.. Vue-transverse, 63 II.2.4. Préparation de lames minces par broyage : cas des échantillons irradiés en pile, Obtention des lames minces par FIB, p.65

G. Leinders, T. Cardinaels, K. Binnemans, and M. Verwerft, Accurate lattice parameter measurements of stoichiometric uranium dioxide, Journal of Nuclear Materials, vol.459, issue.135, 2015.
DOI : 10.1016/j.jnucmat.2015.01.029

G. Delette and M. Charles, Thermal conductivity of fully dense unirradiated UO 2 : a new formulation from experimental results between 100 °C and 2500 °C, and associated fundamental properties. Technical Committee Meeting on 'Water Reactor Fuel Element Modelling at High Burnup and Experimental Support', A.I, 1994.

. Pannetier, Vade-mecum du technicien nucléaire. Tome II, deuxième édition, 1980.

S. Valin, Etude des mécanismes microstructuraux liés au relâchement des gaz de fission du dioxyde d'uranium irradié, Thèse : Energétique physique, 1999.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, 2008.
DOI : 10.1007/978-1-4615-8103-1_3

T. Wiss, . Hj, C. Matzke, M. Trautmann, S. Toulemonde et al., Radiation damage in UO 2 by swift heavy ions, Nuclear Instruments and Methods in Physics Research B, vol.122, issue.583, 1997.

. Hj, P. G. Matzke, T. Lucuta, and . Wiss, Swift heavy ion and fission damage effects

T. Sonoda, M. Kinoshita, N. Ishikawa, M. Sataka, A. Iwase et al., Clarification of high density electronic excitation effects on the microstructural evolution in UO 2, Nuclear Instruments and Methods in Physics Research B, vol.268, issue.3277, 2010.

R. Fleischer, P. Price, and R. Walker, Nuclear Tracks in Solids, Scientific American, vol.220, issue.6, 1975.
DOI : 10.1038/scientificamerican0669-30

F. Seitz and J. Koehler, Displacement of atoms during irradiation, Journal of Solid State Physics, vol.2, issue.305, 1956.

M. Toulemonde, E. Paumier, . Ch, and . Dufour, Thermal spike model in the electronic stopping power regime, Radiation Effects and Defects in Solids, vol.126, issue.1, 1993.
DOI : 10.1080/10420159308219709

G. Kinchin and R. Pease, The Displacement of Atoms in Solids by Radiation, Reports on Progress in Physics, vol.18, issue.1, 1955.
DOI : 10.1088/0034-4885/18/1/301

J. Soullard, Contribution à l'étude des défauts de structure dans le bioxyde d'uranium

C. Meis and A. Chartier, Calculation of the threshold displacement energies in UO 2 using ionic potentials, Journal of Nuclear Materials, vol.341, issue.25, 2005.

M. J. Norgett, M. T. Robinson, and I. M. Torrens, A proposed method of calculating displacement dose rates, Nuclear Engineering and Design, vol.33, issue.1, 1975.
DOI : 10.1016/0029-5493(75)90035-7

J. Soullard and A. Alamo, Etude du ralentissement des ions dans une cible diatomique, II Calcul du Nombre d'Atomes Déplacés, Radiation Effects, vol.38, issue.113, 1978.

G. Martin, S. Maillard, L. Van-brutzel, P. Garcia, B. Dorado et al., A molecular dynamics study of radiation induced diffusion in uranium dioxide, Journal of Nuclear Materials, vol.385, issue.2, p.351, 2009.
DOI : 10.1016/j.jnucmat.2008.12.010

G. Martin, P. Garcia, L. Van-brutzel, B. Dorado, and S. Maillard, Effect of the cascade energy on defect production in uranium dioxide, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.269, issue.14, p.1727, 2011.
DOI : 10.1016/j.nimb.2010.12.075

