I. Electronics, Curie temperature, 2015.

P. Semiconductors, Circulators and isolators, unique passive devices, 1998.

E. Ohm, A Broad-Band Microwave Circulator, IEEE Transactions on Microwave Theory and Techniques, vol.4, issue.4, pp.210-217, 1956.
DOI : 10.1109/TMTT.1956.1125064

S. Ewing and J. Weiss, Ring Circulator Theory, Design, and Performance, IEEE Transactions on Microwave Theory and Techniques, vol.15, issue.11, pp.623-628, 1967.
DOI : 10.1109/TMTT.1967.1126551

H. Bosma, On Stripline Y-Circulation at UHF, IEEE Transactions on Microwave Theory and Techniques, vol.12, issue.1, pp.61-72, 1964.
DOI : 10.1109/TMTT.1964.1125753

H. Dong, J. Smith, and J. Young, A wide-band, high isolation UHF lumpedelement ferrite circulator Microwave and Wireless Components Letters, pp.294-296, 2013.
DOI : 10.1109/lmwc.2013.2258004

J. Wang, A. Yang, Y. Chen, Z. Chen, A. Geiler et al., Self biased Y-junction circulator at ku band, Microwave and Wireless Components Letters, pp.292-294, 2011.

N. Estep, D. Sounas, and A. Alu, Magnetic-free, fully integrated, compact microwave circulator using angular-momentum biasing, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp.340-341, 2014.
DOI : 10.1109/APS.2014.6904502

D. M. Pozar, Microwave engineering 4th edition, 2011.

A. N. Anl, Ferrite material, Microwave Physics and Techniques, p.158, 2003.

B. Bayard, Thesis report: Contribution au developpement de composants passifs magnetiques pour l'electronique hyperfrequence, 2000.

R. Center, Resource center, NDT Course Material, 2015.

T. Ceramics, Temex: Microwave ferrite materials, Microwave Ferrites, 2015.

A. Shamim, J. Bray, N. Hojjat, R. A. Elasoued, and D. Baillargeat, Microwave and Magnetostatic Characterization of Ferrite LTCC for Tunable and Reconfigurable SiP Applications, 2007 IEEE/MTT-S International Microwave Symposium, pp.691-694, 2007.
DOI : 10.1109/MWSYM.2007.380014

URL : https://hal.archives-ouvertes.fr/hal-00199069

Y. Imanaka, Multilayered low temperature cofired ceramics (ltcc) technology, 2005.

A. Tchangoulian, Thesis report: Utilisation de matériaux composites magnétiquesmagnétiquesà nanoparticules pour la réalisation de composants passifs non réciproques micro-ondes, 2014.

K. Oshiro, H. Mikami, S. Fujii, T. Tanaka, H. Fujimori et al., Fabrication of circulator with coplanar wave guide structure, IEEE Transactions on Magnetics, vol.41, issue.10, pp.3550-3552, 2005.
DOI : 10.1109/TMAG.2005.854729

T. Wada, R. Nakajima, H. Obiya, T. Ogami, M. Koshino et al., A miniaturized broadband lumped element circulator for reconfigurable front-end system, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-3, 2014.
DOI : 10.1109/MWSYM.2014.6848316

G. Radosavljevic, L. Zivanov, W. Smetana, A. Maric, M. Unger et al., A Wireless Embedded Resonant Pressure Sensor Fabricated in the Standard LTCC Technology, IEEE Sensors Journal, vol.9, issue.12, pp.1956-1962, 2009.
DOI : 10.1109/JSEN.2009.2030974

K. Wu and Y. Huang, LTCC technology and its applications in high frequency front end modules, Antennas, Propagation and EM Theory, 2003. AR- TICLE. 2003 6th International SYmposium on, pp.730-734, 2003.

C. Atzlesberger and W. Smetana, Evaluation of a Centrifugal Micropump realized in LTCC-Technology, 2007 30th International Spring Seminar on Electronics Technology (ISSE), pp.243-247, 2007.
DOI : 10.1109/ISSE.2007.4432856

I. Ii, Y. Li, S. Ruan, I. Zhou, and Y. Fei, Integrated ltcc transmitter module at ku band Microwave Technology and Computational Electromagnetics, ICMTCE. International Conference on, pp.214-217, 2009.

