S. Antonov, I. A. Antonov, and V. Saleev, An economic method of computing LP??-sequences, USSR Computational Mathematics and Mathematical Physics, vol.19, issue.1, pp.252-256, 1979.
DOI : 10.1016/0041-5553(79)90085-5

. Asadollahi, Production optimization using derivative free methods applied to Brugge field case, Journal of Petroleum Science and Engineering, vol.114, pp.22-37, 2014.
DOI : 10.1016/j.petrol.2013.12.004

O. Badru and C. Kabir, Well Placement Optimization in Field Development, SPE Annual Technical Conference and Exhibition, 2003.
DOI : 10.2118/84191-MS

. Bates, Experimental design and observation for large systems, Journal of the Royal Statistical Society. Series B, pp.77-94, 1996.

. Becerra, Uncertainty History Matching and Forecasting, a Field Case Application, SPE Latin America and Caribbean Petroleum Engineering Conference, 2012.
DOI : 10.2118/153176-MS

. Box, . Behnken, G. E. Box, and D. W. Behnken, Some New Three Level Designs for the Study of Quantitative Variables, Technometrics, vol.31, issue.4, pp.455-475, 1960.
DOI : 10.1214/aoms/1177706093

D. Busby, Hierarchical adaptive experimental design for Gaussian process emulators, Reliability Engineering & System Safety, vol.94, issue.7, pp.1183-1193, 2009.
DOI : 10.1016/j.ress.2008.07.007

P. Cardwell, J. Cardwell, W. Parsons, and R. , Average Permeabilities of Heterogeneous Oil Sands, Transactions of the AIME, vol.160, issue.01, 1945.
DOI : 10.2118/945034-G

R. Carnell, lhs: Latin Hypercubes Samples, 2012.

D. Chilès, J. Chilès, and P. Delfiner, Geostatistics: modeling spatial uncertainty, 1999.
DOI : 10.1002/9781118136188

. Corre, Integrated Uncertainty Assessment For Project Evaluation and Risk Analysis, SPE European Petroleum Conference, 2000.
DOI : 10.2118/65205-MS

N. Cressie, Statistics for spatial data, 1993.

. Cullick, Improved and More Rapid History Matching With a Nonlinear Proxy and Global Optimization, SPE Annual Technical Conference and Exhibition, 2006.
DOI : 10.2118/101933-MS

[. Veiga, . Gervais, S. Da-veiga, and V. Gervais, Uncertainty Analysis and History Matching on Grid Responses from a Reduced-basis Approach, 77th EAGE Conference and Exhibition 2015, 2015.
DOI : 10.3997/2214-4609.201413035

D. H. Doehlert, Uniform Shell Designs, Applied Statistics, vol.19, issue.3, pp.231-239, 1970.
DOI : 10.2307/2346327

. Douarche, Sensitivity analysis and optimization of surfactant-polymer flooding under uncertainties . Oil & Gas Science and Technology -Revue d'IFP Energies nouvelles, pp.603-617, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068221

O. Dubrule, Cross validation of kriging in a unique neighborhood, Journal of the International Association for Mathematical Geology, vol.15, issue.6, pp.687-699, 1983.
DOI : 10.1007/BF01033232

G. Evensen, The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Systems Magazine, vol.29, issue.3, pp.83-104, 2009.
DOI : 10.1109/MCS.2009.932223

. Fang, Design and modeling for computer experiments, 2006.
DOI : 10.1201/9781420034899

A. Marrel, Prediction under uncertainty on a mature field. Oil & Gas Science and Technology -Revue d'IFP Energies nouvelles, pp.193-206, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735123

R. Fletcher, Practical Methods of Optimization Second Edition, 1987.

. Foroud, An efficient optimization process for hydrocarbon production in presence of geological uncertainty using a clustering method: A case study on Brugge field, Journal of Natural Gas Science and Engineering, vol.32, pp.476-490, 2016.
DOI : 10.1016/j.jngse.2016.04.059

A. I. Forrester and A. J. Keane, Recent advances in surrogatebased optimization, Progress in Aerospace Sciences, pp.1-350, 2009.