G. Martin, C. Sabathier, J. Wiktor, and S. Maillard, Molecular dynamics study of the bulk temperature effect on primary radiation damage in uranium dioxide, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.352, issue.135, 2015.
DOI : 10.1016/j.nimb.2014.12.008

V. G. Kapinos and D. J. Bacon, A model for the formation mechanism of depleted zones with a high concentration of vacancies in displacement cascades in metals, Philosophical Magazine A, vol.31, issue.6, p.1165, 1993.
DOI : 10.1016/0022-3697(78)90172-5

T. Diaz-de-la-rubia and M. W. Guinan, New mechanism of defect production in metals: A molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades, Physical Review Letters, vol.159, issue.157, p.2766, 1991.
DOI : 10.1002/pssb.2221590210

G. Martin, P. Garcia, C. Sabathier, L. Van-brutzel, B. Dorado et al., Irradiation-induced heterogeneous nucleation in uranium dioxide, Physics Letters A, vol.374, issue.30, 2010.
DOI : 10.1016/j.physleta.2010.05.033

URL : https://hal.archives-ouvertes.fr/in2p3-00667209

S. Maillard, G. Martin, and C. Sabathier, Why a steady state void size distribution in irradiated UO 2 ? A modeling approach, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.374, issue.58, 2016.
DOI : 10.1016/j.nimb.2015.09.068

G. Brillant, F. Gupta, and A. , Fission products stability in uranium dioxide, Journal of Nuclear Materials, vol.412, issue.1, 2011.
DOI : 10.1016/j.jnucmat.2011.02.054

URL : https://hal.archives-ouvertes.fr/hal-00640089

T. Raimbault and . Epicier, Study of temperature and radiation induced microstructural changes in Xeimplanted UO 2 by TEM, STEM, SIMS and positron spectroscopy, Journal of Nuclear Materials, vol.562, p.443, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881212

. Glatzel, Experimental evidence of Xe incorporation in Schottky defects in UO 2, Applied Physics Letters, vol.106, p.114102, 2015.

E. Kaitasov, P. Oliviero, and . Garcia, In situ TEM observation of nano-void formation in UO 2 under irradiation. Nuclear Instruments and Methods in, Physics Research B, vol.326, issue.247, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01057436

A. Michel, C. Sabathier, G. Carlot, O. Kaïtasov, S. Bouffard et al., An in situ TEM study of the evolution of Xe bubble populations in UO 2, Nuclear Instruments and Methods in Physics Research B, vol.272, issue.218, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00688383

A. Michel, Etude du comportement des gaz de fission dans le dioxyde d'uranium : mécanismes de diffusion, de nucléation et de grossissement de bulles, Thèse : Structure, Information, Matière et Matériaux, p.234, 2012.

S. T. Murphy, E. E. Jay, and R. W. Grimes, Pipe diffusion at dislocation in UO 2, Journal of Nuclear Materials, vol.447, issue.143, 2014.

S. T. Murphy, P. Fossati, and R. W. Grimes, Xe diffusion and bubble nucleation around edge dislocations in UO 2, Journal of Nuclear Materials, vol.466, issue.634, 2015.

A. D. Whapham, Electron microscope observation of the fission-gas bubble distribution in UO 2, Nuclear Applications, vol.2, issue.123, 1966.

T. Sonoda, M. Kinoshita, I. L. Ray, T. Wiss, H. Thiele et al., Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO 2 disk fuel. Nuclear Instruments and Methods in, Physics Research B, vol.191, issue.622, 2002.

