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Notations & Acronyms

Mathematical Notation

R Field of real numbers.

R"™ Linear space of dimension n.

R>g Field of nonnegative real numbers.

T; Denotes the i-th element of the vector x.

|z|? Square of the Euclidean norm, i.e., |z|? := z "z

|z)% The weighted square Euclidean norm, i.e., |z|% := 2" Sx.
0, Column vector of zeros of dimension n.

e; Denotes the i-th Euclidean basis vector of R™.

A; Denotes the ¢ — th column of the matrix A.

Aij Denotes the ij — th element of the matrix A.

sym{A} The symmetric part of the square matrix A.
skew{A}  Returns the skew-symmetric part of the square matrix A.

I, The identity matrix of size n x n.
0,,xs Matrix of zeros of dimension n X s.
F, For the distinguished element x, € R™ and any mapping
F :R™ — R*, we define the constant matrix F := F(z.).
diag{-} Diagonal matrix of the input arguments.
det{-} Determinant of the A matrix.
g Left pseudo-inverse of the matrix g, i.e., gf := (g7 g) g ".
gt Left full-rank annihilator of the matrix g, i.e., g-g = 0.
()71t Inverse operator.
()7 Transpose operator.
4= () Total time derivative.
D" For mappings of scalar argument ® : R — R* denote,
respectively, first and second order differentiation.
VH(x) For H : R® — R, it refers to the gradient operator of a
T
function, i.e., VH(x) := (61;_:(;5)) )

V2H () For H : R™ — R, it refers to the Hessian operator of a function,
) T
ie., V2H(x) := (6 H(z))

VC(x) For C : R™ — R™, Vaz(x) = [VCi(z),...,VCn(x)].

Unless indicated otherwise, all vectors are column vectors. All mappings are
assumed sufficiently smooth. To simplify the expressions, the arguments of all
mappings are explicitly written only the first time that the mapping is defined.
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When it is clear from the context, the subindex in V is omitted.

Acronyms
PBC Passivity-Based Control
EB Energy Balancing
SPBC Standard Passivity-Based Control
AS Asymptotically Stable
GAS Global Asymptotically Stable
PI Proportional and Integral
PID Proportional-Integral-Derivative
PDE Partial Differential Equations
PH Port-Hamiltonian
IOHD Input-Output Hamiltonian systems with Dissipation
Cbl Control by Interconnection
IDA Interconnection and Damping Assignment
LTI Linear Time Invariant
EL Euler Lagrange
PFL Partial Feedback Linearization
AMM  Assumed Modes Method
PWM  Pulse-Width Modulation
DAC  Digital to Analog Converter
Cu-Be Copper Beryllium



Synthese en francais

Le concept d’énergie joue un role fondamental dans la modélisation, 'analyse et
le contréle des systemes physiques. Ce concept est bien connu dans la science et
Iingénierie, et est une pierre angulaire dans la poursuite d’un cadre unifié pour
la modélisation appropriée des phénoménes du monde réel. Dans le cadre basé
sur ’énergie, les systemes physiques sont considérés comme 'interconnexion des
éléments de stockage, de dissipation et de routage d’énergie. Dans ce cadre,
les systemes dynamiques sont traités comme des dispositifs de transformation
d’énergie, ce qui permet d’analyser des systémes non linéaires complexes comme
I'interconnexion de sous-systémes plus simples.

La passivité est une propriété physique qui a son origine dans la théorie des
circuits ol un réseau électrique est passif si tous ses éléments sont passifs, c’est-a-
dire si ses éléments ne peuvent pas fournir de I’énergie au monde extérieur. Dans
la théorie du controle, un systeme dynamique —dans sa représentation d’état—
est appelé passif si le flux d’énergie d’entrée est supérieur ou égal a la différence
entre les énergies stockées initiale et finale. Ce dernier peut étre représenté
mathématiquement en termes d’énergie et de puissance, respectivement, par les
inégalités suivantes:

Hx(th)) - H(z(ty)) < / YT (@t

to
H < y'u,

ou z est I'état du systeme, u,y sont 'entrée et la sortie, respectivement, et
dont le produit a des unités de puissance. H(z) représente 1’énergie stockée et
I'intervalle de temps satisfait la condition t; > tg.

L’énergie d’un systéeme détermine son comportement, de ce fait, intuitive-
ment, la propriété de passivité est liée a la stabilité du systeme. Cette dé-
duction est en général vraie. En effet, en tenant compte de certaines condi-
tions techniques et de la définition de la stabilité considérée, un systéme pas-
sif est stable. Pour les systémes passifs, un des résultats fondamentaux est
que l'interconnexion de deux systéemes passifs —en passant par un sous-systéme
d’interconnexion adéquat— produit a nouveau un systeme passif. Ce dernier
résultat joue un role déterminant dans la conception et 'analyse des systémes
passifs. Par ailleurs, c’est important de souligner que, bien que la passivité
soit en principe une propriété physique, dans la théorie de la passivité, il n’est
pas nécessaire que la fonction d’énergie du systéme corresponde a la représen-
tation d’une énergie physique réelle, cela agrandit I’ensemble des systemes pour
lesquels la théorie de la passivité fournit une procédure méthodique d’analyse
et conception de controle.
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Dans le cadre énergétique, il s’avere qu’'un moyen naturel de contrdler un
systeme physique est de modifier sa fonction d’énergie, cette procédure est con-
nue sous le nom de fagonnage de ’énergie. Contrairement a certaines techniques
classiques qui tentent d’imposer un comportement souhaité a I’aide d’un systeme
d’annulation des non-linéarités et des controleurs de gains élevés, 'approche én-
ergétique tente d’exploiter la structure et les propriétés physiques (quand c’est
le cas) du systeme. L’idée de base de la commande basée sur la passivité (PBC)
est de concevoir un contrdleur qui accomplit la tdche de contréle, par exemple
la stabilisation, en rendant le systeme passif par rapport a la fonction d’énergie
souhaitée et en injectant un amortissement. Les différentes techniques PBC
peuvent étre classées dans deux classes principales:

e Les techniques qui choisissent a priori la structure des fonctions d’énergie
a assigner et apres congoivent la loi de commande qui rend la fonction
d’énergie souhaitée non-croissante.

e Les techniques ou la structure en boucle fermée est choisie, puis la famille
des fonctions d’énergie possibles se caractérise par une équation différen-
tielle partielle (PDE).