T. Jensen, V. Krozer, and C. Kjaergaard, Realisation of microstrip junction circulator using LTCC technology, Electronics Letters, vol.47, issue.2, pp.111-113, 2011.
DOI : 10.1049/el.2010.2419

R. Van-dijk, G. Van-der-bent, M. Ashari, and M. Mckay, Circulator integrated in low temperature co-fired ceramics technology, European Microwave Conference 2014 Rome, pp.1544-1547, 2014.

F. Ghaffar and A. Shamim, A ferrite LTCC based dual purpose helical antenna providing bias for tunability Antennas and Wireless Propagation Letters
DOI : 10.1109/lawp.2014.2382608

A. Shamim, J. R. Bray, N. Hojjat, and L. Roy, Ferrite LTCC-Based Antennas for Tunable SoP Applications, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, issue.7, pp.999-1006, 2011.
DOI : 10.1109/TCPMT.2011.2143411

F. A. Ghaffar, J. R. Bray, and A. Shamim, Theory and Design of a Tunable Antenna on a Partially Magnetized Ferrite LTCC Substrate, IEEE Transactions on Antennas and Propagation, vol.62, issue.3, pp.1238-1245, 2014.
DOI : 10.1109/TAP.2013.2295833

E. Arabi, F. Ghaffar, and A. Shamim, Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications Microwave and Wireless Components Letters, IEEE, vol.25, issue.1, pp.16-18, 2015.
DOI : 10.1109/lmwc.2014.2365748

J. Bray and L. Roy, Development of a Millimeter-Wave Ferrite-Filled Antisymmetrically Biased Rectangular Waveguide Phase Shifter Embedded in Low-Temperature Cofired Ceramic, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.7, pp.1732-1739, 2004.
DOI : 10.1109/TMTT.2004.830489

J. Adam, G. F. Dionne, E. Schloemann, and S. Stitzer, Ferrite devices and materials, Journal of Materials Sciences: Materials in Electronics, pp.721-737, 2002.
DOI : 10.1109/22.989957

N. Zeina, H. How, C. Vittoria, and R. West, Self-biasing circulators operating at K/sub a/-band utilizing M-type hexagonal ferrites, IEEE Transactions on Magnetics, vol.28, issue.5, pp.3219-3221, 1992.
DOI : 10.1109/20.179764

C. L. Hogan, The Ferromagnetic Faraday Effect at Microwave Frequencies and its Applications, Bell System Technical Journal, vol.31, issue.1, pp.1-31, 1952.
DOI : 10.1002/j.1538-7305.1952.tb01374.x

J. Helszajn and P. Walker, Operation of High Peak Power Differential Phase Shift Circulators at Direct Magnetic Fields Between Subsidiary and Main Resonances, IEEE Transactions on Microwave Theory and Techniques, vol.26, issue.9, pp.653-658, 1978.
DOI : 10.1109/TMTT.1978.1129458

J. Button and . Kenneth, Theoretical Analysis of the Operation of the Field-Displacement Ferrite Isolator, IEEE Transactions on Microwave Theory and Techniques, vol.6, issue.3, pp.303-308, 1958.
DOI : 10.1109/TMTT.1958.1124562

H. Bosma, On the principle of stripline circulation, Proceedings of the IEE - Part B: Electronic and Communication Engineering, vol.109, issue.21S, pp.137-146, 1962.
DOI : 10.1049/pi-b-2.1962.0027

C. Fay and R. Comstock, Operation of the Ferrite Junction Circulator, IEEE Transactions on Microwave Theory and Techniques, vol.13, issue.1, pp.15-27, 1965.
DOI : 10.1109/TMTT.1965.1125923

Y. S. Wu and F. J. Rosenbaum, Wide-Band Operation of Microstrip Circulators, IEEE Transactions on Microwave Theory and Techniques, vol.22, issue.10, pp.849-856, 1974.
DOI : 10.1109/TMTT.1974.1128363

S. Ayter and Y. Ayasli, The Frequency Behavior of Stripline Circulator Junctions, IEEE Transactions on Microwave Theory and Techniques, vol.26, issue.3, pp.197-202, 1978.
DOI : 10.1109/TMTT.1978.1129344

J. Helszajn, Frequency Response of Quarter-Wave Coupled Reciprocal Stripline Junctions, IEEE Transactions on Microwave Theory and Techniques, vol.21, issue.8, pp.533-537, 1973.
DOI : 10.1109/TMTT.1973.1128053

