K. Avrachenkov, V. Borkar, A. Kadavankandy, and J. K. , Sreedharan Revisiting Random Walk based Sampling in Networks: Evasion of Burn-in Period and, Frequent Regenerations Computational Social Networks Journal

&. Abbe, . Sandon, C. Abbe, and . Sandon, Community Detection in General Stochastic Block models: Fundamental Limits and Efficient Algorithms for Recovery, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp.670-688, 2015.
DOI : 10.1109/FOCS.2015.47

&. Abbe, . Sandon, C. Abbe, and . Sandon, Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap. arXiv preprint, 2015.

. Abounadi, Learning Algorithms for Markov Decision Processes with Average Cost, SIAM Journal on Control and Optimization, vol.40, issue.3, pp.681-698, 2001.
DOI : 10.1137/S0363012999361974

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

&. Abramowitz, M. Abramowitz, A. Irene, and . Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Corporation, vol.55, 1964.

&. Ahlswede, A. Winter, and . Winter, Strong converse for identification via quantum channels, IEEE Transactions on Information Theory, vol.48, issue.3, pp.569-579, 2002.
DOI : 10.1109/18.985947

URL : http://arxiv.org/pdf/quant-ph/0012127

. Akoglu, Graph based anomaly detection and description: a survey, Data Mining and Knowledge Discovery, vol.15, issue.1, pp.626-688, 2015.
DOI : 10.1145/2594473.2594476

URL : https://link.springer.com/content/pdf/10.1007%2Fs10618-014-0365-y.pdf

. Allahverdyan, Community detection with and without prior information, EPL (Europhysics Letters), vol.90, issue.1, p.18002, 2010.
DOI : 10.1209/0295-5075/90/18002

&. Alon and . Spencer, Noga Alon and Joel H Spencer. The probabilistic method, 2004.

P. Brendan and . Ames, Robust convex relaxation for the planted clique and densest k-subgraph problems, 2013.

C. Andersen, F. Andersen, and . Chung, Detecting Sharp Drops in PageRank and a Simplified Local Partitioning Algorithm, Theory Appl. Model. Comput, vol.4484, issue.3, pp.1-12, 2007.
DOI : 10.1007/978-3-540-72504-6_1

. Andersen, Local Graph Partitioning using PageRank Vectors, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), pp.475-486, 2006.
DOI : 10.1109/FOCS.2006.44

. Anderson, An Introduction to Random Matrices, volume 118 of Cambridge studies in advanced mathematics, 2009.

. Arias-castro, Community detection in dense random networks, The Annals of Statistics, vol.42, issue.3, pp.940-969, 2014.
DOI : 10.1214/14-AOS1208SUPP

URL : http://doi.org/10.1214/14-aos1208

. Athreya, A central limit theorem for scaled eigenvectors of random dot product graphs, pp.1-15, 1983.

&. Avrachenkov, D. Avrachenkov, and . Lebedev, PageRank of Scale-Free Growing Networks, Internet Mathematics, vol.3, issue.2, pp.207-231, 2006.
DOI : 10.1080/15427951.2006.10129120

URL : https://hal.archives-ouvertes.fr/inria-00070168

. Avrachenkov, Pagerank based clustering of hypertext document collections, Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '08, pp.873-874, 2008.
DOI : 10.1145/1390334.1390549

URL : https://hal.archives-ouvertes.fr/inria-00565355

. Avrachenkov, Alexey Mishenin and Marina Sokol Generalized Optimization Framework for Graph-based Semisupervised Learning, Proceedings of the Twelfth SIAM International Conference on Data Mining, pp.966-974, 2012.
DOI : 10.1137/1.9781611972825.83

. Avrachenkov, Spectral properties of random matrices for stochastic block model, 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp.537-544, 2015.
DOI : 10.1109/WIOPT.2015.7151116

URL : https://hal.archives-ouvertes.fr/hal-01261156

. Avrachenkov, Inference in OSNs via Lightweight Partial Crawls, Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pp.165-177, 2016.
DOI : 10.1145/2896377.2901477

