développement de médicaments.
<table>
<thead>
<tr>
<th>Molécules</th>
<th>Kd Affinité pour les fibrilles tau (nM)</th>
<th>Lipophile</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](104x656 to 203x726)</td>
<td>65</td>
<td>3,92 (Agdeppa et al., 2001)</td>
<td>Affinité pour Aβ (5nM) manque de spécificité (Harada et al., 2012)</td>
</tr>
<tr>
<td>![Image](107x594 to 199x652)</td>
<td>86</td>
<td>2,40 (Okamura et al., 2013)</td>
<td>Affinité de 30nM pour Aβ (Harada et al., 2012)</td>
</tr>
<tr>
<td>![Image](106x510 to 200x579)</td>
<td>2,63</td>
<td>3,03 (Okamura et al., 2013)</td>
<td>Molécule testée dans la MA (Okamura et al., 2014)</td>
</tr>
<tr>
<td>![Image](111x370 to 195x431)</td>
<td>5,19</td>
<td>2,32 (Okamura et al., 2013)</td>
<td>Molécule testée dans la MA (Harada et al., 2015)</td>
</tr>
<tr>
<td>![Image](97x291 to 210x358)</td>
<td>14,6</td>
<td>1,67 (Xia et al., 2013)</td>
<td>Dérivé en cours d’étude clinique (MA, traumatismes crânien etc.)</td>
</tr>
<tr>
<td>![Image](104x212 to 203x284)</td>
<td>100</td>
<td>3,92 (Kimura et al., 2015)</td>
<td>Non sélectif des DNF affinité également pour la plaque amyloïde</td>
</tr>
<tr>
<td>![Image](106x212 to 200x284)</td>
<td>0,7</td>
<td>2,18 (Shao et al., 2012)</td>
<td>Pas encore de dérivés fluorés</td>
</tr>
</tbody>
</table>

Tableau 10 : Caractéristiques d’affinité, de lipophilie et commentaires sur les traceurs existants ciblant les tau-PHF. Les dérivés en gras sont ceux dont les études sont les plus avancées.
Plusieurs stratégies de développement des agents d'imagerie de tau ont été proposées sur la base des logiciels de relation structure-activité (SAR) : à partir des N-benzylidène-benzohydrazides (composé utilisé pour la détection des PHF en marquage sur lame), il a été a montré que la sélectivité était plus élevée pour les tau-PHF en incorporant des groupes hydrophiles encombrants dans ces ligands amphiphiles, qui empêchent les liaisons aux fibrilles de peptide amyloïde (Ali et al., 2011).

Un autre groupe, en utilisant également la technique SAR et l’étude du polymorphisme structural, a permis d’obtenir des dérivés de bonne sélectivité pour tau PHF dans la famille des 2-aryl benzothiazole (Honson et al., 2007a).

Un autre groupe qui travaillait plus spécifiquement sur la thérapie ciblé sur tau PHF a évalué différentes classes chimiques : les imidazothiazoles, benzothiazoles et dérivés de pyrimidazole par des études de fluorescence dans des échantillons de cerveaux humain et de souris transgéniques (Honson et al., 2007). Un de ces dérivés, le SKT04-137, a été radiomarqué avec du 18F et une étude de biodistribution chez la souris a été réalisée. Le composé a montré un passage cérébral suffisant mais une cinétique lente. Une série de thiohydantoïne, oxindole et styrylbenzimidazole a été conçue. Leur évaluation préclinique a montré que, bien que tous affichent une haute affinité pour les DNF dans les études d’autoradiographie, seul les dérivés de styrylbenzimidazole présentaient un passage de la BHE suffisant pour constituer de bons ligands in vivo (Matsumura et al., 2013).

Il convient maintenant de présenter les différentes familles de radioligands de tau-PHF.

1.7.1. Le FDDNP (famille des aminonaphtalènes)

Le 2-(1-(6-(diméthylamino) naphthalène-2-yl) éthylidène) malononitrile (DDNP) est un composé neutre, lipophile et fluorescent. Un dérivé fluoré, le 18F-FDDNP, a été testé comme traceur des plaques amyloïdes (Agdeppa et al., 2001). Les études sur cerveaux de patients Alzheimer par détection de la fluorescence native du FDDNP ont révélé qu’il marque les plaques séniles et les dégénérescences neurofibrillaires. Le métabolisme du 18F-FDDNP a été étudié par une équipe des Pays-Bas (Luurtsema et al., 2008). Elle a montré que le 18F-
FDDNP est métabolisé dans l’organisme par un cytochrome P450 en dérivés hydrophiles tels que le fluoroéthanal par N-déalkylation. Cette dégradation est très rapide (80 % de dégradation en dix minutes). Bien que cela soit surprenant pour des composés hydrophiles, ces métabolites polaires passent la BHE : il en résulte une fixation non spécifique et donc un bruit de fond important. Les images doivent être obtenues par la mesure du temps de passage dans le cerveau, le $[^{18}F]$-FDDNP étant mieux retenu que les composés non spécifiques (Luurtsema et al., 2008).

Les images d’une TEP $[^{18}F]$-FDDNP sont interprétables par observation de la cinétique de fixation du traceur (Shoghi-Jadid et al., 2002). Le $[^{18}F]$-FDDNP passe la BHE puis reste fixé au niveau cérébral pendant les 30 premières minutes après l’injection. On observe ensuite une période de « wash out ». Pour interpréter les images, il est donc nécessaire d’utiliser deux temps de mesure. Le fait que le traceur ne soit pas spécifique des DNF puisqu’il a aussi de l’affinité pour les plaques amyloïdes n’en fait pas un traceur de choix.

1.7.2. $[^{11}C]$-lansoprazole (famille des benzothiazoles)

Les dérivés des benzimidazoles : lansoprazole et astémizole ont également été proposés comme des agents d’imagerie de tau PHF, car ils avaient la capacité à se lier in vitro à tau PHF. Le $[^{11}C]$-méthyl lansoprazole a été testé chez la souris et le singe rhésus. Il a montré une plus forte captation dans les souris mutées développant des tau PHF. Cependant ce composé était le substrat d’une PGP (protéine d’efflux empêchant le passage à travers la barrière hémato-encéphalique) murine, ce qui réduisait fortement son passage au niveau cérébral. Les essais sur le primate ont montré que la molécule n’était pas substrat de la PGP dans cette espèce (Shao et al., 2012).

1.7.3. Famille THK (benzimidazole et quinoline)

Les dérivés benzimidazole et quinoline ont été identifiés comme candidats pour l’imagerie de tau par criblage de petites molécules se liant aux feuilles β (Okamura et al., 2005; Okamura et al., 2013; Tago et al., 2014). Le THK523 a été radiomarqué avec le $[^{18}F]$ et testé en préclinique. Les études de liaison in vitro ont démontré que ce traceur se lie avec plus
d'affinité pour les agrégats de tau (Kd =1,67 nM) que pour les agrégats de peptide amyloïde (Kd =20,7 nM). Bien que l'analyse des autoradiographies indiquât que le [\(^{18}\text{F}\)]-THK523 se liait sélectivement aux tau PHF aux concentrations traceuses et non pas aux plaques amyloïdes dans les cerveaux MA (Harada et al., 2012), il a également été montré qu'il ne se liait pas aux autres lésions de tau PHF dans les tauopathies autres que la MA (Fodero-Tavoletti et al., 2014). Ce traceur passe bien la BHE et se lie spécifiquement aux tau-PHF présentes dans les souris transgéniques de MA (Fodero-Tavoletti et al., 2011).

Pour tester la sélectivité du radiotraceur chez l’homme, il a été injecté à des sujets sains et à des malades MA, qui ont également bénéficié d’un TEP PIB (PIB = Composé de Pittsburgh : c’est le composé de référence dans la recherche de plaque amyloïde in vivo). Les résultats chez les sujets MA ont montré une captation plus importante du THK dans les parties temporales, pariétales et orbitofrontales, et dans les hippocampes. Chez les sujets MA, les zones de captation n’étaient pas associées aux zones de captation du PIB montrant bien la sélectivité du traceur pour le tau PHF (Villemagne et al., 2013, 2014). La rétention du traceur était corrélée au score cognitif, en confirmation des études post mortem montrant une forte corrélation entre DNF et sévérité de la démence. Cependant, une forte rétention dans la substance blanche par rapport à la substance grise ne permet pas d’avoir une vision topographique claire des lésions. C’est pourquoi, il a été développé de nouveaux dérivés de cette classe (Okamura et al., 2013, 2014). Ces deux nouveaux dérivés ont une affinité plus importante pour tau PHF : [\(^{18}\text{F}\)]-THK5105 (Kd = 2.63 nM) et [\(^{18}\text{F}\)]-THK5117 (Kd = 5.19 nM). Des études préliminaires chez l’homme ont montré une cinétique plus avantageuse avec un meilleur signal sur bruit (Harada et al., 2015).

1.7.4. Le [\(^{11}\text{C}\)] PPB3

Basé sur une structure phényl/pyridinyl-butadiényl-benzothiazoles/benzothiazolium (PBB), ce traceur présente une bonne spécificité pour les DNF et possède une clairance rapide (Matsumura et al., 2013). Ces résultats ont été obtenus par des études microTEP chez des souris transgéniques exprimant les tau-PHF humain de la MA. Une étude chez l’humain a été réalisée comparant des sujets contrôles et des patients atteints de MA. La rétention du traceur a été comparée à celle du PIB afin de contrôler la spécificité pour tau (Matsumura et
al., 2013). Ces auteurs ont montré que les captations du 11C-PIB et du 11C-PPB3 étaient situées dans des zones différentes. Un patient atteint de dégénérescence corticobasale a également été testé et le traceur a montré une rétention importante dans les noyaux gris centraux, ceci indiquant que ce traceur se fixe également sur les PHF hors MA (Matsumura et al., 2013).

1.7.5. Famille des benzimidazoles pyrimidine

En screenant par autoradiographie plusieurs dérivés benzimidazole pyrimidine, 2 nouveaux radiotraceurs ont été identifiés : 18F-T807 et 18F-T808 (Xia et al., 2013). Ils se lient avec une affinité nanomolaire aux tau-PHF et sont 25 fois plus sélectifs pour ces tau-PHF que pour Aβ. Les premières études chez l’homme ont montré une rétention plus importante du traceur chez les malades, et ce, d’autant plus que la maladie était à un stade avancé (Chien et al., 2013). Le 18F-T808 a montré de meilleurs paramètres cinétiques mais ce composé a présenté une dégradation avec relargage de fluor dans certain cas (Chien et al., 2013).

Présentation de la molécule

Plusieurs dérivés benzimidazole pyrimidine se fixant sur les PHF tau ont été découverts par Siemens Molecular Imaging Biomarker Research puis rachetés par la société Avid / Lilly. Il s’agit en particulier du 18F-T807. Le 18F-T807 indiqué dans ces publications correspond à la molécule 18F-AV1451 des laboratoires Lilly (Tableau 10).

