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Abstract

In this thesis I present the result of my work on the problem of low-rank matrix factorization

and low-rank tensor matrix factorization. Because one often tries to analyze data that are en-

coded in a matrix form, matrices ends up being an ubiquitous object in Machine Learning.

Approximating a matrix by some form of low-rank approximation (factorizing) is therefore one

of the basic tasks that one could end up doing when treating such problems. Basic spectral

techniques to solve this problem such as Principal Component Analysis (PCA) �nd their use-

fulness in that they are quite model agnostic and make little assumption about the structure

of the underlying data. In this thesis we present a way to use such prior knowledge of the data

in the setting of Bayesian inference. We will treat these inference problem using tools coming

from statistical physics. We will give algorithmic solutions to solve these problem in an e�cient

way. We will analyze theoretically these systems and uncover the "zoology of phase diagrams"

that they can exhibit.
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Introduction
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Chapitre 2

Introduction

The last years have seen an explosion of the amount of data collected in di�erent industries.

At the time of writing of this thesis Facebook counts 1.98 billions active users that log in at
least once a month [FB]. With a current estimate of the world population sitting at 7.5 billion
people this means that 26% of the world population is an active user of this social network.
The analysis alone of the graph (of size N = 1.98× 109) formed by the "friendship" connection
between people contains an immense amount of data that Facebook seems to have found a
usefulness for [UKBM11].

The availability of big training set combined with advance in Machine Learning (ML) techniques
has allowed people to train deep neural networks with success.

Be they collected through the usage of social network, "smart" object or even collected by
hand, this sudden availability of data has created a world in which data are now seen as
valuable resources. The �eld that deals with the techniques that allow one to transform raw
data into a human face classi�er or uncover the existence of clusters in a data set or even
program a computer to play Go [SHM+16] is called Machine Learning.

Machine learning problem tends to be separated into 3 di�erent types.

� Supervised learning is the part of Machine learning that deals with learning a function
f(x) from a set of examples of N examples (xi, yi). One looks for a function f such that
the f(xi) ≈ yi. What does one mean by the sign "≈" here, is a problem dependent ques-
tion. In practice the supervised learning often translates into an optimization problem
of the form

f ∗ = argminR(f) = argmin

{
1

N

∑
1≤i≤N

L(f(xi), yi) + Λ(f)

}
(2.1)

L(., .) can be seen as a distance that ensures that f(xi) will remain "close" to yi. The
space in which we look for a minima has to be restrained. There can be multiple ways
to do that. One way is to restrain the search to functions f that can be expressed in
a certain way. For instance one could restrain the search to functions that are linear in
x, f(x) = β>x + c with x, β ∈ Rr c ∈ R. The Λ term is also here to restrict the space
of solutions by penalizing some values of f . The �eld of ML possesses a large array of

2
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techniques to express a function f (to name but a few, nearest neighbor approximation,
perceptron, neural network, decision trees, etc.). There are also ways to combine the
result of di�erent function f1(x), f2(x), · · · in order to create a new function f with
greater expressivity. These techniques are called boosting techniques.

� Unsupervised learning is the part of ML that deals with the analysis of data and the
search for hidden structure in a data set. The di�erence between supervised learning and
unsupervised learning is illustrated in �g 2.1. In unsupervised learning one does not try
to predict or learn a function but tries to understand the structure of available data. A
good approximation would be to say that unsupervised learning deals with the learning
of the density probability (or generative model) from which we assume the observed data
was created. Examples of techniques coming from unsupervised learning include k-means
clustering, latent, restricted Boltzmann machine, Principal Component Analysis, etc.

� Reinforcement learning is a part of Machine Learning that overlaps with control
theory. In that setting one tries to teach an agent how to behave in external environment
in order to maximize some reward all the while having only partial information of the
environment.

Supervised Learning:
goal : predict colour of new point

Unsupervised Learning:
goal : identify clusters

Figure 2.1 � Left pannel : Here we illustrate the concept of supervised learning. We have been
given a collection of points each of a di�erent colour. We are then provided with a new point
of unknown colour (the grey one with dashed contour). Supervised learning is about answering
the question "what is the colour of the new point ?" Right pannel : Here we illustrate the
concept of unsupervised learning. We have been given a collection of points. Using techniques
such as k-means one could show that this distribution of points form clusters (materialised by
transparent coloured circles) and could therefore be well explained by a mixture of Gaussians
model.

It is worth noting that the distinction into 3 separate "types" of Machine Learning problem is
a distinction that has more to do with what one wants to do with the data and less with the
type of techniques and insights one might use in the resolution (essentially because nearly all
ML problem can be translated into an optimization problem). For example some problems of
optimal control can be translated into problem of inference on graphical models [KGO12].

Machine Learning sits at the intersection of many �elds. Some might see it as only a renaming
of statistics, whereas others might see it only as a collection of techniques to solve engineering
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problems. Some might even have a more "free form" vision of the �eld [A free form approach].

Despite its success there is little theoretical understanding of why Machine Learning techniques
work. In the last years new works coming from Statistical physics have tried to �ll that theoreti-
cal understanding gap. By analyzing certain systems they hope to shed some light on the inner
workings of Machine Learning techniques. The reason why this might be a fruitful approach is
that one can often �nd a translation between concept in Statistical physics and concept in ML
problems. For instance solving an optimization problem is the same thing as looking for the
ground state of an Hamiltonian. We will see in the next chapter that this link between the two
�elds goes beyond that.

This thesis belongs to this "collection" of work that makes overlap statistical physics, Machine
learning and Information theory. The idea is to "import" intuitions, tools and techniques from
statistical physics in order to solve and analyze problems in Machine Learning. Here are a few
examples of such work [DMM09, KMM+13]. A reader interested in studying these question in
more details might �nd these books to be most precious resources [Nis01, MPV87, MM09].

In this thesis I present the result of my work on the problem of low-rank matrix/tensor factori-
zation. In order to explain the motivation for this work, let me start from a typical unsupervised
learning problem. An unsupervised learning problem is a problem where one is given data about
a problem and where one attempts to �nd some underlying structure in the provided data. Let
us give some example of such problems and of "typical" structure we would be interested in.

� Community detection : Suppose one is given some undirected network of size N . This
network is coming from a social network such as Facebook. The nodes of the network
represent people and a link between two nodes mean that these two people are friend on
Facebook. We note Y the adjacency matrix Y ∈ RN×N of the network. An analysis of
the network might uncover for instance an associative structure where it is possible to
assign to each of the N node a color. Nodes of the same color will form "communities"
and will on average have more links to nodes of the same color compared to nodes of
di�erent color. In such a case maybe one would just have uncovered some feature of
real life and these two communities might map to the fact that people speak di�erent
languages or belong to di�erent social classes.

� Clustering : An example of an unsupervised learning problem is the following. One is
given some M data points representing some information of people entering an hospital.
Information about each patient (tension, hearth rate etc.) is encoded in a vector xi ∈ RN .
We could collect all these data points in a matrix Y ∈ RN×M . An analysis of these data
points might uncover some cluster like structure. This would tell us that one could model
incoming patient i as to belonging to a certain class depending on the cluster to which
xi belongs.

In both these cases we encode the data we want to analyze either in a square symmetric matrix
Y ∈ RN×N or in a rectangular matrix Y ∈ RN×N . Because one often ends up trying to analyze
data that is encoded in a matrix form, matrices end up being an ubiquitous object in Machine
Learning. We hope that in the matrix Y some form of structure that we want to discover is
hidden. By "structure" we mean a low-rank structure this means that Y is the combination of
an underlying signal and of random noise. In practice this means that we expect Y to have the
following structure.

XX> Symmetric case : Y = XX> +NSym(0,∆)N×N (2.2)

UV> case : Y = UV > +N (0,∆)N×M (2.3)

https://xkcd.com/1838/
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Where X,U ∈ RN×r and V ∈ RM×r. N (0,∆)N×M is a random Gaussian matrix where each
entry is a Gaussian variable of mean 0 and variance ∆. NSym(0,∆)N×N is a symmetric Gaussian
random matrix with elements outside the diagonal of variance ∆. Knowing Y we want to �nd
back X or U and V . Y can be seen as the perturbation of a rank r matrix by random noise.

One of the most simple way to solve this problem is to use a method called PCA where one
looks for the matrix Ỹ which minimize the Frobenius norm to Y among all matrices of rank r.
This is equivalent to using the rescaled eigenvectors of Y as estimates for X, U and V .

A technique such as PCA has the bene�t to be relatively model agnostic meaning the we make
little or no assumption about the structure of matrices X, U and V . It can often prove useful to
incorporate some prior knowledge on X, U and V in our model. To do this we will look at this
problem from the angle of Bayesian inference. We will suppose that Y was created according
to the following process.

∀i ∈ [1;N ], Samplexi ∈ Rr×1 ∼ PX0(xi)⇒ wij =
1√
N
x>i xj

⇒ P (Y |{wij}) =
∏

1≤i<j≤N
Pout(Yij|wij) (2.4)

{
∀i∈[1;N ], Sampleuj∈Rr×1∼PU0

(ui)

∀j∈[1;M ], Sample vj∈Rr×1∼PV0 (vj)
⇒ wij =

1√
N
u>i vj ⇒ P (Y |{wij}) =

∏
1≤i≤N
1≤j≤M

Pout(Yij|wij) (2.5)

The main di�erence with equations (2.2, 2.3) is that we assume P (X) to have been sampled
from some density distribution. We also assume a more general form for the noise model with the
conditional probability function Pout(Y |w). We will treat this problem using Bayesian inference.
This yields us with

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX(xi)
∏

1≤i<j≤N
exp

(
g

(
Yij

∣∣∣∣x>i xj√
N

))
, (2.6)

P (U, V |Y ) =
1

ZUV (Y )

∏
1≤i≤N

PU(ui)
∏

1≤j≤M
PV (vj)

∏
1≤i≤N,1≤j≤M

exp

(
g

(
Yij

∣∣∣∣u>i vj√
N

))
. (2.7)

Here we have replaced PX0 by PX , PU0 by PU , PV0 by PV and Pout(Y |w) by exp(g(Y,w)). The
Bayes optimal case correspond to the case where

PX = PX0 , PU = PU0 , PV = PV0 , Pout(Y |w) = eg(Y,w) (2.8)

PX0 , PU0 , PV0 and Pout are the density probability that were used to create Y . In most of this
thesis we will assume to be in the Bayes optimal setting (2.8). The term "optimal" here means
that since we know from what model was sampled Y we can compute the exact posterior
probability P (X|Y ) but more importantly we will be able to compute the optimal estimator
of X̂(Y ) that minimizes some average error. For instance the X̂MSE(Y ) = EX∼P (X|Y ) [X] is the
estimator of X that minimizes the average squared norm between X0 and X̂MSE(Y ). Though
analyzing the problem in a more general setting will prove useful.

The factor 1/
√
N in the second argument of the function g ensures that the behavior of the

above models is non-trivial and that there is an interesting competition between the number
O(N) of local magnetic �elds PX , PU , PV and the number of O(N2) interactions. To physics
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readership familiar with the Sherrington-Kirkpatrick (SK) model this 1/
√
N factor will be

familiar because in the SK model the interaction between the Ising spins that lead to extensive
free energy are also of this order (with mean that is of order 1/N). This is compared to the
ferromagnetic Ising model on a fully connected lattice for which the interactions leading to
extensive free energy scale as 1/N .

For readers interested in inference problems, i.e. the planted setting, the 1/
√
N factor is the

scaling of the signal-to-noise ratio for which inference of O(N) unknown from O(N2) measure-
ments is neither trivially easy nor trivially impossible. In the planted setting Y can be viewed
as a random matrix with a rank-r perturbation. The regime where the eigenvalues of dense
random matrices with low-rank perturbations split from the bulk of the spectral density is
precisely when the strength of the perturbation is O(1/

√
N), see e.g. [BBAP05].

We will also treat the problem of low-rank tensor factorization, in which we now observe a
symmetric tensor Y of order p (symmetric here means that Y is invariant with respect to all
permutation of the p indices i1, · · · , ip). We suppose that Y exhibit a low-rank structure de�ned
by the following generative process.

∀i ∈ [1;N ], Samplexi ∈ Rr×1 ∼ PX(xi)⇒

⇒ wi1···ip =

√
(p− 1)!

N
p−1
2

∑
k=1···r

(xi1 ◦ · · · ◦ xip)k ⇒ P (Y |{wij}) =
∏

1≤i<j≤N
Pout(Yij|wij) (2.9)

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX0(xi)
∏

1≤i<j≤N
Pout

(
Yij

∣∣∣∣x>i xj√
N

)
. (2.10)

The ◦ symbol is the Hadamard product. The
√

(p− 1)! is just here so that we get more
convenient equations.

We will often talk in this thesis of the XX> UV > and Xp case to designate systems of types
2.6 2.7 2.10 respectively.

2.1 Organization of the manuscript

This thesis is organized in 2 main parts.
� In the General Theory chapter 3 I will introduce the theoretical tools that we will

use all throughout the thesis. This chapter can be thought of as having two main parts.
� In 3.1 we will introduce the concept of Inference, both frequentist and Bayesian

inference. we will talk about estimators and about what it means for an estimator
to be optimal.

� In the second part 3.2 I present the tools, model and techniques coming from sta-
tistical physics that will prove useful in order to describe analyze and treat the
di�erent statistical physics problem that we will encounter. This will include sections
on Mean-�eld and Plefka method 3.3, A section on factor graphs 3.4, a section on
Belief Propagation (BP) 3.5, a section on the Sherrington-Kirkpatrick model and
spin glasses 3.6 and a section on the replica method 3.7.
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� The Results chapter 4 of this thesis will mainly contain the results of this thesis on
the problem of low-rank matrix/tensor factorization. This chapter will be organized into
three sub-parts.
� In the introduction part 4.1 we introduce in more detail the setting in which we

will work. We will also talk about the problem of low-rank matrix factorization
and the techniques one can use to solve it 4.1.3 so that the reader may gain a
simple understanding of the basic issue and di�culties at play behind the problem
of inference in general and the problem of matrix/tensor factorization in general.

� We will then move to the analysis of the problem both from an algorithmic 4.2 and
theoretical point of view 4.3,4.4.

� We will provide a number of examples of systems 4.5.1. These examples will allow us
both to illustrate the malleability of matrix factorization to describe multiple situa-
tion in learning in estimation (sparse PCA, clustering of point, community detection
in network, synchronization). This will allow us to establish a zoology of systems and
phase transitions that one can expect in these matrix and tensor factorization pro-
blem. It will hopefully help the reader forge an intuition as to what can one expect
in di�erent setting of matrix and tensor factorization.

� In the last section 4.6. We will talk in more detail of the problem of the problem
of sparse PCA. for rank r > 1. The reader might think of this problem as a low
rank version of the dictionary learning problem. We will see how even in the setting
1� r � N this problem can be hard to solve even using AMP. We will diagnostic the
problem in order to understand from where comes the di�culty and we will propose
a partial �x to it. This section did not really �t anywhere else but I still wanted to
put these results somewhere in my thesis.

2.2 Contributions

This thesis focuses on the study of the general type of models described by probability measures
(2.6) and (2.7) (2.10). On the one hand, these probability distributions represent Boltzmann
measures of vectorial-spin systems on fully connected symmetric or bipartite graphs or even
hyper-graph. Examples of previously studied physical models that are special cases of the setting
considered here would be the Sherrington-Kirkpatrick model [SK75], the Hop�eld model [Hop82,
Méz16], the p-spin model [MPV87], the inference (not learning) in the restricted Boltzmann
machine [GTK15, Méz16, TM16]. Our work hence provides a uni�ed replica symmetric solution
and TAP equations for generic class of prior distributions and Hamiltonians.

On the other hand, these probability distributions (2.6), (2.7) and (2.10) combined with (2.8)
represent the posterior probability distribution of a low-rank matrix/tensor estimation problem
that �nds a wide range of applications in high-dimensional statistics and data analysis. The
thermodynamic limit M/N = α with α = O(1) whereas N,M → ∞ was widely considered in
the studies of spin glasses, in the context of low-rank matrix estimation this limit correspond
to the challenging high-dimensional regime, whereas traditional statistics considers the case
where M/N � 1. We focus on the analysis of the phase diagrams and phase transitions of
low-rank matrix estimation corresponding to the Bayes optimal matrix/tensor estimation. We
note that because we assume the data Y were generated from random factors U , V , X we
obtain much tighter bounds, including the constant factors, control of the high-dimensional
behavior N,M → ∞, α = M/N = O(1), than some traditional bounds in statistics that aim
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not to assume any generative model but instead craft proofs under veri�able conditions of the
observed data Y .

We note at this point that methodologically closely related series of work on matrix factorization
is concerned with the case of high rank, i.e. when r/N = O(1) [KMZ13, PSC14, KKM+16].
While that case also has a set of important application (among then the learning of over-
complete dictionaries) it is di�erent from the low-rank case considered here. The theory deve-
loped for the high rank case requires the prior distribution to be separable component-wise.
The high rank case also does not present any known output channel universality, the details
of the channel enter explicitly the resulting state evolution. Whereas the low-rank case can be
viewed as a generalization of a spin model with pairwise interaction, in the graphical model for
the high-rank case the interactions involve O(N) variables.

No attempt is made at mathematical rigor in the present thesis. It is, however, worth mentioning
that for the case of Bayes-optimal inference, a large part of the results of this paper was proven
rigorously in a recent series of works [RF12, JM13, DM14a, KXZ16, DAM16, BDM+16, ML16,
Mio17b]. These proofs include the mutual information (related to the replica free energy) in the
Bayes-optimal setting and the corresponding minimum mean-squared-error (MMSE), and the
rigorous establishment that the state evolution is indeed describing asymptotic evolution of the
Low-RAMP algorithm. The study out of the Bayes-optimal conditions (without the Nishimori
conditions) are move involved.

It has become a tradition in related literature [ZK16] to conjecture that the performance of
the Low-RAMP algorithm cannot be improved by other polynomial algorithms. We do analyze
here in detail the cases where Low-RAMP does not achieve the MMSE, and we remark that
since e�ects of replica symmetry breaking need to be taken into account when evaluating the
performance of the best polynomial algorithms, the conjecture of the Low-RAMP optimality
among the polynomial algorithms deserves further detailed investigation.

This section gives a brief summary of our main results and their relation to existing work.
� Approximate Message Passing for Low-Rank matrix estimation (Low-RAMP) :

In section 4.2 we derive and detail the approximate message passing algorithm to esti-
mate marginal probabilities of the probability measures (2.6) and (2.7) for general prior
distribution, rank and Hamiltonian (output channel). We describe various special case
of these equations that arise due to the Nishimori conditions or due to self-averaging. In
the physics literature this would be the TAP equations [TAP77] generalized to vectorial
spins with general local magnetic �elds and generic type of pairwise interactions. The
Low-RAMP equations encompass as a special case the original TAP equations for the
Sherrington-Kirkpatrick model, TAP equations for the Hop�eld model [MPV87, Méz16],
or the restricted Boltzmann machine [GTK15, TMC+16, Méz16, TM16]. Within the
context of low-rank matrix estimation, the AMP equations were discussed in [RF12,
MT13, DM14a, LKZ15b, LKZ15a, DAM16, LDBB+16]. Recently the Low-RAMP algo-
rithm was even generalized to spin-variables that are not real vectors but live on compact
groups [PWBM16a].
AMP type of algorithm is a promising alternative to gradient descent type of methods to
minimize the likelihood. One of the main advantage of AMP is that it provides estimates
of uncertainty which is crucial for accessing reliability and interpretability of the result.
Compared to other Bayesian algorithms, AMP tends to be faster than Monte-Carlo
based algorithms and more precise than variational mean-�eld based algorithms.
We distribute two open-source Julia and Matlab versions of LowRAMP at
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http://krzakala.github.io/LowRAMP/. We strongly encourage the reader to down-
load, modify, and improve on it.

� In physics, message passing equations are always closely linked with the Bethe free
energy whose stationary points are the message passing �xed point equations. In the
presence of multiple �xed points it is the value of the Bethe free energy that decides which
of the �xed points is the correct one. In section 3.3 we derive the Bethe free energy on a
single instance of the low-rank matrix estimation problem. The form of free energy that
we derive has the convenience to be variational in the sense that in order to �nd the �xed
point we are looking for a maximum of the free energy, not for a saddle. Corresponding
free energy for the compressed sensing problem was derived in [KMTZ14, RSR+13] and
can be used to guide the iterations of the Low-RAMP algorithm [VSR+15].

� In section 4.3 we derive the general form of the state evolution (under the replica
symmetric assumption) of the Low-RAMP algorithm, generalizing previous works, e.g.
[RF12, DM14a, LKZ15b, LKZ15a]. We present simpli�cations for the Bayes-optimal in-
ference and for the conventional form of the Hamiltonian. We also give the corresponding
expression for the free energy. We derive the state evolution and the free energy using
both the cavity and the replica method.
For the Bayes-optimal setting the replica Bethe free energy is up to a simple term
related to the mutual information from which, one can deduce the value of the mini-
mum information-theoretically achievable mean squared error. Speci�cally, the
MMSE correspond to the global maximum of the replica free energy (de�ned here with
the opposite sign than in physics), the performance of Low-RAMP correspond to the
maximum of the replica free energy that has the highest MSE.
We stress here that Low-RAMP algorithm belongs to the same class of approximate
Bayesian inference algorithms as generic type of Monte Carlo Markov chains of variatio-
nal mean-�eld methods. Yet Low-RAMP is very particular compared to these other two
because of the fact that on a class of random models considered here its performance
can be analyzed exactly via the state evolution and (out of the hard region) Low-RAMP
asymptotically matches the performance of the Bayes-optimal estimator. Study of AMP-
type of algorithms hence opens a way to put the variational mean �eld algorithms into
more theoretical framework.

� We discuss the output channel universality as known in special cases in statistical
physics (replica solution of the SK model depends only on the mean and variance of the
quenched disorder not on other details of the distribution) and statistics [DAM16] (for
the two group stochastic block model). The general form of this universality was �rst
put into light for the Bayes-optimal estimation in [LKZ15a], proven in [KXZ16], in this
thesis we discuss this universality out of the Bayes-optimal setting.

� In section 4.4.1 we show that the state evolution with a Gaussian prior can be used to
analyze the asymptotic performance of spectral algorithms such as PCA (symmetric
case) or SVD (bipartite case) and derive the corresponding spectral mean-squared errors
and phase transitions as studied in the random matrix literature [BBAP05]. For a recent
closely related discussion see, [PWBM16b].

� In section 4.4.2 and 4.4.4 we discuss the typology of phase transition and phases
that arise in Bayes-optimal low-rank matrix estimation. We provide su�cient criteria for
existence of phases where estimation better than random guesses from the prior distri-
bution is not information-theoretically possible. We analyze linear stability of the �xed
point of the Low-RAMP algorithm related to this phase of undetectability, to conclude
that the threshold where Low-RAMP algorithm starts to have better performance than

http://krzakala.github.io/LowRAMP/
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randomly guessing from the prior agrees with the spectral threshold known in the lite-
rature on low-rank perturbations of random matrices. We also provide su�cient criteria
for the existence of �rst order phase transitions related to existence of phases where
information-theoretically optimal estimation is not achievable by existing algorithms,
and analyze the three thresholds ∆Alg, ∆IT and ∆Dyn related to the �rst order phase
transition.

� In section 4.5.1 we give a number of examples of phase diagrams for the following
models : rank-one r = 1 symmetric XX> case with prior distribution being Bernoulli,
Rademacher-Bernoulli, Gauss-Bernoulli, corresponding to balanced 2-groups. For generic
rank r ≥ 1 we give the phase diagram for the symmetric XX> case for the jointly-sparse
PCA, and for the symmetric community detection.

� Section 4.5.3 and appendix 4.6.2 is devoted to small ρ analysis of the above models.
This is motivated by the fact that in most existing literature with sparsity constraints
the number of non-zeros is usually considered to be a vanishing fraction of the system
size. In our analysis the number of non-zeros is a �nite fraction ρ of the system size, we
call the the regime of linear sparsity. We investigate whether the ρ→ 0 limit corresponds
to previously studied cases. What concerns the information-theoretically optimal per-
formance and related threshold ∆IT our small ρ limit agrees with the results known for
sub-linear sparsity. Concerning the performance of e�cient algorithms, from our analysis
we conclude that for linear sparsity in the leading order the existing algorithms do not
beat the threshold of the naive spectral method. This corresponds to the known results
for the planted dense subgraph problem (even when the size of the planted subgraph is
sub-linear). However, for the sparse PCA problem with sub-linear sparsity algorithms
such as covariance thresholding are known to beat the naive spectral threshold [DM14b].
In the regime of linear sparsity we do not recover such behavior, suggesting that for li-
near sparsity, ρ = O(1), e�cient algorithms that take advantage of the sparsity do not
exist.

� In section 4.5.4 and appendix 4.6.2 we discuss analytical results that we can obtain for
the community detection, and joint-sparse PCA models in the limit of large rank r.
These large rank results are matching the rigorous bounds derived for these problems in
[BMVX16].

2.3 Publications

The work done during this thesis has given rise to a number of publications in various conference
and journal. They are presented here in chronological order.

� Phase Transitions in Sparse PCA : [LKZ15b] : In that �rst paper we analyzed
a spiked jointed-sparse model. We uncovered a �rst order phenomena and derive the
asymptotic behavior in the large rank limit of this system. This article was presented at
the conference ISIT2015

� MMSE of probabilistic low-rank matrix estimation : Universality with respect
to the output channel : [LKZ15a] : This article deals with the problem of community
detection. The low-rank matrix factorization formalism allows us to treat the dense case
of the stochastic block model. We uncover a �rst order phase transition when the number
of hidden communities is larger than 4. We also talk about channel universality.
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� Phase transitions and optimal algorithms in high-dimensional Gaussian mix-
ture clustering : [LDBB+16] : In this article we treat the problem of clustering of
points. Being given M points arranged in clusters in a N dimensional space. We study
this question in one speci�c Bayesian setting and show that these system can exhibit
non trivial behavior and phase diagrams.

� Mutual information for symmetric rank-one matrix estimation : A proof of
the replica formula : [BDM+16] In this paper we prove the correctness of the free
energy formula provided by the replica computation for the problem of rank 1 matrix
factorization. This allow us to express the Minimum Squared Error done when recons-
tructing the signal. We also show that an iterative algorithm called Approximate Message
Passing (AMP) can be Bayes-optimal depending on the parameter of the system. My
contribution to this paper was minor.

� Constrained Low-rank Matrix Estimation : Phase Transitions, Approximate
Message Passing and Applications : [LKZ17] : In this long paper we present most
of the result of past paper on matrix factorization. This paper was published in Journal
of Statistical Mechanics (JSTAT).

� Statistical and computational phase transitions in spiked tensor estimation :
[LML+17] :In that paper we decide to move away from matrices and try and tackle
the problem of tensor factorization once again in the Bayesian framework. We compute
rigorously the mutual information and the Minimal Mean Square Error (MMSE) of
the system. We study the performance of AMP algorithm and uncover a Hard phase
which provides a physical interpretation to the Hardness of computing the eigenvectors
of tensors [HL09].



Chapitre 3

General Theory

3.1 Frequentist and Bayesian inference

That whole thesis deals with the problem of inference. Inference can be seen as the problem
of inferring a signal X ∈ X from some measurement Y ∈ Y . The process that created Y from
X is described by a conditional density probability Pout(Y |X). Essentially we want to �nd an
estimator X̂ ∈ X , a function that takes in input Y ∈ Y and outputs X̂(Y ) ∈ X . We want
X̂(Y ) to be a "good" reconstruction of X from Y . This is illustrated in �gure 3.1.

Pout(Y |X)X ∈ X Y ∈ YChannel

X̂(Y )

?

Figure 3.1 � We describe the typical setting of inference. We want to infer X from Y and �nd
an estimator X̂(Y ) (dashed line) that allows us to "come back" to X from Y . In the frequentist
framework we make no other hypothesis other than X ∈ X

The frequentist framework and Bayesian framework are two ways to analyze this inference
problem. We will quickly describe the frequentist framework and then move on to the Bayesian
framework that we use in that thesis.

The quanti�cation of what it means for an estimator to be good is a non trivial question that is
at the origin of the "schism" between frequentist and Bayesian inference. Essentially frequentist
inference is interested with �nding "worst-case" estimators while Bayesian inference deals with
�nding estimators that have good performance on average.

To quantify the quality of an estimator we introduce a distance function d(., .) between elements
of X .

frequentist inference (or worst case approach) : In frequentist inference to quantify the
quality of an estimator we introduce the average error made when reconstructing the signal
Î(, X̂,X).

12
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Î(X̂,X) = EY∼Pout(Y |X)

[
d(X, X̂(Y ))

]
(3.1)

Î(X̂,X) is the average error made when reconstructing the hidden signal X with estimator X̂.
If the hidden is signal X. The average here is only taken over the measurement Y .

Our measure of how well estimator X̂ is not a single number but a function Î(X̂,X0) over X
that outputs a positive number. Some estimator might reconstruct well some value of X and
worst others but when designing an estimator one might have to make a choice on which value
one might prefer to reconstruct (For example when designing an alarm do you prefer to have
false positives or false negative). One of the di�culty of studying frequentist estimator is that
except if X is exactly recoverable there does not exist an optimal estimator X̂opt such that

∀X̂,∀X ∈ X : Î(X̂opt, X) ≤ Î(X̂,X) (3.2)

It is easy to prove that such an estimator can not exist. To do so let us suppose that X̂opt exists
and let us create estimator X̂1 such that ∀Y ∈ Y , X̂1(Y ) = X0. From we 3.2 we get

0 ≤ Î(X̂opt, X0) ≤ Î(X̂,X0) ≤ 0 (3.3)

And therefore ∀X ∈ X , Î(X̂opt, X) = 0. Which means that if X̂opt exists it recovers the signal
exactly.

Proofs on frequentist estimators are often upper bounds on the average error Î conditioned on
X belonging to some set X .

∀X ∈ X , Î(X̂,X0) ≤ β (3.4)

Where X is large enough and β is small enough so that this is a non-trivial result. One could
try to �nd the estimator X̂(Y ) that minimizes β in (3.4) (if such an estimator exists), this
could provide a notion of an optimal estimator.

Frequentist estimator are nice in the sense that they are "worst case" estimator. However they
can often provide overly pessimistic bounds that are worst than the typical case, this leads us
to the framework of Bayesian inference.

Bayesian inference In Bayesian inference we assume that the hidden data X does not have
a �xed value but that it also has a probabilistic description and that it was sampled from some
density probability PX(X).

Pout(Y |X, θ)X ∈ X Y ∈ YChannel

X̂(Y )

PX(X|θ)
SampleX

Figure 3.2 � We describe the typical setting of Bayesian inference. We once again want to
infer back X from Y . The di�erence with the 3.1 is that here we know how X was generated
from PX(X). θ is a variable that encode the details of the model.
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Using Bayes formula we can access the posterior probability of X knowing Y .

P (X|Y, θ) =
PX(X|θ)Pout(Y |X, θ)

P (Y |θ)
(3.5)

This in turn makes the creation of optimal estimators possible. If one tries to �nd an estimator
that minimizes the average error.

J(X̂) = E(X,Y )∼P (X,Y |θ)
[
d(X̂(Y ), X)

]
= EY∼P (Y |θ)

[
EX∼P (X|Y,θ)

[
d(X̂(Y ), X)

]]
(3.6)

The di�erence with (3.1) is that the average is also taken over X. Taking the average with
respect to X make it possible to �nd optimal estimators. Two example that will be useful in
this thesis

� Mean Estimator : d(x,y) = ‖x− y‖22 : If we try to minimize the squared l2 norm to
the hidden solution then it is easy to prove (using (3.6)) that the optimal estimator is
the posterior mean.

X̂Mean(Y ) =

∫
XP (X|Y, θ)dX (3.7)

In practice most of the time there is no analytical expression for (3.7). This comes from
the fact that X might be a high dimensional space on which integration is hard. For
instance if X = {−1, 1}N computing (3.7) requires the sum over O(2N) term for N > 30
this starts to be too long for most computers. There are ways to approximate (3.7) even
in the high dimensional regime. For example on could run a Markov Chain Monte Carlo
to compute (3.7). We will see in section 3.2 other ways inspired from statistical physics
to approximate this integral.

� Maximum A Posteriori estimator : d(x,y) = 1(x = y) : If one deals with discrete
variable X then one can ask for an estimator that maximizes the probability that the si-
gnal was reconstructed perfectly. This gives rise to the Maximum A Posteriori estimators
or MAP estimator.

X̂MAP(Y ) = argmaxXP (X|Y ) = argmaxXP (Y |X)P (X) (3.8)

Finding the maximum of P (X|Y ) sounds like a simpler problem to solve. If one deals
with continuous variables then one can use a gradient descent algorithm, if one deals
with discrete variables then one could use a zero temperature Markov Chain Monte Carlo
to try and reach the global maxima of the problem. These methods might get stuck in
local minimas. There are ways around that problem, for example, one might try some
simulated annealing or parallel tempering scheme to try and deal with local minima.

Learning of model-parameters When trying to use a Bayesian inference one is left with
the problem that we do not know in general with what model was Y created, such a model
might not even exist. Nevertheless we need to be able to learn/�t a model from a �nite set of
data Y . The problem of learning a model is not an easy one. We will treat this problem as the
problem of learning the parameter θ. We will suppose here that there is a value of θ that we
need to �nd that corresponds to the real model used to generate Y . We could treat θ as just
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another parameter on which we need to perform inference on. Therefore one has

P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )
. (3.9)

Where here
P (Y |θ) =

∫
dXP (Y |X, θ)P (X|θ) (3.10)

log(P (Y |θ)) is called the log-likelihood of the model. We still are stuck with the problem that
we don't know with what probability distribution was sampled θ. To do that we could go even
further down the Bayesian rabbit-hole and write that the prior probability P (θ) = P (θ|θ1)
Where θ1 would be another set of parameter we would need to infer. We see that this is just
displacing the problem.

Hopefully In this thesis we will be in a setting where the question of the value of P (θ) will be
unimportant because we will always have

log(P (θ)) = O(1)� log(P (Y |θ)) = O(N) . (3.11)

Where N will be the "size" of the system Y . N → +∞ the setting we will look at. log(P (θ)) =
O(1) means that we will need O(1) parameters to describe our model. While the log-likelihood
log(P (Y |θ)) coming from the observation of the data will be much larger. We can therefore
write

P (θ|Y ) = P (Y |θ)P (θ)
1

P (Y )
=

1

P (Y )
exp (log(P (θ)) +Nf(Y, θ)) (3.12)

f(Y, θ) = O(1) (3.13)

As N → +∞ we can neglect log(P (θ)) and just estimate θ with the argmax of P (Y |θ).

θ̂(Y ) = argmaxθ log(P (Y |θ)) (3.14)

The reason why this is a good estimator is that when the size of the system Y goes to in�nity
the function f(Y, θ) will become piqued around the true value of θ (or the best one to �t the
model).

Bayes optimality - Nishimori conditions Suppose now that we know with what model
parameters θ0 was created Y . This setting is known as the Bayes-optimal setting. Let us call
X0 the hidden solution we are trying to infer. Y will be the observed data. The fact that we
are in the Bayes-optimal setting has consequences when taking certain mean with respect to
the posterior distribution. Essentially it makes it so that X0 is a typical draw of the posterior
mean. We mean here if one takes three con�guration X,X1, X2 drawn from P (Y |X) then for
any function f(., .) one has

E [f(X0, X)] = E [f(X1, X2)] . (3.15)

This is easy to prove let X,X1, X2 be three independent samples from the posterior probability
distribution P (X|Y ), eq. (3.5). We then consider some function f(A,B) of two con�gurations
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of the variables A,B. Consider the following two expectations

E [f(X1, X2)] =

∫
f(X1, X2)P (Y )P (X1|Y )P (X2|Y )dX1 dX2 dY , (3.16)

E [f(X0, X)] =

∫
f(X0, X)P (X0, X)dX dX0 =

∫
f(X0, X)P (X0, X, Y )dX dX0dY

=

∫
f(X0, X)P (X|Y,X0)Pout(Y |X0)P0(X0)dX dX0dY . (3.17)

where we used the Bayes formula. We further observe that P (X|Y,X0) = P (X|Y ) because X
is independent of X0 when conditioned on Y . In the Bayes optimal case, we then obtain

Bayes optimal : E [f(X1, X2)] = E [f(X0, X)] , (3.18)

meaning that under expectations there is no statistical di�erence between the ground truth
assignment of variables X0 and an assignment sampled uniformly at random from the posterior
probability distribution (3.5). This will be a source of simpli�cation our analysis.

3.2 Statistical Physics

Statistical physics is a branch of physics that aim to describe the behavior of large systems that
contain a large number of degree of liberty. A single water molecule can be quite accurately
described by the classical equation of motions and solving these equations exactly or numerically
is a realistic task to accomplish. Problem arise when one tries to �nd out what happens when
one puts N ≈ 1023 water particle in a closed volume. Solving the equations of motion of this
system for so many particles is not a realistic strategy to try and understand the behavior of
such a system. Most of the time we are less interested in the solution of these equations as in
the average property of the system.

Statistical physics aim to substitute to the deterministic description of the system a probabilistic
one. Our description of the system is not a given con�guration but a density probability over all
con�gurations. For large system that can be described by an Hamiltonian dynamics statistical
physics prescribe that the density probability of the system is given by the Gibbs measure. Let
X be a con�guration of the system then the Gibbs measure is given by

PGibbs(X) =
1

Z(β)
exp (βH(X)) . (3.19)

Most of the time the Gibbs measure is taken with a minus in front of β out of convenience
we will work in another convention where the Gibbs distribution is given by (3.19). This has
no consequences on the result and will just make it so that the energy and free-energy is
something that we will want to maximize. Here Z(β) is called the partition function and is
here so that P (X) is normalized. β = 1/T is the inverse temperature of the system. The
"miracle" of statistical physics is that macroscopic properties of the system (Energy, Entropy,
Volume, Magnetization, etc.) are all encoded in a function called the thermodynamic potential.
Here the thermodynamic potential is the free-energy φ given by

φ(β) = logZ(β) (3.20)
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One can then access average of observable (with respect to the Gibbs distribution) by taking
successive derivative of the free energy with respect to parameters for example the average
energy can be computed from the free energy

〈H〉Gibbs =
∂φ(β)

∂β
(3.21)

Since most properties physicist are interested in can be encoded into a thermodynamic poten-
tial, studying a statistical physics problem often translates into computing a thermodynamic
potential. This is where problems begin since most of the time there is no analytical formula
for the partition function Z or the free energy of a problem φ. Over the year physicists have
developed tools to try and tackle this problem of computing free energies and describing the
statistical properties of large system (Monte Carlo Markov Chain, Mean �eld, Diagram Ex-
pansion, Belief Propagation techniques, etc.). In that Chapter we will describe some of these
techniques that are used in that thesis.

But before jumping right into the speci�c section that will deal with these method let us �rst
try and analyze a very simple system. Let us consider N ±1 spins interacting through the
following Hamiltonian

H({si}) =
1

2

∑
1≤i,j≤N

J0

N
sisj . (3.22)

The study of this simple system will help us illustrate the idea behind the techniques used in
that thesis. Let us compute the free energy of this system (we set β = 1).

Z =
∑
{si}

exp

(
1

2

∑
1≤i,j≤N

J0

N
sisj

)
(3.23)

Z =
∑
{si}

exp

N J0

2

[
1

N

∑
1≤i≤N

si

]2
 (3.24)

By de�ning the average magnetization m

m =
1

N

∑
1≤i≤N

si (3.25)

We can rewrite the partition function in the following way

Z =
∑

m=1−2k/N,k∈{0,··· ,N}

(
N

N(m+ 1)/2

)
exp

(
N
J0m

2

2

)
(3.26)

The binomial term is here to count how many way there are to have a magnetization of value
m. Using the Sterling Formula the binomial can be well approximated by

(
N

N(m+ 1)/2

)
∼ 1√

N(1−m2)
exp

(
−N

[
m+ 1

2
log

(
m+ 1

2

)
+

1−m
2

log

(
1−m

2

)])
(3.27)
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Figure 3.3 � We plot the pro�le of F (m) (3.28) for di�erent value of J0. We plot F (m) for
values of J0 ∈ {0, 1, 1.5} For J0 ≤ 1 the maximum of F (m) is located at m = 0, this means
that the system if paramagnetic. For J0 > 1 the maximum of F (m) are located at m 6= 0 this
means that the Gibbs distribution of the system is dominated by states that have a non zero
magnetization the system is then said to be ferromagnetic.

This approximation holds as soon as N(1 −m2) � 1. Since we are summing over ever closer
value of magnetization m ∈ [−1, 1]. As N grows large we can approximate Z in (3.26) by a
continuous integral. We obtain

Z ≈
∫ 1

−1

dm exp (NF (m)) (3.28)

where

F (m) = −m+ 1

2
log

(
m+ 1

2

)
− 1−m

2
log

(
1−m

2

)
+
J0m

2

2
. (3.29)

We can estimate (3.28) using Laplace method. By estimating the maximum of F (m) This is
illustrated in Fig 3.3. All of this yields us that

logZ(J0) ≈ N max
−1≤m≤1

F (m) (3.30)

Looking for the maximum of we look for m such that ∂F
∂m

= 0 = − tanh−1(m) + J0m or

m = tanh(J0m) (3.31)

We can interpret this as a �xed point equation

mt+1 = tanh(J0m
t) (3.32)

The trivial �xed point m = 0 can then be stable or unstable depending on the value of J0.
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Let us take a few steps back and see what we just did.

� We started with the problem of computing an integral that at �rst looked intractable.
� We then transformed this problem of integral computation into an optimization problem

over a function F (m).
� This optimization problem also yields us with �xed point equations. The solution of

these equation give us a description of the system (here the magnetization m).