Malgré son attrait pratique et théorique, les techniques PBC sont limitées
par certaines contraintes, telles que 'amortissement présent dans le systéme
a controler ou la complexité des PDEs a étre résolues. L’objectif principal
de cette these est d’élargir I’applicabilité des techniques PBC, pour ce faire,
nous explorons l'utilisation de différentes sorties passives dans la conception
de la loi de commande. En particulier, nous nous concentrons sur le con-
trole par Pinterconnexion (CbI), 'équilibrage énergétique (EB) et les régulateurs
proportionnel-intégral-dérivé (PID).

Les résultats présentés dans cette these sont principalement basés sur les
travaux [7, 13, 42, 45, 60] dans lesquels plusieurs techniques PBC, telles que
Cbl, EB et PID-PBC, sont étudiées sous différents angles. Par conséquent, les
PBC formulés dans ce travail étendent les méthodologies qui y sont rapportées.
Les principales contributions de cette thése sont énumérées ci-dessous.

o Sur la base des sorties passives étudiées dans [42, 60], nous proposons un
paramétrage qui caractérise les sorties passives pour les systemes Hamil-
toniens a ports (PH).

e Un cadre unifié de l'utilisation des différentes sorties passives dans deux
techniques PBC bien connues, c’est-a-dire Cbl et EB. Par la suite, nous
fournissons une interprétation physique des régulateurs. Enfin, nous com-
parons les résultats obtenus dans les deux approches.

e La proposition d’une nouvelle méthodologie dans laquelle la fonction d’é-
nergie en boucle fermée est faconnée sans résoudre des PDEs et les lois
de commande résultantes ont la structure d’'un PID de la sortie passive.
Nous présentons le résultat en deux parties: tout d’abord, nous constru-
isons un PI qui garantit que le systeme global a un équilibre stable au point
souhaité. Ensuite, nous ajoutons le terme dérivatif. Nous analysons le scé-
nario du régulateur PID a l'aide des différentes sorties passives précédem-
ment caractérisées.
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o L’application d’un schéma PID-PBC, récemment proposé dans [13], & un
systéme mécanique complexe, a savoir un pendule inversé ultra flexible,
représenté sous la forme d’un modele contraint EL. La conception du régu-
lateur, la preuve de stabilité, ainsi que les simulations et les résultats ex-
périmentaux sont présentés pour montrer I’applicabilité de cette technique
aux systemes physiques.

Présentation de la theése

La these est organisée de la fagon suivante:
Une introduction prolongée en anglais est présentée dans le Chapitre 1.

En Chapitre 2 nous revoyons le théoreme de Hill-Moylan [22] pour établir la
propriété de cyclo-passivité des systemes PH. De plus, nous proposons
un paramétrage des sorties cyclo-passives pour ce type de systemes. Ce
paramétrage est donné en termes de parametres de la plante et de deux
mappages libres. Ensuite, la sortie cyclo-passive proposée est comparée a
celles rapportées dans [7, 14, 36, 43, 41, 42, 58, 60] et il est montré que
le nouveau paramétrage est adapté pour représenter chacune des sorties
cyclo-passives précédemment rapportées dans la littérature. Enfin, nous
présentons la génération de nouvelles sorties cyclo-passives en utilisant une
représentation alternative du systéme PH comme cela est fait dans [42].

Dans le Chapitre 3 nous revenons sur les résultats en Cbl et EB présentés
en [7, 42, 60]. Dans ce chapitre, nous présentons les résultats en Cbl
et EB en utilisant la paramétrisation de la sortie cyclo-passive proposée
dans le Chapitre 2. En plus, 'approche EB est dotée d’une interprétation
physique et est liée & Cbl, ot il est montré que sous certaines circonstances,
I’ensemble des PDEs a étre résoudre pour Cbl coincide avec I’ensemble des
PDEs a résolu pour EB. Ces PDEs sont résumées dans deux tableaux qui
fournissent un cadre unifié pour les deux approches. A la fin du chapitre,
nous présentons deux exemples pour illustrer ’application de Cbl et EB
pour la stabilisation d’un équilibre désiré.

En Chapitre 4 nous présentons une procédure constructive pour stabiliser
les systemes PH sans qu’il soit nécessaire de résoudre des PDEs. La
méthodologie est, en principe, développée en considérant la sortie de
fagonnage de la puissance (yps) comme variable de port, ce résultat a été
présenté dans [4]. Dans cette procédure le fagonnage de 1'énergie s’effectue
via un retour d’état négatif. Par ailleurs, la méthodologie est comparée aux
techniques d’assignation d’interconnexion et amortissement (IDA) et EB,
en établissant une relation entre eux. Ensuite, nous explorons 'utilisation
de la sortie passive plus générale pour la conception du PI ainsi que la re-
laxation de la condition d’intégrabilité. Enfin, nous présentons plusieurs
exemples pour illustrer la méthode.

Le Chapitre 5 est un complément du Chapitre 4. Nous proposons deux alterna-
tives pour la conception des régulateurs PID. Tout d’abord un régulateur
PID de la sortie naturelle dont conditions pour avoir un terme dérivatif
calculable sont étudiées. Le deuxieme régulateur PID est construit en deux
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étapes: le retour négatif d’un terme intégral de la sortie passive de degré
relatif zéro et apres ’addition des termes proportionnel et dérivatif de la
sortie naturelle du nouveau systéme PH. Enfin, nous présentons plusieurs
exemples pour illustrer la méthode.

Le Chapitre 6 est consacré a Papplication du régulateur PID présenté en [13].

Dans ce chapitre nous étudions le systéme du pendule inversé ultra flexible,
lequel est représenté sous la forme d’un modele contraint EL. La premiere
étape de la conception du PID est de réduire le modele contraint a un
modele purement différentiel. Par la suite, la conception du contréle et
la preuve de stabilité en boucle fermée sont effectuées comme dans [13],
ou l'ensemble des gains est choisi par I'analyse du systéme linéarisé en
boucle fermée. Enfin, des simulations et des résultats expérimentaux sont
présentés pour corroborér le résultat théorique.

Finalement, au Chapitre 7 nous présentons les conclusions et des travaux futurs

dans la méme ligne de recherche que les résultats exposés précédemment.



Chapter 1

Introduction

The control of physical systems has been studied and applied for several cen-
turies for many purposes. Notably, in the last few decades we have been wit-
nesses of a huge development in control theory, particularly, by the end of the
80s a complete theory for linear systems was developed, in [3] a brief history of
the Automatic Control is presented. The tools of analysis and the techniques of
control synthesis for general linear systems have been applied in many practical
situations that fit this theory. Nevertheless, the different control tasks, e.g.,
regulation or tracking of trajectories are far from be synthesized for nonlinear
systems. As a matter of fact, new technological developments and the incursion
in sciences as economics or biology, have brought the necessity of a more com-
plex analysis and control theory. In spite of the extensive study of nonlinear
systems, the existing techniques for its stabilization are available only for spe-
cial classes of them. The material reported in this work is aimed at revisiting
and trying to develop theory for a well-defined class of nonlinear systems to be
controlled, which covers a broad spectrum of physical systems.

