
HAL Id: tel-01623849
https://theses.hal.science/tel-01623849

Submitted on 25 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Obfuscation with Mixed Boolean-Arithmetic
Expressions : reconstruction, analysis and simplification

tools
Ninon Eyrolles

To cite this version:
Ninon Eyrolles. Obfuscation with Mixed Boolean-Arithmetic Expressions : reconstruction, analysis
and simplification tools. Cryptography and Security [cs.CR]. Université Paris Saclay (COmUE), 2017.
English. �NNT : 2017SACLV031�. �tel-01623849�

https://theses.hal.science/tel-01623849
https://hal.archives-ouvertes.fr

NNT : 2017SACLV031

Thèse de doctorat
de l’Université Paris-Saclay

préparée à Université de Versailles
Saint-Quentin-en-Yvelines

Ecole doctorale n◦580
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat: Informatique

Mme Ninon EYROLLES

Obfuscation par Expressions Mixtes Arithmético-Booléennes :

Reconstruction, Analyse et Outils de Simplification

Thèse présentée et soutenue à Versailles, le 30 Juin 2017.

Composition du Jury :

Mme. Sandrine BLAZY Professeur des universités Présidente du Jury
Université de Rennes 1

Mme. Caroline FONTAINE Chargée de recherche, CNRS Rapporteure

M. Pascal JUNOD Professeur, Haute École spécialisée Rapporteur
de Suisse occidentale

M. Louis GOUBIN Professeur des universités, UVSQ Directeur de thèse
Mme. Marion VIDEAU Responsable scientifique, Quarkslab Co-encadrante
M. Emmanuel FLEURY Mâıtre de conférences Examinateur

Université de Bordeaux
M. Johannes KINDER Senior Lecturer Examinateur

Royal Holloway University of London
M. Renaud SIRDEY Directeur de recherche Examinateur

Commissariat à l’Énergie Atomique
M. Thomas SIRVENT Ingénieur Invité

Direction Générale de l’Armement

So, the constellations. . . I don’t believe there’s a
whale out there, but I believe the stars exist and
that people put the whale up there. Like we’re
good at drawing lines through the space between
stars. Like we’re pattern finders, and we’ll find
patterns, and we really put our hearts and minds
into it even if we don’t mean to. So I believe in
a universe that doesn’t care and people who do.

Angus, Night in the Woods

1

Remerciements

Je tiens tout d’abord à remercier mon directeur de thèse Louis Goubin, pour avoir
accepté de diriger cette thèse et pour sa disponibilité durant ces trois années et
demie.

Je remercie chaleureusement Marion Videau, pour sa bienveillance, la qualité
de son encadrement scientifique et son soutien permanent.

Frédéric Raynal m’a donné l’opportunité de cette thèse, ainsi que d’excellentes
conditions pour mener à bien mes travaux, et je l’en remercie.

Je remercie aussi Emmanuel Fleury pour m’avoir incitée à remettre en question
mes intuitions et mes raisonnements.

J’adresse mes remerciements à Caroline Fontaine et Pascal Junod pour avoir
accepté d’être rapporteurs de mon manuscrit, pour leur relecture attentive et toutes
leurs remarques.

Je tiens à remercier tous les membres du jury de thèse pour leur présence et
pour leurs nombreuses questions : Sandrine Blazy, Johanness Kinder, Renaud
Sirdey, et plus particulièrement Thomas Sirvent pour ses nombreux commentaires
sur le manuscrit. Je remercie à travers lui la DGA, pour avoir co-financé le projet
QBOBF, qui a concerné les travaux sur l’obfuscation à Quarkslab entre 2014 et
2016.

Un très grand merci à Cyril pour m’avoir aidée de nombreuses fois dans la
compréhension du fonctionnement de l’UVSQ, et à toute l’équipe crypto du LMV
pour leur accueil.

Je suis vraiment reconnaissante à Lucas et Philippe pour avoir lu les premiers
jets de mon manuscrit, ainsi qu’à Jérôme et Kévin pour avoir lu jusqu’au bout
malgré les formules.

Je remercie aussi l’ensemble des mes collègues de Quarkslab, pour avoir répondu
à mes questions métaphysiques (mais qu’est-ce que le reverse ?), et pour m’avoir
supportée ces derniers mois.

Merci également à Camille de m’avoir poussée à creuser le sujet des MBA, et
pour toutes les questions et discussions qui en ont découlé.

Je remercie aussi les � vieux de la vieille �, ceux qui étaient déjà passés par
là et qui m’ont rassurée quand la fin paraissait parfois trop loin et trop difficile
à atteindre : Aymeric, Julien, Marc, Anne, et tous ceux qui m’ont prodigué leur
soutien indirectement.

Enfin, à mes parents qui m’ont toujours soutenue, à mon grand-père mon plus
fidèle lecteur, et à mon gg : Marcie du pu peurfond de mon thieur (ça veut rien
dire, mais je trouve que ça boucle bien).

2

Contents

Introduction 6

1 Context 10
1.1 Software Obfuscation . 10

1.1.1 Definition . 10
1.1.2 Uses . 11

1.2 Theoretical Obfuscation and Practical Obfuscation 12
1.2.1 Cryptographic Obfuscation 12
1.2.2 Practical Obfuscation . 13

1.3 Program Analysis . 14
1.3.1 Analysis Levels . 15
1.3.2 Analysis Methods . 17

1.4 Some Classical Obfuscation Techniques 18
1.4.1 Control Flow Obfuscation 18
1.4.2 Data Flow Obfuscation . 22
1.4.3 White-Box . 23

1.5 Quality of an Obfuscation Technique 24
1.5.1 Complexity Metrics of a Program 24
1.5.2 Metrics for Obfuscation . 25
1.5.3 Attack Model from Abstract Interpretation 25
1.5.4 Discussion . 26

2 Existing Work 28
2.1 MBA Expressions . 28

2.1.1 Polynomial MBA Expressions 28
2.1.2 MBA-based Obfuscation . 30
2.1.3 Generating New MBA Equalities 32
2.1.4 MBA in Cryptography vs in Obfuscation 34

2.2 Expression Simplification . 35
2.2.1 The Question of Simplification 35
2.2.2 Arithmetic Simplification . 37

3

2.2.3 Boolean Simplification . 38
2.2.4 Mixed Simplification . 38

2.3 Bit-Vector Logic . 39
2.4 Term Rewriting . 40
2.5 DAG Representation . 43
2.6 Optimization and Deobfuscation . 45

2.6.1 Superoptimizers . 46
2.6.2 Program Synthesis . 47

3 MBA Complexity 48
3.1 Incompatibility of Operators . 48
3.2 Existing Tools and MBA Simplification 49

3.2.1 Computer Algebra Software 50
3.2.2 SMT Solvers . 50
3.2.3 Optimization . 52

3.3 Reverse Engineering Context . 55
3.3.1 Impact of Optimization . 56
3.3.2 Analyzing Assembly . 57

3.4 Complexity Metrics . 61
3.4.1 Number of Nodes . 61
3.4.2 MBA Alternation . 62
3.4.3 Average Bit-Vector Size . 62

4 Analysis of the MBA Obfuscation Technique 66
4.1 Manual Reconstruction of the Obfuscation Process 67

4.1.1 From Assembly to Source Code 67
4.1.2 Other Obfuscations . 70
4.1.3 Reversing the MBA-Obfuscated Expression 72

4.2 Simplification Using Bit-Blasting Approach 76
4.2.1 Description . 77
4.2.2 Identification . 81
4.2.3 Implementation . 83

4.3 Symbolic Simplification . 84
4.3.1 Description . 85
4.3.2 Implementation . 86
4.3.3 Pattern Matching . 87

5 Resilience of the MBA Obfuscation Technique 92
5.1 Resilience Against Black-Box Approaches 93
5.2 Resilience Against our Simplification Tools 95

5.2.1 Bit-Blasting . 95

4

5.2.2 Symbolic Simplification . 97
5.3 Algebraic Weakness of the Opaque Constant Technique 102
5.4 Suggested Improvements . 103

5.4.1 Producing Less Common Subexpressions 104
5.4.2 Using New Identities . 105
5.4.3 Improving the Duplication 105
5.4.4 Increasing the Resilience Against our Tools 106
5.4.5 Expanding the Pool of Available Rewrite Rules 107

Conclusion 110

Bibliography 114

Appendix A MBA Rewrite Rules for s− k = 3 123
A.1 Addition . 123
A.2 XOR . 124
A.3 AND . 124
A.4 OR . 124

Appendix B Some MBA Rewrite Rules for s− k = 4 125
B.1 Addition . 125
B.2 XOR . 125

5

Introduction

Software protection aims at defending programs against unwanted analysis. Its
goal is to protect both the author of the program—i.e. the intelligence and contents
of the software—but also the users, by assuring for example the confidentiality of
their data. With the increasing creation and distribution of applications, and
especially because of the burst in usage of mobile platforms in the past few years,
the number and scale of the analyses performed on these applications is expanding.

Depending on the type of software and the identity of the analyst, the ex-
amination of applications can be considered as malicious or benevolent; and the
qualification of one’s intentions is not always trivial. For example, one could easily
agree that the analysis by a company of a concurrent solution qualifies as industrial
espionage and is malicious, while the examination of malware in order to design
a defense mechanism is surely of common interest. However, the analysis of a
program in order to assess its security is more difficult to sort into one category or
the other, as it depends on the way the obtained information is used or disclosed.
Therefore in this thesis we tend to use the term analysis instead of attack, and
cast any good or bad intention aside.

There are many reasons why one would want to protect one’s software, whether
it is to impede security analysis, preserve intellectual property, or prevent non-
authorized access to media content. . . For decades, the notion of diversity has been
identified as a key factor to increase the security of systems [Coh93, FSA97]. In-
deed, the analysis of a program is often based on some kind of pattern recognition,
meaning that when a piece of code is associated with its semantics, it can be iden-
tified in other locations in the program, or even in other programs. Increasing the
diversity of a program, i.e. representing semantically equivalent pieces of software
with different sequences of instructions, makes the recognition more difficult and
slows down the process of program analysis.

Furthermore, producing diverse instances of the same software reduces the
replicability of the analysis. Ideally, an analysis successful on one instance of a
system will need to be completely conceived again for another instance of the same
system. Diversity techniques can be, for example, adding or deleting non-relevant

6

code (e.g. calls, jumps), reordering instructions, replacing equivalent sequences
of instructions. . .

Recent examples of program diversification for security demonstrate the contin-
uous interest in this field of research: for example, the idea of replacing equivalent
sequences of instructions combined with the process of superoptimization has led
to the concept of superdiversification [JJN+08]. Adding bogus instructions and
shuffling code are also still considered useful techniques in the field of diversifi-
cation, which can be used for example to conceal the purpose of patches, or to
increase the resistance to ROP attacks [CKWG16]. Malicious applications (called
malware) also use polymorphism and metamorphism in order to easily generate
diverse instances and render their analysis less reproducible [WS06].

Program diversity has also induced the notion of software obfuscation [CTL97],
namely the transformation of code in order to make its comprehension more diffi-
cult. While diversity aims at reducing the reproducibility of analysis on different
instances, program obfuscation intends to make the analysis of one particular in-
stance as complex as possible. Obfuscation thus conceals the semantics of a piece
of software in two main ways: by mutating the code and data (e.g. changing their
representation or value), and by adding irrelevant (and sometimes misleading) in-
formation (e.g. junk code). The obfuscation technique we chose to study uses both
those principles in order to obfuscate common mathematical expressions. Oper-
ators are transformed with rewritings using Mixed Boolean-Arithmetic (MBA)
expressions, and useless operators and constants are added during the obfuscation
process. Throughout our research, we took an interest in both MBA obfusca-
tion and MBA deobfuscation, as it is fundamental practice in computer security:
knowledge about one way always helps to learn more about the other.

Contributions and Thesis Organization

Our work was mainly focused on Mixed Boolean-Arithmetic (MBA) expressions,
which are used as a tool for obfuscating both constants and expressions. We use the
traditional definition of a mathematical expression, meaning a finite combination
of symbols (constants, variables, operators. . .) that is well-formed.

7

Several issues were tackled during this work:

• Structuring the state of the art around MBA obfuscation: indeed, the do-
main is quite young and the directly relevant literature is scarce. It can
also borrow from more mature topics, like cryptography or rewriting. In
the process, we reconstructed an MBA obfuscation technique from public
obfuscated examples.

• Elaborating a definition of simplification of an obfuscated expression: we
analyzed the factors that could explain the difficulty of designing a deobfus-
cation solution, and defined our own simplicity metrics for MBA expressions.

• Producing deobfuscation—or simplification—algorithms: this achievement
filled the need to provide publicly available tools to analyze and automate,
at least partly, the task to reverse the obfuscation technique. There was until
now very little public work on the deobfuscation of MBA expressions.

• Assessing the resilience of the MBA obfuscation technique, both for expres-
sion and constant obfuscation: we define the resilience, in our case, as the
difficulty of deobfuscating the obfuscated expressions in general.

• Providing new ideas to improve this resilience: we used both general deobfus-
cation techniques and our simplification algorithms to propose several ideas
in order to improve the overall resilience of the MBA obfuscation technique.

We published our two solutions for MBA deobfuscation: the one based on bit-
blasting was presented at Grehack 2016 [GEV16], while the one using word-level
symbolic simplification was presented during SPRO 2016 [EGV16], along with
other results on permutation polynomials [BERR16] which are not per se part of
an MBA obfuscation but are nevertheless closely related.

The rest of this thesis is organized in the following way: the first chapter
describes the general context inherent to our work, which is the definition and
uses of obfuscation and its counterpart, reverse engineering.

The second chapter exposes the state of the art regarding MBA obfuscation,
expression simplification, and other related fields such as bit-vector logic, SMT
solvers, term rewriting, as well as some deobfuscation techniques that could apply
in our context.

The third chapter presents our analysis of the notion of MBA complexity,
detailing the issue of characterizing the simplicity (or complexity) of an MBA
expression, and proposes our own metrics in this scope.

The fourth chapter depicts the reconstruction of the MBA obfuscation tech-
nique, and exhibits our two propositions for MBA simplification, one using bit-
blasting and the other one being based on rewriting.

8

In the final chapter, we assess the resilience of the MBA obfuscation technique.
We first study how known black-box attacks can deobfuscate MBA-obfuscated
expressions, and then show how our own algorithms offer solutions to the problem
of MBA deobfuscation. We conclude that the obfuscation technique does not
provide great resilience in its current state, and suggest several improvements that
would increase said resilience.

9

Chapter 1

Context

This chapter aims at giving some context about the work presented in this thesis:
what is software obfuscation? What does it protect from? How can it be used?
How to evaluate the quality of obfuscation techniques?

1.1 Software Obfuscation

In this section, we define what software obfuscation is, and give a few examples of
situations where it is used.

1.1.1 Definition

Obfuscation is a process which consists in transforming a program in order to
make its analysis difficult and costly, while preserving its observable behavior.
Three properties often appear when dealing with obfuscation [BGI+01, CTL97]:

• Functionality : the obfuscated program must have the same input/output
behavior (or computational equivalence) as the original program.

• Efficiency : the increase in size and execution time of the obfuscated program
compared to the original program must be “acceptable” (depending on the
usage context and the hardware constraints).

• Resilience: the obfuscated program must be harder to analyze (in terms of
skills, time, tools. . .) than the original program. There are several metrics
to assess the “obfuscating” aspect of a transformation, and we detail some
examples in Section 1.5.

The field of software obfuscation is included in the wider scope of software
protection, which can also include software encryption, packing, anti-debugging or

10

anti-tampering measures. Obfuscation often refers to transformations modifying
the code in order to confuse it, while anti-debug and anti-tampering are transfor-
mations and/or processes designed to counter specific analysis; but they are quite
often combined to offer more protection to the program. Some techniques are also
hard to categorize: protections using code virtualization are sometimes called ob-
fuscation, sometimes just software protection. Thus the limit between obfuscation
and software protection is sometimes vague.

1.1.2 Uses

Obfuscation exists in a context where the software is distributed, meaning that the
attacker/analyst has an instance of the program and completely controls the envi-
ronment where it is executed—in the field of white-box design (see Section 1.4.3),
it is called the white-box attack context. The process of analyzing a product based
on its finished and distributed form is called reverse engineering. Its purpose is to
understand one or several features of a program in order to describe a format, an
algorithm, a protocol, and/or find an error in development (vulnerability research).
Here, to describe means to give some high level semantics, e.g. a pseudo-code de-
scription, the name of a standard algorithm with inputs and parameters, a source
code description (decompilation). . . Reverse engineering of programs is commonly
considered the inverse practice of obfuscation, and classical techniques are detailed
in Section 1.3.

The analyst goals can be numerous: non-authorized use of the software (e.g.
in the case of a licensed software), extraction of secrets or proprietary information
(keys, protocols), redistribution (e.g. tampered version), or analysis for security
purposes or interoperability (e.g. alternative client). Obfuscation traditionally
offers protection against reverse engineering actions (sometimes called Man-At-
The-End (MATE) attacks), mainly in those domains:

• Malware: obfuscating transformations provide confusion and polymorphism,
thus allowing malicious software to avoid automatic signature detection by
antivirus engines. Moreover, obfuscation also slows down the work of a
reverse engineer analyzing the malware for further detection or investigation.

• Protection of intellectual property: obfuscation is a good tool to protect an
algorithm or a protocol included in a commercial software. Known examples
include Skype [PF06] or DropBox [KW13].

• Rights management: whether it is to protect the access to software with
a license check, or to a digital content with a Digital Right Management
(DRM) scheme, those technologies often embed critical information (e.g.

11

cryptographic keys and protocols) and protect this information with obfus-
cation. DRM schemes embedded in programs (e.g. VOD services or video
games protection) are currently one of the main sources of obfuscation in
modern settings [MG14].

• Protection of personal or sensitive data: in the case of mobile applications
for example, a lot of sensitive data is held in the device (e.g. bank account
details). Obfuscation can help secure this data, along with the protocols
handling it.

1.2 Theoretical Obfuscation and Practical Ob-

fuscation

In this section, we give a quick overview of the differences between theoretical
obfuscation, or cryptographic obfuscation, and practical obfuscation as used in
common commercial solutions.

1.2.1 Cryptographic Obfuscation

Cryptographic obfuscation aims at giving a formal context to obfuscation, espe-
cially around the idea of quantifying the difficulty of analyzing the obfuscated
program O(P) of a given program P .

The formal study of software obfuscation was initiated by Barak et al. in [BGI+01],
where they introduced the notion of Virtual Black Box (VBB) as the best possible
property of an obfuscated program. The VBB property guarantees that anything
that can be learned from O(P), can also be learned from the input/output behav-
ior of P . In the same article, it is also proved that no general obfuscator achieving
this property for any input program P can be built. Therefore, Barak et al. sug-
gested in the same article a weaker definition of indistinguishability obfuscation: if
two programs P1 and P2 of same size compute the same function, their obfuscation
O(P1) and O(P2) should be indistinguishable from one another.

While this definition does not appear to give an explicit guarantee that the ob-
fuscated program actually hides information, the work of Goldwasser et al. [GR07]
proves otherwise. They provide a new definition of best-possible obfuscation: any
information extracted fromO(P) can be exposed by every other functionally equiv-
alent program of similar size. They also prove that for efficient obfuscators, the
definitions of indistinguishability and best-possible obfuscation are equivalent.

In 2013, the first candidate for general purpose indistinguishable obfuscation
was proposed by Garg et al. [GGH+13], based on three components: branching

12

programs as the computational model, fully homomorphic encryption and multi-
linear maps. The first implementation of such indistinguishable obfuscation was
presented by [DYJAJ14], and shows that its application for practical obfuscation
is still not conceivable. Indeed, one example of function they obfuscate—using an
Amazon EC2 machine with 32 cores—is a 16-bit point function containing 16 OR
gates: the obfuscation process takes around 7 hours, and produces an obfuscated
program of 31 GB with an execution time of about 3 hours. Those overheads are
huge compared to the practical uses of obfuscation, for example DRM technologies
or mobile applications.

Therefore, practical obfuscation often does not rely on such cryptographic con-
cepts for now, but more on successive applications of different program transforma-
tions. The security of practical obfuscation can derive from several concept: loss
of information, theoretical complexity, or composition of different weaker layers of
obfuscation. We discuss this in more detail in Section 1.5.

1.2.2 Practical Obfuscation

As stated in the previous section, a practical obfuscator is based on the composition
of different program transformations. Each of those transformation brings its own
level of complexity, but the interleaving of the different obfuscation techniques
greatly contributes to the global resilience of the obfuscated program. Some of the
most used commercial obfuscators are strong.protect1, Cloakware [LGJ08] (now
included in Irdeto’s2 protection solution) and Arxan3.

An obfuscator can apply its technique on different representations of a program,
mainly the source code, the Intermediate Representation (IR) or the assembly
language. The main problematic of an obfuscator designer is to find the correct
trade-off between the protection brought by the obfuscation and the decline in
performances (in terms of memory, time. . .).

Source Code

An obfuscator operating on the source code is called a source-to-source obfuscator,
and enables the use of obfuscation techniques exploiting specificities of the input
programming language. It is also easier to integrate into an existing compilation
chain, as the obfuscation step is taking place before the compilation. Source-to-
source obfuscation is also used on interpreted languages where the source code can
be retrieved easily with decompilation: we quoted earlier the case of DropBox as
an obfuscated software and it is written in Python. The Java language is also a

1https://strong.codes/
2http://irdeto.com/index.html
3https://www.arxan.com/

13

very productive field for source-to-source obfuscators, e.g. DashO4 or ProGuard5.
The main drawback to this approach is that it restricts oneself to one programming
language.

Intermediate Representation

Intermediate Representation (IR) is used by compilers, virtual machines or reverse
engineering frameworks to represent code. It is designed to be independent of any
source or target language. Obfuscators working on the IR level are thus more
general than source-to-source obfuscators, and present the ability to work on pro-
grams from various source languages and target assembly language. However, the
integration is more difficult as it requires the obfuscator to be added to the existing
compilation toolchain. Commercial obfuscators using intermediate representation,
in this case the LLVM compiler IR [LA04], are for example strong.protect (based
on the open-source project Obfuscator-LLVM [JRWM15]), or Epona (a commercial
obfuscator developed by Quarkslab).

Assembly Language

The assembly level presents a major loss of information compared to the IR and
source levels, thus it is very difficult to implement a general obfuscator working
only on assembly. However, the technique of protection by virtualization can be
applied directly on binary programs. The protected code then runs on a virtual
CPU different from standard CPUs. One example of a commercial obfuscator
implementing virtualization is VMProtect6.

Apart from virtualization, transformations operating on assembly language
commonly belong to the larger field of software protection, and more specifically
regarding anti-tampering (e.g. integrity checks) or packing (e.g. encryption of the
program).

1.3 Program Analysis

In this section, we present a few classical concepts of program analysis (or reverse
engineering). A program is composed of both code and data, from which result the
notions of control flow and data flow. Their common representations are detailed
in Section 1.3.1. From these representations, two types of reversing approaches are
possible, namely static analysis and dynamic analysis, described in Section 1.3.2.

4https://www.preemptive.com/products/dasho/overview
5http://proguard.sourceforge.net/
6http://vmpsoft.com/

14

1.3.1 Analysis Levels

From a disassembled program (e.g. with the IDA disassembler7), different pieces of
information can be inferred, which traditionally belong to the control flow and/or
the data flow.

Control Flow

The control flow of the program designates all possible execution paths of the
program, and how those paths are chosen. It is commonly represented with two
graphs: the Control Flow Graph (CFG) and the Call Graph (CG).

The Control Flow Graph is specific to a function, and represents all possible
executions of this function. Each node of the graph is a basic block : a continu-
ous sequence of instructions, without any control transfer instruction (jump, ret,
call. . .) or without being a target of a control transfer instruction. An edge
between two basic blocks means that there is a possible execution path linking
those blocks. We illustrate a simple example of a function computing the Ham-
ming weight of a value x on 8 bits, and its Control Flow Graph in Figure 1.1—the
nodes are labeled (INIT, B0, . . . , B4) for further explanations in Section 1.4.1. The
CFG of the same function in its compiled form as displayed in IDA is provided in
Figure 1.2.

uint8_t hamming_weight(uint8_t x)
{

uint8_t res = 0;
uint8_t i = 0;
while(i < 8) {

if (x & (1 << i))
res = res + 1;

i = i + 1;
}
return res;

}

(a) Function in C.

res = 0

i = 0
INIT

while (i < 8)
B0

if (x & (1 << i))
B1

res = res + 1
B2

i = i + 1
B3

return res
B4

tr
ue

false

tru
e

fa
ls
e

(b) CFG in pseudo-code.

Figure 1.1: The hamming weight function and its CFG.

7https://www.hex-rays.com/products/ida/

15

Figure 1.2: The CFG of hamming weight’s assembly displayed in IDA.

The other graph displaying information about the execution flow of the program
is the Call Graph (CG), where every node represents a function, and an edge from
a node f1 to a node f2 means that function f1 contains at least one call to the
function f2.

Data Flow

Compared to the control flow, the data flow does not possess a unique graph rep-
resentation: different data flow analysis yield different representations. A classical
example of a data flow analysis is the reaching definitions, which consists in deter-
mining where each variable may have been defined. Such information about data is
extracted from the CFG of the functions, firstly by stating for each basic block the
data-flow values entering and leaving the block. Many other data flow analysis can
be performed, for example live-variable analysis or available expressions [ALSU06].

The literature about data flow analysis comes mostly from the fields of program
optimization and program testing [KSK09, ALSU06]. In the reverse engineering
context, an analyst might consider different notions about the data (not necessarily
considering the flow of this data):

• the set of values computed at different points,

16

• the constant data of the program,

• the interactions between code and data (writes, reads).

For example, one can recognize a cryptographic algorithm by finding standard
cryptographic constants, or deduce the computations performed in a basic block
with its input and output values. In [BHMT16], the authors use a visual rep-
resentation of the reads and writes of the data to deduce information about the
implementation of a white-box and conceive a side-channel attack from the data
addresses read or written in memory.

While this type of analysis should be referred as more general data analysis, it
is very commonly called data flow analysis. In general, any information deduced
from the data of a program is referred as belonging to the data flow.

1.3.2 Analysis Methods

Static Analysis

The static analysis of a program is done without executing it, by examining the
code of the program itself, very probably in disassembled form. It is sometimes
possible to decompile the binary program to get a source code representation of it,
but the decompilation is a difficult problem and it is not always possible to achieve
it, especially on obfuscated programs.

Static analysis can use general information, such as the type of the program
or its constant data (strings, numbers. . .). The first step is often to reconstruct
the CFGs of the functions and the CG of the program—this is done automatically
with a tool, for example a disassembling framework. Static data flow analysis can
also be performed from a CFG.

To simulate the execution of the program, it is possible to use symbolic exe-
cution [Kin76], which assumes symbolic values for inputs, and expresses the con-
straints determining the execution paths with regards to those symbols. Examples
of reverse engineering tools providing symbolic execution on binary programs are
Triton [SS15] and Miasm [Des12].

Static analysis is safer for the analysis of potentially malicious binaries, as no
execution is needed. It is sometimes the only possibility of analysis, for example
when the target architecture of the executable is not available, or when no dy-
namic instrumentation tool exists. Because this type of analysis may bring the
reverser to consider execution paths that are not actually taken, it is considered
an overapproximation of the possible executions of the program. In the case where
the analysis would fail to recognize some execution paths of the program (i.e. non-
exhaustive analysis), the failure of the overapproximation would be caused by the
analysis being unsound.

17

Dynamic Analysis

The dynamic analysis of a program is done on particular inputs, and infers infor-
mation on the execution paths taken and data modifications. As only a subset of
the possible paths of execution is analyzed, the dynamic analysis is considered an
underapproximation of the possible executions of the program.

A few examples of dynamic analysis include:

• Debugging: interactively watch the program during its execution, step-by-
step or by using breakpoints.

