Observation et modélisation de couche limite atmosphérique stable en relief complexe : le processus turbulent d'écoulement catabatique

Abstract : The stable atmospheric boundary layer, particularly in complex terrain, is not yet fully understood and it is thus still inadequately modelled. A surface cooling of a sloping terrain generates katabatic wind due to local density increase. This flow behaves as a wall-bounded turbulent jet, often simply modelled by a local balance between the buoyancy force and the turbulent friction. In mountainous regions, the wind maximum is typically observed at a height (z_j) of 1-10 m above the ground. The wall-bounded jet is responsible for a momentum-flux sign change and a heat-flux variability close to the ground. Those turbulent-flux variabilities are fully conflicting with the aplicability of the Monin-Obukhov similarity theory (MOST), which is nevertheless universally used in the atmospheric models to provide the surface boundary condition. If the MOST is already questionable for the very stable cases, it is obviously not valide over sloping surfaces because it neglectes the coupling of the wind and temperature equations, which constitutes the katabatic source. Hence, it is not possible to adequatly model a katabatic flow (z_j O(1m)) using the MOST, especially with a vertical resolution of the order of magnitude of z_j. The aim of the this PhD work is thus to improve the current understanding and modelling capacity of the katabatic winds.Since data sets of turbulent-katabatic-flow measurements are still scarce, a new field campain was carried out on a steep slope (20-40 deg): the west face of the Grand-Colon mountain (Belledonne ridge, French Alps). The experimental setup was mainly composed of a 6m mast with four sonic-anemometer levels (1, 2, 4 and 6m) to measure the turbulence on both sides of the katabatic jet. The spectral analysis shows the hight sensitivity of the local flow to external perturbations, even when these are weak. The hight-frequency subrange shows a classical behaviour (energy-injection frequency, inertial subrange), but the spectra of the intermediate and low-frequency subranges are less typical: turbulent perturbations with an energy of the order of magnitude of the local injection are present. A specific cospectra behaviour of the katabatic flows is shown: negative and positive cross-correlations overlap gradually, increasing z. The MOST fails in representing the observed flow and a surface-flux alternative estimation is succesfully used to describe the friction vellocity.The 1D surface model of ISBA (Météo-France) is modified to model katabatic flows. The model is firstly validated with a standard calibrated Prandtl model (with variable eddy difusivity). Secondly, the field data are modelled both with a prescribed effective diffusivity (from data) and using the 1.5-order turbulence scheme. The mean velocity and temperature fields are well reproduced, but it appears that the model is over-diffusive (which generates excessive fluxes), even when an adapted mixing-length is used.Realistic 3D LES simulations (Meso-NH, Météo-France) are computed with high resolution to model the field data. Spatial flow variabilities over sloping terrain are finely represented, but are biased, mainly due to the using of MOST for the surface boundary counditions. The using of MOST shifts the start of the katabatic source detection by the atmospheric model to a height of 2 m, while the katabatic source reaches its maximum at the surface. Analytical katabatic models (of the Prandtl type, which could be easily used to feed surface boundary counditions) need an "apriori" definition of the eddy and heat diffusivities. Currently, the general definition of these diffusivities is only possible by the use of turbulent models that include closures. The coupling of the previously-presented 1D surface model (validated off-line) is suggested to overcome the lack of physics description in the classic surface boundary counditions. Preliminary work on this coupling is developed and perspective solutions are proposed.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01622676
Contributor : Abes Star <>
Submitted on : Tuesday, October 24, 2017 - 3:35:09 PM
Last modification on : Thursday, January 3, 2019 - 4:30:09 PM
Long-term archiving on : Thursday, January 25, 2018 - 1:30:32 PM

File

BLEIN_2016_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01622676, version 1

Collections

STAR | LEGI | UGA

Citation

Sébastien Blein. Observation et modélisation de couche limite atmosphérique stable en relief complexe : le processus turbulent d'écoulement catabatique. Météorologie. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAI023⟩. ⟨tel-01622676⟩

Share

Metrics

Record views

423

Files downloads

2367