1.1 An Energy-Based Framework for Physical
Systems

For physical systems, the concept of energy plays a fundamental role in science
and engineering practice, establishing the lingua franca among different physical
domains, e.g., mechanical, electrical, thermal, hydraulic, etc. Therefore, the
concept of energy is a cornerstone in the pursuit of a unified framework for
appropriately modeling the real world phenomena. In this approach of modeling
and analysis, the physical systems are regarded as the interconnection of three
type of ideal elements:

o FEnergy-storing elements. All the components that store energy, e.g., ideal
inductor, ideal spring, ideal reservoir, etc. A system is dynamic if has
storing elements.

o Energy-dissipating elements. All the components that dissipate energy,
e.g., ideal electrical resistor, ideal friction, ideal heat resistor, etc. This
kind of components transform the energy in an irreversible way.

13
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e Energy-routing elements. All the components that only redirect the power
flow in the overall system, including ideal constrains, transformers and
gyrators, e.g., ideal electrical transformer, ideal turbine, ideal gear-box,
etc. In contrast with the dissipative elements, the energy transformation
in this case is reversible.

Whilst, the interaction between the system and its environment is represented by
an external port, e.g., sources, actuators, sensors, etc. An exhaustive discussion
on this topic may be found in [14, 59, 61].

In this energy-based framework the dynamical systems are considered as
energy-transforming devices. The latter has several advantages in the analysis
and control of nonlinear systems, one of them is that the analysis of complex
dynamical systems can be carried out via their decomposition into simpler sub-
systems that, upon interconnection, add up their energies to determine the full
original system’s behavior. Another advantage is that the energy will provide
fundamental information for the control design, and in some cases, a physical
interpretation of the controller. All these features will be discussed with more
detail in later sections of this Chapter.

1.2 Passivity and Energy-Shaping

Passivity is a physical property that has its origin in circuit theory where an
electrical network is passive if all its elements are passive, that is, if its elements
cannot deliver energy to the outside world, for further details of passivity in
circuit theory we refer the reader to [10]. In 1972 the seminal work [62] provided
a general theory for dissipative systems including the passivity concept as a
particular case of dissipativeness, this theory was further developed in [21, 22, 63]
and recently revisited in [32]. In control theory, a dynamical system —in its state-
space representation— is called passive if the input flow of energy is greater than
or equal to the difference between the initial and the final stored energies'. The
latter is mathematically represented by the following inequality

t1

H(a(t) - Halt) < [ 47 @u(o)e (11)
to

where x is the state of the system, u, y are the input and the output, respectively,

and whose product has power units, H represents the stored energy and the time

interval satisfies that t1 > t.

It has been mentioned that the energy of a system determines its behavior,
thence, intuitively the passivity property is related to the stability of the system.
This deduction is in general true, in fact, taking into account some technical
conditions and the definition of stability under consideration, a passive system
is stable. A major result for passive systems is that the interconnection of two
passive systems —via an adequate interconnection subsystem— yields into a pas-
sive system, in particular, the negative (and positive in some cases) feedback
interconnection of two passive systems is again passive, for further details see

Mn [32] these systems are called internally passive systems. It should be point out that
there exist different definitions of passive systems depending on several factors, as for example,
their representation. Nonetheless, an equivalence (or at least a connection) between the
different definitions can be established. For further details see [62, 32]
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chapters 3 and 4 of [58]. The latter result is instrumental for control design and
analysis of passive systems. It is important to underscore that, while the pas-
sivity is in principle a physical property, in passivity theory is not required that
the system’s energy (storage) function corresponds to real physical energy, this
enlarges the set of systems for which the passivity theory provides a methodic
procedure of analysis and control design.

In the energy-based framework, it turns out that a natural way to control
a physical system is to modify its energy function, this procedure is known as
energy-shaping. In contrast with some classical techniques that try to impose
a desired behavior trough nonlinearities cancellation and high gains controllers,
the energy-shaping approach try to exploits the structure and the physical prop-
erties (when is the case) of the system. The aforementioned procedure has its
roots in the pioneering works of Takegaki and Arimoto [55] and Jonckheere [25]
published in 1981. The term Passivity-Based Control (PBC) was coined in [40]
where it was observed that passivity theory provides a suitable mathematical
framework to formalize the energy-shaping technique. The basic idea of PBC is
to design a controller that accomplishes the control task, e.g., stabilization, by
rendering the system passive with respect to a desired energy function and in-
jecting damping. Since the publication of [40] more than two decades ago, PBC
has attracted the attention of many researchers and currently counts among the
most popular controller design techniques. There are many variations of the
basic PBC idea, and we refer the interested reader to [14, 38, 52, 58] for further
details and a list of references.

The different PBC techniques can be classified in two main classes:

e The techniques that a priori select the structure of the energy functions
to be assigned and then design the controller that renders the desired
energy function non-increasing. Within this class we find the proportional
integral derivative (PID) PBC and the energy-balancing (EB) controllers.

e The techniques where the closed-loop structure is chosen and then the
family of possible energy functions is characterized by a partial differential
equation (PDE). In this approach we find the interconnection and damping
assignment (IDA) and the control by interconnection (CbI).

Despite of the practical and theoretical appealing that offers a methodical
and, in some cases, intuitive procedure as PBC, there are different constraints
and limitations that arise during the control design. This issues depend on the
PBC technique and the control objective, e.g., the called dissipation obstacle
in Cbl, the necessity of solutions for the PDEs in IDA, the imposition of a
closed-loop structure that reduces the set of stabilizable plants (see [37] for
an example), etc. Several works has developed alternatives to overcome this
limitations and some of them will be discussed in the following chapters of this
document.

1.3 Port-Hamiltonian Systems

The major part of this thesis work is devoted to the analysis and control of dy-
namical systems that admit a particular representation, called port-Hamiltonian
(PH) model. The PH models are endowed with a special geometric structure
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where it is underscored the importance of the energy function, the interconnec-
tion pattern and the dissipation of the system, which are the essential ingredients
of PBC. Henceforth, we refer a dynamical system that can be represented by a
PH model as a PH system. As shown in [14, 58, 59|, the PH systems encom-
pass a very large class of physical nonlinear systems, furthermore, this approach
is particularly useful for a systematic mathematical treatment of multi-physics
systems, that is, systems containing subsystems from different physical domains.
Moreover, the PH systems are not limited to physical systems, in fact, an ad-
vantage of this approach is its extension to physical system models with virtual
system components, which may or not may mimick a physical dynamics. A
clear example of the latter is a controller, programmed into a microprocessor,
interconnected to a physical system.