Essentially the way we will analyze the problem encountered in this thesis will be by transfor-
ming integration problem into optimization problem. Integration problem are hard and com-
plicated to solve. In the more general setting Monte Carlo or Monte Carlo inspired method are
the only technique that remain to try and compute large dimensional integral. In comparison,
optimization problem seem easier to solve since we have access to some techniques to try and
tackle them (Gradient descent, Newton descent, Stochastic gradient descent, Simulated Annea-
ling, Parallel tempering etc.). Looking for the stationary point of an optimization problem often
yields us with update equations for which we look for a �xed point. Of course this optimisation
might require itself exponential time to solve but one can hope that a "typical" problem can
be solved in polynomial time, examples of such problems are given in [CO07].

This theory chapter will be therefore organized in the following way.

� Naive Mean �eld and Plefka Expansion can be seen as techniques to transform the
computation of Free energy into optimization problem. It works by trying to compute
approximation of the Free-energy as a function of the marginal density probability of
the system one tries to study.

� Factor Graphs are a mathematical/theoretical tool to represent density probabilities
in term of a graph of interactions. This graph is made out of factors nodes and variables
nodes. For physicists factors can be thought of as interaction term (they might be 2 or
p points interactions) while variables can be mapped to particles.

� Belief propagation (BP) is an approximation method that aim given a factor graph
to compute marginals of variables and compute an estimate of the free energy of the
system. The belief propagation relies on a set of update equations for which we look for
a �xed point.

� Spin glasses and the Sherrington-Kirkpatrick model : In that section we intro-
duce the concept of spin glass. Spin glass refer to a class of material that were discovered
at the end of the 50s. They exhibited uncommon magnetic behavior. Theoretical e�orts
to understand them gave rise to a number of theoretical models such as for instance the
Sherrington-Kirkpatrick model. This model (and other such as the Edward-Anderson
model) exhibit quite unintuitive behavior which required new theoretical method and
techniques to be analyzed. The cavity method and the replica method belong to such
techniques.

� The replica method can be thought of as a non rigorous mathematical trick to compute
the free energy of disordered systems. It was introduced to study spin glasses and relies
on the following equality

∀Z ∈ R, logZ = lim
n→0

Zn − 1

n
(3.33)

We will use the replica method to compute the free energy of all the system encountered
in this thesis.
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3.3 Naive Mean �eld and the Plefka Expansion

In that section we present di�erent ways one could use to try and transform the computation
of Partition functions and free energy which can be a hard feat into an optimization problem
for which one might have tools to try and tackle it. We will show just two techniques Naive
Mean-Field and the Plefka expansion technique. We will then show how these techniques could
be combined. A good introduction to mean �elds method can be found in [OS01, MM09].

3.3.1 Naive-Mean Field

Suppose we are given an Hamiltonian H(X) (where X is a big vector that encodes the whole
state of the system) and an inverse temperature β. This de�nes us a Gibbs distribution and a
free energy.

PGibbs(x1, · · · , xN) =
1

Z
exp (βH(x1, · · · , xN)) (3.34)

logZ = log

[∫
dx1 · · · dxN exp (βH(x1, · · · , xN))

]
(3.35)

We want to compute the free energy and di�erent observable about the system. As always,
in most case there is no analytical way to compute Z or marginals of individual variables
exactly. We therefore have to settle for an approximation of all these quantity. This is where the
Kullback-Leibler divergence comes in handy. The Kullback-Leibler divergence can be thought
of as a distance function on density probability (even though it is not symmetric and does not
satisfy the triangular inequality). Being given two density probability p(x) and q(x) de�ned on
a set X the Kullback-Leibler DKL(p‖q) is de�ned as

DKL(p‖q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
(3.36)

The Kullback-Leibler has the following properties
� DKL(p‖q) ≥ 0 for all p and q (even when taken to the continuous limit).
� DKL(p‖q) = 0⇐⇒ p = q.
� DKL(p‖q) is a convex function of (p, q).
� DKL(p‖q) is non symmetric meaning that in general DKL(p‖q) 6= DKL(q‖p).

We see that in a way DKL(p‖q) can be thought of as a "distance" on density probabilities (even
thought it is not symmetric and does not obey the triangular inequality.)

The idea of classical mean �eld method is to set q(x) = PGibbs(x) and to look for density
probabilities p(x) that minimizes the Kullback-Leibler divergence to q = PGibbs. We get

DKL(p‖PGibbs) = −Sp −
∑
X∈X

p(X) log

(
1

Z
exp (βH)

)
(3.37)

DKL(p‖PGibbs) = logZ −
(
Sp + β 〈H〉p

)
(3.38)
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Where Sp is the entropy of p and 〈H〉p is the average of H(X) where X is sampled from p(X).
Since DKL(p‖PGibbs) ≥ 0 we see that

∀p, Sp + β 〈H〉p ≤ logZ (3.39)

Where the inequality is saturated only when p = PGibbs. This expression is reminiscent of
formula for the free energy of a system F = U − TS. This de�nes the mean �eld free energy
estimate (Here the free energy is something that we want to maximize)

ΦMF(p) = Sp + β 〈H〉p . (3.40)

We can try and get better estimates of the free-energy maximizing this quantity over p. These
density probabilities p need to be density probabilities for which computing the entropy Sp and
the mean energy 〈H〉p is an easy task.

The term Naive mean �eld in the context of classical statistical physics means that we
are going to look to a maximize ΦMF(p) over density p(X) probabilities that factorizes over
components of xi.

p(X) =
∏

1≤i≤N
µi(xi) (3.41)

Where the xi are component of X. ΦMF(p) becomes

ΦMF(p) =
∑

1≤i≤N
Sµi + β 〈H〉p . (3.42)

Optimality with respect to one parameter µi give us the Mean Field �xed point equations

µi(xi) =
1

Zi
exp

(
β 〈H〉p\i (xi)

)
(3.43)

Where 〈H〉p\i means taking the average of H with respect to all variables xj except xi. For a
Ising spin system this yields us with the usual mean �eld �xed point equations

〈si〉MF = tanh

(
hi〈si〉MF +

∑
1≤i≤N

Jij〈sj〉MF

)
(3.44)

it is worth noting that there can be multiple way to perform mean �eld. Over what set of
"component" of X one factorizes p can have great di�erence on the performance of the Mean
�eld approach.

The Gaussian variable approach The naive mean �eld approach aims to compute the free
energy by neglecting correlations between variables and therefore looks for a minimizer p(x)
among probabilities that factorizes over the xi. The reason for that is, that correlation makes
thing hard to compute (free-energy, average of observable etc.). However there exists one class
of density probabilities where correlation are not such a big issue, namely Gaussian variables.
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One could just look for a minimizer of p(X) under the form.

p(X) = N (µ,Σ, X) (3.45)

The entropy of Sp then becomes.

Sp =
1

2
log det (2πeΣ) (3.46)

Depending on the circumstances this might be a good maximizer or not. Of course the main
di�culty with this approach is that one has now to optimize over O(N2) term in order to
optimize the free-energy. This makes the mean �eld method harder to use. There are cases
where this minimization is easier than in the general case and allow for the use of this method
[OA09].

3.3.2 The Plefka expansion

As it turns out the mean-�eld free energy from (3.42) is just the �rst two order term in a
high temperature expansion of the free-energy. It was derived in [Ple82, GY91] �rst by Plefka
and then by Georges and Yedidia. What we call the TAP free energy is just then the 2nd
order expansion of the free energy in β. Suppose one is given a general system with N classical
variables xi. The Hamiltonian βH de�nes the free energy

Φ = log (Tr [exp(βH(x1, · · · , xN))]) . (3.47)

We de�ne a new Hamiltonian that �xes the marginal probabilities of the variables xi by intro-
ducing �elds λi(xi).

βHField({λi}) = βH +
∑

1≤i≤N
λi(xi, β) , (3.48)

ΦField(β, {λi}) = log (Tr [exp(βHField({λi}))]) . (3.49)

By taking the Legendre transform one gets

ΦLegendre(β, {µi(xi)}) = min
{λi(xi)}

{
ΦField(β, {λi})−

∑
1≤i≤n

∫
dxµi(x)λi(x)

}
, (3.50)

{Λi(xi)} = argmin{λi(xi)}

{
ΦField(β, {λi})−

∑
1≤i≤n

∫
dxµi(x)λi(x)

}
. (3.51)

Here the minimization is done over the �elds λi(xi). The µi(xi) are marginal density probabilities
that one aims to impose on the system. The Λi(xi) are the �elds one uses to �x the marginals
equal to µi(xi). The Λi(xi) depend on the problem H, β and the µi(xi). Because the Λi(xi) are
de�ned up to a constant we impose ∫

dxµi(x)Λi(x) = 0 . (3.52)
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According to the de�nition of the Legendre transformation (and because Φfield is convex in
{λi(xi)} one has

Φ = max {ΦLegendre(β, {µi(xi)})} . (3.53)

To compute ΦLegendre(β, {µi(xi)}) we resort to a high temperature expansion. This procedure is
called the Plefka expansion [Ple82], it relies on the following high temperature expansion (we
stop here at order 2).

ΦTAP = ΦFrustrated(β = 0) + β

(
∂ΦLegendre

∂β

)
(β = 0) +

β2

2

(
∂2ΦLegendre

∂β2

)
(β = 0) . (3.54)

The expansion was explained in detail in [GY91], here we remind the main steps. Let us
introduce the following operator

U = H − 〈H〉 −
∑

1≤i≤N

∂Λi(xi)

∂β
, (3.55)

where the average is taken with respect to probability distribution induced by (3.48). One can
show that for all observables O one has

∀β, ∂〈O〉
∂β

=

〈
∂O

∂β

〉
− 〈OU〉 . (3.56)

According to the de�nition of FFrustrated one can prove that.

∀β, ∂ΦLegendre

∂β
= 〈H〉 . (3.57)

Using (3.57) and (3.56) we get

∀β, ∂
2ΦLegendre

∂β2
=
〈H〉
∂β

= −〈HU〉 . (3.58)

Therefore

ΦTAP = ΦLegendre(β = 0) + β〈H〉(β = 0)− β2

2
〈HU〉(β = 0) . (3.59)

We still need to compute ∂Λi(xi)
∂β

at β = 0. This can be done by computing the derivative of the
marginals with respect to β and noticing that they have to be zero.(

∂〈δ(xi − x̂i)〉
∂β

)
=

(
∂µi(x̂i)

∂β

)
= 0 = 〈Uδ(xi − x̂i)〉

=

〈(
H− < H > −

∑
1≤i≤N

∂Λi(xi)

∂β
+

∫
dx̂iµi(x̂i)

∂Λi(x̂i)

∂β

)
δ(xi − x̂i)

〉
. (3.60)

From this one deduces〈
∂Λi(xi)

∂β
δ(xi − x̂i) + C(i, β)δ(xi − x̂i)s

〉
= 〈Hδ(xi − x̂i)− 〈H〉δ(xi − x̂i)〉 , (3.61)
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where C(i, β) is

C(i, β) =

∫
dx̂iµi(x̂i)

∂Λi(x̂i)

∂β
. (3.62)

By de�nition

〈δ(xi − x̂i)〉 = µi(x̂i) , (3.63)
〈Hδ(xi − x̂i)〉 = µi(xi)〈H〉xi=x̂i , (3.64)

where 〈H〉xi=x̂i is the average energy conditioned on the fact that xi = x̂i. Using (3.61) we get

µi(x̂i)

(
∂Λi(x̂i)

∂β

)
= µi(x̂i)〈H〉xi=x̂i − µi(x̂i)〈H〉+ µi(x̂i)C(i, β) , (3.65)

(
∂Λi(x̂i)

∂β

)
= 〈H〉xi=x̂i − 〈H〉+ C(i, β) . (3.66)

We can see from (3.48) that Λi(x̂i, β) is de�ned up to a constant we �x that constant by having∫
dx̂iµi(x̂i)Λi(x̂i) = 0 . (3.67)

Therefore we get

∀β,
(
∂Λi(x̂i)

∂β

)
= 〈H〉xi=x̂i − 〈H〉 =

1

µi(x̂i)
〈Hδ(xi − x̂i)〉 − 〈H〉 , (3.68)

where once again 〈H〉xi=x̂i is the average of the energy where we have conditioned on the event
xi = x̂i. Since we do all expansion around β = 0 one is able to compute all the means present
in this formula since at β = 0 the density probability of the system at β = 0 is just

PFactorised =
∏

i=1···N
µi(xi) . (3.69)

By using (3.54) and (3.68) around β = 0 one gets

ΦTAP =
∑

1≤i≤N
Sµi +β〈H〉+ β2

2

[
〈H2〉 − 〈H〉2 −

∑
1≤i≤N

∫
dxiµi(x̂i)(〈H〉xi=x̂i − 〈H〉)2

]
+O

(
β3
)
,

(3.70)

One could do further expansions of this formula in β to get better estimate of the free energy.
For all of the case that we will look at in this thesis the second order expansion will be enough
and all further expansion will contribute sub-extensively to the free energy in the large N limit
of the system.

It is also worth noting that there might be multiple way to do a Plefka expansion depending
on the set of variables xi that one takes to be independent at β = 0.
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3.4 Factor Graph

Factor graphs are a way to represent an ensemble of density probabilities. In such a description
one will write the density probability in terms of variables and interactions.

A factor graph is formed of an undirected bipartite graph between N variables (or nodes) and
M factors which are interaction terms. The variables are numerated according to 1 ≤ i ≤ N
and the factors according to 1 ≤ α ≤ M . A variable can only have links with factors and a
factor can only have links with variables.

The density probability is then given by

P (x1, · · · , xi, · · · , xN) =
1

Z

∏
1≤a≤M

ψa(x∂a) (3.71)

Where the ψa are interaction functions that take as argument all the variables that have a link
with factor a. The variable Z is a normalization constant of the density probability. Factor
graph are useful tools to represent density probabilities.

Let us give an example with N variables xi = ±1

P (x1, · · · , xN ) =
1

Z
exp

 ∑
1≤i<j≤N

Jijxixj +
∑

1≤i≤N
hixi

 =
1

Z

∏
1≤i<j≤N

exp(Jijxixj)
∏

1≤i≤N
exp(hixixj)

(3.72)

This density probability can be described using the following factor graph.

3.5 Belief propagation

So far the factor graph formalism is just a reformulation of the initial density probability. If
the factor graph one deals with is a tree (and therefore has no loop) then everything can be
computed in polynomial time (free energy, marginal probability of variable etc.). The method
that allows us to compute this is called the belief propagation. When used on tree factor graph
the BP method is just a clever trick to compute the free energy exactly. When used on a general
factor graph this formalism will allow us to introduce the Bethe approximation that one can
use to approximate the free energy and marginals of the system. This method has many names
Belief propagation method (BP), cavity method (when it's then averaged over the disorder)
or even message passing algorithm [YFW03]. The Belief propagation (BP) is explained with
much more details than we can hope to achieve in that thesis in [YFW03], nevertheless we will
sketch in this section the main idea behind this theoretical and algorithmical tool that BP is.
Here are some important properties of BP.

� Belief propagation is a method to compute marginals and the free energy of systems
described by factor graphs. The main idea behind it is that variables and factors send
each other beliefs (or message) which are estimates of marginal probabilities in a modi�ed
factor graph where one has removed or "turned o�" some interactions or variables (hence
created a "cavity" which is where the term cavity method comes from). These beliefs
are then updated according to some update equations till convergence.
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Jij
hi

xi xj

Figure 3.4 � This is the factor graph describing model (3.72). The variables xi are represented
by the circles. The factors are represented by squares. The factor annotated with a Jij are
interaction term between variables xi and xj. The factor annotated with an hi are the �eld
factors.

� Belief propagation is exact on factor graph that are trees. When working on trees Belief
propagation can be seen as just a clever "trick" to be able to make the computation of
the partition function with a number of operation that is not exponential in the number
of variables in the system.

� Belief propagation is not exact on factor graphs that have loops. Even convergence
property of the algorithm are not guaranteed. This come from the fact that when a
factor graph has loops some assumption about the nature of correlation in the graph
graph can not be done anymore. Nevertheless the belief propagation update equations
can be applied and iterated till hopefully they converge. There exist some case where
Belief Propagation approach succeeds despite the existence of loops.

� In some cases a BP approach has the added bene�t that it is possible to analyze the
dynamics of these equations in the large system size limit. Such an approach is called
Density Evolution (or State Evolution or single letter characterization in some cases).

3.5.1 Tree Factor graph

Let us �rst look at the case where the factor graph one is looking at is a tree and therefore has
no loops. In that case one can easily compute the partition function of the system. To do so let
us introduce the following density probabilities.

ni→α(xi) (3.73)

ni→α(xi) is marginal probability of variables xi in the modi�ed system where factor α is missing.
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We will illustrate the derivation of the BP equations using Fig 3.5. It is straightforward to see
that

n1→α(x1) =
1

Z1→α

∫
P∂1(x2, x5)ψβ(x1, x2)ψγ(x1, x2) (3.74)

Where P∂1(x2, x5) is the marginal probability of variables x2 and x5 in the system where one has
removed variables x1 and every factor it was connected to. And where Z1→α is a normalization
constant. So far all of this is exact on any factor graph.

Because of the tree nature of the factor graph P∂1(x2, x5) is going to factorizes because as soon
as x1 has been removed there is no interaction left between variables x2 and x5 and one has.

P∂1(x2, x5) = n2→β(x2)n5→γ(x5) (3.75)

Therefore one has

nx1→α(x1) =
1

Z1→α

[∫
n2→β(x2)ψβ(x1, x2)

] [∫
n5→γ(x5)ψγ(x1, x2)

]
(3.76)

One could write similar equations for all the message nxi→aj for any tree factor graph by
introducing the variables n̂aj→xi . The update equations then become

ni→α(xi) =
1

Zi→α

∏
β∈∂i, β 6=α

ñβ→i(xi) (3.77)

ñα→i(xi) =
1

Zα→i

∫
ψα(x∂α)

∏
k∈∂α, k 6=i

[dxknk→α(xk)] (3.78)

Here we have used the fact that the underlying factor graph is a tree to be able to write (3.75).

The marginal probability of the system can then be computed using this formula.

P (xi) =
1

Zi

∏
α∈∂i

ñα→i(xi) (3.79)

For di�erent reason one is often interested in computing the free energy of system described
by this tree factor graph. When the factor graph one deals with are trees then this can be
computed exactly.

The free energy in our notation is written as

log(Z) = φ = U + S (3.80)

where Z is de�ned in (3.71),S is the entropy of (3.71) and U is
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Figure 3.5 � On this �gure we present the example of a tree Factor graph that we used to
present the derivation of the cavity equations. First we present the full factor graph (left). We
then introduce the message n1→α(x1) which is the marginal probability of variable x1 in the
modi�ed factor graph where the factor α has been "turned o�" and put in dashed line (middle).
Computing the marginal probability of the jointed variable x2 and x5 P∂1(x2, x5) can be done
in the modi�ed system on the (right) here one sees that because in that setting x2 and x5

belong to separated component of this modi�ed factor graph and are therefore independent.

U =

〈∑
α

logψα(x∂α)

〉
P (x1,··· ,xN )

=
∑
α

〈logψα(x∂α)〉 ∏
i∈∂α

ni→α(xi)
(3.81)

This decomposition in a term of energy and entropy is reminiscent of the formula F = U −TS.

The energy term can be easily computed using messages.

The problem is how to estimate the entropy S. Hopefully one can prove that the full density
probability P (x1, · · · , xN) can be written as a function of local marginals and local jointed
probabilities around factors.

P (x1, · · · , xN) =
∏
α

P (x∂α)
∏
i

P (xi)
1−|∂i| (3.82)

This is a property that comes from the fact that the factor graph is a tree. This allow us to
compute the Free Energy of the system.

log(Z) = φ =
∑
α

log

[∫
ψ(x∂α)

∏
i∈∂α

dxini→α(xi)

]
+
∑
i

log

[∫
dxi

∏
α∈∂i

ñα→i(xi)

]

−
∑
i,α

i∈∂α

log

[∫
dxini→α(xi)ñα→i(xi)

]
(3.83)

This is called the Bethe free energy and is exact on trees.
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3.5.2 Loopy BP

We have seen that BP is exact on trees. However most situation that one encounters are ones
where the factor graph is not a tree and contains loops.

The critical property that was needed in order for Belief propagation equations to allow access
to the real marginals was.

P∂i(x∂∂i) =
∏
α∈∂i

∏
j∈∂β,j 6=α

nj→α(xj) . (3.84)

Where x∂∂i are all the variable with which variables xi interact. This formula is illustrated on
�gure 3.6. The main idea behind it is that when one hollows a cavity by removing a variable
the variables at the border of the cavity become independent and that any correlation these
variable might have between one another was mediated through variable xi. When dealing with
tree factor graph, this is exactly true, but when dealing with factor graph with loops this might
be wrong or just an approximation

xixj

x5

α
nj→α(x1)

xk

Figure 3.6 � On this �gure we present the main assumption of Belief propagation. When
removing a variable xi and creating therefore a "cavity" in that modi�ed system, we expect
marginal probability of variables at the border of this cavity to factorize. Which is to say that
any correlation between variable xj and xk comes from the interactions with xi. If one removes
this variable then one is left with variables xj on the border of the cavity that are independent.

We will present two other cases in which this approximation might be justi�ed.

� Spare random graphs : sparse Erd®s-Rényi random graph are a model of random graphs
in which one creates a network of size n where one decides for every pair 〈i, j〉 with a
probability c/n whether this link belongs to the network or not. Given such a random
graph described by and adjacency matrix A ∈ Rn×n let us create the following spin
system.

P (x1, · · · , xn) =
1

Z
exp

( ∑
1≤i<j≤n

xiJijxj

)
, xi = ±1 (3.85)

Jij = N (0, 1)Aij (3.86)
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The interaction are non zero only when there is a link between xi and xj in the graph
described by A. These random sparse graphs have the property of being locally tree-like,
this means here that the shortest loop going through a typical node i will have a typical
length of order O(log(N)). On �gure 3.6 this would mean that any correlation between
variables xj and xk would have to come through a lengthy loop of order log(N) along
which the correlation would decay which warrants (3.84). For instance the correctness
of the BP approach was proved for two families of random sparse graph in [COP16].
Correctness here means that the true messages are asymptotic BP �xed point BP and
that the Bethe Free energy is equal to the real free energy in the asymptotic regime.

� Another case in which the approximation can be warranted is in the dense case. Consider
once again an Ising spin system in which the Jij are taken at random according to.

Jij =
JN (0, 1)√

N
+
J0

N
, Jij = Jji (3.87)

This model is known as the Sherrington-Kirkpatrick model. In that setting all the va-
riables xi interact, however these interactions are extremely weak, this makes it possible
for the BP equation to be exact in the large N limit for some values of J and J0. This
model is central to the study of spin glasses and disordered systems. We will present it
with more details in the next section.

3.6 Spin glasses and the Sherrington-Kirkpatrick model

Few �elds have been as fertile in term of cross-�eld contribution as the study of spin glass system.
The �rst encounter of physicist with spin glass system can be traced to the study of AgMn
and CuMn composites by Nobel and Chatenier in 1959 [DCDNB66] (Here the Manganese is
introduced as an impurity). And by Zimmerman and Hoare in 1960 [ZH60] in CuMn composite.

These researcher observed a linear capacity C(T ) ∼ T around T = 0. This linear thermal capa-
city could not be explained by conduction electron in the material. The phenomena observed
suggested that in the low temperature regime spins in the material would freeze in random di-
rection. Further investigation would show that this freezing opens abruptly suggesting a phase
transition phenomena in the system. In statistical physics phase transitions are often linked
with a speci�c order parameter as is the average magnetization for Ferro/Para magnetic ma-
terials. However Neutron scattering experiments indicated that there was no periodicity in
the way spins were ordered, this meant that this phase was neither a ferromagnetic or an anti-
ferromagnetic materials. The question of how to describe theoretically these materials and what
was that "mystery" order parameter associated with that phase transition remain opened until
1975. In their famous paper "Theory of spin glasses" [EA75] Edward and Anderson introduced
the Edward-Anderson model (EA). The EA model is an Ising spin model given by the following
Hamiltonian

P ({si} = exp

β∑
〈i,j〉

Jijsisj

 . (3.88)

Here the spins are placed on some lattice of dimension d Where the interaction Jij have been

sampled independently from a normal distributionN
(

0, J
2

2d

)
. As βJ increases the system enters
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a phase called the Spin- Glass phase. Edward and Anderson in their paper argue that the correct
order parameter associated with this phase transition is the self overlap qEA de�ned by

qEA =
1

N

∑
i

〈Si〉2 . (3.89)

This parameter measures how "polarized" the spins are even though no particular magnetization
direction is preferred by the system. As βJ increases it passes a threshold where qEA goes from
a zero value to a non zero value. We still lack a theoretical description of the low temperature
phase of the Edward Anderson model (3.89). Some of the di�culties of the Edward-Anderson
model come from the fact that this is not a Mean-Field model and there exist a spatial order
because the spin live on a lattice.

A comparatively easier system to solve is the Sherrington-Kirkpatrick model (SK) introduced
in 1975 [SK75] by Sherrington and Kirkpatrick in their famous paper "Solvable model of a Spin-
Glass" [SK75]. The SK model is an in�nite range spin system where the coupling Jij between
every spins have been sampled at random from some distribution.

P (s1, · · · , sN) =
1

Z
exp

(
β

∑
1≤i<j≤N

Jijsisj

)
(3.90)

with

Jij =
J0

N
+

J√
N
N (0, 1) (3.91)

There are N � 1 spins in the system and all the coupling Jij are of order O(1/
√
N) and have

been sampled independently from a normal distribution. Therefore all the spins interact weakly
with one another.

� The J0/N term is a ferromagnetic term that can if strong enough can induce a ferroma-
gnetic order in the system.

� The JN (0,1)/
√

N term is the term from which comes the disorder. The bigger this term
is the more disorder will play a role in the physics of the system.

� The scaling 1/N of the ferromagnetic term and 1/
√
N of the disorder term are here to

ensure that the energy free-energy and capacity of the system will be extensive in the
size of the system N .

Since this model has both in�nite range and weak coupling Jij one could �rst think that some
form of Mean-�eld like approach could succeed in describing this system. Unfortunately naive
mean-�eld method are not exact in that system. For naive mean �eld to work (meaning being
exact in the large system limit) the coupling would need to be O (1/N) rather than O

(
1/
√
N
)
.

However for some value of βJ and J0/J some modi�ed version of mean-�eld called the Thouless-
Anderson-Palmer (TAP) equations [TAP77] can succeed as long as one remains outside of the
spin-glass phase.

Depending on the value of βJ and J0/J the system might belong to di�erent phases. This is
illustrated in Fig 3.7. These phases come from di�erent symmetries of the problem that can be
potentially broken. There are 2 symmetries in that system.

� The Z2 symmetry or ±1 symmetry is just the usual si → −si symmetry that one
encounters in any Ising spin model with 0 �elds. Breaking or not this symmetry marks
the border between a Ferromagnetic phase and a paramagnetic phase.
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Figure 3.7 � Here we plot the phase diagram of the Sherrington-Kirkpatrick as a function
of 1/(βJ) and J0/J . We denote 4 phases a paramagnetic phase a ferromagnetic phase a spin
glass phase and a "mixed" phase. These 4 = 2 × 2 phases corresponds to the two symmetries
that can be broken the Z2 symmetry and the replica symmetry. The paramagnetic phase is the
replica symmetric phase where the system has a zero magnetization. The ferromagnetic phase
breaks the Z2 and has non-zero magnetization but remains replica symmetric. The spin glass
phase breaks the replica symmetry but has on average zero magnetization. The mixed phase
has at the same time a breaking of the replica symmetry and a non zero magnetization.

� The replica symmetry is a symmetry that appears when trying to analyze spin-
glass system. When doing replica computation (introduced in the following section) one
introduces replicas or copies of the system (These replicas do not interact with one
another). Doing this computation one would expect to see a permutation symmetry
between all these replicas of the system. It is this permutation symmetry that can end
up being broken. What it means exactly for the replica symmetry to be broken will be
further explained in the following paragraphs.

To interpret what it means for the replica symmetry to be broken let us go back to the de�nition
of the partition function and introduce the notion of Gibbs state. The partition function of a
system is given by

Z =
∑
x∈X

exp (βH(x)) . (3.92)

Being given a partition X1, · · · ,Xm of X the con�guration space in which x lives, we can write

Z =
∑

k=1···m
Zk , (3.93)

Where

Zk =
∑
x∈Xk

exp (βH(x)) . (3.94)
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Now the "Gibbs state representation" Amounts to choosing the X1, · · · ,Xm so that they satisfy
three "properties".

� Probability Weight conditions This conditions amount to saying that most of the
weight of the Gibbs distribution is held by the sets X1, · · · ,Xm. Quantitatively this
means

Z ≈
∑

k=1···m
Zk , (3.95)

In our setting this will mean

log(Z)− log

( ∑
k=1···m

Zk

)
� N , (3.96)

Of course we ask for the intersection of the sets to be empty Xk ∩ Xl = ∅.
� Dynamical separation of the State : The second conditions asks that the conditional

Gibbs density pXk(x) are also Gibbs State. Where pXk(x) are

pXk(x) =
1 (x ∈ Xk)

Zk
exp (βH(xk)) . (3.97)

A Gibbs state is a density probability that is invariant by a Markov Chain which satisfy
global balance of the Gibbs distribution of the system. Of course most of the time there is
only one real Gibbs State namely the Gibbs distribution since as soon as a Markov Chain
has a path of non zero probability to go anywhere in the con�guration space then it means
that a Markov Chain will equilibrate toward the Gibbs distribution. The subtility here
lies in the time it takes for this equilibration to occur. If it takes typically O (exp(cN))
step for a Markov Chain initialized according to pXk(x) to jump from Xk to any Xl then
saying that pXk(x) is a Gibbs state is a good approximation. To retake the example of
model (3.23) for J0 > 1 there exist two Gibbs state each with average magnetization
m = ±meq but any Markov Chain that is only allowed to �ip a �nite number of spins
at each step will take exponential time to go from m = +meq to m = −meq. Of course
to make this idea of "nearly" a Gibbs state work one has to reduce the scope of Markov
Chain one is allowed to consider maybe for instance by putting a born on the maximum
number of spins that one is allowed to �ip at once during a MC step.

� Quick Equilibration inside a given Xk : This condition means that no matter where
one initializes a Markov Chain in Xk the time to equilibrate toward pXk(x) will be
short (sub exponential in the size of the system). This is equivalent to saying that
log(1 − λ2) = o(N) where λ2 is the second eigenvalue of the transition matrix of the
Markov Chain limited to living inside Xk.

This Gibbs State representation will allow us to try and understand the structure of the Gibbs
distribution when the replica symmetry breaks down. Essentially the di�erence between dif-
ferent replica symmetric solution and replica breaked description lies in the number of Gibbs
state that is required to accurately describe the system.

� Replica Symmetric solution : It is possible to describe the system using a �nite
number of Gibbs State (or at least a sub exponential number of them).

logm = o(N) (3.98)
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For this ferromagnetic system there are two Gibbs State one with positive magnetization
and one with negative. A nice mental representation of this case would be that the system
can be well described by a high dimensional particle stuck inside a quadratic potential.
There might be a �nite number of quadratic potential this particle can be stuck in, but
not so many that this would have major consequences on the physics of the system.

� Replica Symmetric breaking : Here in order to describe the Gibbs distribution in
term of a sum of Gibbs state one requires an exponential number of Gibbs state.

log(m) = O (N) (3.99)

To understand why we say that this corresponds to a replica symmetry breaking of the
system. Let us introduce {sai } and {sbj} two con�guration of spins sampled from the
Gibbs distribution (or coming from two copies or replicas of the system). If one where
to compute the overlap between these two con�gurations

qab =
1

N

∑
1≤i≤N

sai s
b
i (3.100)

We would see that this parameter will take di�erent value (±O(1/
√
N)) depending on

whether {sai } and {sbi} belongs to the same Xk or not.
� Re�nement of the replica symmetry breaking : There is a re�nement around this

idea of a replica symmetry breaking. There are multiple way for the replica symmetry
to be broken to keep track of these di�erent ways physicists talk about one step, two
step, three step,... and in�nite step replica symmetry breaking. This number of "step"
describe the type of structure that the all the Gibbs state form. At least in the SK model
there might be a structure to be investigated in how these Gibbs state are organized. The
parameter to keep track of to understand this structure is the overlap function between
con�guration qab (3.100). This will be explained with more detail in the replica section.

The replica symmetry breaking and the breaking of the con�guration space into an exponential
number of Gibbs state has consequences on both BP equations and on replica computations
solution.

� For the Cavity equation which for the SK model can be thought of as a re�nement
of the Naive Mean-Field equation this means that the Gibbs distribution can not be
described by a single �xed point. And there now exist an exponential number of �xed
point to these equations whose contribution to the free-energy have to be taken into
account for all of them. The "�x" to this problem is to introduce the 1-RSB cavity equa-
tions where the parameters of the cavity equation are themselves treated as �uctuating
variables. This is well explained in [MM09].

� For the replica computation this structure of the Gibbs state can be treated using
the Parisi solution of the replica equation. This is explained with more detail in the
replica section 3.7
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3.7 Replica method

A lot of properties of the systems we will analyze are encoded in the free energy of the system.
Like often in statistical physics the problem lies in computing the free energy.

The replica trick is a theoretical method to compute the free energy of systems exhibiting
disorder. Suppose that one wants to compute the free energy of the following system.

P (x1, · · · , xn) =
1

Z
exp

( ∑
1≤i<j≤N

xiJijxj + h
∑

1≤i≤N
xi

)
, xi = ±1 (3.101)

Jij =
JN (0, 1)√

N
+
J0

N
(3.102)

Such a system is called the planted Sherrington-Kirkpatrick model. In order to analyze the
property in the large N limit of this system we want to access the the free energy per spin φ of
this systems.

Φ(Jij, h) = log(Z) = O(N) (3.103)
Φ(Jij, h)/N = O(1) (3.104)

Any observable we can think of can be computed by taking a derivative with respect to some
variable of φ. For example the average magnetization of the system can be computed using〈 ∑

1≤i≤N
xi

〉
=
∂Φ

∂h
. (3.105)

We expect two things to happen.

� Self averaging of the free energy per spin. This mathematical property states that

logZ(Jij)− EJij [logZ(Jij)] = O

(
1√
N

)
(3.106)

Where we have averaged the free energy over the all the possible Jij.
This means that in the large system size limit the free-energy per spin of a typical
random draws of the disorder give rise to �uctuations of the free energy per spin of order
1/
√
N .

� Existence of a thermodynamic limit : We also make the assumption that there is a
thermodynamic limit to this problem, this means that the average free energy per spin
has a limit in the large N limit.

φ(J, J0, h) = lim
N→+∞

1

N
EJij [logZ(Jij, h)] (3.107)

The reason why one wants to average the free energy and not the partition function is that the
free energy is a self-averaging quantity meaning that computing it's mean will tell us something
about a typical draw of the disorder. The partition function in the general case is not a self
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averaging quantity. This means that in the general case one has

φ(h)− lim
N→+∞

1

N
logEJij [Z(Jij, h)] = O(1) (3.108)

In the general case computing the average of the partition function does not allow us to compute
φ. The problem stem from the fact that when computing the average of the partition function
some rare con�guration of the disorder that give rise to huge values of the partition function
are going to dominate the average. These rare con�gurations would not dominate the average
were they tempered by a logarithm.

We want to compute the average logZ, this is hard to do. Most of the time it is much easier
to compute the average of Zn, n ∈ N. The main idea behind the replica method is this

� Compute E [Zn] pour n ∈ N. Obtain a formula in n. The average of Zn is computed by
introducing replicas or copies of the system.

� Use the fact that log(x) can be written as

log(x) = lim
n→0

xn − 1

n
. (3.109)

Then "abuse" the analytical formula obtained for n ∈ N to allow n ∈ R to take the limit
n→ 0 in (3.109) and obtain the formula for E [logZ].

Let us present this computation in the case of the Sherrington-Kirkpatrick model.

Zn = TrX

[
exp

( ∑
1≤i<j≤N

xiJijxj + h
∑

1≤i≤N
xi

)]n
(3.110)

Zn =
∏

1≤a≤n
TrX

[
exp

( ∑
1≤i<j≤N

xai Jijx
a
j + h

∑
1≤i≤N

xai

)]
(3.111)

Zn = TrXa

[
exp

( ∑
1≤i<j≤N

Jij

[ ∑
1≤a≤n

xai x
a
j

]
+ h

∑
1≤i≤N

∑
1≤a≤n

xai

)]
(3.112)

Here we compute the average Zn by introducing copies or replicas of the system. The xai for
di�erent a belong to copies of the system that share the same Hamiltonian. At this stage no
interaction exist between di�erent replicas of the system.

Here one can take the average with respect to the disorder Jij.

E [Zn] = TrXa

exp

 1

N

∑
1≤i<j≤N

J2

 ∑
1≤a≤n

xai x
a
j

2

+
J0

N

∑
1≤i<j≤N

∑
1≤a≤n

xai x
a
j + h

∑
1≤i≤N

∑
1≤a≤n

xai


(3.113)

E [Zn] = TrXa

[
exp

(
J2

4N

∑
1≤a,b≤n

∑
1≤i,j≤N

xai x
a
jx

b
ix
b
j +

J0

2N

∑
1≤i,j≤N

∑
1≤a≤n

xai x
a
j + h

∑
1≤i≤N

∑
1≤a≤n

xai

)]
(3.114)
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E [Zn] = TrXa

[
exp

(
nNJ2

4
+
NJ2

2

∑
1≤a<b≤n

(
1

N

∑
xai x

b
i

)2

+
NJ0

2

∑
1≤a≤n

(
1

N

∑
xai

)2

+Nh
∑

1≤a≤n

(
1

N

∑
xai

))]
(3.115)

By using the Hubbard-Stratonovich identity one gets

Here all the spins xai , x
b
j are decoupled for i 6= j.

E [Zn] =

∫ ∏
a<b

dqab
∏
a

dmaTrXa

[
exp

(
nNJ2

4
−

∑
1≤a<b≤n

NJ2q2
ab

2
−
∑

1≤a≤n

NJ0m
2
a

2
+

∑
1≤i≤N

( ∑
1≤a<b≤n

xai x
b
iqabJ

2 +
∑

1≤a≤n
NJ0x

a
ima + h

∑
1≤a≤n

xai

))]
(3.116)

E [Zn] =

∫ ∏
a<b

dqab
∏
a

dma exp

(
nNJ2

4
−

∑
1≤a<b≤n

NJ2q2
ab

2
−
∑

1≤a≤n

NJ0m
2
a

2

+N log Î(qab,ma, h)
)

(3.117)

Where

Î(qab,ma, h) =
∑
{xa}

exp

( ∑
1≤a<b≤n

xaxbqabJ
2 +

∑
1≤a≤n

J0x
ama + h

∑
1≤a≤n

xa

)
(3.118)

Because of the factor N that appears in (3.117) this integral can be computed using a saddle-
point approximation. Looking for the maximum value of the integrand yields us with.

qab =
∂ log Î

∂qab
= 〈xaxb〉Î (3.119)

ma =
∂ log Î

∂ma

= 〈xa〉Î (3.120)

Where the average of the spins xa, a ∈ {1;n} are taken with respect to this normalized density
probability.

1

Î(qab,ma)
exp

( ∑
1≤a<b≤n

xaxbqabJ
2 +

∑
1≤a≤n

J0x
ama + h

∑
1≤a≤n

xa

)
(3.121)

The interpretation of the ma is easy it is just the average magnetization of replicas a.
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The qab are a bit trickier to interpret. Given that di�erent replicas share the same Hamiltonian
one can expect that the typical sample drawn from the di�erent density probability are going
to look similar. The matrix of overlap qab is a measure of how much replicas a and replicas b
look alike.

Everything we have done so far for n ∈ N is exact. Such a computation is exact as long as n ∈ N.
For example one could use it to compute the average of the partition function, in physics this
is called an annealed computation. An annealed computation can have it's usefulness it can
give us a lower bound on the free energy. There are instances where such a bound are tight and
where the computing the average value of E[Z] is enough to capture the main properties of the
system.

3.7.1 Replica symmetric ansatz.

In most situation that we will encounter in this thesis the annealed computation is not enough
and one has to really compute the average value of log(Z).

We want take n → 0 in (3.117). In order to be able to do that we are going to look for an
extrema of (3.117) for a certain form of matrix qab that allows one to take such a limit.

qab can be interpreted as an overlap between di�erent replicas. There is a permutation symmetry
between the di�erent replicas. If the permutation symmetry between replicas is not broken then
on expect to look for an extrema of (3.117) of the form.

