O. Kaya, A parallel nonzero CP decomposition algorithm for higher order sparse data analysis, Proceedings of the Seventh International Conference on Advanced Communications and Computation, p.17, 2017.

O. Kaya-a-n-d-b and . Uçar, Scalable sparse tensor decompositions in distributed memory systems Storage and Analysis, SC '15:11. [3] , High performance parallel algorithms for the Tucker decomposition of sparse tensors, Proceedings of the International Conference for High Performance Computing, Networking Proceedings of the 45th International Conference on Parallel Processing, pp.1-7716, 2016.

O. Kaya, Y. Robert, and A. B. Uçar, Computing dense tensor decompositions using dimension trees, Submitted to Linear Algebra and its Applications on, p.17, 2017.

O. Kaya-a-n-d-b and . Uçar, Parallel CP decomposition of sparse tensors using dimension trees, SIAM Journal on Scientific Computing on Nov, vol.816, p.17, 2017.

O. Kaya, R. K. Annan, G. B. Allard, and A. H. Park, Distributed sparse non-negative matrix factorization, 2017.

E. Acar, D. M. Dunlavy, and A. T. Kolda, A scalable optimization approach for fitting canonical tensor decompositions, Journal of Chemometrics, vol.43, issue.1, pp.67-86, 2011.
DOI : 10.1016/S0169-7439(98)00077-X

A. C. Amari, Hierarchical ALS algorithms for nonnegative matrix and 3d tensor factorization, in Independent Component Analysis and Signal Separation, 7th International Conference Proceedings, pp.169-176, 2007.

C. A. Andersson-and-r and . Bro, The N-way Toolbox for MATLAB, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, pp.1-4, 2000.
DOI : 10.1016/S0169-7439(00)00071-X

C. J. Appellof and E. R. Dav-i-d-s-o-n, Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents, Analytical Chemistry, vol.53, issue.13, pp.53-2053, 1981.
DOI : 10.1021/ac00236a025

W. Austin, G. B. Allard, and A. T. Kolda, Parallel Tensor Compression for Large-Scale Scientific Data, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.912-922, 2016.
DOI : 10.1109/IPDPS.2016.67

B. W. Bader and T. G. Kolda, Efficient MATLAB Computations with Sparse and Factored Tensors, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.205-231, 2007.
DOI : 10.1137/060676489

M. Baskaran, B. Meister, N. V. Asilache, and A. R. Lethin, Efficient and scalable computations with sparse tensors, 2012 IEEE Conference on High Performance Extreme Computing, pp.1-6, 2012.
DOI : 10.1109/HPEC.2012.6408676

M. M. Baskaran, B. Meister, and A. R. Lethin, Low-overhead load-balanced scheduling for sparse tensor computations, 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp.1-6, 2014.
DOI : 10.1109/HPEC.2014.7041006

J. Bennett and S. Lanning, The netflix prize, Proceedings of the KDD Cup and Workshop, p.35, 2007.

S. Bird, E. L. Oper, and A. E. Klein, Natural Language Processing with Python, 2009.

J. Buurlage, Self-improving sparse matrix partitioning and bulk-synchronous pseudostreaming , Master's thesis, 2016.

A. Carlson, J. B. Etteridge, B. K. Isiel, B. S. Ettles, E. R. et al., Toward an architecture for never-ending language learning, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI '10, pp.1306-1313, 2010.

D. J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of ???Eckart-Young??? decomposition, Psychometrika, vol.12, issue.3, pp.35-283, 1970.
DOI : 10.1007/BF02310791

Ü. V. Çatalyürek-a-n-d-c and P. Aykanat, A Multilevel Hypergraph Partitioning Tool, Version 3.0, 1999.

Ü. V. Çatalyürek-a-n-d-c and . Aykanat, A hypergraph-partitioning approach for coarse-grain decomposition, Proceedings of the 2011 ACM/IEEE Conference on Supercomputing, p.42, 2001.

Ü. V. Çatalyürek, C. A. Ykanat, and A. B. Uçar, On Two-Dimensional Sparse Matrix Partitioning: Models, Methods, and a Recipe, SIAM Journal on Scientific Computing, vol.32, issue.2, pp.656-683, 2010.
DOI : 10.1137/080737770

Ü. V. Çatalyürek, Hypergraph Models for Sparse Matrix Partitioning and Reordering, 1999.