There are many representations of PH systems, in this thesis work we are
particularly interested in the called input-state-output form, where the state
is assumed finite dimensional and the port variables are the input and output
vectors. This representation of PH systems satisfies the called cyclo-passivity?
inequality, given by

H<yu, (1.2)

where H is the energy function and u, y are the input and output vector, respec-
tively. It is clear that, integrating the equation above from ¢g to ¢; we obtain the
inequality described in (1.1). Notice that, while u usually denotes the control
input, y is not fixed in the inequality (1.2). Hence, all the possible signals y
that satisfy (1.2) for an input u are called cyclo-passive outputs.

The present work is focused on the application of PBC to PH systems and,
in Chapter 6, to Euler-Lagrange (EL) systems. Particularly, we are interested
in constructive methods of control design that, exploiting the different cyclo-
passive outputs, overcome the constraints of the PBC techniques enlarging the
applicability of this control approach.

1.4 Thesis Overview and Contributions

The results presented in this thesis are mainly based on the works [7, 13, 42,
45, 60]. Therefore, the PBCs here formulated extend the methodologies re-
ported therein. A brief introduction of this line of research as well as the main
contributions of the thesis is described in the following.

In [42] a CbI is the interconnection, via a lossless subsystem, of the PH sys-
tem to be stabilized with a dynamic controller, which is another PH system.
Hence, a straightforward application of the Passivity Theorem [11] shows that
the closed-loop system is still cyclo-passive and its storage function is described
by the addition of the energy functions of the plant and the controller. To as-
sign to the closed-loop storage function a desired shape it is necessary to relate
the states of the plant and the controller, this is done via the generation of
invariant sets, defined by the so-called Casimir functions. In [43] it has been
shown that in its simplest formulation Cbl is hampered by the so-called dissi-
pation obstacle which, roughly speaking, means that the damped coordinates
cannot be shaped. In [42], with the aim of extending the applicability of Cbl, in

2The difference between passivity and cyclo-passivity will be briefly discussed in the next
chapter.
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particular to overcome the aforementioned dissipation obstacle, two extensions
in the methodology are proposed: first the use of the so-called power shaping
output, instead of the natural output, in the CbI design. Second, the use of a
state-modulated interconnection scheme.

On the other hand, in [60] CbI is studied from a geometrical point of view.
Where, starting from the concept of Dirac structure, a deep analysis of the
geometrical properties of PH systems leads to the proposition of a more general
cyclo-passive output. Furthermore, it is shown that the use of the more general
output is suitable to overcome the dissipation obstacle. To shape the overall
energy function it is, again, necessary the generation of Casimir functions to
relate the states of the plant with the states of the controller.

Following the results reported in [42, 60], in the current thesis we propose
an alternative parameterization of the general cyclo-passive output, which de-
pends on parameters of the plant and two free mappings. An advantage of this
parameterization is that it avoids the sign condition over the so-called gener-
alized damping matrix imposed on the output proposed in [60]. Moreover, it
is proved that the other cyclo-passive outputs reported in the literature can be
expressed in terms of the before mentioned parameterization. Therefore, the
Cbl and EB-PBC approaches are studied and compared using this parameter-
ized cyclo-passive output. Another contribution in this line of research is a
unified framework, given in form of tables, where the PDEs to be solved, in
these approaches, for all the cyclo-passive outputs are provided and compared.

In [13], a PID controller without solving PDEs has been proposed for a class
of mechanical systems, which are represented as EL systems. In contrast with
Cbl, this PID controller is a static-feedback that does not preserves the original
structure of the plant. Indeed, in this case the controller only pays attention
to the energy shaping, ensuring that the overall energy function satisfies the
cyclo-passive inequality and furthermore it qualifies as Lyapunov function to
prove stability of a desired equilibrium point. This novel PID controller is
constructed in two steps: first a partial feedback linearization (PFL) [54] applied
that transforms the system into Spong’s normal form—if this system is still EL,
two new passive outputs are immediately identified. Second, a classical PID
around a suitable combination of these passive outputs completes the design.

Following the results on EB-PBC presented in [7] and the PID controller
reported in [13], we present a PI-like controller for a class of PH systems. The
starting point in the design of this controller is the well-known power shaping
output [36]. Thus, we shape the energy of the overall system adding a suitable
function of the first integral of the before mentioned cyclo-passive output. The
proposed design allow us to assign the equilibrium of the closed-loop system
without solving PDEs. Moreover, it is shown that, under some conditions,
the desired equilibrium is stable in the sense of Lyapunov. As an additional
contribution, we extend the PI-like controller in two ways, first, we propose an
input-output change that enlarges the set of stabilizable plants by this controller.
Second, we construct the PI around the parameterization of the general cyclo-
passive output. As a final result, in this line of research, we proposed two
PID-PBC based on the cyclo-passive outputs of the PH system. Similar to
the PI case, we state the conditions under which these controllers assign and
stabilize the desired equilibrium of the overall system.

A final contribution of this thesis is the application of the PID-PBC reported
in [13] to an ultra flexible inverted pendulum whose model is borrowed from
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[45]. In this case, the PID-PBC cannot be directly applied due to a constraint
present in the EL model. Therefore, a first step towards the stabilization is the
elimination of this constraint. Once a suitable model is obtained, the application
of the methodology is straightforward and the tuning gains of the PID are
selected based on the poles of the linearized closed-loop system and the level
curves of the potential energy of the overall system. Finally, simulations and
experimental results are reported corroborating the theoretical ones.

1.5 Outline of the Thesis

The current thesis is organized as follows.

In Chapter 2, we revisit the Hill-Moylan’s Theorem [22] to establish the cyclo-
passivity property of PH systems. Moreover, we propose a parameteri-
zation of the cyclo-passive outputs for PH systems. This parameteriza-
tion is given in terms of parameters of the plant and two free mappings.
The proposed cyclo-passive output is compared with the ones reported in
[7, 14, 36, 43, 41, 42, 58, 60] and it is shown that the new parameterization
is suitable to represent each one of the cyclo-passive outputs previously
reported. Finally, we present the generation of new cyclo-passive outputs
using an alternative representation of the PH system as is done in [42].

