Benjamini-Schramm convergence of locally symmetric spaces

Abstract : The main theme of this work is the study of geometry and topology of locally symmetric spaces Gamma\ X as ther volume Vol(\Gamma\ X) tends to infinity. Our first main result concerns the Benjamini-Schramm convergence for arithmetic hyperbolic 2 or 3-manifolds. A sequence of locally symmetric spaces (Gamma_n\ X) converges Benjamini-Schramm to X if and only if for every radius R>0 the limit Vol((Gamma\ X)_{
Liste complète des métadonnées

Cited literature [91 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01619918
Contributor : Abes Star <>
Submitted on : Thursday, October 19, 2017 - 7:19:20 PM
Last modification on : Tuesday, April 16, 2019 - 5:41:54 AM
Document(s) archivé(s) le : Saturday, January 20, 2018 - 3:38:17 PM

File

72275_FRACZYK_2017_diffusion.p...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01619918, version 1

Collections

Citation

Mikołaj Frączyk. Benjamini-Schramm convergence of locally symmetric spaces. Number Theory [math.NT]. Université Paris-Saclay, 2017. English. ⟨NNT : 2017SACLS233⟩. ⟨tel-01619918⟩

Share

Metrics

Record views

324

Files downloads

209