J. Bryant, F. Aylward, J. Eppley, D. Karl, M. Church et al., Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre, The ISME Journal, vol.63, issue.6
DOI : 10.4319/lo.2007.52.5.2205

C. Picard, C. Ponsonnet, E. Paget, X. Nesme, and P. Simonet, Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl Environ Microbiol, vol.58, pp.2717-221444380, 1992.

B. Lighthart and B. Shaffer, Airborne Bacteria in the Atmospheric Surface Layer : Temporal Distribution above a Grass Airborne Bacteria in the Atmospheric Surface Layer : Temporal Distribution above a Grass Seed Field, pp.1492-1496, 1995.

L. Li, C. Kato, and K. Horikoshi, Bacterial diversity in deep-sea sediments from different depths, pp.659-677, 1999.

. Bhatnagar-a and M. Bhatnagar, Microbial diversity in desert ecosystems, Curr Sci, vol.89, issue.02, pp.91-100, 2005.

L. Maccario, T. Vogel, and C. Larose, Potential drivers of microbial community structure and function in Arctic spring snow, Frontiers in Microbiology, vol.72, issue.17390, pp.1-11, 2014.
DOI : 10.1128/IAI.72.3.1391-1396.2004

URL : https://hal.archives-ouvertes.fr/hal-01589188

E. González-toril, E. Llobet-brossa, E. Casamayor, R. Amann, and R. Amils, Microbial Ecology of an Extreme Acidic Environment, the Tinto River, Applied and Environmental Microbiology, vol.69, issue.8, pp.4853-4865, 2003.
DOI : 10.1128/AEM.69.8.4853-4865.2003

J. Fredrickson, J. Zachara, D. Balkwill, D. Kennedy, S. Li et al., Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State, Applied and Environmental Microbiology, vol.70, issue.7, pp.4230-4241, 2004.
DOI : 10.1128/AEM.70.7.4230-4241.2004

T. Horiike, K. Hamada, S. Kanaya, and T. Shinozawa, Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis, Nature Cell Biology, vol.3, issue.2, pp.210-2141035055129, 1038.
DOI : 10.1038/35055129

P. Falkowski, T. Fenchel, and E. Delong, The Microbial Engines That Drive Earth's Biogeochemical Cycles, Science, vol.103, issue.32, pp.1034-1039, 2008.
DOI : 10.1073/pnas.0605127103

W. Whitman, D. Coleman, and W. Wiebe, Prokaryotes: The unseen majority, Proceedings of the National Academy of Sciences, vol.26, issue.1-2, pp.6578-6583, 1998.
DOI : 10.1007/BF02111285

T. Danhorn and C. Fuqua, Biofilm Formation by Plant-Associated Bacteria, Annual Review of Microbiology, vol.61, issue.1, pp.401-422, 2007.
DOI : 10.1146/annurev.micro.61.080706.093316

L. Hooper, Bacterial contributions to mammalian gut development, Trends in Microbiology, vol.12, issue.3, pp.129-134, 2004.
DOI : 10.1016/j.tim.2004.01.001

F. Backhed, Host-Bacterial Mutualism in the Human Intestine. Science (80-), 1915.

H. Kong and J. Segre, Skin Microbiome: Looking Back to Move Forward, Journal of Investigative Dermatology, vol.132, issue.3, pp.933-939, 2012.
DOI : 10.1038/jid.2011.417

C. A. Lozupone, J. Stombaugh, J. Gordon, J. Jansson, and R. Knight, Diversity, stability and resilience of the human gut microbiota, Nature, vol.44, issue.7415, pp.220-230, 2012.
DOI : 10.1097/QCO.0b013e32834a962d

A. Vennison, S. Sankar, S. Prabhu, D. Vasan, P. Raghuraman et al., Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion, J Insect Sci, vol.10, 2010.

M. Abt, L. Osborne, L. Monticelli, T. Doering, T. Alenghat et al., Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity, Immunity, vol.37, issue.1, 2012.
DOI : 10.1016/j.immuni.2012.04.011

T. Wallace, F. Guarner, K. Madsen, M. Cabana, G. Gibson et al., Human gut microbiota and its relationship to health and disease, Nutrition Reviews, vol.69, issue.7, pp.392-403, 2011.
DOI : 10.1111/j.1753-4887.2011.00402.x

M. Cabeen and C. Jacobs-wagner, Bacterial cell shape, Nature Reviews Microbiology, vol.178, issue.8, pp.601-610, 2005.
DOI : 10.1111/j.1432-1033.1994.00597.x

K. Young, Bacterial morphology: why have different shapes?, Current Opinion in Microbiology, vol.10, issue.6, pp.596-600, 2007.
DOI : 10.1016/j.mib.2007.09.009

M. Land, L. Hauser, S. Jun, I. Nookaew, M. Leuze et al., Insights from 20??years of bacterial genome sequencing, Functional & Integrative Genomics, vol.68, issue.2, pp.141-61, 2015.
DOI : 10.1371/journal.pone.0078644

M. Medema, A. Trefzer, A. Kovalchuk, . Van-den, M. Berg et al., The Sequence of a 1.8-Mb Bacterial Linear Plasmid Reveals a Rich Evolutionary Reservoir of Secondary Metabolic Pathways, Genome Biology and Evolution, vol.2, issue.0, pp.212-224, 2010.
DOI : 10.1093/gbe/evq013

H. Heuer and K. Smalla, Plasmids foster diversification and adaptation of bacterial populations in soil, FEMS Microbiology Reviews, vol.36, issue.6, pp.1083-1104, 2012.
DOI : 10.1111/j.1574-6976.2012.00337.x

E. Caplice and G. Fitzgerald, Food fermentations: role of microorganisms in food production and preservation, International Journal of Food Microbiology, vol.50, issue.1-2, pp.131-14910, 1999.
DOI : 10.1016/S0168-1605(99)00082-3

S. Lee, H. Kim, J. Park, J. Park, and T. Kim, Metabolic engineering of microorganisms: general strategies and drug production, Drug Discovery Today, vol.14, issue.1-2, pp.78-88, 2009.
DOI : 10.1016/j.drudis.2008.08.004

R. Belmares, J. Contreras-esquivel, R. Rodríguez-herrera, A. Coronel, and C. Aguilar, Microbial production of tannase: an enzyme with potential use in food industry, LWT - Food Science and Technology, vol.37, issue.8, pp.857-864, 2004.
DOI : 10.1016/j.lwt.2004.04.002

T. Road, New erythromycins from a recombinant S. erythraea strain, J Antibiot, vol.51, 1998.

C. Lee, P. Chen, C. Wang, and Y. Tung, Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1309-1313, 2002.
DOI : 10.1016/S0360-3199(02)00102-7

K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.
DOI : 10.1016/j.tibtech.2005.04.008

B. Logan and J. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends in Microbiology, vol.14, issue.12, pp.512-518, 2006.
DOI : 10.1016/j.tim.2006.10.003

S. Hermans, H. Buckley, B. Case, F. Curran-cournane, M. Taylor et al., Bacteria as emerging indicators of soil condition Applied and environmental microbiology

R. Bottini, F. Cassán, and P. Piccoli, Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase, Applied Microbiology and Biotechnology, vol.65, issue.5, pp.497-503, 2004.
DOI : 10.1007/s00253-004-1696-1

M. Viñas, J. Sabaté, M. Espuny, M. Anna, and M. Vin, Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil, Applied and Environmental Microbiology, vol.71, issue.11, pp.7008-7018, 2005.
DOI : 10.1128/AEM.71.11.7008-7018.2005

P. Lovecka, I. Pacovska, P. Stursa, B. Vrchotova, L. Kochankova et al., Organochlorinated pesticide degrading microorganisms isolated from contaminated soil, New Biotechnology, vol.32, issue.1
DOI : 10.1016/j.nbt.2014.07.003

M. Gerardi, . Wastewater, and . Bacteria, Wastewater Microbiology series, 2006.

E. Denamur and I. Matic, Evolution of mutation rates in bacteria, Molecular Microbiology, vol.21, issue.4, pp.820-827, 2006.
DOI : 10.1099/mic.0.27230-0

H. Ochman, J. Lawrence, and E. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.
DOI : 10.1038/35012500

J. Seelig, D. Becker, J. Willer, R. Greenberg, J. Ward et al., Traumatic Acute Subdural Hematoma, New England Journal of Medicine, vol.304, issue.25, pp.1511-1519, 1987.
DOI : 10.1056/NEJM198106183042503

G. Guillot, A. Nevot, and G. , Recherche, dans le lait en nature de certains bactéries pathogènes pour l'Homme, Rev Générales des Quest Laitières, 1950.