{qab} =


1 q q q q
q 1 q q q
q q 1 q q
q q q 1 q
q q q q 1

 (3.122)

qab =

{
1 , if , a = b
q , if , a 6= b

(3.123)

ma = m (3.124)

By assuming this form of the matrix qab one gets starting from the integrand of (3.117).

exp

(
nNJ2

4
− n(n− 1)

NJ2q2

4
− nNJ0m

2
a

2
+N log Î(q,m, h)

)
(3.125)

And where
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Î(q,m, h) =
∑
{xa}

exp

( ∑
1≤a<b≤n

xaxbqJ2 +
∑

1≤a≤n
J0x

ama + h
∑

1≤a≤n
xa

)
(3.126)

Î(q,m, h) =
∑
{xa}

exp

qJ2

2

[∑
1≤a

xa

]2

− qJ2xa2

2
+
∑

1≤a≤n
J0x

ama + h
∑

1≤a≤n
xa

 (3.127)

Î(q,m, h) =

∫
dW exp

(
−W 2

2

)∑
{xa}

exp

(
J
√
qW

[∑
1≤a

xa

]
− qJ2xa2

2
(3.128)

+
∑

1≤a≤n
J0x

ama + h
∑

1≤a≤n
xa

)
(3.129)

Î(q,m, h) =

∫
dW exp

(
−W 2

2

)[
2 cosh(J0ma + h+ J

√
qW ) exp

(
−qJ2/2

)]n (3.130)

Therefore when n→ 0 one has to �rst order in n.

log Î(q,m, h)

n
=

∫
dW exp

(
−W 2

2

)
log (2 cosh(J0m+ h+ J

√
qW ))− qJ2/2 (3.131)

Therefore one has

lim
n→0

E [Zn]− 1

nN
= Extremam,q

[
J2(1− q)2

4
− J0m

2

2
+ log(2)

+EW [log cosh (J0m+ h+ J
√
qW )]

]
(3.132)

The variable W on which the average is a Gaussian variable of mean 0 and variance 1. Here m
and q are chosen so that the expression in (3.126) is an extrema in m and q. Extremising with
respect to m and q gives us the Replica Symmetric update equations.

q = EW
[
tanh (J0m+ h+ J

√
qW )2

]
(3.133)

m = EW [tanh (J0m+ h+ J
√
qW )] (3.134)

Equation (3.132) is called the replica symmetric free energy of the Sherrington-Kirkpatrick
model.

3.7.2 Breaking of the replica symmetric

In the previous sub-section we assumed that the overlap matrix that would maximize the free
energy would be preserve the symmetry between replicas. This assumption turns our to be
right only for coupling constant βJ that is small enough. For high enough coupling constant
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J the permutation symmetry between replicas breaks. This in turn make it so that one can
�nd other con�guration of that overlap matrix qab that give rise to a higher free energy. The
solution introduced by Giorgio Parisi in [Par79] in one where this matrix qab has block structure
as shown in Fig (3.8).

q3

q3

q2

q2

q2

q2

q1

q1

q1

qab =

q1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 3.8 � In this �gure we present the block structure of the qab matrix that corresponds
to the Parisi solution of the SK model. This structure here corresponds to a 2 step replica
symmetry breaking. The corresponding structure in term of Gibbs state is illustrated in Fig 3.9

This structure describes a Breaking of the con�guration space into a structure given in Fig 3.9
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〈sai sbi〉 = q3

〈sai sbi〉 = q2
〈sai sbi〉 = q2

〈sai sbi〉 = q1 〈sai sbi〉 = q1
〈sai sbi〉 = q1 〈sai sbi〉 = q1

Figure 3.9 � In this �gure we present a tree representation of the breaking of the con�guration
space into Gibbs state of di�erent overlap. Two con�gurations taken according to the Gibbs
distribution will have an average overlap between them of q3. The Gibbs distribution can then
be separated into an exponential number of Gibbs states where the average overlap between
con�guration is q2 these Gibbs-State can be separated into Gibbs state where the overlap is q1.
It is a visual representation of the structure of overlap matrix given in Fig 3.8 under which one
looks for a maxima of the free energy in the Parisi solution framework.
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Results

4.1 Introduction

In this thesis we study a generic class of statistical physics models having Boltzmann probability
measure that can be written in one of the two following forms :

� Symmetric vector-spin glass model :

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX(xi)
∏

1≤i<j≤N
eg(Yij ,x

>
i xj/

√
N) . (4.1)

Here Yij ∈ RN×N and X ∈ RN×r are real valued matrices. In this case Yij is a symmetric
matrix. In statistical physics Y is called the quenched disorder. In the whole paper we
denote by xi ∈ Rr the vector-spin i (r-dimensional column vector) that collects the
elements of the ith row of the matrix X, x>i xj is the scalar product of the two vectors.
ZX(Y ) is the corresponding partition function playing role of the normalization.

� Symmetric graphon vector-spin glass model :

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX(xi)
∏

1≤i<j≤N
eg(Yij ,f(xi,xj)/

√
N) . (4.2)

Here Yij ∈ RN×N . In this case Yij is a symmetric matrix. xi can live in any space. The
signal w is given by a general function w = f(xi, xj). This is known as the graphon case.

� Bipartite vector-spin glass model :

P (U, V |Y ) =
1

ZUV (Y )

∏
1≤i≤N

PU(ui)
∏

1≤j≤M
PV (vj)

∏
1≤i≤N,1≤j≤M

eg(Yij ,u
>
i vj/

√
N) . (4.3)

De�ned as above, this time Yij ∈ RN×M and U ∈ RN×r, V ∈ RM×r. Again we denote
by ui, vj the vector-spins of dimension r that collect rows of matrices U , V . In this case
the graph of interactions between spins is bipartite.
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� Symmetric p vector-spins glass model :

P (X|Y ) =
1

ZXp(Y )

∏
1≤i≤N

PX(xi)
∏

1≤i1<···<ip≤N
e
g

(
Yi1···ip ,

√
(p−1)!

N
p−1
2

∑
k=1···r

xi1kxi2k···xipk
)
. (4.4)

De�ned as above, this time Yi1i2···ip ∈ ⊗pRN is a symmetric tensor of order p. X ∈ RN×r.
Again we denote by xi the vector-spins of dimension r that collect rows of matrices X.
In this case the graph of interactions between spins is an hypergraph.

The main motivation on this work is twofold. On the one hand, the above mentioned probability
measures are posterior probability measures of an important class of high-dimensional inference
problems known as constrained low-rank matrix estimation. In what follows we give examples
of applications of these matrix estimation problems in data processing and statistics. On the
other hand, our motivation from the physics point of view is to present a uni�ed formalism
providing the (replica symmetric) solution for a large class of mean-�eld vectorial spin models
with disorder.

The general nature of the present work stems from the fact that the probability distributions PX ,
PU , PV and the function g are very generic (assumptions are summarize in section 4.1.2). These
functions can even depend on the node i or edge ij. For simplicity we will treat site-independent
functions PX , PU , PV and g, but the theory developed here generalizes very straightforwardly to
the site or edge dependent case. From a statistical physics point of view the terms PX , PU , PV
play a role of generic local magnetic �elds acting on the individual spins. Distributions PX , PU ,
PV describe the nature of the vector-spin variables and the �elds that act on them. The simplest
example is the widely studied Ising spins for which r = 1 and PX(x) = ρδ(x−1)+(1−ρ)δ(x+1),
where ρ here would be related to the usual magnetic �eld h and inverse temperature β as
ρ = eβh/(2 cosh βh). In this paper we treat a range of other examples with r ≥ 1 and elements
of x being both discrete or continuous. This involves for instance spherical spin models with
PX being Gaussian, or Heisenberg spins where r = 3 and each x is con�ned to the surface of a
sphere.

Denoting

wij = x>i xj/
√
N , or wij = u>i vj/

√
N , or wi1···ip =

√
(p− 1)!

N
p−1
2

∑
k=1···r

(
xi1 ◦ · · · ◦ xip

)
k
.

(4.5)
Where ◦ denotes the Hadamard product. According to symmetric, bipartite context or tensor
context, the terms g(Y,w) are then interactions between pairs or p tuples of spins that depend
only on the scalar/Hadamard product between the corresponding vectors. We will also consider
the case where the wij are given by a general function

wij = f(xi, xj)/
√
N . (4.6)

The BP approach is �exible enough that we can treat this case naturally. Matrix multiplications
in our equations will be replaced by integrations against a multiplicative Kernel. We introduce
this case in order to analyze the behavior of objects called graphons. Graphons can be seen
as a generative model for random graphs, this generative model can be seen as the continuous
limit of the Stochastic Block Model.



44 Chapter 4. Results

The most commonly considered form of interaction in statistical physics is simply

g(Y,w) = βY w (4.7)

with β being a constant called inverse temperature, leading to a range of widely considered
models with pair-wise interactions. We will refer to this form of function as the conventional
Hamiltonian.

In order to complete the setting of the problem we need to specify how is the quenched disorder
Y chosen. We will consider two main cases of the quenched disorder de�ned below. We note
that even for problems where the matrix Y is not generated by either of the below our approach
might still be relevant, e.g. for the restricted Boltzmann machine that is equivalent to the above
bipartite model with Y that were learned from data (see for instance [GTK15, TMC+16] and
the discussion below).

� Randomly quenched disorder : In this case the matrix elements of Y are chosen
independently at random from some probability distribution P (Yij). In this thesis we
will consider this distribution to be independent of N and in later parts for simplicity we
will restrict its mean to be zero. This case of randomly quenched disorder will encompass
many well known and studied spin glass models such as the Ising spin glass, Heisenberg
spin glass or the spherical spin glass or the Hop�eld model.

� Planted models : Concerning applications in data science this is the more interesting
case and most of this paper will focus on it. In this case we consider that there is
some ground truth value of X0 ∈ RN×r0 (or U0 ∈ RN×r0 , V0 ∈ RM×r0) with rows that
are generated independently at random from some probability distribution PX0 (or PU0 ,
PV0). Then the disorder Y is generated element-wise as a noisy observation of the product
w0
ij = x0,>

i x0
j/
√
N (or w0

ij = u0,>
i v0

j/
√
N) via an output channel characterized by the

output probability distribution Pout(Yij|w0
ij).

4.1.1 Preliminaries on the planted setting

Bayes optimal inference

Many applications, listed and analyzed below, in which the planted setting is relevant, concern
problems where we aim to infer some ground truth matrices X0, U0, V0 from the observed
data Y and from the information we have about the distributions PX0 , PU0 , PV0 and Pout. The
information-theoretically optimal way of doing inference if we know how the data Y and how the
ground-truth matrices were generated is to follow the Bayesian inference and compute marginals
of the corresponding posterior probability distribution. According to the Bayes formula, the
posterior probability distribution for the symmetric case is

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX0(xi)
∏

1≤i<j≤N
Pout

(
Yij

∣∣∣∣x>i xj√
N

)
. (4.8)

For the bipartite case it is

P (U, V |Y ) =
1

ZUV (Y )

∏
1≤i≤N

PU0(ui)
∏

1≤j≤M
PV0(vj)

∏
1≤i≤N,1≤j≤M

Pout

(
Yij

∣∣∣∣u>i vj√
N

)
. (4.9)
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Making link with the Boltzmann probability measures (2.6) and (2.7) we see that the Bayes
optimal inference of the planted con�guration is equivalent to the statistical physics of the
above vector-spin models with

PX0 = PX , PU0 = PU , PV0 = PV , Pout(Y |w) = eg(Y,w) . (4.10)

This approach is optimal in the sense that the statistical estimator X̂ computed from the data
Y that minimizes the expected mean-squared error between the estimator X̂ and the ground
truth X0 is given by the mean of the marginal of variable xi in the probability distribution (4.8)

x̂i(Y ) =

∫
dx xµi(x) , where µi(x) =

∫
P (X|Y )

∏
{xj}j 6=i

dxj . (4.11)

Analogously for the bipartite case.

In the Bayes-optimal setting de�ned by conditions (2.8) the statistical physics analysis of the
problem presents important simpli�cations known as the Nishimori conditions [Nis01, ZK16]
(3.18), which will be largely used in the present paper. These conditions can be proven and sta-
ted without the usage of the methodology developed below, they are a direct consequence of the
Bayesian formula for conditional probability and basic properties of probability distributions.

Assume Bayes-optimality of the output channel, that is Pout = eg(Y,w). First let us notice that
every probability distribution has to be normalized

∀w,
∫

dY Pout(Y |w) = 1 . (4.12)

By deriving the above equation with respect to w one gets.

∀w,
∫

dY Pout(Y |w)
∂g(Y,w)

∂w
= EPout(Y |w)

[
∂g(Y,w)

∂w

]
= 0 , (4.13)

∀w,
∫

dY Pout(Y |w)

[(
∂g(Y,w)

∂w

)2

+
∂2g(Y,w)

∂w2

]
= EPout(Y,w)

[(
∂g(Y,w)

∂w

)2

+
∂2g(Y,w)

∂w2

]
= 0 .

(4.14)

Anticipating the derivation in the following we also de�ne the inverse Fisher information of an
output channel Pout at w = 0 as

1

∆
= EPout(Y |w=0)

[(
∂g

∂w

)2

Y,w=0

]
, (4.15)

We also remind the reader of a property of Bayes optimal inference that were already discussed
in section 3.1 namely equation (3.18). This is a simple yet important property that will lead to
numerous simpli�cations in the Bayes optimal case and it will be used in several places of this
paper, under the name Nishimori condition.

From the point of view of statistical physics of disordered systems the most striking property
of systems that verify the Nishimori conditions is that there cannot be any replica symme-
try breaking in the equilibrium solution of these systems [NS01, Nis01, ZK16]. This simpli-
�es considerably the analysis of the Bayes-optimal inference. Note, however, that metastable
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(out-of-equilibrium) properties of Bayes-optimal inference do not have to satisfy the Nishimori
conditions and replica symmetry breaking might be needed for their correct description (this
will be relevant in the cases of �rst order phase transition described in section 4.4.4).

4.1.2 The large size limit, assumptions and channel universality

In this thesis we focus on the thermodynamic limit where N,M → ∞ whereas r = O(1), and
α ≡ M/N = O(1) and all the elements of Y , X, U and V are of order 1. The functions PX ,
PU , PV and g do not depend on N explicitly. In the planted model also the distribution PX0 ,
PU0 , PV0 and Pout do not depend on N explicitly. The only other requirement we impose on the
distributions PX , PU , PV and PX0 , PU0 , PV0 is that they all have a �nite second moment.

The factor 1/
√
N in the second argument of the function g ensures that the behavior of the

above models is non-trivial and that there is an interesting competition between the number
O(N) of local magnetic �elds PX , PU , PV and the number of O(N2) interactions. To physics
readership familiar with the Sherrington-Kirkpatrick (SK) model this 1/

√
N factor will be

familiar because in the SK model the interaction between the Ising spins that lead to extensive
free energy are also of this order (with mean that is of order 1/N). This is compared to the
ferromagnetic Ising model on a fully connected lattice for which the interactions leading to
extensive free energy scale as 1/N .

For readers interested in inference problems, i.e. the planted setting, the 1/
√
N factor is the

scaling of the signal-to-noise ratio for which inference of O(N) unknown from O(N2) measure-
ments is neither trivially easy nor trivially impossible. In the planted setting Y can be viewed
as a random matrix with a rank-r perturbation. The regime where the eigenvalues of dense
random matrices with low-rank perturbations split from the bulk of the spectral density is
precisely when the strength of the perturbation is O(1/

√
N), see e.g. [BBAP05].

We are therefore looking at statistical physics models with O(N2) pairwise interactions where
each of the interactions depend only weakly on the con�guration of the vector-spins. As a
consequence, properties of the system in the thermodynamic limit N →∞ depend only weakly
on the details of the interaction function g(Yij, wij) with wij given by (4.5). The results of this
paper hold for every function g for which the following Taylor expansion is well de�ned

eg(Yij ,wij) = eg(Yij ,0)

{
1 +

∂g(Yij, w)

∂w

∣∣∣
w=0

wij (4.16)

+

[(
∂g(Yij, w)

∂w

∣∣∣
w=0

)2

+
∂2g(Yij, w)

∂w2

∣∣∣
w=0

]
w2
ij

2
+O(w3

ij)

}
. (4.17)

In order to simplify the notation in the following we denote

Sij ≡
∂g(Yij, w)

∂w

∣∣∣
w=0

, (4.18)

Rij ≡
(
∂g(Yij, w)

∂w

∣∣∣
w=0

)2

+
∂2g(Yij, w)

∂w2

∣∣∣
w=0

. (4.19)

We will refer to the matrix S as the Fisher score matrix. The above expansion can now be
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written in a more compact way

eg(Yij ,wij) = eg(Yij ,0)

[
1 + Sijwij +

Rijw
2
ij

2
+O(w3

ij)

]
= eg(Yij ,0)+Sijwij+

1
2

(Rij−S2
ij)w

2
ij+O(w3

ij) . (4.20)

Let us now analyze the orders in this expansion. In the Boltzmann measure (2.6) and (2.7)
the terms eg(Yij ,wij) appears in a product over O(N2) terms and w = O(1/

√
N). At the same

time only terms of order O(N) in the exponent of the Boltzmann measure in�uence the leading
order (in N) of the marginals (local magnetizations), therefore all the terms that depend on
3rd and higher order of w are negligible. This means that the leading order of the marginals
depend on the function g(Y,w) only trough the matrices of its �rst and second derivatives at
w = 0, denoted S and R (4.18-4.19). This means in particular that in order to understand the
phase diagram of a model with general g(Y,w) we only need to consider one more order than
in the conventional Hamiltonian considered in statistical physics (4.7).

In the sake of speci�city let us state here the two examples of the output channels g(Y,w)
considered most prominently in this thesis and their corresponding matrices S and R. The �rst
example corresponds to observations of low-rank matrices with additive Gaussian noise, we will
refer to this as the Gaussian output channel

Gaussian Noise Channel :

g(Y,w) =
−(Y − w)2

2∆
− 1

2
log 2π∆ , Sij =

Yij
∆
, Rij =

Y 2
ij

∆2
− 1

∆
, (4.21)

where ∆ is the variance of the noise, for the speci�c case of the Gaussian output channel ∆ is
also the Fisher information as de�ned in eq. (4.15). The second example is the one most often
considered in physics given by eq. (4.7)

Conventional Hamiltonian :

g(Y,w) = βY w , Sij = βYij , Rij = β2Y 2
ij . (4.22)

with β being a constant called inverse temperature. Another quite di�erent example of the
output channel will be given to model community detection in networks in section 4.1.4.

4.1.3 Principal component analysis and spectral method

In that section we will present the spectral techniques that one might use to solve the matrix
factorization problem. The reason it is useful to talk about these methods is that quite often
the performance of Bayes inference method are deeply linked to the performance of spectral
methods, for instance if your signal has mean 0 then there is phase transition of the posterior
probability at the exact same place as the spectral transition appears. A good rule of thumb
that one can apply to get a feel for what can one expect in matrix factorization problems is
the following "As long as the constraints that one imposes on the prior PX(x) are not too
harsh then the performance of spectral techniques and Bayesian inference will not be too far
apart". Harsh constraint could mean very low sparsity, large rank r with correlations between
the component of the xi, essentially anything that make PX(x) not well approximated by a
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Gaussian distribution. This "rule of thumb" is nothing but an empirical rule gained by analyzing
a lot of phase diagram of matrix factorization system. Therefore having some understanding of
the property of spectral methods is useful to ease the rest of the explanation.

We will focus mostly on matrices and not on tensor. Matrices are comparatively to tensors
relatively simple objects to understand and analyze. Tensors have all sort of properties that
make them hard to analyze, a lot of things that are easy to compute for matrices end up being
NP-hard to compute for matrices this is well explained in [HL09].

In the above probabilistic inference setting the Bayesian approach of computing the marginals
is optimal. However, in a majority of the interesting cases it is computationally intractable (NP
hard) to compute the marginals exactly. In all low-rank estimation problems the method that
(for the bipartite case) comes to mind as �rst when we look for a low-rank matrix close to
an observe matrix Y is the singular value decomposition (SVD) where a rank r matrix Ỹ that
minimizes the squared di�erence in computed

argminỸ

[ ∑
1≤i≤N,1≤j≤M

(Yij − Ỹij)2

]
=

r∑
s=1

usλsv
>
s , (4.23)

where λs is the sth largest singular value of Y , and us ∈ RN , vs ∈ RM are the corresponding
left-singular and right-singular vectors of the matrix Y . The above property is know as the
Eckart-Young-Mirsky theorem [EY36]. In the symmetric case Yij = Yji we simply replace the
singular values by eigenvalues and the singular vectors by the eigenvectors.

argminỸ

[ ∑
1≤i≤N,1≤j≤N

(Yij − Ỹij)2

]
=

r∑
s=1

xsλsx
>
s , (4.24)

The above unconstrained low-rank approximations of the matrix Y , eq. (4.23, 4.24), are also
often referred to as principal component analysis (PCA), because indeed when the matrix Y is
interpreted as N samples ofM -dimensional data then the right-singular vectors vs are directions
of greatest variability in the data.

PCA and SVD are methods of choice when the measure of performance is the sum of square
di�erences between the observed and estimated matrices, and when there are no particular
requirements on the elements of the matrices U , V or X.

The methodology developed in this thesis for the planted probabilistic models, generalizes to
arbitrary cost function that can be expressed as a product of element-wise terms eg(Yij ,wij) and
to arbitrary constraints on the rows of the matrices U , V , X as long as they can be described
by row-wise probability distributions PU , PV , PX . Systematically comparing our results to the
performance of PCA is useful because PCA is well known and many researcher have good
intuition about what are its strengths and limitations in various settings.

One might wonder how well do spectral methods perform in recovering the signal. This is a
question for frequentist inference. In the case of rank 1 system with additive Gaussian noise
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this question has been answered in [BGN11, BBAP05].

Y =
XX>√
N

+
√

∆N (0, 1)N×NSym (4.25)

Y =
UV >√
N

+
√

∆N (0, 1)N×M (4.26)

The take away message is that in each case there is a competition between the noise N (0, 1)N×N

noise the signal XX>√
N

a visual representation of this competition would be given by plotting
the spectrum of Y for di�erent value of ∆. Let us describe what happens for the symmetric
case Y as one increases ∆ the noise starting from zero. Our measure of how well the signal is
reconstructed will be

α(X0, X̂PCA) =

∣∣∣X>0 X̂PCA

∣∣∣
‖X>0 ‖2‖X̂PCA‖2

(4.27)

0 ≤ α(X0, X̂PCA) ≤ 1 and is a measure of how well the signal was reconstructed. α(X0, X̂PCA) =
1 means perfect reconstruction. And α(X0, XNormal) ≈ ± 1√

N
is expected if one chooses a vector

XNormal from an isotropic normal distribution.

� ∆ = 0 : Y only has one non zero eigenvalue and PCA achieves perfect reconstruction
α(X0, X̂PCA) = 1.

� 0 < ∆ < ∆c =
‖X0‖42
N2 : The Noise created a bulk of N − 1 eigenvalues of width 2

√
N∆

centered around zero and distributed according to a semi-circle law, the eigenvectors of
these eigenvalues have O(1/

√
N) correlation with the hidden solution X0. One infor-

mative eigenvalue stays well separated from the bulk of eigenvalues the corresponding
eigenvector is well correlated with the signal

α(X0, X̂PCA) =

√
1− ∆

∆c

±O
(

1√
N

)
(4.28)

Where X̂PCA(Y ) is the estimator that outputs the top eigenvectors of Y . As ∆ increases
the separation between the bulk and the informative eigenvalue decreases.

� ∆ > ∆c : The informative eigenvalue has penetrated the Bulk, all eigenvectors of Y
have a vanishing correlation of order O(1/

√
N) with the solution.

α(X0, X̂PCA) = ±O
(

1√
N

)
(4.29)

We plot this spectrum in �g 4.1. Similar thing happen in the UV > case where there is once
again a critical value of ∆ below which a singular value decomposition of Y yields us with
eigenvectors that are positively correlated with U0 and V0. The result of the performance of
naive PCA are summarized here.

XX> case : ∆c =
‖X0‖4

2

N2
(4.30)

UV > case : ∆c =
‖U0‖2

2‖V0‖2
2

N2
(4.31)
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Figure 4.1 � We plot the spectrum of matrix Y/
√
N in the XX> case for N = 2000 and

‖X0‖2
2 = N and for 3 values of ∆ = 0.05, 0.3, 2. We see the bulk of noisy eigenvalue growing

around zero until it hides the informative eigenvalues coming from the signal.

The overlap of the eigenvectors with the hidden solution for ∆ < ∆c are then given by

XX> case :

α(X0, X̂PCA) =

√
1− ∆

∆c

+O

(
1√
N

)
(4.32)

UV > case :

α(U0, ÛPCA) =

√√√√ 1− ∆2

∆2
c

1 + ∆
∆c
√
α

+O

(
1√
N

)
(4.33)

α(V0, V̂PCA) =

√√√√ 1− ∆2

∆2
c

1 + ∆
√
α

∆c

+O

(
1√
N

)
(4.34)

where

α =
M

N
(4.35)

The performance of spectral methods will be analyzed with more detail in section 4.4.1.

Why are spectral method a reasonable thing to do ? One might be perplexed in front
of the ubiquity of spectral methods. After all if the task at hand is the analysis of data why
would one expect the model

Y = UV > +N (0,∆)N×M (4.36)

to be a reasonable model to �t ? PCA method amount to solving this optimization problem

∑
1≤i≤N
1≤j≤M

(
Yij −

u>i vj√
N

)2

(4.37)
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Why a squared penalty ? Why a multiplication between ui and vj ? Let us imagine a more
general model given by

wij =
1√
N
f(ui, vj)⇒ P (Y |{wij}) =

∏
1≤i≤N
1≤j≤M

Pout(Yij|wij) (4.38)

Where we take the ui and vj to belong to the interval [0; 1]. Now the signal w is given by a
general function of ui and vj and the noise is not an additive Gaussian noise but a general
Noise channel given by the conditional density probability Pout(Y |w). Doing a MAP approach
to this problem means �nding ui and vj that maximizes this cost function

argmax{ui},{vj}
∏

1≤i≤N
1≤j≤M

Pout

(
Yij

∣∣∣∣ 1√
N
f(ui, vj)

)
. (4.39)

Using the channel universality property described in section 4.1.2 this optimization problem is
the same in the large N limit as this problem

argmax{ui},{vj}
∑

1≤i≤N
1≤j≤M

[
Sij

1√
N
f(ui, vj) +

1

2N

(
Rij − S2

ij

)
f(ui, vj)

2

]
(4.40)

Using the self-averaging property of the sum we will replace the term (Rij−S2
ij) by it's averaged

value −1/∆′. The function to optimize now becomes

argmax{ui},{vj}
∑

1≤i≤N
1≤j≤M

(
Sij
√

∆′ − 1√
N∆′

f(ui, vj)

)2

(4.41)

The problem still remain that f(ui, vj) 6= uivj and that the optimization problem we have
written still is not a PCA optimization problem over the matrix S. To see how all of this relate
to the spectrum of S let us represent the function f(u, v) in a di�erent way. Suppose that we
now limit ui and vj to be real numbers ∈ [0; 1]. Let us discretize this interval into r value
{(k− 1)/r, k ∈ {1, · · · , r}}. We will now do a mapping from one representation of the problem
to another. The variables ui and vj that before lived in [0; 1] will now be represented by r
dimensional vectors ~ui ∈ {~ek} ⊂ Rr×1 and ~vj ∈ {~ek} ⊂ Rr×1. Where the vectors ~ek form the
canonical basis of Rr×1 where, (~ek)i = δik. We then map from one representation to the other
according to these rules

ui ∈
[
k − 1

r
;
k

r

[
⇔ ~ui = ~ek (4.42)

vj ∈
[
k − 1

r
;
k

r

[
⇔ ~vj = ~ek (4.43)

f(ui, vj)↔ ~u>i F~vj (4.44)
where

Fkk′ = ~e>k F~ek′ = f

(
k − 1

r
,
k′ − 1

r

)
(4.45)
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Of course this mapping is only exact in the r → +∞ limit. But if one takes r large enough
then this might be a good enough approximation to describe accurately the function f . We
now have once again transformed our optimization problem.

argmax{~ui}∈{~ek}N ,{~vj}∈{~ek}M
∑

1≤i≤N
1≤j≤M

(
Sij
√

∆′ − ~u>i F~vj√
N∆′

)2

(4.46)

Under this form this almost look like a Singular Value Decomposition (SVD) problem the only
thing di�erent is that we have this constraint that ~ui, ~vj ∈ {~ek}. But if we just relax this
constraint and allow the variables ~ui and ~vj to live in the whole space Rr×1 then the problem
become

argmax{~ui},{~vj}
∑

1≤i≤N
1≤j≤M

(
Sij
√

∆′ − ~u>i F~vj√
N∆′

)2

(4.47)

This is an easy optimization problem to solve. Let us call ûi ∈ Rr×1,v̂j ∈ Rr×1 a solution to the
SVD optimization problem.

argmax{ûSVD
i },{v̂SVD

j }
∑

1≤i≤N
1≤j≤M

(
Sij −

ûSVD>

i v̂SVD
j√

N

)2

(4.48)

It is easy to prove that a solution to (4.47) can be given by

~ui = A>
√

∆

C
ûSVD
i (4.49)

~vj = B>
√

∆

C
v̂SVD
j (4.50)

where

A,B ∈ O(r), C is a positive diagonal matrix (4.51)
F = ACB ∈ Rr×r (4.52)

We therefore see that even though we started from a much more "general" model for our data
we were able to link it to the singular value decomposition of some matrix Sij. This is a simple
explanation to justify the usage of spectral methods. There remains a subtility though which
is that we did not perform in the end a SVD on the matrix Yij directly (assuming that the Yij
observed are numbers) but on the matrix Sij. To go from one to the other we had to assume
a shape of the channel and a corresponding function g(Y,w). Some functions g(Y,w) might
be better that other as is illustrated in Fig 4.3. A similar treatment of the XX> case can be
performed.
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4.1.4 Examples and applications

The Boltzmann measures (2.6) and (2.7) together with the model for the disorder Y can be
used to describe a range of problems of practical and scienti�c interest studied previously in
physics and/or in data sciences. In this section we list several examples and applications for
each of the four categories � the symmetric and bipartite case, and the randomly quenched and
planted disorder.

Examples with randomly quenched disorder

Sherrington-Kirkpatrick (SK) model. The SK model [SK75] stands at the roots of the
theory of spin glasses. It can be described by the symmetric Boltzmann measure (2.6) with the
conventional Hamiltonian g(Y,w) = βY w.

The xi are Ising spins, i.e. xi ∈ {±1}, with distribution

PX(xi) = ρδ(xi − 1) + (1− ρ)δ(xi + 1). (4.53)

The parameter ρ is related to the inverse temperature β and an external magnetic �eld h as
ρ = eβh/(2 cosh βh). Note that the parameter ρ could also be site-dependent and our approach
would generalize, but in this thesis we work with site independent functions PX .

The elements of the (symmetric) matrix Yij are the quenched random disorder, i.e. they are
generated independently at random from some probability distribution. Most usually considered
distributions of disorder would be the normal distribution Yij ∼ N (0, 1), or binary Yij = 1 with
probability 1/2 and Yij = −1 otherwise.

The algorithm developed in this thesis for the general case corresponds to the Thouless-
Anderson-Palmer [TAP77] equations for the SK model. The theory developed here correspond
to the replica symmetric solution of [SK75]. Famously this solution is wrong below certain
temperature where e�ects of replica symmetry breaking (RSB) have to be taken into account.
In this thesis we focus on the replica symmetric solution, that leads to exact and novel phase
diagrams for the planted models. The RSB solution in the present generic setting will be pre-
sented elsewhere. We present the form of the TAP equations in the general case encompassing
a range of existing works.

Spherical spin glass. Next to the SK model, the spherical spin glass model [KTJ76] stands
behind large fraction of our understanding about spin glass. Mathematically much simpler
than the SK model this model stands as a prominent case in the development in mathematical
physics. The spherical spin glass is formulated via the symmetric Boltzmann measure (2.6)
with the conventional Hamiltonian g(Y,w) = βY w. The function PX(xi) = e−x

2
i /2 with xi ∈ R

enforces (canonically) the spherical constraint
∑

i x
2
i = N . External magnetic �eld can also be

included in PX(xi).

The disorder Yij is most commonly randomly quenched in physics studies of the spherical spin
glass model.
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Heisenberg spin glass. In Heisenberg spin glass [Som81] the Hamiltonian is again the
conventional symmetric one with randomly quenched disorder. The spins are 3-dimensional
vectors, xi ∈ R3, of unit length, x>i xi = 1. Magnetic �eld in�uences the direction of the spin so
that

PX(xi) = eβh
>xi , (4.54)

where h ∈ R3. The more general r-component model was also studied extensively in the spin
glass literature [GT81].

Restricted Boltzmann Machine. Restricted Boltzmann machines (RBMs) are one of the
triggers of the recent revolution in machine learning called deep learning [Hin10, HOT06,
LBH15]. The way RBMs are used in machine learning is that one considers the bipartite
Boltzmann measure (2.7). In the training phase one searches a matrix Yij such that the data
represented as a set of con�gurations of the u-variable have high likelihood (low energy). The
v-variable are called the hidden units and columns of the matrix Yij (each corresponding to one
hidden unit) are often interpreted as features that are useful to explain the structure of the
data.

The RBM is most commonly considered for the conventional Hamiltonian g(Y,w) = Y w and for
binary variables ui ∈ {0, 1} and vi ∈ {0, 1}. But other distributions for both the data-variables
ui and the hidden variables vi were considered in the literature and the approach of the present
paper applies to all of them.

We note that the disorder Yij that was obtained for an RBM trained on real datasets does not
belong to the classes for which the theory developed in this thesis is valid (training introduces
involved correlations). However, it was shown recently that the Low-RAMP equations as studied
in the present paper can be used e�ciently for training of the RBM [KR98, GTK15].

The RBM with Gaussian hidden variables is related to the well known Hop�eld model of
associative memory [Hop82]. Therefore the properties of the bipartite Boltzmann measure (2.7)
with a randomly quenched disorder Yij are in one-to-one correspondence with the properties
of the Hop�eld model. This relation in the view of the TAP equations was studied recently in
[Méz16].

Examples with planted disorder

So far we covered examples where the disorder was randomly quenched (or more complicated as
in the RBM). The next set of examples involves the planted disorder that is more relevant for
applications in signal processing or statistics, where the variables X, U , V represent some signal
we aim to recover from its measurements Y . Sometimes it is the low-rank matrix wij that we
aim to recover from its noisy measurements Y . In the literature the general planted problem can
be called low-rank matrix factorization, matrix recovery, matrix denoising or matrix estimation.

Gaussian estimation The most elementary examples of the planted case is when the mea-
surement channel is Gaussian as in eq. (4.21), and the distributions PX , PU and PV are also
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Gaussian i.e.

PX(xi) =
1√

Det(2πσX)
e−

1
2

(xi−µX)>σ−1
X (xi−µX) , (4.55)

PU(ui) =
1√

Det(2πσU)
e−

1
2

(ui−µU )>σ−1
U (ui−µU ) , (4.56)

PV (vi) =
1√

Det(2πσV )
e−

1
2

(vi−µV )>σ−1
V (vi−µV ) , (4.57)

where µX , µU , µV ∈ Rr are the means of the distributions, σX , σU , σV ∈ Rr×r are the covariance
matrices, Yij, wij ∈ R with wij being given by (4.5).

We speak about the estimation problem as Bayes-optimal Gaussian estimation if the disorder
Yij was generated according to

Pout(Yij|w0
ij) = eg(Yij ,w

0
ij) , (4.58)

where g(Y,w) is given by eq. (4.21), and

w0
ij = x0>

i x
0
j/
√
N , or w0

ij = u0
i
>
v0
j/
√
N . (4.59)

with X0, U0, and V0 being generated from probability distributions PX0 = PX , PU0 = PU ,
PV0 = PV . The goal is to estimate matrices X0, U0, and V0 from Y .

Gaussian Mixture Clustering Another example belonging to the class of problems discus-
sed in this paper is the model for Gaussian mixture clustering. In this case the spin variables
ui are such that

PV (vj) =
r∑
s=1

nsδ(vj − es) , (4.60)

where r is the number of clusters, and es is a unit r-dimensional vector with all components
except s equal to zero, and the s-component equal to 1, e.g. for r = 3 we have e1 = (1, 0, 0)>,
e2 = (0, 1, 0)>, es = (0, 0, 1)>. Having vj = es is interpreted as data points j belongs to cluster
s. We have M data points.

The columns of the matrix U then represent centroids of each of the r clusters in the N -
dimensional space. The distribution PU can as an example take the Gaussian form (4.56) with
the covariance σV being an identity and the mean µV being zero. The output channel is Gaussian
as in (4.21). All together this means the Yij collects positions of M points in N dimensional
space that are organized in r Gaussian clusters. The goal is to estimate the centers of the
clusters and the cluster membership from Y .

Standard algorithms for data clustering include those based on the spectral decomposition
of the matrix Y such as principal component analysis [HTFF05, Was13], or Loyd's k-means
[Llo82]. Works on Gaussian mixtures that are methodologically closely related to the present
paper include application of the replica method to the case of two clusters r = 2 in [WN94,
BS94, BM94] or the AMP algorithm of [MT13]. Note that for two clusters with the two centers
being symmetric around the origin, the resulting Boltzmann measure of the case with randomly
quenched disorder is equivalent to the Hop�eld model as treated e.g. in [Méz16].
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Note also that there are interesting variants of the Gaussian mixture clustering such as subspace
clustering [PHL04] where only some of the M directions are relevant for the clustering. This
can be modeled by a prior on the vectors vi that have a non-zero weight of vi being the null
vector.

The approach described in the present paper on the Bayes-optimal inference in the Gaussian
mixture clustering problem has been used in a work of the authors with other collaborators in
the work presented in [LDBB+16].

Sparse PCA Sparse Principal Component Analysis (PCA) [JL04, ZHT06] is a dimensionality
reduction technique where one seeks a low-rank representation of a data matrix with additional
sparsity constraints on the obtained representation. The motivation is that the sparsity helps
to interpret the resulting representation. Formulated within the above setting sparse PCA
corresponds to the bipartite case (2.7). The variables U is considered unconstrained, as an
example one often considers a Gaussian prior on ui (4.56). The variables V are such that many
of the matrix-elements are zero.

In the literature the sparse PCA problem was mainly considered in the rank-one case r = 1
for which a series of intriguing results was derived. The authors of [JL04] suggested an e�-
cient algorithm called diagonal thresholding that solves the sparse PCA problem (i.e. estimates
correctly the position and the value of the non-zero elements of U) whenever the number of
data samples is N > CK2 logM [AW08], where K is the number of non-zeros and C is some
constant. More recent works show existence of e�cient algorithm that only need N > ĈK2

samples [DM14b]. For very sparse systems, i.e. small K, this is a striking improvement over
the conventional PCA that would need O(M) samples. This is why sparsity linked together
with PCA brought excitement into data processing methods. At the same time, this result
is not as positive as it may seem, because by searching exhaustively over all positions of the
non-zeros the correct support can be discovered with high probability with number of samples
N > C̃K logM .

Naively one might think that polynomial algorithms that need less thank O(K2) samples might
exist and a considerable amount of work was devoted to their search without success. However,
some works suggest that perhaps polynomial algorithm that solve the sparse PCA problems
for number of samples N < O(K2) do not exist. Among the most remarkable one is the work
[KNV+15] showing that the SDP algorithm, that is otherwise considered rather powerful, fails
in this regime. The work of [BR13] goes even further showing that if sparse PCA can be solved
for N < O(K2) then also a problem known as the planted clique problem can be solved in a
regime that is considered as algorithmically hard for already several decades.

The problem of sparse PCA is hence one of the �rst examples of a relatively simple to state
problem that currently presents a wide barrier between computational and statistical tractabi-
lity. Deeper description of the origin of this barrier is likely to shed light on our understanding
of typical algorithmic complexity in a broader scope.

The above works consider the scaling when N → ∞ and K is �xed (or growing slower than
O(N)). A regime natural to many applications is when K = ρN where ρ = O(1). This regime
was considered in [DM14a] where it was shown that for ρ > ρ0 ≈ 0.04139 an e�cient algorithm
that achieves the information theoretical performance exists. This immediately bring a question
of what exactly happens for ρ < ρ0 and how does the barrier described above appear for



4.1. Introduction 57

K � N ? This question was illuminated in a work by the present authors [LKZ15b] and will
be developed further in this thesis.

We consider sparse PCA in the bipartite case, with Gaussian U (4.57) and sparse V

PV (vi) = ρδ(vi − 1) + (1− ρ)δ(vi) , (4.61)

as corresponds to the formulation of [JL04, ZHT06, AW08, BR13] and others. This probabilistic
setting of sparse PCA was referred to as spiked Wishart model in [DM14a], notation that we
will adopt in the present paper. This model is also equivalent to the one studied recently in
[MV15] where the authors simply integrate over the Gaussian variables.

In [DM14a] the authors also considered a symmetric variant of the sparse PCA, and refer to it
as the spiked Wigner model. The spiked Wigner model is closer to the planted clique problem,
that can be formulated using (2.6) with X having many zero elements. In the present work we
will consider several models for the prior distribution PX . The Bernoulli model as in [DM14a]
where

Bernoulli model : PX(xi) = ρδ(xi − 1) + (1− ρ)δ(xi) . (4.62)

The spiked Bernoulli model can also be interpreted as a problem of submatrix localization
where a submatrix of size ρN × ρN of the matrix Y has a larger mean than a randomly
chosen submatrix. The submatrix localization is also relevant in the bipartite case, where it has
many potential applications. The most striking ones being in gene expression where large-mean
submatrices of the matrix of gene expressions of di�erent patients may correspond to groups of
patients having the same type of disease [MO04, CC00].

In this thesis we will also consider the spiked Rademacher-Bernoulli model with

Rademacher−Bernoulli model : PX(xi) =
ρ

2
[δ(xi − 1) + δ(xi + 1)] + (1− ρ)δ(xi) ,

(4.63)
as well as the spiked Gauss-Bernoulli

Gauss−Bernoulli model : PX(xi) = ρN (xi, 0, 1) + (1− ρ)δ(xi) , (4.64)

where N (xi, 0, 1) is the Gaussian distribution with zero mean and unit variance.