In Chapter 3, we revisit the results on Cbl and EB reported in [7, 42, 60]. In
this chapter we present the results on Cbl and EB using the parameter-
ization of the cyclo-passive output proposed in Chapter 2. Additionally,
the EB approach is endowed with a physical interpretation and it is re-
lated to the Cbl, where it is shown that under some circumstances the
set of PDEs to be solved for Cbl coincides with the set of PDEs to be
solved for EB. These PDEs are summarized in two tables which provide
an unified framework for both approaches. At the end of the chapter we
present two examples which illustrates the application of Cbl and EB for
stabilization of a desired equilibrium. The main results of this chapter has
been partially reported in [33].

In Chapter 4, we present a constructive procedure to stabilize PH systems
without the necessity of solving PDEs. This procedure has been reported
in [4], where the energy shaping is carried out through the negative feed-
back of the first integral of the energy shaping output. We state the
conditions to design the PI-like controller in such way that stabilizes the
desired equilibrium in closed-loop. Moreover, the methodology is com-
pared with IDA-PBC and EB-PBC establishing a relation between them.
We also present two extensions of the results reported in [4]: first, the
modification the external port of the PH system to relax the integrability
condition present in the design of the PI-like controller. Second, the use of
the parameterized cyclo-passive output proposed in Chapter 2, instead of
the power shaping output, to design the PI-like stabilizer. The last part of
the chapter consists in four examples which illustrates the applicability of
the technique, its limitations and the enlargement of the set of stabilizable
PH systems via the aforementioned extensions.
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Chapter 5 is a complement of Chapter 4. In this chapter we propose two al-
ternatives to design a PID-like controller based on the results reported in
the previous chapter. The first controller is based on the natural output,
hence the necessary conditions to have a computable derivative term on
the natural output are studied. In this case, a constraint similar to the
dissipation obstacle in Cbl arises. The second PID-like controller is con-
structed in two steps: first, based on the PI-like controller of Chapter 4 we
propose an integral-like term on the power shaping output. Then, we add
the proportional and derivative terms on the natural output of the new
PH system. In the last part of the chapter we present two examples which
illustrates the applicability of both PID controllers and how they enlarge
the class of stabilizable plants with respect to the controller reported in
the previous chapter.

In contrast with the previous chapters, in Chapter 6 the representation of the
system under study is the EL one. This chapter is entirely devoted to
the application of the PID controller reported in [13] to the ultra flexi-
ble inverted pendulum whose constrained EL model has been reported in
[45]. Due to the complex nature of the energy function of the system,
PBC techniques which rely on the solution of PDEs are not suitable for
control design purposes. Furthermore, an extra step is needed to apply
the PID controller proposed in [13], that is, the projection of the system
on the manifold defined by the constraint. Once the system is represented
in a suitable, form the PID controller is designed as in the aforementioned
reference. Thus, the set of gains are selected via the analysis of the lin-
earized closed-loop system and corroborated through simulations. In the
last section of the chapter some experimental results are reported. This
chapter has been reported in [17].

Finally, to wrap up the current thesis, in Chapter 7 we present some concluding
remarks and future work in the same line of research as the results exposed
in the previous chapters.



20

CHAPTER 1.

INTRODUCTION



Chapter 2

Passive outputs of PH
systems

The objective of this chapter is to provide a theoretical framework for PH sys-
tems and their passive properties. Towards this end, we start recalling the
Hill-Moylan’s Theorem and the so-called input-state-output representation of
PH systems. The main result of this chapter is the fully characterization of the
passive outputs for the aforementioned class of systems, considering the Hamil-
tonian as storage function. Moreover, it is shown that the passive outputs
reported in the literature—see [7, 14, 36, 43, 41, 42, 58, 60]—can be described
by this parameterization. Additionally, we present the parameterization of the
new passive outputs generated by alternative storage functions. The passive
outputs presented in this chapter will be instrumental to establish the results
of the following chapters.

2.1 Preliminaries

Consider a general nonlinear system of the form

i o= f@)+g@u
y = h@)+ i@ @1)

where x € R" is the state vector, u € R™ is the input and y € R™ is the
output, with n > m, ¢ : R® — R™*™ is the input matrix, which is full rank?,
j:R™ = R™*™ and h: R" — R™.

2.1.1 Passive systems

Definition 2.1.1 System (2.1) is said to be cyclo-passive if there exist a differ-
entiable function H : R™ — R (called storage function) that satisfies the power

balance inequality .
H<y'u (2.2)

when evaluated along the trajectories of (2.1). Additionally, if H is bounded
from below, then (2.1) is a passive system.

'In the sequel we will consider the under-actuated case, where n > m and rank {g} = m.
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Given the definition above, it is clear that every passive system is cyclo-
passive, nonetheless, the converse is not true. In terms of energy, the difference
between passive systems and cyclo-passive systems is elucidated as follows: while
a passive system is not allowed to generate energy for any trajectory, for cyclo-
passive systems, this behavior must hold only for closed trajectories, in other
words, the cyclo-passivity inequality (2.2) is required to be satisfied only for the
subset of inputs that return the state to its initial value. A physical example of a
cyclo-passive, but not passive, system is a circuit built from typical resistors and
negative capacitors or inductors, which can store negative energy. For further
details on the difference between cyclo-passive systems and passive systems we
refer the reader to [32, 58].

The Hill-Moylan’s Theorem [22], establishes the conditions that a nonlinear
system, represented by (2.1), must satisfy to be called (cyclo-)passive. For the
sake of completeness and clarity we recall the aforementioned theorem below.

Theorem 2.1.1 The system (2.1) is cyclo-passive with storage function H(x)
if and only if, for some q € N, there exist functions [ : R™ — R? and w : R® —
RI*™ gsych that

—li@)* = (VH(z))" f(x)
h(z) = g7 (x)VH(z)+2w' (2)l(z) (2.3)
w(@)]* = syn{j(z)}

Proof: This proof is a particular case of the one presented for Theorem 9
in Chapter 5 of [32].
To establish the necessity, we, first, replace (2.1) in the inequality (2.2)
yielding?
(VH)"(f + gu) < (h+ ju) " u.
The latter inequality is equivalent to
0 < —(VE) T f+(h—g'VH)Tu+u"jTu

—~(VE)Tf  Lh-g"VH)T 1 (2.4)
1 o] TP gj Hu]

Notice that the inequality above must hold for all z and u. Furthermore, its
right-hand term has only linear and quadratic functions in u, hence without loss
of generality, it can be expressed as a quadratic form in the variable u. That is,

l1(z) + w(z)u|® =17 (2)l(z) + 2w (2)l(z) + v (z)w(z) (2.5)

where the functions I(z) and w(xz) are non-unique. Now, equating the coeffi-
cients of u in the right-hand terms of (2.4) and (2.5) we obtain the conditions
given in (2.3). For sufficiency, we simply replace the equations (2.3) into the
time derivative of H to get

H = (VH)'(f+gu)
—1"l+hTu—20"Twu
11 =2Twu —u"jTu+y u

= —fl(2) +w(@)ul* +y u <y u.