L. Øvreås and V. Torsvik, Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities, Microb Ecol. Available, vol.36, pp.303-315, 1998.

C. Yuste, J. Fernandez-gonzalez, A. Fernandez-lopez, M. Ogaya, R. Penuelas et al., Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil, FEMS Microbiology Ecology, vol.90, issue.1, pp.54-67, 2014.
DOI : 10.1111/1574-6941.12373

P. Shrestha, M. Kube, R. Reinhardt, and W. Liesack, Transcriptional activity of paddy soil bacterial communities, Environmental Microbiology, vol.74, issue.4, pp.960-970, 2009.
DOI : 10.1007/978-3-540-31292-5_7

J. Monier, S. Demanèche, T. Delmont, A. Mathieu, T. Vogel et al., Metagenomic exploration of antibiotic resistance in soil, Current Opinion in Microbiology, vol.14, issue.3
DOI : 10.1016/j.mib.2011.04.010

URL : https://hal.archives-ouvertes.fr/hal-00629407

J. Wilkinson and . Enrichment, Isolation and Some Properties of Me thane-utilizing Bacteria, pp.205-218, 1970.

P. Hirsch, T. Mauchline, and I. Clark, Culture-independent molecular techniques for soil microbial ecology, Soil Biology and Biochemistry, vol.42, issue.6, pp.878-887, 2010.
DOI : 10.1016/j.soilbio.2010.02.019

N. Loman and M. Pallen, Twenty years of bacterial genome sequencing, Nature Reviews Microbiology, vol.46, issue.12, pp.787-794, 2015.
DOI : 10.1128/JCM.02249-07

F. Stefani, T. Bell, C. Marchand, I. De-la-providencia, E. Yassimi et al., Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils, PLOS ONE, vol.18, issue.Suppl, 2015.
DOI : 10.1371/journal.pone.0128272.s005

S. Yang, J. Cho, S. Lee, O. Abanto, S. Kim et al., Isolation and Characterization of Novel Denitrifying Bacterium <italic>Geobacillus</italic> sp. SG-01 Strain from Wood Chips Composted with Swine Manure, Asian-Australasian Journal of Animal Sciences, vol.26, issue.11, pp.1651-1658, 2013.
DOI : 10.5713/ajas.2013.13184

G. Mahajan and L. Balachandran, Antibacterial Agents from Actinomycetes - A Review, Frontiers in Bioscience, vol.4, issue.1, pp.240-253, 2012.
DOI : 10.2741/e373

E. Stewart, Growing Unculturable Bacteria, Journal of Bacteriology, vol.194, issue.16, pp.4151-60, 2012.
DOI : 10.1128/JB.00345-12

J. Handelsman, Metagenomics: Application of Genomics to Uncultured Microorganisms, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.669-685, 2004.
DOI : 10.1128/MMBR.68.4.669-685.2004

P. Robe, R. Nalin, C. Capellano, T. Vogel, and P. Simonet, Extraction of DNA from soil, European Journal of Soil Biology, vol.39, issue.4, pp.183-19010, 2003.
DOI : 10.1016/S1164-5563(03)00033-5

L. Roesch, R. Fulthorpe, A. Riva, G. Casella, A. Hadwin et al., Pyrosequencing enumerates and contrasts soil microbial diversity, The ISME Journal, vol.7, pp.283-290, 2007.
DOI : 10.1038/ismej.2007.53

J. Siqueira, I. Rôças, G. Debelian, F. Carmo, S. Paiva et al., Profiling of Root Canal Bacterial Communities Associated with Chronic Apical Periodontitis from Brazilian and Norwegian Subjects, Journal of Endodontics, vol.34, issue.12, pp.1457-1461, 2008.
DOI : 10.1016/j.joen.2008.08.037

J. Tiedje, Diversity of Nitrite Reductase (nirK and nirS) Gene Fragments in Forested Upland and Wetland Soils, Society, vol.68, pp.1893-1900, 2002.

R. Daniel, The soil metagenome ??? a rich resource for the discovery of novel natural products, Current Opinion in Biotechnology, vol.15, issue.3, pp.199-204, 2004.
DOI : 10.1016/j.copbio.2004.04.005

T. Delmont, A. Eren, L. Maccario, E. Prestat, Ö. Esen et al., Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics, Frontiers in Microbiology, vol.6, 2015.
DOI : 10.3389/fmicb.2015.00358

URL : https://hal.archives-ouvertes.fr/hal-01589179

P. López-garcía and D. Moreira, Tracking microbial biodiversity through molecular and genomic ecology, Research in Microbiology, vol.159, issue.1, pp.67-73, 2008.
DOI : 10.1016/j.resmic.2007.11.019

J. Gans, Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil, Science, vol.309, issue.5739, 2005.
DOI : 10.1126/science.1112665

M. Lynch and J. Neufeld, Ecology and exploration of the rare biosphere, Nature Reviews Microbiology, vol.9, issue.4, pp.217-229, 2015.
DOI : 10.1038/ismej.2014.142

T. Delmont, P. Robe, I. Clark, P. Simonet, and T. Vogel, Metagenomic comparison of direct and indirect soil DNA extraction approaches, Journal of Microbiological Methods, vol.86, issue.3, pp.397-400, 2011.
DOI : 10.1016/j.mimet.2011.06.013

URL : https://hal.archives-ouvertes.fr/hal-00629399

C. Picard, C. Ponsonnet, E. Paget, X. Nesme, and P. Simonet, Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction, Appl Environ Microbiol, vol.58, pp.2717-27221444380, 1992.

N. Fortin, D. Beaumier, K. Lee, and C. Greer, Soil washing improves the recovery of total community DNA from polluted and high organic content sediments, Journal of Microbiological Methods, vol.56, issue.2, pp.181-191, 2004.
DOI : 10.1016/j.mimet.2003.10.006

M. Harry, B. Gambier, Y. Bourezgui, and E. Garnier-sillam, Evaluation of purification procedures for DNA extracted from rich organic samples: interference with humic substances, Analusis, vol.27, issue.5, pp.439-441, 1999.
DOI : 10.1051/analusis:1999270439

J. Nesme, W. Achouak, S. Agathos, M. Bailey, P. Baldrian et al., Back to the Future of Soil Metagenomics, Frontiers in Microbiology, vol.7, issue.358, 2016.
DOI : 10.1038/nrmicro2119

T. Ishoey, T. Woyke, R. Stepanauskas, M. Novotny, and R. Lasken, Genomic sequencing of single microbial cells from environmental samples, Current Opinion in Microbiology, vol.11, issue.3, 2008.
DOI : 10.1016/j.mib.2008.05.006

R. Lasken, Genomic sequencing of uncultured microorganisms from single cells, Nature Reviews Microbiology, vol.329, issue.9, pp.631-640, 2012.
DOI : 10.1126/science.1190719

F. Warnecke and P. Hugenholtz, Building on basic metagenomics with complementary technologies, Genome Biology, vol.8, issue.12, 2007.
DOI : 10.1186/gb-2007-8-12-231

J. Pivetal, Développement et premières applications d'une méthode de tri de cellules bactériennes par marquage de l'ADN avec des nanoparticules magnétiques pour l'étude de la diversité bactérienne environnementale et des transferts horizontaux de gènes in situ, 2013.