A. D. Whapham and B. E. Sheldon, Radiation damage in uranium dioxide, Philosophical Magazine, vol.15, issue.120, p.1179, 1965.
DOI : 10.1016/0022-3115(63)90083-7

B. Ye, M. A. Kirk, W. Chen, A. Oaks, J. Rest et al., TEM investigation of irradiation damage in single crystal CeO2, Journal of Nuclear Materials, vol.414, issue.2, p.251, 2011.
DOI : 10.1016/j.jnucmat.2011.03.052

B. Ye, A. Oaks, M. Kirk, D. Yun, W. Y. Chen et al., Irradiation effects in UO2 and CeO2, Journal of Nuclear Materials, vol.441, issue.1-3, p.525, 2013.
DOI : 10.1016/j.jnucmat.2012.09.035

K. Yasunaga, K. Yasuda, S. Matsumura, and T. Sonoda, Electron energy-dependent formation of dislocation loops in CeO 2 . Nuclear Instruments and Methods in, Physics Research B, vol.266, pp.2877-235, 2008.

J. Jonnet, P. Van-uffelen, T. Wiss, D. Staicu, B. Rémy et al., Growth mechanisms of interstitial loops in ?-doped UO 2 samples, Nuclear Instruments and Methods in Physics Research B, vol.266, issue.3008, 2008.

A. B. Auskern and J. Belle, Uranium ion self diffusion in UO2, Journal of Nuclear Materials, vol.3, issue.3, p.311, 1961.
DOI : 10.1016/0022-3115(61)90199-4

. Hj and . Matzke, Atomic transport properties in UO 2 and mixed oxides (U, Pu)O 2, Journal of the Chemical Society Faraday Transactions, vol.2, pp.83-1121, 1987.

A. C. Sabioni, W. B. Ferraz, and F. Millot, Fist study of uranium self-diffusion in UO 2 by SIMS, Journal of Nuclear Materials, vol.257, issue.180, 1998.

R. A. Lambert, The diffusion of plutonium and uranium/plutonium mixed oxide single crystals at varying oxygen to metal ratio, Thèse, 1978.

. Hj and . Matzke, Radiation enhanced diffusion in UO 2 and (U, Pu)O 2, Radiation effects, pp.75-317, 1983.

D. A. Andersson, B. P. Uberuaga, P. V. Nerikar, C. Unal, and C. R. Stanek, : Density functional theory calculations, Physical Review B, vol.14, issue.5, p.54105, 2011.
DOI : 10.1103/PhysRevLett.77.3865

J. A. Turnbull and C. A. Friskney, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, Journal of Nuclear Materials, vol.107, issue.2-3, 1982.
DOI : 10.1016/0022-3115(82)90419-6

G. Martin, P. Garcia, S. Maillard, L. Van-brutzel, and B. Dorado, Etude par dynamique moléculaire classique de l'endommagement du dioxyde d'uranium sous irradiation. Note technique SESC

K. Nogita and K. Une, Fuels, Journal of Nuclear Science and Technology, vol.53, issue.5, p.900, 1993.
DOI : 10.1016/S0022-3115(86)80034-4

W. J. Nellis, The effect of self-irradiation on crystal volume, Inorganic Nuclear Chemistry Letters, vol.13, issue.393, 1977.

C. Fouet and . Onofri, Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection, Applied Physics Letters, vol.108, pp.31903-236, 2016.

G. Goudeau, F. Martin, J. P. Rieutord, P. Piron, and . Garcia, Strains in light-ion-implanted polycrystals: influence of grain orientation, Journal of Applied Crystallography, vol.45, issue.826, 2012.

W. J. Weber, Ingrowth of lattice defects in alpha irradiated UO 2 single crystals, Journal of Nuclear Materials, vol.98, issue.206, 1981.

H. P. Klug and L. E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 1974.

P. Scardi and M. Leoni, Whole powder pattern modelling, Acta Crystallographica Section A Foundations of Crystallography, vol.58, issue.2, 0190.
DOI : 10.1107/S0108767301021298

T. Ungar, J. Gubicza, P. Hanak, and I. Alexandov, Densities and character of dislocations and size-distribution of subgrains in deformed metals by X-ray diffraction profile analysis, Materials Science and Engineering: A, vol.319, issue.321, pp.319-321, 2001.
DOI : 10.1016/S0921-5093(01)01025-5