So far we discussed the sparse PCA problem in the case of rank one, r = 1, but the case with
larger rank is also interesting, especially in the view of the question of how does the algorithmic
barrier depend on the rank. To investigate this question in [LKZ15b] we also considered the
jointly-sparse PCA, where the whole r-dimensional lines of X are zero at once, the non-zeros
are Gaussians of mean ~0 and covariance being the identity. Mathematically, xi ∈ Rr with

PX(xi) =
ρ

(2π)r/2
e
−x>x

2 + (1− ρ)δ(xi) . (4.65)

Another example to consider is the independently-sparse PCA where each of the r components
of the lines in X is taken independently from the Gauss-Bernoulli distribution, for xi ∈ Rr we
have then

PX(xi) =
∏

1≤k≤r

[
ρ√
2π
e
−x2ik

2 + (1− ρ)δ(xik)

]
. (4.66)
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Community detection Detection of communities in networks is often modeled by the sto-
chastic block model (SBM) where pairs of nodes get connected with probability that depends
on the indices of groups to which the two nodes depend. Community detection is a widely
studied problem, see e.g. the review [For10]. Studies of statistical and computationally barriers
in the SBM recently became very active in mathematics and statistics starting perhaps with a
series of statistical physics conjectures about the existence of phase transitions in the problem
[DKMZ11b, DKMZ11a]. The particular interest of those works is that they are set in the sparse
regime where every node has O(1) neighbors.

Also the dense regime where every node has O(N) neighbors is theoretically interesting when
the di�erence between probabilities to connect depends only weakly on the group membership.
The relevant scaling is the same as in the Potts glass model studied in [GKS85]. In fact the
dense community detection is exactly the planted version of this Potts glass model. In the
setting of the present model (2.6) the community detection was already considered in [DAM16]
for two symmetric groups, in [LKZ15a], and in [BDM+16]. In the present paper we detail the
results reported brie�y in [LKZ15a] and in [BDM+16]. We consider the case with a general
number of equal sized groups, the symmetric case. And also a case with two groups of di�erent
sizes, but such that the average degree in each of the groups is the same.

To set up the dense community detection problem we consider a network with N nodes. Each
node i belongs to a community indexed by ti ∈ {1, · · · , r}. For each pair (i, j) we create an
edge with probability Ctitj . Where C is an r × r matrix called the connectivity matrix. In the
examples of this paper we will consider two special cases of the community detection problem.

One example with r symmetric equally sized groups where for each pair of nodes (i, j) we create
an edge between the two nodes with probability pin if they are in the same group and with
probability pout if not :

C =


pin pout · · · pout

pout
. . . . . . ...

... . . . . . . pout

pout · · · pout pin

 = pinIr + pout(Jr − Ir) , (4.67)

where Ir is a r-dimensional identity matrix, and Jr is a r-dimensional matrix �lled with unit
elements. The scaling we consider here is

pout = O(1) , pin = O(1) , (4.68)

|pin − pout| =
µ√
N
, µ = O(1) , (4.69)

so that the average degree in the graph is extensive. Note, however, that by rather gene-
ric correspondence between diluted and dense models, that has been made rigorous recently
[DAM16, CLM16], the results derived in this case hold even for average degrees that diverge
only very mildly with n. The goal is to infer the group index to which each node belongs purely
from the adjacency matrix of the network (up to a permutation of the indices). This problem
is transformed into the low-rank matrix factorization problem through the use of the following
prior probability distribution

PX(xi) =
1

r

r∑
s=1

δ(xi − es) . (4.70)
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where es ∈ Rr is the vector with 0 everywhere except a 1 at position s. Eq. (4.70) is just a
special case of (4.60). The output channel that describes the process of creation of the graph is

Pout(Yij = 1|x>i xj/
√
N) = pout +

µx>i xj√
N

, (4.71)

Pout(Yij = 0|x>i xj/
√
N) = 1− pout −

µx>i xj√
N

. (4.72)

Next to the conventional Hamiltonian (4.22) and the Gaussian noise (4.21), the SBM output
(4.71-4.72) is a third example of an output channel that we consider in this thesis. It will be
used to illustrate the simplicity that arises due to the channel universality, as also considered
in [DAM16] and [LKZ15a]. Here, we obtain for the output matrices

Sij(Yij = 1) =
µ

pout

, Sij(Yij = 0) =
−µ

1− pout

, (4.73)

Rij(Yij = 1) = 0, Rij(Yij = 0) = 0 . (4.74)

Here µ is parameter that can be used to �x the signal to noise ratio.

Another example of community detection is the one with two balanced communities, i.e. having
di�erent size but the same average degree. In that setting there are two communities of size ρn
and (1− ρ)n with ρ ∈ [0; 1]. The connectivity matrix of this model is given by

C =

(
pout pout

pout pout

)
+

µ√
N

(
1−ρ
ρ
−1

−1 ρ
1−ρ

)
. (4.75)

This can be modeled at the symmetric matrix factorization with rank r = 1 and the prior given
as

PX(x) = ρδ

(
x−

√
1− ρ
ρ

)
+ (1− ρ)δ

(
x+

√
ρ

1− ρ

)
. (4.76)

The values in C are chosen so that each community has an average degree of poutN . The fact
that in both of these cases each community has the same average degree means that one can
not hope to just use the histogram of degrees to make the distinction between the communities.
The output channel here is identical to the one given in (4.71-4.72)

A third example of community detection is locating one denser community in a dense network,
as considered in [Mon15] (speci�cally the large degree limit considered in that paper). We note
that thanks to the output channel universality (Sec. 4.1.2) this case is equivalent to the spiked
Bernoulli model of symmetric sparse PCA.

As a side remark we note that the community detection setting as considered here is also relevant
in the bipartite matrix factorization setting where it becomes the problem of biclustering [MO04,
CC00]. The analysis developed in this thesis can be straightforwardly extended to the bipartite
case.
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Yij

PX(xi)

xi xj

vj

ui

PU(ui)

PV (vj)Yij

ni→ij(xi) ñij→j(xj)

ni→ij(ui) m̃ij→j(vj)

ml→kl
(vl)

ñkl→k
(uk)uk

vl

Ykl

XX>Factor Graph UV >Factor Graph

Figure 4.2 � This is the factor graph in the symmetric, XX>, and bipartite, UV >, matrix
factorization. The squares are factors (or interaction terms), the circles represent variables. This
factor graph allows us to introduce messages ni→ij(xi) and n̂ij→j(xj) for the XX> case. These
are messages from variables to factors and from factors to variables. For the UV > we introduce
the four kinds of messages. n̂ij→i(ui), m̂ij→j(vj), n̂kl→k(uk) and ml→kl(vl).

4.2 Low-rank approximate message passing

To write the BP equations for the probability measure we represent it by a fully connected factor
graph, , where every node corresponds to a variables node xi, every edge (ij) corresponds to
a pair-wise factor node eg(Yij ,x

>
i xj/

√
N), and every node is related to a single site factor node

PX(xi).

We introduce the messages ni→ij(xi), ñij→i(xi) respectively as the r-dimensional messages from
a variable node to a factor node and from a factor node to a variable node. The belief propa-
gation equations then are

ñki→i(xi) =
1

Zki→i

∫
dxknk→ki(xk)e

g

(
Yki,

x>k xi√
N

)
, (4.77)

ni→ij(xi) =
PX(xi)

Zi→ij

∏
1≤k≤N,k 6=i,j

ñki→i(xi) . (4.78)

The factor graph from which these messages are derived is given in Fig. 4.2. The most important
assumption made in the BP equations is that the messages ñki→i(xi) are conditionally on the
value xi independent of each other thus allowing to write the product in eq. (4.78).

The message in (4.77) can be expanded as in (4.20) around w = 0 thanks to the 1/
√
N term.

One gets

ñki→i(xi) =
eg(Yki,0)

Zki→i

∫
dxknk→ki(xk)

[
1 + Ski

x>k xi√
N

+
x>i xkx

>
k xi

2N
Rki +O

(
1

N3/2

)]
, (4.79)
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where matrices Sij andRij were de�ned in (4.18-4.19). One then de�nes the mean (r dimensional
vector) and covariances matrix (of size r × r) of the message nk→ki as

x̂k→ki =

∫
dxknk→ki(xk)x

>
k , (4.80)

σx,k→ki =

∫
dxknk→ki(xk)xkx

>
k − x̂k→kix̂>k→ki . (4.81)

The mean with respect to nk→ki(xk) is then taken in (4.79) and one gets

ñki→i(xi) =
1

Zki→i
exp

[
g(Yki, 0) + Ski

x̂>k→kixi√
N
− x>i x̂k→kix̂

>
k→kixi

2N
S2
ki +

x>i (x̂k→ikx̂>k→ik + σx,k→ik)xi
2N

Rki +O

(
1

N3/2

)]
. (4.82)

Eqs. (4.78) and (4.82) are combined to get

ni→ij(xi) =
PX(xi)

Zi→ij
exp

(
B>X,i→ijxi −

x>i AX,i→ijxi
2

)
, (4.83)

where the r-dimensional vector Bi→ij and the r × r matrix Ai→ij are de�ned as

BX,i→ij =
1√
N

∑
1≤k≤N,k 6=j

Skix̂k→ki , (4.84)

AX,i→ij =
1

N

∑
1≤k≤N,k 6=j

[
S2
kix̂k→kix̂

>
k→ki −Rki

(
x̂k→kix̂

>
k→ki + σx,k→ki

)]
. (4.85)

The new mean and variance of the message (4.83) then needs to be computed. For this we
de�ne the function fxin

fxin(A,B) ≡ ∂

∂B
log

(∫
dxPX(x) exp

(
B>x− x>Ax

2

))
=

∫
dxPX(x) exp

(
B>x− x>Ax

2

)
x∫

dxPX(x) exp
(
B>x− x>Ax

2

)
(4.86)

as the mean of the normalized density probability

W(x,A,B) =
1

Zx(A,B)
PX(x) exp

(
B>x− x>Ax

2

)
. (4.87)

The variance of the message (4.83) can be computed by writing the derivative of fxin(A,B) with
respect to B and getting

∂fxin(A,B)

∂B
= EW(A,B)(xx

>)− fxin(A,B)fxin
>(A,B) . (4.88)

This expression is the covariance matrix of distribution (4.87). Also it is worth nothing that

∂ log(Zx(A,B))

∂B
= fxin(A,B) . (4.89)
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Adding the time indexes to clarify how these equations are iterated we get the following relaxed
BP algorithm for the symmetric low-rank matrix estimation

Bt
X,i→ij =

1√
N

∑
1≤k≤N,k 6=j

Skix̂
t
k→ki , (4.90)

AtX,i→ij =
1

N

∑
1≤k≤N,k 6=j

[
S2
kix̂

t
k→kix̂

t,>
k→ki −Rki(x̂

t
k→kix̂

t,>
k→ki + σtx,k→ki)

]
, (4.91)

x̂t+1
i→ij = fxin(Ati→ij, B

t
i→ij) , (4.92)

σt+1
x,i→ij =

∂fxin
∂B

(Ati→ij, B
t
i→ij) . (4.93)

4.2.1 Low-RAMP : TAPy�cation and Onsager terms

The above relaxed BP algorithm uses O(N2) messages which can be memory demanding. But
all the messages depend only weakly on the target node, and hence the algorithm can be
reformulated using only O(N) messages and collecting correcting terms called the Onsager
terms in order to get estimators of the marginals that in the large size limit are equivalent to
the previous ones. We call this formulation the TAPy�cation, because of its analogy to the work
of [TAP77]. We present the derivation in the case of symmetric low-rank matrix estimation.
We notice that the variables Bi→ij and Ai→ij depend only weakly on the target node j. One
can use this fact to close the equations on the marginals of the system. In order to do that we
introduce the variables BX,i and AX,i as

Bt
X,i =

1√
N

∑
1≤k≤N

Skix̂
t
k→ki , (4.94)

AtX,i =
1

N

∑
1≤k≤N

[
S2
kix̂

t
k→kix̂

t,>
k→ki −Rki

(
x̂tk→kix̂

t,>
k→ki + σtx,k→ki

)]
. (4.95)

We also de�ne the variables x̂ti and σ
t
x,i as the estimators of the mean and covariance matrix of

xi, reading

x̂t+1
i = fxin(AtX,i, B

t
X,i) , (4.96)

σt+1
x,i =

∂fxin
∂B

(AtX,i, B
t
X,i) . (4.97)

In order to close the equations we need to write the Bt
X,i and A

t
X,i as a function of the estimators

x̂ti and σ
t
x,i.

From the de�nition of the parameters A and B, we have that ∀j, Bt
X,i −Bt

X,i→ij =
Sij√
N
x̂tj→ij =

O
(

1√
N

)
. AX,i − AX,i→ij = O

(
1
N

)
. One deduces from (4.92) and (4.93), (4.96) and (4.97), and

the Taylor expansion, that in the leading order the di�erence between the messages and the
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node estimators is

x̂tk→ki − x̂tk = f(At−1
X,k→ki, B

t−1
X,k→ki)− f(At−1

X,k, B
t−1
X,k)

= − Ski√
N
σtx,kx̂

t−1
i→ki +O

(
1

N

)
= − Ski√

N
σtx,kx̂

t−1
i +O

(
1

N

)
. (4.98)

By plugging (4.98) into (4.94) one gets in the leading order

Bt
X,i =

1√
N

N∑
k=1

Skix̂
t
k − x̂t−1

i

1

N

N∑
k=1

S2
kiσ

t
x,k , (4.99)

AtX,i =
1

N

N∑
k=1

[
S2
kix̂

t
kx̂

t,>
k −Rki

(
x̂tkx̂

t,>
k + σtx,k

)]
. (4.100)

These two equations, together with eqs. (4.96-4.97) give us the low-rank approximate message
passing algorithm (Low-RAMP) with O (N) variables. The second term in the equation (4.99)
is called the Onsager reaction term. Notice the iteration index t − 1 which is non-intuitive
on the �rst sight and was often misplaced until recently, see e.g. discussion in [ZK16]. Note
also that there is no Onsager reaction term in the expression for the covariance AX,i, that
is because the individual terms in a sum in A are of order O(1/N) and not O(1/

√
N). This

is a common pattern in AMP-type algorithm, the Onsager terms appear only in the terms
that estimate means, not in the variances. The Low-RAMP algorithm is related in spirit to
the AMP algorithm for linear sparse estimation [DMM09], for instance the function fin is the
same thresholding function as in the linear-estimation AMP. However, the linear estimation
AMP is more involved for a generic output channel and the structure of the two algorithms
are quite di�erent, stemming from the fact that in the present case all interactions are pairwise
whereas for the linear estimation each interaction involves all the variables, giving rise to non-
trivial terms that do not appear in Low-RAMP. The following pseudocode summarizes our
implementation of the Low-RAMP algorithm :

Low-RAMP symmetric(Sij, Hij, r, f
x
in, λ, εcriterium, tmax, x̂

init)

1 Initialize each x̂i ∈ Rr×1 vector using x̂init : ∀i, x̂i ← x̂init
i .

2 Initialize each x̂old
i ∈ Rr vector to zero : ∀i, x̂old

i ← 0.
3 Initialize each vector BX,i ∈ Rr×1 to zero, BX,i ← 0.
4 Initialize each N r × 1 vector Bold

X,i to zero, ∀i, Bold
X,i ← 0.

5 Initialize to zero each N matrix, r × r matrix AX,i with, AX,i ← 0.
6 Initialize to zero each N matrix, r × r matrix Aold

X,i with, A
old
X,i ← 0.

7 Initialize to zero each N matrix, r × r matrix σX,i with, σX,i ← 0.
8 while conv ∗ λ > εcriterium and t < tmax :
9 do t← t+ 1 ;
10 ∀i, Bnew

X,i ← Update with equation (4.99) or (4.173).
11 ∀i, Anew

X,i ← Update with equation (4.100) or (4.174).
12 ∀i, BX,i ← λBnew

X,i + (1− λ)Bold
X,i,

13 ∀i, AX,i ← λAnew
X,i + (1− λ)Aold

X,i,
14 ∀i, x̂old

i ← x̂i, x̂i ← fxin(AX , BX,i),
15 ∀i, σX,i ← ∂fxin

∂B
(AX , BX,i),

16 conv← 1
N

∑
‖x̂i − x̂old

i ‖.
17 return signal components x.
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The canonical initialization we use is

∀i ∈ [1;N ], x̂init
i ← 10−3N (0, Ir) . (4.101)

The constant 10−3 here can be changed, but it is a bad idea to initialize exactly at zero since
x̂i = 0 could be exactly a �xed point of the equations. In order to analyze the algorithm for a
speci�c problem it is instrumental to initialize in the solution :

∀i ∈ [1;N ], x̂init
i ← x0

i , (4.102)

where x0
i is the planted (ground truth) con�guration. In the above pseudocode the damping

factor λ is chosen constant for the whole duration of the algorithm. It is possible to choose
λ dynamically in order to improve the convergence. Using the fact that the Low-RAMP algo-
rithm �nds a stationary �xed point of the Bethe free energy given in (3.3) one can choose the
damping factor λ so that at each step so that the Bethe-free-energy increases, this is described
in [VSR+15]. Another way to choose λ is by ensuring that

∑
‖x̂t− x̂t+1‖ does not oscillate too

much. If one sees too much oscillations one increases the damping and decreases it otherwise.
Further way to improve convergence is related to randomization of the update scheme as argued
for the related compressed sensing problem in [CZK14].

4.2.2 Low-RAMP and TAP equations for the graphon case

One might be interested in case where the signal w might not be given by wij 6= xixj but could
be given by a general function f(xi, xj). The motivation to consider such a case might come
from the study of graphons. Graphons are The main di�erence with the w = x>i xj case lies in
the fact the variables B ∈ Rr×1 and Ar×r are now replaced with just one functions B(xi). Out
of convenience of notation we will de�ne the notations

(C ∗ λ)(x) =

∫
dx̂C(x, x̂)λ(x̂) (4.103)

(λ ∗ C)(x) =

∫
dx̂λ(x̂)C(x̂, x) (4.104)

(C1 ∗ C2)(x1, x2) =

∫
dyC1(x, y)C2(y, x2)λ(x̂) (4.105)

(C>)(x1, x2) = C(x2, x1) (4.106)

the act of multiplying the multiplicative kernel C(x1, x2) by a function λ(x) on the left/right
and the act of multiplying two multiplicative kernel. This can be thought of as a generalization
of matrix multiplication where the indices x of the matrix rather than living in N can live in
any set.

The beginning of the derivation is the same as in the multiplicative case.

ñki→i(xi) =
1

Zki→i

∫
dxkP̂X,k→ki(xk)e

g

(
Yki,

f(xi,xj)√
N

)
, (4.107)

P̂X,i→ij(xi) =
PX(xi)

Zi→ij

∏
1≤k≤N,k 6=i,j

ñki→i(xi) . (4.108)
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Here we have replaced the notation of ni→ij(xi) with the notation P̂X,i→ij(xi) the reason being
that in that version of the AMP algorithm one has to keep track of the whole posterior pro-
bability of the message. And P̂X,i→ij is going to "replace" the role of the variable x̂i→ij in the
AMP equations.

The message in (4.77) can be expanded as in (4.20) around w = 0 thanks to the 1/
√
N term.

One gets

ñki→i(xi) =
eg(Yki,0)

Zki→i

∫
dxkP̂X,k→ki(xk)

[
1 + Ski

f(xi, xk)√
N

+
f(xi, xk)

2

2N
Rki +O

(
1

N3/2

)]
,

(4.109)
The mean with respect to P̂X,k→ki(xk) is then taken in (4.109) and one gets

ñki→i(xi) =
1

Zki→i
exp [g(Yki, 0) +Dki→i(xi)] . (4.110)

Where

Dki→i(xi) =
1√
N
Ski

∫
dxkP̂X,k→ki(xk)f(xi, xk) +

Rki

2N

∫
dxkP̂X,k→ki(xk)f(xi, xk)

2 (4.111)

− 1

2N
S2
ki

[∫
dxkP̂X,k→ki(xk)f(xi, xk)

]2

(4.112)

Dki→i(xi) =
1√
N
Ski(f ∗ P̂X,k→ki)(xi) +

Rki

2N
([f 2] ∗ P̂X,k→ki)(xi)−

1

2N
S2
ki

[
(f ∗ P̂X,k→ki)(xi)

]2

(4.113)

Eqs. (4.108) and (4.110) are combined to get

ni→ij(xi) =
PX(xi)

Zi→ij
exp (BX,i→ij(xj)) , (4.114)

Where

BX,i→ij(xi) =
∑

1≤k≤N,k 6=j
Dki→i(xi) . (4.115)

The new posterior probability P̂X,i→ij(xi) can then be computed as

P̂X,i→ij(xi) =
1

Zx(BX,i→ij)
PX(x)eBX,i→ij(x) . (4.116)

Where Z(B) here is de�ned as

Zx(B) =

∫
dxPX(x)eB(x) (4.117)

TAPy�cation

To compute the TAP form of these equations we will need two things. First we need to decide
of an update scheme to reach a �xed point of the equations (4.115,4.116) We will decide on the
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following Parallel update

Bt
X,i→ij(xi) =

∑
1≤k≤N,k 6=j

Dt
ki→i(xi) . (4.118)

P̂ t+1
X,i→ij(xi) =

1

Zx(Bt
X,i→ij)

PX(x)eB
t
X,i→ij(x) . (4.119)

We will also need to compute how P̂X(x) (4.116) evolve when we perturb the function B a
little. To do this let us introduce a perturbation �eld λ(x) and compute to �rst order in ε the
following quantity

=
1

Zx(B + ελ)
PX(x)eB(x)+ελ(xi) − 1

Zx(B)
PX(x)eB(x) (4.120)

=
1

Zx(B)(1 + ελ(x))
PX(x)eB(x)(1 + ελ(x))− 1

Zx(B)
PX(x)eB(x) + o(ε) (4.121)

=
1

Zx(B)(1 + ελ(x))
PX(x)eB(x)(1 + ελ(x))− 1

Zx(B)
PX(x)eB(x) + o(ε) (4.122)

=εP̂X(x)(λ(x)− λ) + o(ε) (4.123)

Where λ is the mean value of λ(x) with x taken from density probability (4.116). The λ term
is just here to ensure that the perturbed density probability sums to 1. Therefore when adding
a small �eld lambda to the �eld B(x). The marginal probability is modi�ed to �rst order by

= P̂X(x)(λ(x)− λ) (4.124)

=

∫
dx̂
[
P̂Xδ(x− x̂)− P̂X(x)P̂X(x̂)

]
λ(x̂) (4.125)

=

∫
dx̂C(x, x̂)λ(x̂) (4.126)

= (C ∗ λ)(x) (4.127)
where

C(x1, x2) =
[
P̂X(x1)δ(x1 − x2)− P̂X(x1)P̂X(x2)

]
. (4.128)

Here C(x1, x2) is an integral kernel that is the sum of two terms, a dirac term and a continuous
term outside of the diagonal. C(x1, x2) can be thought of as a covariance matrix since

C(x1, x2) =

∫
dxδ(x− x1)δ(x− x2)P̂X(x)−

(∫
dxδ(x− x1)P̂X(x)

)(∫
dxδ(x− x2)P̂X(x)

)
(4.129)

It is an linear operator that measures the linear response P̂X(x) with respect to the �eld B.
Therefore we will note Ct

X,i the linear response Kernel of the posterior probability of variables i
at time t. With this result in our pocket we are now ready to compute the TAP form the AMP
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equations for this problem. Let us de�ne the Bt
i

Bt
i(xi) =

∑
1≤k≤N

Dt
ki→i(xi) , (4.130)

P̂ t+1
X,i (xi) =

1

Zx(Bi)
eB

t
i (xi) (4.131)

Now as before let us notice that to leading order the di�erence between PX,i→ij and PX,i is
given by

P̂ t+1
X,i→ij(xi)− P̂

t+1
X,i (xi) = − Sij√

N

[
Ct+1
X,i ∗ f ∗ P̂

t
X,i

]
(xi) +O

(
1

N

)
(4.132)

Therefore by combining (4.132) and (4.131) one obtain the TAP equations

Bt
i(xi) =

∑
1≤i≤N

[
1√
N
Ski(f ∗ P̂ t

X,k)(xi)−
1

N
S2
ki(f ∗ Ct

X,i ∗ f ∗ P̂ t−1
X,k )(xi)

+
Rki

2N
([f 2] ∗ P̂ t

X,k)(xi)−
1

2N
S2
ki

[
(f ∗ P̂ t

X,k)(xi)
]2
]

(4.133)

P̂ t+1
X,i (xi) =

1

Zx(BX,i)
eB

t
X,i(xi) (4.134)

Ct
X,i(x1, x2) = δ(x1 − x2)P̂ t

X,i(x1)− P̂ t
X,i(x1)P̂ t

X,i(x2) (4.135)

Low rank approximation of f(x1,x2)

These TAP equations we have written are equations that require us to store density probabilities
and to compute integrals therefore, when implementing this algorithm we will unavoidably run
into the problem of approximating/representing the functions P t

X,i as well as estimating the
multiplication against a multiplicative kernel. Suppose that the xi variables live in [0; 1]10 a
naive approach to store P̂X,i would be to cut [0; 1]10 into little hypercubes of size ε. Already for
ε = 0.1 this means that we will need to store 1010 numbers to represent one density probability
P̂X,i, which is way to much if we want to actually use this algorithm.

In this subsection we will focus our attention on an approximation method that will help us
understand what is the rank of the problem. In the previous case where f(xi, xj) = x>i xj a
great number of simpli�cations could be made so that at each step of the algorithm at worst
O (r2N) numbers needed to be stored to represent the state of the algorithm. We could make
such a simpli�cation because x>i xj could be written as

f(x1, x2) = x>i xj =
∑
k=1···r

xi,kxj,k (4.136)

If the function f(x1, x2) could be written in this form

f(x1, x2) =
∑
k=1···r

fk(x1)λkfk(x2) , (4.137)
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Where

|λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0 (4.138)

∀k,
∫

dxf 2
k (x) = 1 (4.139)

then we could do the same simpli�cation and rewrite the AMP algorithm by just storing for
each variables xi the following mean at each time t.

fk(xi) =

∫
dxiP̂

t
X,i(xi)fk(xi) (4.140)

fk(xi)fk′(xi) =

∫
dxiP̂

t
X,i(xi)fk(xi)fk′(xi) (4.141)

By introducing (4.137) into (4.133,4.134). It is easy to see that one can close the equations on
a set of variables. Of course the function f(x1, x2) might not be low-rank and we might need an
in�nity of term in (4.137) to accurately describe f(x1, x2). The rank of the problem will then
be the number of terms in (4.137). Cutting the sum to a �nite number of term would provide
an approximation of f(x1, x2).

4.2.3 Summary of Low-RAMP for the bipartite low-rank estimation

The derivation for the bipartite case UV > is completely analogous. The relaxed BP equations
read

Bt
U,i→ij =

1√
N

∑
1≤l≤M,l 6=j

Silv̂
t
l→il , (4.142)

AtU,i→ij =
1

N

∑
1≤l≤M,l 6=j

[
S2
ilv̂

t
l→ilv̂

t,>
l→il −Ril

(
v̂tl→ilv̂

t,>
l→il + σtv,l→il

)]
, (4.143)

ûti→ij = fuin(AtU,i→ij, B
t
U,i→ij) , (4.144)

σtu,i→ij =
∂fuin
∂B

(AtU,i→ij, B
t
U,i→ij) , (4.145)

Bt
V,j→ij =

1√
N

∑
1≤k≤N,k 6=j

Skjû
t
k→kj , (4.146)

AtV,j→ij =
1

N

∑
1≤k≤N,k 6=i

[
S2
kjû

t
k→kjû

t,>
k→kj −Rkj

(
ûtk→kjû

t,>
k→kj + σtu,k→kj

)]
, (4.147)

v̂t+1
j→ij = f vin(AtV,j→ij, B

t
V,j→ij) , (4.148)

σt+1
v,j→ij =

∂f vin
∂B

(AtV,j→ij, B
t
V,j→ij) . (4.149)

Note that here we broke the symmetry between U and V by choosing an order in the update.
We �rst update estimators of U without increasing the time index and only then estimators of
V while increasing the time index by one.

The Low-RAMP equations with their Onsager terms for the bipartite low-rank matrix estima-
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tion read

Bt
U,i =

1√
N

M∑
l=1

Silv̂
t
l −

(
1

N

M∑
l=1

S2
ilσ

t
v,l

)
ût−1
i , (4.150)

AtU,i =
1

N

M∑
l=1

[
S2
ilv̂

t
l v̂
t,>
l −Ril

(
v̂tl v̂

t,>
l + σtv,l

)]
, (4.151)

ûti = fuin(AtU,i, B
t
U,i) , (4.152)

σtu,i =

(
∂fuin
∂B

)
(AtU,i, B

t
U,i) , (4.153)

Bt
V,j =

1√
N

N∑
k=1

Skjû
t
k −

(
1

N

N∑
k=1

S2
kjσ

t
u,k

)
v̂tj , (4.154)

AtV,j =
1

N

N∑
k=1

[
S2
kjû

t
kû

t,>
k −Rkj

(
ûtkû

t,>
k + σtu,k

)]
, (4.155)

v̂t+1
j = f vin(AtV,j, B

t
V,j) , (4.156)

σt+1
v,j =

(
∂f vin
∂B

)
(AtV,j, B

t
V,j) . (4.157)

Due to independence between messages assumed in the BP algorithm we can simplify the Low-
RAMP algorithm introducing (4.175) and (4.176) also for the bipartite case. As well as take
advantage of the Bayes optimality and the Nishimori conditions or of the particular form of the
conventional Hamiltonian.
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LowRAMP-bipartite(Sij, Hij,∆, r, f
u
in, f

v
in, λ, εcriterium, tmax, û

init, v̂init)

1 Initialize each N , r × 1 vector ûi using ûinit, ∀i, ûi ← ûinit
i .

2 Initialize each M , r × 1 vector v̂j using v̂init, ∀j, v̂j ← v̂init
j .

3 Initialize each M , r × 1 vector ûold
i to 0, ∀i, ûold

i ← 0.
4 Initialize each M , r × 1 vector v̂old

j to 0, ∀j, v̂old
j ← 0.

5 Initialize to zero each N, r × 1 vector BU,i to zero, ∀i, BU,i ← 0.
6 Initialize to zero each M, r × 1 vector BV,j to zero, ∀j, BV,j ← 0.
7 Initialize to zero each N matrix, r × r matrix AU,i with, ∀j, AU,i ← 0.
8 Initialize to zero each N matrix, r × r matrix Aold

U,j with, ∀i, Aold
U,i ← 0.

9 Initialize to zero each M matrix, r × r matrix AV,i with, ∀j, AV,j ← 0.
10 Initialize to zero each N matrix, r × r matrix Aold

V,j with, ∀j, Aold
V,j ← 0.

11 Initialize to zero each N matrix, r × r matrix σU,i with, σU,i ← 0.
12 Initialize to zero each M matrix, r × r matrix σV,j with, σV,j ← 0.
13 while conv ∗ λ > εcriterium and t < tmax :
14 do t← t+ 1 ;
15 Update variables U
16 ∀i, Bnew

U,i ← Update with equation (4.150).
17 ∀i, Anew

U,i ← Update with equation (4.151).
18 ∀i, BU,i ← λBnew

U,i + (1− λ)Bold
U,i ,

19 ∀i, AU,i ← λAnew
U,i + (1− λ)Aold

U,i,
20 ∀i, ûold

i ← ûi, ûi ← fuin(AU,i, BU,i),
21 ∀i, σU,i ← ∂fuin

∂B
(AU,i, BU,i).

22 Update variables V
23 ∀j, sBnew

V,j ← Update with equation (4.154).
24 ∀j, Anew

V,j ← Update with equation (4.155).
25 ∀j, BV,j ← λBnew

V,j + (1− λ)Bold
V,j ,

26 ∀j, AV,j ← λAnew
V,j + (1− λ)Aold

V,j,
27 ∀j, v̂old

j ← ûi, ûi ← f vin(AV,j, BV,j),
28 ∀j, σV,j ← ∂fvin

∂B
(AV,j, BV,j).

29 Compute distance with previous iteration
30 conv← 1

N

∑
‖ûi − ûold

i ‖+ 1
M

∑
‖v̂j − v̂old

j ‖.
31 return signal components x

The initialization and damping factor λ are chosen similarly as for the symmetric case as
discussed in section 4.2.1.

4.2.4 Low-RAMP : Tensor factorization

This AMP algorithm can also be computed in the tensor case for the density probability (2.10).

Once again the variables will be the vectors xi. The factor will designated by their indices
i1 · · · ip and will be the

exp

[
g

(
Yi1···ip ,

√
(p− 1)!

N
p−1
2

∑
k=1···r

xi1kxi2k · · ·xipk

)]
(4.158)
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The factor Yi1···ip are de�ned up to a permutation of the p indices.

We once again de�ne the messages from factors to variables and from factors to variables.

ñik2···kp→i(xi) =
1

Zik2···kp→i

∫
e
g

(
Yik2···kp ,

√
(p−1)!

N
p−1
2

∑
l=1···r

(xi◦xk2◦···◦xkp)l

) ∏
l=2···p

dxlnl→ik2···kp(xl) ,

(4.159)

ni→ii2···ip(xi) =
PX(xi)

Zi→ii2···ip

∏
1≤k2<k3<···<kp≤N

∀l,il 6=i
(k2,··· ,kp) 6=(i2,··· ,ip)

ñik2···kp→i(xi) . (4.160)

We can once again expand equation 4.159 to order 2 in order to express update equations as a
function of only the moments of the message. One gets the AMP equations for this system.

Bt
i→ii2···ip =

√
(p− 1)!

N
p−1
2

∑
1≤k2<k3<···<kp≤N

∀l,kl 6=i
(k2,··· ,kp)6=(i2,··· ,ip)

Si,k2,k3···kp x̂
t
k2→ik2···kp ◦ x̂

t
k3→ik2···kp ◦ · · · ◦ x̂

t
kp→ik2···kp (4.161)

Ati→ii2···ip =
1

Np−1

∑
1≤k2<k3<···<kp≤N

∀l,kl 6=i
(k2,··· ,kp)6=(i2,··· ,ip)

S2
i,k2,k3···kp

(
x̂ti2→ik2···kp

x̂t
>
i2→ik2···kp

)
◦ · · · ◦

(
x̂tip→ik2···kp

x̂t
>
ip→ik2···kp

)

(4.162)

− 1

Np−1

∑
1≤k2<k3<···<kp≤N

∀l,kl 6=i
(k2,··· ,kp)6=(i2,··· ,ip)

Ri,k2,k3···kp
(
x̂i2→ik2···kp x̂

>
i2→ik2···kp

+σi2→ik2···kp

)
◦ · · · ◦

(
x̂ip→ik2···kp x̂

>
ip→ik2···kp

+σip→ik2···kp

)
,

x̂t+1
i→ii2···ip = fin(Ati→ii2···ip , B

t
i→ii2···ip) , (4.163)

σt+1
i→ii2···ip = ∂Bfin(Ati→ii2···ip , B

t
i→ii2···ip) , (4.164)

The ◦ notation is the Hadamard product which multiplies vector and matrices elements by
elements. Once again these equations can be expressed and closed on the marginals of the
equations.

One gets
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Bt
i =

√
(p− 1)!

N
p−1
2

∑
1≤k2<k3<···<kp≤N

∀l,kl 6=i

Si,k2,k3···kp x̂
t
k2 ◦ x̂

t
k3 ◦ · · · ◦ x̂

t
kp

− (p− 1)!

Np−1

∑
1≤k2≤N

1≤k3<···<kp≤N
∀l,kl 6=i

S2
i,k2,k3···kp

[
σtk2 ◦

(
x̂tk3 x̂

t−1>

k3

)
◦ · · · ◦

(
x̂tkp x̂

t−1>

kp

)]
x̂t−1
i (4.165)

Ati =
(p− 1)!

Np−1

∑
1≤k2<k3<···<kp≤N

∀l,il 6=i

S2
i,k2,k3···kp

(
x̂tk2 x̂

t>
k2

)
◦ · · · ◦

(
x̂tkp x̂

t>
kp

)
(4.166)

− (p− 1)!

Np−1

∑
1≤k2<k3<···<kp≤N

∀l,kl 6=i

Ri,k2,k3···kp
(
x̂tk2

x̂t
>
k2

+σtk2

)
◦ · · · ◦

(
x̂tkp x̂

t>
kp

+σtkp

)
,

x̂t+1
i = fin(Ati, B

t
i) , (4.167)

σt+1
i = ∂Bfin(Ati, B

t
i) , (4.168)

One can use the self averaging in the large N limit to further simplify these equations.

Bt
i =

√
(p− 1)!

N
p−1
2

∑
i2<k3<···<kp

Si,k2,k3···kpx̂
t
k2
◦ x̂tk3 ◦ · · · ◦ x̂

t
kp

−(p− 1)

∆̃

[(
1

N

∑
1≤k≤N

σtk

)
◦

(
1

N

∑
1≤k≤N

x̂tkx̂
t−1>

k

)◦(p−2) ]
x̂t−1
i , (4.169)

At =
1

∆̃

(
1

N

∑
1≤k≤N

x̂tkx̂
t
k

)◦(p−1)

−R

(
1

N

∑
1≤k≤N

x̂tkx̂
t>

k + σtk

)◦(p−1)

, (4.170)

x̂t+1
i = fin(At, Bt

i) , (4.171)
σt+1
i = ∂Bfin(At, Bt

i) , (4.172)

Advantage of self-averaging

We can further simplify these equations by noticing that in all the expressions where S2
ij appears

we can replace it by its mean without changing the leading order of the quantities. This follows
from the assumption made in the BP equations, that states that the messages incoming to
a node are independent conditionally on the value of the node. Consequently the sums in
eqs. (4.90-4.91) are sum of O(N) independent variables and can hence in the leading order be
replaced by their means.
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This allows us to write the Low-RAMP equations (4.99-4.100) in an even simpler form

Bt
X,i =

1√
N

N∑
k=1

Skix̂
t
k −

(
1

N∆̃

N∑
k=1

σtx,k

)
x̂t−1
i , (4.173)

AtX =
1

N∆̃

N∑
k=1

x̂tkx̂
t,>
k −R

1

N

N∑
k=1

(
x̂tkx̂

t,>
k + σtx,k

)
, (4.174)

where we de�ned

1

∆̃
≡ 2

N2

∑
1≤i<j≤N

S2
ij , (4.175)

R ≡ 2

N2

∑
1≤i<j≤N

Rij . (4.176)

Whereas ∆̃ is always positive, R can be positive or negative. Together with eqs. (4.96-4.97)
the above two expressions are a closed set of equations. Note in particular that in (4.174) the
dependence on index i disappeared in the leading order.

Bayes-optimal case

In the Bayes-optimal inference case we derived expression (4.14). Putting it together with the
de�nition of the matrix Rij in eq. (4.19) and realizing that the average over sites i, j and the
average over P (Y |w) act the same way we get that for R as de�ned in (4.176) we have R = 0.
This property belongs to the class of properties called the Nishimori conditions. In the Bayes
optimal case the expression for AtX simpli�ed further into

AtX =
1

N∆

N∑
k=1

x̂tkx̂
t,>
k , (4.177)

where we used the Bayes-optimality once more to realize that ∆̃ = ∆ as de�ned in eq. (4.15).
The convenient property of the Bayes-optimality is that the quantity AtX now has to be non-
negative.

4.2.5 Bethe Free Energy

We de�ne the free energy of a given probability measure as the logarithm of its normalization
(in physics it is usually the negative logarithm, but in this thesis we adopt the de�nition without
the minus sign). Notably for the symmetric vector-spin glass model (2.6) we de�ne

ΦXX>(Y ) = log (ZX(Y ))−
∑

1≤i<j≤N
g(Yij, 0) , (4.178)

where ZX(Y ) is the normalization, i.e. the partition function, in (2.6). We subtract the constant
term on the right hand side for convenience. For the bipartite vector-spin glass model (2.7)
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analogously
ΦUV >(Y ) = log (ZUV (Y ))−

∑
1≤i<N,1≤j≤M

g(Yij, 0) . (4.179)

We remove the constant term g(Yij, 0) so that the Free energy ΦXX> and ΦUV > will be O(N)
and self averaging in the large N limit. The exact free energies are intractable to compute,
therefore we use approximations equivalent to those used for derivation of the Low-RAMP
algorithm to derive the so-called Bethe free energy. Under the assumption of replica symmetry
this free energy is exact in the leading order in N and with high probability over the ensemble
of instances. To derive the Bethe free energy we use the Plefka expansion, later extended by
Georges and Yedidia [Ple82, GY91]. The derivation is presented in the section 3.3.

The Bethe free energy for the symmetric vector-spin glass case, XX>, is

ΦBethe,XX> = max
{AX,i},{BX,i}

ΦBethe,XX>({AX,i}, {BX,i}) (4.180)

ΦBethe,XX>({AX,i}, {BX,i}) =
∑

1≤i≤N
log(Zx(AX,i, BX,i))−B>X,ix̂i +

1

2
Tr
[
AX,i(x̂ix̂

>
i + σx,i)

]
+

1

2

∑
1≤i,j≤N

[
1√
N
Sij x̂

>
i x̂j +

Rij
2N

Tr
[
(x̂ix̂

>
i + σx,i)(x̂j x̂

>
j + σx,j)

]

−
S2
ij

2N
Tr
[
x̂ix̂
>
i x̂j x̂

>
j

]
− 1

N
S2
ijTr [σx,iσx,j ]

]
, (4.181)

where x̂i = fxin(AX,i, BX,i) and σx,i = ∂Bf
x
in(AX,i, BX,i) are considered as explicit functions of

AX,i and BX,i, where the function fxin depends on the prior probability distribution PX via
eq. (4.86).