L. Ufarté, G. Potocki-veronese, and É. Laville, Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology, Frontiers in Microbiology, vol.76, issue.Suppl. 1, pp.1-10, 2015.
DOI : 10.1128/AEM.01727-09

J. Xu, Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances, Molecular Ecology, vol.6, issue.7, pp.1713-1731, 2006.
DOI : 10.1099/00221287-148-1-203

H. Treichel, D. De-oliveira, M. Mazutti, D. Luccio, M. Oliveira et al., A Review on Microbial Lipases Production, Food and Bioprocess Technology, vol.35, issue.3, pp.182-196, 2010.
DOI : 10.1590/S0101-20612008000200028

V. Torsvik, J. Goksøyr, F. Daae, V. Torsvik, J. Goksyr et al., High diversity in DNA of soil bacteria . High Diversity in DNA of Soil Bacteria, pp.782-787, 1990.

F. Skinner, P. Jones, and J. Mollison, A Comparison of a Direct- and a Plate-counting Technique for the Quantitative Estimation of Soil Micro-organisms, Journal of General Microbiology, vol.6, issue.3-4, pp.261-271, 1952.
DOI : 10.1099/00221287-6-3-4-261

T. Delmont, P. Simonet, and T. Vogel, Describing microbial communities and performing global comparisons in the ???omic era, The ISME Journal, vol.9, issue.9, pp.1625-1628
DOI : 10.1038/nature02340

URL : https://hal.archives-ouvertes.fr/hal-00747239

N. Fierer, J. Leff, B. Adams, U. Nielsen, S. Bates et al., Cross-biome metagenomic analyses of soil microbial communities and their functional attributes, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.21390-21395, 2012.
DOI : 10.1186/1471-2105-9-386

D. Wang and S. Bodovitz, Single cell analysis: the new frontier in ???omics???, Trends in Biotechnology, vol.28, issue.6, pp.281-90, 2010.
DOI : 10.1016/j.tibtech.2010.03.002

J. Kirk, L. Beaudette, M. Hart, P. Moutoglis, J. Klironomos et al., Methods of studying soil microbial diversity, Journal of Microbiological Methods, vol.58, issue.2, pp.169-88, 2004.
DOI : 10.1016/j.mimet.2004.04.006

P. Schloss and J. Handelsman, Toward a census of bacteria in soil, PLoS Comput Biol, vol.2, pp.786-0793, 2006.

J. Six, H. Bossuyt, S. Degryze, and K. Denef, A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil and Tillage Research, vol.79, issue.1, 2004.
DOI : 10.1016/j.still.2004.03.008

C. Bronick and R. Lal, Soil structure and management: a review, Geoderma, vol.124, issue.1-2, pp.3-22, 2005.
DOI : 10.1016/j.geoderma.2004.03.005

M. Vos, A. Wolf, S. Jennings, and G. Kowalchuk, Micro-scale determinants of bacterial diversity in soil, FEMS Microbiology Reviews, vol.37, issue.6, pp.936-954, 2013.
DOI : 10.1111/1574-6976.12023

J. Skopp, M. Jawson, and J. Doran, Steady-State Aerobic Microbial Activity as a Function of Soil Water Content, Soil Science Society of America Journal, vol.54, issue.6, 1990.
DOI : 10.2136/sssaj1990.03615995005400060018x

D. Linn and J. Doran, Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils1, Soil Science Society of America Journal, vol.48, issue.6, pp.1267-1272, 1984.
DOI : 10.2136/sssaj1984.03615995004800060013x

J. Liu, J. Li, L. Feng, H. Cao, and Z. Cui, An improved method for extracting bacteria from soil for high molecular weight DNA recovery and BAC library construction, The Journal of Microbiology, vol.162, issue.6, pp.728-733, 2010.
DOI : 10.1016/S1369-5274(02)00324-7

J. Bertaux, U. Gloger, M. Schmid, H. A. Scheu, and S. , Routine fluorescence in situ hybridization in soil, Journal of Microbiological Methods, vol.69, issue.3, pp.451-460, 2007.
DOI : 10.1016/j.mimet.2007.02.012

B. Sitaula, Å. Almås, L. Bakken, B. Singh, and A. Ê. , Assessment of heavy metals associated with bacteria in soil, Soil Biology and Biochemistry, vol.31, issue.2, pp.315-316, 1999.
DOI : 10.1016/S0038-0717(98)00104-7

Å. Almås, L. Bakken, and J. Mulder, Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils, Soil Biology and Biochemistry, vol.36, issue.5, pp.805-813, 2004.
DOI : 10.1016/j.soilbio.2004.01.010

H. Flemming and J. Wingender, Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects, Water Sci Technol, vol.43, pp.1-8, 2001.

U. Böckelmann, U. Szewzyk, and E. Grohmann, A new enzymatic method for the detachment of particle associated soil bacteria, Journal of Microbiological Methods, vol.55, issue.1, pp.201-21110, 2003.
DOI : 10.1016/S0167-7012(03)00144-1

V. Lindahl and L. Bakken, Evaluation of methods for extraction of bacteria from soil, FEMS Microbiology Ecology, vol.16, issue.2, pp.135-142, 1995.
DOI : 10.1111/j.1574-6941.1995.tb00277.x

A. Mills, Keeping in Touch: Microbial Life on Soil Particle Surfaces, Adv Agron, vol.78, issue.02, pp.1-43, 2001.
DOI : 10.1016/S0065-2113(02)78001-2

K. Ehlers, E. Bünemann, A. Oberson, E. Frossard, Å. Frostegård et al., Extraction of soil bacteria from a Ferralsol, Soil Biology and Biochemistry, vol.40, issue.7, pp.1940-1946, 2008.
DOI : 10.1016/j.soilbio.2008.04.005

L. Bakken, Separation and Purification of Bacteria from Soil, Appl Environ Microbiol, vol.49, pp.1482-1487, 1985.

D. Gossett, W. Weaver, A. Mach, S. Hur, H. Tse et al., Label-free cell separation and sorting in microfluidic systems, Analytical and Bioanalytical Chemistry, vol.7, issue.8, pp.3249-3267, 2010.
DOI : 10.1016/S0304-4165(98)00122-6

J. Cho and J. Tiedje, Biogeography and Degree of Endemicity of Fluorescent Pseudomonas Strains in Soil, Applied and Environmental Microbiology, vol.66, issue.12, pp.5448-5456, 2000.
DOI : 10.1128/AEM.66.12.5448-5456.2000

D. Schüler and R. Frankel, Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications, Applied Microbiology and Biotechnology, vol.52, issue.4, pp.464-473, 1999.
DOI : 10.1007/s002530051547

J. Prosser and A. Tough, Growth Mechanisms and Growth Kinetics of Filamentous Microorganisms, Critical Reviews in Biotechnology, vol.105, issue.2, pp.253-74, 1991.
DOI : 10.1016/0022-5193(83)90185-6

S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, High Gradient Magnetic Cell Separation With MACS1, pp.231-238, 1990.

B. Ferrari, G. Oregaard, and S. Sørensen, Recovery of GFP-Labeled Bacteria for Culturing and Molecular Analysis after Cell Sorting Using a Benchtop Flow Cytometer, Microbial Ecology, vol.27, issue.2, pp.239-245, 2004.
DOI : 10.1007/s00248-003-1069-9

G. Gerdts and G. Luedke, FISH and chips: Marine bacterial communities analyzed by flow cytometry based on microfluidics, Journal of Microbiological Methods, vol.64, issue.2, pp.232-240, 2006.
DOI : 10.1016/j.mimet.2005.05.001

C. Owen and N. Sykes, Magnetic labeling and cell sorting, Journal of Immunological Methods, vol.73, issue.1, pp.41-80022, 1984.
DOI : 10.1016/0022-1759(84)90029-2

L. Solden, K. Lloyd, and K. Wrighton, The bright side of microbial dark matter: lessons learned from the uncultivated majority, Current Opinion in Microbiology, vol.31, pp.217-226, 2016.
DOI : 10.1016/j.mib.2016.04.020

A. Cébron, M. Norini, T. Beguiristain, and C. Leyval, Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD??) genes from Gram positive and Gram negative bacteria in soil and sediment samples, Journal of Microbiological Methods, vol.73, issue.2, pp.148-159, 2008.
DOI : 10.1016/j.mimet.2008.01.009

D. Chaplin, 1. Overview of the human immune response, Journal of Allergy and Clinical Immunology, vol.117, issue.2, pp.430-435, 2006.
DOI : 10.1016/j.jaci.2005.09.034

J. Nataro and J. Kaper, Diarrheagenic Escherichia coli Strains, Clin Microbiol Rev, vol.11, pp.142-201, 1998.

M. Jin, J. Lang, Z. Shen, Z. Chen, Z. Qiu et al., A Rapid Subtractive Immunization Method to Prepare Discriminatory Monoclonal Antibodies for Food E. coli O157:H7 Contamination, PLoS ONE, vol.42, issue.2, pp.2-8, 2012.
DOI : 10.1371/journal.pone.0031352.t003

Z. Bukhari, R. Mccuin, C. Fricker, and J. Clancy, Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities, Appl Environ Microbiol, vol.64, pp.4495-4504, 1998.