T. H. Nguyen, A. Debelle, A. Boulle, F. Garrido, L. Thomé et al., Mechanical response of UO2 single crystals submitted to low-energy ion irradiation, Journal of Nuclear Materials, vol.467, p.505, 2015.
DOI : 10.1016/j.jnucmat.2015.10.046

URL : https://hal.archives-ouvertes.fr/in2p3-01226858

K. Yamada, S. Yamanaka, T. Nakagawa, M. Uno, and M. Katsura, Study of the thermodynamic properties of (U, Ce)O2, Journal of Nuclear Materials, vol.247, issue.289, 1997.
DOI : 10.1016/S0022-3115(97)00076-7

M. Khodja and . Barthe, A study of helium mobility in polycrystalline uranium dioxide, Journal of Nuclear Materials, vol.430, issue.156, 2012.

H. Boulle, C. Rouquette, G. Sabathier, P. Carlot, T. Desgardin et al., Strain relaxation in He implanted UO 2 polycrystals under thermal treatment: An in situ XRD study, Journal of Nuclear Materials, vol.476, issue.63, 2016.

A. Boulle and A. Debelle, Statistical Nature of Atomic Disorder in Irradiated Crystals, Physical Review Letters, vol.11, issue.24, p.24551, 2016.
DOI : 10.1016/j.nimb.2005.06.129

A. Debelle, A. Boulle, F. Garrido, and L. Thomé, Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study, Journal of Materials Science, vol.281, issue.167, p.4683, 2011.
DOI : 10.1016/S0022-3115(00)00236-1

URL : https://hal.archives-ouvertes.fr/in2p3-00596966

. Goudeau, Multi-scale X-ray diffraction study of strains induced by He implantation in UO 2 polycrystals. Nuclear Instruments and Methods in, Physics Research B, vol.326, p.251, 2014.

N. Nakae, Y. Iwata, and T. Kirihata, Thermal recovery of defects in neutron irradiated UO 2

R. P. Turcotte, Alpha radiation damage in the actinide dioxydes. Battelle, Pacific Northwest Laboratories Richland, 4172799.

W. J. Weber, Thermal recovery of lattice defects in alpha irradiated UO 2 crystals, Journal of Nuclear Materials, vol.114, issue.213, 1983.

. Hj and . Matzke, Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels

B. Dorado, Etude des propriétés de transport atomique dans le dioxyde d'uranium par le calcul de structure électronique : influence des fortes corrélations, Thèse : Sciences des matériaux, physique, chimie et nanosciences, 2010.

W. Primak, Kinetics of Processes Distributed in Activation Energy, Physical Review, vol.22, issue.6, p.1677, 1955.
DOI : 10.1063/1.1740201

. Hj and . Matzke, Radiation damage in nuclear materials. Nuclear Instruments and Methods in, Physics Research B, vol.65, issue.30, 1992.

B. Dorado, J. Durinck, P. Garcia, M. Freyss, and M. Bertolus, An atomistic approach to selfdiffusion in uranium dioxide, Journal of Nuclear Materials, vol.400, issue.103, 2010.

G. Valot, D. Baldinozzi, M. Siméone, and . Bertolus, First-principles calculation and experimental study of oxygen diffusion in uranium dioxide, Physical Review B, vol.83, p.35126, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639167

. Bertolus, Determination of krypton diffusion coefficient in uranium dioxide using atomic scale calculations

P. Freyss and . Garcia, First-principles calculations of uranium diffusion in uranium dioxide

J. Jonnet, A contribution to the understanding of the high burn-up structure formation in nuclear fuels, Thèse : Mécanique et Energétique, Institut National Polytechnique de Lorraine, 2007.