For the bipartite vector-spin glass case, UV >, the Bethe free energy is

ΦBethe,UV > = max
{AU,i},{BU,i},{AV,j},{BV,j}

ΦBethe,UV >({AU,i}, {BU,i}, {AV,j}, {BV,j}) , (4.182)

ΦBethe,UV >({AU,i}, {BU,i}, {AV,j}, {BV,j}) =∑
1≤i≤N

log(Zu(AU,i, BU,i))−BU,i
>ûi +

1

2
Tr
[
AU,i(ûiû

>
i + σu,i)

]
+
∑

1≤j≤M
log(Zv(AV,j, BV,j))−BV,j

>v̂j +
1

2
Tr
[
AV,j(v̂j v̂

>
j + σv,j)

]
+

∑
1≤i≤N,1≤j≤M

[
1√
N
Sijû

>
i v̂j +

1

2N
RijTr

[
(ûiû

>
i + σu,i)(v̂j v̂

>
j + σv,j)

]
−
S2
ijTr

(
ûiû
>
i v̂j v̂

>
j

)
2N

− 1

N
S2
ijTr [σu,iσv,j]

]
, (4.183)

where the ûi = fuin(AU,i, BU,i), v̂j = f vin(AV,j, BV,j) and the σu,i = ∂Bf
u
in(AU,i, BU,i), σv,j =

∂Bf
v
in(AV,j, BV,j), are again seen as a function of variables A, and B. Note that �xed points
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of the Low-RAMP algorithm are stationary points of the Bethe free energy as can be checked
explicitly by taking the derivatives of the formulas.

The main usage of the free energy is when there exist multiple �xed points of the Low-RAMP
equations then the one that corresponds to the best achievable mean squared error is the one
for which the free energy is the largest. Another way to use the free energy is in order to help
the convergence of the Low-RAMP equations, the adaptive damping is used [RSR+13, VSR+15]
and relies on the knowledge of the above expression for the Bethe free energy.

To conclude, we recall that Low-RAMP is distributed in Matlab and Julia at
http://krzakala.github.io/LowRAMP/, in a version that include the use of the Bethe free
energy as a guide to increase convergence, as in [VSR+15].

Conventional Hamiltonian : SK model

Another case that is worth specifying is the conventional Hamiltonian where g is given by
(4.22). One gets

AtX = −R 1

N

N∑
k=1

σtx,k . (4.184)

It is slightly counter-intuitive that this variance-like term is negative, but it is always used only
in the function fxin de�ned in (4.86) where it gets multiplied by the PX(xi) therefore if PX is
decaying fast enough or has a bounded support, the corresponding integrals exist and are �nite.

This is a convenient point where we can make the link between the Low-RAMP algorithm and
the TAP equations for the SK model. For the Ising spins (4.53) the function fxin becomes

fxin(A,B) = tanh (βh+B) ,
∂fxin(A,B)

∂B
= 1− tanh2 (βh+B) . (4.185)

Notice the independence on the parameter A. The conventional Hamiltonian of the SK model
corresponds to g(Y,w) = βY w so that S = βY . Which gives us for the update of the parameter
B eq. (4.99)

Bt
X,i =

β√
N

N∑
k=1

Ykix̂
t
k − x̂t−1

i

β2

N

N∑
k=1

Y 2
ki(1− x̂

2,t
k ) . (4.186)

Together with (4.185) we get the well known TAP equations [TAP77]

x̂t+1
i = tanh

[
βh+

β√
N

N∑
k=1

Ykix̂
t
k − x̂t−1

i

β2

N

N∑
k=1

Y 2
ki(1− x̂

2,t
k )

]
. (4.187)

4.3 State Evolution

An appealing property of the Low-RAMP algorithm is that its large-system-size behavior can
be analyzed via the so called state evolution (or single letter characterization in information
theory). In the statistical physics context the state evolution is the cavity method [MPV87]
thanks to which one can derive the replica symmetric solution from the TAP equations, taking

http://krzakala.github.io/LowRAMP/
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properly into account the distribution of the disorder (random or quenched). Mathematically,
at least in the Bayes optimal setting, the state evolution for the present systems is a rigorous
statement about the asymptotic behavior of the Low-RAMP algorithm [JM13].

Here we present derivation of the state evolution for the symmetric matrix factorization and
state it for the bipartite case. The main idea of state evolution is to describe the current state
of the algorithm using a small number of variables � called order parameters in physics. We
then compute how the order parameters evolve as the number of iterations increases.

4.3.1 Derivation for the symmetric low-rank estimation

To derive the state evolution we assume that all updates are done in parallel with no damping
(the state evolution does depend on the update strategy). A distinction will be made between
r the rank assumed in the posterior distribution and r0 the true rank of the planted solution.
Let us introduce the order parameters that will be of relevance here

M t
x =

1

N

∑
1≤i≤N

x̂tix
0,>
i ∈ Rr×r0 , (4.188)

Qt
x =

1

N

∑
1≤i≤N

x̂tix̂
t,>
i ∈ Rr×r, (4.189)

Σt
x =

1

N

∑
1≤i≤N

σtx,i ∈ Rr×r , (4.190)

where M t
x is a matrix of size r × r0, while Qt

x and Σt
x are r × r matrices. The interpretation of

these order parameters is the following
� M t

x measures how much the current estimate of the mean is correlated with the planted
solution x0

i . Physicist would call this the magnetization of the system.
� Qt

x is called the self-overlap.
� Σt

x is the mean variance of variables.
In this section we will not assume the Bayes optimal setting, and distinguish between the
prior PX(xi) and the distribution PX0(x

0
i ) from which the planted con�guration x0

i was drawn.
Similarly, we will assume g(Y,w) in the posterior distribution, but the data matrix Y was created
from the planted con�guration via Pout(Y |w). In general PX 6= PX0 and g(Y,w) 6= logPout(Y |w).

We do assume, however, that (4.13) holds for our choice of g(Y,w) and Pout(Y |w) even when
g(Y,w) 6= logPout(Y |w). This will indeed hold in all examples presented in this thesis. Using
self-averaging arguments such as in Sec. 4.2.4 the averages over the quenched randomness
Pout(Y |w) and over elements (ij) are interchangeable. Eq. (4.13) then in practice means that,
in order for the state evolution as derived in this section to be valid, the Fisher score matrix S
should have an empirical mean of elements of order o

(
1/
√
N
)
. If this assumption is not met,

i.e. we have E(S) = a/
√
N with a� 1, it means that the matrix S/

√
N will have an eigenvalue

of order a, while the eigenvalues corresponding to the planted signal will be O(1). This means
that for a� 1 the eigenvalues corresponding to the signal will be subdominant and this would
require additional terms in the state evolution.

We know that x̂t+1
i = fin(AtX,i, B

t
X,i) and σt+1

x,i = ∂fin
∂B

(AtX,i, B
t
X,i), eqs. (4.96-4.97). Therefore

to compute the updated order parameters in the large N limit one needs to compute the
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probability distribution of Bt
X,i and A

t
X,i

P (Bt
X,i|x0

i , Q
t
x,M

t
x,Σ

t
x) , (4.191)

P (AtX,i|x0
i , Q

t
x,M

t
x,Σ

t
x) . (4.192)

Quantities Bt
X,i and AtX,i are de�ned by eq. (4.94) and (4.95). Notably, by the assumptions

of belief propagation the terms in the sums on the right hand side of eqs. (4.94) and (4.95)
are independent. By the central limit theorem Bt

X,i and A
t
X,i then behave as Gaussian random

variables.

Therefore all one needs to compute is their mean and variance with respect to the output
channel. Using eq. (4.94) we get

E(Bt
X,i) =

1√
N

∑
1≤k≤N

∫
dYkiPout

(
Yki

∣∣∣∣∣x0,>
k x0

i√
N

)(
∂g

∂w

)
Yki,0

x̂tk→ki . (4.193)

Let us now expand Pout around 0

E(Bt
X,i) =

1√
N

∑
1≤k≤N

∫
dYkiPout (Yki|0)

[
1 +

x0,>
k x0

i√
N

(
∂ logPout(Yki|w)

∂w

)
Yki,0

+O

(
1

N

)](
∂g

∂w

)
Yki,0

x̂tk→ki . (4.194)

Using the above stated assumption of validity of eq. (4.13) we can simplify into

E(Bt
X,i) =

1

N∆̂

∑
1≤k≤N

x̂tkx
0,>
k x0

i =
M t

x

∆̂
x0
i , (4.195)

where we used the de�nition (4.188) of the order parameter M t and where we de�ned ∆̂ via

1

∆̂
≡ EPout

[(
∂g(Y,w)

∂w

)
Y,0

(
∂ log(Pout(Y |w))

∂w

)
Y,0

]
. (4.196)

Let us now compute the variance of Bt
X,i. Using the assumption of belief propagation that

messages incoming to a variable are independent in the leading order we get that the covariance
of Bt

X,i is the sum of all the covariance matrices of the terms in the sum de�ning Bt
X,i.

Cov(Bt
X,i) =

1

N

∑
1≤i≤N

Cov(Skix̂
t
k→ki) . (4.197)

Doing a similar computation as for the mean one gets in the leading order

Cov(Bt
X,i) =

1

N∆̃

∑
1≤i≤N

x̂tk→kix̂
t,>
k→ki =

Qt
x

∆̃
, (4.198)
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where ∆̃ was introduced in (4.175) and thanks to self-averaging it also equals

1

∆̃
= EPout(Y |w)

[(
∂g

∂w

)2

Y,0

]
. (4.199)

Here one did not even have to expand Pout to second order, the �rst order was enough to get
the leading order of the variance.

The distribution of the AtX,i now needs to be computed. Using the de�nition of AtX,i eq. (4.95)
and the self-averaging of section 4.2.4 we obtain directly that

E(AtX,i) =
Qt
x

∆̃
−R

(
Qt
x + Σt

x

)
, (4.200)

where R is de�ned in (4.176) and also equals

R = EPout(Y |w)

[(
∂g

∂w

)2

Y,0

+

(
∂2g

∂w2

)
Y,0

]
. (4.201)

Here things are simpler then for Bt
X,i since A

t
X,i concentrates around its mean, its variance is

of smaller order.

Overall, using (4.96) and (4.97) one gets for the state evolution equations

M t+1
x = Ex0,W

[
fxin

(
At, M̂ t

xx0 +

√
Q̂t
xW

)
x>0

]
, (4.202)

Qt+1
x = Ex0,W

[
fxin

(
At, M̂ t

xx0 +

√
Q̂t
xW

)
fxin(· · · , · · · )>

]
, (4.203)

Σt+1
x = Ex0,W

[
∂fxin
∂B

(
At, M̂ t

xx0 +

√
Q̂t
xW

)]
, (4.204)

Where ,

At =
Qt
x

∆̃
−R(Qt

x + Σt
x) (4.205)

M̂ t
x =

M t
x

∆̂
(4.206)

Q̂t
x =

M t
x

∆̂
(4.207)

where W and x0 are two independent random variables. W is a Gaussian noise of mean 0
and covariance matrix Ir and x0 is a random variable of probability distribution PX0 . The
thresholding function fxin is de�ned in eq. (4.86).

The interpretation of this formula is simple. Because of the dense nature of the interactions
the messages received by a variable are Gaussians messages parameterized by two variables Ai
and Bi (The A in AMP means that the messages are Gaussian). These variables Bi and Ai are
going to be the sum of a large number of random variables. A sum of a large number of random
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variables tends to be distributed according to a Gaussian. The idea of State Evolution equations
is to characterize how these messages are distributed using only a few order parameters of the
system.

For every system that will be treated using a replica symmetric ansatz in that thesis the formula
(4.202,4.203,4.204) will apply (except for the bipartite UV > case that will be slightly modi�ed).
The tensor case will just provide use with di�erent update equations for the matrices At,M̂ t

x

and Q̂t
x.

This also allows us to know that at a �xed point the marginals xi will be distributed according
to

x̂i
t=+∞ = fxin

(
At, M̂ t

xx0 +

√
Q̂t
xW

)
(4.208)

or (4.209)

x̂i
t=+∞ = fxin

(
Qx

∆̃
−R(Qx + Σx),

Mx

∆̂
x0 +

√
Qx

∆̃
W

)
, (4.210)

where W is a Gaussian variable and mean 0 and covariance Ir and x0 is taken with respect to
PX0 . Let us state that the large N limit of the MSEX =

∑
i=1...N

||x̂i − x0
i ||22/N is computed from

the order parameters as
MSEX = Tr

[
〈x0x

>
0 〉 − 2Mx +Qx

]
, (4.211)

where 〈x0x
>
0 〉 = Ex0(x0x

>
0 ) is the average with respect to the distribution PX0 .

Note that the state evolution equations only depend on the assumed and truth noise channels
through three variables ∆̃, ∆̂ and R. In the Bayes-optimal case these equations will simplify
even further and the noise channel will be described through one parameter ∆, the Fisher
information, this is derived in section 4.3.6. This universality with respect to the output channel
has been observed elsewhere in a special case of the present problem [DM15] (see e.g. their
remark 2.5) in the study of detection of a small hidden clique with approximate message passing.

Finally one additional assumption made in this whole section is that no Replica Symmetry
Breaking (RSB) appears. It is known that RSB does appear for some regimes of parameters
out of the equilibrium Bayes-optimal case. We let the investigation of RSB in the context of
low-rank matrix estimation for future work, in the examples analyzed in this thesis we will
restrict ourselves to the Bayes-optimal case where RSB at equilibrium cannot happen [ZK16].

4.3.2 Summary for the graphon case

State evolution can also be written similarly for the wij = f(xi, xj) case. The order parameters
one has to keep track of are now 3 multiplicative kernels M t

x(x1, x2), Qt
x(x1, x2) and Σt

x(x1, x2)
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de�ned by

M t
x(x1, x2) =

1

N

∑
1≤i≤N

P̂ t
X,i(x1)δ(x2 − x0

i ), Qt
x(x1, x2) =

1

N

∑
1≤i≤N

P̂ t
X,i(x1)P̂ t

X,i(x2), (4.212)

Σt
x(x1, x2) +Qt

x(x1, x2) =
1

N

∑
1≤i≤N

P̂ t
X,i(x1)δ(x1 − x2) , (4.213)

These order parameters are then updated according to the following equations

M t+1
x (x1, x2) = Ex0,W

[
1

Zx(Bx0,W )
PX(x1) exp(Bx0,W (x1))δ(x2 − x0)

]
,

(4.214)

Qt+1
x (x1, x2) = Ex0,W

[
PX(x1)PX(x2) exp(Bx0,W (x1) +Bx0,W (x2))

Zx(Bx0,W )2

]
,

(4.215)

Σt+1
x (x1, x2) +Qt+1

x (x1, x2) = Ex0,W
[

1

Zx(Bx0,W )
PX(x1) exp(Bx0,W (x1))δ(x1 − x2)

]
,

(4.216)

where

Bx0,W (x) =
[f ∗M ∗ f 0] (x, x0)

∆̂
+ f ∗W − 1

2̃∆
[f ∗Qx ∗ f ] (x, x) +

R

2

[
f ∗ (Σt

x +Qt
x) ∗ f

]
(x, x)

(4.217)

And where W (x) is a Gaussian process of mean 0 and with a covariance given by

W (x1)W (x2) =
Qt
x(x1, x2)

∆̃
(4.218)

x0 is sampled from P 0
X . f

0 is the function w = f 0(x1, x2) with which the data were created. Es-
timating (4.214,4.215,4.216) is a hard task in itself. Integrating the variable x0 and variable in x
are the easy part of the computation, since these can be approximated using numerical approxi-
mations. Integrating against the Gaussian process W (x) is the hard part of the computation
since W (x) can be an in�nite dimension variable. The only way I see to reliably compute this
integral is through a Monte-Carlo simulation. To do this one �rst need to compute a low-rank
approximation of Qt

x.

Qt
x(x1, x2) ≈

∑
k=1···h

Wk(x1)λkWk(x2) (4.219)

λ1 ≥ λ2 ≥ · · · ≥λh > 0 (4.220)∫
dxW 2

k (x) = 1 (4.221)
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A sample of W is then given by

W (x) =
∑
k=1···h

εk
√
λkWk(x) (4.222)

where

εk ≈ N (0, 1) (4.223)

Of course we would actually need a in�nite number of terms h to describe Qt
x and sample

W . In practice we will have to stop at a high enough value of number of term to describe
(4.214,4.215,4.216) accurately.

4.3.3 Summary for the bipartite low-rank matrix factorization

State evolution can also be written similarly for the UV > case. In that case there are six order
parameters

M t
u =

1

N

∑
1≤i≤N

utiu
0,>
i , Qt

u =
1

N

∑
1≤i≤N

utiu
t,>
i , Σt

u =
1

N

∑
1≤i≤N

σtu,i , (4.224)

M t
v =

1

M

∑
1≤j≤M

vtjv
0,>
j , Qt

v =
1

M

∑
1≤j≤M

vtjv
t,>
j , Σt

v =
1

M

∑
1≤j≤M

σtv,j . (4.225)

These order parameters are updated according to the following state evolution equations

M t
u = Eu0,W

[
fuin

(
αQt

v

∆̃
− αR(Qt

v + Σt
v), α

M t
v

∆̂
u0 +

√
αQt

v

∆̃
W

)
u>0

]
, (4.226)

Qt
u = Eu0,W

[
fuin

(
α
Qt
v

∆̃
− αR(Qv + Σv), α

M t
v

∆̂
u0 +

√
αQt

v

∆̃
Wv

)
fuin(· · · , · · · )>

]
, (4.227)

Σt
u = Eu0,W

[
∂fuin
∂B

(
α
Qt
v

∆̃
− αR(Qt

v + Σt
v), α

M t
v

∆̂
u0 +

√
αQt

v

∆̃
W

)]
, (4.228)

M t+1
v = Ev0,W

[
f vin

(
Qt
u

∆̃
−R(Qt

u + Σt
u),

M t
u

∆̂
v0 +

√
Qt
u

∆̃
W

)
v>0

]
, (4.229)

Qt+1
v = Ev0,W

[
f vin

(
Qt
u

∆̃
−R(Qt

u + Σt
u),

M t
u

∆̂
v0 +

√
Qt
u

∆̃
W

)
f vin(· · · , · · · )>

]
, (4.230)

Σt+1
v = Ev0,W

[
∂f vin
∂B

(
Qt
u

∆̃
−R(Qt

u + Σt
u),

M t
u

∆̂
v0 +

√
Qt
u

∆̃
W

)]
. (4.231)

In these equationsW , u0 and v0 are independent random variables,W is r dimensional Gaussian
variable of mean ~0 and covariance matrix Ir, u0 and v0 are sampled from density probability
PU0 and PV0 respectively.

The large size limit of the MSEU =
∑

i=1...N

||ûi − u0
i ||22/N and MSEV =

∑
j=1...M

||v̂j − v0
j ||22/M can
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be computed from the order parameters as

MSEU = Tr
[
〈u0u

>
0 〉 − 2Mu +Qu

]
, (4.232)

MSEV = Tr
[
〈v0v

>
0 〉 − 2Mv +Qv

]
, (4.233)

with 〈u0u
>
0 〉 = Eu0(u0u

>
0 ) and 〈v0v

>
0 〉 = Ev0(v0v

>
0 ).

4.3.4 Summary for the tensor case

State evolution can also be written similarly for the tensor case. In that case there are six order
parameters are given by (4.1884.1894.190)

These order parameters are updated according to the following state evolution equations

M t+1
x = Ex0,W

[
fxin

(
Q̂t
x − Σ̂t

x, M̂
t
xx0 +

√
Q̂t
xW

)
x>0

]
, (4.234)

Qt+1
x = Ex0,W

[
fxin

(
Q̂t
x − Σ̂t

x, M̂
t
xx0 +

√
Q̂t
xW

)
fxin(· · · , · · · )>

]
, (4.235)

Σt+1
x = Ex0,W

[
∂fxin
∂B

(
Q̂t
x − Σ̂t

x, M̂
t
xx0 +

√
Q̂t
xW

)]
, (4.236)

Where

M̂ t
x =

M t
x
◦p−1

∆̂
(4.237)

Q̂t
x =

Qt
x
◦p−1

∆̃
(4.238)

Σ̂t
x = R(Qt

x + Σt
x)
◦p−1

(4.239)

In these equations W and x0 are independent random variables, W is r dimensional Gaussian
variable of mean ~0 and covariance matrix Ir, X0 is sampled from density probability PX0 .

The large size limit of the MSEX =
∑

i=1...N

||x̂i − x0
i ||22/N is once again given by (4.211).
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4.3.5 Replica Free Energy

State evolution can also be used to derive large size limit of the Bethe free energy (4.181) and
(4.183) de�ned as

ΦRS,XX> ≡ lim
N→+∞

1

N

〈
log(ZX(Y ))−

∑
1≤i<j≤N

g(Yij, 0)

〉
, (4.240)

ΦRS,UV > ≡ lim
N→+∞

1

N

〈
log(ZUV (Y ))−

∑
1≤i≤N,1≤j≤M

g(Yij, 0)

〉
, (4.241)

ΦRS,Xp ≡ lim
N→+∞

1

N

〈
log(ZXp(Y ))−

∑
1≤i1<i2<···<ip≤N

g(Yi1i2···ip , 0)

〉
, (4.242)

where the average is taken with respect to density probability (2.6), (2.7) or (2.10) the ZX(Y ),
ZUV (Y ) and ZXp(Y ) are the corresponding partition functions. We subtract the constant
g(Yij, 0) for convenience in order to get a quantity that is self averaging in the large N li-
mit.

Alternatively to the state evolution, the average free energy can be derived using the replica
method as we summarize in Appendix 4.6.2. The resulting replica free energy for the symmetric
XX> case is (assuming the replica symmetric ansatz to hold)

XX> symmetric case

ΦRS,XX> = max

(
φRS,XX>(Mx, Qx,Σx),

∂φRS

∂Mx

=
∂φRS

∂Qx

=
∂φRS

∂Σx

= 0

}
, (4.243)

where

φRS,XX>(Mx, Qx,Σx) =
Tr(QxQ

>
x )

4∆̃
− Tr(MxM

>
x )

2∆̂
− R

2
Tr((Qx + Σx)(Qx + Σx)

>)

+ EW,x0

[
log

(
Zx

(
Qx

∆̃
−R(Qx + Σx),

Mx

∆̂
x0 +

√
Qx

∆̃
W

))]
, (4.244)

where the function Zx(A,B) is de�ned as the normalization in eq. (4.87).

XX> graphon symmetric case wij = f(xi, xj)

ΦRS,Graphon = max

(
φRS,Graphon(Mx, Qx,Σx),

∂φRS

∂Mx

=
∂φRS

∂Qx

=
∂φRS

∂Σx

= 0

}
, (4.245)
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where

φRS,Graphon(Mx, Qx,Σx) =
Tr(f ∗Qx ∗Q>x )

4∆̃
− Tr(f ∗Mx ∗ f0 ∗M>

x )

2∆̂

s− R

2
Tr(f ∗ (Qx + Σx) ∗ f ∗ (Qx + Σx)

>) + EW,x0 [logZx (Bx0,W )] , (4.246)

Where Bx0,W is de�ned at (4.217). The function Zx(B) is de�ned as the normalization in
eq. (4.116).

The trace of an multiplicative kernel is here de�ned as

Tr (C) =

∫
dxC(x, x) (4.247)

UV> asymmetric case For the bipartite UV > case we have analogously for the replica free
energy

ΦRS,UV > = max

{
φRS,UV >(Mu, Qu,Σu,Mv, Qv,Σv)

,
∂φRS

∂Mu

=
∂φRS

∂Qu

=
∂φRS

∂Σu

=
∂φRS

∂Mv

=
∂φRS

∂Qv

=
∂φRS

∂Σv

= 0

}
, (4.248)

where

φRS,UV >(Mu, Qu,Σu,Mv, Qv,Σv) =
αTr(QvQ

>
u )

2∆̃
− αTr(MvM

>
u )

∆̂
− αRTr((Qv + Σv)(Qu + Σu)>)

+ EW,u0

[
log

(
Zu

(
αQv

∆̃
− αR(Qv + Σv),

αMv

∆̂
u0 +W

√
αQv

∆̃

))]

+ αEW,v0

[
log

(
Zv

(
Qu

∆̃
−R(Qu + Σu),

Mu

∆̂
v0 +

√
Qu

∆̃
W

))]
, (4.249)

with the function Zu(A,B) and Zv(A,B) also de�ned as the normalization in eq. (4.87).

X◦
p
tensor case

ΦRS,Xp = max

(
φRS,Xp(Mx, Qx,Σx),

∂φRS

∂Mx

=
∂φRS

∂Qx

=
∂φRS

∂Σx

= 0

}
, (4.250)

φRS,Xp(Mx, Qx,Σx) = (p− 1)
Sum(Q◦

p

x )

2p∆̃
− (p− 1)

Sum(M◦p
x )

p∆̂
− (p− 1)

R

2p
Sum((Qx + Σx)

◦p)

+ EW,x0

log

Zx
Q◦p−1

x

∆̃
−R(Qx + Σx)

◦p−1

,
M◦p−1

x

∆̂
x0 +

√
Q◦p−1

x

∆̃
W

 , (4.251)

Where the Sum means doing the sum over all the coordinate of a vector or a matrix.
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It is worth noting that there is a close link between the expression of the replica free energy and
the state evolution equations. Namely �xed points of the state evolution equations are stationary
points of the replica free energy and vice versa. Therefore, by looking for a stationary point of
these equations one �nds back the state evolution equations (4.202-4.204,4.226-4.231).

4.3.6 Simpli�cation of the SE equations

Simpli�cation in the Bayes optimal setting

The state evolution equations simplify considerably when we restrict ourselves to the Bayes-
optimal setting de�ned in Sec. 4.1.1 by eq. (2.8).

From the de�nitions of ∆̂ in eq. (4.196) and ∆̃ in eq. (4.175) and using the identity (2.8) de�ning
the Bayes optimal setting we obtain

1

∆̂
=

1

∆̃
=

1

∆
= EPout(Y,w=0)

[(
∂g

∂w

)2

Y,w=0

]
, (4.252)

where ∆ is the Fisher information of the output channel de�ned in eq. (4.15). Note for instance
that for the Gaussian input channel (4.21), ∆ is simply the variance of the Gaussian noise.
The bigger the ∆ the harder the inference problem becomes. The smaller the ∆ the easier the
inference is.

Further consequence of having Bayes optimality (2.8) is that R = E(Rij) = 0 as proven in
equation (4.14). This simpli�es greatly the state evolution equations into

M t+1
x = Ex0,W

[
fxin

(
Qt
x

∆
,
M t

x

∆
x0 +

√
Qt
x

∆
W

)
x>0

]
, (4.253)

Qt+1
x = Ex0,W

[
fxin

(
Qt
x

∆
,
M t

x

∆
x0 +

√
Qt
x

∆
W

)
fxin(· · · , · · · )>

]
, (4.254)

where x0 and W are as before independent random variables, W is Gaussian of mean 0 and
covariance matrix Ir, and x0 has probability distribution PX0 .

Another property that arises in the Bayes optimal setting (2.8) and follows from the Nishimori
condition (3.18) and the de�nition of the order parameters Mx, Qx and Σt

x in (4.188-4.190) is
that

Qt
x = M t

x = M>
x , Qt

x + Σt
x = Qx + Σx = 〈x0x

>
0 〉 . (4.255)

Enforcing Qt
x = M t

x simpli�es the state evolution equations further so that for the symmetric
matrix factorization one gets

M t+1
x = Ex0,W

[
fxin

(
M t

x

∆
,
M t

x

∆
x0 +

√
M t

x

∆
W

)
x>0

]
, (4.256)

where x0 and W are independent random variables distributed as above. For the rest of the
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article we de�ne the Bayes-optimal state evolution function fSE
PX

for prior PX

M t+1
x = fSE

PX

(
M t

x

∆

)
, (4.257)

Let us comment on the output channel universality as discussed in Sec. 4.1.2. In the Bayes-
optimal setting the channel universality becomes particularly simple and striking. For an arbi-
trary output channel Pout(Y |w) (for which the expansion done in section 4.1.2 is meaningful)
we have the following

� The Low-RAMP algorithm in the Bayes optimal setting depends on the noise channel
only through the Fisher score matrix S as de�ned in eq. (4.18). This is speci�ed in
section (4.2.4).

� The state evolution in the Bayes-optimal setting depends on the output channel through
the Fisher information of the channel ∆ (4.15) as described in section 4.3.6. As a conse-
quence the minimal achievable error, the minimal e�ciently achievable error and all
other quantities that can be obtained from the state evolution depend on the output
channel only trough the Fisher information ∆.

The replica free energy (4.244) in the Bayes-optimal case becomes

φRS,XX>(Mx) = EW,x0

[
log

(
Zx

(
Mx

∆
,
Mx

∆
x0 +

√
Mx

∆
W

))]
− Tr(MxM

>
x )

4∆
. (4.258)

This was �rst derived in [LKZ15a], and proven for a special case in [DAM16], and later in full
generality in [KXZ16, ML16, Mio17b].

For numerical reasons it will often prove useful to compute (4.258) by integrating the derivative
with respect to Mx therefore the following equation will prove useful.

∂φRS,XX>(Mx)

∂Mx

=
1

2∆
(M ′

x −Mx) (4.259)

Where the termM ′
x here means the update ofMx using equation (4.256). To de�ne the gradient

with respect to matrices we use the canonical scalar product between matrices Tr[AB>]. We also
remind that the order parameter Mx used in the state evolution is related to the mean-squared
error as

MSEX = Tr
[
〈x0x

>
0 〉 −Mx

]
, (4.260)

For the bipartite vector spin models, UV > case, the state evolution in the Bayes optimal setting
reads

M t
u = Eu0,W

[
fuin

(
αM t

v

∆
, α
M t

v

∆
u0 +

√
αM t

v

∆
W

)
u>0

]
, (4.261)

M t+1
v = Ev0,W

[
f vin

(
M t

u

∆
,
M t

u

∆
v0 +

√
M t

u

∆
W

)
v>0

]
. (4.262)
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The replica free energy (4.249) in the Bayes optimal setting becomes

φRS,UV>(Mu,Mv) = EW,u0

[
log

(
Zu

(
αMv

∆
,
αMv

∆
u0 +W

√
αMv

∆

))]

+ αEW,v0

[
log

(
Zv

(
Mu

∆
,
Mu

∆
v0 +

√
Mu

∆
W

))]
− αTr(MvM

>
u )

2∆
, (4.263)

where once again Mu = M>
u and Mv = M>

v . The derivative with respect to Mu and Mv are
given by

∂φRS,UV>(Mu,Mv)

∂Mu

=
α

2∆
(M ′

v −Mv) (4.264)

∂φRS,UV>(Mu,Mv)

∂Mv

=
α

2∆
(M ′

u −Mu) (4.265)

Where once againM ′
u andM

′
v refer to the updated value ofMu andMv according to (4.261 and

(4.262 respectively. The global maximum of the free energy is asymptotically the equilibrium
free energy, the value of Mu and Mv at this maximum is related to the MMSE via

MSEU = Tr
[
〈u0u

>
0 〉 −Mu

]
, (4.266)

MSEV = Tr
[
〈v0v

>
0 〉 −Mv

]
. (4.267)

Performance of the Low-RAMP in the limit of large system sizes is given by the �xed point of
the state evolution reached with initialization where both Mu and Mv are close to zero.

For the tensor of order p case the State evolution in the Bayes optimal case is.

M t+1
x = Ex0,W

fxin
M t

x
◦p−1

∆
,
M t

x
◦p−1

∆
x0 +

√
M t

x
◦p−1

∆
W

x>0

 , (4.268)

The Free Energy is then given by

φRS,Xp(Mx) = EW,x0

[
log

(
Zx

(
M◦p−1

x

∆
,
M◦p−1

x

∆̂
x0 +

√
M◦p−1

x

∆
W

))]
− (p− 1)

Sum(M◦p
x )

2p∆
,

(4.269)
The derivative with respect to Mx of (4.269) yields us with

∂φRS,UV>(Mu,Mv)

∂Mu

=
p− 1

2∆
(M ′

x −Mx) ◦M◦p−2

x (4.270)

Where M ′
x is given by (4.268). The MSE is given by (4.260).

Simpli�cation for the conventional Hamiltonian and randomly quenched disorder

Another illustrative example of the state evolution we give in this section is for the conventional
Hamiltonian (4.7) with randomly quenched disorder, as this is the case most commonly consi-
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dered in the existing physics literature. In that case the model (2.6) corresponds to a generic
vectorial spin glass model. To take into account that the disorder is not planted, but random,
we plug into the generic state evolution

Pout(Y,w) =
1√

2πJ2
exp

(
− Y 2

2J2

)
(4.271)

such that Pout(Y,w) does not depend on w, meaning that the disorder Y is chosen independently,
there is no planting. For the conventional Hamiltonian (4.7) and output channel (4.271) we
obtain

R =
1

∆̃
= E

[
Y 2
]

= J2 , (4.272)

1

∆̂
= 0 . (4.273)

The state evolution (4.202) and (4.203) then becomes

M t+1
x = 0 , (4.274)

Qt+1
x = EW

[
fxin

(
−J2Σt

x, J
√
Qt
xW
)
fxin(· · · , · · · )>

]
, (4.275)

Σt+1
x = EW

[
∂fxin
∂B

(
−J2Σt

x, J
√
Qt
xW
)]

. (4.276)

The free energy (4.244) is given by

φRS(Mx, Qx,Σx) = EW,x0
[
log
(
Zx

(
−J2Σx, J

√
QxW

))]
+
J2Tr(QxQ

>
x )

4
− J2

2
Tr((Qx + Σx)(Qx + Σx)

>) . (4.277)

Speci�cally, for the Sherrington-Kirkpatrick model [SK75], where the rank is one and the spins
are Ising eq. (4.53) with ρ = 1/2 the fxin(A,B) is given by tanh(B), the state evolution becomes

M t+1
x = 0 , (4.278)

Qt+1
x = EW

[
tanh

(
J
√
Qt
xW
)2
]
, (4.279)

Σt+1
x = 1−Qt

x . (4.280)

where W is a Gaussian random variables of zero mean and unit variance. With a free energy
(4.244) given by

φRS(Qx) =
J2(1−Qx)

2 − J2

4
+ EW

[
log
(

cosh
(
J
√
QxW

))]
. (4.281)

The reader will notice that these are just the replica symmetric equations of the Sherrington-
Kirkpatrick solution [SK75].
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4.4 General results about low-rank matrix estimation

4.4.1 Analysis of the performance of PCA : (Matrix case)

In this section we analyze the performance of a maximum likelihood algorithm (in the matrix
caseXX> and UV > by estimating the behavior of the (replica symmetric) state evolution in the
limit where the interactions are given by exp(βg(Y,w)) with β → +∞, and the prior does not
contain hard constraints and is independent of β. Note that PCA and related spectral methods
correspond to taking g(Y,w) = −(Y − w)2/2. The presented method allows us to analyze the
property of the generalized spectral method where g(Y,w) can be taken to be any function
including for instance g(Y,w) = −(D(Y )−w)2/2 which would correspond to performing PCA
on an element-wise function D of the matrix Yij, this can be for instance the Fisher score matrix
S.

PCA method for XX> case

Maximum likelihood can be seen within the Bayesian approach as analyzing the following
posterior for β →∞

P (X|Y ) =
1

Z(Y )

∏
1≤i≤N

exp(−‖xi‖2
2/2)√

2π
r

∏
1≤i<j≤N

exp

(
βg

(
Y,
x>i xj√
N

))
. (4.282)

The function g(Y,w) de�nes the parameters ∆̂ (4.196), ∆̃ (4.175), and R (4.176). We want to
analyze the overlap between X̂ and X0 in the limit N → ∞, β → ∞ since then the posterior
will be dominated by the likelihood terms g(Y,w). We put here a prior PX Gaussian to ensure
that Z(Y ) < +∞. We could have chosen any β-independent prior PX(x) as long as the support
of PX(x) is the whole Rr. As β,N → ∞ the details of PX(x) will be washed away. One can
write the state evolution equations (4.202-4.204)

M t+1
x = βΣt+1

x

M t
xΣ0

∆̂
, (4.283)

Qt+1
x = βΣt+1

x

[
M t

xΣ0M
t
x
>

∆̂2
+
Qt
x

∆̃

]
βΣt+1

x , (4.284)

βΣt+1
x =

[
1

β
+Qt

x

(
1

∆̃
−R

)
− Σt

x

(
(β − 1)

∆̃
+R

)]−1

, (4.285)

where Σ0 = 〈x0x
>
0 〉 ∈ Rr×r. We take the limit of β →∞ to get

M t+1
x = Σ′t+1M

t
xΣ0

∆̂
, (4.286)

Qt+1
x = Σ′t+1

x

[
M t

xΣ0M
t
x
>

∆̂2
+
Qt
x

∆̃

]
Σ′t+1
x , (4.287)

Σ′t+1
x =

[
Qt
x

(
1

∆̃
−R

)
− Σ′tx

∆̃

]−1

, (4.288)
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where Σ′t = limβ→+∞ βΣt.

In general, e�ects of replica symmetry breaking have to be taken into account in the analysis
of maximum likelihood. One exception are the spectral methods for which we take g(Y,w) =
(D(Y )− w)2/2, where D is some element-wise function. In that case the maximum likelihood
reduces to computation of the spectrum of the matrix D(Y ). Obtaining the spectrum is a
polynomial problems which is a sign that no replica symmetry breaking is needed to analyze
the performance of the spectral methods on element-wise functions of the matrix Y .

Following the derivation of the state evolution, eq. (4.210), we get that at the �xed point of the
state evolution the spectral estimator x̂i is distributed according to

x̂i = Σ′x

[
Mx

∆̂
x0
i +

√
Qx

∆̃
Wi

]
, (4.289)

where x0
i is the planted signal or the rank-one perturbation, and the Wi are independent (in

the leading order in N) Gaussian variables of mean 0 and covariance matrix Ir.

MSE achieved by the spectral methods

When one uses spectral methods to solve a low rank matrix estimation problem one computes
the r leading eigenvalues of the corresponding matrix and then one is left with the problem of
what to do with the eigenvectors. Depending on what problem one tries to solve one can for
instance cluster the eigenvectors using the k-means algorithm. A more systematic way is the
following : We know by (4.289) that the elements x̂i of the eigenvectors can be written as a
random variable distributed as

x̂i = M̂x0
i +

√
Q̂Wi , (4.290)

with M̂ = Σ′xMx/∆̂, and Q̂ = Qx(Σ
′
x)

2/∆̃, where Mx, Qx and Σ′x are �xed points of the
state evolution equations (4.286-4.288). This formula allows us to approach the problem as a
low-dimensional Bayesian denoising problem. Writing

P (x̂i, x
0
i ) = P (x̂i|x0

i )PX0(x
0
i ) =

PX0(x
0
i )√

Det
(

2πQ̂
) exp

(
−
(
x̂>i − x

0,>
i M̂>

)
Q̂−1

(
x̂i − M̂x0

i

)
/2
)
,

(4.291)
one gets

P (x0
i |x̂i) =

P (x̂i|x0
i )PX(x0

i )

P (x̂i)
=

PX0(x0
i )

P (x̂i)

√
Det

(
2πQ̂

) exp

−
(
x̂>i − x

0,>
i M̂>

)
Q̂−1

(
x̂i − M̂x0

i

)
2

 .

(4.292)

By taking the average with respect to the posterior probability distribution one gets for the
spectral estimator

EP (x0i |x̂i)
[
x0
i

]
= fxin

(
M̂>Q̂−1M̂, M̂>Q̂−1x̂i

)
. (4.293)
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By combining (4.293) with (4.290) one gets that the mean-squared error achieved by the spectral
method is given by

MSEPCA = Ex0,W

{[
x0 − fxin

(
M̂>Q̂−1M̂, M̂>Q̂−1M̂x0 +

√
M̂>Q̂−1M̂W

)]2
}
, (4.294)

where the W are once again Gaussian variables of zero mean and unit covariance, and the
variable x0 is distributed according to PX0 . In the �gures presented in subsequent sections we
evaluate the performance of PCA via (4.294).

4.4.2 Zero-mean priors, uniform �xed point and relation to spectral
thresholds

This section summarizes properties of problems for which the prior distribution Px has zero
mean. We will see that in those cases a particularly simple �xed point of both the Low-RAMP
and its state evolution exists. We analyze the stability of this �xed points, and note that
linearization around it leads to a spectral algorithm on the Fisher score matrix. As a result we
observe equivalence between the corresponding spectral phase transition and a phase transition
beyond which Low-RAMP performs better than a random guess based on the prior.

We do stress, however, that the results of this section hold only when the prior has zero mean,
and do not hold for generic priors of non-zero mean. So that the spectral phase transitions (in the
matrix case) known in the literature are in general not related to the physically meaningful phase
transitions we observe in the performance of Low-RAMP or in the information theoretically
best performance.

Linearization around the uniform �xed point- Matrix case (XX>, UV > case)

From the de�nition of the thresholding function (4.86), it follows that that x̂i = 0, ∀1 ≤ i ≤ n
is a �xed point of the self-averaged low-RAMP equations (4.96,4.97) or (4.169 4.170) whenever∫

dxPX(x)x = 〈x〉 = 0, and R = 0 . (4.295)

We will call x̂i = 0, ∀1 ≤ i ≤ n the uniform �xed point. The interpretation of this �xed point is
that according to it there is no information about the planted con�guration X0 in the observed
values Y and the estimator giving the lowest error is the one that simply sets every variable
to zero. When this is the stable �xed point with highest free energy then this is indeed the
Bayes-optimal estimator.

In previous work on inference and message passing algorithms [KMM+13, ZK16] we learned
that when a uniform �xed point of the message passing update exists it is instrumental to
expand around it and investigate the spectral algorithm to which such a procedure leads. We
follow this strategy here and expand the Low-RAMP equations around the uniform �xed point.
In the linear order in x̂, the term AtX is negligible, from the de�nition of the thresholding
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function (4.86) one gets

X̂ t+1 =

(
S√
N
X̂ t − X̂ t−1 Σx

∆̃

)
〈xx>〉+ o

(
‖X t‖2

)
(4.296)

x̂t+1
i = Σx

√
(p− 1)!