S. Tu, S. Reed, A. Gehring, Y. He, and G. Paoli, Capture of Escherichia coli O157:H7 Using Immunomagnetic Beads of Different Size and Antibody Conjugating Chemistry, Sensors, vol.11, issue.2, pp.713-73010, 2009.
DOI : 10.1111/j.1745-4581.2003.tb00406.x

B. Christensen, T. Torsvik, and L. T. , Immunomagnetically captured thermophilic sulfatereducing bacteria from North Sea oil field waters, Appl Environ Microbiol, vol.58, pp.1244-1248, 1992.

A. Coons, H. Creech, and N. Jones, Immunological Properties of an Antibody Containing a Fluorescent Group., Experimental Biology and Medicine, vol.47, issue.2, pp.200-202, 1941.
DOI : 10.3181/00379727-47-13084P

C. Ah and K. Mh, Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody, J Exp Med, vol.91, 1950.

P. N. Hobson-akd-s and . Mann, Some Studies on the Identification of Rumen Bacteria with Fluorescent Antibodies, Journal of General Microbiology, vol.16, issue.2, pp.463-471, 1957.
DOI : 10.1099/00221287-16-2-463

M. Schloter, B. Abmus, and . Hartmann-a, The use of immunological methods to detect and identify bacteria in the environment, Biotechnology Advances, vol.13, issue.1, pp.75-90, 1995.
DOI : 10.1016/0734-9750(94)00023-6

M. Pardue and J. Gall, MOLECULAR HYBRIDIZATION OF RADIOACTIVE DNA TO THE DNA OF CYTOLOGICAL PREPARATIONS, Proceedings of the National Academy of Sciences, vol.64, issue.2, pp.600-604, 1969.
DOI : 10.1073/pnas.64.2.600

S. Giovannoni, E. Delong, G. Olsen, and N. Pace, Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells., Journal of Bacteriology, vol.170, issue.2, pp.720-726, 1988.
DOI : 10.1128/jb.170.2.720-726.1988

J. Landegent, D. Wal, N. Baan, R. Hoeijmakers, and J. , Van Der Ploeg M. 2- Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences, Exp Cell Res, vol.15384, pp.61-72, 1984.

E. Delong, G. Wickham, and N. Pace, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science (80-), pp.1360-1363, 1989.

R. Amann, L. Krumholz, and D. Stahl, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology., Journal of Bacteriology, vol.172, issue.2, pp.762-770, 1990.
DOI : 10.1128/jb.172.2.762-770.1990

M. Wagner, H. Smidt, A. Loy, and J. Zhou, Unravelling Microbial Communities with DNA-Microarrays: Challenges and Future Directions, Microbial Ecology, vol.76, issue.3, pp.498-506, 2007.
DOI : 10.1079/9781845930622.0018

M. Wagner and S. Haider, New trends in fluorescence in situ hybridization for identification and functional analyses of microbes, Current Opinion in Biotechnology, vol.23, issue.1, pp.96-102, 2012.
DOI : 10.1016/j.copbio.2011.10.010

S. Sommerfeld and J. Strube, Challenges in biotechnology production???generic processes and process optimization for monoclonal antibodies, Chemical Engineering and Processing: Process Intensification, vol.44, issue.10, pp.1123-1137, 2005.
DOI : 10.1016/j.cep.2005.03.006

T. Delmont, P. Robe, S. Cecillon, I. Clark, F. Constancias et al., Accessing the Soil Metagenome for Studies of Microbial Diversity, Applied and Environmental Microbiology, vol.77, issue.4, pp.1315-1339, 2011.
DOI : 10.1128/AEM.01526-10

URL : https://hal.archives-ouvertes.fr/hal-00579312

T. Delmont, C. Malandain, E. Prestat, C. Larose, J. Monier et al., Metagenomic mining for microbiologists, The ISME Journal, vol.756, issue.12, pp.1837-184361, 2011.
DOI : 10.1111/j.1462-2920.2009.01901.x

URL : https://hal.archives-ouvertes.fr/hal-00747250

N. Shaner, P. Steinbach, and R. Tsien, A guide to choosing fluorescent proteins, Nature Methods, vol.102, issue.12, pp.905-909, 2005.
DOI : 10.1099/00221287-147-5-1383

H. Gerdes and C. Kaether, Green fluorescent protein: applications in cell biology, FEBS Letters, vol.5, issue.1, pp.44-47, 1996.
DOI : 10.1016/S0960-9822(95)00128-X

R. Valdivia, E. Hromockyj-a, D. Monack, L. Ramakrishnan, and S. Falkow, Applications for green fluorescent protein (GFP) in the study of hostpathogen interactions, Gene, vol.173, issue.1, pp.47-520378111995007067, 1996.
DOI : 10.1016/0378-1119(95)00706-7

J. Njoloma, M. Oota, Y. Saeki, and S. Akao, Detection of gfp expression from gfp-labelled bacteria spot inoculated onto sugarcane tissues, African J Biotechnol, vol.4, pp.1372-1377, 2005.

S. Sørensen, J. Sørensen, A. Hansen, L. Oregaard, G. Veal et al., Direct Detection and Quantification of Horizontal Gene Transfer by Using Flow Cytometry and gfp as a Reporter Gene, Current Microbiology, vol.47, issue.2, pp.129-133, 2003.
DOI : 10.1007/s00284-002-3978-0

D. Zhang, J. Berry, D. Zhu, Y. Wang, Y. Chen et al., Magnetic nanoparticlemediated isolation of functional bacteria in a complex microbial community, Nature Publishing Group, vol.20149, pp.603-614

D. Zhang, R. Fakhrullin, M. Özmen, H. Wang, J. Wang et al., Functionalization of whole-cell bacterial reporters with magnetic nanoparticles, Microbial Biotechnology, vol.26, issue.1, pp.89-97, 2011.
DOI : 10.1021/la902937s

A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, and A. Gliozzi, Single Living Cell Encapsulation in Nano-organized Polyelectrolyte Shells, Langmuir, vol.18, issue.13, pp.5047-5050, 2002.
DOI : 10.1021/la025646e

R. Amann, . Fluorescently, C. Preston, J. Pernthaler, E. Delong et al., Fluorescently labelled, rRNA-targeted oligonucleotide probes in the study of microbial ecology, Molecular Ecology, vol.137, issue.5, pp.543-554, 1995.
DOI : 10.1099/00221287-137-12-2823

C. Moraru, G. Moraru, B. Fuchs, and R. Amann, Concepts and software for a rational design of polynucleotide probes, Environmental Microbiology Reports, vol.51, issue.1, pp.69-78, 2011.
DOI : 10.1046/j.1365-2958.2003.03834.x

K. Trebesius, R. Amann, W. Ludwig, K. Mühlegger, and K. Schleifer, Identification of Whole Fixed Bacterial Cells with Nonradioactive 23S rRNA-Targeted Polynucleotide Probes

J. Wetmur, DNA Probes: Applications of the Principles of Nucleic Acid Hybridization, Critical Reviews in Biochemistry and Molecular Biology, vol.8, issue.3-4, pp.227-259, 1991.
DOI : 10.1002/bio.1170040121