J. Douin, Mécanique des milieux continus : introduction à la plasticité des matériaux

U. Messerschmidt, Dislocation Dynamics During Plastic Deformation, Series in Materials Science, 2010.
DOI : 10.1007/978-3-642-03177-9

F. R. Nabarro and J. P. Hirth, Dislocations in Solids, 2004.

T. H. Courtney, Mechanical behavior of materials, 2005.

S. Amelinckx, Dislocations in ionic crystals, Il Nuovo Cimento, vol.27, issue.S2, 1958.
DOI : 10.1080/14786440408520580

A. G. Evans and P. L. Pratt, Dislocations in the fluorite structure, Dislocations in the fluorite structure, p.1213, 1969.
DOI : 10.1063/1.1735574

K. H. Ashbee and F. C. Frank, Dislocations in the fluorite structure, Dislocations in the fluorite structure, p.211, 1970.
DOI : 10.1016/0001-6160(57)90090-1

W. A. Brantley and C. L. Bauer, Geometric Analysis of Charged Dislocations in the Fluorite Structure, physica status solidi (b), vol.31, issue.2, p.707, 1970.
DOI : 10.1016/0022-3115(69)90187-1

P. Fossati, L. Van-brutzel, and B. Devincre, Molecular dynamics simulation of dislocations in uranium dioxide, Journal of Nuclear Materials, vol.443, issue.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.07.059

N. D. Morelon, D. Ghaleb, J. M. Delaye, and L. Van-brutzel, A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide, Philosophical Magazine, vol.48, issue.13, p.1533, 2003.
DOI : 10.1088/0022-3719/14/32/004

P. Fossati, Contribution à l'étude des propriétés mécaniques du combustible nucléaire : modélisation atomistique de la déformation du dioxyde d'uranium, Thèse : Science des Matériaux, 2012.

A. L. Prioux, P. Fossati, S. Maillard, T. Jourdan, and P. Maugis, Empirical potential simulations of interstitial dislocation loops in uranium dioxide, Journal of Nuclear Materials, vol.479, 2016.
DOI : 10.1016/j.jnucmat.2016.07.046

URL : https://hal.archives-ouvertes.fr/hal-01435100

R. J. Gaboriaud, M. Boisson, and J. Grilhe, Calculation of stacking fault energy in the fluorite structure, Journal of Physics C: Solid State Physics, vol.8, issue.3499, 1975.

E. J. Rapperport and A. M. Huntress, Deformation modes of single crystal uranium dioxide from 700 °C to, °C. U.S. At. Energy Comm. NMI, pp.1242-1243, 1900.

K. H. Ashbee, Stacking Faults in Uranium Dioxide, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.280, issue.1380, pp.280-317, 1964.
DOI : 10.1098/rspa.1964.0129

C. S. Yust and C. J. Mchargue, Dislocation substructures in deformed uranium dioxide single crystals, Journal of Nuclear Materials, vol.31, issue.2, 1969.
DOI : 10.1016/0022-3115(69)90187-1

A. Alamo, J. M. Lefebvre, and J. Soullard, Deformation plastique du bioxyde d'uranium: Observation des sous-structures de dislocations, Journal of Nuclear Materials, vol.75, issue.1, p.145, 1978.
DOI : 10.1016/0022-3115(78)90038-7

C. Sabathier and C. Onofri, Caractérisation de la nature des défauts étendus dans UO 2 induits par l'irradiation. Note technique CEA

D. C. Parfitt, C. L. Bishop, M. R. Wenman, and R. W. Grimes, Strain fields and line energies of dislocations in uranium dioxide, Journal of Physics: Condensed Matter, vol.22, issue.17, p.175004, 2010.
DOI : 10.1088/0953-8984/22/17/175004

J. Soullard, Mise en evidence de boucles de dislocation imparfaites dans des echantillons de bioxyde d'uranium irradies, Journal of Nuclear Materials, vol.78, issue.1, 1978.
DOI : 10.1016/0022-3115(78)90511-1

. Stubbins, Characterization of dislocation loops in CeO 2 irradiated with high energy Krypton and Xenon, Philosophical Magazine, vol.93, p.4569, 2013.