N
p−1
2

∑
1≤k2<···<kp≤N

Sk2···kpx̂
t
k2
◦ · · · ◦ x̂tkp + o

(
‖X t‖p−1

2

)
. (4.297)

This is an expansion of the AMP equations for the XX> AMP equations and symmetric tensor
(p > 2) Where Σx is the average value of the variance of the estimators, as de�ned in (4.190),
at the uniform �xed point. In the Bayes optimal setting we remind from equation (4.255) that
we moreover have Σx = 〈xx>〉.

XX>, UV > case (p=2) : If we consider (4.296) as a �xed point equation for X̂ we see
that columns of X̂ are related to the eigenvectors of the Fisher score matrix S. Expanding
around the uniform �xed point the Low-RAMP equations thus yields a spectral algorithm that
is essentially PCA applied to the matrix S (not the original dataset Y ).

For the bipartite model (UV > case) the situation is analogous. The self-averaged Low-RAMP
equations have a uniform �xed point ûi = 0 ∀i, v̂j = 0 ∀j when R = 0 and when the priors
PU and PV have zero mean. Expanding around this uniform �xed point gives a linear operator
whose singular vectors are related to the left and right singular vectors of the Fisher score
matrix S.

Xp tensor case (p > 2) : From equation (4.297)we see that the trivial �xed point is always
stable whatever the value of the matrix S might be.

Example of the spectral decomposition of the Fisher score matrix (XX> case)

Spectral method always come to mind when thinking about estimation of low-rank matrices.
Analysis of the linearized Low-RAMP suggests that in cases where we have some guess about
the form of the output channel Pout(Y |w) then the optimal spectral algorithm should not be ran
on the data matrix Yij but instead on the Fisher score matrix Sij de�ned by (4.18). This was
derived in [LKZ15a] and further studied in [PWBM16b]. In this section we give an example of
a case where the spectrum of Yij does not carry any information for some region of parameter,
but the one of Sij does.

Consider as an example the output channel to be

Pout(Y |w) =
1

2
exp (−|Y − w|) . (4.298)

This is just an additive exponential noise. The Fisher score matrix Sij for this channel is

Sij = Sign(Yij) . (4.299)

Consider the rank one case when the true signal distribution PX0 is Gaussian of zero mean and
variance σ.
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Figure 4.3 � Spectrum of the Fisher score matrix S/
√
N and of the data matrix Y/

√
N for

the same instance of a problem with exponential output noise in the rank-one symmetric XX>

case. The planted con�guration is generated from a Gaussian of zero mean and variance 1.4.
We see that an eigenvalue is out of the bulk for S but not for Y . The data were generated on
a system of size N = 2000.

Now let us look at the spectrum of both Y and S in Fig. 4.3. We plot the spectrum of S and Y
for σ = 1.4. For this value of variance we see that an eigenvalue associated with an eigenvector
that carries information about the planted con�guration gets out of the bulk of S but not of
Y . Even though some information on the signal was encoded into Y in that speci�c case one
had to take the absolute value of Y to be able to recover an informative eigenvalue.

This situation can be quanti�ed using the spectral analysis of section 4.4.1 applied to two
di�erent noise channels g1(Y,w) = −β( sign(Y ) − w)2/2 and g2(Y,w) = −β(Y − w)2/4 and
taking the limit β →∞ as in (4.282). For these noise channels a theoretical analysis of the top
eigenvectors of S and Y can be performed using theory presented in section 4.4.1. Taking square
of (4.286) and dividing by (4.287) one can show that the state evolution equation describing
the overlap of the top positive eigenvectors of Y and S is given by the only stable �xed point
of the following update equation

(mt+1
x )

2

qt+1
x

=

mtx
2

qtx

σ2∆̃

∆̂2

1 + mtx
2

qtx

σ∆̃

∆̂2

, (4.300)

∆̂ = ∆̃ = 1 : for g1(Y,w) , (4.301)

∆̂ = ∆̃ = 2 : for g2(Y,w) , (4.302)

where ∆̂ and ∆̃ are computed when β = 1. The trivial �xed point mtx
2

qtx
= 0 of this equation is

unstable as soon as

σ2 ≥ ∆̂2

∆̃
. (4.303)

This analysis tells us that the top eigenvectors are correlated with the planted solution x0 when
σ > 1 for S and σ > 2 for Y . Therefore for σ = 1.4 the Fisher score matrix has an informative
leading eigenvector, while the top eigenvectors of Y does not contain any information on the
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planted solution.

Stability of the uniform �xed point in Bayes-optimal setting

In this section we restrict for simplicity to the Bayes optimal setting de�ned by eq. (2.8). As
we derived in section 4.3 the evolution of the Low-RAMP algorithm can be tracked using the
state evolution equations. In the Bayes optimal case we have R = 0 therefore the (su�cient)
condition for the existence of the uniform �xed point is to have prior PX (or both PU and PV )
of zero mean. The existence of a uniform �xed point of the Low-RAMP algorithm translates
into the existence of a �xed point of the state evolution with M t

x = 0 for the symmetric matrix
and tensor case (or M t

u = M t
v = 0 for the bipartite case).

The stability of this �xed point is analyzed by expanding in linear order the state evolution
equation (4.256) around the uniform �xed point, taking into account the de�nition of the
thresholding function (4.86). For the XX> case this gives

M t+1
x =

ΣxM
t
xΣx

∆
+O(‖M t

x‖2
2) , (4.304)

where Σx in the Bayes-optimal case is the covariance matrix of the signal (and prior) distribution
as given by eq. (4.255). Calling λxmax the largest eigenvalue of the covariance of the distribution
of the signal-elements, Σx, we obtain a simple criterion for the stability of the uniform �xed
point {

∆c = (λxmax)2 < ∆⇒ stable
∆ < ∆c = (λxmax)2 ⇒ unstable

. (4.305)

It is useful to specify that for the rank-one case where both Σx and Mx are scalars we get
Σx = 〈x2

0〉 to be the variance of the prior distribution Px. For the rank one, r = 1, case the
stability criteria becomes {

∆c = 〈x2
0〉2 < ∆⇒ stable

∆ < ∆c = 〈x2
0〉2 ⇒ unstable

. (4.306)

Interestingly, the criteria (4.305) is the same as the criteria for the spectral phase transition of
the Fisher score matrix S. When the uniform �xed point is not stable the Fisher score matrix
has an eigenvalue going out of the bulk [BBAP05, HR04]. We stress here that this analysis
is particular to signals of zero mean. If the mean is non-zero the spectral threshold does not
change, but the Bayes optimal performance gets better and hence superior to PCA.

The critical value of ∆c separates two parts of the phase diagram

� For ∆ > ∆c inference is algorithmically hard or impossible. The Low-RAMP algorithm
(and sometimes it is conjectured that all other polynomial algorithms) will not be able
to get a better MSE than corresponding to random guessing from the prior distribution.

� For ∆ < ∆c inference better than random guessing is algorithmically e�ciently tractable.
The Low-RAMP and also PCA give an MSE strictly better that random guessing from
the prior.

For the bipartite case, UV >, the stability analysis is a tiny bit more complicated since there
are two order parameters M t

u and M t
v. Linearization of the state evolution update equations
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leads to

M t
u = α

ΣuM
t
vΣu

∆
+O(‖M t

v‖2
2) , (4.307)

M t+1
v =

ΣvM
t
uΣv

∆
+O(‖M t

u‖2
2) , (4.308)

where in the Bayes-optimal case the Σu and Σv are simply the covariances of the prior dis-
tribution PU and PV , i.e. Σu = 〈uu>〉 and Σv = 〈vv>〉. By replacing (4.308) in (4.307) one
gets

M t+1
u =

(√
αΣuΣv

∆

)
M t

u

(√
αΣuΣv

∆

)>
. (4.309)

Calling λuvmax the largest eigenvalue of the matrix ΣuΣv gives us the stability criteria of the
uniform �xed point in the bipartite case as{

∆c =
√
αλuvmax < ∆⇒ Stable

∆ < ∆c =
√
αλuvmax ⇒ Unstable

. (4.310)

Also this criteria agrees with the criteria for spectral phase transition for the Fisher score matrix
and also here ∆c separates two parts of the phase diagram, one where estimating the signal
better than randomly sampling from the prior distribution is not possible with Low-RAMP
(and conjecturally with no other polynomial algorithm), and another where the MSE provided
by Low-RAMP or PCA is strictly better than the one achieved by guessing at random.

For the tensor case the expansion around the �xed point gives.

M t+1
x =

Σx(M
t
x)
◦p−1

Σx

∆
+O(‖M t

x‖
2p−2
2 ) , (4.311)

As soon as p > 2 the trivial �xed point will be stable whatever the value of ∆ since the
expansion will be zero to �rst order. In term of algorithm this means that the �xed point
positively correlated with the hidden solution will be hidden behind a Free-Energy barrier.
Which will make AMP fail in reconstructing the hidden signal even when it is Information
theoretically possible.

4.4.3 Symmetry of the system : di�erence between matrix and tensor
factorization.

It often happens (at least in the system studied in that thesis) that the system exhibit a
symmetry. For instance a classical spin systems with zero �elds has a ±1 or Z2 symmetry
meaning that.

P (x1, x2, · · · , xN) =
1

Z
exp

( ∑
1≤i<j≤N

xiJijxj

)
= P (−x1,−x2, · · · ,−xN) (4.312)

When dealing with vectorial spins symmetries we de�ne the symmetry group of the system as
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the set of matrices R ∈ Rr×r as

R ∈ Sym⇐⇒ R ∈ Rr×r and∀x1, x2, · · · , xN ∈ Rr, P (x1, · · · , xN) = P (Rx1, · · · , RxN)
(4.313)

and in the UV > case.

(A,B) ∈ Sym⇐⇒ A,B ∈ Rr×r and∀u1, u2, · · · , uN ∈ Rr,∀v1, v2, · · · , vM ∈ Rr

P (u1, · · · , uN , v1, · · · , vM) = P (Au1, · · · , AuN , Bv1, · · · , BvM) (4.314)

If there is no symmetry in the system then Sym = {Ir}.

In term of state evolution this means if Mx, Qx,Σx is a �xed point of the SE equations (4.202-
4.204) then ∀R ∈ Sym such that

Mx −→ RMx, Qx −→ RQxR
>, Σx −→ RΣxR

> (4.315)

is also a �xed point of the SE equations. And in the UV > case a similar transformation of the
SE equations (4.226- 4.231) is given by, ∀(A,B) ∈ Sym

Mu −→ AMu, Qu −→ AQuA
>, Σu −→ AΣuA

> (4.316)

Mv −→ BMv, Qv −→ BQvB
>, Σv −→ BΣvB

> (4.317)

The Matrix Case Because of the structure of the problem of matrix factorization it is easy
for these problem to exhibit a rotational symmetry. It is straightforward to see that

∀R ∈ O(r) (4.318)

XX> = XR(XR)>, (4.319)

∀A ∈ GLr(R), B = A−1> (4.320)

UV > = (UA)(V B)>, (4.321)

All the matrices that satisfy (4.318) and (4.321) form a continuum (respectively O(N) and
GLn(R)). This means that the matrix factorization problem can exhibit a rotation symmetry
if the prior distribution P (X) or PU(u), PV (v) does not break the rotational symmetry.

This is an usual problem encountered when performing PCA. The minima of the PCA problem

(4.24) are de�ned up to a rotation. This means that if X ∈ RN×r is such that
∥∥∥Y − 1√

N
XX>

∥∥∥2

2
is minimal. Then for any rotation matrix R then XR will also be a minima.

The Tensor Case In the case of tensor factorization (p ≥ 3) no such continuous symmetry
exists. Let us suppose a matrix R ∈ Rr×r such that ∀X ∈ RN×r
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∀X ∈ RN×r,

p︷ ︸︸ ︷
X ⊗X ⊗ · · · ⊗X = (XR)⊗ (XR)⊗ · · · ⊗ (XR) (4.322)

it is easy to prove that this can only be the case if

∀1 ≤ i1, · · · , ip ≤ r :
∑
l=1···r

Ri1lRi2l · · ·Ripl = δi2i1δ
i3
i2
· · · δipip−1

(4.323)

Only equations for ordered i1, · · · , ip are independent.

∀1 ≤ i1 ≤ · · · ≤ ip ≤ r :
∑
l=1···r

Ri1lRi2l · · ·Ripl = δi2i1δ
i3
i2
· · · δipip−1

(4.324)

This specify
(
p+r−1
r

)
∼ rp

p!
equations while there are only r2 unknowns variables. As soon as

p ≥ 3 and r ≥ 2 one ends up with more equations than unknown which makes the problem of
continuous symmetry group over-constrained. This means that for p ≥ 3 and r ≥ 2 there can
be no continuous symmetry group. And any solution of equations (4.324) will be isolated. We
conjecture that for p ≥ 3 and r ≥ 2 The only solution to (4.324) are permutations matrix if p
is odd and permutation matrices where every 1 might be replaced by a −1 if p is even.

4.4.4 Multiple stable �xed points : First order phase transitions

The narrative of this paper is to transform the high-dimensional problem of low-rank matrix
factorization to analysis of stable �xed point of the Low-RAMP algorithms and correspondingly
of the state evolution equations. A case that deserves detailed discussion is when there exists
more than one stable �xed point. The present section is devoted to this discussion in the Bayes-
optimal setting, where the replica symmetric assumption is fully justi�ed and hence a complete
picture can be obtained.

We encounter two types of situations with multiple stable �xed points
� Equivalent �xed points due to symmetry : The less interesting type of multiple

�xed points arises when there is an underlying symmetry in the de�nition of the problem,
then both the state evolution and and Low-RAMP equations have multiple �xed points
equivalent under the symmetry. All these �xed points have the same Bethe and replica
free energy. One example of such a symmetry is a Gaussian prior of zero mean and
isotropic covariance matrix. Then there is a global rotational symmetry present. Another
example of a symmetry is given by the community detection problem de�ned in section
4.1.4. In the case of r symmetric equally sized groups with connectivity matrix (4.67)
there is a permutation symmetry between communities so that any �xed of the state
evolution or Low-RAMP equations exists in r! versions.

� Non-equivalent �xed points. More interesting case is when Low-RAMP and the state
evolution equations have multiple stable �xed points, not related via any symmetry,
having in general di�erent free-energies. This is then related to phenomenon that is in
physics called the �rst order phase transition. This is the type that we will discuss in
detail in the present section.
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In general, it is the �xed point with highest free energy that provides the true marginals of
the posterior distribution (we remind change of sign in our de�nition of the free energy w.r.t.
the standard physics de�nition). From an algorithmic perspective, it is the �xed point achieved
from uninformed initialization (see below) that gives a way to compute the error achievable by
the Low-RAMP algorithm. A conjecture that appears in a number of papers analyzing Bayes
optimal inference on random instances is that the error reached by Low-RAMP is the best
achievable with a polynomial algorithm. Note, however, that replica symmetry breaking e�ects
might play a role out of the equilibrium solution and hence may in�uence the properties of the
best achievable mean-squared-error.

Typical �rst order phase transition : Algorithmic interpretation

The concept of a �rst order phase transition is best explained on a speci�c example. For the
sake of the explanation we will consider the symmetric XX> case in the Bayes optimal setting.
For the purpose of giving a speci�c example we consider the Gaussian output channel with
variance of the noise ∆, the signal is drawn from the spiked (i.e. r = 1) Rademacher-Bernoulli
model with fraction of non-zeros being ρ = 0.08.

In Fig. 4.4 we plot all the �xed points of the state evolution equation and the corresponding value
of the replica free energy (4.258) as a function of ∆/ρ2. The equations for the state evolution
speci�c to the spiked Rademacher-Bernoulli model are given by (4.344). For this model the
uniform �xed point exists and is stable down to ∆c = ρ2, eq. (4.305). The numerically stable
�xed points are drawn in blue, the unstable ones in red. We focus on the interval of ∆ where
more than one stable �xed point of the state evolution (4.256) exists. We use the example
of the spiked Rademacher-Bernoulli model for the purpose of being speci�c in �gure 4.4. The
de�nitions and properties de�ned in the rest of this section are generic and apply to all the
settings considered in this thesis, not only to the spiked Rademacher-Bernoulli model.

Let us de�ne two (possibly equal) stable �xed points of the state evolution as follows :
� MUninformative(∆) is the �xed point of the state evolution one reaches when initializing

the M t=0 = εIr (with ε very small and positive, Ir being the identity matrix). We call
this the uninformative initialization.

� MInformative(∆) is the �xed point of the state evolution one reaches when initializing the
M t=0 = 〈xx>〉. This is the informative initialization where we start as if the planted
con�guration was known.

In principle there could be other stable �xed points apart ofMUninformative(∆)andMInformative(∆),

but among all the examples that we analyzed in this thesis we have not observed any such case.
In this thesis we hence discuss only the case with at most two stable �xed points, keeping in
mind that if more stable �xed points exist than the theory does apply straightforwardly as well
(the physical �xed point is still the one of highest free energy), and there could be several �rst
order phase transitions following each other as ∆ is changed.

With two di�erent stable �xed points existing for some values of ∆ we observe three critical
values de�ned as follows

� ∆Alg called the algorithmic spinodal transition, is the value of ∆ at which the �xed point
MUninformative stops existing and becomes equal to MInformative.

� ∆IT called the information theoretic phase transition, is the value of ∆ at which the
two �xed points MUninformative 6= MInformative exist and have the same replica free energy
(4.258).
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Figure 4.4 � In the lower panel, we plot as a function of ∆/ρ2 all the �xed pointsMx/ρ of state
evolution equations (4.256) for the spiked Rademacher-Bernoulli model with fraction of non-
zero being ρ = 0.08. Numerically stable �xed points are in blue, unstable in red. We remind that
the order parameter Mx is related to the mean-squared error as MSEX = Tr

[
〈x0x

>
0 〉 −Mx

]
.

In the upper panel, we plot the replica free energy (4.258) corresponding to these �xed points,
again as a function of ∆/ρ2. When there are multiple stable �xed points to the SE equations the
one that corresponds to performance of the Bayes optimal estimation is the one with the largest
free energy (we remind that with respect to the most common physics notation we de�ned the
free energy as the positive logarithm of the partition function). The ∆ for which these two
branches cross in free-energy is called the information theoretic phase transition, ∆IT. The two
spinodal transitions ∆Alg and ∆Dyn are where the lower MSE an higher MSE stable �xed point
disappears. The ∆c/ρ

2 = 1 corresponds to the spectral transition at which the uniform �xed
point become unstable.
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� ∆Dyn called the dynamic spinodal transition, is the value of ∆ at which the �xed point
MInformative stops existing and becomes equal to MUninformative.

In Fig. 4.4 these three transition are marked by vertical dashed lines, the information theoretic
transition in black and the two spinodal transition in red.

We recall that for the priors of zero mean, where the uniform �xed points discussed in section
4.4.2 exists, the stability point of the uniform �xed point ∆c (4.305) is in general unrelated to
the ∆Alg, ∆IT and ∆Dyn. In the example presented in Fig. 4.4 of spiked Rademacher-Bernoulli
model at ρ = 0.08 we have ∆Alg < ∆c < ∆IT. In general the position of ∆c with respect to
∆Alg, ∆IT and ∆Dyn can be arbitrary, in the following sections we will observe several examples.
A notable situation is when ∆c = ∆Alg, cases where this happen are discussed in section 4.4.4.
It should be noted that this is the case in the community detection problem, and since this is a
well known and studied example it is sometimes presented in the literature as the generic case.
But from the numerous examples presented in this thesis we see that cases where ∆c 6= ∆Alg

are also very common.

Phase transitions are loved and cherished in physics, in the context of statistical inference
the most intriguing properties related to phase transitions is their implications in terms of
average computational complexity. Notably in the setting of Bayes-optimal low-rank matrix
factorization as studied in this thesis we distinguish two di�erent regions

� Phase where Low-RAMP is asymptotically Bayes-optimal : For ∆ ≥ ∆IT and
for ∆ ≤ ∆Alg the Low-RAMP algorithm in the limit of large system sizes gives the
information theoretically optimal performance. This is either because the �xed point it
reaches is unique (up to symmetries) or because it is the one with larger free energy.

� The hard phase : For ∆Alg < ∆ < ∆IT the estimation error achieved by the Low-
RAMP algorithm is strictly larger that the lowest information-theoretically achievable
error. On the other hand, and in line with other statistical physics works on inference
problems in the Bayes optimal setting, we conjecture that in this region no other polyno-
mial algorithm that would achieve better error than Low-RAMP exists. This conjecture
could be slightly modi�ed by the fact that the branch of stable �xed points that do
not correspond to the MMSE could present aspects of replica symmetry breaking which
could modify its position. Investigation of this is left for future work.

From a mathematically rigorous point of view the results of this thesis divide into three parts :
� (a) Those that are rigorous, known from existing literature that is not related to sta-

tistical physics considerations. An example is given by the performance of the spectral
methods that is better that random guessing for ∆ < ∆c [BBAP05].

� (b) A second part regroups the results directly following from the analysis of the Bayes-
optimal Low-RAMP and the MMSE that are not presented rigorously in this thesis, but
were made rigorous in a series of recent works [KXZ16, BDM+16, ML16, Mio17b]. Most
of these results are proven and although some cases are still missing a rigorous proof, it
is safe to assume that it is a question of time that researchers will �ll the corresponding
gaps and weaken the corresponding assumptions. For instance the state evolution of
Low-RAMP [RF12, JM13, DM14a], its Bayes-Optimality in the easy phase (at least for
problem where the paramagnetic �xed point is not symmetric) and the value of the
information theoretically optimal MMSE [KXZ16, DAM16, BDM+16, ML16, Mio17b]
are all proven rigorously.

� (c) The third kind of claims are purely conjectures. For instance, the claim that among
all polynomial algorithms the performance of Low-RAMP cannot be improved (so that
the hard phase is indeed hard). Of course proving this in full generality would imply that



4.4. General results about low-rank matrix estimation 101

P 6=NP and so we cannot expect that such a proof would be easy to �nd. At the same
time from a broad perspective of understanding average computational complexity this
is the most intriguing claim and is worth detailed investigation and constant aim to �nd
a counter-example.

Note about computation of the �rst order phase transitions

In this section we discuss how to solve e�ciently the SE equations in the XX> Bayes optimal
case for rank one. We notice that for a given prior distribution PX the only way the symmetric
Bayes optimal state evolution, eq. (4.256), depends on the noise parameter ∆ is via the ratio
mt/∆. One can write the SE equations in the form (4.257)

mt+1 = fSE
PX

(
mt

∆

)
. (4.325)

Let us further de�ne �xed points of (4.325) in a parametric way

∆ =
fSE
PX

(x)

x
, (4.326)

m = fSE
PX

(x) . (4.327)

To get a �xed point (m,∆) of (4.325) we choose a value of x and compute (f(x), f(x)/x). We
observe from the form of the state evolution (rank-one symmetric Bayes optimal case) that
f(x) is a non-decreasing function of x. We further observe that (m,∆) is a stable �xed points
if and only if ∂x∆(x) < 0. The two spinodal thresholds ∆Alg and ∆Dyn are de�ned by loss of
existence of corresponding stable �xed points and they can hence be computed as

∆Alg,∆Dyn ∈
{

∆(x), x ∈ R+,
∂∆(x)

∂x
= 0

}
. (4.328)

The information theoretic transition ∆IT relies on computation of the replica free energy (4.258).
Using (4.259) one gets

∂φ(m,∆)

∂m
=

1

2∆

(
fSE
PX

(m
∆

)
−m

)
(4.329)

allows us to compute the di�erence in energy between a �xed point m,∆ and the uniform �xed
point m = 0 as

φ(m(x),∆(x))− φ(0,∆(x)) =
1

2

[∫ x

0

du fSE
PX

(u)− xfSE(x)

2

]
. (4.330)

The xIT for which (4.330) is zero then gives the information theoretic phase transition ∆IT =
f(xIT)/xIT.

Computation in the tensor Xp case. The same computation can be made in the tensor
of case. Similarly as in the XX> case. The SE equations in the Bayes optimal setting can be
written as.
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mt+1 = fSE
PX

(
mtp−1

∆

)
(4.331)

The following parameter are a �xed point of this equation.

∆ =
fSE
PX

(x)p−1

x
, (4.332)

m = fSE
PX

(x) . (4.333)

∆Alg and ∆Dyn are once again de�ned by equation (4.328). The ∆IT transition can be found
using the following equation.

φ(m(x),∆(x))− φ(0,∆(x)) =
1

2

[∫ x

0

du fSE
PX

(u)− (p− 1)
xfSE(x)

p

]
. (4.334)

The xIT for which (4.334) is zero then gives the information theoretic phase transition ∆IT =
f(xIT)p−1/xIT.

Su�cient criteria for existence of the hard phase : XX> case

This section is speci�c to the Bayes-optimal cases when the prior PX has a zero mean and hence
the uniform �xed point of the Low-RAMP and the state evolution exists. In section 4.4.2 we
derived that the uniform �xed point is stable at ∆ > ∆c and unstable for ∆ < ∆c. It follows
from the theory of bifurcations that the critical point where a �xed-point changes stability must
be associated with an onset of another close-by �xed point. In general there are two possibilities

� 2nd order bifurcation. If the �xed point close to the uniform �xed point departs in
the direction of smaller ∆ < ∆c, where the uniform �xed point is unstable, then this
close-by �xed point is stable. This case corresponds to Fig. 4.4. Behavior in the vicinity
of the uniform �xed point then does not let us distinguish between (a) existence of a
�rst order phase transition at lower ∆ (as in Fig. 4.4), or (b) continuity on the MMSE
down to ∆ = 0 with no algorithmically hard phase existing in that case.

� 1st order bifurcation. If the �xed point close to the uniform �xed point departs in
the direction of larger ∆ > ∆c, where the uniform �xed point is stable, then this close-
by �xed point is unstable. In that case, the �xed point that is stable from ∆ < ∆c is
not close to the uniform �xed point and this case forces existence of a �rst order phase
transition with ∆c = ∆Alg.

Expansion of the state evolution (4.256) around the uniform �xed point gives us a closed form
criteria to distinguish whether the phase transition happening at ∆c is a 1st or 2nd order
bifurcation. In case of a 2nd order bifurcation, this expansion allows us to compute the mean
squared error obtained with Low-RAMP close to ∆c.

For speci�city we consider the rank-one, r = 1 case, and expand eq. (4.256) to 2nd order to get

mt+1 = mt 〈x2
0〉2

∆
− (mt)2

∆2

(
〈x2

0〉3 −
〈x3

0〉
2

2

)
+O

(
(mt)3

)
, (4.335)
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where the mean 〈· · · 〉 of x0 are taken with respect to PX0 = PX . This is done by expanding
fxin(A,B) to order 4 in B and 2 in A. All the derivatives

∀i, j ∂i+jfxin
∂Ai∂Bj

(A = 0, B = 0) (4.336)

are linked to moments of the density probability PX .

The stability criteria ∆c = 〈x2
0〉2 appears once again as in section 4.4.2. Below ∆ < ∆c the

uniform �xed pointm = 0 is unstable andmt will converge towards another �xed point di�erent
from m = 0. For ∆ > ∆c = 〈x2

0〉2 the uniform �xed point m = 0 is stable. Using expansion
(4.335) near ∆ ' ∆c = 〈x2

0〉2 we can write what is the other �xed point next to muniform = 0,
we get

mclose−by =
∆c(∆c −∆)

∆
3/2
c − 〈x

3
0〉2
2

+O
(
(∆−∆c)

2) . (4.337)

By de�nition of the order parameters in the Bayes-optimal setting we must have at a �xed
point m ≥ 0, therefore we distinguish two cases

� If 〈x3
0〉2 < 2〈x2

0〉3, eq. (4.337) is a stable �xed point in the region ∆ < ∆c. Eq. (4.337)
then gives the expansion of this �xed point. This situation corresponds to Fig. 4.4 where
the Rademacher-Bernoulli prior has zero 3rd moment. This is the 2nd order bifurcation
at ∆c.

� 〈x3
0〉2 > 2〈x2

0〉3 eq. (4.337) is an unstable (and hence irrelevant) �xed point in the region
∆ > ∆c. But also in this case there must be a stable �xed point for ∆ < ∆c, but this
�xed point cannot have a small values of m. The only way a stable �xed point can
appear in this case is by a discontinuous (1st order) transition at ∆c. This is the 1st
order bifurcation at ∆c.

To summarize, we obtained a simple (su�cient) criteria for the existence of a �rst order phase
transition with ∆Alg = ∆c. Notably there is a 1st order phase transition when{

〈x0〉 = 0
〈x3

0〉2 > 2〈x2
0〉3

. (4.338)

The more skewed the prior distribution is the easier the problem is. Till a point where if the
skewness of the signal is bigger than

√
2 then a �rst order phenomena will appear in the system.

In this case the MSE achieved by the Low-RAMP algorithm becomes discontinuously better
than MSEuniform = 〈x2

0〉

On the other hand when the criteria (4.338) is not met, then for ∆ < ∆c the MSE achieved by
the Low-RAMP algorithm is in �rst approximation equal to

MSE(∆) = 〈x2
0〉2 −

∆c(∆c −∆)

∆
3/2
c − 〈x

3
0〉

2

2

+O
(
(∆−∆c)

2) . (4.339)

So the MSE obtained by an Low-RAMP algorithm is linear near the transition in ∆−∆c.

Interestingly spectral method also give an MSE linear in ∆ − ∆c. As derived in section 4.4.1
the MSE one achieves using the eigenvectors of matrix S is

MSESpectral(∆) = 〈x2
0〉 −

∆c −∆√
∆c

. (4.340)
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From the coe�cient of linearity in the error we observe that the error achieved by PCA is
always worse than the error achieved by Low-RAMP.

Let us remind that uniform �xed points and 1st order phase transition (at ∆Alg = ∆c or
elsewhere) can exist even if the criteria derived above are not met, there are su�cient, not
necessary conditions. Examples are included in subsequent sections.

In this section we analyze the performance of a maximum likelihood algorithm by estimating
the behavior of the (replica symmetric) state evolution in the limit where the interactions are
given by exp(βg(Y,w)) with β → +∞, and the prior does not contain hard constraints and is
independent of β. Note that PCA and related spectral methods correspond to taking g(Y,w) =
−(Y − w)2/2. The presented method allows us to analyze the property of the generalized
spectral method where g(Y,w) can be taken to be any function including for instance g(Y,w) =
−(D(Y ) − w)2/2 which would correspond to performing PCA on an element-wise function D
of the matrix Yij, this can be for instance the Fisher score matrix S.

4.5 Phase diagrams for Bayes-optimal

low-rank matrix/tensor estimation

From now on we restrict our analysis to the Bayes optimal setting as de�ned in section 4.1.1,
eq. (2.8). The motivation is to investigate performance of the Bayes-optimal and the Low-
RAMP estimators for a set of benchmark problems. We investigate phase diagrams stemming
from the state evolution equations and from the corresponding replica free energies summarized
in section 4.3.6.

4.5.1 Examples of phase diagram

In this section we present example of phase diagrams for the symmetric low-rank matrix esti-
mation. The �rst three examples are for rank one, the last two examples are for general rank.

Spiked Bernoulli model

The spiked Bernoulli model is de�ned by prior (4.62) with density ρ of ones, and 1−ρ of zeros.
This prior has a positive mean and consequently the state evolution does not have the uniform
�xed point. This is a problem where one tries to recover a submatrix of size ρN × ρN with
mean of elements equal to 1, in a N ×N matrix of lower mean. Using the Bayes-optimal state
evolution (4.202) one gets,

mt = fSE
Bernoulli

(
mt

∆

)
, (4.341)

fSE
Bernoulli(x) = ρEW

[
ρ

ρ+ (1− ρ) exp
(−x

2
+W

√
x
)] , (4.342)

where W is (here and from now on) a Gaussian variables of zero mean and unit variance.
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Figure 4.5 � Plots of the �xed points of the state evolution for the spiked Bernoulli model,
MSE being given by MSE = ρ −m (4.260). The performance of PCA as analyzed in section
4.4.1 is plotted for comparison. These two plots are made for ρ = 0.2 (left) and ρ = 0.01 (right).

Depending on the value of ρ there are two kinds of behavior of the �xed points of these equations
as a function of the e�ective noise ∆. We plot the two cases in Fig. 4.5. For larger values of ρ
there is a unique �xed point corresponding to the MMSE that is asymptotically achieved by
the Low-RAMP algorithm, this is the regime in which the proof of [DM14a] applies. For small
enough values of ρ we do observe a region of ∆Alg < ∆ < ∆Dyn where there are 3 �xed points,
two stable and one unstable. The replica free energy associated to the these �xed points crosses
at ∆IT so that the higher �xed point in the relevant one at ∆ < ∆IT, and the lower �xed point
at ∆ > ∆IT. These phase transitions were de�ned in section 4.4.4. In Fig. 4.6 we plot the phase
transitions ∆Alg, ∆IT and ∆Dyn as a function of ρ. The y-axes in the left panel is simply the
e�ective noise parameter ∆, on the right panel the same data are plotted with ∆/ρ2 on the
y-axes. We observe that the ∆Alg =ρ→0 eρ

2, with e being the Euler number, this is the same
asymptotic behavior as obtained previously in [Mon15] (Fig. 5).

Rademacher-Bernoulli and Gauss-Bernoulli

Next we analyze the spiked Rademacher-Bernoulli and Gauss-Bernoulli priors de�ned by (4.63)
and (4.66). The �rst thing we notice is that both these distribution have zero mean and variance
ρ. This means according to (4.4.2) that there is a uniform �xed point of the SE equations that
is stable for ∆ > ρ2. The skewness of both these distribution is 0, which means that at ∆c there
is no discontinuity of the MSE (4.4.4). The SE equations for these models are

mt+1 = fSE
Rademacher−Bernoulli

(
mt

∆

)
, (4.343)

fSE
Rademacher−Bernoulli(x) = ρEW

tanh
(
x+W

√
x
) ρ

(1− ρ) exp(x/2)

cosh(x+W
√
x)

+ ρ

 , (4.344)

mt+1 = fSE
Gaussian−Bernoulli

(
mt

∆

)
, (4.345)

fSE
Gauss−Bernoulli(x)/ρ =

x

1 + x
EW

[
W 2ρ̂(x,W

√
x2 + x)

]
, (4.346)
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Figure 4.6 � The phase diagram of the spiked Bernoulli model (4.62) as a function of the
density ρ and e�ective noise ∆ (left) or ∆/ρ2 (right). There is no phase transition in the system
for ρ > 0.04139 and a 1st order phase transition for ρ < 0.04139. The lower green curve is the
algorithmic spinodal ∆Alg curve, that converges to ∆Alg =ρ→0 eρ

2. The dashed black line is the
information theoretic threshold ∆IT. The upper red curve is the dynamical spinodal ∆Dyn. The
orange hashed zone is the hard region in which Low-RAMP does not reach the Bayes-optimal
error. In the rest of the phase diagram (green hashed) the Low-RAMP provides in the large size
limit the Bayes-optimal error. Note that this is exactly the same phase diagram as presented
in [Mon15] (Fig. 5) for the problem of �nding one dense subgraph, this is thanks to output
channel universality and the fact that large degree sparse graphs have upon rescaling the same
phase diagram as dense graphs.

where ρ̂ is
ρ̂(a, b2) =

ρ

(1− ρ) exp
(
−b2

2(1+a)

)
(1 + a)

r
2 + ρ

. (4.347)

Both these models have similar phase diagram.

We �rst illustrate in Fig. 4.7 the di�erent types of phase transition that we observe for the
spiked Rademacher-Bernoulli model as the density ρ is varied. We plot all the �xed points
of equation (4.344) for several values of ρ as a function of the e�ective noise ∆/ρ2. The four
observed case are the following

� ρ = 0.097 example : For ρ large enough (in the present case ρ > ρtri = 0.0964) whatever
the ∆ there is only one stable �xed point.

� For small enough ρ < ρtri = 0.0964 three di�erent �xed points exist in a range of
∆Alg(ρ) < ∆ < ∆Dyn(ρ), where the thresholds ∆Alg, and ∆Dyn are de�ned by the limits
of existence of the three �xed points. The information theoretic threshold where the free
energy corresponding to the two stable �xed points crosses is ∆IT. Depending on the
values of ρ we observed 3 possible scenarios of how ∆c = ρ2 is placed w.r.t. the other
thresholds.
� ρ = 0.0909 example where ∆Dyn < ∆c.
� ρ = 0.0863 example where ∆IT < ∆c < ∆Dyn.
� ρ = 0.08 examples where ∆Alg < ∆c < ∆IT.

Finally Fig. 4.9 presents the four thresholds ∆Dyn, ∆IT, ∆Alg and ∆c as a function of the density
ρ.

In Fig. 4.10 we present for completeness the comparison between the �xed points on the state
evolution and the �xed points of the Low-RAMP algorithm for the Gauss-Bernoulli model,
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Figure 4.7 � We plot all the �xed points of the state evolution equations for the spiked
Rademacher-Bernoulli model in the Bayes optimal setting as a function of ∆/ρ2 for four repre-
sentative values of ρ. The blue curves are stable �xed points, red are the unstable ones. MSE
is given by (4.260). The vertical lines mark the two spinodal transition (dynamical ∆Dyn and
algorithmic ∆Alg, red dashed), the information theoretic transition ∆IT. The vertical green full
line mark the stability point of the uniform �xed point ∆c = ρ2. We remind that the error
MSE = ρ −m achieved by the Bayes optimal estimator corresponds to the upper branch for
∆ < ∆IT, and to the lower branch for ∆ > ∆IT. Error achieved by the Low-RAMP algorithm
always correspond to the lower branch (larger error). Note that in the three panels where mul-
tiple �xed points exists, the only element that changes is the position of the (spectral) stability
threshold ∆c with respect to the other thresholds.

with rank one, Bayes optimal case. The experiment is done on one random instance of size
N = 2× 104 and we see the agreement is very good, �nite size e�ect are not very considerable.
The data are for the Gauss-Bernoulli model at ρ = 0.1, that is in a region where ∆Alg is so
close to ∆c that in this �gure the di�erence is unnoticeable.

We also compare to the MSE reached by the PCA spectral algorithm and from its analysis
eq. (4.294). We see that whereas both Low-RAMP and PCA work better than random guesses
below ∆c, the MSE reached by Low-RAMP is considerably smaller.

Two balanced groups

The next example of phase diagram we present is for community detection with two balanced
(i.e. one group is smaller ρN , but both have the same average degree) groups as de�ned in
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Figure 4.8 � Phase diagram of the spiked Rademacher-Bernoulli (left hand side panel) and
spiked Gauss-Bernoulli (right hand side panel) models. We plot ∆ as a function of ρ. The local
stability threshold of the uniform �xed point ∆c/ρ

2 = 1 is in blue. The algorithmic spinodal ∆Alg

(green), the dynamical spinodal ∆Dyn (red) and the information theoretic transition ∆IT (black
dashed) all join into a tri-critical point located at (∆tri = 0.008935,∆tri/ρ

2
tri = 0.9612, ρtri =

0.09641) for the Rademacher-Bernoulli model (left panel), and at (∆tri = 0.07182,∆tri/ρ
2
tri =

0.9693, ρtri = 0.2722) for the Gauss-Bernoulli model (right panel). The hash materializes the
di�erent phases. The easy phase where the Low-RAMP algorithm is Bayes-optimal and achieves
better error than random guessing is hashed in green crossed lines, the hard phase where Low-
RAMP is sub-optimal is hashed in yellow \\, and the impossible phase where even the best
achievable error is as bad as random guessing is hashed in red //.

Figure 4.9 � The same plot as in Fig. 4.8 zoomed into the region of the tri-critical point
with y-axes rescaled by ρ2. The spiked Rademacher-Bernoulli mode on left hand side panel, the
spiked Gauss-Bernoulli model on the right hand side.
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Figure 4.10 � Comparison between the state evolution and the �xed point of the Low-RAMP
algorithm, for the spiked Gauss-Bernoulli model of sparse PCA with rank one and density
ρ = 0.1. The phase transitions stemming from state evolution are ∆Alg ≈ ∆c = 0.01,∆IT =
0.0153,∆Dyn = 0.0161. The points are the �xed points of the Low-RAMP algorithm run on
one typical instance of the problem of size N = 20000. Blue pluses is the MSE reached from
an uninformative initialization of the algorithm. Green crosses is the MSE reached from the
informative initialization of the algorithm.

eqs. (4.75-4.76). This is an example of a system where the bifurcation at ∆c is of a �rst order,
with ∆c = ∆Alg. In this problem the prior given by eq. (4.76), with 〈x0〉 = 0, 〈(x0)2〉 = 1. The
output channel is of the stochastic block model type eq. (4.71-4.72), leading to e�ective noise
parameter

∆ =
pout(1− pout)

µ2
, (4.348)

where µ and pout are the parameters from (4.71-4.72). Therefore the uniform �xed point becomes
unstable when ∆ < 1.

Using eqs. (4.202) and (4.76) we get for the state evolution for community detection with two
balanced groups

mt+1 = fSE
TwoBalanced

(
mt

∆

)
, ∀t,mt ∈ [0; 1] , (4.349)

where

fSE
TwoBalanced(x) =

+∞∫
−∞

e
−u2
2

√
2π

2ρ(1− ρ) sinh

(
x

2ρ(1−ρ)
+ u
√

x
ρ(1−ρ)

)
1 + 2ρ(1− ρ)

(
cosh

(
x

2ρ(1−ρ)
+ u
√

x
ρ(1−ρ)

)
− 1

) . (4.350)

To investigate whether ∆c = 1 is a 1st or 2nd order bifurcation we compute the second order
expansion of the state evolution equations as we have done in (4.335). We �nd that the expansion
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Figure 4.11 � We plot here ∆Alg = ∆c, ∆IT and ∆Dyn as a function of ρ for the community
detection with two balanced groups. All the curves merge at ρ = 1

2
− 1√

12
. The hashed regions

have the same meaning as in previous �gures, red is the impossible inference phase, green is
easy and yellow is hard inference.

of the state evolution up to second order for the two balanced communities is

mt+1 = fρ

(
mt

∆

)
=
mt

∆
+

(
mt

∆

)2
1− 6ρ(1− ρ)

2ρ(1− ρ)
. (4.351)

In a similar fashion as in section (4.4.4) it is the sign of the second order terms that decides
between 1st or 2nd order bifurcation at ∆c = 1. We �nd that if ρ(1− ρ) < 1/6 then the second
order derivative of (4.350) is positive leading to a jump in MSE when ∆ crosses the value ∆ = 1
which means that there will be �rst order phase transition for all

ρ ∈
[
0;

1

2
− 1√

12
≈ 0.21

]
∪
[

1

2
+

1√
12
≈ 0.79; 1

]
. (4.352)

It turns out that for the two balanced groups this criteria is both su�cient and necessary. Out
of the interval (4.352) the phase transition at ∆c is of second order, with no discontinuities.
De�ning the phase transitions ∆Alg, ∆IT, ∆Dyn as before in section 4.4.4, we have ∆Alg = ∆c

and we plot the three phase transitions for community detection for two balanced groups in
the phase diagram Fig. 4.11.