• Tracing: log every executed instruction, and analyze it off-line (after execu-
tion).

• Data tainting: mark one or several interesting variables and watch their
impact on other variables of the program during execution.

Most of the dynamic analysis technique can also be used statically with sym-
bolic execution.

1.4 Some Classical Obfuscation Techniques

In this section, we present a few classical obfuscation techniques. To learn more
details about those techniques and find more examples, please refer to work such
as [CN09, DGBJ14, CTL97].

1.4.1 Control Flow Obfuscation

Confusing the control flow of a program means that the different execution paths
must not appear clearly to the analyst (at least statically). Two simple examples
of obfuscation techniques that obscure the control flow are inlining and outlining
of functions. We start by detailing those simple examples, then present the opaque
predicate technique, and finally the process of control flow flattening. These are
all classical examples, but a lot more can be imagined to confuse the control flow.

Inlining and Outlining

The technique of inlining—actually coming from the field of program optimization—
replaces a call to a function g by the body of the procedure itself. As an obfuscation
technique, this has the advantage to modify both the CFG of the calling function,
and the CG of the program (since the replaced call is no longer viewed as such).
An example of the inlining process is illustrated in Figure 1.3, with the main func-
tion calling hamming weight. The Figure 1.3a shows the CFG of main without

18

the inlining (the call to hamming weight is visible), whereas in Figure 1.3b, one
can recognize the CFG of hamming weight (cf. Figure 1.2) included in the CFG of
main. In the CG of the second program, the edge from main to hamming weight

would have disappeared.

(a) The main function without in-
lining.

(b) The main function with hamming weight

inlined.

Figure 1.3: Illustration of the inlining of hamming weight in main.

Inverting the process of inlining creates the outlining obfuscation: this tech-
nique replaces a piece of code in a function f with a call to a new function g
containing this particular piece of code. It changes the CFG of the original func-
tion f and adds a new node g in the CG, as well as an edge from f to g.

19

Opaque Predicate

An opaque predicate is a boolean expression which value is known during obfus-
cation, but hard to compute for the analyst of the obfuscated program. Opaque
predicates can be based on mathematical theorems (e.g. Expression (1.1)), or on
information difficult to obtain while analyzing (e.g. aliasing, see [CTL98]).

∀x, y ∈ N, if x = y2

then P =
(

(x ≡ 0 mod 4) ∨ (x ≡ 1 mod 4)
)

is always true (1.1)

The traditional construction using opaque predicates such as P in Expres-
sion (1.1) is to create fake branches in the CFG of a function: the value of P being
always true, the branch corresponding to its evaluation to false will never be on
any execution path, and junk code (useless code) can be inserted. This obfuscation
process is illustrated in Figure 1.4 (the dashed edge represents an execution path
that will never happen for any input of the program).

Some code

Some code

Rest of code
P

Rest of code Junk Code

tr
ue

false

Obfuscation

Figure 1.4: Classical opaque predicate construct with P always true.

Another similar way to use opaque predicates is to choose a predicate P evalu-
ating randomly to true or false, and execute the same code on the two conditional
branches. This obviously needs to be combined with various obfuscation tech-
niques that will make the two blocks difficult to identify as the same code. This
process is illustrated in Figure 1.5.

Some code

Some code

Rest of code
P

O(Rest of code) O′(Rest of code)

tr
ue

false

Obfuscation

Figure 1.5: Classical opaque predicate construct with P randomly true or false.

20

Obfuscation by opaque predicates can be attacked for example by using sym-
bolic execution to gather opaque predicates and an SMT solver to solve them.

Control Flow Flattening

The idea of control flow flattening is to completely change the structure of a
function’s CFG, by encoding the information of the control flow in the data flow.
One way of achieving this purpose is to number the basic blocks, and create a
dispatcher that manages the execution with a variable. This variable determines
which block should be executed after the current block. At the end of each basic
block, the variable is updated and the execution goes back to the dispatcher. This
process operated on the hamming weight function is illustrated in Figure 1.6.

One can see that the value of the variable next is controlling the execution
flow. The strength and weakness of this technique thus reside in the concealing of
this variable. Deobfuscation can be performed statically if the values are easy to
read (e.g. in Figure 1.6), or dynamically by following the order of execution of the
different basic blocks.

res = 0

i = 0

next = 0

INIT

switch(next)
DISPATCHER

if (i < 8)

next = 1

else

next = 4

B0

if (x & (1 << i))

next = 2

else

next = 3

B1

res = res + 1

next = 3

B2

i = i + 1

next = 0

B3

return res

B4

nex
t==0

ne
xt
=
=
1 n

e
x
t=

=
2

next=
=
3

next==4

Figure 1.6: Control flow flattening on hamming weight.

21

1.4.2 Data Flow Obfuscation

While obscuring the data flow, one aims at concealing the values taken during ex-
ecution, as well as the information that can be inferred from the data organization
and interactions. While splitting variables scatters the meaning of a variable into
several ones, changing their representation or using encodings focuses on hiding
the values and/or operations appearing during execution.

Splitting Variables

It is possible to split a variable into two or more variables, multiplying as much
the analysis work to understand the interest of this variable. For example, one can
choose a positive integer a and describe an integer variable x of the program as
x1 × a+ x2. Then basic operations such as x+ 1 or x× 2 would be described in a
more complex way, as illustrated with Figure 1.7. In this figure, O represents the
obfuscation transformation.

O(x)→ x1 × a+ x2

O(x+ 1)→

 x1 = x1 +
⌊ x2

a− 1

⌋
x2 = x2 + 1 mod a

O(x× 2)→

 x1 = 2x1 +
⌊2x2

a

⌋
x2 = 2x2 mod a

Figure 1.7: An example of integer variable splitting.

Changing Variables Representation

It is possible to change the representation of variables, in order to hide both the
actual values taken by the variables, as well as the operations applied on them.

Integers are traditionally represented in binary form in the machine level, using
powers of two. To obfuscate that representation, the patent [FCMCI12] describes
a technique representing integers with another basis (e.g. in powers of three).
This allows to conceal both the value taken by the variables, and the computation
of a XOR between two variables. The process is described in Figure 1.8: the
function f changes to the new representation using basis 3, and g back to the
binary representation. An addition in the alternative representation is equivalent
to a XOR in the original one, since the carries are not taken into account.

22

∀x, y, n ∈ N x =
n∑

i=0

xi2
i and y =

n∑
i=0

yi2
i

if f(x) =
n∑

i=0

xi3
i and g(x) =

n∑
i=0

(x′i mod 2)2i with x =
n∑

i=0

x′i3
i

then x⊕ y = g(f(x) + f(y))

Figure 1.8: An example of representation change.

Encodings

Using encodings is one of the most common data flow obfuscation techniques.
Encodings aim at preventing the value of a variable to appear in clear in memory
at any point of the program execution. This technique is borrowed to the field of
cryptographic white-box (see Section 1.4.3), where encoding functions are merged
within lookup tables to conceal the values between the different steps of a cipher.

In practice, the encodings in obfuscation are very often affine functions, be-
cause they are easily invertible and do not produce a big overhead in terms of
performance. Traditionally, the variable must be decoded before any computation
and re-encoded after; it is possible to use encodings homomorphic to an operator
(so that some computations might be done on the encoded values), but this greatly
decreases the diversity of the possible encodings.

1.4.3 White-Box

One area where cryptography and practical obfuscation converge is the subject
of white-box cryptography [CEJVO03, Mui13], which aims at protecting cryp-
tographic algorithms embedded in a program in the white-box attack context—
meaning the environment is under the control of the attacker. Compared to obfus-
cation that can be applied to theoretically any program and conceal either data or
algorithms, only cryptographic algorithms are white-boxed, and the process may
use particularities of the algorithm to help conceal the key used. White-box cryp-
tography is recognized as a useful concept to obfuscate cryptographic algorithms
and is often considered indispensable in an obfuscator (e.g. the solutions proposed
by CryptoExperts8 or Arxan9).

8https://www.cryptoexperts.com/technologies/white-box/
9https://www.arxan.com/technology/white-box-cryptography/

23

1.5 Quality of an Obfuscation Technique

As explained in Section 1.1.2, reverse engineering aims at extracting high-level
semantics from parts of a program. The goals may be to identify a standard algo-
rithm from its parameters (e.g. standard cryptographic constants), to understand
a custom algorithm in order to invert it or re-use it with different parameters. . ..
In order to achieve these goals, the reverser infers information about the structure
and the behavior of the program mainly through its control flow and data flow, as
detailed in Section 1.3.

To assess the quality of an obfuscation technique, one would try to determine
how the transformation prevents (or at least slows down) this extraction of in-
formation. The difficulty of this question relies on the fact that the attacks on
obfuscation are composed of both human and automatic analysis: reverse engi-
neers bring their own experience and intuition (which are hard to quantify), as
well as their own analysis tools.

Designing metrics to help characterize a “good” obfuscation can take several
approaches: a first one is to use classical software complexity metrics (presented in
Section 1.5.1) and derive definitions for the quality of obfuscation from those prop-
erties (see Section 1.5.2). Another approach detailed in Section 1.5.3, presented by
Dalla Preda et al. [DPG05], uses abstract interpretation to give an attack model
to obfuscation. We discuss and compare these approaches in Section 1.5.4.

1.5.1 Complexity Metrics of a Program

We give here a few examples of typical software complexity metrics [CTL97]. For
a more detailed list of metrics, readers fluent in French can look at the PhD thesis
of Marie-Angela Cornelie [Cor16]. Those metrics can be sorted in roughly three
types:

• Number of instructions: can be counted as the number of operators or
operands (distinct or not), and can also be used to compute more metrics
such as the program vocabulary, the volume, etc [Hal77].

• Control flow: cyclomatic complexity (number of linearly independent paths),
nesting level, knots. . .

• Data flow: fan-in/fan-out of instructions, data-flow complexity (number of
inter-basic block variable references), data structure complexity. . .

One could just use these metrics and say that a good obfuscation should in-
crease some chosen ones (depending on the obfuscation technique). They are for
example used in the definition of a potent obfuscation, detailed in next section.

24

1.5.2 Metrics for Obfuscation

In [CTL97], Collberg et al. define three metrics that are often used as a basis to
characterize a good obfuscation transformation:

• potency : uses one of the software complexity metrics (see Section 1.5.1); if
the obfuscation transformation increases this complexity, then it is a potent
transformation.

• resilience: determines the resistance of the transformation to the program-
mer effort (human analysis) and the deobfuscator effort (automatic analysis).
Collberg et al. define the programmer effort as local, global, inter-procedural
or inter-process, while the deobfuscator effort is either in polynomial time or
in exponential time.

• cost : the extra execution time and space of the obfuscated program compared
to the original. The cost can be free (O(1) more resources), cheap (O(n)),
costly (O(np)) or dear (exponentially more resources).

Then the authors define the quality of an obfuscation transformation as the
combination of these three metrics. Another common metric is also stealth, mean-
ing the difficulty to detect the obfuscation. In his book [CN09], Collberg defines
both steganographic stealth—the analyst cannot determine if the transformation
has been applied or not—and local stealth—the analyst cannot tell where the
transformation has been applied.

Other definitions of potency and resilience were also proposed: Karnick et
al. [KMM+06] define the potency from three metrics (nesting complexity, control
flow complexity and variable complexity) and the resilience using Java decompilers
(which is a definition hard to generalize to binary programs).

By just using the software complexity metrics, those definitions do not take
into account the reverse engineering process. That is why Dalla Preda et al.
proposed an attack model and a definition of potency relying on the properties
that a reverser might want to infer from the analysis of the program.

1.5.3 Attack Model from Abstract Interpretation

In their work, Dalla Preda et al. [DPG05] present a model for attacks on obfusca-
tion based on abstract interpretation, which is a way of approximating the concrete
semantics of a program. They encode the properties that can interest an analyst
as elements ϕ of an abstract domain (modeling the static and dynamic analyz-
ers). The abstraction model can thus adapt to the context, being fine when the
analyst is interested in details of the program. In this setting, if a transformation

25

is potent to a property ϕ, it means that a reverser cannot deduce this property
from the obfuscated program—this identifies the class of attacks against which the
obfuscation is potent. As pointed by the authors, this does not guarantee that the
obfuscation cannot be easily undone, i.e. its resilience. However, while they do
not provide a general model for resilience estimation, they provide a case study
with the assessment of the resilience of opaque predicate insertion.

1.5.4 Discussion

Using software complexity metrics to determine the potency of an obfuscation
transformation presents several drawbacks. First, it only characterizes one aspect
of the obfuscation and there is no trivial way to combine several aspects. Besides,
as these metrics describe the program in a static way, it is quite easy to design an
obfuscation transformation that would artificially increase the metrics by inserting
dead code (code that is never executed).

The resilience, as defined by Collberg et al. [CTL97], is based on the program-
mer effort (which is the analyst effort) and the deobfuscator effort (which is the
automatic tool effort). The programmer effort is defined regarding the locality of
the obfuscating transformation, and for example, a local obfuscation would only
bring weak or trivial resilience—depending on the deobfuscator effort. In the case
of expression obfuscation, the original expression is often obfuscated locally (a
branch-free expression is typically a basic block in the CFG), but can still be con-
sidered to have a good resilience if it is hard to automatically deobfuscate. In the
same way, the deobfuscator effort is only defined as its execution time and space
(polynomial or exponential), but this does not take into account the difficulty of
designing such a deobfuscator.

The abstract model of Dalla Preda (see previous section) and its definition of
potency are closer to real settings as they take the reverser interest and methods
into account. But the abstraction of the static and dynamic analyzers raises one
observation: how are we supposed to know the methods and tools used by the
analyst? While there is a lot of public work on the subject, reversers often pos-
sess their own private toolkit, and it is not really possible to assess the resistance
against unknown analysis.

Another factor to the complexity of quantifying the quality of an obfusca-
tion technique is the composition of obfuscation layers: several weak transforma-
tions might produce a resilient obfuscated program in the end—this was studied
in [JSV09] with metrics such as instruction count, cyclomatic number and knot
count. This kind of metrics can nevertheless help the designer of an obfuscation
technique to guide its elaboration. Recent work [MP15] focus more on the un-
intelligibility of the code, by using for example the Kolmogorov complexity. The

26

authors assume that an obfuscated code exhibiting more irregularities requires a
longer description in order to be characterized, and thus makes it harder to compre-
hend. This does not necessarily indicate if the obfuscation is hard to automatically
deobfuscate or not, but it can indeed give some information about the diversity
of the transformation (how many diverse outputs it can produce, for example).
Experimental evaluation of code obfuscation techniques [Mar14] is also a recent
field of research.

27

Chapter 2

Existing Work

In this chapter, we introduce the existing work about the subjects later developed
in this thesis: MBA obfuscation, expression simplification, bit-vector logic and
other deobfuscation techniques close to our research.

2.1 MBA Expressions

The present section details the definition and uses of Mixed Boolean-Arithmetic
(MBA) expressions. These are expressions that mix classical arithmetic operators
(addition, multiplication. . .) and boolean operators (exclusive-or, and, or. . .). In
full generality, expressions mixing arithmetic and bitwise operators are already
in use in broad contexts without being given a name. Any expression mixing
arithmetic operators and bitwise ones, for example applying a boolean mask on
an integer before an addition, fulfills the minimal requirements to be called an
MBA. Moreover, any bitwise or arithmetic operator available in a processor might
be used to construct an MBA expression.

However, if for a general characterization we do not exclude any existing arith-
metic or bitwise operator, in this thesis we will consider polynomial MBA expres-
sions as defined by Zhou et al. in [ZMGJ07], since all the MBA expressions we
have encountered up to now in the context of obfuscation are of this form.

2.1.1 Polynomial MBA Expressions

The definition of MBA expressions as a tool for obfuscating programs was given
by [ZM06, ZMGJ07]. We reproduce in this section the important notions around
MBA expressions (or as we call them sometimes, mixed expressions).

28

Definition 1 (Polynomial MBA [ZMGJ07]). An expression E of the form

E =
∑
i∈I

ai

(∏
j∈Ji

ei,j(x0, . . . , xt−1)

)
(2.1)

where the arithmetic sum and product are modulo 2n, ai are constants in Z/2nZ,
ei,j are bitwise expressions of variables x0, . . . , xt−1 in {0, 1}n, I ⊂ Z and for all
i ∈ I, Ji ⊂ Z are finite index sets, is a polynomial Mixed Boolean-Arithmetic
(MBA) expression. A linear MBA expression is a polynomial MBA expression of
the form ∑

i∈I
aiei(x0, . . . , xt−1),

For example, the expression E written as

E = (x⊕ y) + 2× (x ∧ y) (2.2)

is a linear MBA expression, which simplifies to E = x + y. An example of a
non-linear polynomial MBA expression could be

85 ∗ (x ∨ y ∧ z)3 + (xy ∧ x) + (xz)2.

Since the MBA-obfuscated expressions we have studied so far rely on composing
layers of MBA rewritings, the following statement exposed in [ZMGJ07] is essential
to us: by definition, the composition of polynomial MBA expressions is still a
polynomial MBA expression (as the variables x0, . . . , xt−1 can be polynomial MBA
themselves). This guarantees that we are only working with polynomial MBA
expressions.

For conciseness, the term “MBA expression” in the rest of this thesis stands
for a polynomial MBA expression. Moreover, this study is limited to the most
frequent operators: arithmetic {+,−,×} and boolean {∧,∨,⊕,¬}—we use both
the terms bitwise and boolean for this type of operators. The list of available
operators can vary between use cases. For example, in [ZMGJ07], besides the usual
operators {+,−,×,∧,∨,⊕,¬}, signed and unsigned inequalities alongside signed
and unsigned shifts are also considered. Other operators as shuffle or convolution
are not taken into account, even if they are relevant in other contexts [Vui03].

We deliberately chose not to detail the subject of MBA inequalities, since it
partially changes the issue to handle. Indeed, an MBA inequality is an assertion,
and its value is either true or false. While this value can also be interpreted as
a number, the situation is slightly different from an expression that can take a
great range of values. Depending on the context, an attacker might just want to
check if the inequality is satisfiable or not, instead of recovering a simpler form

29

of the expression. This problem is related to the constant obfuscation technique
proposed in [ZMGJ07], since the only value taken by the obfuscated expression
is the constant to be hidden. We detail this technique in the next section, and
discuss its security in Section 5.3. An assessment of the security of this constant
obfuscation technique was also done by Biondi et al. in [BJLS15], which we discuss
further in Section 2.2.4.

2.1.2 MBA-based Obfuscation

Obfuscation of Expressions

The technique to obfuscate one or several operators using MBA expressions was
first presented in [ZM06, ZMGJ07] and in various patents [JGZ08, KZ05, GLZ12]
with intersecting lists of authors. The process relies on two components:

• MBA rewriting: a chosen operator is rewritten with an equivalent MBA
expression, as can be seen in Expression (2.2). A list of rewriting examples
is given in the articles and patents from Zhou et al., and in [ZMGJ07], a
method to generate new MBA equalities is detailed (see next section). Other
examples of MBA equalities can be found in works regarding bit hacks, for
example [War02].

• Insertions of identities: let us call e any part of the expression being obfus-
cated, then we can write e as f(f−1(e)) with f any invertible function on
Z/2nZ. In the work of Zhou et al. f is an affine function. As this is very
close to the process of encoding (see Section 1.4.2), we often refer to this
step as the encoding step.

Those two principles can be observed in the process of getting Expression (2.3),
an example of an obfuscated MBA expression on two variables x, y ∈ {0, 1}8.

e1 = (x⊕ y) + 2× (x ∧ y)

e2 = e1 × 39 + 23

E = (e2 × 151 + 111) (2.3)

The MBA rewriting used for the obfuscation process is given in Expression (2.4),
and the encoding affine functions in Expression (2.5).

x+ y → (x⊕ y) + 2× (x ∧ y) (2.4)

f : x 7→ 39x+ 23

f−1 : x 7→ 151x+ 111
(2.5)

30

Then, the following expression stands for x+ y on 8 bits:

(((x⊕ y) + 2× (x ∧ y))× 39 + 23)× 151 + 111.

To increase the strength of the obfuscation, one can apply the two principles
(rewritings and encodings) iteratively as much as wanted. This technique has
proved to be quite popular in obfuscation, in real life settings ([MG14, BS14,
JGZ08]).

The MBA-obfuscated expression found by Mougey et al. while analyzing an
obfuscated program is reproduced here in the form of a Python function, in Fig-
ure 2.1. This version of the expression has been obtained by using the framework
Miasm to symbolically execute the MBA-obfuscated assembly, and then displaying
Miasm IR with a more high-level representation: the Python language. We detail
this process in Section 4.1.

a = 229x+ 247

b = 237a+ 214 + ((38a+ 85) ∧ 254)

c = (b+ ((−2b+ 255) ∧ 254))× 3 + 77

d = ((86c+ 36) ∧ 70)× 75 + 231c+ 118

e = ((58d+ 175) ∧ 244) + 99d+ 46

f = (e ∧ 148)

g = (f − (e ∧ 255) + f)× 103 + 13

R = (237× (45g + (174g ∨ 34)× 229 + 194− 247) ∧ 255)

Figure 2.1: MBA-obfuscated expression of (x⊕ 92) [MG14].

Opaque Constant

An obfuscation method based on MBA expressions to hide constants is also pre-
sented in [ZMGJ07]. It uses permutation polynomials, which are invertible polyno-
mials over Z/2nZ. They were characterized by Rivest in [Riv99], but no inversion
algorithm was given then. Zhou et al. provide a subset of invertible polynomials
of degree m noted Pm(Z/2nZ), as well as a formula to find the inverse of such
polynomials. The constant obfuscation (or opaque constant) is constructed in the
following way. Let:

• P ∈ Pm(Z/2nZ) and Q its inverse: P (Q(X)) = X ∀X ∈ Z/2nZ,

• K ∈ Z/2nZ the constant to hide,

31

• E an MBA expression of variables (x1, . . . , xt) ∈ (Z/2nZ)t non-trivially equal
to zero (e.g. E = x+ y − (x⊕ y)− 2× (x ∧ y)),

Then K can be replaced by P (E + Q(K)) = P (Q(K)) = K, whatever the
values taken by (x1, . . . , xt). We thus have a function computing K for all its input
variables, variables that can be chosen randomly in the rest of the program—this
increases the dependency of the opaque constant to the rest of the code. We show
a weakness of this technique in Section 5.3.

2.1.3 Generating New MBA Equalities

In their paper [ZMGJ07], Zhou et al. also provide a method to generate new
linear MBA equalities, that can later be used to create rewrite rules. This method
is derived from their first theorem, that we rephrase here for better clarity. Note
that the theorem we reproduce in this thesis differs from the original of [ZMGJ07],
because we keep only one direction of the equivalence—this is the only direction
we were able to prove, despite the other one being described as “plain” by Zhou
et al.

Theorem 1 ([ZMGJ07]). With n the number of bits, s the number of bitwise
expressions and t the number of variables, all positive integers, let:

• (X1, . . . , Xk, . . . , Xt) ∈ {{0, 1}n}t be vectors of variables on n bits,

• e0, . . . , ej, . . . , es−1 be bitwise expressions,

• e =
s−1∑
j=0

ajej be a linear MBA expression, with aj integers,

• ej(X1, . . . , Xt) =

 fj(X1,0, . . . , Xt,0)
...

fj(X1,n−1, . . . , Xt,n−1)

 with Xk,i the i-th bit of Xk and

fj : {0, 1}t → {0, 1} 0 ≤ j ≤ s− 1

u 7→ fj(u)

• F =

 f0(0) . . . fs−1(0)
...

...
f0(2t − 1) . . . fs−1(2t − 1)

 the 2t× s matrix of all possible values

of fj for any i-th bit.

If F · V = 0 has a non-trivial solution, with V = (a0, . . . , as−1)ᵀ, then e = 0.

32

Proof: Let F · V = 0, with V = (a0, . . . , as−1)ᵀ. If we explicit F · V , we get:

F · V =

 f0(0) . . . fs−1(0)
...

...
f0(2t − 1) . . . fs−1(2t − 1)

 ·
 a0

...
as−1

 =



s−1∑
j=0

aj · fj(0)

...
s−1∑
j=0

aj · fj(2t − 1)


,

meaning that F · V = 0 ⇔
s−1∑
j=0

aj · fj(l) = 0 for every l ∈ 0, 2t − 1. This is

equivalent to having
s−1∑
j=0

aj · fj(X1,i . . . , Xt,i) = 0 for every i, whatever the values

of the Xk,i.

On the other hand, we can write e as:

s−1∑
j=0

aj · ej(X1, . . . , Xt) =
s−1∑
j=0

aj ·

 fj(X1,0, . . . , Xt,0)
...

fj(X1,n−1, . . . , Xt,n−1)


=

s−1∑
j=0

aj ·
n−1∑
i=0

fj(X1,i, . . . , Xt,i) · 2i

=
s−1∑
j=0

(n−1∑
i=0

aj · fj(X1,i, . . . , Xt,i) · 2i
)

=
n−1∑
i=0

2i
(s−1∑

j=0

aj · fj(X1,i, . . . , Xt,i)
)
.

If F · V = 0, then
s−1∑
j=0

aj · fj(X1,i . . . , Xt,i) = 0 for every i, thus

n−1∑
i=0

2i
(s−1∑

j=0

aj · fj(X1,i, . . . , Xt,i)
)

= 0 for all i, 0 ≤ i ≤ n− 1,

meaning that e = 0.�

33

One could note that the bitwise expressions ej cannot contain constants other
than 0 and −1. While expressions such as (x⊕0) or (x∧ (−1)) can be represented
with one truth table that is valid for every bit i (the truth table of x in these
examples), this proof does not hold for bitwise expressions such as (x⊕ 92).

From Theorem 1, a method to create new linear MBA equalities can be de-
duced. From any {0, 1}-matrix of size 2t × s with linearly dependent column
vectors, one can generate a linear MBA expression of t variables equal to zero.

For example, the matrix:

F =


0 0 0 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 1 1


with column-vectors truth-tables for

f0(x, y) = x

f1(x, y) = y

f2(x, y) = (x⊕ y)

f3(x, y) = (x ∨ (¬y))

f4(x, y) = (−1)

has the vector V = (1,−1,−1,−2, 2)ᵀ as a solution to F · V = 0. This yields
the following linear MBA equation:

x− y − (x⊕ y)− 2(x ∨ (¬y))− 2 = 0.

This equation can be derived in many equalities, for example:

x− y = (x⊕ y) + 2(x ∨ (¬y)) + 2

(x⊕ y) = x− y − 2(x ∨ (¬y))− 2,

each equality then producing two rewrite rules, as explained in Section 2.4.

2.1.4 MBA in Cryptography vs in Obfuscation

Before being given the name of MBA in the context of obfuscation, such a mixing of
bitwise and arithmetic operators was already used in the context of cryptography
to design symmetric primitives, with the stated goal of getting efficient, non-linear
and complex interactions between operations. Building blocks such as ARX de-
signs (e.g. [KN10]) and some generalizations can be found in major algorithms like
hash functions (e.g. the SHA family), stream ciphers (e.g. Salsa family) or block
ciphers (e.g. XTEA).

34

The notion of T-functions [KS03]—i.e. functions where the i-th output bit only
depends on the first i input bits—appears both in the context of cryptography and
obfuscation, as integer arithmetic operators, such as (+,−,×) are triangular T-
functions and provide efficient non-linear invertible functions.

However, regarding MBA expressions, there is a key difference between what is
looked for in cryptography and in obfuscation. In cryptography the MBA expres-
sion is the direct result of the algorithm description, and the resulting cryptosystem
has to verify a set of properties (e.g. non-linearity, high algebraic degree) from a
black box point of view. The complex form of writing is directly related to some
kind of hopefully intrinsic computational complexity for the resulting function:
one wants the inverse computation to be difficult to deduce without knowing the
key. In obfuscation, an MBA is the result of rewriting iterations from a simpler
expression which can have very simple black box characteristics. There is no direct
relation between the complex form of the expression and any intrinsic computa-
tional complexity of the resulting function: on the contrary, when obfuscating
simple functions, one knows that the complex form of writing is related to a sim-
pler computational function. Nevertheless, getting the result of the computation
for the obfuscated expression requires indeed to get through all the operators in
the considered expression which implies somehow a computational complexity.

