.. Degree-of-polymerization-of-cellulose, 10 2.3. Cellulose biosynthesis and cellulose microfibril formation

J. Schoeck, R. J. Davies, A. Martel, and C. Riekel, Na-Cellulose Formation in a Single Cotton Fiber Studied by Synchrotron Radiation Microdiffraction, Biomacromolecules, vol.8, issue.2, 2007.
DOI : 10.1021/bm060844w

R. Silva, S. K. Haraguchi, E. C. Muniz, and A. F. Rubira, Aplica????es de fibras lignocelul??sicas na qu??mica de pol??meros e em comp??sitos, Qu??mica Nova, vol.32, issue.3, pp.661-671, 2009.
DOI : 10.1590/S0100-40422009000300010

R. Sinko, S. Mishra, L. Ruiz, N. Brandis, and S. Keten, Dimensions of Biological Cellulose Nanocrystals Maximize Fracture Strength, ACS Macro Letters, vol.3, issue.1, pp.64-69, 2013.
DOI : 10.1021/mz400471y

G. Siqueira, J. Bras, and A. Dufresne, New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir, vol.26, issue.1, pp.402-411, 2010.
DOI : 10.1021/la9028595

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.14, issue.13, pp.459-494, 2010.
DOI : 10.1016/j.carbpol.2007.11.015

W. Sisson, THE EXISTENCE OF MERCERIZED CELLULOSE AND ITS ORIENTATION IN HALICYSTIS AS INDICATED BY X-RAY DIFFRACTION ANALYSIS, Science, vol.87, issue.2259, pp.350-351, 1938.
DOI : 10.1126/science.87.2259.350

L. H. Sperling, Introduction to Physical Polymer Science, 2006.
DOI : 10.1002/0471757128

H. Staudinger, Über Polymerisation, European Journal of Inorganic Chemsitry, vol.53, pp.1073-1085, 1920.

H. Staudinger, Die Chemie der hochmolekularen organischen Stoffe im Sinne der Kekulèschen Strukturlehre, Berichte der deutschen chemischen Gesellschaft, vol.56, pp.3019-3043, 1926.
DOI : 10.1002/ange.19290420304

D. Stauffer, Introduction to Percolation Theory, 1985.

A. ?turcova, G. R. Davies, and S. J. Eichhorn, Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers, Biomacromolecules, vol.6, issue.2, pp.1055-1061, 2005.
DOI : 10.1021/bm049291k

M. Takayanagi, S. Uemura, and S. Minami, Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer, Journal of Polymer Science Part C: Polymer Symposia, vol.13, issue.1, pp.113-122, 1964.
DOI : 10.1088/0370-1301/69/8/305

Q. Yang and X. Pan, A facile approach for fabricating fluorescent cellulose, Journal of Applied Polymer Science, vol.10, pp.3639-3644, 2010.
DOI : 10.1002/app.32287

D. Yang, X. Peng, L. Zhong, X. Cao, W. Chen et al., Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals, Cellulose, vol.69, issue.3, 2013.
DOI : 10.1016/j.carbpol.2007.01.019

Y. H. Zhang, J. Cui, L. R. Lynd, and L. R. Kuang, -Phosphoric Acid:?? Evidence from Enzymatic Hydrolysis and Supramolecular Structure, Biomacromolecules, vol.7, issue.2, pp.644-648, 2006.
DOI : 10.1021/bm050799c

A. Bendahou, Y. Habibi, H. Kaddami, and A. Dufresne, Physico-Chemical Characterization of Palm from <I>Phoenix Dactylifera</I>???L, Preparation of Cellulose Whiskers and Natural Rubber???Based Nanocomposites, Journal of Biobased Materials and Bioenergy, vol.3, issue.1, pp.81-90, 2009.
DOI : 10.1166/jbmb.2009.1011

H. Bittiger and E. Husemann, Crystal morphology of precipitated mannan, Journal of Polymer Science Part B: Polymer Letters, vol.10, issue.5, pp.367-371, 1972.
DOI : 10.1002/pol.1972.110100507