O

2To simplify notation, throughout the remaining of some proofs the argument z is omitted
from all mappings.
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2.2 Passivity of PH systems

We now focus on PH systems whose dynamics is described by the standard
input-state-output representation® [14, 58]

(J () = R(x)) VH(x) + g(x)u
hx) + j(x)u,

where H(x) is the energy (storage) function of the system, namely the Hamil-
tonian, which we assume is bounded from below 4, J,R : R* — R"*"  with
J(x) = -J " (x) and R(z) = R"(x) > 0, are the interconnection and damp-
ing matrices, respectively. To simplify the notation in the sequel we define the
matrix F : R™ — R?*",

x

v (2.6)

F(z) = J(z) — R(z).

To streamline the characterization of all passive outputs for the PH system
(2.6), we introduce a (non-unique) factorization of the dissipation matrix of the
form

R(z) = ¢ (2)(x), (2.7)
where ¢ : R — R?*" with ¢ € N satisfying ¢ > rank {R(z)}. We recall the
basic linear algebra fact that R(x) > 0 if and only if such a factor exists [23].

Proposition 2.2.1 Consider the PH system (2.6). The following statements
are equivalent.

(S1) The mapping u — y is passive with storage function H(x).

(S2) For any factorization of the dissipation matriz R(z) of the form (2.7) the
mappings h(xz) and j(x) can be expressed as

(o x>+2qﬁ (@)w(z)) " VH(z)
W (x)w(z) + Diz), 28)

for some mappings w : R™ — R*™ agnd D : R" — R™*™  with D(x)
skew-symmetric.

S o
8 &
I

Proof: From Theorem 2.1.1, see also [58, 32], it follows that the system
(2.6) is passive if and only if

[ 2(VH)"RVH (¢g"VH —h)" ] <0
g'VH —h —(G+3i") =7

To prove that (S2) implies (S1) replace (2.7) and the definitions of h(z) and
j(x), given in (2.8), to get

_|¢VH]> —(VH) ¢ Tw
2 [ —wTOVH  —|w]? =0,

which is always satisfied.

3In the PH framework we use the symbol y(.) to distinguish the general passive output
from the so-called natural output which is often denoted as y.

4This assumption is made to simplify the presentation, since in this case we deal with
passivity of the PH system instead of cyclo-passivity.
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The proof that (S1) implies (S2) proceeds as follows [52]. Assume u +— y is
passive with storage function H(z) and define the mapping d : R” x R"™ — Rxg

d(z,u) == —H +u" (h(z) 4 j(x)u) > 0. (2.9)

Evaluating H along the trajectories of (2.6) and using (2.7) we get
1
d=(VH) ¢ ¢VH +u' (h—g"VH)+ su'(j+5" u.

Because d(z, u) is quadratic in u and nonnegative for all 4 and z, there exist a
(non-unique) matrix valued function w(x) such that

d=(VH) ¢"¢VH + 2w ¢VH + v w wu.

The proof that h(z) and j(z) take the form (2.8) is established equating the
terms in u and invoking the skew-symmetry of D(z).
(]

2.3 Particular cases of passive outputs

In this subsection we prove that all passive outputs of the PH system (2.6)
reported in the literature are particular cases, or alternative representations, of
the output (2.8).

Proposition 2.3.1 Consider the output y(.y, given in the second equation of
(2.6), and its parameterization (2.8). The following implications hold true.

e Natural output [43, 58]:
15((9;);% } =y =yi=g (&)VH(z). (2.10)

e Power-shaping output of [36] with F(x) full rank:

w(z) = ¢x)F(z)g(x) }
D) = —g'(@)F T (@)J(@)F }(z)g(x) (2.11)

= Y) =Yps = 9" (x)F~ T (2)d.

o The alternative output of [14, 41, 60] with generalized damping matriz
verifying

Z(z) = [ IZQT(E’% ggg ] >0 (2.12)

S(z " (@)w(x) }

) w
T(z) = ¢"(x)w(z) (2.13)

= g0y = yw = (9(e) + 2T(2)) TVH() + (S(2) + D(a))u.
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o Power-shaping output of [36] with F(x) not full rank but verifying

F'(2)(F'(2)) (2)F(z) = F(z) (2.14)
span{g(x)} C span{F(x)} : (2.15)

w(z) = ¢(z)F (z)g(x) }
D(x) = —g" (2)(F"(2)) " (2) T (2) F¥(x)g()

=y =ts = —g ' ()(Fi(z)) .

Proof:

The proofs of (2.10) and (2.13) follow via direct replacement of the definitions
of w(x) and D(z) in (2.8). For the latter notice that the generalized damping
matrix takes the form

[ T@é@) T @)
2@ = | yT@é@) v (@w()

which clearly satisfies the condition (2.12). Furthermore, since ¢ > rank {R(x)}
and w(x) is free, taking the integer ¢ large enough it is possible to construct
any matrix T'(x) such that

rank {T'(x)} < max{rank {R(z)},rank {S(x)}}.
To prove (2.11) replace the definitions of w(x) and D(z) in (2.8) to get
9+20 ¢Fg) ' VH +g"F~ (676~ T)F " gu

vy =
(g+2RF1g)'"VH+¢"F"T(R-J)F 'gu
= (I+2RFNg)'VH —g"F"TFFgu
(F+2R)F~'g)"VH —g"F~Tgu
(T+R)F19)'VH —g"F~Tgu

= (F'F'9)'VH—-g"F "gu

= —g'F TFVH —g"F~ Tgu

= —g ' F~T(FVH + gu)

= —¢'F T
Finally, we proceed to establish (2.16). Towards this end we recall Lemmata

A.2 and A.3 given in Appendix A—see also [7, 48]—that state that (2.14) is
equivalent to the existence of a mapping Z : R™ — R™*™ solution of the equation

F'ZF = —F, (2.17)
and that (2.15) and (2.17) imply that

F'Zg=—g, (2.18)
respectively. Now, defining Z as

Z = —(F)TFFT (2.19)
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and with the choice of w given in (2.16) it is easy to verify that

g+2¢0"¢FTg)"
F'Zg+20"pFig)"
FI(F"Y'FFTg+2RFTg)"

(g+20"w)" = (
(—
(
= (FF'g+2RFTg)T
(
(
(-

F+2R)FTg)T

J+TR) FT g)"

= (=FTFTg)

= - (FT)TF. (2.20)

— =~

where we have used (2.18) in the second equation, (2.19) in the third equation
and (2.14) in the fourth and ninth equation. Then, using the w and D given in
(2.16) we get

wlw+D = g (FN)T¢ ¢Flg— g (FI)TTFg
= g (F)TRFg—gT(F")TJF'g
= —g' (F')'(J -R)F'g
= —g (F)TFF'g
= g (F))TFTZg
= YTy (221)

where we have used (2.14) in the fifth equation, (2.18) and (2.19) in the last
equation. Replacing (2.20) and (2.21) in (2.8) and (2.6) we obtain

Yoy =—g (@)(Fi(z)) ",

which completes the proof.