E. Schloemann and R. Blight, Broad-Band Stripline Circulators Based on YIG and Li-Ferrite Single Crystals, IEEE Transactions on Microwave Theory and Techniques, vol.34, issue.12, pp.1394-1400, 1986.
DOI : 10.1109/TMTT.1986.1133554

J. Weiss, N. Watson, and G. Dionne, New uniaxial-ferrite millimeter-wave junction circulators, IEEE MTT-S International Microwave Symposium Digest, pp.145-148, 1989.
DOI : 10.1109/MWSYM.1989.38689

V. Laur, G. Vérissimo, P. Queffelec, L. A. Farhat, H. Alaaeddine et al., Modélisation et caractérisation d'un circulateur auto-polarisé en bande millimétrique, XIXèmes Journées Nationales Microondes, pp.3-4, 2015.

V. Laur, J. Mattei, and P. Queffelec, Conception et réalisation d'un circulateur en technologie siwàsiwà base de nanocomposites ferrimagnétiques, XIXèmes Journées Nationales Microondes 3-4-5, 2015.

T. Boyadjian, Thesis report: ´ Etude et realisation dun circulateur hy- perfréquencè a nano particules magnétiques orientées dans la bande 40-60 ghz

L. G. Maloratsky, Passive rf and microwave integrated circuits, 2004.

. Wikipedia, Curie temperature, Wikipedia, 2015.

B. Dillon and A. Gibson, Finite element analysis of high power differential phase shift circulators Antennas and Propagation, Eleventh International Conference on, pp.871-875, 2001.

P. J. Allen, The Turnstile Circulator, IEEE Transactions on Microwave Theory and Techniques, vol.4, issue.4, pp.223-227, 1956.
DOI : 10.1109/TMTT.1956.1125066

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, A Non-Reciprocal Broadband Terahertz Isolator, CLEO: 2013, pp.1-2, 2013.
DOI : 10.1364/CLEO_SI.2013.CW1K.7

S. Ju, S. Jeong, Y. Kim, P. Watekar, and W. Han, Demonstration of All-Optical Fiber Isolator Based on a CdSe Quantum Dots Doped Optical Fiber Operating at 660 nm, Journal of Lightwave Technology, vol.31, issue.16, pp.2793-2798, 2013.
DOI : 10.1109/JLT.2013.2273215

J. Weiss, Circulator Synthesis, IEEE Transactions on Microwave Theory and Techniques, vol.13, issue.1, pp.38-44, 1965.
DOI : 10.1109/TMTT.1965.1125926

W. Siekanowicz, R. Paglione, and T. E. Walsh, A Latching Ring-And-Post Ferrite Waveguide Circulator, IEEE Transactions on Microwave Theory and Techniques, vol.18, issue.4, pp.212-216, 1970.
DOI : 10.1109/TMTT.1970.1127191

J. Helszajn, A ferrite ring stripline junction circulator, Radio and Electronic Engineer, vol.32, issue.1, pp.55-60, 1966.
DOI : 10.1049/ree.1966.0056

U. Milano, J. H. Saunders, and J. L. Davis, A Y-junction strip-line circulator, IRE Transactions on Microwave Theory and Techniques, vol.8, issue.3, pp.346-351, 1960.

H. Carlin, Non-reciprocal network theory applied to ferrite microwave devices, Proceedings of the IEE - Part B: Radio and Electronic Engineering, vol.104, issue.6S, pp.316-319, 1957.
DOI : 10.1049/pi-b-1.1957.0052

P. D. Santis and F. Pucci, The Edge-Guided-Wave Circulator (Short Papers), IEEE Transactions on Microwave Theory and Techniques, vol.23, issue.6, pp.516-519, 1975.
DOI : 10.1109/TMTT.1975.1128613

P. Santis and F. Pucci, Symmetrical Four-Port Edge-Guided Wave Circulators, IEEE Transactions on Microwave Theory and Techniques, vol.24, issue.1, pp.10-18, 1976.
DOI : 10.1109/TMTT.1976.1128758

K. Araki, T. Koyama, and Y. Naito, New Edge Guided Mode Devices, MTT-S International Microwave Symposium Digest, pp.250-253, 1975.
DOI : 10.1109/MWSYM.1975.1123349

M. Hines, Reciprocal and Nonreciprocal Modes of Propagation in Ferrite Stripline and Microstrip Devices, IEEE Transactions on Microwave Theory and Techniques, vol.19, issue.5, pp.442-451, 1971.
DOI : 10.1109/TMTT.1971.1127545