E. C. Chi and T. G. Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIAM Journal on Matrix Analysis and Applications, vol.33, issue.4, pp.1272-1299, 2012.
DOI : 10.1137/110859063

J. H. Choi and S. V. Vishwanathan, DFacTo: Distributed factorization of tensors, 27th Advances in Neural Information Processing Systems, pp.1296-1304, 2014.

A. Cichocki, D. M. Andic, L. D. , G. Z. Hou, Q. Z. Hao et al., Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis, IEEE Signal Processing Magazine, vol.32, issue.2, pp.32-145, 2015.
DOI : 10.1109/MSP.2013.2297439

A. Cichocki, R. Z. Dunek, A. H. Han, and A. S. Mari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation, 2009.
DOI : 10.1002/9780470747278

O. Debals, M. V. Barel, and A. L. Lathauwer, Nonnegative Matrix Factorization Using Nonnegative Polynomial Approximations, IEEE Signal Processing Letters, vol.24, issue.7, pp.948-952, 2017.
DOI : 10.1109/LSP.2017.2697680

L. Eldén, B. Sava-s, and . Newton, A Newton???Grassmann Method for Computing the Best Multilinear Rank-$(r_1,$ $r_2,$ $r_3)$ Approximation of a Tensor, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.2, pp.31-248, 2009.
DOI : 10.1137/070688316

C. Faloutsos, A. B. Eutel, E. P. Ing, E. E. Apalexakis, A. K. Umar et al., Scalable flexible factorization of coupled tensors on Hadoop, Proceedings of the 2014 SIAM International Conference on Data Mining, pp.109-117, 2014.

A. Gittens, A. Devarakonda, E. Racah, M. F. Ringenburg, L. Gerhardt et al., Matrix factorizations at scale: A comparison of scientific data analytics in spark and C+MPI using three case studies, 2016 IEEE International Conference on Big Data (Big Data), pp.204-213, 2016.
DOI : 10.1109/BigData.2016.7840606

S. Goreinov, E. Tyrtyshnikov, and A. N. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra and its Applications, vol.261, issue.1-3, pp.1-21, 1997.
DOI : 10.1016/S0024-3795(96)00301-1

O. Görlitz, S. Sizov, and A. S. Staab, PINTS: Peer-to-peer infrastructure for tagging systems, Proceedings of the 7th International Conference on Peer-to-Peer Systems, IPTPS '08, p.19, 2008.

L. Grasedyck, Hierarchical Singular Value Decomposition of Tensors, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.4, pp.31-2029, 2010.
DOI : 10.1137/090764189

D. Grove, J. Milthorpe, and A. O. Tardieu, Supporting Array Programming in X10, Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY'14, pp.3838-3843, 2014.
DOI : 10.1145/2627373.2627380

N. Guan, D. T. Ao, Z. Luo, and A. B. Yuan, NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization, IEEE Transactions on Signal Processing, vol.60, issue.6, pp.60-2882, 2012.
DOI : 10.1109/TSP.2012.2190406

N. Halko, P. G. Artinsson, and A. J. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, vol.53, issue.2, pp.53-217, 2011.
DOI : 10.1137/090771806

J. Håstad, Tensor rank is NP-complete, Journal of Algorithms, vol.11, issue.4, pp.644-654, 1990.
DOI : 10.1016/0196-6774(90)90014-6

V. H. Enne, Label propagation for hypergraph partitioning, Master's thesis, Karsruhe Institute of Technology

P. O. Oyer, Non-negative matrix factorization with sparseness constraints, pp.1457-1469, 2004.

I. Jeon, E. E. Apalexakis, U. K. Ang, and A. C. Faloutsos, HaTen2: Billion-scale tensor decompositions, 2015 IEEE 31st International Conference on Data Engineering, pp.1047-1058, 2015.
DOI : 10.1109/ICDE.2015.7113355

U. Kang, E. P. Apalexakis, A. Harpale, A. C. Faloutsos, and . Gigatensor, Scaling tensor analysis up by 100 times -Algorithms and discoveries, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.2012-316

R. Kannan, G. B. Allard, and A. H. Park, A high-performance parallel algorithm for nonnegative matrix factorization, Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP '16, pp.1-911, 2016.

R. Kannan, G. B. Allard, and A. H. Park, MPI-FAUN: an MPI-based framework for alternating-updating nonnegative matrix factorization, p.9154, 1609.