URL : https://hal.archives-ouvertes.fr/hal-01403018

&. Bai, . D. Pan-2012-]-z, G. M. Bai, and . Pan, Limiting Behavior of Eigenvectors of Large Wigner Matrices, Journal of Statistical Physics, vol.67, issue.3, pp.519-549, 2012.
DOI : 10.2307/1970008

&. Bai, J. W. Bai, and . Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices, The Annals of Probability, vol.26, issue.1, pp.316-345, 1998.
DOI : 10.1214/aop/1022855421

Z. Bai, W. Jack, and . Silverstein, Spectral analysis of large dimensional random matrices, 2009.
DOI : 10.1007/978-1-4419-0661-8

. Bai, On asymptotics of eigenvectors of large sample covariance matrix, The Annals of Probability, vol.35, issue.4, pp.1532-1572, 2007.
DOI : 10.1214/009117906000001079

D. Zhidong and . Bai, Methodologies in Spectral Analysis of Large Dimensional Random Matrices, A Review, Stat. Sin, vol.9, issue.3, pp.611-677, 1999.

. Basu, Probabilistic semi-supervised clustering with constraints. Semi-supervised learning, pp.71-98, 2006.

. Benaych-georges, Florent Benaych-Georges. Eigenvectors of Wigner matrices: universality of global fluctuations, 2011.

R. Austin, . Benson, F. David, J. Gleich, and . Leskovec, Tensor spectral clustering for partitioning higher-order network structures, Proceedings of the 2015 SIAM International Conference on Data Mining, pp.118-126, 2015.

A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos, CopyCatch, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.119-130, 2013.
DOI : 10.1145/1807167.1807278

A. Guionnet, Localization and delocalization of eigenvectors for heavy-tailed random matrices, Probab. Theory Relat. Fields, vol.157, pp.3-4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00948937

C. Bordenave and M. Lelarge, Resolvent of large random graphs, Random Structures & Algorithms, vol.267, issue.3, pp.332-352, 2010.
DOI : 10.1017/CBO9780511721335.010

URL : https://hal.archives-ouvertes.fr/hal-00629336

. Borkar, Asynchronous Gossip for Averaging and Spectral Ranking, IEEE Journal of Selected Topics in Signal Processing, vol.8, issue.4, pp.703-716, 2014.
DOI : 10.1109/JSTSP.2014.2320229

URL : http://arxiv.org/pdf/1309.7841

S. Vivek and . Borkar, Reinforcement learning: a bridge between numerical methods and Monte Carlo, Perspectives in Mathematical Science?I: Probability and Statistics, pp.71-91, 2009.

. Bose, The cost of an epidemic over a complex network: A random matrix approach. arXiv preprint, 2013.

L. Chung, V. Lu, and . Vu, Spectra of random graphs with given expected degrees, Proceedings of the National Academy of Sciences, vol.299, issue.25, pp.6313-6318, 2003.
DOI : 10.1016/S0370-1573(97)00088-4

R. Fan and . Chung, Spectral graph theory, American Mathematical Soc, vol.92, 1997.

&. Condon, A. Karp, . Condon, M. Richard, and . Karp, Algorithms for graph partitioning on the planted partition model, Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques, pp.221-232, 1999.

. Cvetkovi?, Spectra of graphs: theory and application, Academic Pr, vol.87, 1980.

. Dasgupta, On estimating the average degree, Proceedings of the 23rd international conference on World wide web, WWW '14, pp.795-806, 2014.
DOI : 10.1145/2566486.2568019

. Decelle, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Physical Review E, vol.33, issue.6, p.66106, 2011.
DOI : 10.1103/PhysRevE.78.046110

URL : https://hal.archives-ouvertes.fr/hal-00661643

A. Montanari, Finding hidden cliques of size N/e in nearly linear time, Foundations of Computational Mathematics, vol.15, issue.4, pp.1069-1128, 2015.