J. Helszajn, The lumped element circulator The Stripline Circulators:Theory and Practice, pp.221-237, 2008.

Y. Konishi, Lumped Element Y Circulator, IEEE Transactions on Microwave Theory and Techniques, vol.13, issue.6, pp.852-864, 1965.
DOI : 10.1109/TMTT.1965.1126116

C. Christensen, Synthesis of lumped element ferrite circulators Microwave Conference, pp.1-4, 1971.

T. Wada, R. Nakajima, H. Obiya, T. Ogami, and M. Koshino, A miniaturized broadband lumped element circulator for reconfigurable front-end system, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-3, 2014.
DOI : 10.1109/MWSYM.2014.6848316

Y. Akaiwa and T. Okazak, An application of a hexagonal ferrite to a millimeter-wave Y circulator, IEEE Transactions on Magnetics, vol.10, issue.2, pp.374-378, 1974.
DOI : 10.1109/TMAG.1974.1058336

E. Schloemann, Circulators for microwave and millimeter-wave integrated circuits, Proceedings of the IEEE, vol.76, issue.2, pp.188-200, 1988.
DOI : 10.1109/5.4394

D. L. Sounas, C. Caloz, and A. , Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials, Nature Communications, vol.4, 2013.
DOI : 10.1109/50.588673

URL : http://www.nature.com/articles/ncomms3407.pdf

I. Korn, OQPSK and MSK systems with bandlimiting filters in transmitter and receiver and various detector filters, IEE Proceedings F Communications, Radar and Signal Processing, vol.127, issue.6, pp.439-447, 1980.
DOI : 10.1049/ip-f-1.1980.0064

W. Campbell and T. Parks, Optimal design of transmitter and receiver filters with mixed performance objectives ICASSP-96, IEEE International Conference on, pp.1527-1529, 1996.

. Wikipedia, Isolator(microwave), 2015.

B. Bayard, B. Sauviac, and D. Vincent, Encyclopedia of rf and microwave engineering, 2005.

E. Salonen and P. Jokela, The effects of dry snow on reflector antennas Antennas and Propagation, 1991. ICAP 91, Seventh International Conference on (IEE), pp.17-20, 1991.

M. Microwave, Overview of phase shifters and switches, MESL Microwave, p.3, 2015.

I. Harris and A. Williams, Magnetic materials, 2005.

. Wikipedia, Wikipedia paramagnetism, 2015.

. Wikipedia, Wikipedia ferromagnetism, 2015.

D. S. Mathew and R. Juang, An overview of magnetism of spinel nanoferrite particles and a study of chromium substituted zn-mn ferrites nanostructures via sol-gel method, 2011 International Conference on, pp.119-124, 2011.

. Wikipedia, Wikipedia antiferromagnetism, 2015.

K. K. Mallick, P. Shepherd, and R. J. Green, Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation, Journal of Magnetism and Magnetic Materials, vol.312, issue.2, 2006.
DOI : 10.1016/j.jmmm.2006.11.130

W. Kezhu, J. Renpei, and L. Shigen, New technique of microwave ferrite and application, 2013.

E. Schlömann, BEHAVIOR OF FERRITES IN THE MICROWAVE FREQUENCY RANGE, Le Journal de Physique Colloques, vol.32, issue.C1, p.529, 1970.
DOI : 10.1051/jphyscol:19711153

P. Gelin and K. B. Pichavant, New consistent model for ferrite permeability tensor with arbitrary magnetization state, IEEE Transactions on Microwave Theory and Techniques, vol.45, issue.8, pp.1185-1192, 1997.
DOI : 10.1109/22.618406

G. T. Rado, Theory of the Microwave Permeability Tensor and Faraday Effect in Nonsaturated Ferromagnetic Materials, Physical Review, vol.40, issue.2, p.529, 1953.
DOI : 10.1051/jphysrad:01951001203030500

M. Igarashi and Y. Naito, Tensor permeability of partially magnetized ferrites, IEEE Transactions on Magnetics, vol.13, issue.5, pp.1664-1668, 1977.
DOI : 10.1109/TMAG.1977.1059669

M. Igarashi and Y. Natio, Parallel Component ?? /sub z/ of Partially Magnetized Microwave Ferrites, IEEE Transactions on Microwave Theory and Techniques, vol.29, issue.6, pp.568-571, 1981.
DOI : 10.1109/TMTT.1981.1130394