Son nom chimique est le : 7-(6-18[F]fluoropyridin-3-yl)-5H-pyrido [4, 3-b]indole ; son poids moléculaire est 262,27 et sa formule chimique : C16H10FN3

Affinité pour les agrégats de tau

La spécificité du 18F-AV1451 a été testée pour les DNF par rapport à Aβ. En effet, ce traceur a de l’affinité pour les structures en feuilllets β, or Aβ et tau PHF possèdent tous les deux ce type de structure. La spécificité pour tau PHF a été testée sur des coupes d’autoradiographie sur 3 groupes d’échantillons cérébraux frais congelés. (Groupe A : Dépôt important de PHF-tau et d’Aβ, groupe B : peu de PHF-tau mais beaucoup de dépôts amyloïde Aβ ; groupe C : négatif pour PHF-tau et Aβ). Les résultats de cette expérience sont visibles sur la Figure 58.
Figure 58 : Étude de selectivité du $\text{^{18}F}$-AV1451 pour tau PHF par rapport à Aβ.

58A haut: Images représentatives des autoradiographies avec le $\text{^{18}F}$ AV1451 ($\text{^{18}F}$ T807) dans les groupes A, B, et C. (Groupe A : Dépôt important de tau-PHF et d’Aβ, groupe B : peu de tau-PHF mais beaucoup de dépôts amyloïde Aβ ; groupe C : négatif pour tau-PHF et Aβ). Une intensité de fixation très importante a été observée dans la matière grise du cerveau des groupe A et pas dans les autres.

58B bas :
- à gauche : immunohistochimie avec un anticorps anti tau-PHF,
- au milieu : Autoradiographie avec du $\text{^{18}F}$-AV1451 ($\text{^{18}F}$ T807)
- à droite : Immunohistochimie avec un anticorps anti plaques amyloïdes.

La fixation du $\text{^{18}F}$ T807 est co-localisée avec l’IHC tau-PHF, mais non avec l’IHC Aβ, comme l’indique les flèches. Ces analyses ont été faites sur des coupes adjacentes d’épaisseur 10 µm. La révélation des images de fluorescences (immunohistochimie tau-PHF et Aβ) ainsi que celle des images d’autoradiographie a été obtenue en utilisant un instrument FLA-7000 Fuji Film. (Barre d’échelle : 2 mm)(Xia et al., 2013)

L’affinité du $\text{^{18}F}$-AV1451 a été testée pour les DNF et pour Aβ par des expériences de saturation sur coupes d’autoradiographie sur les 3 groupes mentionnés (nombre total d’échantillons = 26). Le Kd retrouvé pour les DNF était de 14,6nM. Afin de compléter cette étude, l’équipe a évalué la sélectivité du traceur pour tau par rapport à Aβ en réalisant des
corrélations entre le marquage par autoradiographie et une IHC (PHF ou Aβ) sur coupes adjacentes (Figure 59) (Xia et al., 2013).

Figure 59 : Étude de corrélation entre les autoradiographiques avec de l’AV1451 et l’IHC pour (PHF)-tau (A) ou l’IHC pour Aβ (B). Vingt-six cerveaux des trois groupes de patients ont été étudiés. L’étude de corrélation entre PHF-tau IHC et [¹⁸F] T807 autoradiographie a montré une corrélation linéaire (A), mais aucune corrélation n’a été observé entre Aβ IHC et autoradiographie [¹⁸F] T807 (B). Abréviation: GM / WM, rapport du signal de la substance grise vs signal de la substance blanche (Xia et al., 2013).

L’évaluation de sa lipophilie par un calcul du log de P a été réalisée théoriquement par le logiciel chemBioDraw à 3,4 et mesuré expérimentalement à 1,67. Cette molécule lipophile devrait pouvoir passer la BHE. Ce résultat a été confirmé par les études TEP in vivo qui montraient un passage rapide dans le cerveau et une clairance rapide (Xia et al., 2013).

Le [¹⁸F]-AV1451 est épuré rapidement du cerveau, on retrouve 4,33 % de la dose injectée par gramme 5 minutes après l’injection et 0,62 % ID/g 30 min après l’injection. Le rein est l’organe d’élimination majeur. Il y a une faible accumulation du traceur dans les muscles et dans les os (Xia et al., 2013).

Quatre métabolites ont été détectés, tous avec un temps de rétention plus court que l’[¹⁸F]-AV1451. Au bout de 10 minutes dans le plasma, 66 % du composé ont été dégradés en métabolites (Xia et al., 2013).
Concernant le site de liaison, une étude a montré que les benzimidazoles dont fait partie le lansoprazole mais aussi le [\(^{18}\)F]-AV1451, se fixaient plus particulièrement sur le site \(_{386} \text{T}D\text{H}G\text{A}E_{391}\), qui est un site de liaison situé au niveau C terminal (Figure 60). Cette étude n’a été réalisée que pour le lansoprazole et l’astémizole mais on peut penser que le site de liaison du [\(^{18}\)F]-AV1451 est identique (Rojo et al., 2010).

Ce radiotraceur est en cours d’étude dans plusieurs centres mais très peu de résultats ont été publiés. Une étude a été initiée à l’Hôpital général du Massachusetts sur des patients FTDP-17 ; ces patients sont atteints d’une maladie génétique avec présence de tau-PHF (Ghetti et al., 2015). L’IRM des patients révèle une atrophie du lobe frontal et temporal et un élargissement des ventricules. Le volume du cerveau entier diminue de 1,83% en 5 ans pour les patients non symptomatiques et cette atrophie s’accélère très fortement chez les patients symptomatiques (- 2,74% / an). Des études en TEP FDG ont montré un hypométabolisme frontal et temporal chez les patients symptomatiques. Cet hôpital recrute actuellement des patients symptomatiques pour effectuer des TEP à [\(^{18}\)F]-AV1451. Les
premiers TEP montrent un signal dans le lobe frontal caractéristique de cette tauopathie et respectant la cartographie de référence (Figure 61)

Figure 61 : Mise en évidence d’une captation du \(^{18}\text{F}\)-AV1451 chez un patient de 56 ans atteint de démence fronto-temporale et présentant la mutation P301L MAPT. Colonne de gauche = IRM de structure (T1) et colonne de droite = \(^{18}\text{F}\)-T807. Le TEP montre un signal élevé dans le cortex frontal, le cortex pariétal et temporal antérieur, ainsi que dans les noyaux gris centraux (signal en accord avec la cartographie connue des lésions pour ce type de patient). La région de référence en TEP était le cervelet (Ghetti et al., 2015).

Un cas clinique a été récemment publié avec l’utilisation du \(^{18}\text{F}\)-AV1451 chez une personne de 71 ans ancien footballeur professionnel qui présentait un déclin cognitif avec un examen TEP amyloïde négatif. Les auteurs ont cherché à établir si le profil de captation du \(^{18}\text{F}\)-AV1451 pourrait correspondre à une tauopathie due à des traumatismes crâniens répétés. Une rétention sous-corticale (substance noire et globus pallidus) qui semblait plus en accord avec une paralysie supra nucléaire progressive a été mise en évidence (Mitsis et al., 2014).
Récemment, ce traceur a aussi été utilisé chez un patient de 56 ans ayant les symptômes d’une maladie d’Alzheimer, avec un historique familial important (père ayant eu une MA à 40 ans, et porteur homozygote de l’APO E4). Ce patient a subi 3 TEP : un TEP $^{[11]}$C-PIB afin d’évaluer son statut amyloïde, un TEP $^{[18]}$F-FDG, pour évaluer l’hypométabolisme glucidique et un TEP $^{[18]}$F-AV1451, pour évaluer la distribution de tau PHF (Figure 62). Ce patient présentait une atrophie corticale postérieure. Le TEP $^{[11]}$C-PIB a été évalué Aβ positif. Concernant le TEP $^{[18]}$F-AV1451, la fixation était très importante dans la partie postérieure ce qui correspondait à la zone d’hypométabolisme glucidique. Les auteurs concluent en évoquant une meilleure correspondance entre le TEP au $^{[18]}$F-AV1451 et déclin cognitif par rapport au TEP amyloïde (Ossenkoppele et al., 2015).

![Figure 62 : Relation entre plaques amyloïdes, métabolisme et DNF chez un patient ayant une forte probabilité d’être atteint de la MA. Coupes sagittales, axiales, et coronales de $^{[11]}$C Pittsburgh compound B (PIB), de $^{[18]}$F AV-1451, et de $^{[18]}$F fluorodeoxyglucose (FDG). A droite sont représentées des images d’IRM. DVR = distribution volume ratio; L = left (gauche); R = right (droite); SUVr = standardized uptake value ratio.](image)

De nombreuses études biomédicales sont en cours avec l’$^{[18]}$F-AV1451. Ces études explorent différentes pathologies neurodégénératives.
1.8. **Les primates non humains**

Les primates non humains (PNH) occupent une place spéciale dans les modèles de maladie car ils sont très proches de l’humain au niveau phylogénétique. Ils sont souvent le reflet fidèle au niveau physiologique de ce qui se passe chez l’humain. Ils sont particulièrement intéressants dans l’étude des processus sensitifs et neurologiques (Finch and Austad, 2012a).

Par ailleurs les modèles murins âgés, n’ayant pas spontanément de pathologies neurodégénératives ressemblant à la maladie d’Alzheimer doivent être génétiquement modifiés pour exprimer le peptide Aβ42 humain.

L’espèce de PNH la plus communément utilisée pour la recherche sur le vieillissement est le singe rhésus, qui a une durée de vie de 40 ans. Or, les études longitudinales sur les primates sont difficiles à mener, non seulement à cause des coûts occasionnés mais aussi à cause de la difficulté de maintenir des conditions de vie identiques au cours de plusieurs décennies. Cette durée de vie de 40 ans est donc un inconvénient dans l’étude du vieillissement. C’est pourquoi, les équipes scientifiques se tournent vers le développement d’un modèle de vieillissement PNH avec la plus courte durée de vie possible (Tardif et al., 2011; Finch and Austad, 2012). Un choix raisonnable pour un tel modèle est le marmouset commun (*Callithrix jacchus*), un des plus petits primates anthropoïdes diurne avec l’une des durées de vie les plus courtes. De plus, les marmousets sont faciles à manipuler et à entretenir. Ils ne transmettent pas de maladies à l’homme, sont dociles, nécessitent moins d’espace, et sont moins coûteux à reproduire et entretenir que les singes rhésus.

Un autre primate a également été très étudié dans ce contexte; il s’agit du microcèbe (Languille et al., 2012). Autrement appelé singe souris, cette espèce nocturne appartient au sous-ordre des prosimiens qui constitue le sous-ordre le plus éloigné de l’homme. Plusieurs équipes ont rapporté des modifications pathologiques dans le cerveau de certains sujets âgés et ces modifications ressemblent étroitement à celles observées dans le cerveau humain. Ces modifications comprennent une atrophie cérébrale localisée et des dépôts diffus de protéine Aβ (Bons et al., 2006; Kraska et al., 2011a; Mestre-Francés et al., 2000). Près de 80% des animaux dans les études présentent un vieillissement cérébral normal et
20% présentent des symptômes similaires à ceux de patients atteints de la MA : altération de la fonction cognitive, comportement agressif, diminution des interactions sociales, et biorhythmes perturbés. Associés à ces changements de comportement chez les animaux plus âgés, des dépôts amyloïdes et des protéines tau PHF ont été observées au niveau intracérébral. Cependant, la distribution des lésions est distincte de celle trouvée chez l’homme (Bons et al., 2006).