2.4 Generating new passive outputs

It turns out that a PH system has an infinite number of representations, and
consequently of storage functions H(x) such that Hy < 0. Indeed, every pair
(Fs(x), Hs(x)) that satisfies

Fy(x)VHs(z) = F(z)VH(z), (2.22)

with Fs(z) verifying sym{Fs(z)} < 0, is an alternative representation of the
system (2.6). Thus, the first equation of (2.6) can be expressed as

& = Fs(x)VHg(x) + g(z)u. (2.23)

Although the dynamics (2.6) and (2.23) are identical, the passive outputs for
the latter are not the same as the ones defined as y(.y in (2.6). The new passive
outputs y(.ys, correspondent to the storage functions H(x), are characterized
in the proposition below.
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Proposition 2.4.1 Let

Ts(x) skew{F(x)}
Rs(z) = —sym{Fs(2)} = ¢s(z)8, (z),

where ¢g : R™ — R with q € N satisfying ¢ > rank {Rs(x)}. Consider the
system (2.23), then the inequality

(2.24)

Hy <ylyu (2.25)

holds for any function y(.)s that can be expressed as

YuDs = (g(z) +2¢) (x)ws(z))T VH,(z)+ (w] (2)ws(x) + Dy(x))u,  (2.26)

for some mappings ws : R™ — RI*™ and Dy : R® — R™*™ with Dg(x) skew-
symmetric.

Proof: The proof follows from Proposition 2.2.1.
O
The following proposition—see also [42]—provides a constructive procedure to
identify alternative storage functions.

Proposition 2.4.2 For all full rank matrices Fs solution of the PDE
V(F7'FVH) = (V(F7'FVH)) (2.27)

with Fs verifying (2.24), there exists a storage function Hs such that (2.22)
holds.

Proof: The Poincare’s Lemma’ states that (2.27) is necessary and sufficient
for the existence of Hg such that

VH, = F'FVH (2.28)

which is equivalent to (2.22).

O
In order to make a distinction between all possible passive outputs with respect
to H, in the sequel we will denote the general output given in (2.6) and its
parameterization (2.8) as yup. Additionally, for passive outputs with respect
to Hy we add a subindex s to the respective output, that is, y.ps denotes the
output described in (2.26), the power shaping output is given by

s = 97 @)(Fl(@))"¢ or (2.29)

ys := g (2)VH,(x). (2.30)

5See Lemma A.1 in Appendix A.
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Chapter 3

Cbl of PH systems

We consider in this chapter the PBC techniques of Cbl and EB-PBC. These
techniques have been previously studied in [9, 43, 42, 35] to which we refer the
reader for additional information. In particular, in [42] the relationships between
CbI and EB-PBC of PH systems are thoroughly explored. In that paper a Cbl
is the interconnection through a loss-less subsystem of the PH system to be
controlled and a dynamic controller, which is another PH system with its own
state variables and energy function. Since passivity is invariant with respect
to lossless interconnections the overall system is still passive with new energy
function the sum of the energy functions of the plant and the controller.! On the
other hand, EB-PBC in [42] is viewed as a particular static state-feedback .(x)
that satisfies the power balance H, = —@y, for some function H,(z). Clearly,
setting u = @i.(x) + v, with v an external signal, yields H + H, < vy, ensuring
passivity of the closed-loop system with new energy function H(x) + H,(x).
The fact that the closed-loop energy function is the sum of the systems and
controller energies motivates the qualifier “energy-balancing”.

In this chapter we propose to view EB-PBC as a particular instance of Cbl
where the controller is a requlated source and the interconnection is the standard
negative feedback. This simple notational modification permits to put in a uni-
fied framework both controller design techniques. At a more fundamental level,
viewing EB-PBC as interconnected subsystems is consistent with the behav-
ioral framework [46], which rightfully claims that the classical input-to-output
assignment perspective is unsuitable to deal, at an appropriately general level,
with the basic tenets of systems theory.

The main objective of this chapter is to explore the advantages of using the
different passive outputs—reported in the previous chapter—in Cbl and EB
PBC. Unfortunately, we prove that the use of this general passive output does
not enlarge, with respect to the existing results, the class of systems for which
Cbl is applicable.

Another contribution of the current chapter is that the derivation of the
PDEs to be solved is rather straightforward and should be contrasted with the
more complicated one reported in [42]—where the PDEs are obtained via the
selection of the desired dissipation.

ITo assign to the overall energy function a desired shape, it is necessary to “relate” the
states of the plant and the controller via the generation of invariant sets—a key step that is
discussed later in the paper.
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3.1 Standard Cbl

Consider the PH system ¥, given by (2.6) with y.y = y. The starting point for
Cbl is the power-balance equation

H=—|VH|% +u'y. (3.1)
Using the fact that R > 0 we obtain the bound
H<u'y, (3.2)

that we refer as cyclo-passivity inequality.
We consider the simplest PH controller consisting of m integrators

xlc = Uc
zc.{ . YH.) (3.3)

where x., uc, y. € R™ and the controller Hamiltonian H. : R™ — R is to be
defined. Clearly, the controller is lossless, that is, it satisfies

H.=0. (3.4)

The regulator, 3., and the plant X, are coupled via the standard interconnec-
tion subsystem, corresponding to the usual negative feedback interconnection,

defined as
sof[z)-[2 F ) L) e

The Figure 3.1 represents the simplest formulation of the Cbl approach.

Jof
Ye ZC
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Figure 3.1: Standard Cbl scheme with negative feedback interconnection (3.5).