Therefore, cryptography can provide us with an example study of what means
incompatibility between operators and how it can prevent an easy study of MBA
expressions in a unified domain. Indeed, we work on n-bit words considered at the
same time as elements of different mathematical structures. For example, standard
arithmetic operations are considered in (Z/2nZ,+,×) while bitwise operations
belong to ({0, 1}n ,∧,∨,¬) or ({0, 1}n ,∧,⊕). More details on this incompatibility
of operators are given in Section 3.1.

2.2 Expression Simplification

In this section, we detail the issues arising when addressing the subject of expres-
sion simplification (in general, in the obfuscation context and in our context of
MBA obfuscated expressions), then we provide the existing work regarding arith-
metic, boolean and mixed simplification.

2.2.1 The Question of Simplification

Considering the general literature on expression simplification, we can retain two
types of simplification:

1. computing a unique representation for equivalent objects (canonical repre-
sentation),

35

2. finding an equivalent, but simpler form (“simpler” being context-dependent).

The first type of simplification is the most studied in literature since it can
prove equivalence of expressions and check for equality to zero. Nevertheless, it
has already been noted [Car04, BL82] that a canonical form may not always be
considered as the simplest form, depending on the definition of simplicity (whether
it is cheaper to store, easier to read, more efficient to compute, related to some
high level semantics. . .). This implies that if both problems are related (as a solu-
tion for one could solve the other), they may be different because of the context.

As obfuscation is designed to counter both human and automatic analysis,
the definition of what is a simple program and/or expression is thus double: for
a human, the readability would probably be of concern, while for a machine, the
questions of performances (in terms of memory or computing time) would probably
be of importance. Because obfuscation aims mainly at preventing the analyst to
get information, we focus our work on the readability—or the understandability—
of the program.

In the case of MBA obfuscation, understanding can have different meanings
depending on the context of the attack, for example:

• identifying distinctive constants or operations of a standard algorithm,

• associating a high level semantics to different parts of the formula,

• extracting the formula or part of it and using it in another context, with
different parameters,

• inverting the function containing the formula.

With those diverse goals for the analyst, and as readability is not a trivial notion
to define, we do not search for a general and perfect definition of what a simple
expression is. On the contrary, our focus is on the simplicity of MBA expressions
specifically, and a general metric for expressions simplicity (e.g. the Minimum
Description Length from [Car04]) might not describe the inherent difficulty of MBA
obfuscated expressions. Nevertheless, we may assess that simplifying an MBA-
obfuscated expression is somehow close (if not equivalent) to finding the original
expression of the non-obfuscated program in our case. Indeed, since the MBA
obfuscation we consider is mostly conducted through rewriting, we aim at returning
to a former state. We do not consider exceptional situations: for example, it is
very unlikely that by simplifying, we produce a program simpler than the original.
The idea of finding the original expression (or at least get close enough to it) is also
present in the problematic of decompilation, with which we share this interest.

36

Finally, it is interesting to note the fact that the definition of a simple ex-
pression could also depend on the simplification algorithm chosen. For example,
in Chapter 4, we detail two simplification approaches: one using a bit-blasting
approach—on the bit level—and the other a rewriting approach—on the word
level. When bit-blasting expressions, two main factors bring difficulty to the sim-
plification:

1. when the number of bits increases, as it increases the number of bit expres-
sions to manipulate;

2. when the number of arithmetic operations (mainly addition and multiplica-
tion) rises, as it increases the dependencies between the bit expressions.

Thus expressions presenting a low number of bits and arithmetic operators
might be considered simpler than other expressions when using bit-blasting. Whereas
with the rewriting approach, neither of these aspects influences the difficulty of
simplification.

With all these factors in mind, we present in the following sections the existing
work about arithmetic, boolean and mixed expressions simplification.

2.2.2 Arithmetic Simplification

We can easily illustrate the two types of simplification of the previous section with
examples from the computer algebra field concerning pure arithmetic expressions
(namely polynomials), where there exist efforts in both canonical form and other
simplifications related to the context. The canonical form of polynomials is the
expanded form. Depending on polynomials, this form is not necessarily the most
readable: for example, the expanded form on the right of Expression (2.6) can
be easily considered as simpler than the original form on the left, whereas the
factorized form on the left of Expression (2.7) is more readable than its expanded
form.

(x− 3)2 − x2 + 7x− 7 = x+ 2 (2.6)

(1 + x)100 = 1 + 100x+ · · ·+ 100x99 + x100 (2.7)

Those examples show the difficulty of defining in full generality the notion of
simplicity, even when a canonical form is available. In computer algebra software
such as Maple [Map], several strategies are often offered to the users, who have
to choose the one adapted to their objective. Nevertheless, there are standard
simplification steps suitable to all strategies that can be constantly applied (e.g.
x× 0 = 0).

37

2.2.3 Boolean Simplification

The same issues arise in the field of minimization of boolean functions and sim-
plification of logic circuits [Weg87]. While there exist several normal forms for
boolean functions (CNF, DNF, ANF), those are not always relevant in the case
of circuit simplification. Indeed, the goals of circuit simplification can be various:
reducing the number of gates, the depth of the circuit, the fan-out of the gates,
etc. We provide with Figure 2.2 an example of such a circuit simplification.

A
B

C

Q
A
C

B
Q

reduction

OR (∨) AND (∧)

Figure 2.2: An example of circuit reduction from [Kup96].

The formula corresponding to the circuit before reduction is Q = (A ∧ B) ∨
(B ∧ C ∧ (B ∨ C)). The reduced circuit coincides with a Conjunctive Normal
Form (CNF), namely (B ∧ (A ∨C)). As we can see, another normal form such as
Disjunctive Normal Form (DNF), meaning ((A ∧ B) ∨ (B ∧ C)), would not have
reduced the number of gates as much as the CNF. In some examples, CNF or
DNF would probably not give the simplest circuit, depending on the considered
characteristics. In fact, such variations and equivalences in circuit composition are
indeed used to provide obfuscation at the circuit level [McD12].

2.2.4 Mixed Simplification

To our knowledge, there exists only one article on simplifying MBA obfusca-
tion [BJLS15], focusing on the constant obfuscation detailed in Section 2.1.2. The
authors use three techniques to recover the hidden constant: an SMT-based ap-
proach, an algebraic simplification technique and a drill-and-join synthesis method.
While their focus is complementary to ours, their solutions do not scale well with
our problem of simplifying a non-constant expression. For example, using an SMT
solver in our case would require to know the simplified expression, and querying
the solver would only validate the equivalence of both obfuscated and simplified
expressions. Their algebraic simplification is strongly related to the form of the

38

obfuscated constant, which is different from obfuscated expressions—as the MBA-
obfuscation for expressions does not use permutation polynomials. Furthermore,
the program synthesis approach seems too expensive for the general obfuscation
case and at least requires further investigation as stated by the authors. In Sec-
tion 5.3, we also detail another weakness of this constant obfuscation technique.

Regarding tools that could be used for MBA expressions simplification, existing
software often do not support both bitwise and arithmetic operators—e.g. Maple,
SageMath [S+15]. Those implementing bit-vector logic [KS08] (see Section 2.3)
allow at least the creation and manipulation of MBA expressions, but those tools
are SMT solvers and focus primarily on satisfiability. We develop the topic of
bit-vector logic in the next section, and provide a more thorough analysis of MBA
simplification with existing tools in Section 3.2.

2.3 Bit-Vector Logic

When working with computer systems, one needs a framework adapted to the
machine logic in order to describe elements and operations on those elements. At
the machine level, objects are represented using bit-vectors (e.g. numbers with
the binary numeral system), and any operator available on a processor could be
considered to build an expression.

The bit-vector logic [KS08] is adapted to this machine representation: every
object is represented by a bit-vector (defined by its size), and traditionally con-
sidered operators are: arithmetic (+,−,×, /), boolean (⊕,∧,∨,¬), shifts (�,�),
concatenation (◦) and extraction ([:]). Our study is limited to arithmetic (without
division) and boolean operators, but further work could extend to shifts, concate-
nation and extraction.

Unfortunately, literature about bit-vector logic is widely focused on proving
SAT for a formula [GBD05, WHdM13, BDL98], which is a different problem than
ours—proving if an assertion is satisfiable and eventually finding a model does not
reach our notion of computing a simpler expression.

Tools commonly implementing the bit-vector logic are SMT solvers, such as
Z3 [dMB08] and Boolector [NPB15]. While they are constraint solvers and not
simplifiers, they sometimes provide simplifying routines, for example the simplify
function of Z3, which is rather aiming at the same goal we have but is very limited
in the case of MBA—for example, it cannot simplify Expression (2.2) into x+y. We
provide a more detailed study of the strength and weaknesses of Z3 in Section 3.2.2.

39

2.4 Term Rewriting

We already mentioned the notion of rewriting previously in this thesis, for example
to describe MBA obfuscation in Section 2.1.2. Essentially, rewriting systems are
composed of a set of objects, and relations on how to transform those objects. In
the case of term rewriting, those objects are terms (or expressions). In this sec-
tion, we recall a few important definitions about term rewriting and discuss them
regarding our context. We will try to focus on the most basic notions of rewriting
here, and recommend [BN99, DJ90, Klo92] to the curious reader.

Let Σ be a set of function symbols where each f ∈ Σ comes with a positive in-
teger n ≥ 0 representing its arity. Function symbols of arity 0 are called constants.
Let further X be a set of variables such that Σ ∩ X = ∅. Then we can define:

Definition 2 (Set of Σ-terms over X [BN99]). The set T (Σ,X) of all Σ-terms
over X is defined as

• X ⊆ T (Σ,X) (i.e. every variable is a term),

• for all f of arity n and all t1, . . . , tn ∈ T (Σ, X), we have f(t1, . . . , tn) ∈
T (Σ,X) (i.e. the application of function symbols to terms yields terms).

In our case, function symbols will most likely be binary function symbols (e.g.
+,×,⊕,∧ . . .) or unary (e.g. ¬,−), written in infix form (x + y) + z instead of
+(+(x, y), z). For more readability, we use the notation T to refer to T (Σ, X).

For a term s ∈ T , we note with s|p the subterm of s at position p, while the
term s with its subterm s|p replaced by a term t is noted s[t]p.

A substitution is a mapping from variables to terms σ : X → T such that
σ(c) = c for every constant c, and σ(f(t1, . . . , tn)) = f(σ(t1, . . . , tn)) for every
term f(t1, . . . , tn).

The idea around rewriting is to infer rules by orienting equations. For example,
if

x+ y = (x⊕ y) + 2× (x ∧ y) (2.8)

for all x, y ∈ Z/2nZ, then it is possible to rewrite x+y as (x⊕y)+2×(x∧y) in
any given expression. A rewrite rule is a pair (l, r) ∈ T 2 of equivalent terms (i.e.
that compute the same result) written l→ r. The terms left-hand side (LHS) and
right-hand side (RHS) are often used to refer to l and r. For example, Equation 2.8
produces two rewrite rules:

x+ y → (x⊕ y) + 2× (x ∧ y) (2.9)

(x⊕ y) + 2× (x ∧ y)→ x+ y. (2.10)

40

In our case, the relation (2.9) would traditionally be used for MBA obfuscation,
while the second could be used for simplification (see Section 4.3). Both l and r
may contain variables which refer to arbitrary terms.

A Term Rewrite System (TRS) is composed of a set Σ of function symbols
and a set R of rewrite rules over T . Very often, Σ is left implicit and a TRS is
identified with its rule set R. Then the action of using a rewrite rule is defined as
term rewriting.

Definition 3 (Term Rewriting [DJ90]). For a given TRS noted R, a term s ∈ T
rewrites to a term t ∈ T , if

• s|p = σ(l) (i.e. σ(l) is a subterm of s)

• and t = s[σ(r)]p (i.e. t is obtained from s by replacing an occurrence of σ(l)
by σ(r)),

for some rule l→ r in R, position p in s, and substitution σ.

Examples If we have s = b+ (a ∧ b) + (a ∧ b), the rewrite rule x+ x→ 2x and
the substitution σ = {x 7→ (a ∧ b)}, then:

• l = x+ x and r = 2x,

• σ(l) = (a ∧ b) + (a ∧ b) = s|p for some position p,

• σ(r) = 2× (a ∧ b), and thus s[σ(r)]p = b+ 2× (a ∧ b).

We can therefore rewrite s as t = b+ 2× (a ∧ b).

For another example, let

• s = a+ (a⊕ (3b+ 1)) + 2× (a ∧ (3b+ 1)),

• R = {(x⊕ y) + 2× (x ∧ y)→ x+ y},

• σ = {x 7→ a, y 7→ (3b+ 1)}.

Then one can rewrite s as t = a + a + b. If the previous rule x + x → 2x was
to be added to R, then with the substitution σ = {x 7→ a}, t could be rewritten
as u = 2a+ b. We show in Section 3.3.1 that finding the right substitution can be
a challenge in the obfuscation context, as it does not always exist.

41

A TRS can have several properties, mainly termination, confluence and con-
vergence.

Definition 4. A set of rewrite rules is:

1. terminating if after finitely many rules applications, we always reach an
expression to which no more rules apply;

2. confluent if when there are different rules to apply from a term x, leading
to two different terms y1 and y2, we always find a common term z that can
be reached from both y1 and y2 by successive applications of rewrite rules;

3. convergent if it is both confluent and terminating.

Figure 2.3 presents a classical illustration of the confluence of a TRS. The
relation

∗−→ represents a certain number of applications of rewrite rules (which can
be 0). The solid arrows represent universality (∀x, y1, y2) while dashed arrows
represent existence (∃z).

x y1

y2 z

∗

∗ ∗

∗

Figure 2.3: Illustration of the confluence property [BN99].

If a TRS is convergent, it means that it always computes canonical forms for its
input terms. Those properties can be proven on a specific set of rules, or for some
types of rules. For example, we can deduce from [BN99] that if every rule of the
set reduces the length of the expression (and the set is finite), then the associated
TRS is terminating.

If rules describing the commutativity (e.g. x+ y → y+x) and/or associativity
of certain operators are taken into account, the termination property will never
be achieved. To deal with this difficulty, all basic operations of term rewriting
are extended to deal with finite congruence classes of terms. This is called term
rewriting modulo a finite congruence class (e.g. modulo commutativity or modulo
associativity and commutativity).

42

Very often in the literature, the definition of a rewrite rule l→ r also includes
two properties:

1. l is not a variable, and

2. all variables in r also occur in l.

This can be explained by the fact that those properties are almost always
necessary to prove termination or confluence for a TRS. In our case, studying the
termination or confluence of an obfuscating system is of little interest. This is
why we chose a more general definition so that it would also include obfuscation
rewriting. Indeed, it is very possible to imagine obfuscating rules that would not
respect those properties: for example, one could use x → 2x − x to increase the
size of the expression and frequency of the variable x, or (x + y) → (x + y + z −
z), to add more variables into the expression. In fact, obfuscating rewrite rules
are very close to production rules (often called productions) used in context-free
grammar [HMU06], as their purpose is more to generate than to reduce, and studies
on deobfuscation sometimes use the formalism of context-free grammar [RS14].

However, when considering rewrite rules during simplification (see Section 4.3),
these two properties are taken into account: this use of rewrite rules is completely
in the scope of traditional rewriting, and the notions of termination and conver-
gence are of interest. In Section 4.3.1, we briefly assess the termination of our
rewriting system, but the confluence was left for future work.

2.5 DAG Representation

Both in computer algebra [Hec03] and in the field of compilation [ALSU06], trees
and graphs are used to represent programs or expressions. One common repre-
sentation of programs is the Abstract Syntax Tree (AST), or syntax tree, which
is designed to depict the hierarchical syntactic structure of the source program.
Thus, each node represents an operator, a function or a structure of the program,
while leaves represent operands (namely, variables or constants). Figure 2.4 pro-
vides a small pseudo-code example in Figure 2.4a and its corresponding AST in
Figure 2.4b.

Syntax trees may also be used to represent expressions. In this case, the nodes
just represent classical operators (e.g. +,−,⊕, . . .). Therefore, one might want
to avoid repetition of multiple occurrences of the same subexpression. A directed
acyclic graph (DAG) for an expression identifies the common subexpressions of the
expression [ALSU06]. In Figure 2.5, we give an AST representation and a DAG
representation of expression 2× (x ∧ y) + (x ∧ y).

As we use this DAG representation to define complexity metrics for MBA
expressions (see Section 3.4), we provide a definition of the DAG representation

43

if (x > 0)

x = x + 1

return x

(a) Small pseudo-code example.

if

>

x 0

co
nd

assign

x +

x 1

body

(b) AST representation.

Figure 2.4: An example of the AST representation of source code.

+

×

2 ∧

x y

∧

x y

(a) Abstract syntax tree.

x y 2

∧

+

×

(b) Directed acyclic graph.

Figure 2.5: Different representations of 2× (x ∧ y) + (x ∧ y).

44

with Definition 5. The interest of the sharing of common expressions is presented
in Section 3.4.1.

Definition 5 (DAG representation). The DAG representation of an MBA expres-
sion is an acyclic graph G where:

• all leaves represent constant numbers or variables, other nodes represent
arithmetic or bitwise operators;

• an edge from a node v to a node v′ means v′ is an operand of v;

• there is only one root node;

• common expressions are shared, which means they only appear once in the
graph.

One can note that the DAG representation is equivalent to the compact term
graph representation [Det99] used in term graph rewriting. It is also worth em-
phasizing that a list of equalities representing common subexpressions—list that
can be represented with an AST—presents in our context the same properties as
a DAG representation with the sharing of common subexpressions. For exam-
ple, we consider the AST of the list of expressions in Figure 2.6a and the DAF
in Figure 2.6b as equivalent representations, and use both evenly throughout our
work.

2.6 Optimization and Deobfuscation

Program optimization consists in transforming a program to produce a “better”
program. Usually better means faster, but other characteristics may be targeted,
such as shorter code, or code consuming less power. Compilers often have a
machine-independent optimization phase, operating on the intermediate represen-
tation of the program. While a more efficient code is not always more readable,
optimization sometimes share a common goal with deobfuscation. For example,
dead-code elimination (removing code not used in the output of a function) or
constant propagation [ALSU06] (replacing variables by their value if it is a con-
stant) can be easily acknowledged as transformations improving the readability.
Some obfuscation techniques may even be non-resistant to the optimization pro-
cess and deobfuscated with classic optimization passes, or by customizing such
passes [GG10, Spa10]. We consider this type of obfuscation to provide little re-
silience as they can be undone. We present in this section two optimization tech-
niques that could in theory deobfuscate any program, since they are based on
the program’s behavior and not on its description: superoptimizers and program

45

a = (x⊕ 12)

b = (a ∧ 34) + a

c = 2b+ (b ∨ a)

(a)

12 x342

⊕

+

∧

+

× ∨

(b)

Figure 2.6: List of expressions and DAG representation.

synthesis are worth detailing since they provide at least a partial answer to the
question of expression simplification.

2.6.1 Superoptimizers

Superoptimization [Mas87] means finding the optimal code sequence for a single,
loop-free assembly sequence of instructions (called the target sequence). Here, the
definition of the optimal code sequence is traditionally chosen as the fastest code
sequence, or also commonly the smallest one.

One of the first approaches to superoptimization was proposed by Massalin [Mas87]
and was a brute-force approach, enumerating sequences of instructions of increas-
ing length and choosing the lowest cost sequence equivalent to the target se-
quence. Other approaches later appeared, for example the tool Delani [JNR02]
that uses a structure representing all possible equivalent sequences of the target
sequence under some equality-preserving transformation rules. The work of Bansal
et al. [BA06] uses a training set of programs to build an optimization database in
order to gain better performances than [Mas87].

46

While superoptimization may prove useful on some examples of obfuscated
expression, it does not operate in the same context as ours, which leads to two
major issues:

• the definition of a better program is based on performances (faster, smaller),
which is different from our readability goal;

• the optimized program examples are often small snippets compared to the
average size of an obfuscated expression (examples before optimization con-
tain about ten instructions, while assembly version of expression in Figure 2.1
contains more than 35 instructions). Furthermore, those examples are com-
posed of “normal” code that could be naturally encountered in a program,
not obfuscated code, which could be a problem for the approach needing a
training set of programs.

2.6.2 Program Synthesis

We lately took an interest in program synthesis [Kre98, Gul10], which is the pro-
cess of automatically discovering an executable program given user intention—this
intention being expressed using various forms of constraints such as input-output
examples, demonstrations, natural language. . . Program synthesis has found many
practical applications: generating optimal code sequences (superoptimizers can be
considered as a specific case of program synthesis), automating repetitive program-
ming tasks, optimizing performance-critical inner loops. . .

The work of Jha et al. [JGST10] addresses the subject of synthesis for deob-
fuscation and bit-vector manipulation routines, which is of interest for us since
both those cases match our context. From a finite set of input/output (I/O) con-
straints, they synthesize a satisfying program and check its equivalence with the
target program by using distinguishing inputs (i.e. inputs for which the output
of the synthesized program is different from the target program’s output). If a
distinguishing input is found, it is added into the set of I/O constraints and a new
program is synthesized.

Despite the lack of definition of what a “simple” program is, the work of Jha et
al. would need further study to determine its pertinence for MBA deobfuscation.
In the absence of a public implementation of the synthesizer (named BRAHMA),
we were not able to test it on our current examples, but we have good confidence
that it might prove efficient when the deobfuscated expression contains a small
number of operators. The benchmarks given in [JGST10] show that the programs
leading to the longest synthesis are the ones containing a mixing of operators,
which could be an indication that MBA expressions also add difficulty to this
approach. We plan to verify this hypothesis in further work.

47

Chapter 3

MBA Complexity

In this chapter, we give a few answers about the difficulty of MBA simplification,
such difficulty explaining (at least partly) the resilience of the MBA obfuscation
technique so far. First, we recall a theoretical study of the incompatibility between
arithmetic and boolean operators, and analyze it in the context of MBA expres-
sions. Then, we show how the existing set of simplification tools fails to provide
an effective solution for MBA simplification. The third section lists the difficulties
that result from the reverse-engineering context, and the final section presents our
complexity metrics for MBA expressions.

3.1 Incompatibility of Operators

Bitwise and arithmetic operators do not naturally interact very well, as there are
no general rules (e.g. distributivity, associativity. . .) to cope with the mixing of
operators. Though there are some cases where rules analogous to distribution can
be used (e.g. Expression (3.1)), the impossibility of generalizing such rules (see
Expression (3.2)) supplies additional diversity during the obfuscation process.

∀x, y ∈ Z/2nZ : 2× (x ∧ y) = (2x ∧ 2y) (3.1)

∃x, y ∈ Z/2nZ : 3× (x ∧ y) 6= (3x ∧ 3y) (3.2)

In this case, the equality of Expression (3.1) is due to the fact that the multiplica-
tion by 2n can actually be seen as a left shift of n bits, which is a bitwise operator.
We give some insight about the incompatibility of arithmetic and boolean opera-
tors in this section.

IDEA [LM91] is a well-known block cipher of the 90s, famous for its combined
use of integer arithmetic and bitwise operators. One of the major characteristics
of IDEA at the time of its proposal was its lack of S-boxes. Instead, it relied on

48

a construction using three key components, carefully interleaved to prevent any
easy manipulation of the resulting expressions:

• the multiplication � in (Z/(216 + 1)Z)∗ (noted Z∗216+1 for more readability)

• the addition � in Z/216Z,

• the bitwise XOR ⊕ in GF(2)16.

Even though the multiplication in Z∗216+1 is not part of the operators we consider
in an MBA expression, IDEA provides us with a detailed example of incompat-
ibility between operators which hopefully helps one understand the usefulness of
MBA for obfuscation. The incompatibility study of the operators in IDEA was at
the basis of the argument on the confusion property a block cipher must fulfill.

There are four main reasons why the three operations are incompatible [LM91]:

• No pair of the three operations satisfies a distributive law.

• No pair of the three operations satisfies a generalized associative law.

• When considering the quasi-groups, (Z∗216+1,�) and (GF(2)16,⊕) are not
isotopic, neither are (Z/216Z,�) and (GF(2)16,⊕). The isotopism between
(Z∗216+1,�) and (Z/216Z,�) is essentially the discrete logarithm, which is not
a simple and straightforward bijection.

• It is possible to analyze � and � as acting on the same set. However it
means either analyzing a non-polynomial function on Z/216Z to represent �
or analyzing a high degree polynomial on Z∗216+1 to represent �.

The idea behind the notion of confusion is to make any description of the
relation between the ciphertext, the plaintext and the key so involved and complex
that it is useless for the attacker. It is a clear link with obfuscation concerns,
although the starting point for each context is different: in cryptography, the
intention is to gain intrinsic computational complexity, while in obfuscation, one
seeks a complexity linked to the form of writing that would prevent simplification.

3.2 Existing Tools and MBA Simplification

We exposed quickly in Section 2.2.4 how common tools for expression simplification
are not sufficient to simplify MBA expressions. In this section we choose examples
of computer algebra softwares, SMT solvers and optimization processes, and detail
strengths and weaknesses of these tools regarding MBA simplification.

49

3.2.1 Computer Algebra Software

We stated in Section 2.2.4 that common computer algebra programs—also called
symbolic computation programs—do not provide the possibility to manipulate
MBA expressions: for example, the computer algebra software Maple provides
bitwise computation on constants only1, and so does Wolfram Mathematica2. In
the same way, SageMath provides simplification for polynomials, but does not
support symbolic bitwise computation3. SageMath has a Bitset4 class which is
equivalent to the bit-vector representation, but it loses the semantics of the word-
level expression. We give in Figure 3.1 a few examples of how to use Sage’s function
simplify on arithmetic expressions, and how bitwise symbolic expressions are not
supported. One can observe that the simplify function fails to reduce Expres-
sion (2.6), and the expand function needs to be called explicitly. This illustrates
the difficulty of having a general simplification routine.

sage: simplify (3*(x + 12) - 12 + 5*x)

8*x + 24

sage: simplify ((x - 3)^2 - x^2 + 7*x - 7)

(x - 3)^2 - x^2 + 7*x - 7

sage: expand ((x - 3)^2 - x^2 + 7*x - 7)

x + 2

sage: x & 98

TypeError: unsupported operand type(s) for &:

’sage.symbolic.expression.Expression ’ and

’sage.symbolic.expression.Expression ’

Figure 3.1: Using Sage for simplifying arithmetic and bitwise expressions.

3.2.2 SMT Solvers

We presented in Section 2.3 the bit-vector logic, which is a good theoretical frame-
work to consider MBA expressions, and the tools implementing this logic, which
are SMT solvers. We detail here how different SMT solvers (namely Z3 [dMB08],
Boolector [NPB15] and Yices [Dut14]) deal with MBA simplification.

Z35 provides a simplify routine that can achieve polynomial simplification as

1http://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits
2http://reference.wolfram.com/language/guide/BitwiseOperations.html
3http://doc.sagemath.org/html/en/reference/logic/sage/logic/boolformula.html
4http://doc.sagemath.org/html/en/reference/data_structures/sage/data_

structures/bitset.html
5All tests using Z3 were performed with version 4.2.2.

50

well as some bitwise simplification. We illustrate in Figure 3.2 a few examples of
what simplify succeeds at simplifying. Note that Z3 does not support the power
operator (** in Python) on bit-vector variables, which could explain the lack of
simplification for polynomials of degree greater than one. In this figure, one can
also see how to prove the equivalence between an MBA expression and its sim-
plified version. This can be used either to help the designer of new MBA rewrite
rules, or the reverser trying to simplify the obfuscated expression—however, this
requires to make a “guess” about the simplified expression. This is the rough
principle of superoptimization, detailed in Section 2.6.1.