L. Karlsson, D. Kressner, and A. A. Uschmajew, Parallel algorithms for tensor completion in the CP format, Parallel Computing, vol.57, pp.222-234, 2016.
DOI : 10.1016/j.parco.2015.10.002

G. Karypis and V. K. Umar, Multilevel algorithms for multi-constraint hypergraph partitioning, 1998.

K. Kaya, F. H. Rouet, and A. B. Uçar, On Partitioning Problems with Complex Objectives, Euro-Par 2011: Parallel Processing Workshops, pp.334-344
DOI : 10.1007/978-3-642-29737-3_38

URL : https://hal.archives-ouvertes.fr/inria-00567129

O. Kaya, A parallel nonzero CP decomposition algorithm for higher order sparse data analysis, Proceedings of the Seventh International Conference on Advanced Communications and Computation, p.17, 2017.

O. Kaya, R. Kannan, G. Ballard, and A. H. Park, Distributed sparse non-negative matrix factorization, 2017.

O. Kaya, Y. Robert, and A. B. Uçar, Computing dense tensor decompositions using dimension trees, Submitted to Linear Algebra and its Applications on, p.17, 2017.

O. Kaya-a-n-d-b and . Uçar, High-performance parallel algorithms for the Tucker decomposition of higher order sparse tensors, 2015.

O. Kaya-a-n-d-b and . Uçar, Scalable sparse tensor decompositions in distributed memory systems Storage and Analysis, SC '15:11. [51] , High performance parallel algorithms for the Tucker decomposition of sparse tensors, Proceedings of the International Conference for High Performance Computing, Networking Proceedings of the 45th International Conference on Parallel Processing, pp.1-7716, 2016.

H. A. Kiers, A. Der, and . Kinderen, A fast method for choosing the numbers of components in Tucker3 analysis, British Journal of Mathematical and Statistical Psychology, vol.56, issue.1, pp.56-119, 2003.
DOI : 10.1348/000711003321645386

H. Kim and H. Park, Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis, Bioinformatics, vol.23, issue.12, pp.1495-1502, 2007.
DOI : 10.1093/bioinformatics/btm134

J. Kim, Y. H. , and A. H. Park, Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework, Journal of Global Optimization, vol.22, issue.12, pp.58-285, 2014.
DOI : 10.1155/2008/939567

T. G. Kolda-and-b and . Bader, The TOPHITS model for higher-order web link analysis, Proceedings of Link Analysis, Counterterrorism and Security, pp.26-29, 2006.

T. G. Kolda and . Sun, Scalable Tensor Decompositions for Multi-aspect Data Mining, 2008 Eighth IEEE International Conference on Data Mining, pp.363-372, 2008.
DOI : 10.1109/ICDM.2008.89

A. A. Krishnamurthy and . Singh, Low-rank matrix and tensor completion via adaptive sampling, Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS'13, pp.836-844, 2013.

D. Kuang, C. D. Ing, and A. H. Park, Symmetric Nonnegative Matrix Factorization for Graph Clustering, Proceedings of the SIAM Conference on Data Mining, pp.106-117, 2012.
DOI : 10.1137/1.9781611972825.10

D. Kuang, S. Y. Un, and A. H. Park, SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering, Journal of Global Optimization, vol.17, issue.3, pp.1-30, 2013.
DOI : 10.1145/2339530.2339629

L. D. Lathauwer-a-n-d-b and . Moor, From matrix to tensor: Multilinear algebra and signal processing, Proceedings of the Institute of Mathematics and Its Applications Conference Series, pp.1-16, 1998.

L. D. Lathauwer, B. D. Oor, and A. J. Vandewalle, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000.
DOI : 10.1137/S0895479896305696

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, 1990.
DOI : 10.1007/978-3-322-92106-2

J. A. Leskovec and . Krevl, Stanford large network dataset collection, 2014.

J. Li, C. Battaglino, I. Perros, J. Sun, and A. R. Vuduc, An input-adaptive and in-place approach to dense tensor-times-matrix multiply, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.761-7612, 2015.
DOI : 10.1109/SC.1998.10004

J. Li, J. Choi, I. Perros, J. Sun, and A. R. Vuduc, Model-Driven Sparse CP Decomposition for Higher-Order Tensors, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.1048-1057, 2017.
DOI : 10.1109/IPDPS.2017.80

R. Liao, Y. Zhang, J. Guan, and A. S. Zhou, CloudNMF: A MapReduce Implementation of Nonnegative Matrix Factorization for Large-scale Biological Datasets, Genomics, Proteomics & Bioinformatics, vol.12, issue.1, pp.48-51, 2014.
DOI : 10.1016/j.gpb.2013.06.001

C. Liu, H. Y. Ang, J. F. An, L. He, and A. Wang, Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce, Proceedings of the 19th international conference on World wide web, WWW '10, pp.681-690, 2010.
DOI : 10.1145/1772690.1772760

Y. L. Ow, D. B. Ickson, J. G. Onzalez, C. G. Uestrin, A. K. Yrola et al., A framework for machine learning and data mining in the cloud, Proc. VLDB Endow, vol.5, pp.716-727, 2012.