. Ding, Chris Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha and Horst Simon. PageRank, HITS and a unified framework for link analysis, Proceedings of the 2003 SIAM International Conference on Data Mining, pp.249-253, 2003.

. Ding, Xue Ding, Tiefeng Jianget al. Spectral distributions of adjacency and Laplacian matrices of random graphs. The annals of applied probability, pp.2086-2117, 2010.

&. Erd?s and . Rényi, Paul Erd?s and Alfréd Rényi. On random graphs, I, pp.290-297, 1959.

. Bibliography, &. Erd?s, P. Wilson, R. J. Erd?s, and . Wilson, On the chromatic index of almost all graphs, Journal of combinatorial theory, series B, vol.23, issue.2-3, pp.255-257, 1977.

. Filippone, A survey of kernel and spectral methods for clustering, Pattern Recognition, vol.41, issue.1, pp.176-190, 2008.
DOI : 10.1016/j.patcog.2007.05.018

. Firouzi, Hamed Firouzi, Bala Rajaratnam and Alfred O Hero III. Predictive Correlation Screening: Application to Two-stage Predictor Design in High Dimension, AISTATS, pp.274-288, 2013.

M. Barthélemy, Resolution limit in community detection, Proc. Natl. Acad. Sci. U. S. A, vol.104, issue.1, pp.36-41, 2007.

. Fortunato, Santo Fortunato, Marián Boguñá, Alessandro Flammini and Filippo Menczer Approximating PageRank from in-degree, International Workshop on Algorithms and Models for the Web-Graph, pp.59-71, 2006.
DOI : 10.1007/978-3-540-78808-9_6

&. Füredi and . Komlós, The eigenvalues of random symmetric matrices, Combinatorica, vol.67, issue.3, pp.233-241, 1981.
DOI : 10.1007/BF02579329

. Girko, Kirsch and a. Kutzelnigg. A necessary and sufficient conditions for the semicircle law, Random Oper. Stoch. Equations, vol.2, issue.2, pp.195-202, 1994.

L. Vja?eslav and . Girko, Theory of Random Determinants Mathematics and Its Applications, 1990.

L. Vyacheslav and . Girko, Theory of Stochastic Canonical Equations, 2001.

. Gjoka, Walking in Facebook: A Case Study of Unbiased Sampling of OSNs, 2010 Proceedings IEEE INFOCOM, pp.1-9, 2010.
DOI : 10.1109/INFCOM.2010.5462078

. Gkorou, Leveraging node properties in random walks for robust reputations in decentralized networks, IEEE P2P 2013 Proceedings, pp.1-10, 2013.
DOI : 10.1109/P2P.2013.6688708

&. Gleich, . Kloster, K. Gleich, and . Kloster, Seeded PageRank solution paths, European Journal of Applied Mathematics, vol.45, issue.06, pp.1-34, 2016.
DOI : 10.1145/1772690.1772751

F. David and . Gleich, PageRank beyond the Web, SIAM Review, vol.57, issue.3, pp.321-363, 2015.

]. Goel, J. Matthew, and . Salganik, Respondent-driven sampling as Markov chain Monte Carlo, Statistics in Medicine, vol.7, issue.4, pp.2202-2229, 2009.
DOI : 10.2307/1390675

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684629/pdf

V. Andrew and . Goldberg, Finding a maximum density subgraph, 1984.

. Hajek, Recovering a Hidden Community Beyond the Spectral Limit in O(|E|log * |V |) Time. arXiv Prepr, 1510.

. Hajek, Computational Lower Bounds for Community Detection on Random Graphs, In COLT, pp.899-928, 2015.