In[1]: import z3

In[2]: x,y = z3.BitVecs(’x y’, 8)

In[3]: z3.simplify (3*(x + 12) - 12 + 5*x)

Out[3]: 24 + 8*x

In[4] z3.simplify ((x - 3)*(x - 3) - x*x + 7*x - 7)

Out[4]: 249 + (253 + x)*(253 + x) + 255*x*x + 7*x

In[5] z3.simplify(x & 74 & 21)

Out[5]: 0

In[6] z3.simplify(x & 74 | 95)

Out[6]: 95

In[7] z3.prove(x + y == (x ^ y) + 2*(x & y))

proved

Figure 3.2: Using Z3’s simplify for arithmetic or bitwise simplification.

While MBA expressions can be manipulated using SMT solvers that implement
bit-vector logic, they prove little efficiency for our context of MBA expression
simplification. Even in the case of a simple bitwise expression equivalent to a
constant, Z3’s simplification is incomplete, as illustrated in Figure 3.3.

Nevertheless, two steps used in Z3’s simplify function—and also used during
proofs to help check satisfiability—share a common interest with us. The first
step is rewriting (see Section 2.4) applied to perform basic simplifications (e.g.
x+ 0 = x) and presents features similar to the simplification solution proposed in
Section 4.3. This rewriting step is often part of what is called the pre-processing in
SMT solvers, as it is used mostly before the proof of satisfiability for performance
reasons. The second step is called bit-blasting (or flattening) and consists in writing
explicitly every boolean formula representing a bit of the expression; it is mainly
the approach we used for the simplification solution detailed in Section 4.2. Bit-
blasting is often used in last resort in SMT solvers, as it increases the number of
objects to manipulate (n boolean expressions instead of one word-level expression).

51

In[1]: import z3

In[2]: x = z3.BitVec(’x’, 8)

In[3]: e = ((x & 87) | 43) ^ ((x & 94) | 138)

In[4]: z3.prove(e == 161)

proved

In[5]: z3.simplify(e)

Out[5]:

Concat(0,

Extract(6, 6, x),

1,

Extract(4, 4, x),

1,

Extract(2, 2, x),

3) ^

Concat(1,

Extract(6, 6, x),

0,

Extract(4, 4, x),

1,

Extract(2, 2, x),

2)

Figure 3.3: An example of insufficient simplification by Z3’s simplify.

When examining the API documentation of Boolector and Yices, one can notice
that no function similar to Z3’s simplify is available, only functions designed to
create assertions, check for their satisfiability, and get a model if satisfiable. Adding
this to the fact that the pre-processing steps of solvers are rarely documented, this
means the internal operating of those solvers is not available to the user. Therefore,
Boolector and Yices are not of great relevance in the context of MBA simplification,
except for proving equivalence of expressions.

3.2.3 Optimization

We exposed in Section 2.6 that optimization passes may help to deobfuscate some
obfuscation techniques. In our case, modern compilers can indeed simplify a few
examples of MBA expressions, but fail at simplifying them as soon as several MBA
rewrite rules are applied. We used the LLVM compiler, with its front end for
C/C++/Objective C languages called clang, to perform tests in order to evaluate
the efficiency of optimization on MBA expressions. We used the version 3.7 of

52

clang, and studied the optimized code produced in LLVM IR. In Figure 3.4, we
show a source code containing an MBA expression in the function compute MBA

equivalent to an addition; the rewrite rule and substitution used to obfuscate the
function is

x+ y → (x ∨ y) + (x ∧ y)

σ = {x 7→ x, y 7→ y}

#include <stdio.h>

#include <stdlib.h>

int compute_MBA(int x, int y) {

return (x | y) + (x & y);

}

int main(int argc , char* argv []) {

if(argc != 3)

return (1);

int x = atoi(argv [1]);

int y = atoi(argv [2]);

printf("%ul\n", compute_MBA(x,y));

return (0);

}

Figure 3.4: MBA expression in C source code.

In Figure 3.5, we present the LLVM IR code corresponding to the translation
of the function compute MBA (with relevant operators colored), Figure 3.5a being
the LLVM IR without optimizations and Figure 3.5b with optimizations (we used
the -O3 option of clang). One can note that LLVM’s optimizations successfully
simplified the MBA expression to an addition.

Nevertheless, when two MBA rewrite rules have been applied, LLVM cannot
simplify the expression. We illustrate this in the Figure 3.6, where two rewrite
rules have been applied in the source code, both those rules independently being
simplified by LLVM optimization if applied alone (both substitutions are trivially
{x 7→ x, y 7→ y}):

x+ y → (x ∨ y) + (x ∧ y)

x ∧ y → (x ∨ y)− (x⊕ y).

The composition of these two rules can be expressed as

x+ y → 2× (x ∨ y)− (x⊕ y),

53

; Function Attrs:

; nounwind uwtable

define i32 @compute_MBA(i32 %x,

i32 %y) #0 {

entry:

%x.addr = alloca i32 , align 4

%y.addr = alloca i32 , align 4

store i32 %x, i32* %x.addr , align 4

store i32 %y, i32* %y.addr , align 4

%0 = load i32 , i32* %x.addr , align 4

%1 = load i32 , i32* %y.addr , align 4

%or = or i32 %0, %1

%2 = load i32 , i32* %x.addr , align 4

%3 = load i32 , i32* %y.addr , align 4

%and = and i32 %2, %3

%add = add nsw i32 %or, %and

ret i32 %add

}

(a) LLVM IR without optimization.

; Function Attrs:

; nounwind readnone uwtable

define i32 @compute_MBA(i32 %x,

i32 %y) #0 {

entry:

%add = add i32 %y, %x

ret i32 %add

}

(b) LLVM IR with optimization.

Figure 3.5: LLVM IR of compute MBA with and without optimization.

int compute_MBA2(int x, int y) {

return 2*(x | y) - (x ^ y);

}

(a) compute MBA2 with two MBA
rewritings.

; Function Attrs: nounwind readnone uwtable

define i32 @compute_MBA2(i32 %x,

i32 %y) #0 {

entry:

%or = or i32 %y, %x

%mul = shl nsw i32 %or, 1

%xor = xor i32 %y, %x

%sub = sub nsw i32 %mul , %xor

ret i32 %sub

}

(b) Optimized LLVM IR.

Figure 3.6: LLVM optimization failing to simplify an MBA expression.

which implementation can be found in Figure 3.6a, in the source code of compute MBA.
Figure 3.6b shows that LLVM optimization cannot simplify the consecutive ap-
plication of two rewrite rules. On the other hand, it is interesting to notice that
LLVM’s optimization passes can simplify the expression of Figure 3.3 to the con-
stant 161.

Given that the optimization process of LLVM is composed of many transfor-
mation passes6 and is therefore quite complex, it is not trivial to explain those
results. By examining the list of LLVM’s optimization passes, one can observe
that the InstCombine7 is designed to “Combine instructions to form fewer, simple
instructions. [. . .] This pass is where algebraic simplification happens.” It is then

6http://llvm.org/docs/Passes.html
7http://llvm.org/docs/Passes.html#instcombine-combine-redundant-instructions

54

very possible that this transformation pass provides at least some simplification
techniques in our scope of research. Unfortunately, InstCombine consists of more
than 23000 lines of code; furthermore, a quick research for MBA rewriting rules
gives no result—while rules such as (x∧ y)⊕ (x∨ y)→ x⊕ y are indeed present in
the code. This makes the optimization passes a powerful tool for expression sim-
plification, but quite difficult to adapt to our context of MBA given its complexity
and size.

3.3 Reverse Engineering Context

The simplification of MBA expressions commonly arises in the process of reverse
engineering obfuscated programs. Consequently, the original expressions of the
program have probably been through other transformations in addition to the
obfuscation process, mainly the optimization (applied on the intermediate repre-
sentation) and the translation from intermediate representation to assembly lan-
guage. Figure 3.7 illustrates the main transformations being applied to change a
program’s representation back and forth between source code, IR and assembly
language.

source code intermediate representation
assembly
language

abstract code

generation

optimization

translation to IR

decompilation

machine code

generation

Figure 3.7: Transformation of a program’s representation.

The black arrows represent transformations that typically occur in the process
of compilation, while the blue dashed arrows represent transformations that could
be used by a reverse engineer. As obfuscation is commonly applied on the source
code or on the IR, various program transformations are applied on the obfuscated
code during compilation. In particular, optimization passes and machine code
generation can both induce big changes in the obfuscated code. This means that,
in the context of MBA obfuscation, knowing only the obfuscation steps might not
be enough to fully understand how the resulting expression was obtained—if the
analyst needs such understanding.

We detail in this section how optimization and generation of assembly language
can add difficulty to the simplification of MBA-obfuscated expressions.

55

3.3.1 Impact of Optimization

We saw in Sections 2.6 and 3.2.3 how the optimization process could help deob-
fuscate programs and even simplify some expressions. However, optimization can
also help design obfuscation techniques. Indeed, optimization seeks for an efficient
program, often at the expense of the readability of the code. For example, loop
unrolling and function inlining are both standard obfuscation and optimization
techniques. While working on MBA-obfuscated expressions, optimization passes
may often change the expressions in ways that could be understood by an analyst
as steps of the obfuscation technique.

We provide in this section an example of an MBA-obfuscated expression of
(x∨2), obtained by first applying on (x∨2) the identity defined as the composition
of function f and f−1 on 32 bits:

f : x 7→ 728040545x+ 198791817

f−1 : x 7→ 264282017x− 1538260777,

which produces the intermediate state of obfuscation

264282017× (728040545(x ∨ 2) + 198791817)− 1538260777.

And then by using the following rewrite rule and substitution

xy → (x ∧ y)× (x ∨ y) + (x ∧ (¬y))× (¬x ∧ y)

σ = {x 7→ (x ∨ 2), y 7→ 728040545},

which causes the final MBA-obfuscated expression computing (x ∨ 2):

mul1 = ((x ∨ 2) ∧ 728040545)× ((x ∨ 2) ∨ 728040545)

mul2 = ((x ∨ 2) ∧ (¬728040545))× (¬(x ∨ 2) ∧ 728040545)

result = ((mul1 + mul2) + 198791817)× 264282017− 1538260777

The implementation of this MBA-obfuscated expression can be found in Fig-
ure 3.8.

Optimizing this function with clang and the option -O3 yields the LLVM IR
presented in Figure 3.9. We illustrate the optimization process of the obfuscated
expression in the following formulas:

mul1 = ((x ∨ 2) ∧ 728040545)× ((x ∨ 2) ∨ 728040545)

= (x ∧ 728040545)︸ ︷︷ ︸
%and

× (x ∨ 728040547)︸ ︷︷ ︸
%or1︸ ︷︷ ︸

%mul

56

int compute_MBA3(int x)

{

int e = (x | 2);

int mul1 = ((e & 728040545)*(e | 728040545));

int mul2 = (e & (~728040545))*(~e & 728040545);

int mul = (mul1 + mul2) + 198791817;

return mul *264282017 - 1538260777;

}

Figure 3.8: MBA-obfuscated source code.

mul2 = ((x ∨ 2) ∧ (¬728040545))× (¬(x ∨ 2) ∧ 728040545)

= ((x ∧ (¬728040547)) ∨ 2)× (((x ∨ 2)⊕ (−1)) ∧ 728040545)

= ((x ∧ (−728040548)) ∨ 2)× (((x ∨ 2) ∧ 728040545)⊕ ((−1) ∧ 728040545))

= ((x ∧ (−728040548)) ∨ 2)︸ ︷︷ ︸
%and2

× ((x ∧ 728040545)⊕ 728040545)︸ ︷︷ ︸
%and3︸ ︷︷ ︸

%mul4

result = ((mul1 + mul2) + 198791817)× 264282017− 1538260777

= 264282017× (mul1 + mul2).︸ ︷︷ ︸
%add︸ ︷︷ ︸

%0

One can note that the resulting expression is quite different from the obfus-
cated one of compute MBA3: while the original mul1 and mul2 contained 728040545
as their only constant, the optimized version includes new constants such as
728040547 and -728040548—but 198791817 and -1538260777 have disappeared
from result. The operators are also altered, as the optimized expression in-
troduces a new operator ⊕. A simplifying approach based on the identification
of the different rewrite rules used for obfuscation would clearly be impeded by
the transformations applied during optimization. It would require to analyze op-
timization in a similar way as obfuscation. In the Section 4.3, we present such a
simplification algorithm and detail how to cope with this type of difficulties.

3.3.2 Analyzing Assembly

Reverse engineering an obfuscated program very often requires to analyze the
assembly from an executable. This means that in addition to MBA obfuscation and
optimization, expressions also went through the translation from the compiler’s

57

; Function Attrs: nounwind readnone uwtable

define i32 @compute_MBA3(i32 %x) #0 {

entry:

%and = and i32 %x, 728040545

%or1 = or i32 %x, 728040547

%mul = mul nsw i32 %and , %or1

%or = and i32 %x, -728040548

%and2 = or i32 %or , 2

%and3 = xor i32 %and , 728040545

%mul4 = mul nsw i32 %and2 , %and3

%add = add nsw i32 %mul4 , %mul

%0 = mul i32 %add , 264282017

ret i32 %0

}

Figure 3.9: Optimized LLVM IR for compute MBA3.

intermediate representation to a target assembly language. While it is possible
to analyze and understand the assembly directly, it is a low-level programming
language and is often considered less readable than high-level languages.

To gain a more readable representation from an assembly code, it is possible
to either decompile it to a source code, or translate it back to an intermediate
representation—both techniques are illustrated in Figure 3.7. As the decompila-
tion aims at producing a sound source code, it is often far more complicated than
the translation to IR, we thus focus our work on this second technique.

Traditionally, a reverse engineering framework is used to symbolically execute
parts of the program (see Section 1.3.2) and obtain a high-level description of the
instructions from the IR of the framework. There also exist work on the translation
of machine code into LLVM IR [CC11]. In this section, we compare the high-level
output of three of the most common frameworks: Miasm8 [Des12], Triton9 [SS15]
and Medusa10 [Szk]. Each tool influences the form of the resulting expression by its
choice of semantics, representation and potentially its own simplification passes.
We tested each framework on the same binary, obtained by compiling the function
compute MBA3 of Figure 3.8.

In Figure 3.10, we present the high-level output of Triton. The SymVar 0

variable stands for the input of the function. One can see that in order to display
the size of the variables, Triton uses bitwise AND masks with 2n − 1 (in the

8Used version is of commit 2b93bc6682f3a08a5eccccefa135535708434f9e.
9Used version is 0.4.

10Used version is of commit db15edd5eb000c38cdaa52eacc7710a0cce8d932.

58

ref_0 = SymVar_0

ref_1 = (ref_0 & 0xFFFFFFFF)

ref_3 = ((ref_1 & 0xFFFFFFFF) & 0x2B650461)

ref_10 = (ref_0 & 0xFFFFFFFF)

ref_12 = ((ref_10 & 0xFFFFFFFF) | 0x2B650463)

ref_19 = (((sx(0x20 , (ref_12 & 0xFFFFFFFF))

* sx(0x20 , (ref_3 & 0xFFFFFFFF)))

& 0xFFFFFFFFFFFFFFFF) & 0xFFFFFFFF)

ref_23 = ((ref_0 & 0xFFFFFFFF) & 0xD49AFB9C)

ref_30 = ((ref_23 & 0xFFFFFFFF) | 0x2)

ref_37 = ((ref_3 & 0xFFFFFFFF) ^ 0x2B650461)

ref_44 = (((sx(0x20 , (ref_37 & 0xFFFFFFFF))

* sx(0x20 , (ref_30 & 0xFFFFFFFF)))

& 0xFFFFFFFFFFFFFFFF) & 0xFFFFFFFF)

ref_48 = (((ref_44 & 0xFFFFFFFF) + (ref_19 & 0xFFFFFFFF))

& 0xFFFFFFFF)

ref_56 = (((sx(0x20 , (ref_48 & 0xFFFFFFFF))

* sx(0x20 , 0xFC09FA1)) & 0xFFFFFFFFFFFFFFFF)

& 0xFFFFFFFF)

Figure 3.10: Output of translation to IR with Triton.

example, n equals 32 or 64), which quite reduces the readability of the expression.
In addition to those masks, the presence of functions relative to the semantics

of some instructions, here for example sx for sign-extension of multiplications,
also induces more work for the analyst trying to simplify MBA expressions. Mi-
asm produces a very similar output, with a different way of dealing with sign
extensions—Miasm uses if conditions to consider the sign of the variables. We
display the high-level output of Miasm for compute MBA3 in Figure 3.11. For clar-
ity purposes and as they do not affect the final result, we cleaned the output of
expressions concerning flags registers (cf, zf, . . .). In this output, the input
variable is in the EDI register.

In Figure 3.12, we give the output of Medusa when symbolically executing the
same function. We indicate the input variable with x. Medusa makes the choice of
giving explicitly the size of every component, with indications of the type bv32(),
bv64(). One can also note the presence of the sign extend and bcast functions.
Adding this to the fact that the result of the function is given as one rather big
expression, it is quite easy to imagine that the analyst would have to process this
kind of output before any simplification algorithm.

Both optimization and translation from assembly add complexity to the sim-
plification of MBA-obfuscated expressions in a reverse engineering context. The
evaluation of our simplification algorithm in Section 5.2.2 is done in a “clean”
mathematical context (MBA-obfuscated expressions are directly considered on the

59

EAX = EDI

EAX = ((EAX & 0x2B650461) & 0xffffffff)

ECX = EDI

ECX = ((ECX | 0x2B650463) & 0xffffffff)

ECX = ((((((EAX & 0xffffffff) << 0) | (((0 xFFFFFFFF

if (((EAX >> 31) & 0x1)) else 0x0) & 0xffffffff) << 32))

* (((ECX & 0xffffffff) << 0) | (((0 xFFFFFFFF

if (((ECX >> 31) & 0x1)) else 0x0) & 0xffffffff) << 32)))

& 0xffffffffffffffff) & 0xffffffff)

EDI = ((EDI & 0xD49AFB9C) & 0xffffffff)

EDI = ((EDI | 0x2) & 0xffffffff)

EAX = ((EAX ^ 0x2B650461) & 0xffffffff)

EAX = ((((((EAX & 0xffffffff) << 0) | (((0 xFFFFFFFF

if (((EAX >> 31) & 0x1)) else 0x0) & 0xffffffff) << 32))

* (((EDI & 0xffffffff) << 0) | (((0 xFFFFFFFF

if (((EDI >> 31) & 0x1)) else 0x0) & 0xffffffff) << 32)))

& 0xffffffffffffffff) & 0xffffffff)

EAX = ((EAX + ECX) & 0xffffffff)

EAX = ((EAX * 0xFC09FA1) & 0xffffffff)

Figure 3.11: Output of translation to IR with Miasm.

eax = bcast(

(sign_extend(

(bcast(

(sign_extend (((x & bv32(0 x2B650461)) ^ bv32(0 x2B650461)),

bv64(0 x00000040))

* sign_extend (((x & bv32(0 xD49AFB9C)) | bv32(0x0002)),

bv64(0 x00000040))),

bv32(0x0020))

+ bcast(

(sign_extend ((x | bv32(0 x2B650463)), bv64(0 x00000040))

* sign_extend ((x & bv32(0 x2B650461)), bv64(0 x00000040))),

bv32(0 x0020))),

bv64(0 x00000040)) * bv64(0 x0FC09FA1)),

bv32(0 x0020))

Figure 3.12: High-level output of symbolic execution with Medusa.

60

source level, in our case in Python). Nevertheless, we detail the simplification of
a compiled MBA-obfuscated expression in Section 4.1.

3.4 Complexity Metrics

Despite the lack of tools and theoretical ground around MBA expressions, we
designed three metrics intended to characterize their complexity. We stated in
Section 2.2.1 that the definition of simplicity (or complexity, since the definitions
are clearly linked) was also dependent on the simplification algorithm considered.
As we focused our work more on the rewriting approach (see Section 4.3), our com-
plexity measures are more related to rewriting concepts. We argue that decreasing
these metrics improves the simplicity of MBA expressions in a general way, both
for human understanding and automatic analysis.

We stress the fact that those metrics are not meant to characterize the re-
silience of the MBA obfuscation technique as presented in Section 2.1.2, but the
complexity of an MBA expression in general. Nevertheless, the complexity of the
MBA expressions generated by an obfuscation technique can indeed be a factor
used to evaluate the resilience of said technique, but we will detail this topic in
Chapter 5.

To define our metrics, we use the DAG representation detailed in Section 2.5.

3.4.1 Number of Nodes

We define the size of an expression as its number of nodes: operators, variables
and constants. The DAG representation (see Section 2.5) and its sharing property
present a great advantage, as each occurrence of a subexpression is only taken into
account once when computing the size of an expression. For example, expression
of Figure 2.1 has 72 nodes if the sharing is used, and 797 nodes if each occurrence
of every subexpression is repeated. We consider that every occurrence can be
simplified in the same way, which is true because the rewrite rules traditionally
used are true whatever the value of the variables. This means that simplifying an
occurrence of a subexpression is equivalent to simplifying all its occurrences, and
thus the sharing is both sound and interesting for us. With conditional rewrite
rules, it would be possible to have occurrences with different simplification, but
we do not consider that kind of obfuscation in our context.

Decreasing the number of nodes contributes to reducing the expression size,
meaning it will be easier to apprehend and manipulate. It may also be useful to
reduce the number of variables for any brute-force approach (by using Z3 to prove
the equivalence of expressions for example), as it decreases the size of the input
set.

61

3.4.2 MBA Alternation

When exposing the subject of expression simplification in Section 2.2.1, we stressed
the fact that we were studying the complexity of mixed expressions. A “compli-
cated” arithmetic expression that can be reduced by a standard computer algebra
software is not relevant in our context. With the MBA alternation, we intend to
design a metric to help quantify the “MBA aspect” of an expression. For example,
a purely arithmetic or a purely boolean expression has a null MBA alternation.
Likewise, a computer algebra software applying only arithmetic simplifications
(like expansion) on an MBA-obfuscated expression should not greatly decrease
the MBA alternation metric of a robust MBA obfuscation.

To define the MBA alternation of an expression, we first need to define the
type of an operator op. The type is arithmetic if op ∈ {+,−,×} and boolean (or
bitwise) if op ∈ {∧,∨,⊕,¬}. The MBA alternation is simply the number of edges
linking two nodes that represent operators of different types (nodes representing
variables and constants do not have a type, and thus do not affect this metric).

Definition 6 (MBA alternation). For a graph G = (V,E) with V the set of
vertices and E the set of edges, the MBA alternation altMBA(G) is:

altMBA(G) = |{(v1, v2) such that type(v1) 6= type(v2)}|,

where (v1, v2) ∈ E represents the edge linking the two vertices v1, v2 ∈ V .

These edges represent difficult points in the simplification of MBA expres-
sions. Indeed, subtrees containing edges of the same type—thus representing
purely boolean or arithmetic expressions—are likely to be simplified with clas-
sical simplification technique, with still the issue of finding the adapted strategy
(e.g. expansion or factorisation for polynomials).

One may note that some bitwise operators (e.g. bitwise not ¬, left shift �)
can be rewritten as arithmetic expressions quite easily: for example, ¬x = −x− 1
and x � n = x × 2n, while there exists no simple equivalence for other bitwise
operators (⊕,∧ . . .). One may use such rewritings in the simplification process, to
reduce MBA alternation for example.

3.4.3 Average Bit-Vector Size

For this metric, we add to the DAG representation a property we call the bit-vector
size—this bit-vector size was indeed present in the outputs of Triton, Miasm and
Medusa in the Section 3.3.2, either with binary masks or explicitly with functions.

62

x8 y16 232

∧8

+32

×32

Figure 3.13: DAG for 2× (x ∧ y) + (x ∧ y) with bit-vector size in subscript.

Definition 7 (Bit-vector size). For a node v, the bit-vector size bvsize(v) is:

• If v is a leaf node, the bit size of the variable or constant it represents. This
size can be deduced from the context (e.g. size of the input of a function),
or by additional indications (e.g. binary masks). The size of a constant
may also be inferred from the actual number of bits of that constant (possibly
rounded to the next power of two).

• If v represents an operator, the bit size of the output of the operation. This
depends on the nature of the operator:

– if v represents a binary operator in {+,−,×,⊕,∨} with v1, v2 as operands,
then bvsize(v) = max(bvsize(v1), bvsize(v2))

– if v represents a boolean AND with operands v1, v2, then bvsize(v) =
min(bvsize(v1), bvsize(v2))

– if v represents a unary operator in {¬,−}, then bvsize(v) = bvsize(v1)
for v1 its operand.

The DAG example of Figure 2.5b could then be represented as in Figure 3.13,
assuming that the variable x is on 8 bits, the variable y on 16 bits, and the constant
2 on 32 bits (this is just an illustration of the definition, and very unlikely to happen
in real-life settings).

63

This definition of the bit-vector size just accounts for a “default” size that
would be inferred from the analyzed program. It is possible to later apply trans-
formations to reduce the bit-vector size of specific nodes in some cases. The most
common reduction occurs when an operator AND (∧) has operands of different
bit-vector size, say op1 and op2, with bvsize(op1) < bvsize(op2); the bit-vector
size of the AND operation is then bvsize(op1). If op2 only contains operators in
{+,−,×,∧,∨,⊕,¬}, then we can reduce the bit-vector size of all terms in op2 to
bvsize(op1). The restriction concerning operators in op2 guarantees that there will
be no dependencies on the most significant bits in the computation of the least sig-
nificant bits, thus the transformation is sound. We produce an example of such a
reduction in Figure 3.14: the operation AND being on 8 bits (which is the bit-vector
size of z), it is possible to reduce the expression x+ 259 on 8 bits only, becoming
x + 3. We use this reduction to remove the extra obfuscation of bit-vector size
extension, presented in Section 4.1.2 during our analysis of a real-life example of
MBA-obfuscated expression.

z8 25932 x32

∧8

+32

z8 38 x8

∧8

+8
reduction

Figure 3.14: An example of the reduction of bit-vector size on (x+ 3) ∧ z.

When simplifying an expression, one may want a global metric which would
decrease when the bit-vector size of subtrees in reduced. Considering only the
bit-vector size of the root node would cause us to miss any simplification of a
subgraph of our term graph. Therefore, we use an average bit-vector size (on all
the nodes: operators, variables and constants); while it does not hold meaning in
itself, it accounts for both local and global reductions of the bit-vector size. For
now, the examples we analyzed did not require the use of this metric; as seen in
Section 4.1.2, the reduction of the bit-vector size is global and all the nodes of the
resulting DAG are on 8 bits. If more complicated examples arise, we could design
a set of metrics, which would be less global and keep more information than an

64

average bit-vector size: for example, a list of the subtrees of same bit-vector size
and their number of nodes.

Decreasing the bit-vector size of certain nodes might allow an easier recognition
of the rewrite rules used for obfuscation. It is also very interesting for simplification
approaches that use bit-blasting, as the one described in Section 4.2, because their
complexity relies mainly on the number of bits of the obfuscated expression.

65

Chapter 4

Analysis of the MBA Obfuscation
Technique

In this chapter, we study the MBA obfuscation technique as described by Zhou
et al. in [ZM06, ZMGJ07], i.e. we investigate how to obfuscate and deobfuscate
expressions. First, we provide a detailed analysis of an MBA-obfuscated expression
found in an obfuscated program, and compare the used obfuscation technique to
the one given by Zhou et al. Then, we present the two approaches we propose to
simplify MBA expressions, and thus deobfuscate MBA obfuscation by recovering
an expression equal (or at least closer) to the original one. The first approach
operates at the bit level and computes a canonical form for mixed expressions, while
the second approach stays at the word level and aims at inverting the obfuscation
transformations.