K. Maruhashi, F. G. Uo, and A. C. Faloutsos, MultiAspectForensics: Pattern Mining on Large-Scale Heterogeneous Networks with Tensor Analysis, 2011 International Conference on Advances in Social Networks Analysis and Mining, pp.203-210, 2011.
DOI : 10.1109/ASONAM.2011.80

E. Mejía-roa, D. T. Abas-madrid, J. S. Etoain, C. G. Arcía, F. T. Irado et al., NMF-mGPU: non-negative matrix factorization on multi-GPU systems, BMC Bioinformatics, vol.23, issue.Database issue, pp.16-43, 2015.
DOI : 10.1093/bioinformatics/btm254

C. Ng, M. B. Arketau, T. C. Heng, and A. M. Kovalyov, ???Product Partition??? and related problems of scheduling and systems reliability: Computational complexity and approximation, European Journal of Operational Research, vol.207, issue.2, pp.601-604, 2010.
DOI : 10.1016/j.ejor.2010.05.034

D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. A. Potamianos, Batch and Adaptive PARAFAC-Based Blind Separation of Convolutive Speech Mixtures, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.6, pp.1193-1207, 2010.
DOI : 10.1109/TASL.2009.2031694

D. D. Nion-and-n and . Sidiropoulos, Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5693-5705, 2010.
DOI : 10.1109/TSP.2010.2058802

I. Perros, R. Chen, R. Vuduc, and A. J. Sun, Sparse Hierarchical Tucker Factorization and Its Application to Healthcare, 2015 IEEE International Conference on Data Mining, pp.943-948, 2015.
DOI : 10.1109/ICDM.2015.29

A. H. Phan, P. Tichavský, and A. A. Cichocki, Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations, IEEE Transactions on Signal Processing, vol.61, issue.19, pp.61-4834, 2013.
DOI : 10.1109/TSP.2013.2269903

A. Pinar and C. Aykanat, Fast optimal load balancing algorithms for 1D partitioning, Journal of Parallel and Distributed Computing, vol.64, issue.8, pp.974-996, 2004.
DOI : 10.1016/j.jpdc.2004.05.003

A. Pinar-and-b and . Hendrickson, Partitioning for complex objectives, Proceedings of the 15th International Parallel & Distributed Processing Symposium, IPDPS '01, p.121, 2001.

S. Rendle and T. S. Lars, Pairwise interaction tensor factorization for personalized tag recommendation, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.81-90, 2010.
DOI : 10.1145/1718487.1718498

S. Rendle, B. M. Leandro, A. Nanopoulos, and A. L. Schmidt-thieme, Learning optimal ranking with tensor factorization for tag recommendation, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.727-736, 2009.
DOI : 10.1145/1557019.1557100

J. E. Roman, C. Campos, E. R. Omero, and A. A. Tomas, SLEPc users manual, D. Sistemes Informàtics i Computació, 2015.

C. Sanderson, Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments, tech. rep, 2010.

N. Satish, N. S. Undaram, M. M. At, J. S. Wa-ry, J. P. Eo et al., Navigating the maze of graph analytics frameworks using massive graph datasets, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, SIGMOD '14, pp.979-990, 2014.
DOI : 10.1145/2588555.2610518

D. Seung-and-l and . Lee, Algorithms for non-negative matrix factorization, NIPS, vol.13, pp.556-562, 2001.

N. D. Sidiropoulos, R. B. Ro, and A. G. Giannakis, Parallel factor analysis in sensor array processing, IEEE Transactions on Signal Processing, vol.48, issue.8, pp.2377-2388, 2000.
DOI : 10.1109/78.852018

N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Apalexakis et al., Tensor Decomposition for Signal Processing and Machine Learning, IEEE Transactions on Signal Processing, vol.65, issue.13, pp.65-3551, 2017.
DOI : 10.1109/TSP.2017.2690524