. Hajek, Achieving Exact Cluster Recovery Threshold via Semidefinite Programming, IEEE Transactions on Information Theory, vol.62, issue.5, pp.2788-2797, 2016.
DOI : 10.1109/TIT.2016.2546280

. Hajek, Information limits for recovering a hidden community, Information Theory (ISIT), 2016 IEEE International Symposium on, pp.1894-1898, 2016.
DOI : 10.1109/tit.2017.2653804

N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand, Bayesian anomaly detection methods for social networks, The Annals of Applied Statistics, vol.4, issue.2, pp.645-662, 2010.
DOI : 10.1214/10-AOAS329SUPPB

URL : http://doi.org/10.1214/10-aoas329

. Heimlicher, Community Detection in the Labelled Stochastic Block Model, pp.1-9, 2012.

. Holland, Stochastic blockmodels: First steps, Social Networks, vol.5, issue.2, pp.109-137, 1983.
DOI : 10.1016/0378-8733(83)90021-7

A. Roger, . Horn, R. Charles, and . Johnson, Matrix analysis, 2012.

. Hou, A new correlation clustering method for cancer mutation analysis, Bioinformatics, vol.32, issue.24, pp.3717-3728, 2016.
DOI : 10.1093/bioinformatics/btw546

. Bibliography and . Jiang, Tiefeng Jianget al. How many entries of a typical orthogonal matrix can be approximated by independent normals? The Annals of Probability, pp.1497-1529, 2006.

. Kadavankandy, Characterization of L 1 -norm statistic for Anomaly Detection in Erdös Rényi Graphs, CDC. IEEE, 2016.

D. Sepandar, . Kamvar, T. Mario, H. Schlosser, and . Garcia-molina, The eigentrust algorithm for reputation management in p2p networks, Proceedings of the 12th international conference on World Wide Web, pp.640-651, 2003.

. Kang, Mining large graphs: Algorithms, inference, and discoveries, 2011 IEEE 27th International Conference on Data Engineering, pp.243-254, 2011.
DOI : 10.1109/ICDE.2011.5767883

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Richard and . Karp, Reducibility among combinatorial problems, Complexity of computer computations, pp.85-103, 1972.

&. Karrer, . Newman-2011-]-brian, . Karrer, E. Mark, and . Newman, Stochastic blockmodels and community structure in networks, Physical Review E, vol.33, issue.1, p.16107, 2011.
DOI : 10.1088/1742-5468/2006/11/P11010

URL : http://arxiv.org/pdf/1008.3926

&. Kemeny, G. Snell-john, J. L. Kemeny, and . Snell, Finite markov chains, 1983.

&. Kepner, J. Gilbert, J. Kepner, and . Gilbert, Graph algorithms in the language of linear algebra, SIAM, 2011.
DOI : 10.1137/1.9780898719918

M. Isabel, J. Kloumann, J. Ugander, and . Kleinberg, Block models and personalized PageRank, Proceedings of the National Academy of Sciences, p.201611275, 2016.

. Koutra, Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.245-260, 2011.
DOI : 10.1109/TIT.2005.850085

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Langville and C. Meyer, Deeper Inside PageRank, Internet Mathematics, vol.1, issue.3, pp.335-380, 2004.
DOI : 10.1080/15427951.2004.10129091

. Latouche, Overlapping stochastic block models. arXiv preprint, 2009.
DOI : 10.1214/14-ejs903

URL : https://hal.archives-ouvertes.fr/hal-00990277

E. Victor, . Lee, R. Ning-ruan, C. Jin, and . Aggarwal, A survey of algorithms for dense subgraph discovery, Managing and Mining Graph Data, pp.303-336, 2010.

. Levin, David Asher Levin, Yuval Peres and Elizabeth Lee Wilmer. Markov chains and mixing times, 2009.

H. Elliott and . Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Advances in Mathematics, vol.11, issue.3, pp.267-288, 1973.

. Litvak, In-Degree and PageRank: Why Do They Follow Similar Power Laws?, Internet Mathematics, vol.4, issue.2-3, pp.175-198, 2007.
DOI : 10.1080/15427951.2007.10129293

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

&. Lovász and . Pelikán, On the eigenvalues of trees, Periodica Mathematica Hungarica, vol.175, issue.1-2, pp.175-182, 1973.
DOI : 10.1111/j.1749-6632.1970.tb56460.x

. Lovász, Random walks on graphs: A survey, Comb. Paul Erdos is Eighty, vol.2, issue.2, pp.1-46, 1993.