Both approaches are complementary, as they consider expressions on different
levels and present different strengths and weaknesses, thus it would be possible
to use them in combination. We only consider them separately in this work, and
leave the design of a unified simplification algorithm to future work.

The implementations of both algorithms are open-source and can be found on
GitHub: arybo1 is implemented in C and Python and is based on a bit-blasting
approach, while SSPAM2 is implemented in Python and works at the word-level
by using pattern matching and other simplifications.

1https://github.com/quarkslab/arybo
2https://github.com/quarkslab/sspam/

66

4.1 Manual Reconstruction of the Obfuscation

Process

This section details how we linked the description of MBA obfuscation given
in [ZM06, ZMGJ07] to existing examples of expressions extracted from an ob-
fuscated program. As we did not encounter examples of MBA opaque constant
in obfuscated programs, we do not address the analysis of the opaque constant
technique in this section.

We explained in Section 2.1.2 that MBA obfuscation of expressions is conducted
through two main steps: rewritings and insertion of identities. We thoroughly an-
alyzed several examples of MBA-obfuscated expressions in order to determine how
these steps were used, and if other obfuscating processes were involved. We present
here a detailed analysis of an MBA-obfuscated expression in Figure 4.1 (in assem-
bly language). This analysis is similar to a reverse engineering process because it
is based on the examination of a finished product of obfuscation. Nevertheless,
the difference lies in the fact that where most analysts would just be interested in
recovering a simplified expression, we want to retrace as precisely as possible the
steps involved in the creation of the obfuscated expression.

The obfuscated expression we analyze is equivalent to (x ⊕ 0x5c) = (x ⊕ 92)
on 8 bits, and is part of an obfuscated HMAC algorithm [MG14].

4.1.1 From Assembly to Source Code

As stated in Section 3.3.2, analyzing assembly is considered rather difficult, and
using a high-level representation of this expression facilitates the understanding
of the obfuscation technique. Therefore, we use the Miasm reverse engineering
framework (any other reverse engineering framework could be used, e.g. Medusa,
Triton. . .) to produce a high-level Python code for this expression, given in Fig-
ure 4.2—to enhance readability, we removed the expressions concerning the flags
(af, pf, zf, nf, of and cf), as they do not concern us.

This representation of the Miasm IR can be improved in terms of readability. A
few basic transformations can be applied to make the output of Figure 4.2 clearer:

• replacing the data accessed in memory (memory(...)) by symbolic variables;

• removing the instructions added by Miasm to display semantically correct
code, useless in our case, i.e. (... << 0) | ((0x0 & 0xffffff) << 8);

• considering that any number or variable is at most on 32 bits, and thus
removing any non-relevant binary masks, i.e. (... & 0xFFFFFFFF);

• regrouping the common subexpressions in variables.

67

movzx edi , byte ptr [esi+edx -0B8A5h]

mov eax , esi

imul esi , edi , 0EDh

imul edi , 0FFFFFE26h

add edi , 55h ; ’U’

and edi , 0FEh

lea ebx , [esi+edi+0D6h]

movzx esi , bl

lea ebx , [esi+esi]

mov edi , 0FFh

sub edi , ebx

and edi , 0FEh

add edi , esi

imul edi , 0E587A503h

add edi , 0B717A54Dh

imul esi , edi , 0E09C02E7h

imul edi , 0AD17DB56h

add edi , 60BA9824h

and edi , 0FFFFFF46h

imul edi , 0A57C144Bh

lea edi , [esi+edi -4A12D88Ah]

imul esi , edi , 1DCE1563h

imul edi , 0C463D53Ah

add edi , 3C8878AFh

and edi , 0CC44B4F4h

lea ebx , [esi+edi -46696D2h]

mov esi , ebx

and esi , 94h

add esi , esi

movzx edi , bl

sub esi , edi

imul esi , 67000000h

add esi , 0D000000h

sar esi , 18h

imul edi , esi , 0FFFFB22Dh

imul esi , 0AEh

or esi , 22h

imul esi , 0E5h

lea ebx , [edi+esi+0C2h]

mov [eax+edx+result], bl

Figure 4.1: MBA-obfuscated expression in assembly language (x86).

68

EDI = (((memory (((EDX + ESI + 0xFFFF475B) & 0xffffffff), 0x1) & 0xff)

<< 0) | ((0x0 & 0xffffff) << 8))

EAX = ESI

ESI = ((EDI * 0xED) & 0xffffffff)

EDI = ((EDI * 0xFFFFFE26) & 0xffffffff)

EDI = ((EDI + 0x55) & 0xffffffff)

EDI = ((EDI & 0xFE) & 0xffffffff)

EBX = ((EDI + ESI + 0xD6) & 0xffffffff)

ESI = ((((EBX & 0xff) & 0xff) << 0) | ((0x0 & 0xffffff) << 8))

EBX = ((ESI * 0x2) & 0xffffffff)

EDI = 0xFF

EDI = ((EDI + ((- EBX) & 0xffffffff)) & 0xffffffff)

EDI = ((EDI & 0xFE) & 0xffffffff)

EDI = ((EDI + ESI) & 0xffffffff)

EDI = ((EDI * 0xE587A503) & 0xffffffff)

EDI = ((EDI + 0xB717A54D) & 0xffffffff)

ESI = ((EDI * 0xE09C02E7) & 0xffffffff)

EDI = ((EDI * 0xAD17DB56) & 0xffffffff)

EDI = ((EDI + 0x60BA9824) & 0xffffffff)

EDI = ((EDI & 0xFFFFFF46) & 0xffffffff)

EDI = ((EDI * 0xA57C144B) & 0xffffffff)

EDI = ((EDI + ESI + 0xB5ED2776) & 0xffffffff)

ESI = ((EDI * 0x1DCE1563) & 0xffffffff)

EDI = ((EDI * 0xC463D53A) & 0xffffffff)

EDI = ((EDI + 0x3C8878AF) & 0xffffffff)

EDI = ((EDI & 0xCC44B4F4) & 0xffffffff)

EBX = ((EDI + ESI + 0xFB99692E) & 0xffffffff)

ESI = EBX

ESI = ((ESI & 0x94) & 0xffffffff)

ESI = ((ESI + ESI) & 0xffffffff)

EDI = ((((EBX & 0xff) & 0xff) << 0) | ((0x0 & 0xffffff) << 8))

ESI = ((ESI + ((- EDI) & 0xffffffff)) & 0xffffffff)

ESI = ((ESI * 0x67000000) & 0xffffffff)

ESI = ((ESI + 0xD000000) & 0xffffffff)

ESI = ((ESI >> 0x18) & 0xffffffff)

EDI = ((ESI * 0xFFFFB22D) & 0xffffffff)

ESI = ((ESI * 0xAE) & 0xffffffff)

ESI = ((ESI | 0x22) & 0xffffffff)

ESI = ((ESI * 0xE5) & 0xffffffff)

EBX = ((EDI + ESI + 0xC2) & 0xffffffff)

memory (((EAX + EDX + 0xFFFF475B) & 0xffffffff), 0x1) = (EBX & 0xff)

Figure 4.2: MBA-obfuscated expression (raw representation of Miasm IR in
Python).

69

Applying all these reductions yields the following representation of the expres-
sion (we display numbers in their hexadecimal form so that further reduction of
the bit-vector size will be clearer):

a = (0xFF ∧ (0xD6 + ((0xED)x+ (0xFE ∧ (0x55 + (0xFFFFFE26)x)))))

b = 0xB717A54D + 0xE587A503× ((0xFE ∧ (0xFF− (0x2)a)) + a)

c = 0xB5ED2776 + 0xA57C144B× (0xFFFFFF46 ∧ (0x60BA9824 + (0xAD17DB56)b))

+ (0xE09C02E7)b

d = 0xFB99692E + (0x1DCE1563)c+ (0xCC44B4F4 ∧ (0x3C8878AF + (0xC463D53A)c))

e = (0x94 ∧ d)

f = ((0x0D000000 + 0x67000000× (e+ e− (0xFF ∧ d)))� 0x18)

R = (0xFF ∧ (0xC2 + 0xE5× (0x22 ∨ (0xAE)f) + (0xFFFFB22D)f))

4.1.2 Other Obfuscations

While analyzing this example of MBA-obfuscated expression, we had to perform
simplifying transformations in order to deobfuscate techniques not directly related
to MBA obfuscation.

Bit-vector Size Extension

The result of the computations being on 8 bits (because of the final ∧ 0xFF in
R), it is thus possible to reduce all the expressions on 8 bits. We explained in
Section 3.4.3 that such reduction could be performed if all operators belong to
{+,−,×,∧,∨,⊕,¬}, yet the MBA-obfuscated expression contains a right shift
� in the variable f . Considering the fact that the constants 0x67000000 and
0x0D000000 have their relevant bits only on their 8 most significant bits, that the
instruction � 0x18 shifts these to the 8 least significant bits, and that the end
result is on 8 bits, we can use the equivalence:

(0x0D000000 + (0x67000000)x)� 0x18︸ ︷︷ ︸
on 32 bits

= (0x0D + (0x67)x)︸ ︷︷ ︸
on 8 bits

For the rest of the MBA-obfuscated expression, the bit-vector size reduction
consists in keeping only the 8 least significant bits of the constants, yielding the

70

following formula:

a = 0xD6 + (0xED)x+ (0xFE ∧ (0x55 + (0x26)x))

b = 0x4D + 0x03× ((0xFE ∧ (0xFF− (0x2)a)) + a)

c = 0x76 + 0x4B× (0x46 ∧ (0x24 + (0x56)b)) + (0xE7)b

d = 0x2E + (0x63)c+ (0xF4 ∧ (0xAF + (0x3A)c))

e = 0x94 ∧ d
f = 0x0D + 0x67× (e+ e− d)

R = 0xFF ∧ (0xC2 + 0xE5× (0x22 ∨ (0xAE)f) + (0x2D)f)

Since the computations are actually done on 8 bits, the presence of terms on
32 bits is very likely due to an obfuscation technique being applied after the MBA
obfuscation. We further refer to that technique as bit-vector size extension.

Once the bit-vector size extension has been deobfuscated, we can represent the
constants of the expression in their decimal form, giving the following expression:

a = 214 + 237x+ (254 ∧ (85 + 38x))

b = 77 + 3× ((254 ∧ (255− 2a)) + a)

c = 118 + 75× (70 ∧ (36 + 86b)) + 231b

d = 46 + 99c+ (244 ∧ (175 + 58c))

e = 148 ∧ d
f = 13 + 103× (e+ e− d)

R = (194 + 229× (34 ∨ 174f) + 45f)

Encodings

We quickly presented in Section 1.4.2 the data-flow obfuscation technique of encod-
ings : relevant variables are encoded before being written in memory, and decoded
upon reading. The encoding methods are traditionally affine functions. In our
case, the MBA-obfuscated expression of Figure 4.1 contains computations on an
encoded variable, and produces an encoded result. Therefore, in order to consider
an expression working on clear inputs and outputs, we need to apply encoding
and decoding functions—those encodings are not included in the assembly code
because they are performed in different locations. The encoding of the input is
performed by the function x 7→ 229x + 247, while the decoding of the output is
computed by the function x 7→ 237 × (x − 247). Once this supplementary layer
of encoding and decoding is applied, we get the complete MBA-obfuscation of
Figure 4.3.

71

x′ = 229x+ 247

a = 214 + 237x′ + (254 ∧ (85 + 38x′))

b = 77 + 3× ((254 ∧ (255− 2a)) + a)

c = 118 + 75× (70 ∧ (36 + 86b)) + 231b

d = 46 + 99c+ (244 ∧ (175 + 58c))

e = 148 ∧ d
f = 13 + 103× (e+ e− d)

R = (194 + 229× (34 ∨ 174f) + 45f)

R′ = 255 ∧ (237× (R− 247))

Figure 4.3: High-level representation of the MBA-obfuscated expression.

4.1.3 Reversing the MBA-Obfuscated Expression

In order to identify the different obfuscation steps, we manually simplified the
expression of Figure 4.3. We remind that we work on 8 bits, so computations
are made modulo 28 (e.g. 237 × 229 = 1 mod 28). Then the first lines can be
rewritten as

a = 214 + 237× (229x+ 247) + (254 ∧ (85 + 38× (229x+ 247)))

= 129 + x+ (254 ∧ (254x+ 255))

= 129 + x+ (254 ∧ (−2x− 1))

= 129 + x+ (254 ∧ (¬(2x))).

In this case, it seems the obfuscation rule x⊕ y → x− y + 2× (¬x ∧ y) was used,
with substitution σ = {x 7→ x, y 7→ 127}. In order to get close to this form, we
write a as

a = x− 127 + ((2× 127) ∧ (2× (¬x)))

= x− 127 + 2× (127 ∧ (¬x))

Indeed, because of the even binary mask (2 × 127), we can write ¬(2x) as
2 × (¬x). Furthermore, as the multiplication by two can also be considered as a
boolean operation (a left shift by one bit), we have (2x∧2y) = 2×(x∧y), whatever
the value of x and y. This form of the expression can be explained in two ways:
either the obfuscating rule is written as x ⊕ y → x − y + (¬(2x) ∧ 2y), or the
multiplication by two has moved during optimization—we were able to reproduce
this kind of behavior using clang optimizations. It is now possible to apply the

72

inverse of the obfuscating rule, i.e. the reduction rule x−y+2× (¬x∧y)→ x⊕y,
with substitution σ = {x 7→ x, y 7→ 127}, and get

a = (x⊕ 127).

We continue by simplifying b in the same manner:

b = 77 + 3× ((254 ∧ (255− 2a)) + a)

= 77 + 3× ((2× 127 ∧ 2× (¬a)) + a)

= 77 + 3× (2× (127 ∧ ¬a) + a)

We can see a form quite close to the one in a, leading us to think that the same
rewrite rule was used. One could note that we made the choice of decomposing
254 as 2× 127 because of the previous simplification of a, but we could also have
used 254 = 2 × 255 mod 28. This is a plausible possibility, as the constant 127
does not appear (this can be explained by the insertion of identities). We need to
continue the simplification further to display a form matching the rewrite rule:

c = 118 + 75× (70 ∧ (36 + 86b)) + 231b

36 + 86b = 36 + 86× (77 + 3× (2× (127 ∧ ¬a) + a))

= 2× (2× (127 ∧ ¬a) + a)− 254

= 2× (2× (127 ∧ ¬a) + a− 127)

= 2× (a⊕ 127)

= 2× ((x⊕ 127)⊕ 127) = 2x

This time, we had to distribute the affine function to the terms of b, and then
factorize the expression by 2 in order to rewrite the term (with the same rule
used in a). One can note that two rewritings were applied on XOR operations
that cancel each other out, which suggests that those operations were part of the
obfuscation process. We then try to simplify in the same way 231b.

231b = 231× (77 + 3× (2× (127 ∧ ¬a) + a))

= 123 + 181× (2× (127 ∧ ¬a) + a)

Because of the affine functions used throughout the obfuscation, it is sometimes
difficult to display a form that can be rewritten with a known rule. In order to go
forward in the simplification process, we “inject” constants to force the apparition

73

of the right form:

231b = 123 + 181× (2× (127 ∧ ¬a) + a)

= 123 + 181× (2× (127 ∧ ¬a) + a− 127) + 127× 181

= 70 + 181× (a⊕ 127)

= 70 + 181x

c = 118 + 75× (70 ∧ (36 + 86b)) + 231b

c = 118 + 75× (70 ∧ 2x) + 70 + 181x

c = 188 + 75× (70 ∧ 2x) + 181x

To further simplify the affine functions, we need to consider d.

d = 46 + 99c+ (244 ∧ (175 + 58c))

175 + 58c = 175 + 58× (188 + 75× (70 ∧ 2x) + 181x

= 71− 2× (70 ∧ 2x) + 2x

= −2× ((70 ∧ 2x)− x) + 71

We have once again a form that resembles the obfuscating rule x ⊕ y → x −
y + 2 × (¬x ∧ y). The difficulty here is that we do not have any indication to
help us choose between 70 = 2 × 35 and 70 = 2 × 163 mod 28. By testing the
two possibilities, we determined that the simplification keeping us the closest to
inverting the obfuscation process is:

175 + 58c = −2× ((70 ∧ 2x)− x) + 71

= −2× ((2× 163 ∧ 2x)− x) + 71

= −2× ((163 ∧ x)× 2− x) + 71

= −2× ((¬92 ∧ x)× 2− x+ 92) + 71 + 2× 92

= −2× (x⊕ 92)− 1

= ¬(2× (x⊕ 92))

Simplifying d, e, f, R and R′ is performed with the same principles: identifying
the obfuscating rewrite rule used and trying to display a form that allows the
rewriting. The main difficulties are to identify said rule, and unravel the different
side effects caused by the insertion of identities and the optimization to get an
expression on which the rewriting can be applied. This also means that finding
the right substitution for the rewrite rule (for example, deciding which number
has been multiplied by two) can also be complex.

Once the expression is simplified, we are able to retrace precisely the obfusca-
tion steps used to construct it: mainly, a step we call duplication, followed by MBA

74

rewritings and identities insertions. The duplication repeats the original operator
with random constants, by using the property that (c⊕ c) = 0 for all c ∈ Z/2nZ.
In the example we are analyzing, the duplication was done in the following way:

(x⊕ 92) = (((((((x⊕ 127)⊕ 127)⊕ 92)⊕ 122)⊕ 122)⊕ 17)⊕ 17)

= ((((((x⊕ 127)⊕ 127)⊕ 92)⊕ 122)⊕ 107)⊕ 17),

the second equality being obtained by computing (122 ⊕ 17) = 107 mod 28. We
represent this obfuscation step with a function Duplicate, taking for inputs:

• an expression of one XOR operation e = x⊕ y,

• the number of bits n,

• a number of duplications to perform, that we call the obfuscation degree,
noted d.

The algorithm of the function as we imagine it (based on the example) is given
in Algorithm 1. The notation eval(c ⊕ c′), with c and c′ two constants, indicates
that the value of c⊕ c′ is computed during execution of the algorithm.

Algorithm 1 Duplication Algorithm for the XOR operator.

Require: expression e = (x ⊕ y) a XOR between two terms, number of bits n,
degree of obfuscation d

Ensure: Duplicated expression e′

1: procedure Duplicate(e, n, d)
2: e1 ← x, e2 ← (x⊕ y)
3: Draw d random constants modulo 2n: c1, . . . , cd
4: e1 ← (e1 ⊕ c1)
5: for i in 1, . . . , bd

2
c do

6: e1 ← e1 ⊕ (eval(ci ⊕ ci+1)) . ci ⊕ ci+1 is computed
7: end for
8: e1 ← (e1 ⊕ cb d

2
c)

9: e2 ← (e2 ⊕ cb d
2
c+1)

10: for i in bd
2
c+ 1, . . . , d− 1 do

11: e2 ← e2 ⊕ (eval(ci ⊕ ci+1))
12: end for
13: e2 ← (e2 ⊕ cd)
14: e′ → (e1 ⊕ e2)
15: end procedure

75

For example, for d = 3, the duplication of x⊕ y on n bits produces

(((((x⊕ c1)⊕ c1)⊕ y)⊕ c2)⊕ c2 ⊕ c3)⊕ c3,

with c1, c2 and c3 are constants on n bits, and where (c2 ⊕ c3) is evaluated during
duplication. Regarding our interpretation, the MBA-obfuscated expression for
(x⊕ 92) has been duplicated with d = 3.

We only encountered the duplication of the XOR operator and can only imag-
ine different ways of duplicating other operators: for example, (x + y) could be
transformed in (((x + y) + c1) + c2), with c1 + c2 = 0 mod 2n. It is also possible
to always insert new XOR operators with random constants whatever the original
operator is; as we did not encounter an MBA-obfuscated expression for other op-
erator, we cannot exactly know what is the general behavior of this obfuscation
step.

After the duplication, each XOR operation is rewritten with an obfuscating
rule, and identities are inserted:

(x⊕ c) = E with E an MBA expression equivalent to (x⊕ c)
= (a× E + b)× a−1 − a−1b with a, b ∈ Z/2nZ, and a odd

The inner affine—with coefficients a, b—is distributed on the terms of the MBA
expression E. The distribution could be part of the obfuscation process or a side
effect of optimization.

In the example of Figure 4.3, the two rewrite rules used are

x⊕ y → x− y + 2× (¬x ∧ y)

x⊕ y → 2× (x ∨ y)− x− y,

and the coefficients of the identities seem to be chosen at random.
We summarize the obfuscation technique as we reverse engineered it in Algo-

rithm 2. The algorithm is designed for the obfuscation of an expression containing
a binary operator with two operands (in our example, (x⊕ 92)).

We implemented this MBA obfuscation technique in Python, using the Python
AST in order to represent expressions. If the optimization of common subex-
pressions elimination is applied, the AST representation is equivalent to a DAG
representation (as we stated in Section 2.5). The ast module provides features for
tree traversal (either for analysis or modification of the nodes).

4.2 Simplification Using Bit-Blasting Approach

This first simplification method we propose is directly inspired from the bit-vector
logic, and more precisely the action of bit-blasting—we provided an example of

76

Algorithm 2 MBA-Obfuscation Algorithm.

Require: expression e an operation between two terms, number of bits n, a list
of obfuscating rewrite rules R for the operator in e

Ensure: MBA-obfuscated expression e′

1: procedure MBA-Obf(e, n,R)
2: e′ ← Duplicate(e)
3: for all operator in e′ do
4: Choose a random rule r ∈ R
5: Rewrite with r
6: Choose two random coefficients a, b on n bits for the affine (a must be

invertible modulo 2n)
7: Compute a−1 and −ba−1 coefficients of the inverse affine
8: Insert composition of inner and outer affine functions around the rewrit-

ten operator
9: Distribute the first affine on the rewritten operator

10: end for
11: end procedure

bit-blasting in SMT solvers in Section 3.2.2. Our goal is to represent an MBA
expression in Z/2nZ symbolically at the bit level with n boolean expressions, and
exploit the existence of canonical forms for these expressions to uniquely identify
a mixed expression. This simplification algorithm was presented in [GEV16], and
we present its main concepts in this section.

4.2.1 Description

We recall that the set {0, 1} with the XOR and AND operations is the finite field
of two elements F2, and that Fn

2 is a vectorial space of dimension n over {0, 1}.
When manipulating boolean expressions, we use the Algebraic Normal Form

(ANF), which means that they only contain XOR and AND operators. As the ANF
is a canonical form, it provides a unique representation for equivalent expressions,
and is defined as such for an expression with a variable x = (x0 . . . xn−1)ᵀ on n
bits: ⊕

u∈Fn
2

cu

n−1∧
i=0

xui
i ,

where cu ∈ F2, xui
i = xi if ui = 1 and xui

i = 1 if ui = 0. When using this canonical
form, for xi, yi two bits of x, y in Z/2nZ, (xi ∨ yi) is written ((xi ∧ yi) ⊕ xi ⊕ yi),
and ¬xi is written (xi ⊕ 1).

At the bit level, a variable x in Z/2nZ is represented with a symbolic vector

77

in Fn
2 , where x0 is the LSB (Least Significant Bit) of x and xn−1 its MSB (Most

Significant Bit). For example, with n = 4 bits, we have

x =


x0

x1

x2

x3

 , y =


y0

y1

y2

y3

 .

We can then represent expressions in the following way (for the sake of readability,
we write · for the bitwise AND operator in boolean expressions):

x⊕ y =


x0 ⊕ y0

x1 ⊕ y1

x2 ⊕ y2

x3 ⊕ y3

 , x ∧ y =


x0 · y0

x1 · y1

x2 · y2

x3 · y3

 , x ∨ y =


(x0 · y0)⊕ x0 ⊕ y0

(x1 · y1)⊕ x1 ⊕ y1

(x2 · y2)⊕ x2 ⊕ y2

(x3 · y3)⊕ x3 ⊕ y3

 .

Operations with constants can also be represented, for example,

((x⊕ 14) ∧ 7) =


x0

x1 ⊕ 1
x2 ⊕ 1

0

 .

One can note that while it is fairly trivial to represent word-level boolean oper-
ators, arithmetic operators require more work. In order to represent an addition,
a classical one-bit carry adder (also called full adder) is used. Let x and y be in
Z/2nZ and s = x+ y, then each bit si of s can be expressed as

si = xi ⊕ yi ⊕ ci with

{
c0 = 0

ci+1 = (xi · yi)⊕ (ci · (xi ⊕ yi))
(4.1)

We provide here the first boolean expressions describing an addition of two
variables:

x+ y =


x0 ⊕ y0

x1 ⊕ y1 ⊕ (x0 ∧ y0)
x2 ⊕ y2 ⊕ ((x1 ∧ y1) ∧ ((x1 ⊕ y1) ∧ (x0 ∧ y0)))
...


One may note that the arithmetic addition is quite expensive to translate in

expressions on every bits.

The representation of subtraction is based on the fact that −y = ¬y + 1, thus
x − y = x + (−y) = x + ¬y + 1. The drawback of this representation is that it

78

involves two additions. Another way is to write a real binary subtractor. This is
similar to constructing a full adder, only changing the way the carry bit is com-
puted: for a subtractor, ci+1 = ((xi ⊕ 1) · yi)⊕ (ci · ((xi ⊕ 1)⊕ yi)).

In order to represent the multiplication, we use the fact that

y =
n−1∑
i=0

2iyi.

It is therefore possible to perform the multiplication using n additions:

x× y = x× (
n−1∑
i=0

2iyi)

=
n−1∑
i=0

x× 2iyi

=
n−1∑
i=0

(x� i)× yi

As yi is a bit, the multiplication by yi can be represented with a boolean AND.
Then for each value of i between 0 and n, the expression (x � i) ∧ yi must be
computed, and added to the overall sum.

Vectorial Decomposition

We denote Bn
k·n the set of all applications from Fk·n

2 (k variables of n bits) into Fn
2 .

We represent the applications in Bn
k·n with a vectorial decomposition, that will be

of use for the identification process described in Section 4.2.2. This representation
is based on separating the non-affine part and the affine part of the application.

Let us start with the case of an affine application with k input variables of n
bits. The classical description of such applications is used:

F : Fk·n
2 → Fn

2

V 7→ A× V ⊕B

where V is a vector of size k · n containing all the bits of the input variables,
A is a n× (k · n) matrix and B is a constant vector of Fn

2 . The operator × stands
here for classic matrix to vector multiplication, and ⊕ for coordinate-by-coordinate
XOR between two vectors.

79

For instance, with n = 4 and k = 1, f(x) = (x ⊕ 14) ∧ 7 is equivalent to the
following affine application that belongs to B4

1·4:

F : F4
2 → F4

2
x0

x1

x2

x3

 7→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

×

x0

x1

x2

x3

⊕


0
1
1
0


Moreover, for non-affine applications, we introduce a purely non-affine part

NA that also belongs to Bn
k·n. This non-affine part contains all monomials of

the boolean expressions that are of degree greater or equal to 2. The vectorial
decomposition of any application in Bn

k·n is then

F (V) = NA(V)⊕ A× V ⊕B

As an example, we provide both the bit-blasted representation and the vectorial
decomposition of f such that f(x) = x+ 1 on 4 bits.

(x+ 1) =


x0 ⊕ 1
x0 ⊕ x1

(x0 · x1)⊕ x2

(x0 · x1 · x2)⊕ x3


In this case, x0 · x1 and x0 · x1 · x2 are the non-affine parts of the boolean

expressions. Thus, we have:

F (V) =


0
0

x0 · x1

x0 · x1 · x2

⊕

x0 ⊕ 1
x0 ⊕ x1

x2

x3



=


0
0

x0 · x1

x0 · x1 · x2


︸ ︷︷ ︸

NA(V)

⊕


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

×

x0

x1

x2

x3

⊕


1
0
0
0


︸ ︷︷ ︸

affine(V)

The unicity of this decomposition results from the fact that we use the ANF
canonical form.