W. Weisburg, S. Barns, D. Pelletie, and D. Lane, 16S ribosomal DNA amplification for phylogenetic study., Journal of Bacteriology, vol.173, issue.2, pp.697-703, 1991.
DOI : 10.1128/jb.173.2.697-703.1991

P. Janssen, Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes, Applied and Environmental Microbiology, vol.72, issue.3, pp.1719-1728, 2006.
DOI : 10.1128/AEM.72.3.1719-1728.2006

W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier et al., ARB: a software environment for sequence data, Nucleic Acids Research, vol.32, issue.4, pp.1363-71, 2004.
DOI : 10.1093/nar/gkh293

L. Yilmaz, S. Parnerkar, and D. Noguera, mathFISH, a Web Tool That Uses Thermodynamics-Based Mathematical Models for In Silico Evaluation of Oligonucleotide Probes for Fluorescence In Situ Hybridization, Applied and Environmental Microbiology, vol.77, issue.3, pp.1118-1122, 2011.
DOI : 10.1128/AEM.01733-10

K. Ashelford, A. Weightman, and J. Fry, PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database, Nucleic Acids Research, vol.30, issue.15, pp.3481-3489, 2002.
DOI : 10.1093/nar/gkf450

D. Greuter, A. Loy, M. Horn, and T. Rattei, probeBase???an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016, Nucleic Acids Research, vol.44, issue.D1, pp.586-589, 2016.
DOI : 10.1093/nar/gkv1232

A. Loy, R. Arnold, P. Tischler, T. Rattei, M. Wagner et al., probeCheck - a central resource for evaluating oligonucleotide probe coverage and specificity, Environmental Microbiology, vol.96, issue.10, 2008.
DOI : 10.1002/bit.21114

K. Kubota, A. Ohashi, H. Imachi, and H. Harada, Improved In Situ Hybridization Efficiency with Locked-Nucleic-Acid-Incorporated DNA Probes, Applied and Environmental Microbiology, vol.72, issue.8, pp.5311-5318, 2006.
DOI : 10.1128/AEM.03039-05

J. Wengel, -Branched Oligodeoxynucleotides and the Development of Locked Nucleic Acid (LNA), Accounts of Chemical Research, vol.32, issue.4, pp.301-310, 1999.
DOI : 10.1021/ar980051p

R. Amann and W. Ludwig, Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology, FEMS Microbiology Reviews, vol.24, issue.5, pp.555-565, 2000.
DOI : 10.1111/j.1574-6976.2000.tb00557.x

G. Olsen, Microbial Ecology and Evolution: A Ribosomal RNA Approach, Annual Review of Microbiology, vol.40, issue.1, pp.337-365, 1986.
DOI : 10.1146/annurev.mi.40.100186.002005

H. Noller, Structure of Ribosomal RNA, Annual Review of Biochemistry, vol.53, issue.1, pp.119-162, 1984.
DOI : 10.1146/annurev.bi.53.070184.001003

H. Daims, A. Brühl, R. Amann, K. Schleifer, and M. Wagner, The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set, Systematic and Applied Microbiology, vol.22, issue.3, pp.434-478, 1999.
DOI : 10.1016/S0723-2020(99)80053-8

H. Noller, Structure of Ribosomal RNA, Annual Review of Biochemistry, vol.53, issue.1, pp.119-162, 1984.
DOI : 10.1146/annurev.bi.53.070184.001003

F. Behnam, A. Vilcinskas, M. Wagner, and K. Stoecker, A Straightforward DOPE (Double Labeling of Oligonucleotide Probes)-FISH (Fluorescence In Situ Hybridization) Method for Simultaneous Multicolor Detection of Six Microbial Populations, Applied and Environmental Microbiology, vol.78, issue.15, pp.5138-5180, 2012.
DOI : 10.1128/AEM.00977-12

M. Schimak, M. Kleiner, S. Wetzel, M. Liebeke, N. Dubilier et al., Hybridization Improve Visualization of Bacterial Cells, Applied and Environmental Microbiology, vol.82, issue.1, pp.62-70, 2016.
DOI : 10.1128/AEM.02776-15

M. Kalyuzhnaya, R. Zabinsky, S. Bowerman, D. Baker, M. Lidstrom et al., Fluorescence In Situ Hybridization-Flow Cytometry-Cell Sorting-Based Method for Separation and Enrichment of Type I and Type II Methanotroph Populations, Applied and Environmental Microbiology, vol.72, issue.6, pp.4293-301, 2006.
DOI : 10.1128/AEM.00161-06

J. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai et al., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Research, vol.37, issue.Database, pp.141-145, 2009.
DOI : 10.1093/nar/gkn879

W. Ludwig, S. Dorn, N. Springer, G. Kirchhof, and K. Schleifer, PCR-based preparation of 23S rRNA-targeted group-specific polynucleotide probes, Appl Environ Microbiol, vol.60, pp.3236-3280, 1994.

J. Pratscher, C. Stichternoth, K. Fichtl, K. Schleifer, and G. Braker, Application of Recognition of Individual Genes-Fluorescence In Situ Hybridization (RING-FISH) To Detect Nitrite Reductase Genes (nirK) of Denitrifiers in Pure Cultures and Environmental Samples, Applied and Environmental Microbiology, vol.75, issue.3, pp.802-101001992, 1128.
DOI : 10.1128/AEM.01992-08

K. Zwirglmaier, W. Ludwig, and K. Schleifer, Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization - RING-FISH, Molecular Microbiology, vol.26, issue.1, pp.89-96, 2003.
DOI : 10.1099/00221287-137-8-1911

T. Hoshino and A. Schramm, Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells, Environmental Microbiology, vol.51, issue.9, pp.2508-2517, 2010.
DOI : 10.1046/j.1365-2958.2003.03834.x

S. Kawakami, K. Kubota, H. Imachi, T. Yamaguchi, H. Harada et al., Detection of Single Copy Genes by Two-Pass Tyramide Signal Amplification Fluorescence in situ Hybridization (Two-Pass TSA-FISH) with Single Oligonucleotide Probes, Microbes and Environments, vol.25, issue.1, pp.15-21, 2010.
DOI : 10.1264/jsme2.ME09180

C. Moraru, P. Lam, B. Fuchs, M. Kuypers, and R. Amann, GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms, Environmental Microbiology, vol.51, issue.11, pp.3057-73, 2010.
DOI : 10.1016/S0723-2020(99)80053-8

A. Pernthaler and R. Amann, Simultaneous Fluorescence In Situ Hybridization of mRNA and rRNA in Environmental Bacteria, Applied and Environmental Microbiology, vol.70, issue.9, pp.5426-5433, 2004.
DOI : 10.1128/AEM.70.9.5426-5433.2004

S. Yilmaz, M. Haroon, G. Tyson, and P. Hugenholtz, Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations, The ISME Journal, vol.63, issue.10, pp.1352-1356, 2010.
DOI : 10.1038/nature06269

M. Stoffels, W. Ludwig, and K. Schleifer, rRNA probe-based cell fishing of bacteria, Environmental Microbiology, vol.137, issue.3, pp.259-71, 1999.
DOI : 10.1099/00221287-137-12-2823

K. Trebesius, D. Harmsen, A. Rakin, J. Schmelz, and J. Heesemann, Development of rRNAtargeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species, J Clin Microbiol, vol.36, pp.2557-2564, 1998.