1.8.1. Le marmouset (Callithrix jacchus)

- Description

Le marmouset appartient au sous-ordre des simiens (le même que celui de l’homme) et à la famille des callithricidés (Tableau 11).

Tableau 11 : Classification simplifiée de l’ordre des primates

Mensurations du marmouset :

- Corps : 20 cm (de 17 à 25 cm).
- Queue : 28 cm (de 24 à 35 cm).
- Poids : 240 à 400 g.
Cerveau : 7,9 g (dont néocortex : 4,4 cm³).

1.8.2. Étude du vieillissement chez le marmouset

La durée de vie maximale du marmouset est de 16 ans ½ (animal aging longevity database) mais en moyenne la durée de vie en captivité est plus faible : autour de 5 à 7 ans. La Figure 63 montre la survie par âge pour 358 marmousets nés au SNPRC (South West National Primate Research Center) entre 1994 et 2010.

![Figure 63 : Analyse de la survie par âge de la colonie de marmousets du SNPRC contenant 358 marmousets entre 1994 et 2010 (Tardif et al., 2011)]

On considère qu’un marmouset est âgé à partir de 7-8 ans (Abbott et al., 2003). Dans des études comparant le jeune (2-3 ans) et les plus âgés (7-8 ans), ont été mis en évidence dans le groupe âgé des signes de vieillissement comme de la fibrose cartilagineuse dans les disques intra articulaires (Berkovitz and Pacy, 2000), des dépôts amyloïdes dans le cortex cérébral (Geula et al., 2002) et une diminution de la neurogénèse dans l’hippocampe (Leuner et al., 2007). Contrairement au rongeur, le marmouset présente une perte de Calbindin D₂₈k, au niveau des neurones cholinergiques au cours de son vieillissement (Wu et al., 2003). Chez l’humain, il existe également une diminution de calbindine D₂₈k au cours du vieillissement (Kook et al., 2014). D’autre part, une forte diminution de calbindine au niveau des neurones cholinergiques est associée aux maladies neurodégénératives liées à l’âge (Wu et al., 2003). La calbindine permettrait la régulation de l’augmentation du calcium intracellulaire.
1.8.3. Recherche de plaques amyloïdes et DNF chez les PNH

Le dépôt de peptide amyloïde formant des plaques est une des caractéristiques de diagnostic de la maladie d'Alzheimer. L’accumulation de peptide β-amyloïde dans le cerveau de nombreux PNH a été signalée y compris chez le marmouset (Geula et al., 2002 ; Maclean et al., 2000; Ridley et al., 2006). Les marmousets affichent une telle accumulation vers 7 à 10 ans. Geula et al. (2002) et Ridley et al (2006) rapportent des conclusions similaires en termes de forme et localisation du dépôt amyloïde β dans le cerveau de marmouset âgé, avec présence de plaques corticales diffuses positives en Aβ42, accumulation dans les petits vaisseaux corticaux, et aucune DNF. Les plaques amyloïdes sont retrouvées dans le cortex, l’hippocampe et en particulier dans l’amygdale (Maclean et al., 2000). Cependant, les rapports diffèrent considérablement suivant l’âge auquel les dépôts amyloïdes sont généralement trouvés ainsi que dans la prévalence de cette constatation. Geula signale que tous les animaux de plus de 7 ans (n=15) ont un dépôt alors que Ridley (n= 29 animaux de plus de 10 ans et 11 animaux entre 5 et 10 ans) rapporte qu’aucun animal de moins de 10 ans ne présente de dépôts amyloïdes et que seulement 17% des animaux entre 10 et 15 ans présentent ces plaques.

<table>
<thead>
<tr>
<th></th>
<th>Atrophie des dendrites</th>
<th>Présence de peptide amyloïde</th>
<th>Tauopathie après 80 ans</th>
<th>MA après 80 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humain</td>
<td>++</td>
<td>+</td>
<td>++ après 80 ans</td>
<td>+++ après 80 ans</td>
</tr>
<tr>
<td>Grand singes</td>
<td>?</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>(chimpanze, gorilles, orang-outan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singe Rhésus</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saïmiri (singe écureuil)</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Callithrix (Marmouset)</td>
<td>?</td>
<td>++</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Microcèbe</td>
<td>?</td>
<td>++</td>
<td>+</td>
<td>?</td>
</tr>
</tbody>
</table>

Concernant les cinq espèces citées dans le Tableau 12, on voit que toutes accumulent le peptide β amyloïde, comme le fait l’humain dans la maladie d’Alzheimer mais que ces dépôts ne sont pas toujours corrélés avec les DNF. Le singe rhésus qui est l’espèce la plus étudiée dans le vieillissement, ne présente pas de tauopathie ou de pertes neuronales majeures mais on constate chez lui une régression des dendrites et des pertes synaptiques (Luebke et al., 2010). Concernant la présence de tau phosphorylé, ces résultats sont controversés et une équipe a localisé, à l’aide d’un marquage par un anticorps anti tau-PHF1, des zones positives proche des plaques amyloïdes chez cette espèce (Shah et al., 2010). Les modifications cognitives sont corrélées avec une perte synaptique et une dégénérescence de la substance blanche dans la zone du cortex préfrontal. Toutefois les fonctions cognitives du singe rhésus présentant ces dégénérescences sont peu altérées en comparaison avec une maladie d’Alzheimer.

Le seul modèle de primate chez lequel des DNF avec hyperphosphorylation de tau ont été mises en évidence est le microcèbe. Leur présence a été révélée par un anticorps monoclonal CP13 spécifique pour sérine 202 phosphorylée. Ces marquages étaient présents uniquement au niveau de l’hippocampe (Kraska et al., 2011). Dans une autre étude utilisant un anticorps polyclonal contre les sites ser400-Thr 429 qui ciblait la phosphorylation sur Ser404 et Ser 422, les auteurs ont retrouvé une fixation au niveau cortical (cortex frontal, pariétal et occipital) mais aucun marquage au niveau de l’hippocampe qui de plus était préservé même chez les sujets âgés (Giannakopoulos et al., 1997). Chez cette espèce, le niveau de mort neuronale n’a pas été établi en comparaison avec celui de la maladie d’Alzheimer (associée à une perte de plus de 50 % des neurones pyramidaux dans le cortex entorhinal et la couche CA1 de l’hippocampe). Toutefois, chez le microcèbe, on retrouve bien une atrophie cérébrale (Kraska et al., 2011) et des dépôts amyloïdes diffus (Bons et al., 2006). On retrouve également une astrocytose avec augmentation de la protéine acide fibrillaire gliale (GFAP) (Kraska et al., 2011). La distribution de ces lésions est très différentes de celle de l’humain (Languille et al., 2012). Les modifications cognitives chez le microcèbe sont étudiées par une série de tests comportementaux étudiant cinq fonctions (Languille et al., 2012) : apprentissage, mémoire de travail, mémoire de reconnaissance, navigation et flexibilité mentale. Chez les sujets âgés, il a été observé une diminution de la mémoire de
149

reconnaissance et de la mémoire de travail et de la flexibilité mentale. Ce déclin cognitif n’est pas observé chez tous les individus, il existe une forte variabilité interindividuelle, le déclin cognitif a été corrélé à une atrophie cérébrale importante visualisée en IRM (Picq et al., 2012).

1.8.4. Le marmouset : modèle pour l’étude de la neurodégénérescence

Le marmouset est un primate qui développe très tôt les plaques amyloïdes et a une courte durée de vie. La présence de plaques amyloïdes a été étudiée dans le cas d’injection intracérébral d’Aβ humain et de l’étude de la propagation de ce peptide dans le modèle marmouset (Baker et al., 1993). Ces plaques ont également été retrouvées naturellement chez les marmousets âgés (Geula et al., 2002; Ridley et al., 2006). Même s’il n’exprime pas de DNF, il est possible qu’il présente des séquences de tau phosphorylé de conformation différentes qui ne sont pas détectées par les anticorps actuellement disponibles. Ce cas a déjà été retrouvé chez le singe Rhésus qui ne présente pas de marquage pour l’AT8 mais qui montre une positivité au PHF1 (Shah et al., 2010). En effet même si le gène de la protéine tau est assez bien conservé entre espèces, les épissages alternatifs et des modifications de conformations peuvent entraîner des modifications structurelles modifiant les épitopes reconnus par certains anticorps.

Le marmouset commun offre de nombreux avantages pour l’étude du vieillissement et pourrait être un modèle efficace de neurodégénérescence cérébrale. Les différentes études montrent qu’il pourrait être un modèle primate de neurodégénérescence de par les modifications cérébrales retrouvées comme la réduction de la neurogénèse, les dépôts β amyloïdes dans le cortex cérébral, la perte de calbindine (Tardif et al., 2011). Récemment, une équipe a dosé les métabolites du système thiol redox dans une colonie de marmousets et a montré que comme chez l’homme, une altération dans ce système existait avec le vieillissement, ce qui conduisait à des mécanismes d’oxydation progressive délétères (Roede et al., 2013).
Sa durée de vie maximale est en effet en moyenne de 30 à 40% inférieure à celle des singes couramment utilisés comme les macaques. L’apparition spontanée de ces déficits chez les marmousets âgés de 7 à 10 années suggère que cet animal peut se révéler un précieux
modèle, pour suivre l’apparition précoce et l’évolution de ces biomarqueurs du vieillissement pathologique (Figure 64). La variation entre colonies dans l’âge à partir duquel les modifications surviennent suggère que les conditions de vie provoquent l’apparition plus tôt ou plus tard de ces mécanismes de neuro dégénérescence (Geula et al., 2002 ; Ridley et al., 2006).

Figure 64 : Durée de vie des primates non humains corrélée à l’âge d’apparition des plaques amyloïdes intracérébrales. PS= plaques séniles et AA= Angiopathie amyloïde. Adapté de (Heuer et al., 2012)

2. PARTIE EXPERIMENTALE

Nous allons décrire ici les radiosynthèses de 18F-AV1451 que nous avons réalisées à Toulouse dans le cadre de la mise en place de cette synthèse et de sa validation en tant que médicament radiopharmaceutique expérimental. Nous présenterons ensuite les expérimentations pilotes que nous avons mises en place sur des échantillons de cerveaux afin d’établir les conditions optimales d’utilisation de ce traceur.

2.1. Matériel et méthode

2.1.1. Synthèse de l’18F-AV1451 en condition pharmaceutique

- Production du fluor sur cyclone IBA 10-5
La production est identique à celle décrite pour la 18F-FNM

- Programmation de l’automate RAYTEST SYNCHROM®

L’automate et le type de programmation sont identiques à ceux décrits dans le chapitre 3.1.1 de l’axe 1.

- Description du processus de fabrication :

La synthèse est effectuée en deux étapes. D’abord, une substitution nucléophile de l’aminium par un atome de fluor radioactif sur le précurseur, suivie par une étape de déprotection comme décrit dans la Figure 65.

Figure 65 : Description de la radiosynthèse du 18F-AV1451
L’irradiation de la cible:
Le fluor est obtenu à partir d’un cyclotron biomédical. La cible contenant 2.1 mL de H$_2$O18O est bombardée avec un faisceau de protons de 5 à 10 MeV. Le temps de fonctionnement ainsi que les µA intégrés sur la cible sont déterminés en fonction de la quantité de radioactivité souhaitée. Après irradiation, la solution de 18F est transférée par un tube capillaire au module de synthèse placé dans une cellule blinde.