D. S. Aidhy, P. C. Millett, T. Desai, D. Wolf, S. R. Phillpot et al., Kinetically evolving irradiation-induced point defect clusters in UO 2 by molecular dynamics simulation Nucleation and growth of defect clusters in CeO 2 irradiated with electrons. Nuclear Instruments and Methods in, Physics Research B, vol.250, issue.114, 2006.

A. Tsoukalas and . Claverie, Influence of the annealing ambient on the relative thermal stability of dislocation loops in silicon, Nuclear Instruments and Methods in Physics Research B, vol.178, issue.84, 2001.

D. S. Gelles, A FRANK LOOP UNFAULTING MECHANISM IN fcc METALS DURING NEUTRON IRRADIATION, Proceedings of the International Conference on dislocation modelling of physical systems, HEDL-SA-2078, 1980.
DOI : 10.1016/B978-0-08-026724-1.50021-2

. Hj, A. Matzke, and . Turos, Surface damage in UO 2 due to mechanical polishing and ion bombardment, Journal of Nuclear Materials, vol.114, issue.349, 1983.

C. Sabathier and P. Garcia, Préparation de lames minces d'UO 2 polycristallin pour la caractérisation par microscopie électronique en transmission, Note Technique SESC, pp.4-013, 2004.

A. J. Manley, Transmission electron microscopy of irradiated UO 2 fuel pellets, Journal of Nuclear Materials, vol.27, issue.216, 1968.

J. Chaumont, F. Lalu, M. Salomé, A. M. Lamoise, and H. Bernas, A medium energy facility for variable temperature implantation and analysis. Nuclear Instruments and Methods in, Physics Research B, vol.189, issue.193, 1981.
URL : https://hal.archives-ouvertes.fr/in2p3-00001457

M. O. Ruault, J. Chaumont, and H. Bernas, Transmission electron microscopy study of ion implantation induced Si amorphization. Nuclear Instruments and Methods in, Physics Research B, vol.209, pp.210-351, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00001502

E. Cottereau, J. Camplan, J. Chaumont, and R. Meunier, ARAMIS: an accelerator for research on astrophysics, microanalysis and implantation in solids, Materials Science and Engineering: B, vol.2, issue.1-3, 1989.
DOI : 10.1016/0921-5107(89)90100-1

URL : https://hal.archives-ouvertes.fr/in2p3-00023132

M. Cours and N. Menguy, Microscopie Electronique en Transmission

. Diffraction, Disponible sur : http://mon.univmontp2.fr/claroline, pp.0-01, 2016.

M. Karlik and B. Jouffrey, Etude des métaux par microscopie électronique en transmission. Formation des images, pp.4-135

P. M. Kelly and R. G. Blake, The determination of dislocation loop plane normals by transmission electron microscopy, Physica Status Solidi (a), vol.28, issue.2, pp.25-599, 1974.
DOI : 10.1002/pssa.2210250229

R. F. Egerton, Electron-loss spectroscopy in the electron microscope, 2011.

C. Degueldre, R. Schaeublin, J. Krbanjevic, and E. Minikus, Electron energy loss spectroscopy investigation through a nano ablated uranium dioxide sample, Talanta, vol.106, issue.408, 2013.
DOI : 10.1016/j.talanta.2013.01.023

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2
DOI : 10.1107/S0021889869006558

J. Rodriguez, Introduction to the program FullProf: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data, 2004.

I. Fritz, at high pressure, Journal of Applied Physics, vol.69, issue.10, p.4353, 1976.
DOI : 10.1016/0022-3697(66)90199-5

G. K. Williamson and W. H. Hall, X-ray line broadening from filed aluminum and wolfram

H. De-keijser, J. I. Langford, E. J. Mittemeijer, and A. B. Vogels, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, Journal of Applied Crystallography, vol.15, issue.3, 1982.
DOI : 10.1107/S0021889882012035

R. A. Cowley and G. Dolling, Magnetic Excitations in Uranium Dioxide, Physical Review, vol.18, issue.2, 1968.
DOI : 10.1103/PhysRevLett.18.11

S. D. Senanayake, R. Rousseau, D. Colegrave, and H. Idriss, The reaction of water on polycrystalline UO 2 : Pathways to surface and bulk oxidation, Journal of Nuclear Materials, vol.342, issue.179, 2005.