Jointly-sparse PCA generic rank

In this section we discuss analysis of the Gauss-Bernoulli jointly sparse PCA as de�ned by
the prior distribution (4.65) for a generic rank r. This just means that each vector xi ∈ Rr is
either ~0 with probability 1− ρ or is taken from Gaussian density probability of mean zero and
covariance matrix Ir with probability ρ. The prior distribution (4.65) has a zero mean, therefore
the uniform �xed point exist and according to (4.305) is stable down to ∆c = ρ2.
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In order to deal with the r-dimensional integrals and r× r dimensional order parameter M t we
notice that there is a rotational SO(r) symmetry in the problem, which in the Bayes optimal
setting implies that

M t = mtIr, (4.353)

with mt being a scalar parameter. The problem is hence greatly simpli�ed, one can then treat
the r dimensional integral in (4.256). After integration by parts and integration on the sphere
one gets

mt+1 = fSE
Joint−GB

(
mt

∆

)
, (4.354)

fSE
Joint−GB(x) =

ρx

1 + x

∫
du

1

(2π)
r
2

exp

(
−u2

2

)
Sru

r−1{
1 +

xu2 [1− ρ̂(x, (x2 + x)u2)]

r

}
ρ̂(x, (x2 + x)u2) , (4.355)

where Sr is the surface of a unit sphere in r dimensions and where ρ̂ is the posterior probability
that a vector is equal to ~0.

ρ̂(a, b2) =
ρ

(1− ρ) exp
(
−b2

2(1+a)

)
(1 + a)

r
2 + ρ

. (4.356)

An expansion of (4.354) around mt = 0 yields

mt+1 =
ρ2mt

∆
− ρ3

(
mt

∆

)2

+O
(
(mt)3

)
. (4.357)

Analogously to the conclusions we reached when studying expansion (4.335), we conclude that
since the second term is negative there is always a 2nd order bifurcation at ∆c = ρ2 with a
stable �xed point for ∆ < ∆c that stays close to the uniform �xed point. At the same time this
close-by �xed point typically exists only in a very small interval of (∆Alg,∆c), similarly as in
Fig. 4.10.

Community detection with symmetric groups

In this section we discuss the phase diagram of the symmetric communities detection model
as de�ned in section 4.1.4. The corresponding prior distribution is (4.70) which leads to the
function fxin

∀k ∈ [1 : r], fxin(A,B)k =
exp (Bk − Akk/2)∑

k′=1···r
exp (Bk′ − Ak′k′/2)

. (4.358)

The corresponding output is given by (4.71-4.72), corresponding to the e�ective noise

∆ =
pout(1− pout)

µ2
=

pout(1− pout)

N(pin − pout)2
. (4.359)

Once again we study the phase diagram by analyzing the state evolution (4.256). We can verify
that the following form of the order parameter in invariant under iterations of the Bayes-optimal
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state evolution

M t = bt
Ir
r

+
(1− bt)J

r2
, (4.360)

where J is the matrix �lled with 1. The order parameter at time t+ 1 will be of the same form
with a new bt+1.

� Having bt = 0 is equivalent to having all the variables xi saying that they have an equal
probability to be in every community. This corresponds to initializing the estimators of
the algorithm to be x̂t=0

i =
(

1
r
, · · · , 1

r

)
� Having bt = 1 means that the communities have been perfectly reconstructed. This

corresponds to initializing the algorithm in the planted solution.
Using (4.256) the state evolution equations for bt can be written.

bt+1 =Mr

(
bt

∆

)
, (4.361)

where

Mr (x) =
1

r − 1

r ∫ exp
(
x
r

+ u1

√
x
r

)
exp

(
x
r

+ u1

√
x
r

)
+

r∑
i=2

exp
(
ui
√

x
r

) r∏
i=1

dui
exp

(
−u2i

2

)
√

2π
− 1

 . (4.362)

This can be proven by computing M t+1
11 using (4.256) and (4.358) which yields

bt+1

(
1

r
− 1

r2

)
+

1

r2
=

=
1

r

∫ exp

(
x
r

+ u1

√
x
r

+ u0

√
1−bt
r2∆

)
exp

(
x
r

+ u1

√
x
r

+ u0

√
1−bt
r2∆

)
+

r∑
i=2

exp

(
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√

x
r

+ u0

√
1−bt
r2∆

) r∏
i=0

dui
exp

(
−u2i

2

)
√

2π

 .

(4.363)

Here we have separated the noiseW into two sourcesWIr andWJr (the sum of two independent
Gaussian is still a Gaussian) of covariance matrices btIr

r∆
and (1−bt)Jr

r2∆
. The �rst term corresponds

to uk, 1 ≤ k ≤ n and the last term to u0.

One observes that eq. (4.361) has always the uniform �xed point bt = 0. This is an example of
a non-zero mean prior for which nevertheless there is a uniform �xed point because other kind
of symmetry is present in the model. Let us expand (4.361) around bt = 0 to determine the
stability of this �xed point, one gets

bt+1 =
bt

∆r2
+

r − 4

2∆2r4
bt

2
+O

(
bt

3
)
. (4.364)

The uniform �xed point hence becomes unstable for ∆ > ∆c = 1
r2
. Translated back into the

parameters of the stochastic block model this gives the easy/hard phase transition at

|pin − pout| = r
√
pout(1− pout)/N (4.365)

well known in the sparse case where p = const/N from [DKMZ11a]. In terms of the type of
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phase transitions there are two cases
� 2nd order for r ≤ 3. The second term in (4.361) is negative, this means that there will

be a �xed point close-by to the uniform one for ∆ < ∆c. The transition is of second
order.

� 1st order for r ≥ 5. The second term in (4.361) is positive, this means that there will be
a jump in the order parameter at the transition ∆c = ∆Alg. This is the signature a �rst
order phase transition.

Rank r = 4 is a marginal case in which we observed by directly solving the state evolution
equations that the transition is continuous. We have checked numerically that no �rst order
phase transition exists for the symmetric community detection problem for r ∈ {2, 3, 4}meaning
that �rst order phenomena appear only for r ≥ 5.

In Fig. 4.12 left panel, we illustrate the �rst order phase transition in the state evolution and
in the behavior of the Low-RAMP algorithms for r = 15 groups.

To compute the values of ∆IT and ∆Dyn, we write bt+1 =Mr(b
t/∆) and carry a similar analysis

as in section 4.4.4, as detailed in appendix 4.6.2. Fig. 4.12 (right panel) summarizes the values
in a scaling that anticipated the large rank expansion done is section 4.5.4.
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Figure 4.12 � Left :We plot MSE deduced from state evolution (lines) and from Low-RAMP
algorithm (marks) for r = 15 groups and N = 20000 as a function of ∆r2. The vertical full
green line is ∆cr

2 = 1. The vertical dashed black line is ∆IT and the full lines correspond
to the MSE obtained from the informative initialization and have discontinuities at ∆Dyn.
Note that the MSE from does not go to zero at �nite positive ∆ instead at small noise one
has MSE ∼ exp (−const./∆). Right : We plot ∆r log r for the information theoretic ∆IT

and dynamical spinodal ∆Dyn phase transitions obtained from the state evolution using the
protocol described in Appendix 4.6.2. We rescale the ∆ in this way to compare with the large
rank expansion in (4.408) and (4.409).

Gaussian Mixture Clustering

In this section we discuss the phase diagram of the Gaussian mixture clustering model de�ned
in 4.1.4. We suppose that the centroids were sampled from isotropic Gaussian. This means that
PU(u) is given by

PU(u) = N (0, ρIr, u) (4.366)
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ρ will be a measure of how well are separated the centroids (In that setting this is a more
natural variable than ∆). While PV (v) is given by (4.60). ∆ will be set to 1 and ρ will be the
variable that will change. f vin will be given by (4.358) while fuin will be given by

fuin(A,B) =

(
Ir
ρ

+ A

)−1

B . (4.367)

Once again we analyze the phase diagram by analyzing the state evolution and the ansatz that
allows us to solve the SE equation easily is the following

M t
u = Qt

u = btuIr + btu,J
Jr
r
, (4.368)

M t
v = Qt

v =
Irb

t
v

r
+ (1− btv)

Jr
r2

(4.369)

where (btv, b
t
u, b

t
u,J) ∈ [0; 1] × [0; ρ]2, and Ir and Jr are respectively the identity matrix and the

r × r matrix �lled with 1. Having (btv, b
t
u, b

t
u,J) = (1, ρ, 0) would mean that we have achieved

perfect reconstruction of the ground truth, while (btv, b
t
u) = (0, 0) means that we are not able to

extract any information from the matrix Y except for the average of the k clusters Uk. Using
(4.261) and (4.262) we get the following SE equations :

btu =
btvρ

2

r
α

+ btvρ
, bt+1

v =Mr

(
btur
)
, (4.370)

whereMr is given by (4.362). We can combine these to obtain a single update equation for the
variables btv :

bt+1
v =Mr

(
btv

ρ2

1
α

+ ρbv
r

)
. (4.371)

Notice that this equations is closed on btu, which got eliminated. bv = 0 is a trivial �xed point
of (4.371) by expandingMr(x) (using 4.364) around the trivial �xed point we get

bt+1
v =

αbtvρ
2

r2
+
α2btv

2

2

[
r − 4− 2r

ρ

]
ρ4

r4
. (4.372)

Notice that (bu = 0, bv = 0) is always a �xed point. We are interested in when this 'uninforma-
tive' �xed point becomes unstable. From the expansion of (4.372) one deduces that this occurs
when :

ρ > ρc =
r√
α
. (4.373)

Looking at the second derivative of (4.372), we deduce that when the uninformative �xed point
becomes unstable, the second derivative is proportional to r − 4 − 2

√
α ; if this is negative

then this means that another �xed point appears close to 0. If on the other hand the second
derivative is positive when ρ increases and crosses ρc, we see a jump in MSE as bt=+∞

v jumps
non-continuously to another value (when bt=0

v ≈ 0) and that means that there is a �rst order
transition phenomena in the system. This means that for some value of ρ, r and α there can be
multiple stable �xed point to the SE equations. If one �xes the number r and α, it is possible
to have �rst order transition in the system if and only if

r > 4 + 2
√
α . (4.374)
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It turns out that this su�cient criteria is also necessary (this comes from SE numerical expe-
riments). We plot the overlap bv as a function of ρ in Fig 4.13.

To compute the values of ρIT and ρDyn, we write bt+1
v = Mr

(
btv

ρ2

1
α

+ ρbv
r

)
and carry a similar

analysis as in section 4.4.4, as detailed in appendix 4.6.2. Fig. 4.13 (right panel) summarizes
the values in a scaling that anticipated the large rank expansion done is section 4.5.4.
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Figure 4.13 � Left : AMP simulations vs. theory for r = 20 clusters. Points are results
of numerical simulations using the AMP algorithm ; lines are theoretical results using State
Evolution. All results are for α = 2, N = 10000 and M = 20000. We observe a phase transition
at ρc = r√

α
≈ 14.14 and a discontinuity in overlap at ρc. The blue and red curve follow the bv

that can be achieved by initializing at bt=0
u = 0 and bt=0

v = 1 respectively. The vertical dashed
lines indicate positions of the three transitions deduced from the SE equations (Here higher ρ
means an easier problem). Because of the discontinuous nature of the transition the �nite size
e�ect are sizable. For instance, the red points with non-zero overlap below ρc correspond to
the algorithm being able to reconstruct a fraction of the r = 20 clusters which leads to these
intermediate value of the overlap. Increasing n decreases these �nite size e�ects. Right : We
plot the ρSpinodal(r)

√
α/(
√
r log r) and ρStatic(r)

√
α/(
√
r log r) for α = 2. In the large r limit

these curves should go to
√

2 and 2 respectively as derived in 4.5.4. The asymptotic behavior
of the static transition can not yet be easily observed : We conjecture that one would need to
go much larger values of r to see the limit behavior of the spinodal.

4.5.2 Tensor factorization.

In this subsection we present the result of the analysis of the Bayes optimal tensor factorization.
Tensor are mathematical objects that are far less convenient to manipulate than matrix. A lot
of basic operation that can be achieved through polynomial algorithm on matrices are NP hard
for tensors ([HL09]).

To begin to understand tensor factorization a good �rst way to do it is to analyze the tensor
factorization in the Bayes optimal case where the data is taken to come from a rank 1 Gaussian.

Rank 1 Gaussian Bayes optimal Tensor factorization

The prior is given by
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PX(x) = N (µ, 1, x) (4.375)

First let us analyze the SE equations in the case where the mean of the distribution µ is 0.

The SE equations sums up to

mt+1
x =

mt
x
p−1

∆ +mt
x
p−1 (4.376)

it is easy to see that the trivial �xed point of this equation will always be stable. This means
that at µ = 0 there will be no easy phase. And AMP starting from an uninformative �xed point
will fail to reconstruct the signal even for ∆� 1.

As soon as µ 6= 0 the trivial �xed point will stop to exist. One can use equations (4.332
4.3334.334) to compute the ∆Dyn(µ),∆IT(µ) and ∆Alg(µ).

Having a non non zero µ makes it easier to solve the problem. For 0 < µ < µTri = p−2
2
√
p−1

. The
3 phase
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Figure 4.14 � Left panel : Comparison between the AMP �xed point reached from unin-
formative (marked with crosses) or informative (i.e. strongly correlated with the ground truth,
marked with pluses) initialization and the �xed point of the SE equations (stable �xed point in
blue, unstable in red). The data are for the Gaussian prior with mean µ = 0.2, unit variance,
p = 3, r = 1. The AMP runs are done on a system of size N = 1000. Central panel : Phase
diagram for the order p = 3 tensor factorization, rank r = 1, Gaussian prior of mean µ (x-
axes) and unit variance. In the green-shaded zone AMP matches the information-theoretically
optimal performance, MMSE = MSEAMP. In the orange-shaded zone MMSE < MSEAMP. The
tri-critical point is located at µTri = (p− 2)/(2

√
p− 1) and ∆Tri = xp−2

Tri /(1 + xTri)
p−1 where

xTri = (p− 2)(3p− 4)/p2. Right panel : Phase diagram for the order p = 3 tensor factori-
zation, rank r = 1, the Bernoulli prior as a function of ρ and ∆/ρ4. The tri-critical point is
located at ρTri = 0.178 and ∆Tri/ρ

4 = 2.60. As ρ → 0 we observed ∆Alg/ρ
4 → 2e. Compare to

Fig. 5 in [LKZ17] where the same phase diagram is presented for the matrix factorization p = 2
case.

4.5.3 Large sparsity (small ρ ) expansions

In existing literature the sparse PCA was mostly studied for sparsity levels that are much smaller
than a �nite fraction of the system size (as considered in this thesis). In order to compare with
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existing results we hence devote this section to the study of small density ρ expansions of the
results obtained from the state evolution for some of the models studied.

Spiked Bernoulli, Rademacher-Bernoulli, and Gauss-Bernoulli models

For both the Rademacher-Bernoulli, and Gauss-Bernoulli models we have the uniform �xed
point stable above ∆c = ρ2, and in the leading order in 1/ρ we have ∆alg ∼ρ→0 ∆c = ρ2.

The small ρ limit behavior of the information theoretic ∆IT threshold and the dynamical spi-
nodal threshold ∆Dyn are given by

Bernoulli and Rademacher-Bernoulli

∆Dyn(ρ) ∼ρ→0
−ρ

2 log(ρ)
, (4.377)

∆IT(ρ) ∼ρ→0
−ρ

4 log(ρ)
, (4.378)

Gaussian-Bernoulli

∆Dyn(ρ) ∼ρ→0
−ρ

log(ρ)
max


2 exp(−1

β )√
πβ

+ erfc
(

1√
β

)
β

, β ∈ R+

 ∼ 0.595
−ρ

log(ρ)
, (4.379)

∆IT(ρ) ∼ρ→0
−ρ

log(ρ)
max


2 exp(−1

β )√
πβ

+ erfc
(

1√
β

)
β

,

∫ β

0

du
2 exp

(−1
u

)
√
πu

+

(
1√
u

)
=

1

2
β

2 exp
(
−1
β

)
√
πβ

+ erfc
(

1√
β

) ; β ∈ R+

 ∼ 0.528
−ρ

log(ρ)
.

(4.380)

The information theoretic transitions for all these 3 models scale like O
(
−ρ

log(ρ)

)
while the

algorithmic transition scales like O(ρ2). This means that for small ρ there is a large gap between
what is information theoretically and algorithmically achievable. Note at this point that the
bounds derived in [BMVX16] for sparse PCA have the same leading order behavior when ρ is
small as (4.377) and (4.378).

To derive the above small ρ expressions we combine (4.328) and (4.330) and the following small
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ρ limit of the state-evolution functions fSE(x)

∀β ∈ R+, lim
ρ→0

fSE(−β log(ρ))

ρ
= 1(β > 2), Bernoulli (4.381)

∀β ∈ R+, lim
ρ→0

fSE(−β log(ρ))

ρ
= 1(β > 2), Rademacher-Bernoulli (4.382)

∀β ∈ R+, lim
ρ→0

fSE(−β log(ρ))

ρ
=

2 exp
(
−1
β

)
√
βπ

+ erfc
(

1√
β

)
, Gaussian-Bernoulli (4.383)

Here the functions fSE are the state-evolution update functions stated in (4.342), (4.344) and
(4.346) for the di�erent models (when the model is clear from context we will omit the lower
index specifying the model). The above is proven by deriving the state evolution equations for
each of these models. The computation is done in appendix 4.6.2.

Two balanced groups, limit of small planted subgraph

In this section we analyze the small ρ limit for the two balanced groups of section 4.5.1. From
the de�nition of the function fρ (4.351), and a computation done in appendix 4.6.2 we get

lim
ρ→0

fρ(−βρ(1− ρ) log(ρ(1− ρ))) = 1(β > 2) . (4.384)

By combining this with (4.328) and (4.330) one gets

∆Dyn(ρ) ∼ρ→0
1

−2ρ(1− ρ) log(ρ(1− ρ))
, (4.385)

∆IT(ρ) ∼ρ→0
1

−4ρ(1− ρ) log(ρ(1− ρ))
. (4.386)

The derivations of these limits is done in the appendix 4.6.2.

Note that the limit of small ρ in the two balanced groups model is closely related to the problem
of planted clique. However, in the planted clique problem the size of the clique to recover is
much smaller that the size of the graph, typically O(

√
N) for e�cient recovery and O(logN) for

information theoretically possible recovery. Whereas our equation were derives when ρ = O(1),
we can try to see what would the above scaling imply for k = ρN = o(N). In the planted
clique problem the �rst (smaller) group is fully connected, this means that the entry C11 of the
connectivity matrix C (4.67) is equal to one. Therefore for ρ� 1 one has

µ = (1− pout)ρ
√
N . (4.387)

Note that in the canonical de�nition of the planted clique problem the average degree of the
nodes belonging to the clique are slightly larger than the average degree of the rest of the
graph. The present case of balanced groups corresponds to a version of the planted clique
problem where next to planting a clique a corresponding number of edges is added to the rest
of the graph to ensure that the average degree of every node is the same.

Recalling the de�nition of ∆ (4.348) for the community detection output channel, and using
∆c = 1 for the spectral threshold, and ∆IT = −1/(4ρ log ρ) for the information theoretic
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threshold at small ρ we get

kc =
√
N

√
pout

1− pout

, (4.388)

kIT = log(N)
4pout

1− pout

. (4.389)

We indeed recover the scaling known from the planted clique problem, see e.g. [DM15]. The pout-
dependent constant are indeed the tight constants (for e�cient and information theoretically
optimal recovery) for the balanced version of the planted clique where the expected degree of
every node is the same independently of the fact in the node is in the clique or not.

Sparse PCA at small density ρ

We investigate here the small ρ limit of the bipartite UV > spiked Gaussian-Bernoulli, and
Rademacher-Bernoulli model. We remind that U ∈ RN , V ∈ RM , while α = M/N . In the
model we consider that elements of U are Gaussian of zero mean and unit variance, while PV
is given by (4.63) for the Rademacher-Bernoulli model, and by (4.66) for the Gauss-Bernoulli
model. The state evolution equations then read

mt
u =

αmt
v

∆ + αmt
v

, (4.390)

mt+1
v = fSE

Gauss−Bernoulli

(
mt
u

∆

)
, (4.391)

mt+1
v = fSE

Rademacher−Bernoulli

(
mt
u

∆

)
, (4.392)

where fSE
Gauss−Bernoulli and f

SE
Rademacher−Bernoulli are de�ned in (4.344) and (4.346) respectively. By

combining these equations one gets

mt+1
v = fSE

Gauss−Bernoulli

(
αmt

v

∆2 + α∆mt
v

)
, (4.393)

mt+1
v = fSE

Rademacher−Bernoulli

(
αmt

v

∆2 + α∆mt
v

)
. (4.394)

Because in both these cases PU and PV have zero mean the state evolution equations will have
the uniform �xed point at (mu,mv) = (0, 0). This �xed point becomes unstable when

ρ2α

∆2
> 1, or,∆ < ∆c = ρ

√
α . (4.395)

Also in this case the stability transition ∆c corresponds to the spectral transition where one
sees informative eigenvalues get out of the bulk of the matrix S, as is known in the theory of
low-rank perturbations of random matrices [BBAP05] (these methods are known not to take
advantage of the sparsity). For ρ small enough there will be again a �rst order phase transitions
with ∆Alg, ∆IT, ∆Dyn de�ned as in section 4.4.4. The asymptotic behavior of these thresholds
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is

Rademacher-Bernoulli

∆Dyn(ρ) ∼ρ→0

√
−ρα

2 log(ρ)
, (4.396)

∆IT(ρ) ∼ρ→0

√
−ρα

4α log(ρ)
, (4.397)

Gaussian-Bernoulli

∆Dyn(ρ) ∼ρ→0

√√√√√√ −ρα
log(ρ)

max


2 exp(−1

β )√
πβ

+ erfc
(

1√
β

)
β

, β ∈ R+

 ∼ 0.771

√
−ρα

log(ρ)
, (4.398)

∆IT(ρ) ∼ρ→0

√
−ρα

log(ρ)√√√√√√max


2 exp(−1

β )√
πβ

+ erfc
(

1√
β

)
β

,

∫ β

0

du
2 exp

(−1
u

)
√
πu

+

(
1√
u

)
=

1

2
β

2 exp
(
−1
β

)
√
πβ

+ erfc

(
1√
β

) ;β ∈ R+


∼ 0.726

√
−ρα

log(ρ)
. (4.399)

Reminding that the value of ∆Alg scales in the same way as ∆c (4.395), we see that a large
hard phase opens as ρ→ 0.

To put the above results in relation to existing literature on sparse PCA [AW08, DM14b]. The
main di�erence is that the regime considered in existing literature is that the number of non-zero
element in the matrix V , ρN = o(1). The information theoretic threshold found in eq. (4.397)
correspond (up to a constant) to information theoretic bounds found in [AW08]. However, the
algorithmic performance that is found in the case of very small sparsity, by e.g. the covariance
thresholding of [DM14b], is not reproduced in our analysis of linear sparsity ρ = O(1). This
suggest that in case when the sparsity is small but linear in N , e�cient algorithms that take
advantage of the sparsity might not exist. This regime should be investigated further.

To derive the small ρ limit we follow a similar strategy as we did in the symmetric XX> case.
The main idea is to �nd the value of ∆ for which mv = fSE

PX
(x) is a �xed point of the SE

equations (4.394) or (4.393).

∆(x) =
αfSE(x) +

√
α2fSE2(x) + 4α f

SE(x)
x

2
, (4.400)

This means that
(mu,mv) = (x∆(x), fSE(x)) (4.401)
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is a �xed point of the state evolution equations for ∆ = ∆(x). The free-energy is computed as

φ(mu = x∆(x),mv = f(x),∆ = ∆(x))− φ(mu = 0,mv = 0,∆ = ∆(x)) =

= α

∫ x

0

dufSE(u) +

∫ αfSE(x)/∆(x)

0

du
u

1 + u
− xfSE(x) . (4.402)

Combining this with (4.383) and (4.382) one gets the above asymptotic behavior.

4.5.4 Large rank expansions

Another limit that can be worked out analytically is the large rank r limit. This section sum-
marizes the results.

Large-rank limit for jointly-sparse PCA

We analyze the large r limit of jointly-sparse PCA for which the state evolution equation is given
by (4.354). We notice that u2 will have mean r and standard deviation

√
2r. This essentially

means that to get the large r limit of the density evolution equations one need to replace u2 by
r everywhere it appears. Expanding in large r then gives

mt+1 =
ρmt

mt + ∆

(
1 +

mt

∆
(1− ρ̂)

)
ρ̂ , (4.403)

where

ρ̂ = lim
r→+∞

ρ

(1− ρ) exp
(
r
2

[
mt

∆
+ log(1 + mt

∆

)]
+ ρ

=

{
1 if rmt2 → 0

ρ if rmt2 → +∞
. (4.404)

This means that for any mt � 1√
r
the update equations will be approximately

mt+1 =
mtρ

mt + ∆
+ o(1) . (4.405)

This update equation can be easily analyzed, it only has one stable �xed point located at

max(ρ−∆, 0) . (4.406)

Analogous expansion of the replicated free energy leads to the result that in the large rank
limit we have ∆Dyn = ∆IT = ρ whereas ∆Alg = ∆c = ρ2. This is plotted in the large rank phase
diagram (4.15).
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Figure 4.15 � Phase diagram of the jointly-sparse PCA model at large rank r. In the large
r limit the algorithmic spinodal merges with ∆c, the dynamical spinodal and the information
theoretic one converge toward the line ∆ = ρ.

Community detection

The large rank limit is analyzed for the problem of symmetric community detection in appendix
4.6.2. The asymptotic behavior of ∆IT(r) and ∆Dyn(r) as r → +∞ are

∆c =
1

r2
, (4.407)

∆Dyn =
1

2r ln(r)
[1 + or(1)] , (4.408)

∆IT =
1

4r ln(r)
[1 + or(1)] . (4.409)

We see that a large gap opens between ∆c and ∆IT as r grows. The behavior ∆IT and ∆Dyn

for moderately large r is illustrated in �gure 4.12 and we see that the above limit is reached
very slowly. Using eq. (4.359) this translates into the large r limit phase transition in terms of
parameters of the stochastic block model as discussed in [LKZ15a], and proven in [BMVX16].

Gaussian mixture model

The large rank limit (large number of clusters) is analyzed for the problem of Gaussian mixture
clustering in appendix 4.6.2. The asymptotic behavior of ρIT(r, α) and ρDyn(r, α) as r → +∞
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are

ρc(r, α) = ρAlg(r, α) =
r√
α

(4.410)

ρIT(r, α) = 2

√
r log r

α
(1 + or(1)) , (4.411)

ρDyn(r, α) =

√
2r log r

α
(1 + or(1)) . (4.412)

We see that a large gap opens between ρc and ρIT as r grows. The behavior ρIT and ρDyn for
moderately large r is illustrated in �gure 4.13 and we see that the above limit is reached very
slowly.

4.6 Sparse PCA and the rotational symmetry

In that section I will present a result/idea that I thought were interesting but I did not feel
belong in any paper in particular but that I still think are worth mentioning. During the few
months I spent working on the problem of sparse PCA and the Gauss-Bernoulli prior I realized
that the behavior of the AMP algorithm did not match the replica computation prediction.
This was a problem and I think/hope I was able to diagnostic and understand why the problem
of matrix factorization with a Gauss-Bernoulli prior (4.66) is a harder task that one might
think, especially when r grows large (r > 20).

4.6.1 Sparse PCA and rotational symmetry

By sparse PCA I mean the inference problem when one of the priors be it PX or PU is given
by (4.66) (and PV is just a Gaussian prior).

PX(xi) =
∏

1≤k≤r

[
ρ√
2π
e
−x2ik

2 + (1− ρ)δ(xik)

]
. (4.413)

Problem arises when the rank r grows large and the signal ρ is not small enough. Even though
we are completely able to derive the free energy for this problem and compute easily the order
parameter M = Q that minimizes the replica free energy matching these performances with an
algorithm can be quite a challenge. These di�culties arise from 2 main reason.

� Computing the fin(A,B) function associated with (4.66) can be a di�cult task. Be-
cause of matrix A there can be correlations between components of the xk for di�erent
k. As a result this means that the computation of fin(A,B) requires the sum of 2r term
(one for every term when ones develops expression (4.66)). For r = 30 this means that
most of the computation time will be spent computing the update functions fin(A,B).
There are ways around this problem and I have found that a simple �eld approximation
was a reasonable approach to approximating this function fin(A,B).

� Weak breaking of the rotational symmetry : The prior PX is supposed to break the
rotational symmetry of the problem (remember that the interaction term g(Yij, w) has
a rotation symmetry). The problem we observe when running AMP is that if one starts
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Figure 4.16 � In this �gure we plot the free energy φRSXX>(M,Q) (4.244) for the rank 2
Gauss-Bernoulli (4.66) prior for r = 2, ρ = 0.5, Q = mI2 and M t = mR(θ), where R is a 2× 2
rotation matrix of angle θ. We plot the free energy as a function of θ. m is chosen such that the
free φ(m, θ = 0) is minimal. Essentially this means that we are plotting the Free-energy cost
to recovering the signal up to the wrong rotation. The free-energy is maximal when θ = kπ/2
(right rotation) and minimal when θ = kπ/2+π/4. The pro�le of free energy will have di�erent
consequence for the AMP algorithm Left : Here ∆ = 0.0433 even if one end up with a wrong
rotation angle θ there is a gradient of free energy in θ that one could follow to get the right
value. Right : Here the pro�le in free-energy is much more piqued around θ = kπ/2 outside
of these valleys the free-energy pro�le gets very �at and the free energy gradient very small. In
practice for the algorithm (and therefore a �nite N) this means that the AMP equation �nd
a �xed point with the wrong angle θ even though this is not the con�guration that actually
minimizes the free-energy. The problem gets worse as the rank r increases.

with a high rank r > 7 and low ∆ then AMP will tend to converge to a con�guration
where

M = mtR, Q = qtIr (4.414)

Where R will be some rotation matrix that is not a simple permutation matrix (if R
was a permutation matrix then one could consider the problem solved). This is strange
after all the Gauss-Bernoulli prior PX is supposed to break the rotational symmetry.
And even if one ended up in a con�guration of the AMP algorithm given by (4.414)
then we would expect that the AMP algorithm would be able to follow some free energy
gradient and reach a state where R is just a permutation matrix. Maybe the problem
lies with the mean �eld approximation we did to compute fin(A,B) ? It turns out that
fin(A,B) is not the problem. The problem lies in the fact that gradient one is supposed
to follow to reach the correct solution can vanish. We illustrate that in �g 4.16 We plot
the Replica symmetric free energy for the Gauss-Bernoulli XX> case for r = 2 for two
values of ∆ as a function of θ the angle of the rotation matrix R(θ).
It is clear from this �gure that the free-energy is maximized when θ = kπ/2, k ∈ N. If
θ is in-between these values then the free energy is lower. If ∆ is be enough then there
is non vanishing gradient to follow to reach θ = 0. But as ∆ gets smaller the pro�le
of free energy gets �atter and the algorithm gets stuck on these plateau. The problem
gets worse as we increases the rank r since there are no more ways to get the wrong
symmetry. Essentially the algorithm gets stuck in a con�guration where it thinks that by
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chance every component of xi is non zero and it behaves as is PX was a Gaussian prior.
Another way to interpret this is to say that if one gets rotation R a little modi�cation of
R will not change the free-energy in a signi�cant way. This creates the bizarre situation
where it looks as if solving the problem for low ∆ is harder than solving it at large ∆,
which is what I observe with the AMP experiments. Therefore to solve this problem we
need an optimization cost function that will not be constant when one is away from the
solution.

4.6.2 Breaking the rotation symmetry using l1 regularization

One way to deal with sparsity is to introduce a l1 regularization to the problem. This l1 re-
gularization will "punish" con�guration of xi that are far away from being sparse. The new
optimization problem we want to solve is now.

argminX∈RN×r
1

2

∑
1≤i,≤N

(
Yij −

xix
>
j√
N

)2

+ λ
∑

1≤i≤N
‖xi‖l1 (4.415)

Where λ is a parameter that controls how sparse we want our solution to be. Setting λ→ +∞
would make it so that the minima of this cost function would be given by ∀i, xi = 0. Setting
λ = 0 make it so that the solution to this problem is the usual PCA solution given by the top
r eigenvectors of Y . This can be a tricky problem to solve since it is non convex. But if we only
want to use the l1 regularization to break the rotational symmetry even a very small value of λ
would su�ce. When λ is very small the l1 regularization problem translates into the problem

"among the minimizer of 1
2

∑
1≤i,≤N

(
Yij −

xix
>
j√
N

)2

�nd the one that minimizes
∑

1≤i≤N
‖xi‖l1".

This is way simpler problem to solve since all the minimizer of 1
2

∑
1≤i,≤N

(
Yij −

xix
>
j√
N

)2

are of the

form XPCAR where XPCA ∈ RN×r is the matrix that contain all the r top eigenvectors of Y
and R ∈ Rr×r is just a rotational matrix. The cost function we want to minimize is now

U(R) =
∑

1≤i≤N
‖RxPCA

i ‖l1 (4.416)

This looks like a much simpler problem to solve since we have gone from a problem over Nr
variables to a problem over r2 variables. In practice it is often convenient to replace the l1 cost
function by the following function

U(R, ε) =
∑

1≤i≤N
g(RxPCA

i ) (4.417)

g(x, ε) =
∑

1≤k≤r

√
x2
k + ε2 (4.418)

Where ε� 1 (4.419)

One has g(x, ε = 0) = ‖x‖l1 . Replacing ‖‖l1 with g(x, ε) just yields us with better convergence
in the gradient descent algorithm that we then use.
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We will treat treat this problem using a gradient descent approach on R.The only di�culty
lies with the fact that we need R to be a rotational matrix RR> = Ir. This constraint will be
treated by writing the gradient descent algorithm in a speci�c way. Let Rt be our estimate of
R at time t, we write

Rt+1 = exp
(
H t
)
Rt . (4.420)

Where the exponential is here a matrix exponential and H t will be an anti symmetric matrix.
Looking for Rt+1 under this form ensures that Rt+1 will be a rotational matrix. All that remain
is then to compute the gradient of U(exp (H t)Rt, ε) in H t around H t = 0. Using the fact that
to �rst order matrix exponentiation is given by

exp(H t) = Ir +H t +O
(
‖H t‖2

2

)
. (4.421)

One can compute that to �rst order in H t and get

U(exp
(
H t
)
Rt, ε)− U(Rt, ε) =

1

2
Tr
[
CtH t

]
+O

(
‖H t‖2

2

)
, (4.422)

Where

Ct = Sign(XPCAR
t, ε)>XPCAR

t −Rt>X>PCASign(XPCAR
t, ε)XPCAR

t . (4.423)

Where Sign(· · · , ε) is the function that computes the expression x√
x2+ε2

of a matrix component
by component. Ct is just the gradient of U(exp(H)Rt, ε) expressed in matrix form. Therefore
in our gradient descent algorithm we will set H t = γCt and do a line search in γ to minimize
the cost function. This yields use with a gradient descent algorithm to solve this problem. In
practice this work quite well and if ∆ is small enough we indeed get a solution that is well
aligned with the hidden solution meaning the R>X>PCAX0 is indeed a permutation matrix. One
could then use the output of the gradient descent algorithm to initialize an AMP algorithm
and try and reach optimal reconstruction performance. In practice it works well and solves the
issue for small ∆ but there still remain a domain in which I was not able to match the SE
performance with the AMP algorithm.

This lead me to think that the di�cult issues with sparse PCA have little to do with low-
sparsity but more to do with large rank r and the breaking of the rotational symmetry. (It is
worth noting that this issue does not appear in tensor factorization problem as the interaction
term break the rotational symmetry "for free".)



Conclusion

In this thesis we analyzed the problem of low rank matrix/tensor factorization in the Bayes-
optimal setting using the theoretical tools and techniques coming from statistical physics and
initially developed to understand spin glasses. These methods gave us algorithms to solve ins-
tances of factorization problem and theoretical tools to analyze the behavior of these algorithms.
These theoretical tools allowed us to explore di�erent systems and establish what we like to
call a "zoology" of phase diagrams. I hope this zoology will help the reader reach a qualitative
understanding of the factorization problem. Nevertheless a few questions remain open. Here
they are presented in a separate format.

Is the AMP algorithm useful for practical inference problems ? : At least for the ma-
trix factorization problem one might be tempted to ask the question "Why should anyone care
about Bayes-optimal factorization of matrices ? After all it appears clearly from your analysis
that spectral method often give performances that are comparable with Bayes-optimal perfor-
mances." This is a valid remark and it is true that for some type of signal (de�ned by PX0 or
PU0 , PV0) there is often little or no di�erence between the theoretical performance of AMP and
PCA. Trying to use AMP on real data creates the need to learn the parameters of the system.
The system for which the performance of AMP and PCA di�ered greatly always turned up to
be systems where the signal was highly structured, it was very sparse or it could take only a few
well separated value. Essentially, AMP shined whenever there was a structure in the data that
could be used to decrease greatly the reconstruction error. AMP for inference problem should
not be compared with o�-the-shelf unsupervised learning method, but should be thought of as a
lever one can use to transform prior information about the data into much lower reconstruction
error in cases where this is possible. It is my hope that the zoology of phase diagrams presented
here should help the reader get a sense of when and where AMP techniques are worth the
trouble.

In the tensor factorization setting things are a bit more clear, computing the spectrum of tensor
for p ≥ 3 is an NP-hard problem [HL09]. There are methods that try to go around this NP-
hardness, such as unfolding a tensor or doing a gradient descent on the likelihood but they all
require a noise ∆ level that is order of magnitude lower (∆ = O(n(2−p)/2)) in practice than
the information theoretical threshold ∆IT = O(1) [RM14]. The analysis of the SE equations
gives us a physical explanation to this Hardness but it also tells us when the AMP equations
will reach the optimal reconstruction. In that case (at least for synthetic data) AMP method
by taking advantage of prior information can potentially vastly outperform other "spectral"
methods.

127
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Is the analysis rigorous ? The short answer is "yes". Recently, proofs of the replica formula
appeared as long as one remains in the Bayes-optimal setting (on the Nishimori line). Bayes-
optimality is an important property required by the main results of the papers presented in the
next paragraph. The proof of the replica formula did not come in one go but was proven step
by step.

The �rst proofs dealt with showing that the behavior of the AMP algorithm was indeed descri-
bed by SE equations (also sometime called single letter characterization). This was established
for the rank 1 UV > case in [RF12] and for additive Gaussian noise. In [JM13] Javanmard and
Montanari proved that the behavior of a class of AMP algorithm with interaction matrices that
are Gaussian could indeed be described by SE equations.

Being able to prove the validity of the SE equations just gives an upper bound on the re-
construction error one can hope to achieve. To compute rigorously the theoretical optimal
reconstruction one has essentially to prove that the replica symmetric free energy formula is
correct. Deshpande and Montanari proved in 2014 that the optimal reconstruction was reached
by an AMP algorithm in the Bernoulli XX> case for ρ > 0.05 [DM14a]. Their proof did not
work for all priors PX or even for all ρ. The reason why, is that �rst order phenomena that
can appear in those systems do not only create di�culties for algorithms, but they also make
it hard for proofs techniques to work as-well. Finally the proof of the replica formula (even
where φXX> is not a convex function) was established in [BDM+16] for the rank one XX>

case. One of the important ingredient of the proof was the spatial coupling method, whose role
is to destroy the �rst order phenomena all while hardly changing the free energy and therefore
making the free-energy function convex. The XX>, UV > and tensor case for higher rank were
proven in [ML16, Mio17a, LML+17].

The property of universality of the noise channel were proven in [DAM16, KXZ16].

What to do with these results ? What are the interesting open problems. As of
today I see three axes along which this work could provide us with interesting questions and
problems.