B. S. Brito, F. V. Pereira, J. Putaux, and B. Jean, Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers, Cellulose, vol.24, issue.5, pp.1527-1536, 2012.
DOI : 10.1021/ma00009a050

URL : https://hal.archives-ouvertes.fr/hal-00727770

A. Buléon and H. Chanzy, Single crystals of cellulose II, Journal of Polymer Science: Polymer Physics Edition, vol.16, issue.5, pp.833-839, 1978.
DOI : 10.1002/pol.1978.180160508

H. D. Chanzy and E. J. Roche, Fibrous transformation of Valonia cellulose I into cellulose II, Applied Polymer Symposium, vol.28, pp.701-711, 1976.
URL : https://hal.archives-ouvertes.fr/hal-00309137

H. D. Chanzy, A. Grosrenaud, R. Vuong, and W. Mackie, The crystalline polymorphism of mannan in plant cell walls and after recrystallisation, Planta, vol.122, issue.4, pp.320-329, 1984.
DOI : 10.1007/BF00398722

G. Chauve, C. Fraschini, B. Jean, K. Oksman, and A. P. Mathew, Separation of cellulose nanocrystalsHandbook of Green Materials: Processing Technologies, Properties and Applications, pp.73-87, 2013.

E. D. Cranston and D. G. Gray, Birefringence in spin-coated films containing cellulose nanocrystals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.325, issue.1-2, pp.44-51, 2008.
DOI : 10.1016/j.colsurfa.2008.04.042

P. Dhar, D. Tarafder, A. Kumar, and V. Katiyar, Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites, RSC Adv., vol.122, issue.74, pp.60426-60440, 2015.
DOI : 10.1002/app.33984

R. M. Dos-santos, F. Neto, W. P. Silvério, H. A. Martins, D. F. Dantas et al., Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste, Industrial Crops and Products, vol.50, pp.707-714, 2013.
DOI : 10.1016/j.indcrop.2013.08.049

A. Dufresne, Nanocellulose: From nature to high-performance tailored materials, 2012.
DOI : 10.1515/9783110254600

S. J. Eichhorn, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, vol.112, issue.2, pp.303-315, 2011.
DOI : 10.1021/bm100684k

S. Elazzouzi-hafraoui, Y. Nishiyama, J. Putaux, L. Heux, F. Dubreuil et al., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, vol.9, issue.1, pp.57-65, 2008.
DOI : 10.1021/bm700769p

URL : https://hal.archives-ouvertes.fr/hal-00303876

A. D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose, vol.19, issue.10, pp.885-896, 2014.
DOI : 10.1007/978-3-540-73934-0

K. H. Gardner and J. Blackwell, The structure of native cellulose, Biopolymers, vol.121, issue.10, pp.1975-2001, 1974.
DOI : 10.1002/polc.5070280107

P. K. Gupta, V. Uniyal, and S. Naithani, Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive, Carbohydrate Polymers, vol.94, issue.2, pp.843-849, 2013.
DOI : 10.1016/j.carbpol.2013.02.012

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, vol.110, issue.6, pp.3479-3500, 2010.
DOI : 10.1021/cr900339w

J. Han, C. Zhou, A. D. French, G. Han, and Q. Wu, Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride, Carbohydrate Polymers, vol.94, issue.2, 2013.
DOI : 10.1016/j.carbpol.2013.02.003

W. Helbert and J. Sugiyama, High-resolution electron microscopy on cellulose II and ?-chitin single crystals, Cellulose, vol.5, issue.2, pp.113-122, 1998.
DOI : 10.1023/A:1009272814665

M. A. Henrique, F. Neto, W. P. Silvério, H. A. Martins, D. F. Gurgel et al., Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids, Industrial Crops and Products, vol.76, pp.128-140, 2015.
DOI : 10.1016/j.indcrop.2015.06.048

L. Heux, G. Chauve, and C. Bonini, Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents, Langmuir, vol.16, issue.21, pp.8210-8212, 2000.
DOI : 10.1021/la9913957