J. Pivetal, S. Toru, M. Frenea-robin, N. Haddour, S. Cecillon et al., Selective isolation of bacterial cells within a microfluidic device using magnetic probe-based cell fishing, Sensors and Actuators B: Chemical, vol.195, pp.581-589, 2014.
DOI : 10.1016/j.snb.2014.01.004

URL : https://hal.archives-ouvertes.fr/hal-00946208

B. Zarda, Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides, Journal of General Microbiology, vol.137, issue.12, pp.2823-2830, 1991.
DOI : 10.1099/00221287-137-12-2823

G. Wallner, R. Amann, and W. Beisker, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, vol.137, issue.2, pp.136-179, 1993.
DOI : 10.1099/00221287-137-12-2823

K. Stoecker, C. Dorninger, H. Daims, and M. Wagner, Double Labeling of Oligonucleotide Probes for Fluorescence In Situ Hybridization (DOPE-FISH) Improves Signal Intensity and Increases rRNA Accessibility, Applied and Environmental Microbiology, vol.76, issue.3, pp.922-928, 2010.
DOI : 10.1128/AEM.02456-09

A. Pernthaler, J. Pernthaler, and R. Amann, Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria, Applied and Environmental Microbiology, vol.68, issue.6, pp.3094-3101, 2002.
DOI : 10.1128/AEM.68.6.3094-3101.2002

K. Kubota, CARD-FISH for Environmental Microorganisms: Technical Advancement and Future Applications, Microbes and Environments, vol.28, issue.1, pp.3-12, 2012.
DOI : 10.1264/jsme2.ME12107

Y. Tsuyoshi, S. Kawakami, M. Hatamoto, H. Imachi, M. Takahashi et al., In situ DNA-HCR: A facilitated in situ hybridization chain reaction system for the detection of environmental microorganisms, Environ Microbiol, vol.17, pp.2532-2541, 2014.

C. Larsson, J. Koch, A. Nygren, G. Janssen, A. Raap et al., In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes, Nature Methods, vol.92, issue.3, pp.227-23210, 1038.
DOI : 10.1021/ja952786k

R. Dirks and N. Pierce, From The Cover: Triggered amplification by hybridization chain reaction, Proceedings of the National Academy of Sciences, vol.239, issue.4839, pp.15275-15283, 2004.
DOI : 10.1126/science.2448875

E. Delong, L. Taylor, T. Marsh, C. Preston, and E. Long, Visualization and Enumeration of Marine Planktonic Archaea and Bacteria by Using Polyribonucleotide Probes and Fluorescent In Situ Hybridization Visualization and Enumeration of Marine Planktonic Archaea and Bacteria by Using Polyribonucleotide Probes and, 1999.

K. Zwirglmaier, W. Ludwig, and K. Schleifer, Improved Fluorescence in situ Hybridization of Individual Microbial Cells Using Polynucleotide Probes: The Network Hypothesis, Systematic and Applied Microbiology, vol.26, issue.3, pp.327-364, 2003.
DOI : 10.1078/072320203322497356

K. Zwirglmaier, W. Ludwig, and K. Schleifer, Improved Method for Polynucleotide Probe-Based Cell Sorting, Using DNA-Coated Microplates, Applied and Environmental Microbiology, vol.70, issue.1, 2004.
DOI : 10.1128/AEM.70.1.494-497.2004

J. Pivetal, D. Royet, G. Ciuta, M. Frenea-robin, N. Haddour et al., Micro-magnet arrays for specific single bacterial cell positioning, Journal of Magnetism and Magnetic Materials, vol.380, pp.72-77, 2015.
DOI : 10.1016/j.jmmm.2014.09.068

URL : https://hal.archives-ouvertes.fr/hal-01113985

J. Pivetal, G. Ciuta, M. Frenea-robin, N. Haddour, N. Dempsey et al., Magnetic nanoparticle DNA labeling for individual bacterial cell detection and recovery, Journal of Microbiological Methods, vol.107, pp.84-91, 2014.
DOI : 10.1016/j.mimet.2014.09.006

URL : https://hal.archives-ouvertes.fr/hal-01113982

A. Pernthaler, A. Dekas, C. Brown, S. Goffredi, T. Embaye et al., Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics, Proceedings of the National Academy of Sciences, vol.15, issue.4, 2008.
DOI : 10.1016/S0723-2020(11)80121-9

E. Trembath-reichert, A. Green-saxena, and V. Orphan, Whole Cell Immunomagnetic Enrichment of Environmental Microbial Consortia Using, pp.21-44, 2013.

Z. Fang, Multifunctional magnetic nanoparticles for medical imaging applications, Journal of Materials Chemistry, vol.56, issue.35, pp.6258-6266, 2009.
DOI : 10.1002/smll.200801647

M. Gijs, F. Lacharme, and U. Lehmann, Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis, Chemical Reviews, vol.110, issue.3, pp.1518-1563, 1021.
DOI : 10.1021/cr9001929

Y. Roh, R. Lauf, A. Mcmillan, C. Zhang, C. Rawn et al., Microbial synthesis and the characterization of metal-substituted magnetites, Solid State Communications, vol.118, issue.10, pp.529-534, 2001.
DOI : 10.1016/S0038-1098(01)00146-6

D. Inglis, R. Riehn, J. Sturm, and R. Austin, Microfluidic high gradient magnetic cell separation, Journal of Applied Physics, vol.99, issue.8, pp.99-101, 2006.
DOI : 10.1109/77.828383

J. Picot, C. Guerin, L. Van-kim, C. Boulanger, and C. , Flow cytometry: retrospective, fundamentals and recent instrumentation, Cytotechnology, vol.1, issue.1, pp.109-130, 2012.
DOI : 10.1126/science.163.3872.1213

T. Kalisky and S. Quake, Single-cell genomics, Nature Methods, vol.331, issue.4, pp.311-314, 2011.
DOI : 10.1038/nbt.1739

J. Porter, C. Edwards, J. Morgan, and R. Pickup, Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting, Appl Environ Microbiol, vol.59, pp.3327-3360, 1993.

C. Mota, M. So, and F. De-los-reyes, Identification of Nitrite-Reducing Bacteria Using Sequential mRNA Fluorescence In Situ Hybridization and Fluorescence-Assisted Cell Sorting, Microbial Ecology, vol.72, issue.4, pp.256-267, 2012.
DOI : 10.1128/AEM.72.4.2637-2643.2006

S. Van-nevel, S. Koetzsch, H. Weilenmann, N. Boon, and F. Hammes, Routine bacterial analysis with automated flow cytometry, Journal of Microbiological Methods, vol.94, issue.2, pp.73-76
DOI : 10.1016/j.mimet.2013.05.007

M. Podar, C. Abulencia, M. Walcher, D. Hutchison, K. Zengler et al., Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities, Applied and Environmental Microbiology, vol.73, issue.10
DOI : 10.1128/AEM.02985-06

L. Kamentsky, M. Melamed, and H. Derman, Spectrophotometer: New Instrument for Ultrarapid Cell Analysis, Science, vol.150, issue.3696, pp.630-631, 1965.
DOI : 10.1126/science.150.3696.630

A. Fu, C. Spence, A. Scherer, F. Arnold, and S. Quake, A microfabricated fluorescenceactivated cell sorter, Nat Biotechnol, vol.17, pp.1109-1120, 1999.

D. Ateya, J. Erickson, P. Howell, L. Hilliard, J. Golden et al., The good, the bad, and the tiny: a review of microflow cytometry, Analytical and Bioanalytical Chemistry, vol.68, issue.5, pp.1485-1498, 2008.
DOI : 10.1080/09500340008230521

S. Cho, C. Chen, F. Tsai, J. Godin, and Y. Lo, Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (??FACS), Lab on a Chip, vol.9, issue.12, pp.1567-1573, 2010.
DOI : 10.1117/12.47534

H. Christensen and M. Hansen, Counting and Size Classi cation of Active Soil Bacteria by Fluorescence In Situ Hybridization with an rRNA Oligonucleotide Probe, Appl Environ Microbiol, vol.65, pp.1753-1761, 1999.

J. Choi, T. Liakopoulos, and C. Ahn, An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy, Biosensors and Bioelectronics, vol.16, issue.6, pp.409-425, 2001.
DOI : 10.1016/S0956-5663(01)00154-3

B. Sorli, J. Chateaux, M. Pitaval, H. Chahboune, B. Favre et al., Microspectrometer for NMR: Analysis of small quantities in vitro, Meas Sci Technol, vol.15155, pp.877-880, 2004.