G. M. Slota, K. M. Adduri, and A. S. Rajamanickam, PuLP: Scalable multi-objective multi-constraint partitioning for small-world networks, 2014 IEEE International Conference on Big Data (Big Data), pp.481-490, 2014.
DOI : 10.1109/BigData.2014.7004265

S. Smith-and-g, . Karypis, and . Dms, Distributed sparse tensor factorization with alternating least squares, 2015.

S. Smith-and-g and . Karypis, A Medium-Grained Algorithm for Sparse Tensor Factorization, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.902-911, 2016.
DOI : 10.1109/IPDPS.2016.113

S. Smith, J. P. Ark, and A. G. Karypis, An Exploration of Optimization Algorithms for High Performance Tensor Completion, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, pp.311-3113
DOI : 10.1109/SC.2016.30

S. Smith, N. R. , N. D. Idiropoulos, and A. G. Karypis, SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication, 2015 IEEE International Parallel and Distributed Processing Symposium, pp.61-70, 2015.
DOI : 10.1109/IPDPS.2015.27

L. Sorber, M. V. Arel, and A. L. Lathauwer, Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-$(L_r,L_r,1)$ Terms, and a New Generalization, SIAM Journal on Optimization, vol.23, issue.2, pp.695-720, 2013.
DOI : 10.1137/120868323

S. R. Sukumar, R. K. Annan, S. L. Im, and A. M. Matheson, Kernels for scalable data analysis in science: Towards an architecture-portable future, 2016 IEEE International Conference on Big Data (Big Data), pp.1026-1031, 2016.
DOI : 10.1109/BigData.2016.7840703

S. R. Sukumar, M. A. Matheson, R. Kannan, and A. S. Lim, Mini-apps for high performance data analysis, 2016 IEEE International Conference on Big Data (Big Data), pp.1483-1492, 2016.
DOI : 10.1109/BigData.2016.7840756

D. L. Sun and C. Févotte, Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6201-6205, 2014.
DOI : 10.1109/ICASSP.2014.6854796

P. S. Ymeonidis, A. Nanopoulos, and A. Y. Anolopoulos, Tag recommendations based on tensor dimensionality reduction, Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys '08, pp.43-50, 2008.

J. Ugander-and-l and . Backstrom, Balanced label propagation for partitioning massive graphs, Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, pp.507-516
DOI : 10.1145/2433396.2433461

M. A. Vasilescu-and-d and . Terzopoulos, Multilinear analysis of image ensembles: TensorFaces , in Computer Vision?ECCV, pp.447-460, 2002.

N. Vervliet, O. Debals, and A. L. Lathauwer, Tensorlab 3.0 ??? Numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization, 2016 50th Asilomar Conference on Signals, Systems and Computers, pp.1733-1738, 2016.
DOI : 10.1109/ACSSC.2016.7869679

N. Vervliet, O. D. Ebals, L. S. Orber, and A. L. Lathauwer, Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis, IEEE Signal Processing Magazine, vol.31, issue.5, pp.31-71, 2014.
DOI : 10.1109/MSP.2014.2329429

N. Vervliet and L. D. Lathauwer, A Randomized Block Sampling Approach to Canonical Polyadic Decomposition of Large-Scale Tensors, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.2, pp.284-295, 2016.
DOI : 10.1109/JSTSP.2015.2503260

Z. Xianyi and . Openblas, Last Accessed 03, 2015.

Y. X. , L. Zhang, and A. W. Liu, Cubic analysis of social bookmarking for personalized recommendation , in Frontiers of WWW Research and Development-APWeb, pp.733-738, 2006.

J. Yin, L. Gao, and A. Z. Zhang, Scalable Nonnegative Matrix Factorization with Block-wise Updates, Proceedings of the Machine Learning and Knowledge Discovery in Databases, pp.337-352, 2014.
DOI : 10.1007/978-3-662-44845-8_22

H. Yun, H. , C. H. Sieh, S. V. Ishwanathan, and A. I. Dhillon, NOMAD, Proceedings of the VLDB Endowment, pp.975-986, 2014.
DOI : 10.14778/2732967.2732973

M. Zaharia, M. C. Howdhury, M. J. Ranklin, S. S. Henker, and A. I. Stoica, Spark: Cluster computing with working sets, Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'10, USENIX Association, pp.10-10, 2010.