L. Heux, P. Hägglund, J. Putaux, and H. Chanzy, Structural Aspects in Semicrystalline Samples of the Mannan II Family, Biomacromolecules, vol.6, issue.1, pp.324-332, 2005.
DOI : 10.1021/bm0495349

URL : https://hal.archives-ouvertes.fr/hal-00305984

M. Hirota, N. Tamura, T. Saito, and A. Isogai, Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation, Cellulose, vol.76, issue.2, pp.435-442, 2012.
DOI : 10.1016/j.carbpol.2008.09.024

T. Q. Hu, R. Hashaikeh, and R. N. Berry, Isolation of a novel, crystalline cellulose material from the spent liquor of cellulose nanocrystals (CNCs), Cellulose, vol.69, issue.4, pp.3217-3229, 2014.
DOI : 10.1016/j.carbpol.2007.01.019

A. Isogai and M. Usuda, Preparation of low-molecular weight celluloses using Chapter, 1991.

M. A. Martins, L. A. Forato, L. H. Mattoso, and L. A. Colnago, A solid state 13 C high resolution NMR study of raw and chemically treated sisal fibers, 2006.

B. Medronho and B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms, Advances in Colloid and Interface Science, vol.222, pp.502-508, 2015.
DOI : 10.1016/j.cis.2014.05.004

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, vol.10, issue.250, pp.3941-3994, 2011.
DOI : 10.1016/S0079-6700(01)00025-9

URL : http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article%3D1767%26context%3Dnanopub

S. M. Mukherjee and H. J. Woods, X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid, Biochimica et Biophysica Acta, vol.10, pp.499-511, 1953.
DOI : 10.1016/0006-3002(53)90295-9

Y. Nishiyama, S. Kuga, and T. Okano, Mechanism of mercerization revealed by X-ray diffraction, Journal of Wood Science, vol.5, issue.6, pp.452-457, 2000.
DOI : 10.1021/j150390a004

L. P. Novo, J. Bras, A. García, N. Belgacem, and A. A. Curvelo, Subcritical Water: A Method for Green Production of Cellulose Nanocrystals, ACS Sustainable Chemistry & Engineering, vol.3, issue.11, pp.2839-2846, 2015.
DOI : 10.1021/acssuschemeng.5b00762

S. Y. Oh, D. Yoo, Y. Shin, H. C. Kim, H. Y. Kim et al., Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydrate Research, vol.340, issue.15, 2005.
DOI : 10.1016/j.carres.2005.08.007

T. Okano and A. Sarko, Mercerization of cellulose. II. Alkali???cellulose intermediates and a possible mercerization mechanism, Journal of Applied Polymer Science, vol.30, issue.1, pp.325-332, 1985.
DOI : 10.1002/app.1985.070300128

S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels, vol.3, issue.1, pp.1-10, 2010.
DOI : 10.1186/1754-6834-3-10

URL : https://doi.org/10.1186/1754-6834-3-10

S. Park, D. K. Johnson, C. I. Ishizawa, P. A. Parilla, and M. F. Davis, Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance, Cellulose, vol.160, issue.4, pp.641-647, 2009.
DOI : 10.1007/BF00285355

M. Roman and W. T. Winter, Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose, Biomacromolecules, vol.5, issue.5, pp.1671-1677, 2004.
DOI : 10.1021/bm034519+

I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi et al., Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods, ACS Applied Materials & Interfaces, vol.6, issue.9, pp.6127-6138, 2014.
DOI : 10.1021/am500359f

M. Sasaki, T. Adschiri, and K. Arai, Production of Cellulose II from Native Cellulose by Near- and Supercritical Water Solubilization, Journal of Agricultural and Food Chemistry, vol.51, issue.18, pp.5376-5381, 2003.
DOI : 10.1021/jf025989i

P. R. Sharma, P. R. Rajamohananb, and A. J. Varma, Supramolecular transitions in native cellulose-I during progressive oxidation reaction leading to quasi-spherical nanoparticles of 6-carboxycellulose, Carbohydrate Polymers, vol.113, pp.615-623, 2014.
DOI : 10.1016/j.carbpol.2014.07.056