D. Inglis, R. Riehn, R. Austin, and J. Sturm, Continuous microfluidic immunomagnetic cell separation, Applied Physics Letters, vol.85, issue.21, pp.5093-5095, 2004.
DOI : 10.1021/la9706781

Q. Ramadan, V. Samper, D. Poenar, and C. Yu, On-chip micro-electromagnets for magnetic-based bio-molecules separation, Journal of Magnetism and Magnetic Materials, vol.281, issue.2-3, pp.150-172, 2004.
DOI : 10.1016/j.jmmm.2004.04.100

K. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, Micro magnetic stir-bar mixer integrated with parylene microfluidic channels, Lab on a Chip, vol.4, issue.6, pp.608-621, 2004.
DOI : 10.1039/b403305a

K. Hoshino, Y. Huang, N. Lane, M. Huebschman, J. Uhr et al., Microchip-based immunomagnetic detection of circulating tumor cells, Lab on a Chip, vol.15, issue.20, pp.3449-3457, 2011.
DOI : 10.1088/0960-1317/15/12/012

H. Lee, A. Purdon, V. Chu, and R. Westervelt, Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays, Nano Letters, vol.4, issue.5, pp.995-998, 2004.
DOI : 10.1021/nl049562x

Q. Ramadan, D. Poenar, and C. Yu, Customized trapping of magnetic particles, Microfluidics and Nanofluidics, vol.67, issue.3, pp.53-62, 2009.
DOI : 10.1007/s10404-008-0296-2

T. Deng, M. Prentiss, and G. Whitesides, Fabrication of magnetic microfiltration systems using soft lithography, Applied Physics Letters, vol.68, issue.3, pp.461-471, 2002.
DOI : 10.1007/BFb0118046

B. Gray, A Review of Magnetic Composite Polymers Applied to Microfluidic Devices, Journal of the Electrochemical Society, vol.161, issue.2, pp.3173-3183, 2014.
DOI : 10.1149/2.023402jes

F. Dumas-bouchiat, L. Zanini, M. Kustov, N. Dempsey, R. Grechishkin et al., Thermomagnetically patterned micromagnets, Applied Physics Letters, vol.16, issue.10, pp.1-4, 2010.
DOI : 10.1016/0029-554X(80)90094-4

URL : https://hal.archives-ouvertes.fr/hal-00569295

J. Pivetal, Développement et premières applications d'une méthode de tri de cellules bactériennes par marquage de l'ADN avec des nanoparticules magnétiques pour l

L. Torsvik and . Vo, Microbial diversity and function in soil: from genes to ecosystems, Current Opinion in Microbiology, vol.5, issue.3, pp.240-245, 2002.
DOI : 10.1016/S1369-5274(02)00324-7

B. Mcconaughy, C. Laird, and B. Mccarthy, Nucleic acid reassociation in formamide, Biochemistry, vol.8, issue.8, pp.3289-3295, 1969.
DOI : 10.1021/bi00836a024

W. Ku, W. Lau, Y. Tseng, C. Tzeng, and S. Chiu, Dextran sulfate provides a quantitative and quick microarray hybridization reaction, Biochemical and Biophysical Research Communications, vol.315, issue.1, pp.30-37, 2004.
DOI : 10.1016/j.bbrc.2004.01.013

R. Amasino, Acceleration of nucleic acid hybridization rate by polyethylene glycol, Analytical Biochemistry, vol.152, issue.2, pp.304-307, 1986.
DOI : 10.1016/0003-2697(86)90413-6

P. Lavery and S. Kowalczykowski, Enhancement of recA protein-promoted DNA strand exchange activity by volume-occupying agents, J Biol Chem, vol.267, pp.9307-9314, 1992.

J. St-laurent, M. Boulay, P. Prince, E. Bissonnette, and L. Boulet, Comparison of cell fixation methods of induced sputum specimens: An immunocytochemical analysis, Journal of Immunological Methods, vol.308, issue.1-2, pp.36-42, 2006.
DOI : 10.1016/j.jim.2005.09.019

T. Yamaguchi, B. Fuchs, R. Amann, S. Kawakami, K. Kubota et al., Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH), Systematic and Applied Microbiology, vol.38, issue.6, pp.400-405, 2015.
DOI : 10.1016/j.syapm.2015.06.007

K. Nelson, C. Weinel, I. Paulsen, R. Dodson, H. Hilbert et al., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environmental Microbiology, vol.120, issue.12, pp.799-808, 2002.
DOI : 10.1021/bi025912n

O. Osman, S. Toru, F. Dumas-bouchiat, N. Dempsey, N. Haddour et al., Microfluidic immunomagnetic cell separation using integrated permanent micromagnets, Biomicrofluidics, vol.7, issue.5, pp.54115-54125, 2013.
DOI : 10.1063/1.2165782

URL : https://hal.archives-ouvertes.fr/hal-00879547

J. Park and D. Crowley, Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE, BioTechniques, vol.38, issue.4, pp.579-586, 2005.
DOI : 10.2144/05384ST04

T. Yamaguchi, B. Fuchs, R. Amann, S. Kawakami, K. Kubota et al., Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH), Systematic and Applied Microbiology, vol.38, issue.6, pp.400-405, 2015.
DOI : 10.1016/j.syapm.2015.06.007

M. Wagner, R. Erhart, W. Manz, R. Amann, H. Lemmer et al., Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl Environ Microbiol, vol.60, pp.792-800, 1994.

R. Dirks and N. Pierce, From The Cover: Triggered amplification by hybridization chain reaction, Proceedings of the National Academy of Sciences, vol.239, issue.4839, pp.15275-15278, 2004.
DOI : 10.1126/science.2448875

. Illumina, 16S Metagenomic Sequencing Library Preparation, pp.1-28, 2013.

Q. Wang, G. Garrity, J. Tiedje, and J. Cole, Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Applied and Environmental Microbiology, vol.73, issue.16, pp.5261-5267, 2007.
DOI : 10.1128/AEM.00062-07

D. Parks, G. Tyson, P. Hugenholtz, and R. Beiko, STAMP: statistical analysis of taxonomic and functional profiles, Bioinformatics, vol.30, issue.21, pp.3123-3124, 2014.
DOI : 10.1093/bioinformatics/btu494

M. Orsini and V. Romano-spica, A microwave-based method for nucleic acid isolation from environmental samples, Letters in Applied Microbiology, vol.59, issue.1, pp.17-20, 2001.
DOI : 10.1007/s002530051017

S. Courtois, Å. Frostegård, P. Göransson, G. Depret, P. Jeannin et al., Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation, Environmental Microbiology, vol.62, issue.7, pp.431-439, 2001.
DOI : 10.1007/s003740050230

L. Bruder, M. Dörkes, B. Fuchs, W. Ludwig, and W. Liebl, Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes, Systematic and Applied Microbiology, vol.39, issue.7, 2016.
DOI : 10.1016/j.syapm.2016.08.005

C. Gasc, E. Peyretaillade, and P. Peyret, Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms, Nucleic Acids Research, vol.44, issue.10, pp.4504-4518, 2016.
DOI : 10.1093/nar/gkw309

P. Grodzinski, Y. J. Liu, R. Ward, and M. , A modular microfluidic system for cell preconcentration and genetic sample preparation, Biomedical Microdevices, vol.5, issue.4, pp.303-310, 2003.
DOI : 10.1023/A:1027357713526

V. Lecault, A. White, A. Singhal, and C. Hansen, Microfluidic single cell analysis: from promise to practice, Current Opinion in Chemical Biology, vol.16, issue.3-4, pp.381-390, 2012.
DOI : 10.1016/j.cbpa.2012.03.022

N. Pamme, Magnetism and microfluidics, Lab Chip, vol.20, issue.8, pp.24-38, 2006.
DOI : 10.1021/la040084f

N. Pamme and C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis, Lab on a Chip, vol.85, issue.8, pp.974-80, 2006.
DOI : 10.1007/s10404-006-0101-z

URL : https://hal.archives-ouvertes.fr/hal-00127100

N. Pamme, Continuous flow separations in microfluidic devices, Lab on a Chip, vol.6, issue.12, 2007.
DOI : 10.1039/b712784g