80

4.2.2 Identification

The identification process (noted Id) takes the ANF of an application F in Bn
k·n and

returns an equivalent function f in Z/2nZ→ Z/2nZ. The latter representation is
supposed to be more readable—and therefore more useful—for a human analyst.
We present an example of the identification process of an application with one
4-bit input variable in Figure 4.4.

If F :


x0

x1

x2

x3

 7→


x0

x1 ⊕ 1
x2 ⊕ 1
x3

 ,

then Id(F) = f : x 7→ (x⊕ 6).

Figure 4.4: An example of the identification process on 4 bits.

One of the main issues of identification is to obtain a “simple” form for f . For
now, we consider that the identification is only done on applications of one binary
operator, making the simplest form of f easy to decide.

We detail in the next sections how to identify various operators. For both
arithmetic and boolean operators, we use the vectorial decomposition presented in
Section 4.2.1 to help the identification.

Identification of Boolean Operators

While describing the different identification methods, we distinguish the case where
the operator has a variable and a constant as operands (thus the function has one
variable), from the case where both operands are variables (the function has two
variables).

Let us consider a function F in Bn
k·n of k variables (we focus on the cases where

k ∈ {1, 2}), then
F (V) = NA(V)⊕ A× V ⊕B,

with V the vector of size k × 2n containing the bits of the variable(s), A of coef-
ficients ai,j (0 ≤ i < n and 0 ≤ j < k × n), and B of coefficients bi (0 ≤ i < n).
The constant b in Z/2nZ represented by B is defined as

b =
n−1∑
i=0

2ibi.

81

When identifying a boolean operator (XOR, AND, OR) with a constant operand,
the form of F does not display a non-affine part NA(V). From the presence of
NA(V) and the form of A and B, one can deduce the identification of F :

XOR: If F (V) = A × V ⊕ B, with A the identity matrix and B different from
the null vector, then Id(F) = f : x 7→ (x⊕ b), with b the constant represented by
B.

In the case where the operator has two variables as operands, the n×2n matrix
A is a concatenation of two identity matrices of size n×n, as shown in the following
example:

if F : X, Y 7→


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1





x0

x1

x2

x3

y0

y1

y2

y3


,

then Id(F) = f : x, y 7→ x⊕ y.

AND: If F (V) = A × V , with A a diagonal matrix different from the identity,
then Id(F) = f : x 7→ (x ∧ a), with a =

∑n−1
i=0 2iai,i

In the case where both operands are variables, F is composed only of NA(V),
with NA(V) = (xi · yi)0≤i<n.

OR: As we use the ANF for boolean expressions, the OR operator is written as
(x∨ b) = ((x∧ b)⊕ x⊕ b). We use the fact that (x∧ y)⊕ x = (x∧¬y) for all x, y
to write (x ∨ b) as (x ∧ ¬b)⊕ b.

Thus, if F (V) = A × V ⊕ B with A a diagonal matrix different from the
identity, B a non-null vector with corresponding constant b, and

∑n−1
i=0 2iai,i = ¬b,

then Id(F) = f : x 7→ (x ∨ b).
When both operands are variables, F has the same affine part as a XOR, and

NA(V) = (xi · yi)0≤i<n.

Identification of Additions

Regarding arithmetic operators, there is no trivial formula to describe the form
of NA(V). We propose a heuristic technique to identify an application F in Bn

n

performing an addition between a variable and a constant. This technique is
based on two observations: firstly, the addition is a T-function [KS03], meaning

82

that each output bit si is depending only on the x0, . . . , xi input bits. The second
observation is that B = F (0), and F (0) can be easily computed using the ANF
of F—the vector B can also be recovered from the vectorial decomposition. Thus
we can determine if a function F is an addition of a variable and a constant by:

1. checking that F is a T-function with a graph representing dependencies be-
tween the input and output bits;

2. computing the ANF of f : x 7→ x+ b, with b the constant represented by B,
and testing if it is equal to F .

If the ANF of f equals F , then Id(F) = f : x 7→ x + b. The first step allows
us to rule out non T-functions.

Similar techniques can be used to identify a subtraction, but further work is
needed to identify multiplication and division operators.

4.2.3 Implementation

This approach has been implemented by Adrien Guinet in a tool called arybo,
which is quickly described in this section. For more details, the reader can refer
to [GEV16]. The implementation is composed of two parts:

• libpetanque, a library used to manipulate boolean expressions and bit-
vectors inside Fn

2 , written in C++ with Python bindings;

• arybo, a Python library that uses libpetanque to support MBA expressions.

Both components form a toolkit called arybo3. For instance, the vectorial
decomposition described in Section 4.2.1 is handled directly by libpetanque, while
the adder is implemented in pure Python inside arybo. This allows libpetanque
to be used as a library for other purposes.

Libpetanque

The libpetanque library handles the storage of vectors of symbolic bit expressions
(bit-vectors) and the canonicalization of these expressions.

A boolean expression in F2 is represented in libpetanque with an Abstract
Syntax Tree (AST): a node can represent a XOR or an AND operation, a symbol
(a 1-bit variable) or an immediate (1 or 0). When an expression is created, it is
canonicalized with the following process:

3https://github.com/quarkslab/arybo

83

1. Apply elementary rules based on neutral and absorbing elements:
a · 0 = 0, a⊕ 0 = a, a · 1 = a, . . .

2. Flatten, i.e. change binary nodes in n-ary nodes when possible:
(a⊕ (b⊕ c)) = a⊕ b⊕ c.

3. Sort operators arguments: an arbitrary order is defined for the operators and
the symbols used. Then, for two operators of the same kind, a lexicographical
comparison is performed to order them.

4. Apply standard reduction rules, e.g. a⊕ a = 0, a · a = 1.

5. Expand AND operations on XOR operations: a · (b⊕ c) = (a · b)⊕ (a · c)

For each boolean expression, those canonicalization steps are repeated until no
more transformation modifies the AST of the expression, leading to a canonical
representation.

Arybo

The Python library arybo uses libpetanque to symbolically work with MBA
expressions. It implements word-level addition, subtraction, multiplication and
division algorithms. The library can be used in any external Python script. An
IPython interactive shell is also provided for quick prototyping.

In Section 5.2.1, we present our evaluation of arybo regarding the simplification
of MBA-obfuscated expressions.

4.3 Symbolic Simplification

Alongside the bit-blasting method, we worked on another approach for MBA sim-
plification, based on the automation of the manual simplification presented in
Section 4.1.

As we discussed in Section 2.2, there exist both theoretical ground and tools to
manipulate and simplify arithmetic expressions (e.g. polynomial expansion, fac-
torization) and bitwise expressions (e.g. CNF, DNF). While there is no such things
for MBA expressions yet, it is still possible to use existing simplification techniques
on subterms of the MBA expression that may contain only one type of operator.
To create the missing link between alternating arithmetic and boolean subexpres-
sions (meaning the edges creating MBA alternation, as explained in Section 3.4.2),
one may use term rewriting.

84

4.3.1 Description

We described in Sections 2.1.2 and 4.1 the MBA obfuscation technique of Zhou et
al., which is mainly based on rewriting operators with known equivalent MBA ex-
pressions, and applying affine functions on parts of the expression. From this fact,
one can imagine a simplification algorithm that uses existing arithmetic simplifica-
tions to compute the composition of affine functions, and then uses a list of rewrite
rules to transform the resulting MBA expression into another simpler and equiv-
alent expression. One can note that regarding this MBA obfuscation technique,
we do not need a bitwise simplification step, since rewritings and arithmetic ex-
pansions are enough. The useless XOR operations induced in the duplication step
can be removed with basic constant folding, which is an optimization technique
computing the value of constant subexpressions.

The manual simplification we performed in Section 4.1.3 can be summarized
into a succession of the automatic simplification steps described in the following
paragraphs.

Step One: Arithmetic Simplification

The first stage is to use classical arithmetic simplification techniques in order
to compute the composition of affine functions. In our case, expansion seems
to be the best choice to compute this composition. This is in theory possible
with any computer algebra software, given that it supports the declaration and
manipulation of MBA expressions. This step helps decrease the number of nodes of
the obfuscated expression’s DAG representation, as the affine functions are chosen
so that their composition is equivalent to identity.

We illustrate this simplification on the term a of the obfuscated (x ⊕ 92) ex-
pression analyzed in Section 4.1.3:

a = 214 + 237× (229x+ 247) + (254 ∧ (85 + 38× (229x+ 247)))

= 129 + x+ (254 ∧ (254x+ 255))

As far as the composition of affine functions is concerned, this operation is
mainly composed of the distribution of the coefficients of the variable (here, 237
and 38), then of the constant folding between the different constants parts, i.e.
computing (237×229), (214+237×247) While other arithmetic simplifications
are not needed to simplify this specific expression, it might be useful in other cases,
for example to simplify terms such as 2x− x.

Step Two: MBA Rewriting

The second step consists in using known rewrite rules to transform an MBA ex-
pression into a simpler expression, by reducing the number of nodes and the MBA

85

alternation of the DAG representation. The reduction rules are traditionally the
inverses of the rules used in obfuscation. A list of common MBA obfuscating rules
can be stored, and for every possible reduction rule, one can search if there exists
a substitution σ such that the rewriting is possible. As we already pointed out in
Section 4.1.3, it is not always trivial to identify the correct substitution. Let us
consider a after arithmetic simplification:

a = 129 + x+ (254 ∧ (254x+ 255))

We know that the used obfuscating rule is x ⊕ y → x − y + 2 × (¬x ∧ y),
which once inverted, cannot be used as it is to simplify a. Even considering the
reduction rule x− y+ (¬(2x)∧ 2y)→ (x⊕ y) which is closer to the form of a, one
still needs to transform (254x + 255) into ¬(2x) and 129 into −127. We expose
how we deal with this type of situation in Section 4.3.3, where we detail how we
implemented the rewriting—the implementation of term rewriting is often called
pattern matching—and what are the main issues of it.

Since the obfuscation phases are applied iteratively, those two simplification
steps can also be used repeatedly until a fixed point is attained. It is relatively
safe to assume that such a fixed point will be reached if all the rewriting rules
reduce the size of the expression (see Lemma 2.3.3 in [BN99]), which is the case
for our default list of reduction rules—the size can be considered as the number
of nodes in the DAG representation for example. Furthermore, the expansion is a
canonical form for the set of arithmetic rules, the arithmetic simplification step is
thus sure to finish.

4.3.2 Implementation

We implemented this simplification approach in a tool named SSPAM4, for Sym-
bolic Simplification with PAttern Matching. This tool, fully implemented in
Python, uses the ast module to represent expressions with their Python AST.
It relies on two other Python modules: sympy offers symbolic computations and is
used as an arithmetic simplifier, and Z3 is used to help the matching of equivalent
terms (see Section 4.3.3).

SSPAM is composed of a simplifier module, a pre-processing module, a pattern
matcher, and tools—a Python script performing common subexpression elimina-
tion, and several classes to analyze and transform an AST.

The simplifier module processes strings or files as input, parsing them into AST
and applying the main simplification loop. The input can be either an expression
or a list of assignments; in the latter case, SSPAM simplifies each assignment and
replaces the variables with their value in further expressions.

4https://github.com/quarkslab/sspam/

86

The main simplification loop is composed of:

• arithmetic simplification (performed by sympy),

• pre-processing,

• pattern matching: SSPAM contains a list of default rewrite rules and every
single one is tested on the input expression. The first rewriting that can be
applied is used—this clearly needs improvement, as the order of the patterns
should not impact the simplification.

The arithmetic simplification can be applied before or after pattern matching,
and the simplification will give similar results. Nevertheless, it proved to be often
quicker when the arithmetic simplification was applied first.

The pre-processing is composed of transformations that aim at “normalizing”
the expression. For now, only two transformations are performed: left shifts (�)
are transformed into multiplications by a power of two, and subtractions by addi-
tions of inverse in order to favor commutative operators (x− y = x+ (−1)× y).

The interface of SSPAM is quite minimalist, as the tool is intended to perform
the simplification with as little user involvement as possible. Figure 4.5 illustrates
a typical call to the main simplification function of SSPAM.

In[1]: from sspam import simplifier

In[2]: a = "214 + 237*(229*x + 247) + (254 & (85 + 38*(229*x + 247)))"

In[3]: simplifier.simplify(a)

Out[3]: ’(x ^ 127)’

In[4]: rules = [("A - B + 2*(~A & B)", "A ^ B")]

In[5]: simplifier.simplify(a, custom_rules=rules , use_default=False)

Out[5]: ’(x ^ 127)’

Figure 4.5: A few common uses of the simplification tool SSPAM.

The function simplify provides the opportunity for the users to add their own
reduction rules (here, A and B are placeholders for any term), and to prevent the
use of SSPAM’s default rules. The simplified expression is returned as a string.

4.3.3 Pattern Matching

Pattern matching is a field that can be viewed as the implementation of term
rewriting. While term rewriting mainly describes the action of rewriting, in our
case pattern matching also includes the matching of the pattern (i.e. finding a
substitution so that the rewrite rule can be used). The left-hand side of the

87

rewrite rule is then a pattern to be matched on any expression (that we usually
call the target expression). For example, considering the rewrite rule

(x ∧ y) + (x ∨ y)→ x+ y,

one would want to match (x ∧ y) + (x ∨ y), with x and y placeholders for any
term (also called wildcards). Finding values for the placeholders that make the
pattern match is the same idea as finding the correct substitution to apply the
rewriting. If a pattern is matched on the target expression, the target is replaced
by the right-hand side of the rule, with corresponding values for the placeholders.

In SSPAM, patterns are represented with their AST, in the same way as the ex-
pressions. The pattern matching is performed by visiting two ASTs simultaneously—
pattern and target expression. If the nodes are of the same type and if their chil-
dren match, the matching is positive. When a wildcard is encountered, its value
is either created (on the first encounter), or checked for equality with the target
subexpression (on following encounters).

For example, let us try to match the pattern x + (x ∧ y) (with x and y being
any term) on the expression ¬a + (¬a ∧ (b + 1)). The corresponding ASTs are
presented in Figure 4.6.

+

x ∧

x y

(a) Pattern AST.

+

¬

a

∧

¬

a

+

b 1

(b) Target expression AST.

Figure 4.6: Illustration of ASTs for pattern and target expressions.

88

The matching process starts at the root node of both ASTs (in this case, an
addition), and proceeds to visit and compare each node in the following way:

• root nodes are both additions, we check each child for a match:

– left child: x is a wildcard and has no value yet, we thus associate x with
the expression ¬a and this is a match

– right child: both nodes are AND operations, we check each child for a
match:

∗ left child: x is a wildcard and is already associated to a value, we
check that this value is the left child of the AND operation in the
target expression. As both the expression associated to x and the
target are ¬a, this is a match.

∗ right child: y is a wildcard and has no value yet, we thus associate
y with the expression b+ 1 and this is a match

⇒ Both operands of the AND operation match, thus it is a match

⇒ Both operands of the root addition match, thus it is a match

The pattern x+(x∧y) therefore matches on the expression ¬a+(¬a∧ (b+1)),
with the substitution (associated expressions to the wildcards) {x → (¬a), y →
(b+ 1)}.

The classical issues of term rewriting and pattern matching, that we mentioned
in Section 2.4, are commutativity and associativity of operators. For example,
when matching the pattern (x∧y)+x+y, one would want the following expressions
to produce a positive match:

(b ∧ a) + a+ b

(a ∧ b) + b+ a

b+ (a ∧ b) + a

...

Commutativity of operators can be dealt with pretty easily: if an operator is
commutative and the left operands of the pattern and target are not matching, then
a match is tested between the left operand of the pattern and the right operand of
the target (and vice versa). While it does not bring complexity in implementing
the pattern matching, it does increase the number of matching tests.

The traditional way of handling associativity is to flatten associative oper-
ators [KL91]. This consists in transforming a binary operator ? into a m-ary
(m ≥ 2) operator such that no operand of ? is an operator ?. We illustrate this

89

y zx

+

+

x y z

+

flattening

Figure 4.7: An example of flattening of x+ (y + z).

process on an addition of three operators in Figure 4.7. The matching is then done
on sets of operands, yielding even more matching tests to perform.

Another issue more specific to our case is the multiple equivalent ways of writing
a given expression. For example, let us match the pattern 2× (x ∨ y) − (x ⊕ y)
on the target expression 2× (x ∨ 92)− (x⊕ 92). It matches with the substitution
σ = {x 7→ x, y 7→ 92}. Nevertheless, the target expression can appear in multiple
equivalent forms on 8 bits:

2× (x ∨ 92)− (x⊕ 92) = 2× (x ∨ 92) + (¬(x⊕ 92)) + 1 (4.2)

= 2× (x ∨ 92) + (¬x⊕ 92) + 1 (4.3)

= 2× (x ∨ 92) + (x⊕ 163) + 1 (4.4)

= (2x ∨ 184) + (x⊕ 163) + 1 (4.5)

It is possible to derive new patterns from the initial one in order to match
expressions (4.2) and (4.3) in the following way:

2× (x ∨ y)− (x⊕ y) = 2× (x ∨ y) + (¬(x ∨ y)) + 1

= 2× (x ∨ y) + (¬x⊕ y) + 1

However, this cannot be done for expressions (4.4) and (4.5), because of the
evaluation of 2 × 92 = 184 mod 28 and ¬92 = 163 mod 28. In order to deal
with these situations, we use an SMT solver—in our case, Z3—to prove that both
instances of subexpressions are equivalent (e.g. ¬(x ⊕ 92) and (x ⊕ 163)). This
is possible when a part of the pattern has matched and given possible values for
x and y. For example, when matching 2× (x ∨ y) + ¬(x⊕ y) + 1 on the target
expression 2×(x∨92)+(x⊕163)+1, the subexpression 2×(x∨92) gives a positive

90

match with 2× (x ∨ y), with substitution σ = {x 7→ x, y 7→ 92}. When the other
subexpression (x⊕ 163) yields a negative match, SSPAM constructs the supposed
matching expression according to the substitution (2× (x ∨ 92) + ¬(x⊕ 92) + 1)
and asks Z3 to prove the equivalence of the two expressions (see Figure 4.8 for the
corresponding Python code).

x = z3.BitVec(’x’, 8)

supposed_expr = 2*(x | 92) + (~(x ^ 92)) + 1

target_expr = 2*(x | 92) + (x ^ 163) + 1

z3.prove(supposed_expr == target_expr)

Figure 4.8: Proving equivalence of expressions with Z3.

Queries to Z3 could be done for any type of expressions, but while it can
sometimes provide better simplification, it makes the matching very slow if several
patterns are possible. In SSPAM, those queries are made only when encountering
multiplications by two, negations and negative terms; as they are the most common
problem-prone operations in typical MBA rewrite rules. For example, simplifying
the MBA-obfuscated expression for (x ⊕ 92) of Figure 4.3 takes about 8 seconds
with selective queries to Z3 (when provided the exact list of needed patterns),
while with systematic queries to Z3 it takes around 27 seconds. We call flexible
matching the principle of rewriting equivalent expressions with the help of an SMT
Solver.

In Section 5.2.2, we present our evaluation of SSPAM on the simplification of
MBA-obfuscated expressions.

91

Chapter 5

Resilience of the MBA
Obfuscation Technique

In Chapter 3, we presented a few elements explaining the difficulty to deobfus-
cate MBA-obfuscated expressions. In this chapter, we assess the resilience of the
MBA obfuscation technique—based on the description of [ZMGJ07] and our own
reconstruction described in Section 4.1.3—meaning its resistance to deobfuscation
algorithms, both known (using a black-box approach) and presented in Chapter 4
(white-box approaches). As some public work already exists on the resilience of
the MBA opaque constant technique (see Section 2.2.4), we mainly focus our work
on expression obfuscation, but still present a weakness of the MBA opaque con-
stant technique. Then we suggest several improvements to improve the resilience
of the MBA obfuscation for expressions.

On Expression Complexity and Resilience

A first point of interest is the difference between the complexity of the obfuscated
expressions (however we define it), and the resilience of the MBA obfuscation
technique. Indeed, even if one can contribute to the other, these notions are not
equivalent.

The different obfuscation steps of the Algorithm 2 we reconstructed in Sec-
tion 4.1—namely, duplication, rewritings and insertion of identities—increase the
MBA complexity metrics we defined in Section 3.4:

• Number of nodes: both the duplication step and the insertion of identities
increase the number of nodes of the expression (and also introduce random
constants). The rewriting step often increases this metric as well.

• MBA alternation: the obfuscating rewrite rules are chosen so that they in-
crease the MBA alternation.

92

• Bit-vector size: while the MBA obfuscation in itself does not change the
bit-vector size, the additional obfuscation of bit-vector size extension we ex-
hibited in Section 4.1.2 clearly aims at artificially increasing the bit-vector
size of the obfuscated expression.

Therefore, the MBA obfuscation actually produces “more complex” expressions
in terms of understandability—at least by our standards. However, this does not
imply that the obfuscated expressions are truly difficult to deobfuscate, or in other
words, that the obfuscation technique is resilient.

The main difficulty when evaluating the resilience of MBA obfuscation is the
lack of simplification solution specific to MBA expressions: to our knowledge,
there are no public attacks on MBA obfuscation for expression that would allow
for a quantification of the obfuscation’s resistance to these attacks. We state that
there are two main types of attacks to apply to this obfuscation: those using a
black-box approach, and those using a white-box approach. What improves the
resilience against black-box approaches may or may not be the same as for white-
box approaches. We first give a few elements to evaluate the resilience of the
MBA obfuscation technique regarding black-box approaches; although there are
no public solutions, general techniques can be used as they consider the deobfus-
cation without studying the form of the obfuscated code. Regarding white-box
approaches, as there are none to base our study, we treat the subject in regard to
the two simplification algorithms we propose in Chapter 4.

5.1 Resilience Against Black-Box Approaches

Black-box approaches, as their name suggests, infer information about a program
by considering its inputs and outputs. There are several ways to deobfuscate an
expression in black-box, from very basic brute-force testing of all solutions, to
reconstruction of functions.

Different domains take an interest in the reconstruction of functions from a set
of inputs and outputs, a few examples being program synthesis (see Section 2.6.2),
the learnability of boolean functions [Ant10], or program self-testing and self-
correcting [BLR90]. Two issues are commonly of concern: how many input/output
pairs are needed to find a good approximation of a function, and what algorithm
should be used to build that approximation.

One can note that the difficulty of reconstructing a function in black-box can
depend on the function itself. It is probably easier to deobfuscate a function
computing (x ⊕ 92) than one computing (x ⊕ 92) + (x ∧ 45) (a more complex
function), or (x1 ⊕ x2) � 8 + (x3 ⊕ x4) (containing more variables). One thing
to keep in mind when considering a deobfuscation context is that the program

93

being analyzed has been transformed to lead the analysis into false presumptions
and dead-ends. For example, an MBA obfuscated expression might compute a
complicated expression of several operators, but later in the program, only the
8 less significant bits of the obfuscated expression would be used, leading to the
actual computation of a (x⊕92). Encodings are typically a good way to make the
demarcation of the function to be analyzed more difficult.

Reconstructing a function is mostly based on having a candidate for said func-
tion (chosen at random, or from different hypotheses), and validate that candidate,
which can be done by testing every input/output pairs exhaustively, with a proof
from an SMT solver, or with a probabilistic model. . .
Analyzing a program as a black-box implies that the actual aspect of the ex-
pression, including the mixing of operators, does not affect the efficiency of the
attack—except when computing input/output pairs. Nevertheless, it is possible
to increase the resilience of the obfuscation technique by trying to make the re-
construction difficult, or slowing down the computation of input/output pairs.

Several tactics can be considered:

• adding more variables that do not affect the output of the computations, as
it leads the effort of the analyst towards reconstructing functions of more
variables than the actual function computed.

• increasing the bit-vector size, as it increases the space of possible functions for
the reconstruction (for example, there are more functions computing (x⊕ c)
with c a constant modulo 2n as n increases). Furthermore, a higher bit-vector
size can also slow down validation of the candidate, especially if it is done
by exhaustive test or by proving the equivalence. For example, testing all
input/output pairs for the obfuscated (x⊕ 92) on 8 bits (see Figure 4.3) in a
Python script takes around 0.2 ms, while the same test on the 32-bit version
(without simplifying the bit-vector size extension) takes more than three
minutes. The proof of equivalence with Z3 between the MBA-obfuscated
expression on 8 bits takes about 0.01s, while on 32 bits it takes about 0.04s.

• increasing the number of nodes of the expression, as it can also slow down
the computation of input/output pairs.

We can thus conclude that the mixing of operators does not seem to bring
much resilience against black-box approaches. Nevertheless, we want to stress
the fact that some MBA expressions seem to cause a heavy slow down when
proving equivalence with Z3. For example, proving the equivalence of the MBA
Equation 5.1 on 32 bits in Z3 takes 0.02 seconds, while proving the equivalence of

94

Equation 5.2 takes 63 seconds.

(x ∧ y) = (x ∨ y)− (¬x ∧ y)− (x ∧ ¬y) (5.1)

(x ∧ y) = −3× (¬y)− ¬(x ∨ y)− 5× (¬x ∧ y) + 2× (¬x) (5.2)

+ 2× (¬(x ∧ y)) + (x ∨ y)

It is still subject to further work to analyze the reasons for these poor perfor-
mances, whether it is because of the overall size of the MBA, or a reason specific
to its form.

5.2 Resilience Against our Simplification Tools

In this section, we provide the evaluation of both our tools on real examples of
MBA-obfuscated expressions, and use the results of these evaluations to conclude
on the resilience of the MBA obfuscation technique regarding our simplification
solutions. Unlike the previous attacks using black-box approaches, our tools use
the actual description of the expression, and are thus using a white-box approach.

5.2.1 Bit-Blasting

The big strength of the bit-blasting approach is to transform the problem of MBA
simplification into boolean expression simplification, which is a domain where a lot
of work has been done. When using the bit-blasted representation, we have several
canonical forms available that give a unique representation for any expression.

The main drawback of this approach is that the canonicalization of boolean
expressions can be very expensive in memory and time, especially when arithmetic
operators are involved. For example, experimental results show that canonicalizing
the representation of x + y on 16 bits takes about 5.7 seconds, which is the time
to canonicalize around 700 000 XOR operations. The size of the boolean expres-
sions representing each bit also grows exponentially when considering arithmetic
operators: for example, we showed in [GEV16] that the i-th bit expression of x+y
contains 2i + 1 monomials in its ANF form. For an expression on 16 bits, this
means that the most significant bit will be a XOR operation between 65537 terms.

Another issue is that identification from boolean expressions to word-level ex-
pressions is not trivial. We gave a few techniques when trying to identify one
operator, but the question of identifying more complex expressions containing sev-
eral operators is clearly something to work on in the future.

95

Evaluation

We tested arybo on examples of MBA-obfuscated expressions that we generated,
in order to show the increase in execution time with the number of bits. For
each number of bits n, we generated 10 examples of MBA-obfuscated expressions
for a XOR operation between a variable and a random constant (the execution
was performed on a Core i7-3520M processor). The MBA-obfuscated expressions
were generated with the obfuscation degree (d = 3) as the obfuscated (x⊕ 92) of
Figure 4.3.

For each expression, arybo was successful at identifying the original expression.
The execution times are synthesized in Table 5.1.

n execution time (s)
8 0.09
9 0.39
10 1.74
11 8.81
12 61.32

Table 5.1: Execution time of Arybo for the canonicalization of (x ⊕ c) with c
constant and n the number of bits.

Canonicalization for other obfuscated operators between a variable and a con-
stant (AND, OR, addition) presents similar execution time. One can see that the
number of bits of the expression greatly influences the execution time. In real
settings, an MBA-obfuscated expression on 32 bits could not be handled by arybo

in a reasonable time. The number of variables of the expression is also of im-
portance: for example, the canonicalization of an obfuscated expression (with the
same parameters as previously) for (x⊕ y) takes more than two minutes on 8 bits.