P. Gelin and P. Quéffélec, Generalized Permeability Tensor Model: Application to Barium Hexaferrite in a Remanent State for Self-Biased Circulators, IEEE Transactions on Magnetics, vol.44, issue.1, pp.24-31, 2008.
DOI : 10.1109/TMAG.2007.909561

URL : https://hal.archives-ouvertes.fr/hal-00492262

P. Quéffélec, M. L. Floc-'h, and P. Gelin, New method for determining the permeability tensor of magnetized ferrites in a wide frequency range, IEEE Transactions on Microwave Theory and Techniques, vol.48, issue.8, pp.1344-1351, 2000.
DOI : 10.1109/22.859479

P. Gelin, P. Quéffélec, and F. L. Pennec, Effect of domain and grain shapes on the dynamical behavior of polycrystalline ferrites: Application to the initial permeability, Journal of Applied Physics, vol.8, issue.5, pp.568-571, 1981.
DOI : 10.1109/75.852423

J. J. Green and F. Sandy, Microwave Characterization of Partially Magnetized Ferrites, IEEE Transactions on Microwave Theory and Techniques, vol.22, issue.6, pp.641-645, 1974.
DOI : 10.1109/TMTT.1974.1128306

E. Electroscience, Esl40012 ferrite ltcc tape, ESL ElectroScience, issue.6, 2015.

D. Vincent, T. Rouiller, C. Simovsky, B. Bayard, and G. Noyel, A new broad-band method for magnetic thin-film characterization in the microwave range, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.4, pp.1174-1180, 2005.
DOI : 10.1109/TMTT.2005.845730

URL : https://hal.archives-ouvertes.fr/ujm-00802549

P. L. Fulmek, P. Haumer, I. Atassi, B. Schweighofer, and H. Wegleiter, Magnetic DC-Properties of LTCC-Ferrite Material and<newline/> Their Temperature Dependence, IEEE Transactions on Magnetics, vol.48, issue.4, pp.1541-1544, 2012.
DOI : 10.1109/TMAG.2011.2173172

J. R. Bray, K. T. Kautio, and L. Roy, Characterization of an Experimental Ferrite LTCC Tape System for Microwave and Millimeter-Wave Applications, IEEE Transactions on Advanced Packaging, vol.27, issue.3, pp.558-565, 2004.
DOI : 10.1109/TADVP.2004.831873

F. Ghaffar and A. Shamim, A ferrite LTCC based dual purpose helical antenna providing bias for tunability Antennas and Wireless Propagation Letters, IEEE, vol.14, pp.831-834, 2015.
DOI : 10.1109/lawp.2014.2382608

A. Ghaffar and F. Shamim, A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications, IEEE Transactions on Magnetics, vol.51, issue.6
DOI : 10.1109/TMAG.2015.2404303

E. Arabi and A. Shamim, The Effect of Self-Heating on the Performance of a Tunable Filter With Embedded Windings in a Ferrite LTCC Package, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.5, issue.3, pp.365-371, 2015.
DOI : 10.1109/TCPMT.2015.2393551

H. J. Carlin, Principles of gyrator networks, Proc. Modern Advances in Microwave Tech. Symp, pp.175-204, 1954.

B. A. Auld, The Synthesis of Symmetrical Waveguide Circulators, IEEE Transactions on Microwave Theory and Techniques, vol.7, issue.2, pp.238-246, 1959.
DOI : 10.1109/TMTT.1959.1124688

G. Buehler and A. Eikenberg, Stripline Y-circulator for the 100 to 400 mc region, Proc. IRE, p.518, 1961.

J. Clark, -Junction Circulators, Journal of Applied Physics, vol.48, issue.3, p.3238, 1961.
DOI : 10.1109/JRPROC.1956.274982

L. Davis, U. Milano, and J. Saunders, A stripline L-band compact circulator, Proc. IRE, p.115, 1960.

S. Yoshida, Stripline Y-circulator, Proc. IRE, p.1664, 1960.

M. Grace and F. Arams, Three-port ring circulators, Journal of Applied Physics, vol.48, p.1497, 1960.

J. Pippin, Microwave ferrite device, Microwave Journal, vol.11, pp.29-45, 1960.

J. S. Chang, Master report: The design of three-port strip line circulator, 1969.

D. D. Grieg and H. F. Englemann, Microstrip-A New Transmission Technique for the Klilomegacycle Range, Proceedings of the IRE, pp.1644-1650, 1952.
DOI : 10.1109/JRPROC.1952.274144