Le piégeage du 18F fluor:
Sous un flux d’hélium, l’eau irradiée est passée sur une résine anionique, Sep-pack Accell plus QMA. Les anions de fluor sont captés par la résine et l’eau enrichie est recueillie dans un flacon. Sous un flux d’hélium, une solution de Kryptofix 222 / carbonate de potassium / eau / acétonitrile est passée à travers la résine. L’éluat contenant les anions de fluor est ainsi envoyé dans un flacon en verre appelé réacteur. Ensuite, une évaporation de la solution est réalisée à une température de 85° - 95° C pendant 4-6 min (afin d’évaporer toute trace) pour réaliser un séchage azéotropique. 0,5 mL d’acétonitrile sont ajoutés et évaporés sous un flux d’azote de qualité médicale à 80-95 °C. Le processus est répété trois fois.

La substitution nucléophile:
Le précurseur (1,5 à 2 mg) dilué avec du DMSO (1,5 mL) est transféré dans le réacteur. La solution est alors chauffée à 100 °C pendant 5 min pour réaliser la substitution nucléophile.

L’hydrolyse et la neutralisation:
Afin de retirer les groupes protecteurs, une hydrolyse avec du HCl 3N (0,9 mL) est effectuée et le mélange est chauffé à 100 °C pendant 5 min. À la fin de la réaction, la température du récipient de réaction est réduite, puis une neutralisation est réalisée avec un mélange de NaOH 3N (350 μL) et de citrate trisodique 1M (1 mL).
Prépurification:

Le mélange brut est dilué avec 10 mL d’eau puis est envoyé sur une colonne C18 qui est ensuite séchée par un flux d’hélium. Le $[^{18}F]$-AV1451, lipophile, est capté par cette cartouche alors que les ions fluorures n’ayant pas réagi passent à travers la cartouche et sont éliminés dans un récipient poubelle. Ensuite la cartouche sep pack est éluée par 2 mL d’éthanol absolu. La solution résultante est ensuite chargée sur la boucle de HPLC pour la purification.

Purification de $[^{18}F]$ AV1451 et formulation:

Pour obtenir une solution pure de $[^{18}F]$-AV1451, le mélange réactionnel est injecté sur un système HPLC. Le système HPLC consiste en une colonne semi-préparative Zorbax Eclipse, XDB C18, 9,4 x 250 mm, 5 µm. Le solvant d’éluion est un mélange éthanol / acétate de sodium 0,1 M (45/55) le système ayant un débit d’écoulement de 2 mL / min. Le $[^{18}F]$ AV1451 a un temps de rétention sur colonne semi-prépartive compris entre 16 à 18 min (Figure 72).

Cette solution-mère est transférée dans une hotte classe A et filtrée (filtre 0.22µm) dans un flacon ELUMATIC (première filtration). Les 2 mL de cette solution-mère, ayant été filtrés, sont de nouveau filtrés au travers un filtre de 0,22 µm dans un flacon stérile contenant 8 mL de solution saline stérile (deuxième filtration).

Le produit final correspond à une solution de $[^{18}F]$-AV1451 dans une solution contenant un mélange de chlorure de sodium à 0,9% et d’éthanol (<1 mL).

L’activité volumique souhaitée doit être ≥ 0,054 GBq / mL au moment de la calibration (Tcal). Tcal correspond au moment où la substance active est sous une forme injectable.

- Contrôle qualité sur HPLC ICS et logiciel Acquis

Certains contrôles ne sont réalisés que sur les trois lots de validation : dosage des solvants résiduels (acétone, éthanol, DMSO, acétonitrile). Ces 3 lots analysés de manière plus complète servent à la validation du processus.

<table>
<thead>
<tr>
<th>Tests</th>
<th>Méthodes</th>
<th>Spécifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparence de la solution</td>
<td>Inspection visuelle</td>
<td>Limpide et sans particules</td>
</tr>
<tr>
<td>Demi-vie</td>
<td>Décroissance du fluor</td>
<td>105-115 min</td>
</tr>
<tr>
<td>Identification</td>
<td>Spectrométrie Gamma</td>
<td>Pic à 491-531 keV</td>
</tr>
<tr>
<td>Tests</td>
<td>Papier pH</td>
<td>6-8</td>
</tr>
<tr>
<td>Stérilité</td>
<td>Inoculation directe</td>
<td>Stérile</td>
</tr>
<tr>
<td>Endotoxines bactériennes</td>
<td>LAL Test</td>
<td>< 175 UI/dose</td>
</tr>
<tr>
<td>Pureté radiochimique</td>
<td>HPLC</td>
<td>>95 %</td>
</tr>
<tr>
<td>Pureté chimique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kryptofix 222</td>
<td>Colorimétrie</td>
<td>≤ 22µg/mL</td>
</tr>
<tr>
<td>- Acétonitrile</td>
<td>GC</td>
<td>≤ 410 ppm</td>
</tr>
<tr>
<td>- DMSO</td>
<td>GC</td>
<td>< 5000 ppm</td>
</tr>
<tr>
<td>- Ethanol</td>
<td>GC</td>
<td>< 10%</td>
</tr>
<tr>
<td>- Acétone</td>
<td>GC</td>
<td>< 5000 ppm</td>
</tr>
<tr>
<td>- Impuretés</td>
<td>HPLC</td>
<td>< 10µg/dose</td>
</tr>
<tr>
<td>Radioactivité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activité volumique</td>
<td>Chambre d’ionisation</td>
<td>≥ 0.054 GBq/mL at calibration time (Tcal)</td>
</tr>
<tr>
<td>Activité spécifique</td>
<td>HPLC, Chambre d’ionisation</td>
<td>> 10 GBq/µmol</td>
</tr>
</tbody>
</table>

Tableau 13 : Résumé des contrôles qualité à effectuer sur les lots de validation de production du $[^{18}F]$ AV1451

La partie ci-dessous décrit les procédés de contrôle :

- Aspect de la solution: contrôle visuel

pH: Le contrôle du pH est réalisé avec du papier pH d’une sensibilité de 0,1 unité de pH. 10 µL du produit final sont déposés. La couleur est comparée à la norme fournie par le fabricant.
La pureté radiochimique:

La pureté radiochimique est évaluée par HPLC : 20 μL de la solution finale sont injectés. Les composants de la solution sont séparés sur la colonne et détectés par un détecteur à scintillation. La pureté radiochimique de la solution de $[^{18}\text{F}]-\text{AV1451}$ est déterminée en faisant le rapport de la surface correspondant à l’aire située sous la courbe du pic du $[^{18}\text{F}]-\text{AV1451}$ à la somme des aires de tous les pics détectés. L’attribution du pic correspondant au $[^{18}\text{F}]-\text{AV1451}$ est effectuée par une comparaison avec le temps de rétention obtenu avec la référence froide correspondante (Figure 66).

Sur une colonne Luna phenomex C18 5 μm 150*4.6 mm, avec un solvant composé d’acétate de sodium et d’acétonitrile (60/40), un débit de 1.5 mL / min et une longueur d’onde de détection UV à 270 nm, nous avons retrouvé un temps de rétention entre 5 et 6 minutes pour ces composés.
Pureté chimique :

Le Kryptofix est détecté par un test colorimétrique. Il s’agit d’un essai avec des bandelettes imprégnées d’acide iodoplatinate et d’iodure de potassium suivant la méthode décrite par Mock (Mock et al., 1997).

Activité volumique

La concentration radioactive est déterminée par la mesure de la solution radioactive avec un dispositif calibré et par la détermination du volume de la solution correspondant. Le rapport de la radioactivité mesurée dans le volume utilisé donne la concentration radioactive exprimée en GBq / mL. La mesure est effectuée sur un activimètre contrôlé quotidiennement.

Demi-vie: par la désintégration radioactive

Le calcul de la demi-vie informe sur la pureté radionucléidique : L’activité de la solution finale est mesurée avec un dispositif étalonné à deux moments différents. Les mesures à t1 et t2 donnent leurs activités correspondantes A1 et A2.

La formule suivante permet de calculer la demi-vie, T½ :

\[\text{Période} = \frac{\ln 2 \times (t2 - t1)}{\ln \left(\frac{A2}{A1} \right)} \]

Impuretés organiques

Les impuretés chimiques sont détectées par HPLC analytique. Les impuretés qualifiées (dont le temps de rétention qui correspond à une impureté connue) peuvent subir un étalonnage avec la référence froide afin d’être dosées dans les lots de production.
Les paramètres du système de séparation sont indiqués dans le Tableau 14 :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonne</td>
<td>Luna phenomenex C18 5µm 150 x 4.6 mm</td>
</tr>
<tr>
<td>Température</td>
<td>Ambiante</td>
</tr>
<tr>
<td>Débit</td>
<td>1.5 mL / min</td>
</tr>
<tr>
<td>Phase Mobile</td>
<td>Acétate de sodium /Acétonitrile (60/40)</td>
</tr>
<tr>
<td>Temps de lecture</td>
<td>15 min</td>
</tr>
<tr>
<td>Longueur d’onde</td>
<td>270 nm</td>
</tr>
</tbody>
</table>

Tableau 14 : Spécifications concernant le matériel et les conditions utilisés pour la recherche d’impuretés organiques

La première étape a été l’injection de la matrice de formulation, celle-ci a montré qu’elle ne contenait pas de grands pics d’interférence.

Chaque impureté possible a été caractérisée séparément afin de connaître son temps de rétention (TR).

- TR du précurseur AV1622: 8-9 min
- TR précurseur déprotégé mais non fluoré : 3 à 5 min
- TR AV1451 : 5 à 6 min.

Nous avons effectué une gamme de calibration pour chacun de ces composés (Figure 67, Figure 68, Figure 69). La calibration qui a été utilisée dérive d’un modèle de signal linéaire déterminé par la méthode des moindres carrés sans pondération.

En ce qui concerne l’analyse des lots, ces évaluations ont été réalisées avec un volume injecté de 200 µL de formulation finale de chaque lot (3 fois) car les valeurs du signal brut pour les injections de 20 µL étaient très faibles.
Figure 67 Courbe d'étalonnage réalisée pour la quantification d’AV1451 froid (Abscisse = quantité injectée en µg, ordonnée = signal brut de l’aire sous la courbe).

Figure 68 : Courbe d’étalonnage réalisée pour la quantification d’AV1622 froid (précurseur de radiosynthèse) (Abscisse = quantité injectée en µg, ordonnée = signal brut de l’aire sous la courbe)
Contrôles différés

Stérilité:

Le contrôle de stérilité est effectué conformément à la Pharmacopée européenne (préparation parentérale, 07/2005: n° 0520, p 3144-3146 et le test biologique, 01/2005, n° 20601, p145-149).

La mesure des Endotoxines bactériennes: (essai LAL) est réalisée par l’Institut Fédératif de biologie du CHU de Toulouse. Le matériel utilisé est un Lonza QCL-1000® Limulus Amebocyte Lysate US.