R. Mohun, Characterizing the evolution of spent nuclear fuel during long term interim storage using Raman spectroscopy. Note technique CEA, 2016.

C. T. Kelly, Iterative Methods for Optimization, Society for Industrial and Applied Mathematics Philadelphia, p.243, 1999.
DOI : 10.1137/1.9781611970920

H. Föll and M. Wilkens, A simple method for the analysis of dislocation loops by means of the inside-outside contrast on transmission electron micrographs, Physica Status Solidi (a), vol.29, issue.2, p.31, 1975.
DOI : 10.1007/978-3-642-94719-3

O. A. Maslova, Spectroscopie et imagerie Raman de matériaux inhomogènes, Thèse : Physique des Matériaux, 2014.

J. D. Axe and G. D. Pettit, Infrared Dielectric Dispersion and Lattice Dynamics of Uranium Dioxide and Thorium Dioxide, Physical Review, vol.281, issue.2, 1966.
DOI : 10.1098/rspa.1964.0182

. Caraballo, Annealing of the defects observed by Raman spectroscopy in UO 2, p.25
URL : https://hal.archives-ouvertes.fr/hal-01077084

B. Ye, Formation and growth of irradiation-induced defect structures in ceria, Thèse, 2011.

K. Nogita, K. Hayashi, K. Une, and K. Fukuda, Depth profiles of damage accumulation in UO 2 and (U,Gd)O 2 pellets irradiated with 100 MeV iodine ions, Journal of Nuclear Materials, vol.273, issue.302, 1999.

A. N. Goland and D. T. Keating, Lattice Parameter, Volume, and Length Changes in Crystals Containing Dislocation Loops, Journal of Applied Physics, vol.41, issue.2, 1970.
DOI : 10.1063/1.1656107

M. A. Krivoglaz, X-Ray and Neutron Diffraction in Non ideal Crystals, 1995.

J. R. Willis, R. Bullough, and A. M. Stoneham, The effect of dislocation loops on the latticeparameter , determined by X-ray-diffraction, Philosophical Magazine A, pp.48-95, 1983.

W. J. Weber, D. M. Duffy, L. Thomé, and Y. Zhang, The role of electronic energy loss in ion beam modification of materials, Current Opinion in Solid State and Materials Science, vol.19, issue.1, 2015.
DOI : 10.1016/j.cossms.2014.09.003

M. Zhang, K. Backman, F. Nordlund, and . Djurabekova, Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy, Nuclear Instruments and Methods in Physics Research B, vol.307, p.43, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00852790

J. Spino and D. Papaioannou, Lattice parameter changes associated with the rim-structure formation in high burn-up UO 2 fuels by micro X-ray diffraction, Journal of Nuclear Materials, vol.281, issue.146, 2000.

C. Lemaignan, Science des matériaux pour le nucléaire, EDP Sciences, 2004.

R. and E. Pressurisée, Disponible sur : http://fr.wikipedia.org/wiki/R%C3%A9acteur_%C3%A0_eau_pressuris%C3%A9e

J. Noirot, L. Desgranges, and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, Journal of Nuclear Materials, vol.372, issue.2-3, p.318, 2008.
DOI : 10.1016/j.jnucmat.2007.04.037

. Matzke, Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO 2 disk fuel. Nuclear Instruments and Methods in, Physics Research B, vol.191, issue.622, 2002.

. Hj, A. Matzke, G. Turos, and . Linker, Polygonization of single crystals of the fluorite-type oxide UO 2 due to high dose ion implantation, Nuclear Instruments and Methods in Physics Research B, vol.91, issue.294, 1994.