. Forrester, Multi-fidelity optimization via surrogate modelling, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.463, issue.2088, pp.4633251-3269, 2007.
DOI : 10.1098/rspa.2007.1900

URL : http://rspa.royalsocietypublishing.org/content/royprsa/463/2088/3251.full.pdf

. Ginsbourger, Kriging Is Well-Suited to Parallelize Optimization, Computational Intelligence in Expensive Optimization Problems, pp.131-162, 2010.
DOI : 10.1007/978-3-642-10701-6_6

URL : https://hal.archives-ouvertes.fr/emse-00436126

. Guyaguler, Optimization of well placement in a gulf of mexico waterflooding project, SPE-63221-MS, 2000.

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol.38, issue.1, pp.84-90, 1960.
DOI : 10.1007/BF01386213

. Han, Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling, AIAA Journal, vol.7, issue.2, pp.1205-1210, 2012.
DOI : 10.1007/3-540-32382-1

. Huang, Sequential kriging optimization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, pp.369-382, 2006.

. Jacquard, Permeability Distribution From Field Pressure Data, Society of Petroleum Engineers Journal, vol.5, issue.04, pp.281-294, 1965.
DOI : 10.2118/1307-PA

M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communications, vol.117, issue.1-2, pp.35-43, 1999.
DOI : 10.1016/S0010-4655(98)00154-4

. Johnson, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

D. Jones, A Taxonomy of Global Optimization Methods Based on Response Surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

. Jones, Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

D. Journel, A. G. Journel, and C. V. Deutsch, GSLIB Geostatistical software library and users guide, 1998.

O. Kennedy, M. Kennedy, O. Hagan, and A. , Predicting the output from a complex computer code when fast approximations are available, Biometrika, vol.87, issue.1, pp.1-13, 2000.
DOI : 10.1093/biomet/87.1.1

O. Kennedy, M. C. Kennedy, O. Hagan, and A. , Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2000.
DOI : 10.1111/1467-9868.00294

J. P. Kleijnen, Design and analysis of simulation experiments, 2008.
DOI : 10.1007/978-3-319-18087-8

. Kleijnen, J. P. Sargent-]-kleijnen, and R. G. Sargent, A methodology for fitting and validating metamodels in simulation1Two anonymous referees' comments on the first draft lead to an improved organization of our paper.1, European Journal of Operational Research, vol.120, issue.1, pp.14-29, 2000.
DOI : 10.1016/S0377-2217(98)00392-0

V. Kleijnen, J. P. Beers-]-kleijnen, and W. C. Van-beers, Application-driven sequential designs for simulation experiments: Kriging metamodelling, Journal of the Operational Research Society, vol.17, issue.2, pp.55876-883, 2004.
DOI : 10.1007/PL00007198

O. Koehler, J. Koehler, and A. Owen, Nine computer experiments. Handbook of statistics, pp.261-308, 1996.

D. G. Krige, A statistical approach to some basic mine valuation problems on the Witwatersrand, Journal of the Chemical, Metallurgical and Mining Society, vol.52, pp.119-139, 1951.

. Kuya, Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets, AIAA Journal, vol.462, issue.1040, pp.289-298, 2011.
DOI : 10.1007/s00158-009-0432-y

]. Gratiet and L. , MuFiCokriging: Multi-Fidelity Cokriging models, 2012.

[. Gratiet, L. Gratiet, and L. , Bayesian Analysis of Hierarchical Multifidelity Codes, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, 2013.
DOI : 10.1137/120884122

URL : https://hal.archives-ouvertes.fr/hal-00654716

[. Gratiet, L. Gratiet, and L. , Multi-fidelity Gaussian process regression for computer experiments, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00866770

L. Gratiet, L. Cannamela, L. Gratiet, and C. Cannamela, Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-Fidelity Computer Codes, Technometrics, vol.28, issue.3, pp.418-427, 2015.
DOI : 10.1080/00401706.2012.723572

L. Gratiet, L. Garnier, L. Gratiet, and J. Garnier, RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY, International Journal for Uncertainty Quantification, vol.4, issue.5, 2014.
DOI : 10.1615/Int.J.UncertaintyQuantification.2014006914

URL : https://hal.archives-ouvertes.fr/hal-01108813

R. Le, Integrated reservoir characterization and modeling. ebook. https, 2014.

R. Le, The fft moving average (fft-ma) generator: An efficient numerical method for generating and conditioning gaussian simulations, Mathematical Geology, issue.6, pp.32701-723, 2000.