In conclusion, the simplification using bit-blasting is quite efficient on expres-
sions with a low number of bits (e.g. 8 bits). The resilience of the MBA obfuscation
technique—regarding this technique—is thus very dependent on the number of bits
of the obfuscated expression. It is very probable that the obfuscation of bit-vector
size extension (see Section 4.1.2) is designed to improve the resilience of obfuscated
expressions with a low number of bits. Nevertheless, this kind of obfuscation can
be easily simplified with the reduction method we exposed in Section 3.4.3 (im-
plementation of such reduction is currently being developed in both arybo and
SSPAM).

96

5.2.2 Symbolic Simplification

Because the algorithm using symbolic simplification works at the word-level, the
simplification is not impeded by an increasing number of bits. The ASTs represent-
ing the expressions are also far smaller than the representation in the bit-blasting
approach. For example, x + y has 3 nodes at the word-level for any number of
bits; when bit-blasted on 4 bits it is represented by four ASTs of respectively 3, 6,
17 and 41 nodes.

The main drawback of this approach is that it is highly dependent on the
chosen set of rewrite rules. Indeed, if only one obfuscation rule is unknown, the
simplification algorithm is not able to reduce the expression as much as it would
with knowledge of that rule. Even when having the list of all used obfuscating
rules, it is not guaranteed to have a satisfying deobfuscation. As the obfuscation
process usually has a constraint of not deteriorating greatly the performances of
the program being obfuscated, we can assume that the set of MBA rewrite rules
will be of “reasonable” size. We show in Section 5.4.5 that the most common linear
MBA rewrite rules are composed of 4 boolean expressions, which induces a low
number of possible rules. Eventually, all the obfuscating rules can be recovered by
analysts.

In this section, we provide tests to evaluate the efficiency of the tool SSPAM1.

Methodology

We tested SSPAM on both public examples of MBA-obfuscated expressions [ZM06,
MG14], and examples we generated with our own Python obfuscator (based on
what we reconstructed, see Algorithm 2).

Here, we consider that the output of the simplification tool is fully simplified
when it returns the original expression, which we know to be only one operator
for the public examples, and is of course known for our generated expressions.

In the following experiments, we only try to determine the resilience of the
MBA obfuscation as defined in [ZMGJ07], and used alone without other control
flow or data flow obfuscation techniques. If several layers of obfuscation were to
be used, the difficulty of simplifying the expression would greatly increase, and the
analyst would very probably need to deobfuscate each layer separately.

We only tested our solution in a “clean” context, where MBA-obfuscated ex-
pressions are generated and simplified directly from the source code, instead of a
reverse-engineering context where the analyzed MBA would be in their assembly
form. This is due to the fact that automation of the generation, compilation, and
especially the translation from assembly to a high-level semantics is not trivial.
Nevertheless, we implemented transformations in our MBA obfuscator designed

1All tests were realized with version 0.2.0.

97

to simulate certain aspects of optimization: mainly, the distribution of the mul-
tiplication by two in boolean expressions (e.g. 2 × (x ∧ y) = (2x ∧ 2y)), and the
distribution of the inner affine on the rewritten expression.

Simplifying Available Examples

We applied SSPAM on the few public obfuscated expressions available in the lit-
erature:

• All examples of obfuscated operators of Zhou et al.’s work [ZM06] were fully
simplified by our tool. A comparison of obfuscated inputs and simplified
outputs can be found in Figure 5.1. Simplifying each example takes less
than two seconds with our tool.

t1 = (4211719010⊕ 2937410391x) + 2× (2937410391x ∨ 83248285) + 4064867995

t2 = (2937410391x ∨ 3393925841)− ((2937410391x) ∧ 901041454) + 638264265y

z = 519915623t1 − ((3383387769t2 + 129219187)⊕ 2756971371)

− 2((911579527t2 + 4165748108) ∨ 2756971371) + 4137204492

(a) Obfuscated expressions [ZM06].

t1 = ((2937410391x) + 4148116279)

t2 = ((638264265y) + 3393925841)

z = (x+ y)

(b) Outputs of SSPAM.

Figure 5.1: Simplification of some state of the art examples.

• A larger example of an MBA-obfuscated expression found in a real-life obfus-
cated DRM was given in [MG14]. We analyzed this example in Section 4.1,
and used the version of Figure 4.3 to test the simplification. SSPAM is able
to retrieve the original expression (x⊕92) in about 8 seconds given the exact
6 rewrite rules needed (and about 12 seconds when all 23 default rules are
available).

98

Generating New MBA-obfuscated Expressions

Using the obfuscation algorithm detailed in Algorithm 2, we chose four expressions
to obfuscate: (x+ y), (x⊕ y), (x ∧ 78) and (x ∨ 12) on 8 bits, and four rewriting
rules from [War02] (given in Figure 5.2), one for each operator +,⊕,∧,∨.

x+ y → (x ∧ y) + (x ∨ y)

x⊕ y → (x ∨ y)− (x ∧ y)

x ∧ y → (¬x ∨ y)− (¬x)

x ∨ y → (x ∧ ¬y) + y

Figure 5.2: Rewriting rules used to obfuscate our sample expressions.

The duplication of the XOR operation is done as described in Algorithm 1. We
use the same principle for the duplication of the addition, for some obfuscation
degree d:

x+ y = (((x+ c1)− c1 + c2)− c2) + y + · · ·+ cd

where −c1 + c2 is evaluated. We designed a duplication algorithm for the AND
and OR operators, based on the idea of duplicating the original operator:

(x ∧ y) = (x ∧ (y ∧ c1)) + · · ·+ (x ∧ (y ∧ cd))
(x ∨ y) = (x ∨ (y ∧ c1)) ∨ · · · ∨ (x ∨ (y ∧ cd))

Where c1 ⊕ · · · ⊕ cd = −1 mod 2n, and (ci ∧ cj) = 0 for all 1 ≤ i, j ≤ d, i 6= j.
One can notice that if y is a constant, y ∧ ci can be evaluated. The duplication of
(x ∧ y) can also be done with OR operations instead of additions, but we prefer
to use additions in order to increase the MBA alternation of the expression.

For each expression to be obfuscated, for each degree from 1 to 6, we generated
20 obfuscated expressions to be used as input for SSPAM. We then computed the
number of fully simplified expressions and the average number of nodes reduction
(from obfuscated expressions to simplified expressions), as well as the average MBA
alternation reduction.

The average number of node reduction can be seen in Figure 5.3. The 100%
ratio (e.g. for x+y when d = 1) means that all 20 obfuscated expressions were fully
simplified. When the ratio is different from 100%, the fully simplified expressions
are not considered in the average computation, in order to get a better idea of the
behavior of not completely simplified expressions. The results for average MBA
alternation reduction were very similar, thus we do not provide the corresponding
graph.

99

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6

re
du

ct
io

n
of

 n
um

be
r o

f n
od

es
 (%

)

degree of obfuscation

x + y
x ⊕ y

x ∧ 78
x ∨ 12

Figure 5.3: Average Number of Nodes Reduction.

For expressions x + y and x ⊕ y, the number of fully simplified expressions
is between 18 and 20 (on 20 expressions) when d ≤ 4. On the other hand, no
expression was fully simplified for expressions x ∧ 78 and x ∨ 12, whatever the
value of d. When the degree of obfuscation equals 5, no obfuscated expression was
fully simplified.

Globally, the simplification method seems to be quite efficient: on the worst
case, the size of the expression is still reduced by more than 60%, and a fair amount
of expressions have been fully simplified. By analyzing more precisely the graph, it
appears that obfuscated additions and XOR operations are better simplified than
AND and OR operations. In our example, it could be due either to the choice of
operator (addition/XOR or AND/OR), or the operands (variables or constants).
Indeed, x + y and x ⊕ y do not contain any constants, which usually bring more
randomness to the simplification. We thus performed the same tests on two types
of obfuscated expressions, x ⊕ 135 and x ∧ y, to decide whether the presence of
constants or the operator was decisive. As previously, for each original expression
and for each degree of obfuscation 1 ≤ d ≤ 6, we generated 20 obfuscated examples.
The results are shown in Figure 5.4.

We add to this graph the information that, for x⊕ 135, when the ratio is not
100% (all expressions fully simplified), only one or two expressions were not fully
simplified. For x ∧ y, whatever the value of d, no expressions were fully simplified
on the 20 examples of obfuscated expressions.

This confirms that the simplification of obfuscated additions and XOR oper-

100

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6

re
du

ct
io

n
of

 n
um

be
r o

f n
od

es
 (%

)

degree of obfuscation

x ⊕ 135
x ∧ y

Figure 5.4: Average Number of Nodes Reduction for x⊕ 135 and x ∧ y.

ations is much more efficient than the simplification of obfuscated AND and OR
operations. Considering that we implemented our own duplication method for
those two operators, we cannot really deduce anything about the MBA obfusca-
tion technique as it exists publicly. When quickly analyzing the expressions that
failed to be simplified, it seems that a bitwise simplifier would quite improve the
result of the simplification. SSPAM does not possess such a simplifier because to
our knowledge, there is no public bitwise simplifier that would be easily integrable
in our tool, and we have left for future work the implementation of one.

We also tested the simplification of expressions with an increasing number of
bits: for d = 3, and for a number of bits of 8, 16, 32, and 64, we generated 10
instances of MBA-obfuscated expressions for x+y, and computed the average time
of simplification on those 10 examples. For every number of bits, all expressions
were fully simplified. We reproduce the times of simplification in Table 5.2.

n execution time (s)
8 9.80
16 10.98
32 11.69
64 12.99

Table 5.2: Simplification times of an obfuscated (x + y), with increasing number
of bits.

101

One can see that increasing the number of bits does not greatly augment the
execution time, as only the queries to Z3 might be slowed down because of n. What
does increase the simplification time is rather the size (the number of nodes of the
DAG representation) of the obfuscated expression. We produce in Table 5.3 a
comparison of the different execution times for an increasing degree of obfuscation
(tested on 10 examples for each degree). The second column contains the average
sizes in number of nodes of the obfuscated expression.

d average size execution time (s)
1 42 0.86
2 70 3.97
3 84 9.22
4 96 18.39

Table 5.3: Simplification times of an obfuscated (x+ y), with increasing degree of
obfuscation.

SSPAM thus successfully simplifies most of the generated expressions (when
the duplication algorithm is the one we reconstructed). The simplification is not
impeded by the number of bits, but rather by the size of the obfuscated expression,
in terms of number of nodes. It is safe to assume that, for performance reasons, the
obfuscated expressions will less likely be of great size. Thus the MBA obfuscation
technique offers little resilience to this type of simplification.

5.3 Algebraic Weakness of the Opaque Constant

Technique

The resilience of the opaque constant technique presented in [ZMGJ07] was already
assessed by Biondi et al. in [BJLS15], thus we did not focus our research on this
technique. Nevertheless, we do point a weakness of the obfuscation: depending
on the form of the null MBA expression used for obfuscation, the expanded form
of the opaque constant displays clearly the constant to be hidden. We detail this
weakness in Lemma 1.

Lemma 1. Let

• P (X) = a0 + a1X + a2X
2 + · · ·+ adX

d be a polynomial of degree d,

• Q be a polynomial of degree d, such that P (Q(X)) = X for all X ∈ Z/2nZ,

• and E =
∑
ai (
∏
ei,j(x0, . . . , xt−1)) be a null MBA expression, with no ei,j

such that ei,j(x0, . . . , xt−1) = 1 whatever the values of x0, . . . , xt1 (i.e. the
sum composing the MBA does not contain any constant).

102

Then the constant monomial of P (E +Q(K)) is equal to K.

Proof:

P (E +Q(K)) = a0 + a1(E +Q(K)) + · · ·+ ad(E +Q(K))d

= a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d + ϕ(E)

with ϕ(E) =
d∑

k=1

ak

(k−1∑
i=0

Ek−iQ(K)i
)

, a polynomial in variables x0, . . . , xt−1, with

no constant monomial (every monomial of ϕ(E) is multiplied by a positive power
of E). This means that the constant part of P (E +Q(K)) is

a0 + a1Q(K) + a2Q(K)2 + · · ·+ adQ(K)d = P (Q(K)) = K. �

Thus, the expanded form of the opaque constant will reveal the constant K. We
provide an example with the following formulas.

P (X) = 91 + 195X + 192X2 mod 28

Q(X) = 55 + 107X + 192X2 mod 28

P (Q(X)) = 7077888X4 + 7888896X3 + 6290688X2 + 2280705X + 591616

= X mod 28

E = x− y + 2× (¬x ∧ y)− (x⊕ y) = 0

P (Q(26) + E) = 192x2 + 128xy + 128x× (x⊕ y) + 235x+ 192y2 + 128y × (x⊕ y)

− 235y + 214× (¬x ∧ y) + 192× (x⊕ y)2 − 235× (x⊕ y) + 26

However, if E contains a constant part, we have E = E ′ + c, and

P (E +Q(K)) = a0 + a1(E ′ + c+Q(K)) + · · ·+ ad(E
′ + c+Q(K))d

= P (c+Q(K)) + ϕ(E ′)

The constant monomial of the opaque constant is then P (c + Q(K)). From
this observation, we strongly advise avoiding the use of this obfuscation technique
with a null MBA expression not containing a constant part.

5.4 Suggested Improvements

In Sections 5.1 and 5.2, we show that several ways—using public algorithms or our
contributions—exist to design an attack on MBA-obfuscated expressions. While

103

no perfect simplification solution exists, these attacks are efficient enough to con-
sider that the MBA obfuscation technique offers little resilience as it is. In this
section, we suggest a few improvement in order to improve the resilience against
deobfuscation, whether they are general improvements or specific to our simplifi-
cation tools.

5.4.1 Producing Less Common Subexpressions

In the current version of the obfuscation algorithm (see Algorithm 2), the XOR
operators to be rewritten are chosen from inner operator to outer operator. We
illustrate this process with the first obfuscation steps of the expression (x ⊕ 92).
Let us recall that the duplication (see Algorithm 1) produces

(x⊕ 92) = ((((((x⊕ 127)⊕ 127)⊕ 92)⊕ 122)⊕ 107)⊕ 17).

We use e0 to represent the obfuscated expression corresponding to (x⊕ 127); the
second XOR operation to be obfuscated is thus (e0 ⊕ 127), with an MBA rewrite
step producing

(e0 ⊕ 127)→ e0 − 127 + 2× (¬e0 + 127).

One can notice that e0 now appears twice in the overall obfuscated expression,
meaning it is a common subexpression that can be shared in the DAG represen-
tation. As most rewrite rules increase the number of occurrences of terms, each
rewrite step yields more common subexpressions representing the same obfuscated
subexpression.

If the obfuscation is performed from the outer operator to the inner one, then
each occurrence of a XOR operator is obfuscated differently. This produces a
bigger expression with very few common subexpressions, at the expense of a longer
obfuscation time (far more obfuscation steps are required), and a much bigger
expression—which can be a problem depending on the context.

We implemented this improvement and tested it to obfuscate an expression with
the same duplicated form as seen before. While the DAG of the original obfuscated
(x⊕92) has 72 nodes and an MBA alternation of 12, the new obfuscated one (with
obfuscation from outer operator to inner operator) produces a DAG of 719 nodes
and an MBA alternation of 230.

We also studied the impact of LLVM optimizations on the size of obfuscated
expressions. In this case, the size is defined as the number of words, because
computing the DAG of an expression from assembly code is hard to automate. We
obfuscated the expression (x ⊕ 92) with random affine functions and a small list
of MBA rewrite rules, with the original obfuscation and the improved one. On
50 examples generated with the original obfuscation, LLVM optimizations (using
option -O3 of clang) reduce the size of the code by 75% in average. On 50 examples

104

generated with the improved obfuscation, LLVM optimizations reduce the size of
the code only by 40% in average.

In terms of readability, an obfuscated expression with fewer common subex-
pressions is more difficult to process, as the analysis of smaller parts cannot be
reused at other positions in the expression. This can also increase the resilience
against black-box attacks, as the expression contains much more computations—
making it longer to gather input/output pairs, as well as slowing down proofs with
SMT solvers.

5.4.2 Using New Identities

The MBA obfuscation technique currently uses affine functions in order to insert
identities around rewritten expressions. An improvement would be to use different
invertible functions, such as polynomials. Invertible polynomials in Z/2nZ were
characterized by Rivest in [Riv99], but no inversion algorithm was provided. A
subclass of those invertible polynomials with a closed-form formula to compute
a polynomial’s inverse is described in [ZMGJ07] in order to construct opaque
constants. This subclass is only composed of the polynomials sharing the same
degree as their inverse.

We propose in [BERR16] an algorithm to invert all invertible polynomials in
Z/2nZ, based on Newton’s inversion algorithm. This provides a greater number of
polynomials to use for obfuscation, as well as more resilience to algebraic attacks.
Indeed, one of the attacks proposed in [BJLS15] regarding the MBA opaque con-
stant technique is based on certain properties of the polynomials. Using a larger
class of invertible polynomials makes the opaque constant resistant to this attack.

Permutation polynomials could thus be used either as identities (instead of
affine functions) in the expression obfuscation, or as polynomials for the opaque
constants.

5.4.3 Improving the Duplication

One can note that the duplication step (see Algorithm 1) keeps the initial constant
of the expression if there is one (e.g. 92). A black-box approach might choose its
candidate by giving priority to constants included in the obfuscated expression,
thus it seems a good idea to avoid displaying any original constants in the obfus-
cated result. An example of how to use duplication to hide the original constant
could be to evaluate an operation with another constant (here, 127 ⊕ 92 = 35
mod 28):

(x⊕ 92) = ((((((x⊕ 127)⊕ 127)⊕ 92)⊕ 122)⊕ 107)⊕ 17)

= (((((x⊕ 127)⊕ 35)⊕ 122)⊕ 107)⊕ 17)

105

Another improvement of this step could be to insert new variables that do not
change the result of the computations, but increase the search space for function
reconstruction. For example, Duplicate could also introduce a variable y with
((x⊕ y)⊕ y) instead of constants.

5.4.4 Increasing the Resilience Against our Tools

In order to improve the general resilience of the obfuscation technique against sim-
plification using bit-blasting, the expression produced should have a high number
of bits; then a different location in the obfuscated code could be used to gather
the bits actually needed for the computation. Hiding the number of used bits can
also be done by using traditional “bit hacks” such as the interleaving of bits. The
obfuscation could also use more arithmetic operators, especially multiplication, as
they are more difficult to process for this simplification approach.

The key to improving the resilience of the obfuscation against symbolic ap-
proaches such as SSPAM is to increase the diversity—of the obfuscation steps,
of the rewriting rules. . . For example, the technique could rewrite random nodes
instead of the ones introduced by the duplication step. We refer to our work
in [EGV16], where we tested SSPAM on this type of obfuscation: the deobfus-
cation is then globally less efficient. Different types of rewrite rules would also
improve the resilience. For example, if a method were found to create rules for
specific expressions involving constant (e.g. x⊕42), then one could create constant-
dependent rewrite rules during obfuscation, for example the obfuscating rule:

x⊕ 42→ ((x ∨ 191) ∧ (x⊕ 106)) + (x ∧ 64).

This would easily increase the number (and diversity) of obfuscating rules,
intensifying as much the efforts of the analyst in order to recover said rules.

Rewrite rules with constraints (for example, a range on the variables) would
also greatly increase the difficulty of simplification: in addition to know the list of
rewrite rules, the simplification tool would also have to recover the corresponding
constraints and verify them to apply the rule. This verification is often easier
when obfuscating, as more information about the program is available, than when
reverse-engineering a binary.

In the next section, we show how the parameters used in the generation of
MBA rewrite rules (as described in [ZMGJ07]) can determine the number, and
thus the diversity, of available obfuscating rules during obfuscation.

106

5.4.5 Expanding the Pool of Available Rewrite Rules

In this section, we study the method described in [ZMGJ07] to create equivalent
MBA expressions, and thus MBA rewrite rules. We recall very briefly this method
(please refer to Section 2.1.3 for more details).

In their paper, Zhou et al. state that for any {0, 1}-matrix of size 2t × s with
linearly dependent column vectors, one can generate a null linear MBA expression
E =

∑s−1
i=0 aiei. Here, for all i, ai is in Z/2nZ, ei is a boolean expression of t

variables, and s is the number of boolean expressions of the MBA. From this
null MBA, several MBA rewrite rules can be inferred by choosing different left-
hand sides (LHS) and right-hand sides (RHS) from the null MBA expression. For
example, the null MBA

x+ y − (x ∧ y)− (x ∨ y) = 0

can lead to multiple rewrite rules, such as

x+ y → (x ∧ y) + (x ∨ y),

(x ∧ y)→ x+ y − (x ∨ y),

(x ∨ y)→ x+ y − (x ∧ y),

. . .

Given this method to generate linear MBA rewrite rules, we want to enumerate
all possible rewritings of traditional operators (XOR, AND, addition. . .) for a
given s. The operator to be rewritten (the LHS of the rewrite rule) has to be
a sum of boolean expressions represented by {0, 1}-vectors v1, . . . , vk of size 2t,
with k < s, and coefficients a1, . . . , ak. For example, when considering expressions
of two variables x and y (t = 2), x is represented with the truth-table vector
v1 = (0 0 1 1)ᵀ, y with v2 = (0 1 0 1)ᵀ, and thus x+y is represented by a1v1 +a2v2

with a1 = a2 = 1 (here, k = 2).
In order to enumerate all MBA rewrite rules for the expressions represented

by v1, . . . , vk, one must find all vectors vk+1, . . . , vs such that there exist some
coefficients ak+1, . . . , as verifying

a1v1 + · · ·+ akvk + ak+1vk+1 + . . . asvs = 0.

The LHS of the rewrite rule being represented by
k∑

i=1

aivi, the RHS is obtained

with by
s∑

i=k+1

−aivi.

We illustrate this with the enumeration of all MBA rewrite rules of x+ y with
this method, for s = 5. We choose s = 5 because in most examples of MBA rewrite

107

rules we encountered, the RHS of the rewrite rule was composed of three boolean
expressions (i.e. s − k = 3). As x + y contains two boolean expressions x and y,
we have k = 2, and thus s = 5.

Let us consider the 2t × s matrix A, with t = 2 and s = 5:

A =


x y u v w

0 0 u0 v0 w0

0 1 u1 v1 w1

1 0 u2 v2 w2

1 1 u3 v3 w3


We want to enumerate all triplet of vectors (u, v, w) such that there exists a

linear combination of all columns of A that is equal to a null vector. We consider
every non-null {0, 1}-vector of size 4, which makes a total of 15 possible vectors
for u, v, w. For each triplet in those possible vectors, we have to check if a solution
{α, β, γ} exists in Z/2nZ to the following system:

0 + 0 + αu0 + βv0 + γw0 = 0

0 + 1 + αu1 + βv1 + γw1 = 0

1 + 0 + αu2 + βv2 + γw2 = 0

1 + 1 + αu3 + βv3 + γw3 = 0

This system must be solved for every combination of three vectors among the
15 available ones, which makes

(
15
3

)
= 455 possibilities. In this case, the system

is overdetermined, as they are more equations than unknowns. To bypass this
issue, we solve the system composed of the last three equations, which gives us
every solution when u0 = v0 = w0 = 0. When a solution is found, we try to verify
the first equation on all possible values of u0, v0 and w0. We discard any solution
where α, β or γ is null, as we want to have exactly five boolean expressions in the
resulting MBA equation.

In order to solve the system, we use the Python module numpy and the function
numpy.linalg.solve. From each three vectors u, v, w with solutions α, β, γ, we
are able to construct a MBA rewrite rule for x + y. A first noteworthy remark is
that some rules that seem different are actually the same. For example, the rules

x+ y → (x ∨ y) + y − (¬x ∧ y)

x+ y → (y ∨ x) + x− (x ∧ ¬y)

are equal (one just needs to swap x and y to get the same expressions). When two
equal rules are found, only one is kept for the enumeration. This gives us twelve

108

distinct obfuscating rules for x+ y:

x+ y → (x ∨ y) + y − (¬x ∧ y)

x+ y → (x ∨ y) + (¬x ∨ y)− (¬x)

x+ y → −1 + y − (¬x)

x+ y → 2× (x ∨ y)− (¬x ∧ y)− (x ∧ ¬y)

x+ y → 2× (−1)− (¬x)− (¬y)

x+ y → (x⊕ y) + 2y − 2× (¬x ∧ y)

x+ y → (x⊕ y) + 2× (¬x ∨ y)− 2× (¬x)

x+ y → −(x⊕ y) + 2y + 2× (x ∧ ¬y)

x+ y → 2y − (¬x ∧ y) + (x ∧ ¬y)

x+ y → 2y − (¬x) + (¬y)

x+ y → y + (x ∧ ¬y) + (x ∧ y)

x+ y → (¬x ∧ y) + (x ∧ ¬y) + 2× (x ∧ y)

We use the same method to enumerate all rewrite for (x⊕ y), (x ∧ y), (x ∨ y).
As all these are boolean expressions equivalent to one vector, we have k = 1 and
still aim for s − k = 3, so s = 4. We present the number of distinct rewrite rules
for each operator in Table 5.5, as well as the enumeration when the RHS of the
rewrite rule is composed of four boolean expressions (i.e. s− k = 4). We provide
in Appendix A the list of rewrite rules for s − k = 3 for all operators, and in
Appendix B, some examples of rewrite rules for s− k = 4.

s− k = 3 s− k = 4
x+ y 12 167
x⊕ y 12 79
x ∧ y 7 48
x ∨ y 6 84

Figure 5.5: Enumeration of all possible MBA rewrite rules.

One can notice that for most common cases when s − k = 3, the number of
rewrite rules for each operator is not very high (it is very possible to store and
try to identify less than 40 rules). We thus strongly recommend generating MBA
rewrite rules with s− k ≥ 4.

109

Conclusion

Code obfuscation intends to protect programs by making their analysis more costly,
in terms of skills, time and tools. It operates mainly by either mutating code and
data, or adding bogus information into the code. Our work has been focused on the
study of one particular data obfuscation using Mixed Boolean-Arithmetic (MBA)
expressions, to obfuscate constants and expressions. This study was conducted in
two parts, mainly the reconstruction of the obfuscation algorithm and the design
of two deobfuscation solutions. The information we gathered about the technique,
together with the simplification algorithms we provided, allowed us to assess the
resilience of the MBA obfuscation.

We provided the context to fully apprehend the notions around obfuscation in
Chapter 1. We gave the traditional definition and properties of obfuscation, as well
as some basic concepts of cryptographic obfuscation. Our work is focused mainly
on practical obfuscation, which intends to resist the action of reverse engineering,
mainly by modifying the control flow and the data flow of a program. Therefore,
we listed a few common techniques of reverse engineering, along with classical
obfuscation techniques. We also presented a variety of methods and metrics used
to quantify the quality of an obfuscation (usually called resilience), even though
this issue is still being investigated.

In Chapter 2, we detailed the different concepts that we used in our study of the
MBA obfuscation. We recalled the various contributions of Zhou et al. [ZMGJ07]:
the definition of a polynomial MBA expression, two obfuscation algorithms (one to
create opaque constants, the other to obfuscate expressions), as well as a method
to generate MBA equivalences. We showed how the issue of simplifying an ex-
pression is recognized as complex, even when considering arithmetic or boolean
expressions. There are nevertheless fields of research that can be of use in our
context, namely bit-vector logic and term rewriting, and we presented how they
relate to our problematic.

There is a strong lack of literature on the subject of MBA expressions: while
the concept can be found in cryptography (without the label “MBA”), it is not
used for the same reasons as in obfuscation. We thus built our own theoretical
background, and initiated explanations on the difficulty of MBA deobfuscation in

110

Chapter 3. In our case, we believe that the former resilience of the obfuscation was
mainly due to the absence of tools to manipulate and simplify MBA expressions,
as well as the fact that optimization passes add transformations to the initial
obfuscation. We proposed three metrics to help characterize what is a complex
MBA expression, with the help of the DAG representation: the number of nodes,
the MBA alternation, and the bit-vector size.