S. Sharma, S. S. Nair, Z. Zhang, A. J. Ragauskas, and Y. Deng, Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp, RSC Adv., vol.8, issue.1, pp.63111-63122, 2015.
DOI : 10.1021/bm700624p

G. H. Tonoli, E. M. Teixeira, A. C. Corrêa, J. M. Marconcini, L. A. Caixeta et al., Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polymers, vol.89, issue.1, pp.80-88, 2012.
DOI : 10.1016/j.carbpol.2012.02.052

URL : https://doi.org/10.1016/j.carbpol.2012.02.052

M. Wada, Y. Nishiyama, H. Chanzy, T. Forsyth, and P. Langan, The structure of celluloses, Powder Diffraction, vol.9, issue.02, pp.92-95, 2008.
DOI : 10.1021/ma001406z

URL : https://hal.archives-ouvertes.fr/hal-00352494

J. O. Warwicker, Effect of chemical reagents on the fine structure of cellulose. Part IV. Action of caustic soda on the fine structure of cotton and ramie, Journal of Polymer Science Part A-1: Polymer Chemistry, vol.5, issue.10, pp.2579-2593, 1967.
DOI : 10.1002/pol.1967.150051010

Y. Yue, G. Han, and Q. Wy, Transitional properties of cotton fibers from cellulose, 2013.

.. Materials, 118 2.2. Extraction of cellulose nanocrystals, p.119

J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-wakil et al., Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites, Industrial Crops and Products, vol.32, issue.3, pp.627-633, 2010.
DOI : 10.1016/j.indcrop.2010.07.018

J. Bras, D. Viet, C. Bruzzese, and A. Dufresne, Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions, Carbohydrate Polymers, vol.84, issue.1, 2011.
DOI : 10.1016/j.carbpol.2010.11.022

L. Brinchi, F. Cotana, E. Fortunati, and J. M. Kenny, Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications, Carbohydrate Polymers, vol.94, issue.1, pp.154-169, 2013.
DOI : 10.1016/j.carbpol.2013.01.033

I. S. Da-silva, F. Neto, W. P. Silvério, H. A. Pasquini, D. Andrade et al., Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polymers for Advanced Technologies, 2015.

A. Dufresne, J. Y. Cavaillé, and W. Helbert, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modeling, Polymer Composites, vol.27, issue.2, pp.198-210, 1997.
DOI : 10.1021/ma00088a021

URL : https://hal.archives-ouvertes.fr/hal-00310817

A. Dufresne, Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites, Composite Interfaces, vol.16, issue.4, pp.53-67, 2000.
DOI : 10.1002/app.1976.070200708

URL : https://hal.archives-ouvertes.fr/hal-00309650

A. Dufresne, Nanocellulose: From nature to high-performance tailored materials. de Gruyter, 2012.
DOI : 10.1515/9783110254600

S. J. Eichhorn, Cellulose nanowhiskers: promising materials for advanced applications, Soft Matter, vol.112, issue.2, pp.303-315, 2011.
DOI : 10.1021/bm100684k

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona et al., Review: current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.22, issue.5, pp.1-33, 2010.
DOI : 10.3139/217.2059

S. Elazzouzi-hafraoui, Y. Nishiyama, J. Putaux, L. Heux, F. Dubreuil et al., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, vol.9, issue.1, pp.57-65, 2008.
DOI : 10.1021/bm700769p

URL : https://hal.archives-ouvertes.fr/hal-00303876

V. Favier, H. Chanzy, and J. Cavaillé, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

F. Neto, W. P. Silvério, H. A. Dantas, N. O. Pasquini, and D. , Extraction and characterization of cellulose nanocrystals from agro-industrial residue ??? Soy hulls, Industrial Crops and Products, vol.42, pp.480-488, 2013.
DOI : 10.1016/j.indcrop.2012.06.041

A. D. French and M. S. Cintrón, Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose, vol.20, issue.6, pp.583-588, 2013.
DOI : 10.1177/004051755002000601

A. D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose, vol.19, issue.10, pp.885-896, 2014.
DOI : 10.1007/978-3-540-73934-0