Pureté chimique:

La recherche et la détermination de l’acétonitrile et du DMSO sont effectuées par chromatographie Gaz (GC) selon la Pharmacopée européenne concernant les solvants résiduels analysés (01/2005: n° 50400, p 541-549). Les contrôles des solvants résiduels ont
été réalisés par le Laboratoire de toxicologie analytique environnementale et de santé au travail CHU Dupuytren de Limoges.

Solvants résiduels:

- Acétonitrile : solvant de classe 2 ICH (Conférence interne sur l'harmonisation des exigences techniques pour l'enregistrement des produits pharmaceutiques à usage humain), la concentration limite dans un produit pharmaceutique est de 410 ppm.
- DMSO : solvant de classe 3 ICH (Conférence interne sur l'harmonisation des exigences techniques pour l'enregistrement des produits pharmaceutiques à usage humain), la concentration limite dans un produit pharmaceutique est de 5000 ppm.
- Éthanol : solvant de classe 3 de la convention ICH. La recherche de présence et le dosage de la concentration en éthanol sont effectués par GC d’après la Pharmacopée européenne (01/2005: n° 1318, p 1668-1670).

2.1.2. Echantillons de cerveaux humains et de marmousets

Le but de cette étude était de tester différentes conditions de traitement d’échantillons tissulaires en autoradiographie avec le radioligand \(^{18}\text{F}\)-AV1451. Des autoradiographies ont déjà été réalisées avec du tissu frais (Xia et al., 2013) et ont montrées qu’elle étaient co-localisées avec des IHC tau-PHF mais nous ne savons pas si nous pouvons utiliser d’autres types de tissu (notamment des tissus fixés par du formol ou ses dérivés). Nous avons testé en parallèle des échantillons de tissus cérébraux provenant de marmousets âgés. La Figure 70 correspond à un schéma récapitulant les différentes conditions utilisées pour les échantillons humains et pour ceux de marmousets. Nous espérons pouvoir trouver des conditions avec tissus fixés qui nous permettront d’analyser le plus d’échantillons possible car les échantillons de tissus frais de marmousets sont rares.
Humains

Ces échantillons témoins ont été mis à disposition par le Service universitaire d'Anatomie Pathologique Neuropathologie humaine et expérimentale du CHU de Toulouse et les différentes étapes de traitement des tissus ont été effectuées par ce service. Pour réaliser cette étude, des coupes de cerveau humain « témoin positif en AT8 » et des lames cerveaux humain « témoin négatif en AT8 » ont été choisies. Ces échantillons ont subi des traitements différents. Ci-dessous sont décrites brièvement les étapes de traitement des tissus :

Etapes du traitement des échantillons :

- Etape 1) Fixation : bain de formol 4% tamponné (24h)
- Etape 2) Déshydratation :

La paraffine n’est pas miscible à l’eau, la pièce anatomique doit être entièrement déshydratée avant l’inclusion dans la paraffine. La paraffine n’est pas non plus soluble dans l’alcool utilisé pour la déshydratation. On remplace l’eau par de l’alcool (DÉSHYDRATION). On remplace l’alcool par le xylène (SUBSTITUTION).

A) DÉSHYDRATATION par des bains l’alcool (5 min par bains) : Alcool 80°, Alcool 90°, Alcool Absolu.
B) SUBSTITUTION par des bains de xylène (5min par bain), le dernier étant un bain de xylène pur.

- Etape 3) Inclusion en paraffine : l’inclusion se fait dans des cassettes permettant la confection de blocs.
- Etape 4) Réalisation des coupes sur microtome (5 µm).
- Etape 5) Etalement de la coupe sur une lame puis collage et séchage.
- Etape 6) Déparaffinage.
 o A) Déparaffinage : bains de xylènes
 o B) Rehydratation : bains l’alcool puis d’eau (5 mn par bains) : Alcool 95°, Alcool 80°, Eau.
- Etape 7) Démasquage :
La chaleur détruit certaines des liaisons formées entre le formol et les protéines antigéniques. Le démasquage a été réalisé par passage dans un milieu tamponné à chaud (bain-marie 95 °C, 15 min).

Nous avons utilisés des échantillons qui n’ont pas tous subi le même nombre d’étapes :

- Tissu frais congelé (coupe de 8µm au cryosotat)
- Paraffiné (après étape 5),
- Paraffiné et déparaffiné (après étape 6),
- Démasqué (après étape 7)

Marmousets

Des échantillons de deux marmousets âgés (10 ans et 9 ans) ont été testés. Il s’agissait de cerveaux prélevés après une perfusion de PFA 4% intra-cardiaque utilisée pour la conservation du tissu cérébral. Aucun cerveau frais de marmouset n’a été analysé. Les cerveaux n’ont pas été prélevés pour l’étude présente mais résultent de prélèvements effectués sur animaux âgés de la colonie du Centre de Recherche Cerveau et cognition (CERCO) euthanasiés dans le cadre d’autres protocoles. Les cerveaux prélevés ont été conservés dans une solution de cryoprotection à -20 °C.

Avant d’être utilisé chaque cerveau a été coupé en deux sur le plan sagittal puis l’hémi cerveau a été rincé par 3 bains de saccharose à 30 % dans du tampon phosphate, à température ambiante, avec agitation de la solution sucrée. Le bain a été changé toute les 12 h. L’hémi-cerveau a ensuite été coupé en 3 échantillons (frontal, hippocampique, occipital).

Ces 3 échantillons ont tout d’abord été coupés sur cryostat et mis sur lames (15 coupes de 8 µm d’épaisseur ont été réalisées sur chaque type d’échantillon). Pour chaque échantillon, il a été réalisé de l’immunohistochimie (AT8), de l’autoradiographie et un marquage à l’hématoxiline-éosine. (Ces échantillons correspondent à ceux appelés: « marmouset PFA »)
Les échantillons restant ont ensuite subit les étapes décrites dans la sous partie « humain ».
Ces traitements ont été réalisés par le laboratoire d’anatomopathologie du CHU de Toulouse identiquement à ce qui avait été pratiqué pour les échantillons humains.

Les conditions

- Cerveau fixé PFA 4%,
- Cerveau fixé PFA 4% +
 - paraffiné sans autre traitement (après étape 5)
 - paraffiné et déparaffiné avec du xylène (après étape 6)
 - démasqué (après étape 7)

➤ Marquage AT8

Les coupes mises sur lames sont fixées 30 min avec de l’acétone froid à 4°C. Puis elles sont incubées dans du tampon phosphate 0.9% NaCl (PBS) toute une nuit pour réhydratation. Elles sont ensuite traitées avec du triton à 0.5 % et du sérum de chèvre à 5% dans du PBS pendant 1h sous agitation. Après une étape de lavage avec du PBS, la coupe est incubée 1h avec de l’AT8 à température ambiante (dilué au 1/500ème dans du PBS). Après rinçage des lames au PBS, l’anticorps secondaire utilisé est couplé à une peroxydase (HRP), il est incubé pendant 30 minutes. Les coupes histologiques sont incubées avec le substrat de la peroxydase/chromogène 3,3’-diaminobenzidine (DAB). La réaction à la peroxydase produit un précipité marron visible au niveau de l’antigène.

➤ IHC pour détection de la plaque amyloïde

Les échantillons marmousets se sont tous révélés négatifs pour la présence de plaques amyloïdes.
Les échantillons ont été maintenus à température ambiante pendant 1 h dans du TRIS à pH 7.4. Puis ils ont été incubés avec le radiotraceur : 1.85 MBq / mL (soit 18.5 MBq pour 10 mL) Cette concentration est 2 fois plus élevée que celle utilisée précédemment par Xia pour effectuer ses autoradiographies sur tissu frais humain présentant une MA (Xia et al., 2013). L’incubation a duré 1 heure. Elle a été suivie de 3 lavages de 5 min dans du TRIS pH = 7.4 puis d’un dessalage par trempage dans l’eau glacée 30 min et d’un séchage à l’O₂. Les échantillons ont ensuite été mis en contact avec le Phosphorscreen pendant une nuit. Le phosphorscreen a été lu sur un Typhoon et les images recueillies en fichier d’extension « .gel. ». L’analyse des images a été réalisée avec le logiciel image J.

Figure 70 : Schéma récapitulant les types d’échantillons et les différents traitements de l’expérimentation
2.2. Résultats

2.2.1. Synthèse du 18F-AV1451

- Mise en place sur automate Raytest®

Les résultats présentés sont ceux des 3 lots de validation indispensables à la réalisation du dossier de médicament expérimental envoyé à l’ANSM pour que la plateforme de fluoration de Toulouse soit reconnue comme Centre de production du 18F-AV1451 en tant que médicament pour essai clinique.

Trois synthèses ont été effectuées successivement. Le rendement de radiosynthèse était de 24% (écart type standard : 16% ; N=3), avec une activité moyenne du 18F-AV1451 à 4316 MBq.

La purification de l’éluat envoyé dans l’HPLC permet de visualiser deux pics radioactifs (Figure 71) : Le premier pic correspond au fluor libre (temps de rétention correspondant au front de solvant), le second, mesuré à 16 minutes, correspond au 18F-AV1451 (temps de rétention identique à celui mesuré avec la référence froide pour ce solvant et ce débit). Aucun autre pic radioactif n’est apparu sur le chromatogramme, certaines impuretés radiomarquées ayant pu être éliminées au cours de la phase de pré-purification. D’après les différents chromatogrammes obtenus, la pré-purification utilisée (sur cartouche sep pack), ne permet pas de s’affranchir d’une purification HPLC car les résidus de fluor libres restent encore importants ; nous avons en moyenne 20 +/- 12% de fluor libre sur le schéma de purification lors de la phase semi-préparative.
Figure 71 : Synthèse du 18F-AV1451 : graphique représentant la purification de l'éluant (en haut : Détection UV, en bas : détection gamma). Le pic 1 correspond au fluor libre, le pic 2 ayant un TR de 16 minutes correspond au 18F-AV1451.

➤ Contrôle Qualité

Recherche d’impureté par HPLC analytique

Figure 72 : Synthèse du 18F-AV1451 : chromatogramme de contrôle qualité en HPLC analytique UV et gamma.
Nous avons représenté sur la Figure 72 le chromatogramme analytique d’une injection de 20µL de solution du \([^{18}\text{F}]\)-AV1451 mis en forme. Les quantités d’impuretés retrouvées (précursor hydrolysé et \([^{18}\text{F}]\)-AV1451 froid) ont été calculées à partir des courbes d’étalonnages présentées dans la partie matériel et méthode.

Dans les différents lots, en détection UV, on a mis en évidence un à température ambiante un petit pic d’AV1451 et de précurseur hydrolysé lorsqu’on injectait 20µL de solution. L’aire sous la courbe de ses pics était inférieure à la limite de quantification de l’appareil. Nous avons réitéré la mesure avec une injection de 200 µL (Tableau 15). Il a pu ainsi être possible de calculer la quantité totale d’impuretés dans chaque lot et l’activité spécifique du radiotraceur.