� The dense case as a tool to understand sparse problems : The fact that the sys-
tems we analyzed here were dense rather than sparse was the source of a great number
of simpli�cations. State Evolution (SE) equations with their Gaussian distributed mes-
sages are order of magnitude easier to analyze and to interpret than Density Evolution
(DE) equations (where one has to resort to population dynamics). For instance in the
community detection problem we were able to summarize the state of the whole system
into two scalars bt,∆ and a function Mr, which allowed us not only to predict what
the AMP equations would give us but also to understand it in a way that population
dynamics would not allow us to. Of course sparse and dense regime do not have the
same properties and the same phase diagrams. However I have found that when pre-
sented with a new sparse estimation problem translating it into its dense version and
then getting a grasp of the properties of the dense version was often an easy (and labor
cheap) way to get a �rst understanding of the scaling laws and phase transition that
one can expect in the sparse regime. An example of a property translating well from
the sparse to the dense regime be given by 4.365 criteria can be also used in the sparse
limit where pout = O(1/N) [DKMZ11a]. Of course this parallel between the sparse and
dense regime might not hold or may require for the average degree to grow to in�nity
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su�ciently fast with the size of the system. For example in the community detection
problem where pin = O(1/N), pout = O(1/N), and r = 5 by translating directly the pro-
perties of the dense regime to the sparse regime one might predict to see a discontinuity
of the reconstruction error when n|pout − pout| = r

√
n/r(pin + pout(r − 1)), but in the

disassortative case where pout > pin no such jump occurs if the average degree is small
enough n/r(pin + pout(r − 1)), in contradiction with the properties of the dense regime.
Often taking the average degree to grow with the size of the system (but not grow too
quickly) is enough to smooth the di�erences between the properties of the dense and
the sparse regime, for example the balanced communities problem analyzed in 4.5.1 has
very similar properties when analyzed in the regime where the average degree remains
small but still grows to in�nity pout = O(log(n)/n)[CLM16].

� Large rank matrix factorization r = O(N) : What happens when the rank r grows
with N , r = O(N) ? This problem is related to the dictionary learning and sparse coding
problem [KDMR+03, OF96]. This, at least from an algorithmic point of view, is a much
harder problem to treat. AMP equations that can be derived for this problem do not
always converge to a �xed point described by the replica computation [KKM+14]. After
having explored this problem for several months during my PhD (and failing to solve
it). I think that the di�culties in that problem arise from us not being able to treat
the rotation symmetry in this problem both from an algorithmic point of view and a
theoretical point of view. The analysis of the r is large but no too large limit with the
AMP equations could be useful in understanding this problem. A breakthrough in that
problem would, I'm sure, yield a great deal of interesting results because of the link
between large rank matrix factorization and the training of neural networks.

� Other matrix ensembles : In this whole thesis we always assumed that the interaction
matrices Yij had its components sampled independently. This assumption allowed the
Bethe approximation we made to be exact in the large N limit and made it so that the
typical error we made on the estimation of the marginals was of order O(1/

√
N). But if

these AMP techniques are to be used in order to do inference they will need to be robust
and adapt to the situation. For instance in the Hop�eld model the correlation between
the Jij changes the shape of the correct TAP equations [Méz17]. Techniques such as
adaptative TAP try to tackle this problem by learning the correct Onsager reaction term
on the �y [OW01] in order to compute the marginals of the system. Recently a method
to treat problem of compressed sensing for all sensing matrices that are right rotationally
invariant [SRF16] was derived. Maybe an algorithm inspired from this techniques could
provide us with a path to a reliable and robust AMP algorithm.
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Résumé en français de la thèse : thesis summary in french

Introduction

Depuis quelques années la combinaison d'avancées techniques dans le domaine des statistiques
et la production de données en grande quantité dans di�érents domaines de l'industrie notam-
ment informatiques (Google ,Facebook et autre), a permis au domaine du machine learning de
prospérer. Le machine learning peut être vu soit comme un domaine de l'ingénierie soit comme
un autre terme pour désigner le domaine des statistiques. On divise en général les problèmes
de machine learning en 3 classes.

� L'apprentissage supervisé a pour but d'apprendre une fonction f(x) à partir de M
exemples de couples (xi, yi) où ∀i, f(xi) ≈ yi. En pratique résoudre un tel problème
revient souvent à résoudre un problème d'optimisation sur la fonction f .

f ∗ = argminR(f) = argmin

{
1

N

∑
1≤i≤N

L(f(xi), yi) + Λ(f)

}
(4.424)

L(., .) est une distance qui assure que f(xi) reste près de yi. Pour que le problème ait un
intérêt, l'espace dans lequel on recherche f doit être réduit. Cela peut être accompli de
2 façons. On peut rechercher une fonction f qui s'écrit d'une certaine façon par exemple
une fonction linéaire en x , f(x) = β>x+ c où x, β ∈ Rr c ∈ R. Le terme Λ a aussi pour
but de restreindre ou biaiser la recherche de f en pénalisant certaines valeurs de f .

� L'apprentissage non supervisé a pour but d'analyser des données dans des situations
dans lesquelles on n'a pas accès à une valeur de fonction yi. Dans le cas d'apprentissage
non supervisé on a simplement accès aux données {xi} et on cherche à savoir si ces don-
nées exhibent une structure particulière. Pour simpli�er là ou l'apprentissage supervisé
cherche à apprendre des fonctions, l'apprentissage non supervisé cherche à apprendre
des densités de probabilités.

� L'apprentissage par renforcement est un type d'apprentissage automatique où le but
est de faire apprendre une "stratégie" à un agent interagissant avec un environnement.

Les distinctions que l'on pourrait faire entre les di�érents types de problèmes en apprentissage
automatique sont plus a�aires de conventions que de vraies di�érences dans les outils théoriques
et algorithmiques que l'on devrait déployer pour les résoudre. En e�et, la grande majorité des
problèmes d'apprentissages automatiques peuvent être transcris en un problème d'optimisation
mathématique à résoudre.

Étonnamment les méthodes d'apprentissages automatiques ont été couronnées de succès dans
les dernières années. On arrive aujourd'hui en résolvant certains problèmes d'optimisations par
descente de gradient à apprendre des fonctions qui déterminent étant donnée une image si cette
image contient un chien ou un chat.

Si les méthodes d'apprentissages automatiques ont réussi à résoudre des problèmes d'une grande
complexité, on ne sait pas vraiment pourquoi elles fonctionnent. Les résultats théoriques sur
les méthodes d'apprentissages automatiques restent insu�santes pour comprendre par exemple
pourquoi il est possible d'entrainer des réseaux de neurones profonds. Dans ce manuscrit je
m'e�orce d'apporter un début de réponse à cette question. Le problème que je cherche à ré-
soudre est le problème de factorisation de matrice de petit rang. Essentiellemnent cela revient
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à résoudre le problème d'inférence suivant.

Y = XX> + Bruit (4.425)

On veut retrouver (inférer) X dans une situation où l'on observe Y . La raison pour laquelle c'est
un problème intéressant est que de nombreux problèmes d'apprentissages automatiques (pour
la plupart d'apprentissages non supervisés) peuvent être traduit en problème de factorisation
de matrice. Nous chercherons à répondre à des questions telles que

� Étant donné ce problème de factorisation de matrice. Comment le résoudre ?
� Quelle est la meilleure reconstruction qu'il est théoriquement possible d'atteindre ?
� Comment atteindre ces performances optimales ?

Pour pouvoir répondre à ces questions avec un modèle théorique nous aurons besoin d'un modèle
génératif pour décrire la matrice Y . Nous utiliserons l'inférence Bayésienne pour répondre aux
questions plus haut.

Cette thèse se trouvant à l'intersection du domaine des statistiques et de la physique des
verres de spin Nous analyserons des modèles d'inférences statistiques à l'aide d'outils théoriques
développés pour analyser des systèmes de verres de spin.

Le problème que l'on veut résoudre.

Le problème que l'on veut résoudre est le suivant

Y = XX> + Bruit ∈ RN×N

Y = UV > + Bruit ∈ RN×M

Y = X ◦X ◦ · · · ◦X + Bruit ∈ RN×M

Y est une matrice provenant de la multiplication de 2 matrices U ∈ RN×r et V ∈ RM×r et
auxquelles on a rajouté du bruit (le bruit n'a d'ailleurs pas besoin d'être Gaussien). On observe
Y et l'on veut reconstruire X ou U, V . Nous nous limiterons dans ce résumé au cas XX>.

Le modèle génératif sera choisi tel que chaque ligne xi ∈ Rr×1 de X a été tirée au hasard d'une
densité de probabilité PX(xi). Puis l'on fait passer chaque coordonnée de la matrice XX> à
travers un canal décrit par une densité de probabilité Pout(Y |w). Cela nous donne accès à la
probabilité postérieure de X connaissant Y .

P (Y ) =
∏

1≤i≤N
PX0(xi)

∏
1≤i<j≤N

Pout

(
Yij

∣∣∣∣x>i xj√
N

)
. (4.426)

P (X|Y ) =
1

ZX(Y )

∏
1≤i≤N

PX0(xi)
∏

1≤i<j≤N
Pout

(
Yij

∣∣∣∣x>i xj√
N

)
. (4.427)

Nous travaillerons dans le cadre de l'inférence bayésienne où nous supposerons que Y a été
créé à partir du même modèle que l'on essaye d'ajuster aux données Y . Nous appellerons X0 la
solution plantée, c'est à dire la vraie valeur de X que l'on essaie de reconstruire. L'observable
X̂(Y ) (fonction de Y ) qui minimise la distance à la solution plantée est la fonction qui calcule
la moyenne de X selon la probabilité postérieur P (Y |X).
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Le problème est que calculer ces valeurs moyennes est un calcul qui nécessite un nombre expo-
nentiel d'opérations en N . Si l'on veut résoudre des instances données de ce problème l'on doit
avoir des méthodes d'estimations qui ne soient pas exponentielles en la taille du système.

Algorithme de reconstruction : Low-RAMP

Un algorithme pour estimer les marginales des variables xi est donné par l'algorithme Low-
RAMP. Donné par les equations suivantes

Bt
X,i =

1√
N

N∑
k=1

Skix̂
t
k −

x̂t−1
i

∆N

N∑
k=1

σtx,k , (4.428)

AtX =
1

N∆

N∑
k=1

x̂tkx̂
t,>
k , (4.429)

x̂t+1
i = fxin(AtX,i, B

t
X,i) , (4.430)

σt+1
x,i =

∂fxin
∂B

(AtX,i, B
t
X,i) . (4.431)

où

Sij =
∂ logPout(Y |w)

∂w
,

1

∆
= EY ∂Pout(Y |w=0)

[(
∂ logPout(Y |w)

∂w

)2
]

(4.432)

fxin(A,B) ≡ ∂

∂B
log

(∫
dxPX(x) exp

(
B>x− x>Ax

2

))
=

∫
dxPX(x) exp

(
B>x− x>Ax

2

)
x∫

dxPX(x) exp
(
B>x− x>Ax

2

)
(4.433)

A chaque itération de l'algorithme, on calcule une estimation de la moyenne (x̂ti) et de la
matrice de covariance (σtx,i) des variables xi à l'aide la fonction fxin (si les xi étaient des spins
±1 alors fxin(A,B) = tanh(B)). Cette algorithme est essentiellement le même algorithme que
l'on obtiendrait en écrivant les équations mean-�eld naïve. On peut résumer les interactions
de l'ensemble du systèmes sur une variable par un champs distribué aléatoirement selon une
Gaussienne.

La seule di�érence avec les équations mean-�eld se trouve dans les formules équations (4.4284.429)

Les équations de State Evolution

L'algorithme Low-RAMP nous a permis de réaliser des expériences numériques. Toutefois l'on
aimerait analyser les performances de cet algorithme quand la taille du système N tend vers
+∞. L'idée derrière les équations de State-Evolution est de décrire l'état de l'algorithme à
l'aide d'un nombre �ni de paramètres d'ordre.

M t
x =

1

N

∑
1≤i≤N

x̂tix
0,>
i ∈ Rr×r, Qt

x =
1

N

∑
1≤i≤N

x̂tix̂
t,>
i ∈ Rr×r . (4.434)
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On peut ensuite calculer comment ces paramètres d'ordre évoluent après une itération de l'al-
gorithme.

M t+1
x = Ex0,W

[
fxin

(
Qt
x

∆
,
M t

x

∆
x0 +

√
Qt
x

∆
W

)
x>0

]
, (4.435)

Qt+1
x = Ex0,W

[
fxin

(
Qt
x

∆
,
M t

x

∆
x0 +

√
Qt
x

∆
W

)
fxin(· · · , · · · )>

]
, (4.436)

où

W ∼ N (0, Ir) , x0 ∼ PX(x) (4.437)

En utilisant la méthode des répliques on peut aussi calculer l'énergie libre associée à chacun de
ces paramètres d'ordres.

φRS,XX>(Mx) = EW,x0

[
log

(
Zx

(
Mx

∆
,
Mx

∆
x0 +

√
Mx

∆
W

))]
− Tr(MxM

>
x )

4∆
. (4.438)

où

Zx(A,B) =

∫
dxPX(x) exp

(
B>x− x>Ax

2

)
(4.439)

Une zoologie de diagramme de phase

En fonction de ∆ et Px(x) les systèmes étudiés dans cette thèse présentent une variété de
comportements. J'ai étudié les propriétés de nombreux systèmes dé�nis par leur prior PX .

Une des propriétés les plus importantes des ces diagrammes de phase est la présence où non
d'une phase dite di�cile (HARD en anglais). Dans tous les diagrammes de phase suivant on
fera la distinction entre

� La phase dite facile (EASY en anglais). Dans cette phase l'algorithme Low-RAMP est
capable de reconstruire le signal X0 avec des performances qui sont optimales du point
de vue de la théorie de l'information. De plus ces performances sont non triviales.

� Dans la phase impossible (IMPOSSIBLE en anglais) l'algorithme Low-RAMP est capable
de reconstruire le signal de façon optimale. Malheureusement car le ratio signal sur bruit
est trop important le signal X0 est impossible à reconstruire.

� Dans la phase dite dure (HARD en anglais). Il y a une grande di�érence entre les
performances de l'algorithme Low-RAMP et les performances optimales que l'on pourrait
obtenir en calculant les moyennes exactes sur la probabilité postérieur P (X|Y ).

Je trace un exemple d'un tel diagramme de phase dans la �g 4.17 pour le cas XX> et où PX(x)
est donné par

PX(x) = ρδ

(
x−

√
1− ρ
ρ

)
+ (1− ρ)δ

(
x+

√
ρ

1− ρ

)
. (4.440)

Cette densité de probabilité peut prendre 2 valeurs chacune avec une probabilité ρ et 1− ρ les
2 valeurs prises sont telles que Px a une moyenne 0 et une variance de 1.
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Figure 4.17 � Je trace ici le diagramme de phase pour 2 communautés en fonction de ρ
et ∆ pour un prior Px donné par (4.440). On y voit 3 phases, la phase facile en vert où
la reconstruction du signal est possible et l'on peut atteindre la reconstruction optimale, la
phase impossible en rouge où l'on ne peut pas reconstruire le signal car il est impossible de le
reconstruire et la phase di�cile en orange où il est théoriquement possible de reconstruire le
signal mais où cette reconstruction est impossible avec l'algorithme Low-RAMP.

Conclusion

Dans cette thèse je me suis intéressé au problème de factorisation de matrice et tenseur de petit
rang. J'ai pu analyser ce problème en utilisant des outils issus de la physique des verres de spins.
Bien que dans toute cette analyse je me sois restreint à rester dans un cadre Bayésien optimal
ce qui assure de rester dans une phase où la symétrie des répliques n'est pas brisée. On voit que
ces systèmes peuvent avoir une grand nombre de comportements. L'analyse des équations de
State Evolution nous a permis de mettre en évidence des phénomènes de transition du premier
ordre dans ces systèmes. Cette analyse peut aussi nous renseigner sur l'arbitrage à faire sur le
rapport coût de calcul sur performance que proposent les méthodes d'inférence Bayésienne.
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Mean Field equations

In order to compare the Low-RAMP algorithm with the commonly used variational mean �eld
inference we write here the variational mean �eld equations in the same notation we used for
Low-RAMP. We also write the mean �eld free energy. For the symmetric vector-spin glass the
naive mean �eld equations read

Bt
X,i =

N∑
k=1

1√
N
Skix̂

t
k , (441)

AtX,i =
1

N

N∑
k=1

(S2
ki −Rki)

(
x̂tkx̂

t,>
k + σtx,k

)
, (442)

x̂t+1
i = fxin(AtX,i, B

t
X,i) , (443)

σt+1
x,i =

∂fxin
∂B

(AtX,i, B
t
X,i) . (444)

The mean �eld free energy for the symmetric XX> case reads

FMF
XX>({AX,i}, {BX,i}) =

∑
1≤i≤N

log(Zx(AX,i, BX,i))−B>X,ix̂i +
1

2
Tr
[
AX,i(x̂ix̂

>
i + σx,i)

]
+

1

2

∑
1≤i,j≤N

[
1√
N
Sijx̂

>
i x̂j +

(Rij − S2
ij)

2N
Tr
[
(x̂ix̂

>
i + σx,i)(x̂jx̂

>
j + σx,j)

]]
. (445)

For the bipartite IUV > case the mean �eld equations read

Bt
U,i =

1√
N

M∑
l=1

Silv̂
t
l , (446)

AtU =
1

N

M∑
l=1

(
S2
il −Ril

) (
v̂tl v̂

t,>
l + σtu,l

)
, (447)

ûti = fuin(AtU , B
t
U,i) , (448)

σtu,i =

(
∂fuin
∂B

)
(AtU , B

t
U,i) , (449)

Bt
V,j =

1√
N

N∑
k=1

Skjû
t
k , (450)

AtV,j =
1

N

N∑
k=1

(S2
kj −Rkj)

(
ûtkû

t,>
k + σtu,k

)
, (451)

v̂t+1
j = f vin(AtV,j, B

t
V,j) , (452)

σt+1
v,j =

(
∂f vin
∂B

)
(AtV,j, B

t
V,j) . (453)
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The mean �eld free energy for the bipartite case reads

FMF
UV >({AU,i}, {BU,i}, {AV,j}, {BV,j}) =∑

1≤i≤N
log(Zu(AU,i, BU,i))−BU,i

>ûi +
1

2
Tr
[
AU,i(ûiû

>
i + σu,i)

]
+
∑

1≤j≤M
log(Zv(AV,j, BV,j))−BV,j

>v̂j +
1

2
Tr
[
AV,j(v̂j v̂

>
j + σv,j)

]
+

∑
1≤i≤N,1≤j≤M

[
1√
N
Sijû

>
i v̂j +

1

2N
(Rij − S2

ij)Tr
[
(ûiû

>
i + σu,i)(v̂j v̂

>
j + σv,j)

]]
. (454)

The di�erence between the mean �eld equations and the Low-RAMP equations from section
4.2.1 and 4.2.3 can be seen for both variables A and B.

Replica computation UV > case.

In this appendix we present the derivation replica free-energy in the case of the UV > case. In
the coming computation the indices i and k will go from 1 to N . And j and l will go from 1 to
M .

Z({Yij}) =

∫ ∏
i

duiPU(ui)
∏
j

dvjPU(vj)
∏
ij

exp

(
g

(
Yij,

u>i vj√
N

)
− g (Yij, 0)

)
. (455)

One would like to compute the average of 〈log(Z({Yij}))〉. This can be computed using the
replica trick

〈log(Z({Yij}))〉Y = lim
n→0

〈Zn〉 − 1

n
= lim

n→0

log(〈Zn〉)
n

. (456)

These can be hopefully be computed for any n ∈ N. We will then compute this function as
n→ 0. We start with evaluating

Zn({Yij}) =

∫ ∏
a=1···n

∏
i=1···N

duai P
a
U (uai )

∏
j=1···M

dvajP
a
V (vaj ) exp

∏
i=1···N
j=1···M

exp

(
g

(
Yij ,

uivj√
N

)
− g (Yij , 0)

)
.

(457)

Therefore one has

E(Zn) =

∫ ∏
i=1···N,j=1···M

dYijPout (Yij, w = 0)
∏

a=0···n

([ ∏
i=1···N

duaiP
a
U(uai )

∏
j=1···M

dvajP
a
V (vaj )

]
[ ∏
i=1···N,j=1···M

exp

( ∑
a=0···n

ga
(
Yij,

uai v
a
j√
N

)
− ga (Yij, 0)

)])
, (458)

where

� if a = 0 then ga = g0 = log(Pout(Y,w)), P a
U(u) = PU0(u) and P a

V (v) = PV0(v)
� if a 6= 0 then ga = g, P a

U(u) = PU(u) and P a
V (v) = PV (v)
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We expand the function ga to order 2 and get

E(Zn) =

∫ ∏
i=1···N,j=1···M

dYijPout (Yij, w = 0)
∏

a=0···n

([ ∏
i=1···N

duaiP
a
U(uai )

∏
j=1···M

dvajP
a
V (vaj )

]
[ ∏
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uai v
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∂2ga
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)
Yij ,0

(uai v
a
j )

2

2N
+O

(
1

N1.5

))])
. (459)

By expanding the exponential to order two one gets

E(Zn) =

∫ ∏
i=1···N,j=1···M

dYijPout (Yij, w = 0)
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[ ∏
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. (460)

By averaging with respect to the Yij one gets

E(Zn) =

∫ ∏
a=0···n
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( ∑
i=1···N,j=1···M

∑
a=1···n

uai v
a
j u

0
i v

0
j

N∆̂
+

∑
1≤a<b≤n

uai v
a
j u

b
iv
b
j

N∆̃
+
∑
a=1···n

R
(uai v

a
j )

2

2N
+O

(
1

N1.5

))
.

(461)

We now introduce the order parameters

quab =
1

N

∑
i=1···N

uai u
b
i , (462)

qvab =
1

M

∑
j=1···M

vaj v
b
j . (463)
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This leads to

E(Zn) = NM

∫ ∏
0≤a≤b≤n

dquabdq
v
ab

exp

Nα
∆̂

∑
a=1···n

qua0q
v
a0 +

Nα

∆̃

∑
1≤a<b≤n

quabq
v
ab +

Nα

2

∑
a=···n

Rquaaq
v
aa

 Îu({quab})Îv({qvab}) , (464)

where

Îu({quab}) =

∫ ( ∏
a=1···n

∏
i=1···N

duaiP
a
V (uai )

) ∏
0≤a≤b≤n

δ

( ∑
i=1···N

uai u
b
i −Nquab

)
, (465)

and

Îv({qvab}) =

∫ ( ∏
a=1···n

∏
j=1···M

dvajP
a
V (vaj )

) ∏
0≤a≤b≤n

δ

( ∑
i=1···N

vaj v
b
j −Mqvab

)
. (466)

Here Îu({quab}) and Îv({qvab}) are the entropy costs one pays in order for the order parameters to
take one speci�c value. We can treat this constraint by going to Fourier space and then rotating
the path of integration

Iu({quab}, {q̂uab}) =

∫ ∏
a=0···n

P a
U(ua)du

a exp

( ∑
0≤a≤b≤n

q̂uab(u
aub − quab)

)
. (467)

Iv({qvab}, {q̂vab}) =

∫ ∏
a=0···n

P a
V (va)dv

a exp

( ∑
0≤a≤b≤n

q̂vab(v
avb − qvab)

)
. (468)

Therefore

E(Zn) = NM

∫ ∏
0≤a≤b≤n

dquabdq̂
u
abdq

v
abdq̂

v
ab

exp

Nα
∆̂

∑
a=1···n

qua0q
v
a0 +

Nα

∆̃

∑
1≤a<b≤n

quabq
v
ab +

Nα

2

∑
a=···n

Rquaaq
v
aa


Iu({quab}, {q̂uab}))N Iv({qvab}, {q̂vab}))M (469)

We need to extremize this function with respect to all variables. By taking the derivative equal
to 0 with respect to variables quab and q

v
ab we get

q̂ua0 =
αq̂va0

∆̂
, q̂va0 =

q̂ua0

∆̂
, (470)

∀1 ≤ a < b ≤ n, q̂uab =
αq̂vab

∆̃
, q̂vab =

q̂uab

∆̃
, (471)

q̂uaa = Rαq̂vab, q̂vab = Rq̂uab . (472)
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We now assume the replica symmetric ansatz

∀a, b > 1, quab = δab (Σu +Qu) + (1− δab )Qu , (473)
∀a > 1, qua0 = Mu , (474)
∀a, b > 1, qvab = δab (Σv +Qv) + (1− δab )Qv , (475)
∀a > 1, qva0 = Mv . (476)

We can then express the free energy. Let us compute Iu and Iv in that RS ansatz

Iu({quab}, {q̂uab}) exp

( ∑
0≤a≤b≤n

q̂uabq
u
ab

)
=

∫ ∏
a=0···n

P a
U(ua)du

a exp

( ∑
0≤a≤b≤n

q̂uabu
aub

)
. (477)

By using Hubbard-Stratonovich identity one gets

Iu({quab}, {q̂uab}) exp

 ∑
0≤a≤b≤n

q̂uabq
u
ab

 = (478)

=

∫
DWPU0(u0)du0

[∫
duPU (u) exp

(
αMv

∆̂
uu0 +W

√
αQv

∆̃
u−

(
αQv

∆̃
− αR(Qv + Σv)

)
u2

2

)]n
.

(479)

We can now compute the limit as n→ 0.

lim
n→0

log(Iu({quab}, {q̂uab}))
n

=
αQvQu

2∆̃
− αMvMu

∆̂
− αR(Qv + Σv)(Qu + Σu)+

EW,u0

[
log

[∫
duPU(u) exp

(
αMv

∆̂
uu0 +W

√
αQv

∆̃
u−

(
αQv

∆̃
− αR(Qv + Σv)

)
u2

2

))]

lim
n→0

Iv({qvab}, {q̂vab})
N

=
QvQu

2∆̃
− MvMu

∆̂
−R(Qv + Σv)(Qu + Σu)+

EW,v0

[
log

[∫
dvPV (v) exp

(
Mu

∆̂
vv0 +W

√
Qu

∆̃
u−

(
Qu

∆̃
−R(Qu + Σu)

)
u2

2

))]
. (480)

This �nally gives us the replica free energy.

ΦRS(Mu, Qu,Σu,Mv, Qv,Σv) =
αQvQu

2∆̃
− αMvMu

∆̂
− αR(Qv + Σv)(Qu + Σu)

+ EW,u0

[
Zu

(
αQv

∆̃
− αR(Qv + Σv),

αMv

∆̂
u0 +W

√
αQv

∆̃

)]

+ αEW,v0

[
Zv

(
Qu

∆̃
−R(Qu + Σu),

Mu

∆̂
v0 +Ws

√
Qu

∆̃

)]
. (481)

This can also be computed with vectorial notations in both the XX> and UV > setting leading
to eqs. (4.249) and (4.244).
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Small ρ expansion

In this appendix we give the small-ρ limits of the state evolution update functions for the
Rademacher-Bernoulli, Gauss-Bernoulli, 2 balanced groups and Bernoulli models.

Rademacher-Bernoulli model. We want to compute ∀β > 0 the limit of
fRademacher−Bernoulli(−β log(ρ))/ρ (4.344) as ρ→ 0,

fSE
Rademacher−Bernoulli(−β log(ρ))

ρ
= EW

ρ tanh
(
−β log(ρ) +W

√
−β log(ρ)

)
(1− ρ) exp(−β log(ρ)/2)

cosh
(
−β log(ρ)+W

√
−β log(ρ)

) + ρ

 . (482)

Taking the small ρ limit here we get

lim
ρ=0

fSE
Rademacher−Bernoulli(−β log(ρ))

ρ
= lim

ρ=0

1

ρβ/2−1 + 1
= 1(β > 2) , (483)

where we used the fact that the noise W
√
−β log(ρ) is negligible compared to log(ρ) when

ρ→ 0.

Gauss-Bernoulli model. We want to compute ∀β > 0 the limit fGauss−Bernoulli(−β log(ρ))/ρ
(4.346) as ρ→ 0 and r = 1.

fSE
Gauss−Bernoulli(x)/ρ = EW,x0

[
fGauss−Bernoulli

in

(
x, xx0 +

√
xW

)
x0

]
, (484)

= EW
[∫

exp (−x2
0/2)√

2π
x0f

Gauss−Bernoulli
in

(
x, xx0 +

√
xW

)]
, (485)

By intregrating by part one gets

= xEW
[∫

exp (−x2
0/2)√

2π

∂fGauss−Bernoulli
in

∂B

(
x, xx0 +

√
xW

)]
, (486)

Here xx0 +
√
xW is a Gaussian random variable of mean 0 and variance x+ x2. Therefore one

has

fSE
Gauss−Bernoulli(x)/ρ = xEW

[
∂fGauss−Bernoulli

in

∂B

(
x,
√
x2 + xW

)]
, (487)

By making another integration by part one gets

fSE
Gauss−Bernoulli(x)/ρ =

x√
x2 + x

EW
[
fGauss−Bernoulli

in

(
x,
√
x2 + xW

)
W
]

=
x

1 + x
EW

[
W 2ρ̂(x,W

√
x2 + xs

]
, (488)

where
ρ̂(x,W 2(x2 + x)) =

ρ

(1− ρ) exp
(−xW 2

2

)√
1 + x+ ρ

. (489)
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By writing x = −β log(ρ) Depending on the value of W , ρ̂ will either go to zero or one as
ρ→ 0. This will appear in the limit of ρ̂. By taking x = −β log(ρ) one gets

lim
ρ→0

ρ̂(x,W 2(x2 + x)) = lim
ρ→0

1

(1− ρ)ρ
βW2

2
−1
√

1− β log(ρ) + 1
= 1(βW 2 > 2). (490)

From this we deduce that

lim
ρ→0

fSE
Gauss−Bernoulli(−β log(ρ))

ρ
= lim

ρ→0

−β log(ρ)

1− β log(ρ)
EW

[
W 21

(
|W | >

√
2

β

)]
=

2 exp(−1/β)√
βπ

+ erfc
(

1√
β

)
. (491)

Here we used again the fact that the noise W
√
−β log(ρ) is negligible compared to log(ρ) when

ρ→ 0.

2 balanced groups. We want to compute ∀β > 0 the limit fBalanced(−βρ(1−ρ) log(ρ(1−ρ)))
(4.350) as ρ→ 0.

fSE
Balanced(−βρ(1− ρ) log(ρ(1− ρ))) = (492)

EW

 2ρ(1− ρ) sinh
(
−β log(ρ(1−ρ))

2
+W

√
−β log(ρ(1− ρ))

)
1 + 2ρ(1− ρ)

(
cosh

(
−β log(ρ(1−ρ))

2
+W

√
−β log(ρ(1− ρ))

)
− 1
)
 , (493)

lim
ρ→0

fSE
Balanced(−βρ(1− ρ) log(ρ(1− ρ))) = lim

ρ→0

2 [ρ(1− ρ)]1−β/2

1 + 2 [ρ(1− ρ)]1−β/2
= 1(β > 2) . (494)

Here we used the fact that the noiseW
√
−β log(ρ(1− ρ)) is negligible compared to log(ρ(1−ρ))

when ρ→ 0.

Spiked Bernoulli model The state evolution update function in this model is given by
(4.342). Once again we set x = −β log(ρ) to get

fSE
Bernoulli(−β log(ρ))

ρ
= EW

 1

1 + (1− ρ) exp
(

(β/2− 1) log(ρ) +W
√
−β log(ρ)

)
 , (495)

lim
ρ→0

fSE
Bernoulli(−β log(ρ))

ρ
= lim

ρ→0

1

1 + (1− ρ)ρβ/2−1
= 1(β > 2) . (496)

Here we used the fact that the noiseW
√
−β log(ρ) is negligible compared to log(ρ) when ρ→ 0.

To compute the limiting behavior of the phase transitions we analyzed the functions
fRademacher−Bernoulli, fGauss−Bernoulli or fBernoulli (that we will call fρ) as follows. We remind

∆Dyn(ρ) = max
x∈R+

fρ(x)

x
=

ρ

− log(ρ)
max
β∈R+

fρ(−β log(ρ))

ρβ
. (497)
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In the small ρ limit

∆Dyn(ρ) ∼ρ→0
ρ

− log(ρ)
max
β∈R+

1(β > 2)

β
=

ρ

−2 log(ρ)
. (498)

The information-theoretic phase transition in the small ρ limit is computed as follows

∆IT(ρ) = max
x∈R+

∆(x),

x∫
0

dmfρ (u) =
xfρ(x)

2

 , (499)

∆IT(ρ) ∼ρ→0 max
β∈R+

∆(−β log(ρ)),

−β log(ρ)∫
0

dufρ (u) =
−β log(ρ)fρ(−β log(ρ))

2

 , (500)

∆IT(ρ) ∼ρ→0
ρ

− log(ρ)
max
β∈R+

1(β > 2)

β
,

β∫
0

du1(u > 2) =
β1(β > 2)

2

 , (501)

∆IT(ρ) ∼ρ→0
ρ

−4 log(ρ)
. (502)

Large rank behavior for the symmetric community detection

To locate the phase transitions ∆IT and ∆Dyn in the symmetric community detection case
we make a couple of remarks about the state evolution. First we remark that for ∀x ∈ R+

b =Mr(x) is a �xed point of (4.361) for ∆ =Mr(x)/x. By de�nition ∆Dyn is the greatest ∆
for which a �xed point exists

∆Dyn(r) = max
x∈R+

{
Mr(x)

x

}
. (503)

To �nd the ∆IT we notice that by taking the derivative with respect to Q and M of (4.244)
one �nds a combination of (4.202) and (4.203). Therefore we have

φ(b2,∆)− φ(b1,∆) =
r − 1

2r2∆

b2∫
b1

duMr

( u
∆

)
− u . (504)

We deduce a way to compute ∆IT as

∆IT(r) = max
x∈R+

Mr(x)

x
, s.t.

x∫
0

duMr(u) =
xMr(x)

2

 . (505)

To compute ∆IT we evaluate Mr on a whole interval, then for each x draw a line between
point (0, 0) and (x,H(x)). We then compute the area between Mr and this line. When this
area is zero thenMr(x)/x gives us ∆IT.

In order to compute Mr we study the function Mr(x) where we take x = βr log(r), with
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β = Ω(1). The important part ofMr is the integral∫
exp

(
x
r

+
√

x
r
u1

)
exp

(
x
r

+
√

x
r
u1

)
+

r∑
i=2

exp
(√

x
r
ui
) r∏
i=1

Dui . (506)

The important variables to look at are (when taking x = βr log(r))

F1 = exp

(
x

r
+

√
x

r
u1

)
= exp

(
β log(r) +

√
β log(r)u1

)
, (507)

F2 =
r∑
i=2

exp

(√
x

r
ui

)
=

r∑
i=2

exp
(√

β log(r)ui

)
. (508)

If the typical value of F1 dominates F2 as r → +∞ thenMr = 1, otherwise if F2 dominates F1

thenMr = 0. To estimate F1, F2 let us notice that with high probability the maximum value
of the ui will be of order

√
2 log(r). This is a general property of Gaussian variables that the

maximum of r independent Gaussian variables of variance σ2 is of order σ
√

2 log(r). We can
therefore compute the mean of F2 while conditioning on the fact that all of the ui are smaller
than

√
2 log(r). This allows us to compute the typical value of F1 as F1 ∼ rβ. For F2 we obtain :

when β < 2 then F2 ∼ r
β
2

+1, and when if β > 2 then F2 ∼ r
√

2β. We have to look at which
of the F1 or F2 has a higher exponent. β = 2 is the value at which these two exponent cross.
Therefore we have

lim
r→+∞

Mr(βr log(r)) = 1 (β > 2) . (509)

Now let us remind (503) while keeping x = βr log(r) to get

∆Dyn(r) ∼r→∞ max

{
1 (β > 2)

βr log(r)
, β ∈ R+

}
=

1

2r log(r)
. (510)

To get the information-theoretic transition we use (505). Let us �nd the β that satis�es equation
(505) we get

βr log(r)

[
1− 2

β

]
=
βr log(r)

2
. (511)

We deduce β = 4 and therefore

∆IT(r) ∼r→∞
1

4r log(r)
. (512)

Large rank behavior for the mixture of Gaussian clustering

To compute these transitions numerically ρIT and ρalg we consider one value of bv =Mr(x) and
ask what is the value of ρ such that bs =Mr(x) is a �xed point. Using (4.371) the answer is :

ρ(x, r) =
x

2r
+

√
x2

4r
+

x

αMr(x)
. (513)
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The spinodal transition being the minimum value of ρ for which a �xed point other than 0 exists
we can get the spinodal by minimizing (513). The static transition is obtained by expressing the
di�erence in free energy between bv = 0 and bv =Mr(x) at a given ρ and requiring this quantity
to be 0. It is possible to express the RS free energy usingMr. If one integrates the gradient of
φUV > along the path g(u) = (bu(u), bv(u)) (in the space of order parameter bv, bu)de�ned by :

∀u ∈ [0,Mr(x)], g(u) =

(
u
ρ(x)2/r
1
α

+ ρ(x)u
r

, u

)
, (514)

after using (4.264,4.265) and integrating by parts we get

φUV >(Mr(x), ρ(x, α, r), α, r)− φUV >(0, ρ(x, α, r), α; r) =

− αr − 1

2r2

 x∫
0

duMr(u) +

Mr(x)∫
0

du
uρ2

1
α

+ uρ(x)
r

− xMr(x)

 . (515)

The static transition is found where bv = Mr(x) and bv = 0 both have the same free energy
and therefore (515) is equal to 0.

Formulas (513,515) also allow us to explore the large r limit of these systems. From 4.6.2 we
know that

∀β > 0, lim
r→+∞

Mr(βr log r) = 1β>2 . (516)

The �xed point to our equation is of the SE form bv = Mr(x) where x = βr log r and β > 2
(since we are looking for a �xed point that solves the problem) as r grows large it is easy to prove

that ρ(x, α) ∼
√

x
αMr(x)

∼
√

βr log r
α

= O(r log(r)). For β < 2 we get ρ(βr log(r), r) = O(r).

Therefore minimizing ρ(βr log r, α) gives us

ρDyn(r, α) =

√
2r log r

α
(1 + or(1)) . (517)

For β > 2 we have that uρ(x)/r � 1 in (515) which allows us to rewrite the zero condition on
(515) zero as

φUV >(Mr(x), ρ(x, α, r), α, r)− φUV >(0, ρ(x, α, r), α; r) = (518)

−αr − 1

2r2

 x∫
0

duMr(u)− xMr(x)

2

 = 0 . (519)

Which as in 4.6.2 give us as r goes to +∞

βr log(r)

[
1− 2

β

]
=
βr log(r)

2
. (520)
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We deduce β = 4 and therefore

ρ(r, α)IT = 2

√
r log r

α
(1 + or(1)) , (521)

ρ(r, α)Spinodal =

√
2r log r

α
(1 + or(1)) . (522)
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Résumé : Dans cette thèse je présente des résultats sur 

la factorisation de matrice et de tenseur. Les matrices étant 

un objet omniprésent en mathématique un grand nombre 

de problème d'apprentissage machine peuvent être transcrit 

en un problème de factozisation de matrice de petit rang. 

C'est une des méthode les plus basiques utilisé dans les 

méthodes d'apprentissage non supervisé et les problèmes de 

réductions dimensionnelle. 

Les résultats présentés dans cette thèse ont pour la plupart 

déjà été inclus dans des publications antérieures [LKZ 

2015]. 

Le problème de la factorisation de matrice de petit rang 

devient de plus en plus en difficile quand on rajoute des 

contraintes additionnelles, comme par exemple la positivité 

d'un des facteurs. 

Nous présentons içi un cadre dans lequel analyser ce 

problème sous un angle Bayesien où le priors sur les 

facteurs peuvent être générique et où l'output channel à 

travers duquel la matrice est observé peut être générique 

aussi. 

 Nous tracerons un parallèle entre le problème de 

factorisation matriciel et les problème de verre de spin 

vectoriel. Ce cadre permet d'abborder d'une façon unifié des 

problèmes 

qui étaient abordé de façon séparés dans des publications 

précédentes. Nous dérivons en détail la forme générale des 

equations de Low-rank Approximate Message Passing 

(Low-RAMP) ce qui donnera un algorithm de 

factorisation. Ces équations sont connues dans en physique 

statistique sous le nom des equations TAP. Nous dérivons 

ces equations dans différents cas, pour le modèle de 

Sherrington-Kirkpatrick, les restricted Boltzmann machine, 

le modèle de Hopfield ou encore le modèle xy. La 

dynamique des équations Low-RAMP peuvent être analysé 

en utilisant les equation de State Evolution ces equations 

sont équivalentes à un calcul 

des répliques symmétrique. Dans la section dévolue aux 

résultats nous étudierons de nombreux diagramme de phase 

et transition de phase dans le cas Bayes-optimale. Nous 

présentons different différents typologies 

de diagramme de phase et leurs interprétations en terme de 

performances algorithmiques.  
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Abstract :  
In this thesis we present the result on low rank matrix and 

tensor factorization. Matrices being such an ubiquitous 

mathematical object a lot of machine learning can be 

mapped to a low-rank matrix factorization problem. It is 

for example one of the basic methods used in data analysis 

for unsupervised learning of relevant features and other 

types of dimensionality reduction.  The result presented in 

this thesis have been included in previous work [LKZ 201].  

The problem of low rank matrix becomes harder once one 

adds constraint to the problem like for instance the 

positivity of one of the factor of the factorization. We 

present a framework to study the constrained low-rank 

matrix estimation for a general prior on the factors, and a 

general output channel through which the matrix is 

observed. We draw a parallel with the study of vector-spin 

glass models -- presenting a unifying way to study a 

number of problems considered previously in separate 

statistical physics works. We present a number of 

applications for the problem in data analysis.  

We derive in detail a general form of the low-rank 

approximate message passing (Low-RAMP) algorithm that 

is known in statistical physics as the TAP equations. We 

thus unify the derivation of the TAP equations for models 

as different as the Sherrington-Kirkpatrick model, the 

restricted Boltzmann machine, the Hopfield model or 

vector (xy, Heisenberg and other) spin glasses. The state 

evolution of the Low-RAMP algorithm is also derived, and 

is equivalent to the replica symmetric solution for the large 

class of vector-spin glass models. In the section devoted to 

result we study in detail phase diagrams and phase 

transitions for the Bayes-optimal inference in low-rank 

matrix estimation. We present a typology of phase 

transitions and their relation to performance of algorithms 

such as the Low-RAMP or commonly used spectral 

methods. excessit e vita aetatis nono anno atque vicensimo 

cum quadriennio imperasset. natus apud Tuscos in Massa 

Veternensi, patre Constantio Constantini fratre imperatoris, 

matreque Galla. 
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