M. Le-ravalec-dupin, Optimizing Well Placement With Quality Maps Derived From Multi-fidelity Meta-models, SPE Europec/EAGE Annual Conference, 2012.
DOI : 10.2118/154416-MS

. Li, . Friedmann, B. Li, and F. Friedmann, Novel Multiple Resolutions Design of Experiment/Response Surface Methodology for Uncertainty Analysis of Reservoir Simulation Forecasts, SPE Reservoir Simulation Symposium, 2005.
DOI : 10.2118/92853-MS

. Li, History Matching of Three-Phase Flow Production Data Probability Theory II, SPE-66351-MS, 1978.

. Lorentzen, Tuning of parameters in a two-phase flow model using an ensemble Kalman filter, International Journal of Multiphase Flow, vol.29, issue.8, pp.291283-1309, 2003.
DOI : 10.1016/S0301-9322(03)00088-0

. Makhlouf, A General History Matching Algorithm for Three-Phase, Three-Dimensional Petroleum Reservoirs, SPE Advanced Technology Series, vol.1, issue.02, p.20383, 1993.
DOI : 10.2118/20383-PA

M. Mardia, K. V. Mardia, and R. J. Marshall, Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, vol.71, issue.1, pp.135-146, 1984.
DOI : 10.1093/biomet/71.1.135

A. Marrel, Mise en oeuvre et utilisation du métamodèle processus gaussien pour l'analyse de sensibilité de modèles numériques: application à un code de transport hydrogéologique, 2008.

. Marrel, Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators, Stochastic Environmental Research and Risk Assessment, vol.34, issue.1, pp.29959-974, 2015.
DOI : 10.2307/1269548

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, pp.1246-1266, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

B. Matérn and . Mckay, Spatial variation A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.42, issue.1, p.55, 1979.

M. Morris, M. D. Morris, and T. J. Mitchell, Exploratory designs for computational experiments, Journal of Statistical Planning and Inference, vol.43, issue.3, pp.381-402, 1995.
DOI : 10.1016/0378-3758(94)00035-T

C. Oliver, D. S. Oliver, and Y. Chen, Recent progress on reservoir history matching: a review, Computational Geosciences, vol.42, issue.3, pp.185-221, 2011.
DOI : 10.2118/84461-PA

. Oliver, Inverse theory for petroleum reservoir characterization and history matching, 2008.
DOI : 10.1017/CBO9780511535642

A. Osio, I. Osio, and C. Amon, An engineering design methodology with multistage Bayesian surrogates and optimal sampling, Research in Engineering Design, vol.9, issue.2, pp.189-206, 1996.
DOI : 10.1002/9781118033197

W. T. Osterloh and R. N. Horne, Use of multiple-response optimization to assist reservoir simulation probabilistic forecasting and history matching Improved methods for multivariate optimization of field development scheduling and well placement design, SPE-116196-MS SPE-49055-MS, 1998.

G. Peng, C. Y. Peng, and R. Gupta, Experimental Design and Analysis Methods in Multiple Deterministic Modelling for Quantifying Hydrocarbon In-Place Probability Distribution Curve, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, 2004.
DOI : 10.2118/87002-MS

. Peters, Extended Brugge benchmark case for history matching and water flooding optimization. Benchmark problems, datasets and methodologies for the computational geosciences, pp.16-24, 2013.