G. Blankenstein and U. Larsen, Modular concept of a laboratory on a chip for chemical and biochemical analysis, Biosensors and Bioelectronics, vol.13, issue.3-4, pp.427-43810, 1998.
DOI : 10.1016/S0956-5663(97)00109-7

M. Hejazian, W. Li, and N. Nguyen, Lab on a chip for continuous-flow magnetic cell separation, Lab Chip, vol.29, issue.4, pp.959-970, 2015.
DOI : 10.1016/j.ejmp.2012.11.003

N. Xia, T. Hunt, B. Mayers, E. Alsberg, G. Whitesides et al., Combined microfluidic-micromagnetic separation of living cells in continuous flow, Biomedical Microdevices, vol.76, issue.4, pp.299-308, 2006.
DOI : 10.1007/s10544-006-0033-0

J. Adams, U. Kim, and H. Soh, Multitarget magnetic activated cell sorter, Proceedings of the National Academy of Sciences, vol.369, issue.3-4, pp.18165-181700809795105, 2008.
DOI : 10.1007/s002160000660

D. Harrison, A. Manz, Z. Fan, L. Di, H. Widmer et al., Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Analytical Chemistry, vol.64, issue.17, pp.1926-1932, 1992.
DOI : 10.1021/ac00041a030

D. Harrison, K. Fluri, K. Seiler, Z. Fan, C. Effenhauser et al., Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip, Science, vol.261, issue.5123, pp.895-897, 1993.
DOI : 10.1126/science.261.5123.895

H. Becker and L. Locascio, Polymer microfluidic devices, Talanta, vol.56, issue.2, pp.267-287, 2002.
DOI : 10.1016/S0039-9140(01)00594-X

M. J. Madou, Y. Lu, S. Lai, L. J. Lee, and S. , A Centrifugal Microfluidic Platform ??? A Comparison, Proc MicroTAS Symp, pp.565-570, 2000.
DOI : 10.1007/978-94-017-2264-3_133

K. Olsen, D. Ross, and M. Tarlov, Immobilization of DNA Hydrogel Plugs in Microfluidic Channels, Analytical Chemistry, vol.74, issue.6, pp.1436-1441, 2002.
DOI : 10.1021/ac0156969

J. Wang, M. Pumera, M. Chatrathi, A. Escarpa, R. Konrad et al., Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection, 4<596::AID-ELPS596>3.0.CO, pp.596-601, 2002.
DOI : 10.1021/ac980737v

L. Locascio, C. Perso, and C. Lee, Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate, Journal of Chromatography A, vol.857, issue.1-2, pp.275-284, 1999.
DOI : 10.1016/S0021-9673(99)00774-8

D. Duffy, J. Mcdonald, O. Schueller, and G. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, pp.4974-4984, 1998.
DOI : 10.1021/ac980656z

G. Whitesides, E. Ostuni, X. Jiang, D. Ingber, L. Oft et al., Soft Lithography in Biology and Biochemistry, Annual Review of Biomedical Engineering, vol.3, issue.1, pp.335-73, 2001.
DOI : 10.1146/annurev.bioeng.3.1.335

E. Delamarche, B. A. Schmid, H. Michel, B. Biebuyck, and H. , Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks, Science, vol.276, issue.5313, pp.779-781, 1997.
DOI : 10.1126/science.276.5313.779

J. Mcdonald, D. Duffy, J. Anderson, D. Chiu, H. Wu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), 1<27::AID-ELPS27>3.0.CO, pp.27-401522, 2000.
DOI : 10.1007/978-94-011-0161-5

M. Owen and J. Stasser, Plasma treatment of polydimethylsiloxane, Journal of Adhesion Science and Technology, vol.3, issue.10, pp.1087-1088, 1997.
DOI : 10.1002/sia.740030506

M. Brun, L. Claude, and B. Lyon, Electrodes nanocomposites pour applications en microfluidique Electrodes, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00744588

M. Sakar, E. Steager, D. Kim, M. Kim, G. Pappas et al., Single cell manipulation using ferromagnetic composite microtransporters, Applied Physics Letters, vol.96, issue.4, 2010.
DOI : 10.1083/jcb.61.1.253

M. Gusenbauer, H. Özelt, J. Fischbacher, F. Reichel, L. Exl et al., Simulation of magnetic active polymers for versatile micro???uidic devices, EPJ Web of Conferences, vol.40, 2001.
DOI : 10.1051/epjconf/20134002001

M. Faivre, R. Gelszinnis, J. Degouttes, N. Terrier, C. Rivière et al., Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures, Biomicrofluidics, vol.6172, issue.5, 2014.
DOI : 10.1007/s00249-001-0200-4

B. Mustin and B. Stoeber, Low cost integration of 3D-electrode structures into microfluidic devices by replica molding, Lab on a Chip, vol.285, issue.22, pp.4702-4712, 2012.
DOI : 10.1016/j.jcis.2004.11.003

B. Teste, N. Jamond, D. Ferraro, J. Viovy, and L. Malaquin, Selective handling of droplets in a microfluidic device using magnetic rails, Microfluidics and Nanofluidics, vol.9, issue.18, pp.141-153, 2015.
DOI : 10.1039/b906298j

URL : https://hal.archives-ouvertes.fr/hal-01498617

A. Deman, M. Brun, M. Quatresous, J. Chateaux, M. Frenea-robin et al., Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems, Journal of Micromechanics and Microengineering, vol.21, issue.9, pp.1-8, 2011.
DOI : 10.1088/0960-1317/21/9/095013

URL : https://hal.archives-ouvertes.fr/hal-00734048

B. Mustin and B. Stoeber, Low cost integration of 3D-electrode structures into microfluidic devices by replica molding, Lab on a Chip, vol.285, issue.22, pp.4702-4712, 2012.
DOI : 10.1016/j.jcis.2004.11.003

L. Zanini, Structures magnetiques et micro-systemes pour applications biologiques basés sur des aimants permanents, 2013.

A. Plecis and Y. Chen, Fabrication of microfluidic devices based on glass???PDMS???glass technology, Microelectronic Engineering, vol.84, issue.5-8, pp.1265-1269, 2007.
DOI : 10.1016/j.mee.2007.01.276

S. Puttaswamy, P. Xue, Y. Kang, and A. Y. , Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices, Biomedical Microdevices, vol.9, issue.1, 2015.
DOI : 10.1007/s10404-010-0602-7

A. Siegel, S. Shevkoplyas, D. Weibel, D. Bruzewicz, A. Martinez et al., Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane)

R. Zhou and C. Wang, Microfluidic separation of magnetic particles with soft magnetic microstructures. Microfluid Nanofluidics, pp.10404-10420, 2016.

C. Vézy, N. Haddour, N. Dempsey, F. Dumas-bouchiat, and M. Frenea-robin, Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates, Micro & Nano Letters, vol.6, issue.10, 2011.
DOI : 10.1049/mnl.2011.0492

S. Menad, A. El-gaddar, N. Haddour, S. Toru, M. Brun et al., From Bipolar to Quadrupolar Electrode Structures: An Application of Bond-Detach Lithography for Dielectrophoretic Particle Assembly, Langmuir, vol.30, issue.19, pp.5686-569310, 1021.
DOI : 10.1021/la5005193

URL : https://hal.archives-ouvertes.fr/hal-00988569

A. Dias, Développement d'un système magneto-optique à balayage jusqu'à 10 T pour la caracterisation de couches magnétiques dures à gradient de composition, 2016.

J. Li, M. Zhang, and L. Wang, Design and fabrication of microfluidic mixer from carbonyl iron???PDMS composite membrane, Microfluidics and Nanofluidics, vol.14, issue.4, pp.919-925, 2011.
DOI : 10.1109/JMEMS.2004.839007

O. Chadebec, J. Coulomb, and J. F. , A review of magnetostatic moment method, IEEE Transactions on Magnetics, vol.42, issue.4, pp.515-520, 2006.
DOI : 10.1109/TMAG.2006.870929

URL : https://hal.archives-ouvertes.fr/hal-00189512