B. Hershenov, X-band microstrip circulator, Proceedings of the IEEE, vol.54, issue.12, pp.2022-2023, 1966.
DOI : 10.1109/PROC.1966.5355

R. Trambarulo, A 30-GHz Inverted-Microstrip Circulator (Correspondence), IEEE Transactions on Microwave Theory and Techniques, vol.19, issue.7, pp.662-664, 1971.
DOI : 10.1109/TMTT.1971.1127600

B. Peng, W. Zhang, Y. Sun, J. Lin, W. Zhang et al., Design of microstrip Y-junction circulator based on ferrite thin films, Microwave Conference Proceedings (CJMW), 2011 China-Japan Joint, pp.1-4, 2011.

W. Peng, B. Wang, and . Zhang, Self-Biased Microstrip Junction Circulator Based on Barium Ferrite Thin Films for Monolithic Microwave Integrated Circuits, IEEE Transactions on Magnetics, vol.47, issue.6, pp.1674-1677, 2011.
DOI : 10.1109/TMAG.2011.2116159

C. P. Wen, Coplanar waveguide, a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications, Microwave Symposium, 1969 G-MTT International, pp.110-115, 1969.
DOI : 10.1109/gmtt.1969.1122668

B. Bayard, D. Yincent, C. R. Simovski, and G. Noyel, Electromagnetic study of a ferrite coplanar isolator suitable for integration, IEEE Transactions on Microwave Theory and Techniques, vol.51, issue.7, pp.1809-1814, 2003.
DOI : 10.1109/TMTT.2003.814312

N. Ogasawara and M. Kaji, Coplanar-guide and slot-guide junction circulators, Electronics Letters, vol.7, issue.9, pp.220-221, 1971.
DOI : 10.1049/el:19710149

B. Wang, Y. Peng, and W. Zhang, Simulation of self-biased coplanar circulator using barium ferrite thin films, 2010 International Conference on Microwave and Millimeter Wave Technology, pp.543-546, 2010.
DOI : 10.1109/ICMMT.2010.5525214

T. Boyajian, D. Vincent, S. Neveu, M. Leberre, and J. Rousseau, Coplanar circulator made from composite magnetic material, Microwave Symposium Digest (MTT) IEEE MTT-S International, 2011.
DOI : 10.1109/mwsym.2011.5973323

J. B. Davies and P. Cohen, Theoretical Design of Symmetrical Junction Stripline Circulators, IEEE Transactions on Microwave Theory and Techniques, vol.11, issue.6, pp.506-512, 1963.
DOI : 10.1109/TMTT.1963.1125717

R. E. Neidert and P. M. Phillips, Losses in Y-junction stripline and microstrip ferrite circulators, IEEE Transactions on Microwave Theory and Techniques, vol.41, issue.6, pp.1081-1086, 1993.
DOI : 10.1109/22.238531

C. K. Seewald and J. R. Bray, Ferrite-Filled Antisymmetrically Biased Rectangular Waveguide Isolator Using Magnetostatic Surface Wave Modes, IEEE Transactions on Microwave Theory and Techniques, vol.58, issue.6, pp.1493-1501, 2010.
DOI : 10.1109/TMTT.2010.2047919

S. Yang, D. Vincent, J. R. Bray, and L. Roy, Ferrite LTCC edge-guided circulator, 2014 9th European Microwave Integrated Circuit Conference, 2014.
DOI : 10.1109/EuMIC.2014.6997927

R. Soohoo, Theory and application of ferrites, englewood cliffs, nj:prenticehall, pp.83-111, 1960.

S. Yang, L. Roy, J. R. Bray, and D. Vincent, Modeling and simulation of a partially-magnetized ferrite LTCC circulator, 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2015.
DOI : 10.1109/NEMO.2015.7415092

P. Vincent, D. Bray, J. R. Roy, and L. , Study of a Ferrite LTCC Multifunctional Circulator With Integrated Winding, Components, Packaging and Manufacturing Technology, pp.879-886, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01478828

S. Yang, D. Vincent, J. R. Bray, and L. Roy, Ferrite LTCC edge-guided circulator, 2014 9th European Microwave Integrated Circuit Conference, 1540.
DOI : 10.1109/EuMIC.2014.6997927

S. Yang, D. Vincent, R. Joey, L. Bray, and . Roy, Circulateur LTCC Ferrite large-bandè a structures empilées en bande K, 19émes Journées Nationales Micro-ondes, p.2015, 2015.