. Picheny, Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal of Mechanical Design, vol.132, issue.7, p.132071008, 2010.
DOI : 10.1115/1.4001873

URL : https://hal.archives-ouvertes.fr/emse-00699752

B. Plackett, R. L. Plackett, and J. P. Burman, THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS, Biometrika, vol.33, issue.4, pp.305-325, 1946.
DOI : 10.1093/biomet/33.4.305

M. Pronzato, L. Pronzato, and W. G. Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.44, issue.1, pp.681-701, 2012.
DOI : 10.1007/BF00048668

URL : https://hal.archives-ouvertes.fr/hal-00685876

. Pujol, Sensitivity: Sensitivity Analysis, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00936929

W. Rasmussen, C. E. Rasmussen, and C. Williams, Gaussian Processes in Machine Learning, 1997.
DOI : 10.1162/089976602317250933

URL : http://mlg.eng.cam.ac.uk/pub/pdf/Ras04.pdf

. Roggero, History Matching of Production and 4D Seismic Data: Application to the Girassol Field, Offshore Angola, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.67, issue.2, pp.237-262, 2012.
DOI : 10.2516/ogst/2011148

URL : https://hal.archives-ouvertes.fr/hal-00735121

C. Romero, C. Romero, and J. Carter, Using genetic algorithms for reservoir characterisation, Journal of Petroleum Science and Engineering, vol.31, issue.2-4, pp.113-123, 2001.
DOI : 10.1016/S0920-4105(01)00124-3

. Roustant, Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, pp.1-55, 2012.
DOI : 10.18637/jss.v051.i01

URL : https://hal.archives-ouvertes.fr/hal-00495766

. Sacks, Design and analysis of computer experiments. Statistical science, pp.409-423, 1989.

. Saltelli, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, vol.181, issue.2, pp.259-270, 2010.
DOI : 10.1016/j.cpc.2009.09.018

. Saltelli, Global sensitivity analysis: the primer, 2008.
DOI : 10.1002/9780470725184

. Santner, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

. Scheidt, Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs, Oil & Gas Science and Technology - Revue de l'IFP, vol.62, issue.2, pp.62207-224, 2007.
DOI : 10.2516/ogst:2007018

R. Schulze-riegert and S. Ghedan, Modern techniques for history matching, 9th International Forum on Reservoir Simulation, pp.9-13, 2007.

. Schulze-riegert, Combined Global and Local Optimization Techniques Applied to History Matching, SPE Reservoir Simulation Symposium, 2003.
DOI : 10.2118/79668-MS

. Skua-gocad and . Skua-gocad, Seismic, geological and reservoir modeling software. Paradigm Holdings Ltd, 2016.

S. Slotte, P. A. Slotte, and E. Smorgrav, Response Surface Methodology Approach for History Matching and Uncertainty Assessment of Reservoir Simulation Models, Europec/EAGE Conference and Exhibition, 2008.
DOI : 10.2118/113390-MS

'. Sobol and I. M. , On sensitivity estimation for nonlinear mathematical models, Matematicheskoe Modelirovanie, vol.2, issue.1, pp.112-118, 1990.

M. L. Stein, Interpolation of spatial data: some theory for kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

. Subbey, Prediction under uncertainty in reservoir modeling, Journal of Petroleum Science and Engineering, vol.44, issue.1-2, pp.143-153, 2004.
DOI : 10.1016/j.petrol.2004.02.011

A. Tarantola, Inverse problem theory and methods for model parameter estimation, 2005.
DOI : 10.1137/1.9780898717921

. Thenon, Multi-fidelity meta-modeling for reservoir engineering - application to history matching, Computational Geosciences, vol.41, issue.4, pp.1231-1250, 2016.
DOI : 10.2118/124815-MS

URL : https://hal.archives-ouvertes.fr/hal-01453246

. Vincent, Managing Structural Uncertainty in a Mature Field for Optimal Well Placement, 1999.

. Xiong, Sequential Design and Analysis of High-Accuracy and Low-Accuracy Computer Codes, Technometrics, vol.34, issue.1, pp.37-46, 2013.
DOI : 10.2307/1269548

. Yeten, A Comparison Study on Experimental Design and Response Surface Methodologies, SPE Reservoir Simulation Symposium, 2005.
DOI : 10.2118/93347-MS

H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data, Environmetrics, vol.23, issue.1, pp.3-4290, 2010.
DOI : 10.1007/978-1-4612-1494-6

D. I. Zubarev, Pros and Cons of Applying Proxy-models as a Substitute for Full Reservoir Simulations, SPE Annual Technical Conference and Exhibition, 2009.
DOI : 10.2118/124815-MS