<table>
<thead>
<tr>
<th>quantité injectée AV1451 froid (µg)</th>
<th>aire</th>
<th>échantillon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25939</td>
<td>référence standard AV1451</td>
</tr>
<tr>
<td>5</td>
<td>6255440</td>
<td>référence standard AV1451</td>
</tr>
<tr>
<td>10</td>
<td>14141833</td>
<td>référence standard AV1451</td>
</tr>
<tr>
<td>12</td>
<td>18453102</td>
<td>référence standard AV1451</td>
</tr>
<tr>
<td>15</td>
<td>24351426</td>
<td>référence standard AV1451</td>
</tr>
<tr>
<td>0,036</td>
<td>71869</td>
<td>Lot 1 200 µL</td>
</tr>
<tr>
<td>0,048</td>
<td>95856</td>
<td>Lot 1 200 µL</td>
</tr>
<tr>
<td>0,053</td>
<td>106846</td>
<td>Lot 1 200 µL</td>
</tr>
<tr>
<td>0,025</td>
<td>49763</td>
<td>Lot 2 200 µL</td>
</tr>
<tr>
<td>0,030</td>
<td>60089</td>
<td>Lot 2 200 µL</td>
</tr>
<tr>
<td>0,028</td>
<td>56996</td>
<td>Lot 2 200 µL</td>
</tr>
<tr>
<td>0,058</td>
<td>115867</td>
<td>Lot 3 200 µL</td>
</tr>
<tr>
<td>0,041</td>
<td>82534</td>
<td>Lot 3 200 µL</td>
</tr>
<tr>
<td>0,048</td>
<td>95430</td>
<td>Lot 3 200 µL</td>
</tr>
</tbody>
</table>

Tableau 15 : Synthèse du \([^{18}\text{F}]\)-AV1451 : calcul de la quantité d’AV1451 froid dans les 3 lots de validation de production d’AV1451

Pour le lot 1 : 45MBq ont été injectés dans 200µL, pour le lot 2 : 26.64 MBq ont été injectés dans 200 µL et pour le lot 3 : 63.27MBq ont été injectés dans 200 µL. Ceci nous a permis de calculer les activités spécifiques (Tableau 16). En moyenne l’activité spécifique (AS) était de 312GBq/µmol +/- 89 GBq/µmol.

\[
AS = \frac{\text{Activité échantillon}}{\text{quantité injectée en µmol}}
\]
Tous les lots synthétisés sont donc conformes en termes d’impuretés car aucun ne dépasse les 100µg pour 10mL (Tableau 17).

Trois HLPC analytiques ont été réalisées pour chaque lot. Des valeurs moyennes de 0,041µg (sd=0,011) d’AV1451 et 1,83 µg (sd=1,19) pour le précurseur hydrolysé ont été calculées. La quantité totale de ces deux composés dans les lots ne dépasse pas 7,11µg. Les résultats des autres tests de contrôle qualité pour chaque lot sont résumés dans le Tableau 18.
Tableau 18 : Synthèse du 18F-AV1451 : résultat des différents tests de contrôle qualité obligatoires pour les 3 lots de validations d’AV1451

<table>
<thead>
<tr>
<th>Valeur de références</th>
<th>Lot 1</th>
<th>Lot 2</th>
<th>Lot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparence de la solution</td>
<td>Limpide, sans particules</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Pureté radiochimique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[^{18}F]$AV1451</td>
<td>> 95%</td>
<td>99.967 %</td>
<td>100%</td>
</tr>
<tr>
<td>$[^{18}F]$Fluor</td>
<td>< 5%</td>
<td>0.032%</td>
<td>0%</td>
</tr>
<tr>
<td>Solvent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kryptofix K222</td>
<td>< 0.022mg/mL</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>ethanol</td>
<td>< 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acétonitrile</td>
<td>≤ 5000 ppm</td>
<td>1.7ppm</td>
<td>4.3 ppm</td>
</tr>
<tr>
<td>DMSO</td>
<td>≤ 5000 ppm</td>
<td><200ppm</td>
<td>< 200 ppm (limite de détection)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>≤ 410 ppm</td>
<td>32.2ppm</td>
<td>22.3ppm</td>
</tr>
<tr>
<td>Ethanol</td>
<td>< 100g/l</td>
<td>78.8g/l</td>
<td>59.1g/L</td>
</tr>
<tr>
<td>pH</td>
<td>5-8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Endotoxines bactériennes</td>
<td>< 175U.I./ Vmax</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Pureté radioisotopique</td>
<td>105-115 min</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Activité volumique</td>
<td>>54 MBq / mL à Tcal</td>
<td>229 MBq/mL</td>
<td>135 MBq/mL</td>
</tr>
<tr>
<td>Intégrité des filtres</td>
<td>test du point de bulle ≥ 3 bars</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Stérilité</td>
<td>Sterile</td>
<td>ok</td>
<td>ok</td>
</tr>
</tbody>
</table>

2.2.2. Détection de DNF sur coupes de tissu cérébral par $[^{18}F]$AV1451

➤ Analyse des coupes témoins de cerveau humain

Les échantillons contrôles (témoins positifs et négatifs) traités selon différents protocoles ont été analysés et nous avons observé que certaines conditions n’étaient pas propices à l’analyse de l’autoradiographie.
Toutes les lames uniquement paraffinées ont en effet une fixation non spécifique très importante. Vraisemblablement, le $[^{18}\text{F}]-\text{AV1451}$ se fixe de manière aspécifique sur la paraffine (Tableau 19).

Les lames déparaffinées et démasquées présentent des fixations dans une zone où il n’y a pas de marquage AT8 (Tableau 19, flèche rouge). Il est possible que ces lames contiennent des résidus de paraffines à ce niveau (flèche rouge) et que cela entraîne une fixation aspécifique.

<table>
<thead>
<tr>
<th></th>
<th>Marquage AT8+</th>
<th>Marquage AT8-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraffiné</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylène</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Démasqué</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 19 : Résultats des autoradiographies avec le $[^{18}\text{F}]-\text{AV1451}$ réalisées sur les coupes témoins de cerveau humain. La colonne de gauche représente les échantillons qui étaient positifs en AT8 (tauopathie) et la colonne de droite les échantillons témoins négatifs. Barre d’échelle = 0.5 cm flèche rouge = fixation aspécifique.

La lame démasquée contient moins de fixations aspécifiques. C’est elle qui a été utilisée pour la comparaison avec le marquage AT8+ de la figure 73. On remarque sur l’autoradiographie de la figure 73D un signal localisé de manière identique à celui du
marquage AT8 figure 73B (Flèches rouges Figure 73 B et D). On remarque aussi un signal aspécifique dans la substance blanche sur l’autoradiographie de tissu fixé démasqué (D). La fixation du tissu entraîne peut être la formation d’une zone d’affinité pour le $[^{18}F]$-AV1451 au niveau de la substance blanche.
Les échantillons frais présentent une zone d’hypersignal en autoradiographie (C) mais la comparaison avec le marquage AT8 est difficile du fait des disparités de coupes (Figure 73 A et C). Les zones de forte intensité AT8 et $[^{18}F]$-AV1451 ne sont pas toujours identiques.

![Figure 73](image1.png)

*Figure 73 : Comparaison marquage AT8 et autoradiographie avec le $[^{18}F]$-AV1451 sur coupes de cerveaux humains
A et B : Lames marquées à l’AT8, la coloration brune correspond aux zones présentant des PHF et DNF. (A= tissu frais ; B = tissus démasqué) C et D : Lames utilisées pour l’autoradiographie, plus le marquage est intense plus la couleur est chaude. (C= tissu frais ; D= tissu démasqué)*

Toutes les lames ont été réalisées en même temps (autoradiographie) et le traitement d’image a été effectué sur plaque entière, il n’y a donc pas de biais au niveau des contrastes entre les images présentées.
Cependant le signal aspécifique présenté par les flèches rouge nous a obligé à analyser les lames une par une en éliminant la zone aspécifique et en remontant le contraste (ce qui a été fait figure 73 C et D et figure 75 à droite).

- Recherche de DNF sur échantillons de cerveau de marmousets âgés

Les résultats chez le marmouset avec les cerveaux PFA montrent une forte fixation au niveau de la substance blanche dans les coupes « hippocampes ». On retrouve vraisemblablement la même intéraction révélée chez l’humain qui montrait une intéraction avec la substance blanche sur tissu fixé (Figure 73D).

<table>
<thead>
<tr>
<th></th>
<th>AT8</th>
<th>Autoradiographie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>occipital</td>
</tr>
<tr>
<td>PFA 4%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Paraffiné</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Déparaffiné</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figure 74 : autoradiographie avec le $[^{18}F]$-AV1451 sur les cerveaux de marmouset fixés au PFA- marmouset 1. Barre d’échelle= 0.5 cm (les résultats sont identiques sur le deuxième marmouset). Epaisseur des coupes : 8 µm
Les coupes déparaffinées ne montrent aucun site de fixation quel que soit le site de section (frontal, hippocampique, occipital) (Figure 74). Mais comme précédemment la fixation aspécifique de la lame hippocampe a limité le contraste sur l’analyse de la plaque entière. La partie hippocampique présente une captation très importante notamment au niveau de la substance blanche proche du ventricule latérale mais aussi au niveau de la corne d’Ammon (beaucoup moins intense que celle de la substance blanche).

![Figure 75 : Coupe frontale d’un hémicycle de marmouset ; à gauche, marquage AT8 ; droite autoradiographie avec le 18F-AV1451 sur coupe démasquée.](image)

L’analyse de la partie frontale du cortex de marmouset PFA montre une négativité en AT8 (seuls les plis de coupe présentent une coloration marron : figure 75 à droite).

L’autoradiographie avec le 18F-AV1451 semble présenter quelques zones d’hyperfixation (figure 75 à droite, zones rouges et jaunes). Pour obtenir cette image d’autoradiographie (figure 75 à droite) nous avons du analyser la coupe seule et remettre un contraste à 0,4 % de pixels saturés. En effet, la présence de signal aspécifique sur les autres coupes ne permettait pas d’avoir un contraste assez important pour analyser l’image.

Il est difficile de conclure car le fait de ne pas avoir d’échantillons marmousets frais crée un biais. Vraisemblablement, il est nécessaire d’avoir du tissu frais pour réaliser des
autoradiographies fiables et s’affranchir d’une fixation aspécifique dans la substance blanche fixée.

Cependant, comme le marquage aspécifique semble être limité à la substance blanche fixée, nous pourrions nous servir d’une lame adjacente colorée en cresyl violet, pour contourner les zones de substances blanches et les exclure de l’analyse. Cette technique pourrait nous permettre d’analyser des échantillons PFA et voir s’il persiste une fixation spécifique une fois la fixation aspécifique éliminée. Si cette méthode s’avérait efficace avec nos échantillons témoins humains positifs, nous pourrions analyser des échantillons de cerveau fixés au PFA ou au formol.