. Massoulié, Peer counting and sampling in overlay networks, Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing , PODC '06, 2006.
DOI : 10.1145/1146381.1146402

M. Mezard and A. Montanari, Information, physics, and computation, 2009.
DOI : 10.1093/acprof:oso/9780198570837.001.0001

C. Mifflin, G. A. Boner, J. Godfrey, and . Skokan, A random graph model for terrorist transactions, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), pp.3258-3264, 2004.
DOI : 10.1109/AERO.2004.1368131

B. Miller, N. Bliss, J. Patrick, and . Wolfe, Subgraph detection using eigenvector L1 norms, Advances in Neural Information Processing Systems, pp.1633-1641, 2010.

. Miller, A Spectral Framework for Anomalous Subgraph Detection, IEEE Transactions on Signal Processing, vol.63, issue.16, pp.4191-4206, 2015.
DOI : 10.1109/TSP.2015.2437841

URL : http://arxiv.org/pdf/1401.7702

. Miller, Residuals-based subgraph detection with cue vertices, 2015 49th Asilomar Conference on Signals, Systems and Computers, pp.1530-1534, 2015.
DOI : 10.1109/ACSSC.2015.7421401

. Mossel, Elchanan Mossel, Joe Neeman and Allan Sly. Stochastic block models and reconstruction, 2012.

&. Nadakuditi, M. E. Newman-2012-]-raj-rao-nadakuditi, and . Newman, Graph Spectra and the Detectability of Community Structure in Networks, Physical Review Letters, vol.108, issue.18, pp.1-5, 2012.
DOI : 10.1103/PhysRevE.78.046110

. Nazi, Walk, not wait, Proc. VLDB Endow, pp.678-689, 2015.
DOI : 10.14778/2735703.2735707

&. Newman, . Girvan, E. Mark, M. Newman, and . Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.65, issue.2, p.26113, 2004.
DOI : 10.1103/PhysRevE.68.065103

E. Mark and . Newman, The structure and function of complex networks, SIAM review, vol.45, issue.2, pp.167-256, 2003.

E. Mark and . Newman, Modularity and community structure in networks, Proceedings of the national academy of sciences, pp.8577-8582, 2006.

E. Mark and . Newman, Spectral methods for community detection and graph partitioning, Physical Review E, vol.88, issue.4, p.42822, 2013.

A. Olshevsky, N. John, and . Tsitsiklis, Convergence Speed in Distributed Consensus and Averaging, SIAM Journal on Control and Optimization, vol.48, issue.1, pp.33-55, 2009.
DOI : 10.1137/060678324

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Page, PageRank: Bringing order to the web, 1997.

. Page, The PageRank citation ranking: Bringing order to the web, 1999.

. Pandurangan, Gopal Pandurangan, Prabhakar Raghavan and Eli Upfal. Using pagerank to characterize web structure, International Computing and Combinatorics Conference, pp.330-339, 2002.

R. Bruno and D. Towsley, Estimating and sampling graphs with multidimensional random walks, Proc. ACM SIGCOMM Internet Measurement Conference (IMC), 2010.

&. Robert, C. Casella, G. Robert, and . Casella, Monte Carlo statistical methods, 2013.

O. Gareth, . Roberts, S. Jeffrey, and . Rosenthal, General state space Markov chains and MCMC algorithms, Probability Surveys, vol.1, pp.20-71, 2004.

. Rohe, Karl Rohe, Sourav Chatterjee and Bin Yu. Spectral clustering and the high-dimensional stochastic blockmodel, Ann. Stat, pp.1878-1915, 2011.