N. L. Garcia-de-rodriguez, W. Thielemans, and A. Dufresne, Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites, Cellulose, vol.16, issue.1, pp.261-270, 2006.
DOI : 10.1007/s10570-005-9039-7

URL : https://hal.archives-ouvertes.fr/hal-00163813

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, vol.110, issue.6, pp.3479-3500, 2010.
DOI : 10.1021/cr900339w

M. A. Henrique, F. Neto, W. P. Silvério, H. A. Martins, D. F. Gurgel et al., Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids, Industrial Crops and Products, vol.76, pp.128-140, 2015.
DOI : 10.1016/j.indcrop.2015.06.048

I. R. Ipharraguerre and J. H. Clark, Soyhulls as an Alternative Feed for Lactating Dairy Cows: A Review, Journal of Dairy Science, vol.86, issue.4, pp.1052-1073, 2003.
DOI : 10.3168/jds.S0022-0302(03)73689-3

I. Kvien, B. S. Tanem, and K. Oksman, Characterization of Cellulose Whiskers and Their Nanocomposites by Atomic Force and Electron Microscopy, Biomacromolecules, vol.6, issue.6, pp.3160-3165, 2005.
DOI : 10.1021/bm050479t

M. Mariano, N. Kissi, and A. Dufresne, Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges, Journal of Polymer Science Part B: Polymer Physics, vol.9, issue.25, pp.791-806, 2014.
DOI : 10.1166/jnn.2009.dk24

M. Mariano, N. Kissi, . El, and A. Dufresne, Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites, Carbohydrate Polymers, vol.137, pp.174-183, 2016.
DOI : 10.1016/j.carbpol.2015.10.027

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, vol.10, issue.250, pp.3941-3994, 2011.
DOI : 10.1016/S0079-6700(01)00025-9

URL : http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article%3D1767%26context%3Dnanopub

J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, vol.52, issue.T44, pp.149-159, 2008.
DOI : 10.1143/JJAP.40.3311

S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels, vol.3, issue.1, pp.1-10, 2010.
DOI : 10.1186/1754-6834-3-10

URL : https://doi.org/10.1186/1754-6834-3-10

J. F. Revol, On the cross-sectional shape of cellulose crystallites in Valonia ventricosa, Carbohydrate Polymers, vol.2, issue.2, pp.123-134, 1982.
DOI : 10.1016/0144-8617(82)90058-3

M. M. Rippel and F. Galembeck, Nanostructures and adhesion in natural rubber: new era for a classic, Journal of the Brazilian Chemical Society, vol.20, issue.6, pp.1024-1030, 2009.
DOI : 10.1590/S0103-50532009000600004

M. Roman and W. T. Winter, Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose, Biomacromolecules, vol.5, issue.5, pp.1671-1677, 2004.
DOI : 10.1021/bm034519+

J. R. Rosa, I. S. Silva, C. S. Lima, and D. Pasquini, Production of polyols and new biphasic mono-component materials from soy hulls by oxypropylation, Industrial Crops and Products, vol.72, pp.152-158, 2015.
DOI : 10.1016/j.indcrop.2014.12.044

I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi et al., Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods, ACS Applied Materials & Interfaces, vol.6, issue.9, pp.6127-6138, 2014.
DOI : 10.1021/am500359f

G. Siqueira, J. Bras, and A. Dufresne, New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir, vol.26, issue.1, pp.402-411, 2010.
DOI : 10.1021/la9028595

P. M. Visakh, S. Thomas, K. Oksman, and A. P. Mathew, Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties, Composites Part A: Applied Science and Manufacturing, vol.43, issue.4, pp.735-741, 2012.
DOI : 10.1016/j.compositesa.2011.12.015

C. Zhang, Y. Huang, C. Luo, L. Jiang, and Y. Dan, Enhanced ductility of polylactide materials: Reactive blending with pre-hot sheared natural rubber, Journal of Polymer Research, vol.12, issue.4, p.121, 2013.
DOI : 10.1002/polb.21171