In order to study the MBA obfuscation technique, we first had to reconstruct
its algorithm: from the method described in the work of Zhou et al. and examples
of expressions found in a commercial obfuscated program, we were able to fully
identify the MBA obfuscation technique used on those samples. In the process, we
also encountered other obfuscation techniques applied in conjunction with MBA
obfuscation—bit-vector extension and encodings. From this study, presented in
Chapter 4, we designed two deobfuscation tools for MBA-obfuscated expressions.
The first one, arybo, is based on the principle of bit-blasting, i.e. explicitly writing
and canonicalizing every bit expression of every operator, and then finding the
corresponding word-level expression. The second solution, SSPAM, manipulates
expressions at word-level, and intends to invert the obfuscation transformations
applied on the expression. It uses classical arithmetic expansion and term rewriting
(also called pattern matching when referring to the implementation).

With this work of analysis and deobfuscation of the MBA obfuscation tech-
nique, we were able to give elements to assess its resilience, meaning the obscuring
capacity of the technique, in Chapter 5. To our knowledge, there exists no public
solution for MBA simplification, and thus we assessed the resilience against solu-
tions not specific to MBA (i.e. black-box approaches), as well as against our own
solutions. Regarding black-box approaches, the impact of the mixing of operators
would need further investigations, but it seems classical techniques such as pro-
gram synthesis (see Section 2.6.2) could probably be used to deobfuscate “simple”
expressions—e.g. an operation on 8 bits between a variable and a constant. Then
we evaluated our two simplification tools on MBA expressions. The bit-blasting
solution, arybo, is quite efficient on a small number of bits (e.g. expressions
on 8 bits), but exhibits performance issues when the number of bits augments—
mainly caused by the exponentially increasing number of expressions and the cost
of canonicalization. On the other hand, SSPAM successfully deobfuscates public
examples of MBA-obfuscated expressions, and gives positive results when tested
on our own samples. From the results of our evaluations, we concluded that in its
current state, the MBA obfuscation technique does not provide great resistance to
our simplification algorithms. Finally, we suggested several improvements in order
to increase the resilience.

111

Future Work

There are still many ways to improve our two simplification algorithms. We stated
that arybo had performance issues when the number of bits rises, which could be
solved with a change of representation for the bit expressions (e.g. the use of
symmetric functions [Weg87]). We also need to find new heuristics or methods to
identify expressions containing several operators from bit-level to word-level.

Regarding SSPAM, the absence of a real bitwise simplifier could be problem-
atic: instead of fully implementing one, it would be possible to use arybo in
situations where the bit expressions are not of great complexity. The implemen-
tation of strategies in the choice of the simplification to be applied is also a future
milestone, as it could greatly improve the results. For example, we noticed that
some expressions require arithmetic factorization instead of expansion in order to
be matched to known patterns. We could thus imagine different simplification
strategies guided with our MBA complexity metrics.

These metrics are not enough, and could be complemented with other concepts
or quantities to assess the resilience of MBA obfuscation. For example, designers of
obfuscations would be interested in characterizing what is a good MBA-obfuscating
rewrite rule: do we need to check for a great MBA alternation, or to verify that the
rewrite rule cannot be expressed as the successive applications of simpler rewrite
rules? Another interesting approach could be to study the termination and con-
fluence of the induced rewrite systems used for simplification, and try to choose
obfuscating rules that would impede those properties. We would also like to design
a metric describing the “distance” between the original expression and the obfus-
cated one: are the original constants still appearing in the obfuscated expression,
are the operands that were close in the original DAG still close in the obfuscated
DAG. . .

For now, our main lead in order to increase the resilience of the MBA obfusca-
tion technique is to drastically increase the variety of the rewrite rules, for example
by generating specific rules during the obfuscation (e.g. using a rule transform-
ing x + 5 instead of x + y with {y 7→ 5}). Our first attempts at creating such
expressions, by testing exhaustively all combinations of operators and operands
of a given size, lead us to think that it is not trivial to find such rewrite rules,
especially under a restricted time. Using rewrite rules that only apply with some
condition (for example, a range of values for the variables), could also impede any
approach using pattern matching. In particular, conditional rules would mean that
different occurrences of the same subexpression could be rewritten differently, thus
minimizing the interest of the sharing in the DAG representation.

112

In order to increase the resilience to bit-blasting approach, rewrite rules con-
taining more arithmetic operators, especially multiplication, should be preferred.
The resilience of the MBA obfuscation technique could also depend on the pur-
pose of the analyst, whether it is identifying a distinctive feature of a standard
algorithm, or extracting a formula.

In conclusion, we were able to show that the current MBA obfuscation tech-
nique does not offer great resilience and can be defeated with our two public tools.
Nevertheless, there is still a lot of possibilities in order to improve both MBA
obfuscation and our deobfuscation algorithms, and it is still not clear which side—
between obfuscation and deobfuscation—will eventually “win” in the end, or if a
balance will be found where the difficulty of MBA deobfuscation would be linked
to our metrics.

113

Bibliography

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools (2Nd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

[Ant10] Martin Anthony. Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering, chapter 6: Probabilistic Learning and
Boolean Functions, page 197–220. Cambridge University Press, New
York, NY, USA, 1st edition, 2010.

[BA06] Sorav Bansal and Alex Aiken. Automatic Generation of Peephole
Superoptimizers. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 394–403, New York, NY, USA, 2006.
ACM.

[BDL98] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A Decision
Procedure for Bit-vector Arithmetic. In Proceedings of the 35th An-
nual Design Automation Conference, DAC ’98, pages 522–527, New
York, NY, USA, 1998. ACM.

[BERR16] Lucas Barthelemy, Ninon Eyrolles, Guenaël Renault, and Raphaël
Roblin. Binary Permutation Polynomial Inversion and Application to
Obfuscation Techniques. In Proceedings of the 2016 ACM Workshop
on Software PROtection, SPRO ’16, pages 51–59, New York, NY,
USA, 2016. ACM.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (Im)possibility
of Obfuscating Programs. In Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryptology, CRYPTO
’01, pages 1–18, London, UK, 2001. Springer-Verlag.

114

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential computation analysis: Hiding your white-box designs is
not enough. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems – CHES 2016: 18th
International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, pages 215–236. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

[BJLS15] Fabrizio Biondi, Sébastien Josse, Axel Legay, and Thomas Sirvent.
Effectiveness of Synthesis in Concolic Deobfuscation. Preprint, De-
cember 2015.

[BL82] Bruno Buchberger and Rüdiger Loos. Algebraic Simplification. In
Bruno Buchberger, George Edwin Collins, and Rüdiger Loos, editors,
Computer Algebra, volume 4 of Computing Supplementa, pages 11–43.
Springer, 1982.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with
applications to numerical problems. In Proceedings of the Twenty-
second Annual ACM Symposium on Theory of Computing, STOC ’90,
pages 73–83, New York, NY, USA, 1990. ACM.

[BN99] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, Aug. 1999.

[BS14] Vasily Bukasof and Dmitry Schelkunov. Deobfuscation and beyond.
ZeroNights conference, 2014.

[Car04] Jacques Carette. Understanding Expression Simplification. In Pro-
ceedings of the 2004 International Symposium on Symbolic and Al-
gebraic Computation, ISSAC ’04, pages 72–79, New York, NY, USA,
2004. ACM.

[CC11] Vitaly Chipounov and George Candea. Enabling Sophisticated Anal-
yses of x86 Binaries with RevGen. In 7th Workshop on Hot Topics in
System Dependability (HotDep), Hong Kong, China, June 2011.

[CEJVO03] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C.
Van Oorschot. White-Box Cryptography and an AES Implementa-
tion, pages 250–270. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

115

[CKWG16] Joel Coffman, Daniel M. Kelly, Christopher C. Wellons, and An-
drew S. Gearhart. Rop gadget prevalence and survival under compiler-
based binary diversification schemes. In Proceedings of the 2016 ACM
Workshop on Software PROtection, SPRO ’16, pages 15–26, New
York, NY, USA, 2016. ACM.

[CN09] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software Protection.
Addison-Wesley Professional, 1st edition, 2009.

[Coh93] Frederick B. Cohen. Operating system protection through program
evolution. Computers & Security, 12(6):565 – 584, 1993.

[Cor16] Marie-Angela Cornelie. Implantations et protections de mécanismes
cryptographiques logiciels et matériels. PhD thesis, Université Greno-
ble Alpes, April 2016.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxon-
omy of Obfuscating Transformations. Technical Report 148, Univer-
sity of Auckland, 1997.

[CTL98] Christian Collberg, Clark Thomborson, and Douglas Low. Manufac-
turing Cheap, Resilient, and Stealthy Opaque Constructs. In Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’98, pages 184–196, New York,
NY, USA, 1998. ACM.

[Des12] Fabrice Desclaux. Miasm: Framework de reverse engineering. In Actes
du Symposium sur la Sécurité des Technologies de l’Information et des
Communications. SSTIC, 2012.

[Det99] Detlef Plump. Term Graph Rewriting. In Handbook of Graph Gram-
mars and Computing by Graph Transformation: Applications, Lan-
guages and Tools, volume 2, pages 3–61. World Scientific Pub Co Inc,
1999.

[DGBJ14] Bruce Dang, Alexandre Gazet, Elias Bachaalany, and Sebastien Josse.
Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Re-
versing Tools, and Obfuscation, chapter 5: Obfuscation. Wiley Pub-
lishing, 2014.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of The-
oretical Computer Science (Vol. B). chapter Rewrite Systems, pages
243–320. MIT Press, Cambridge, MA, USA, 1990.

116

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340.
Springer, 2008.

[DPG05] Mila Dalla Preda and Roberto Giacobazzi. Semantic-Based Code Ob-
fuscation by Abstract Interpretation, pages 1325–1336. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, ed-
itors, Computer-Aided Verification (CAV’2014), volume 8559 of Lec-
ture Notes in Computer Science, pages 737–744. Springer, July 2014.

[DYJAJ14] Apon Daniel, Huang Yan, Katz Jonathan, and Malozemoff Alex J. Im-
plementing Cryptographic Program Obfuscation. Cryptology ePrint
Archive, Report 2014/779, 2014.

[EGV16] Ninon Eyrolles, Louis Goubin, and Marion Videau. Defeating MBA-
based Obfuscation. In Proceedings of the 2016 ACM Workshop on
Software PROtection, SPRO ’16, pages 27–38, New York, NY, USA,
2016. ACM.

[FCMCI12] A.J. Farrugia, B. Chevallier-Mames, M. Ciet, and T. Icart. Performing
boolean logic operations using arithmetic operations by code obfus-
cation, August 9 2012. US Patent App. 13/024,258.

[FSA97] S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer
Systems. In Proceedings of the 6th Workshop on Hot Topics in Oper-
ating Systems (HotOS-VI), HOTOS ’97, pages 67–, Washington, DC,
USA, 1997. IEEE Computer Society.

[GBD05] Vijay Ganesh, Sergey Berezin, and David L. Dill. A Decision Proce-
dure for Fixed-Width Bit-Vectors. Technical report, Stanford Univer-
sity, 2005.

[GEV16] Adrien Guinet, Ninon Eyrolles, and Marion Videau. Arybo: Ma-
nipulation, Canonicalization and Identification of Mixed Boolean-
Arithmetic Symbolic Expressions. In Proceedings of GreHack 2016,
GreHack 2016, Grenoble, France, November 2016.

[GG10] Yoann Guillot and Alexandre Gazet. Automatic Binary Deobfusca-
tion. Journal in Computer Virology, 6(3):261–276, 2010.

117

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters. Candidate Indistinguishability Obfuscation
and Functional Encryption for All Circuits. In Proceedings of the 2013
IEEE 54th Annual Symposium on Foundations of Computer Science,
FOCS ’13, pages 40–49, Washington, DC, USA, 2013. IEEE Computer
Society.

[GLZ12] Yuan Xiang Gu, Clifford Liem, and Yongxin Zhou. System and
method providing dependency networks throughout applications for
attack resistance. App. PCT/CA2011/050157, Publication Number
WO2012126083 A1, Sept. 2012. Irdeto Canada Corporation.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On Best-possible Obfusca-
tion. In Proceedings of the 4th Conference on Theory of Cryptography,
TCC’07, pages 194–213, Berlin, Heidelberg, 2007. Springer-Verlag.

[Gul10] Sumit Gulwani. Dimensions in Program Synthesis. In Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, PPDP ’10, pages 13–24, New
York, NY, USA, 2010. ACM.

[Hal77] Maurice H. Halstead. Elements of Software Science. Operating and
programming systems series. Elsevier, New York, 1977. Elsevier com-
puter science library.

[Hec03] Heck, Andre. Introduction to Maple, chapter 6: Internal Data Repre-
sentation and Substitution. Springer, 2003.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

[JGST10] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari.
Oracle-guided Component-based Program Synthesis. In Proceedings
of the 32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE ’10, pages 215–224, New York, NY, USA,
2010. ACM.

[JGZ08] Harold Joseph Johnson, Yuan Xiang Gu, and Yongxin Zhou. System
and method of interlocking to protect software-mediated program and
device behaviors. US Patent App. 11/980,392, Publication Number
US20080208560 A1, Aug. 2008.

118

[JJN+08] Matthias Jacob, Mariusz H. Jakubowski, Prasad Naldurg, Chit
Wei (Nick) Saw, and Ramarathnam Venkatesan. The Superdiver-
sifier: Peephole Individualization for Software Protection. In Kanta
Matsuura and Eiichiro Fujisaki, editors, Proceedings of the Third In-
ternational Workshop on Security, IWSEC ’08, pages 100–120, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[JNR02] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A Goal-
directed Superoptimizer. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation,
PLDI ’02, pages 304–314, New York, NY, USA, 2002. ACM.

[JRWM15] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM – Software Protection for the Masses. In Brecht
Wyseur, editor, Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection, SPRO’15, pages 3–9. IEEE, 2015.

[JSV09] Mariusz H Jakubowski, Chit Wei Saw, and Ramarathnam Venkate-
san. Iterated Transformations and Quantitative Metrics for Software
Protection. In SECRYPT, pages 359–368, 2009.

[Kin76] James C. King. Symbolic Execution and Program Testing. Commun.
ACM, 19(7):385–394, July 1976.

[KL91] E. Kounalis and D. Lugiez. Compilation of Pattern Matching with
Associative-commutative Functions. In Proceedings of the Interna-
tional Joint Conference on Theory and Practice of Software Develop-
ment on Colloquium on Trees in Algebra and Programming (CAAP
’91): Vol 1, TAPSOFT ’91, pages 57–73, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[Klo92] J. W. Klop. Handbook of Logic in Computer Science (Vol. 2). chapter
Term Rewriting Systems, pages 1–116. Oxford University Press, Inc.,
New York, NY, USA, 1992.

[KMM+06] Matthew Karnick, Jeffrey MacBride, Sean McGinnis, Ying Tang, and
Ravi Ramachandran. A Qualitative Analysis of Java Obfuscation.
In proceedings of 10th IASTED international conference on software
engineering and applications, Dallas TX, USA, 2006.

[KN10] Dmitry Khovratovich and Ivica Nikolić. Rotational Cryptanalysis of
ARX. In Fast Software Encryption, volume 6147 of Lecture Notes in
Computer Science, pages 333–346. Springer, 2010.

119

[Kre98] Christoph Kreitz. Automated Deduction — A Basis for Applications:
Volume III Applications, chapter 5: Program Synthesis, pages 105–
134. Springer Netherlands, Dordrecht, 1998.

[KS03] Alexander Klimov and Adi Shamir. A New Class of Invertible Map-
pings. In Cryptographic Hardware and Embedded Systems - CHES
2002, volume 2523 of Lecture Notes in Computer Science, pages 470–
483. Springer, 2003.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algo-
rithmic Point of View. Springer, 2008.

[KSK09] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press, Inc., Boca Raton, FL,
USA, 1st edition, 2009.

[Kup96] Tony R. Kuphaldt. Lessons in Electric Circuits, Vol. IV - Digital,
chapter 7: Boolean Algebra. http://www.allaboutcircuits.com/

textbook/digital/#chpt-7, 1996.

[KW13] Dhiru Kholia and Przemyslaw Wkegrzyn. Looking Inside the (Drop)
Box. In Presented as part of the 7th USENIX Workshop on Offensive
Technologies, Berkeley, CA, 2013. USENIX.

[KZ05] Arun Kandanchatha and Yongxin Zhou. System and method
for obscuring bit-wise and two’s complement integer computations
in software. US Patent App. 11/039,817, Publication Number
US20050166191 A1, Jul. 2005. Cloakware Corporation.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[LGJ08] Clifford Liem, Yuan Xiang Gu, and Harold Johnson. A Compiler-
based Infrastructure for Software-protection. In Proceedings of the
Third ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS ’08, pages 33–44, New York, NY, USA,
2008. ACM.

[LM91] Xuejia Lai and James L. Massey. A Proposal for a New Block En-
cryption Standard. In Advances in Cryptology — EUROCRYPT ’90,

120

volume 473 of Lecture Notes in Computer Science, pages 389–404.
Springer, 1991.

[Map] Maple (Release 12.0). Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario. http://www.maplesoft.com/.

[Mar14] Mariano Ceccato. On the Need for More Human Studies to Assess
Software Protection. Technical report, November 2014.

[Mas87] Henry Massalin. Superoptimizer: A Look at the Smallest Program.
In Proceedings of the Second International Conference on Architectual
Support for Programming Languages and Operating Systems, ASP-
LOS II, pages 122–126, Los Alamitos, CA, USA, 1987. IEEE Com-
puter Society Press.

[McD12] J. Todd McDonald. Capturing the Essence of Practical Obfuscation.
In Proceedings of the 6th International Conference on Information
Systems, Technology and Management, ICISTM 2012, volume 285 of
Communications in Computer and Information Science, pages 451–
456. Springer, 2012.

[MG14] Camille Mougey and Francis Gabriel. DRM obfuscation versus auxil-
iary attacks. Recon conference, 2014.

[MP15] Rabih Mohsen and Alexandre Miranda Pinto. Algorithmic Informa-
tion Theory for Obfuscation Security. Technical Report 793, 2015.

[Mui13] James A. Muir. A Tutorial on White-Box AES, pages 209–229.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[NPB15] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0.
JSAT, 9:53–58, 2015.

[PF06] Philippe Biondi and Fabrice Desclaux. Silver Needle in the Skype. In
BlackHat Europe, 2006.

[Riv99] Ronald L. Rivest. Permutation Polynomials Modulo 2w. Finite Fields
and Their Applications, 7:2001, 1999.

[RS14] Dusan Repel and Ingo Stengel. Grammar-based transformations: at-
tack and defence. Information Management & Computer Security,
22(2):141–154, 2014.

[S+15] W. A. Stein et al. Sage Mathematics Software (Version 6.5). The
Sage Development Team, 2015. http://www.sagemath.org.

121

[Spa10] Branko Spasojevic. Code Deobfuscation by Optimization. In 27th
Chaos Communication Congress, 2010.

[SS15] Florent Saudel and Jonathan Salwan. Triton: A Dynamic Symbolic
Execution Framework. In Actes du Symposium sur la Sécurité des
Technologies de l’Information et des Communications, pages 31–54.
SSTIC, 2015.

[Szk] Kévin Szkud lapski. (lead developper). https://github.com/wisk/

medusa/.

[Vui03] Jean Vuillemin. Digital Algebra and Circuits. In Nachum Dershowitz,
editor, Verification: Theory and Practice, volume 2772 of Lecture
Notes in Computer Science, pages 733–746. Springer, 2003.

[War02] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. John Wiley &
Sons, Inc., New York, NY, USA, 1987.

[WHdM13] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo
de Moura. Efficiently Solving Quantified Bit-Vector Formulas. Formal
Methods in System Design, 42(1):3–23, 2013.

[WS06] Wing Wong and Mark Stamp. Hunting for metamorphic engines.
Journal in Computer Virology, 2(3):211–229, 2006.

[ZM06] Yongxin Zhou and Alec Main. Diversity Via Code Transformations:
A Solution For NGNA Renewable Security. Technical report, The
NCTA Technical Papers, 2006.

[ZMGJ07] Yongxin Zhou, Alec Main, Yuan Xiang Gu, and Harold Johnson. In-
formation Hiding in Software with Mixed Boolean-Arithmetic Trans-
forms. In 8th International Workshop in Information Security Appli-
cations, WISA ’07, pages 61–75, 2007.

122

Appendix A

MBA Rewrite Rules for s− k = 3

A.1 Addition

x+ y → (x ∨ y) + y − (¬x ∧ y)

x+ y → (x ∨ y) + (¬x ∨ y)− (¬x)

x+ y → −1 + y − (¬x)

x+ y → 2× (x ∨ y)− (¬x ∧ y)− (x ∧ ¬y)

x+ y → 2× (−1)− (¬x)− (¬y)

x+ y → (x⊕ y) + 2y − 2× (¬x ∧ y)

x+ y → (x⊕ y) + 2× (¬x ∨ y)− 2× (¬x)

x+ y → −(x⊕ y) + 2y + 2× (x ∧ ¬y)

x+ y → 2y − (¬x ∧ y) + (x ∧ ¬y)

x+ y → 2y − (¬x) + (¬y)

x+ y → y + (x ∧ ¬y) + (x ∧ y)

x+ y → (¬x ∧ y) + (x ∧ ¬y) + 2× (x ∧ y)

123

A.2 XOR

x⊕ y → (x ∨ y)− y + (¬x ∧ y)

x⊕ y → (x ∨ y)− (¬x ∨ y) + (¬x)

x⊕ y → (−1)− (¬x ∨ y) + (¬x ∧ y)

x⊕ y → 2× (x ∨ y)− y − x
x⊕ y → 2× (−1)− (¬x ∨ y)− (x ∨ ¬y)

x⊕ y → −y + 2× (¬x ∧ y) + x

x⊕ y → −(¬x ∨ y) + 2× (¬x ∧ y) + (x ∨ ¬y)

x⊕ y → y + x− 2× (x ∧ y)

x⊕ y → (¬x ∨ y) + (x ∨ ¬y)− 2× (¬(x⊕ y))

x⊕ y → y + (x ∧ ¬y)− (x ∧ y)

x⊕ y → y + (¬y)− (¬(x⊕ y))

x⊕ y → (¬x ∨ y) + (x ∧ ¬y)− (¬(x⊕ y))

A.3 AND

x ∧ y → −(x ∨ y) + y + x

x ∧ y → 1 + y + (x ∨ ¬y)

x ∧ y → (x ∨ y)− (¬x ∧ y)− (x ∧ ¬y)

x ∧ y → (−1)− (¬x ∧ y)− (¬y)

x ∧ y → −(x⊕ y) + y + (x ∧ ¬y)

x ∧ y → −(¬(x ∧ y)) + y + (¬y)

x ∧ y → −(¬(x ∧ y)) + (¬x ∨ y) + (x ∧ ¬y)

A.4 OR

x ∨ y → (x⊕ y) + y − (¬x ∧ y)

x ∨ y → (x⊕ y) + (¬x ∨ y)− (¬x)

x ∨ y → (¬(x ∧ y)) + y − (¬x)

x ∨ y → y + x− (x ∧ y)

x ∨ y → y + (x ∨ ¬y)− (¬(x⊕ y))

x ∨ y → (¬x ∧ y) + (x ∧ ¬y) + (x ∧ y)

124

Appendix B

Some MBA Rewrite Rules for
s− k = 4

B.1 Addition

x+ y → 3× (x ∨ ¬y) + (¬x ∨ y)− 2× (¬y)− 2× (¬(x⊕ y))

x+ y → −(x ∨ ¬y)− (¬x) + (x ∧ y) + 2× (−1)

x+ y → (x ∨ ¬y) + (¬x ∧ y)− (¬(x ∧ y)) + (x ∨ y)

x+ y → 2× (¬(x⊕ y)) + 3× (¬x ∧ y) + 3× (x ∧ ¬y)− 2× (¬(x ∧ y))

...

B.2 XOR

x⊕ y → −(x ∨ ¬y) + (¬x ∨ y)− 2× (¬(x ∨ y)) + 2× (¬y)

x⊕ y → (x ∨ ¬y)− 3× (¬(x ∨ y)) + 2× (¬x)− y
x⊕ y → −(x ∨ ¬y) + (¬y) + (x ∧ ¬y) + y

x⊕ y → (x ∨ ¬y) + (¬x ∨ y)− 2× (¬(x ∨ y))− 2× (x ∧ y)

...

125

Titre : Obfuscation par Expressions Mixtes Arithmético-Booléennes : Recon-
struction, Analyse et Outils de Simplification

Mots clefs : obfuscation, expressions MBA, protection de code

Résumé : L’obfuscation, également appelée ob-
scurcissement ou offuscation, est une technique de
protection logicielle contre la rétro-conception. Elle
transforme du code afin de rendre son analyse
plus difficile. Les expressions mixtes arithmético-
booléennes (MBA) sont une technique d’obfuscation
du flot de données introduite en 2007 et qu’on ren-
contre dans des applications réelles. Cette tech-
nique est présentée comme robuste alors même que
le domaine de l’obfuscation MBA étant assez jeune,
il bénéficie de peu de littérature sur la conception
et l’analyse de telles expressions obfusquées. Nous
nous sommes attachés à effectuer une étude appro-
fondie de cette technique qui soulève d’intéressantes
questions à la fois théoriques et pratiques, autant
sur l’obfuscation que sur la désobfuscation (ou sim-
plification) d’expressions MBA.
Durant nos recherches, nous avons structuré le

sujet de l’obfuscation MBA, et l’avons relié à
d’autres domaines, principalement la cryptographie,
la réécriture ou la logique des vecteurs de bits. Nous
avons également reconstruit une implémentation
d’obfuscation MBA à partir d’échantillons publics.
Nous avons étudié ce que signifie simplifier une ex-
pression obfusquée, et défini nos propres métriques
de simplicité pour les expressions MBA. Cette
étude nous a permis de concevoir deux outils de
désobfuscation, dont l’implémentation a simplifié
avec succès plusieurs exemples publics d’expressions
obfusquées. Enfin, nous avons évalué la résilience de
l’obfuscation MBA par rapport à nos algorithmes
de simplification (ainsi que d’autres techniques de
désobfuscation), et nous avons conclu que la tech-
nique d’obfuscation MBA offrait peu de résilience
en l’état. Nous avons donc proposé des pistes pour
améliorer ce type d’obfuscation.

Title : Obfuscation with Mixed Boolean-Arithmetic Expressions: Reconstruc-
tion, Analysis and Simplification Tools

Keywords : obfuscation, MBA expressions, software protection

Abstract : Software obfuscation is a software
protection technique that transforms code in or-
der to make its analysis more difficult by reverse-
engineering. Mixed Boolean-Arithmetic (MBA)
expressions are an obfuscation technique intro-
duced in 2007 and used in real life products. They
are presented as a strong data flow obfuscation
technique, even though there is little literature on
the design and analysis of such obfuscated expres-
sions. We have performed an in-depth study of this
technique which raises many theoretical and prac-
tical questions both around the obfuscation and
deobfuscation (or simplification) of MBA expres-
sions.
In our study, we structured the subject of MBA

obfuscation and linked it to other topics, mainly
cryptography, rewriting and bit-vector logic. We
also reconstructed an MBA obfuscation implemen-
tation from public samples. We studied the mean-
ing of simplifying an obfuscated expression, and de-
fined our own simplicity metrics for MBA expres-
sions. Our study of MBA simplification yielded
the implementation of two deobfuscation tools that
successfully simplified several public examples of
obfuscated expressions. Finally, we assessed the
resilience of the MBA obfuscation with respect to
our simplification algorithms (as well as other de-
obfuscation techniques), concluding that the MBA
obfuscation technique offers little resilience as it is,
and we proposed new ideas to improve it.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

126