J. Spino, D. Baron, M. Coquerelle, and A. D. Stalios, High burn-up rim structure: evidences that xenon-depletion, pore formation and grain subdivision start at different local burn-ups, Journal of Nuclear Materials, vol.256, issue.2-3, 1998.
DOI : 10.1016/S0022-3115(98)00060-9

J. Jonnet, A contribution to the understanding of the high burn-up structure formation in nuclear fuels

D. Baron, M. Kinoshita, P. Thevenin, and R. Largenton, DISCUSSION ABOUT HBS TRANSFORMATION IN HIGH BURN-UP FUELS, Nuclear Engineering and Technology, vol.41, issue.2, 0199.
DOI : 10.5516/NET.2009.41.2.199

K. Nogita and K. Une, Irradiation-induced recrystallization in high burn-up UO 2 fuel, Journal of Nuclear Materials, vol.226, issue.302, 1995.

V. G. Baranov, A. V. Lunev, A. V. Tenishev, and A. V. Khlunov, Interaction of dislocations in UO 2 during high burn-up structure formation, Journal of Nuclear Materials, vol.444, issue.129, 2014.

A. D. Whapham and B. E. Sheldon, Radiation damage in uranium dioxide, Philosophical Magazine, vol.15, issue.120, p.1179, 1965.
DOI : 10.1016/0022-3115(63)90083-7

L. F. He, M. Gupta, C. A. Yablinsky, J. Gan, M. A. Kirk et al., In situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal, situ TEM observation of dislocation evolution in Kr-irradiated UO 2 single crystal, p.71, 2013.
DOI : 10.1016/j.jnucmat.2013.06.050

H. Föll and M. Wilkens, A simple method for the analysis of dislocation loops by means of the insideoutside contrast on transmission electron micrographs, Phys. Stat. Sol. (a), vol.519, p.31, 1975.

L. De-même, (encadré en vert foncé) allume la boucle, son vecteur de Burgers n'appartient donc pas au plan (01 11 (en vert foncé), ce qui élimine la direction [011]. -Par élimination le vecteur de Burgers est selon la direction 11, p.0

. Pour-la-boucle, Le vecteur 0100 (encadré en orange) éteint la boucle. Le vecteur de Burgers fait donc parti du plan (0100 (en orange) ; c'est-à-dire les directions 101

. Le-polissage-est-réalisé-tout-d, abord pendant 6,5 min avec des disques en carbure de silicium possédant une taille de grains de 10 ?m, puis pendant 10 min avec une solution diamant (taille de grain 1 ?m) répartie sur un drap de polissage. Après chaque étape de polissage, les échantillons sont nettoyés à l'éthanol dans un bac à ultra-sons pendant 3 min. Pour finir

S. Valin, Etude des mécanismes microstructuraux liés au relâchement des gaz de fission du dioxyde d'uranium irradié, Thèse : Energétique physique, 1999.

G. Dottavio, Existence d'une lacune de miscibilité dans le ternaire U-Nd-O et son lien avec la structure HBS du combustible nucléaire irradié, Thèse : Science des matériaux, physique, chimie et nanosciences, 2014.

. Hj, A. Matzke, and . Turos, Surface damage in UO 2 due to mechanical polishing and ion bombardment, Journal of Nuclear Materials, vol.114, issue.349, p.328, 1983.

L. Sachant-que, U et deux atomes O (?) est égal à 0,041 nm 3 , approximativement le taux d'endommagement (T) pour une irradiation en réacteur est donné par la relation suivante

Y. Guerin, J. Noirot, and D. Parrat, International school in nuclear engineering-Nuclear fuels for light water reactors and fast-reactors. Cours, p.18, 2016.

G. Martin, S. Maillard, and C. Sabathier, Endommagement de l'UO 2 sous irradiation en régime balistique. Note technique LLCC NT, pp.14-16, 2014.