3. DISCUSSION AXE 2

La synthèse du 18F-AV1451 a été réalisée avec succès sur l’automate de fluoration Synchrom Raytest. Cette synthèse est reproductible et présente un rendement moyen de 24% (corrigé de la décroissance) avec un rendement maximal obtenu de 35%. Les activités synthétisées sont compatibles avec la fabrication de doses pour des études précliniques mais aussi pour des essais cliniques. Le rendement de synthèse, bien que déjà équivalent à celui décrit par d’autres équipes pourra encore être amélioré. En effet dans la littérature, la première synthèse décrite (Shoup et al., 2013) retrouve un rendement de 14% non corrigé de la décroissance, mais cette technique utilisait un dérivé « nitro » comme précurseur alors que nous utilisons un dérivé « tosylé ». À ce jour, aucune autre radiosynthèse avec un précurseur tosyl n’a été décrite dans la littérature. L’activité spécifique que nous avons calculée dans nos conditions de fabrication est proche de celle retrouvée dans la littérature (Tableau 20). Cependant, la réalisation d’une gamme étalon avec des quantités plus petites d’échantillons aurait permis la détermination d’une valeur plus précise.
La méthode de purification employée permet d’utiliser de l’éthanol et de l’acétate de sodium, qui sont des solvants compatibles avec des injections intraveineuses chez l’homme après mise en forme appropriée. C’est également la technique de purification choisie par les autres équipes mais ceux-ci ajoutent après une purification HPLC, une purification sur cartouche (SPE) afin d’éliminer les éventuelles traces d’acétonitrile. Les cartouches sont rincées avec de l’eau et éluées avec de l’éthanol. Nous n’avons pas suivi ce processus et avons réalisé les dosages de solvants résiduels sur des lots mis en forme après HPLC uniquement. Nous avons toujours retrouvé une concentration d’acétonitrile inférieure aux normes maximales édictées par l’ICH.

Nous avons synthétisé 3 lots servant à la validation de notre processus et qui ont subi toutes les étapes de contrôle réglementaire. Ces contrôles sont indispensables à la validation du processus et garantissent l’innocuité et la qualité du produit pour essai clinique, fabriqué par le centre producteur. Les 3 lots mentionnés dans cette thèse sont ceux qui sont décrits dans le dossier de médicament expérimental du site de production de Toulouse (DME) qui sera envoyé à l’ANSM pour validation. Notre radiosynthèse est l’une des plus rapides de la littérature.

Concernant la partie autoradiographie, le but de ce projet était avant tout de mettre au point une technique d’autoradiographie fiable avec du $[^{18}\text{F}]$-AV1451 pour tester la possibilité d’analyser des échantillons de tissus fixés. Nous avons observé sur les autoradiographies témoins humaines fixées et démasquées, qu’il y avait une zone de marquage intense qui ne

<table>
<thead>
<tr>
<th>Technique</th>
<th>(Shoup et al., 2013)</th>
<th>(Chien et al., 2013)</th>
<th>(Xia et al., 2013)</th>
<th>(Gao et al., 2015)</th>
<th>(Liang et al., 2014)</th>
<th>(Salabert et al en préparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précurseur</td>
<td>Nitro</td>
<td>Nitro</td>
<td>Nitro</td>
<td>Nitro</td>
<td>Nitro</td>
<td>Tosyl</td>
</tr>
<tr>
<td>Temps de synthèse</td>
<td>60 min</td>
<td>93 min</td>
<td>90 min</td>
<td>60 min</td>
<td>100 min</td>
<td>60 min</td>
</tr>
<tr>
<td>Rendement</td>
<td>14% (NC)</td>
<td>17% (NC)</td>
<td>47%</td>
<td>20-30%</td>
<td>5%</td>
<td>24%</td>
</tr>
<tr>
<td>Activité Spécifique</td>
<td>216GBq/µmol</td>
<td>>37GBq/µmol</td>
<td>356GBq/µmol</td>
<td>370GBq/µmol</td>
<td>222GBq/µmol</td>
<td>312 GBq/µmol</td>
</tr>
</tbody>
</table>

Tableau 20 : Comparaison de paramètres de radiosynthèse du $[^{18}\text{F}]$-AV1451 entre le travail réalisé et les radiosynthèses décrites dans la littérature.
correspondait pas à une zone positive en AT8 (flèche rouge Tableau 19). De plus même après élimination de cette zone, il persistait des zones de signal intense au niveau de la substance blanche ne correspondant pas au marquage AT8. Il semble donc que la fixation du tissu et le traitement à la paraffine induit la formation de zones de signal augmenté dans la substance blanche. Concernant le tissu frais, il montre des zones d’hyperfixation du [\(^{18}\text{F}\)]-AV1451 correspondant au marquage AT8 et pas de fixation dans la substance blanche mais le contraste lors du traitement d’image a dû être augmenté par rapport aux autres lames qui présentaient la zone de fixation aspécifique.

A l’aide de l’atlas stéréotaxique du cerveau de marmouset (Newman et al., 2009), nous avons décidé de couper en 3 les hémis-cerveaux de marmouset afin de distinguer les parties frontales, hippocampiques et occipitales. Tous ces prélèvements ont été testés en AT8 et ont été négatifs, ce qui suggère que les cerveaux n’exprimaient pas de DNF. Les résultats sur la partie PFA + traitement par paraffine + xylène sont délicats à interpréter. En effet, l’échantillon ayant été mis en contact 2 fois avec des bains de formol ou de dérivé de formol, certains sites antigéniques ont pu être détériorés. Les résultats obtenus sur les échantillons PFA sont surprenants, car ils montrent une fixation intense du [\(^{18}\text{F}\)]-AV1451 dans la partie proche du ventricule (coupe hippocampique). Cependant cette partie contenant en majorité de la substance blanche, le marquage correspondrait donc à du signal non spécifique.

Il semble donc difficile de travailler avec des échantillons fixés (PFA ou formol) à cause du signal aspécifique du [\(^{18}\text{F}\)]-AV1451 dans la substance blanche. Les marmousets âgés testés ici n’avaient pas été étudiés en comportement, nous ne savons rien de leurs aptitudes cognitives mais nous savons qu’ils ne présentaient pas de plaques amyloïdes. Nous ne nous attendions pas à trouver des zones positives en AT8 ou en [\(^{18}\text{F}\)]-AV1451. Des échantillons frais et provenant de marmousets en déclin cognitif pourront nous permettre d’avancer sur la recherche de DNF dans cette espèce de PNH.

Un des intérêts du marmouset est qu’il peut être conditionné pour réaliser des tests de mémorisation. L’équipe Dytic du CERCO travaille en effet sur l’étude des différents types de mémoire chez le marmouset et analyse son comportement face à différentes tâches selon
l’âge de l’individu. Cette équipe a mis en évidence que certains sujets âgés ne réalisaient pas la tâche correctement. Ces animaux âgés présentent un manque d’attention et pourraient être en déclin cognitif. Avec une sélection de ces individus et une imagerie adéquate, nous pourrions comparer le profil de captation de ces individus avec celui des individus de même âge qui ne présentent pas de troubles cognitifs. Ainsi nous pourrions objectiver ou non la possible fixation du traceur chez le marmouset. Ce projet sera mis en place dès que la possibilité d’imager des marmousets sur la plateforme d’exploration non invasive de l’UMS 006 à Toulouse sera existante.
DISCUSSION GENERALE

L’agrégation des protéines est un point commun à de nombreuses maladies neurodégénératives. Si la cause de la formation d’agrégats est multifactorielle, il est nécessaire de connaître les différentes étapes de la cascade aboutissant à leur formation pour identifier un mécanisme pouvant être la cible d’une thérapie. Afin de comprendre l’origine de la toxicité, les mécanismes sous-jacents et leurs impacts, toute la cascade doit être bien connue et bien maîtrisée. Les outils d’imagerie moléculaire synthétisés au cours de cette thèse peuvent y contribuer.

Selon les données récentes de la littérature, le mécanisme de toxicité des agrégats amyloïdes serait dû à une dysfonction mitochondriale par le biais d’une perturbation de l’homéostasie du Ca^{2+}. Les agrégats Aβ pourraient servir d’agonistes à certains récepteurs perméables aux Ca^{2+} notamment les récepteurs au glutamate de type NMDA (Brookes et al., 2004), former des canaux ioniques (Arispe et al., 1993), et augmenter ainsi la perméabilité de la membrane au calcium (Demuro et al., 2010). La $[^{18}F]$-FNM pourrait nous donner de précieuses informations pour la validation de cette hypothèse en démontrant une colocalisation hyperactivité NMDA et présence de peptide Aβ. A contrario, elle pourrait valider une hypothèse différente et montrer que les agrégats agissent plutôt sur la partie présynaptique, il y aurait alors non pas colocalisation du peptide amyloïde et de la $[^{18}F]$-FNM mais visualisation des zones cérébrales connectées en réseau (Deleglise et al., 2014). Ces agrégats auraient aussi la propriété d’inhiber la formation du protéasome, augmentant ainsi leur propre production. Enfin, ils auraient un potentiel infectieux de type prion-like (Brundin et al., 2010). De nombreuses études ont montré qu’une injection de peptide amyloïde mais aussi de tau PHF dans un cerveau sain provoquait l’apparition d’amylose et de DNF dans les cellules saines (Murakami et al., 2014 ; Ye et al., 2015; Domert et al., 2014).

La corrélation entre plaques amyloïdes, agrégat tau et excitotoxicité provenant des récepteurs NMDA fait l’objet d’études récentes. On retrouve sur des échantillons de cerveaux de sujets atteint de MA que, les GluN1 et PSD95 augmentent très fortement alors
que les GluN2 diminuent surtout au niveau des cellules pyramidales, de plus ces zones déplétées en GluN2 sont celles positives aux anticorps anti-tau. Ceci suggère que dans la MA, la formation de PHF provoque une réorganisation des sous-unités NMDA et par la même génére une modulation de l’influx de Ca$^{2+}$ dans la cellule (Leuba et al., 2014).

Une autre étude montre le lien entre régulation de l’homéostasie des récepteurs NMDA et présence de tau-PHF (Warmus et al., 2014). Les souris mutantes exprimant le tau humain mutant présentent un comportement anormal, une diminution de la densité synaptique des récepteurs NMDA et une baisse de la transmission synaptique. Chez ces souris traitées avec de la cyclosérine (coagoniste de NMDA) non seulement la transmission synaptique est réabliie mais le comportement est également normalisé. L’hypofonction du récepteur NMDA contribue donc à l’altération du comportement dans la démence front temporelle.

Nous avons, dans cette thèse, fabriqué un outil d’imagerie moléculaire pour explorer l’activation du récepteur NMDA. On constate par le biais des différentes études que ce récepteur a un rôle central dans la neurodégénérescence mais que ce rôle est encore mal connu. S’agit-il d’une hypofonction ou d’une hyperactivation produisant une excitotoxicité ? A quel stade de la maladie cette altération se produit-elle ? Cette excitotoxicité est-elle la responsable des troubles cognitifs comme le suggère les études montrant qu’un afflux de calcium pouvait affecter les mitochondries qui enverraient des messagers pro apoptotiques (Swart et al., 2014). Avec un traceur comme la $[^{18}\text{F}]$-FNM utilisé dans des modèles pathologiques, nous pourrons étudier ce type de problématique et mieux connaître l’implication des GluN dans la cascade des maladies neurodégénératives. Le $[^{18}\text{F}]$-AV1451 développé est un traceur beaucoup plus avancé qui a déjà été testé chez l’homme, chez le sujet sain et dans diverses pathologies telles que la maladie d’Alzheimer, toujours dans le cadre d’essais cliniques. Ces deux traceurs sont des candidats sérieux pour devenir des biomarqueurs précoces de la MA mais aussi d’autres maladies neurodégénératives et permettront de faire progresser sur la connaissance de ces maladies comme le suggère la Figure 76. Un modèle animal présentant spontanément des signes de maladie d’alzheimer (peut être le marmouset) pourrait nous permettre de réaliser des études longitudinales avec les 3 types de traceurs cités dans la figure ci-dessous.
Figure 76 : Schéma de présentation de mécanismes associant amyloïde, excitotoxicité et DNF dans la maladie d'Alzheimer. Ces mécanismes peuvent être explorés à l'aide de radiotraceurs. Le TEP amyloïde permet de visualiser in vivo l’accumulation de peptide amyloïde, le TEP 18F-FMN permettra de visualiser une hyperactivité NMDA dans les zones à étudier, le TEP tau (18F AV1451) permettra d’évaluer la dégénérescence neuronale in vivo.