M. Sheldon and . Ross, Applied probability models with optimization applications, Courier Corporation, 2013.

. Saade, Spectral detection in the censored block model, 2015 IEEE International Symposium on Information Theory (ISIT), pp.1184-1188, 2015.
DOI : 10.1109/ISIT.2015.7282642

URL : https://hal.archives-ouvertes.fr/cea-01140716

J. Matthew, . Salganik, D. Douglas, and . Heckathorn, Sampling and estimation in hidden populations using respondent-driven sampling, Sociol. Methodol, vol.34, issue.1, pp.193-240, 2004.

. Shuman, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.
DOI : 10.1109/MSP.2012.2235192

]. Silva and R. Willett, Hypergraph-based anomaly detection in very large networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

W. Jack and . Silverstein, Weak convergence of random functions defined by the eigenvectors of sample covariance matrices. The Annals of Probability, pp.1174-1194, 1990.

. Smith, Bayesian Discovery of Threat Networks, IEEE Transactions on Signal Processing, vol.62, issue.20, pp.5324-5338, 2014.
DOI : 10.1109/TSP.2014.2336613

A. Daniel and . Spielman, Spectral graph theory and its applications, FOCS'07. 48th Annual IEEE Symposium on, pp.29-38, 2007.

. Sussman, A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs, Journal of the American Statistical Association, vol.51, issue.9, pp.1119-1128, 2012.
DOI : 10.1109/TAC.2006.880787

URL : http://arxiv.org/pdf/1108.2228

T. Tao and V. Vu, Random matrices: Universality of local eigenvalue statistics, Acta Mathematica, vol.206, issue.1, pp.127-204, 2011.
DOI : 10.1007/s11511-011-0061-3

URL : http://doi.org/10.1007/s11511-011-0061-3

T. Tao and V. Vu, RANDOM MATRICES: UNIVERSAL PROPERTIES OF EIGENVECTORS, Random Matrices: Theory and Applications, vol.69, issue.01, p.1150001, 2012.
DOI : 10.1007/s00220-010-1044-5

A. Joel and . Tropp, User-friendly tail bounds for sums of random matrices, Foundations of computational mathematics, vol.12, issue.4, pp.389-434, 2012.

A. Joel and . Tropp, User-friendly tools for random matrices: An introduction, 2012.

D. Douglas and . Heckathorn, Probability based estimation theory for respondent driven sampling, J. Off. Stat, vol.24, issue.1, p.79, 2008.

. H. Vanh and . Vu, Spectral norm of random matrices, Combinatorica, vol.27, issue.6, pp.721-736, 2007.

. Wang, Local-Set-Based Graph Signal Reconstruction, IEEE Transactions on Signal Processing, vol.63, issue.9, pp.2432-2444, 2015.
DOI : 10.1109/TSP.2015.2411217

URL : http://doi.org/10.1109/tsp.2015.2411217

P. Eugene and . Wigner, Characteristic Vectors of Bordered Matrices With Infinite Dimensions, Annals of Mathematics, vol.62, issue.3, pp.548-564, 1955.

P. Eugene and . Wigner, On the Distribution of the Roots of Certain Symmetric Matrices, Annals of Mathematics, vol.67, issue.2, pp.325-327, 1958.

P. Eugene and . Wigner, Random matrices in physics, SIAM review, vol.9, issue.1, pp.1-23, 1967.

. Yeh, WikiWalk, Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, TextGraphs-4, pp.41-49, 2009.
DOI : 10.3115/1708124.1708133

E. Levina and J. Zhu, Consistency of community detection in networks under degree-corrected stochastic block models, The Annals of Statistics, vol.40, issue.4, pp.2266-2292, 2012.

. Zhou, Learning with local and global consistency Advances in neural information processing systems, pp.321-328, 2004.

. Zhou, Learning with Hypergraphs: Clustering, Classification, and Embedding, Adv. Neural Inf. Process. Syst, vol.19, issue.19 1, pp.1601-1608, 2007.

Z. Zhu and . Ghahramani, John Laffertyet al. Semi-supervised learning using gaussian fields and harmonic functions, ICML, pp.912-919, 2003.