Il reste cependant à valider la 18F-FNM en condition pathologique pour évaluer dans quelle mesure ce traceur est capable de détecter une hyper ou une hypoactivation. Pour cela nous aurons évidemment besoin de sujets contrôles sains et de malades. Il faudra également tester l’interaction de ce traceur avec d’autres récepteurs afin de s’assurer de sa spécificité aux doses traceuses. Ceci fera l’objet d’une prochaine étude. Nous avons donc mis en place la synthèse d’un radiotraceur innovant qui est reproductible. Les premiers résultats sont encourageants et d’autres investigations doivent être menées avant une étude sur l’homme. Le radiotraceur synthétisé est encore en phase préclinique et nous avons réalisé les premières études de toxicologie afin de pouvoir rédiger un dossier de médicament expérimental (DME). Nous devrons, tout comme nous l’avons fait pour le 18F-AV1451, réaliser 3 lots de validation conformes en termes de contrôles afin de nous assurer de l’innocuité et de la qualité du radiotraceur préparé. Nous pourrons ainsi demander pour lui le statut de médicament expérimental.
Le \(^{18}\text{F}\)-AV1451 est un traceur dont le développement en recherche est plus avancé. Nous avons mis en place et validé sa production sur le site toulousain. Ce traceur est très prometteur car il cible un phénomène (formation des PHF) qui est corrélé à la dégradation des signes cliniques et qui de plus, en fonction zones cérébrales atteintes, donne des informations intéressantes susceptibles d’informer sur le stade de la maladie. Notre site de production va pouvoir recruter des malades et réaliser de nouvelles investigations. En effet, nous avons pour projet d’utiliser ce traceur dans un essai clinique ciblant la population âgée de Midi- Pyrénées afin de réaliser une étude en population générale, le but étant de définir en fonction de l’âge, la proportion de personnes ayant des PHF et de les classer par stade de gravité de la maladie. Ceci pourra nous permettre de mieux connaître l’incidence des tauopathies en population générale âgée (même celles non encore diagnostiquées) et de vérifier si les données sont corrélées avec les données épidémiologiques. Nous pourrons également suivre les patients et évaluer la valeur prédictive positive ou négative du traceur. Concernant la partie préclinique, à plus grande échelle, sur du tissu frais, nous pourrons évaluer si le marmouset qui présente de l’amyloïde, peut effectivement exprimer ou pas tau-PHF comme le suggère les études réalisées en immunohistochimie.

Enfin, corréler l’imagerie tau et l’imagerie NMDA prend ici une dimension toute particulière, car si une altération des NMDA est objectivée au niveau des sites PHF, ces récepteurs seront d’une grande aide pour montrer les traitements. En effet, même si on agit sur l’amyloïde ou sur le tau, la conséquence physiologique n’en est pas moins une altération dans l’activité des récepteurs NMDA et une dérégulation du Ca\(^{2+}\) susceptible de provoquer la mort neuronale et les signes cliniques. Il a été constaté par ailleurs que certains traitements détruisant les plaques, ne modifiaient pas les signes cliniques (Cedernaes et al., 2014). Il est donc possible que la visualisation de l’effet des traitements sur la régulation du récepteur NMDA constitue une aide précieuse dans la recherche de thérapies efficaces.

Avec des études combinant ces deux radiotraceurs, nous pourrons également avoir des informations sur l’évolution dans le temps des processus de neurodégénérescence en réalisant des études longitudinales. Nous pourrons étudier la maladie d’Alzheimer, mais aussi les autres maladies neurodégénératives impliquant des PHF. Grâce à l’essor de
l’imagerie petit animal et de la mise en place d’une plateforme microTEP à Toulouse, nous pourrons tester ces hypothèses avec nos traceurs dans des modèles pathologiques (modèles murins d’Alzheimer, marmousets âgés ...). Dans ce contexte, Toulouse qui est un centre d’excellence dans le domaine des maladies neurodégénératives, bénéficie d’éléments structurants. Toulouse possède : un pôle de recherche et des établissements qui ont su développer des compétences en sciences de la cognition avec le CNRS et le CerCo; sur les maladies neurodégénératives avec le Centre Mémoire de Ressources et de Recherche (CMRR) de Toulouse, le CHU, l’Institut des Sciences du Cerveau de Toulouse, le Centre d’Investigation Clinique et le gérontopôle de Purpan. La neuro-imagerie par l’intermédiaire de l’UMR825 s’intègre aux projets de ces établissements et de part son partenariat avec le labex IRON, elle doit être en mesure de fournir de nombreux radiotraceurs innovants dans le domaine de la neurologie.
ABBIBGRAPHIE

Aksoy-Aksel, A., and Manahan-Vaughan, D. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels. Neuroscience.

Ladepeche, L. (2012). Rôle du trafic des récepteurs NMDA au cours de la maturation et plasticité synaptique (Bordeaux 2).

SALABERT Anne-Sophie (2014). Synthesis and binding analysis in rat brain of 18[F]-FNM (Fluoroethynormemantine): towards an innovative PET tracer for imaging activated NMDA receptors (gothenburg).

204

LISTES DES PUBLICATIONS ET COMMUNICATIONS

Publications

Article en préparation

Congrès internationaux

- Annual Congress of the European Association of Nuclear Medicine

Communications orales

Communication écrite acceptée

2015 : Optimization of synthesis of the [18F]-FHBG for visualisation of transfected cells

- NTHS 2015: IRON meeting, March 10-11 2015, Nantes, France

Communications orales

Research of tau aggregates in brain marmoset by autoradiography with 18F-AV1451:
Salabert Anne-Sophie, Fonta Caroline, Loukh Najat, Delisle Marie-Bernadette, Fontan Charlotte, Alonso Mathieu, Tafani Mathieu, Payoux Pierre.

Synthesis and preclinical evaluation of a new radiotracer for imaging activated NMDA receptors: The [18F]-FNM (Fluoroethynormemantine)

Congrès nationaux

- 1ères Journées Francophones de Médecine Nucléaire 2015 (La Rochelle)

Communications écrites

Radiosynthèse et évaluation préclinique d'un radiotracer innovant ciblant les récepteurs NMDA activés : la fluoroethynormemantine ([18F]FNM)
Salabert AS, Fonta C, Tafani M, Alonso M, Payoux P.
RESUME :

Les mécanismes physiopathologiques liés aux maladies neurodégénératives restent encore largement méconnus. Deux processus semblent être particulièrement en cause dans les phénomènes de neurodégénérescence : la neurotoxicité par afflux massif de calcium due à une activation excessive des récepteurs NMDA (GluN) et la neurotoxicité par déstabilisation du cytosquelette du neurone par le biais de la phosphorylation anormale de la protéine tau. L’imagerie moléculaire par le biais de la tomographie par émission de positons (TEP) et de radiotraceurs, en étudiant les mécanismes moléculaires in vivo, permet de détecter et quantifier ces phénomènes. Ce travail a eu pour objet d’étudier un dérivé de la mémantine, un antagoniste des GluN se fixant sur un site intra-canal accessible uniquement lorsque ces récepteurs sont activés ce qui en fait donc un vecteur d’imagerie intéressant pour étudier leur activation. Nous avons mis au point la synthèse d’un nouveau radiotraceur dérivé de la mémantine : la [18F]-FNM (Fluoroéthylnormémantine). Il s’agit d’une synthèse par substitution nucléophile d’un groupement tosylate par du [18F], suivie d’une hydrolyse acide. Cette synthèse est reproductible avec un rendement de 10%, son activité spécifique est > 355 GBq/µmol. Chez le rat, le traceur passe la barrière hémato-encéphalique et sa distribution cérébrale est bien corrélée avec la localisation des GluN (r=0.622, p<0.0001). Sa cinétique de fixation (40 minutes) est compatible avec son utilisation en TEP. En ce qui concerne les tauopathies, la protéine tau stabilise l’organisation microtubulaire. Lors d’une phosphorylation anormale, l’interaction avec les microtubules diminue et les protéines tau vont s’accumuler en formant des Paires de Filaments en Hélice (PHF). Nous avons alors optimisé la radiosynthèse de l’[18F]-AV1451 ciblant les PHF. Notre rendement de synthèse est de 30% et l’activité spécifique du traceur > 10 GBq/µmol. Nous avons réalisé des autoradiographies sur des coupes de cerveaux atteints de tauopathie et nous avons constaté la capacité du traceur à différencier les coupes saines des coupes malades. La production de cet outil nous permettra de mieux étudier la présence de PHF chez le marmouset, un primate particulièrement intéressant dans l’étude du vieillissement. Nous avons donc réalisé la synthèse de deux radiotraceurs innovants : la [18F]-FNM et le [18F]-AV1451, les synthèses sont reproductibles et les rendements compatibles avec des productions de doses en recherche pré-clinique et clinique.

Summary :

The pathophysiological mechanisms associated with neurodegenerative diseases remain largely unknown. Two processes appear to be particularly involved in the phenomena of neurodegeneration: neurotoxicity induced by massive influx of calcium caused by excessive activation of NMDA receptors (GluN) and neurotoxicity by destabilization of neuron cytoskeleton through abnormal protein tau phosphorylation. Molecular imaging through positron emission tomography (PET) and radiotracers, by studying the molecular mechanisms in vivo, allows to detect and quantify these phenomena. This work was intended to study a memantine derivative, a GluN antagonist. We chose to develop a ligand that selectively binds to the ion channel in the open and active state which therefore makes it an interesting vector to study their overactivation. We have developed the synthesis of a new memantine analogue radiotracer: the [18F]-FNM (Fluoroéthylnormémantine). This is a synthesis by nucleophilic substitution of a tosylate with [18F], followed by acid hydrolysis. This synthesis is reproducible with a yield of 10%, its specific activity was > 355 GBq / µmol. In rats, the tracer cross the blood-brain barrier and brain distribution correlates well with the location of GluN (r = 0.622, p <0.0001). The binding kinetics (40 minutes) is compatible with its use in PET. Regarding tauopathies, the tau protein stabilizes microtubule organization. During abnormal phosphorylation, interaction with microtubules and tau proteins decreases and tau will accumulate to form Paired helical Filament (PHF). We optimized the radiosynthesis of [18F] AV1451 targeting 3 tau PHF. Our yield of synthesis is 30% and the specific activity of the tracer > 10 GBq / µmol. We made autoradiography on brains sections and have shown tracer ability to differentiate healthy and pathological slices. This tool will allow us to study the presence of PHF in marmosets, a particularly interesting primate in the study of aging. So we performed the synthesis of two innovative radiotracers: the [18F]-FNM and [18F]-AV1451, syntheses are reproducible and yields compatible with doses manufacturing in pre-clinical and clinical research.