Adding up (3.2) and (3.4), and using (3.5), we get
H+H.<v'y. (3.6)

Hence, the interconnected system is also passive with port variables (v,y) and
new energy function the sum of the energy functions of the plant and the con-
troller. The objective of Cbl is to assign to the overall energy function a desired
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shape—in the simplest case of equilibrium stabilization to assign a minimum
at the desired point. Hence, it is necessary to “relate” the states of the plant
and the controller looking for conserved quantities (dynamical invariants) of the
overall system. If such quantities can be found we can generate Lyapunov func-
tion candidates combining the conserved quantities and the energy function. To
mathematically formalize the discussion above we need the following definitions.

Definition 3.1.1 The set of assignable equilibria of PH systems, described in
(2.6), is given by

&:={reR"| g (x)F(z)VH(z) =0} . (3.7)

Definition 3.1.2 Consider the PH system X given in (2.6), with y.y = y,
interconnected with the PH controller 3. defined in (3.3) via the standard power—
preserving interconnection (3.5). The function C(x) — z., where C : R™ — R™,
is a Casimir function of the interconnected system if and only if C — . = 0 for

all H and H.. That is, if and only if, C is a solution of the PDEs

F—g
T — =

(Vo7 |- ]| P =0 (3.
The following proposition, whose proof follows immediately from (3.6) and

Definition 3.1.2, provides the standard formulation of Cbl for equilibrium sta-
bilization.?

Proposition 3.1.1 Consider the system (2.6), with y.y = y, interconnected
with the controller (3.3) via (3.5). Assume, C(x) — x. is a Casimir function of
the interconnected system. Then, for all ® : R™ — R, the function

W (x,z.) = H(z) + He(z.) + D(C(x) — ) (3.9)
satisfies .
W < va.
Moreover, if (2., x.,) € R™ x R™ is an equilibrium of the interconnected system

with v =0 and
(T4, e, ) = argmin W(z, z.),

and it is isolated, then (x.,x.,) is stable in the sense of Lyapunov with Lyapunov
function W.

3.1.1 Extending the applicability of Cbl

In [42], see also [7], it is shown that a necessary condition for the solvability of
the PDEs (3.8) is
RVC =0, (3.10)

which implies that
RV, 2 =0

whose consequence is that the coordinates where dissipation is present cannot
be “shaped”, this limitation is known as the dissipation obstacle [43].%> Tt is

2See [14, 42] for further details.
3See [30] for some new insight into the implications of the dissipation obstacle in Cbl.
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also possible to express this phenomenon in terms of the energy provided to the
plant by the controller system, as states the proposition below.

Proposition 3.1.2 Let z, € & be the equilibrium of the PH system (2.6) to
be stabilized via Cbl, and u,y the corresponding input and output. If the PDE
(3.8) admits a solution then u. y. = 0.

Proof: From (3.10), we have that F'TVC = g is equivalent to
FVC = —g. (3.11)

On the other hand, at the equilibrium point & = 0, then we have the following
chain of equalities

F.(VH). + gux =

F.(VH), — F.(VC)su, =
F.((VH), — (VC)su,) =

= (VH), — (VC)suy) "F.((VH), — (VC)yu,) =
& (VH). = (VC)t) "RL((VH). — (VC)uu) =

o o o o o

where we used (3.11) to obtain the second equality. Replacing the condition
R+«(VC). = 0 in the latter expression we get

(VH),R.(VH), =0. (3.12)
Whilst the power balance equation at the equilibrium is given by
~(VH)[R(VH): +uy. =0

replacing (3.12) in the equation above

4 _
Z u CD Y-Y ZI ZC

x -

Figure 3.2: Electrical circuit analog of the Cbl scheme with external port vari-
ables (v,y(.).

To extend the domain of applicability of Cbl—in particular, to overcome the
dissipation obstacle—it is necessary to modify the port variable y. Therefore,
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in the following section we formulate the CbI approach considering the different
passive outputs defined in the previous chapter. The modification of the port
variable is schematically represented by the addition of a current source as shown
in Figure 3.2.

To further extend the realm of application of Cbl, in Section 5 of [42] the
simple negative feedback X is replaced by a state-modulated power-preserving
interconnection® of the form

o {[2]- I L)

where a : R” — R™*" is chosen by the designer. The aforementioned reference
presents the results of CbI using (3.13) and the passive outputs y, yps. In this
chapter we will only revisit these results for comparison purposes.

3.2 EB-PBC as a Cbl with regulated sources

In Section 3.1 we assumed that the controller is another dynamical system.
Actually, it is possible to use the framework of Cbl when the controller is a
static, state-requlated source and Y is given by (3.5), as shown in Figure 3.3.%
Even though the source does not contain energy storing elements it is clear that
it injects energy into the system. The key point here is to make this energy a
function of the state of the plant. Indeed, replacing in

H<uly,

the control law
u=0c(r) + v, (3.14)

with 4. : R® — R™ to be defined, we get
H< @Iy(.) + va(_).
Therefore, if the power balance equation
Hy = —a, y (3.15)

holds for some energy function H, : R" — R—that depends on the state of the
plant x—we get . .
H+ H, <0y, (3.16)

Hence, the interconnected system is passive with new storage function
Hy(x) := H(z) + Hy(x).

Moreover, if z, € R™ is an equilibrium of the interconnected system with v = 0
and
x, = argmin{ Hy(x)},

4See [58] for further details about this interconnection.

5The choice of a voltage source is done for clarity of presentation. All further developments
can be carried out selecting a current source instead. This underscores the fact that in Cbl
there is no need to a priori impose an input—output causality relation.
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and is isolated, it is stable with Lyapunov function Hg.

Following the terminology used in the literature, e.g., [7, 42, 43, 44], we
refer to this version of Cbl as EB-PBC. We use the symbol H,, instead of H,
to underscore that H, is an “added” energy, function of the plant state x, while
the latter is a bona fide energy function depending on the state x. of the energy
storing elements of the controller.

_|_

K EOVET

e

Figure 3.3: Electrical circuit analog of the EB-PBC scheme with u = 4.(x) + v
and external port variables (v, y(.)).

In contrast with the Standard CbI of Section 3.1, in EB-PBC it is not nec-
essary to look for conserved quantities. Indeed, in this case, the added energy
is already a function of the plant states and the overall energy can be shaped
with a suitable selection of H,. It is clear that (3.15) defines a PDE in the
unknown function H,—parameterized by the free function .. It is remarkable
that in spite of their fundamental difference the PDEs that need to be solved
coincide, under certain circumstances, in both approaches—as shown in [42] and
corroborated below.

3.3 Cbl with the different passive outputs

As discussed in Section 3.1, see Proposition 3.1.1, the stability analysis in Cbl
proceeds by adding to the systems total energy H + H. a cross—term of the
coordinates of the plant and the controller. This cross—term is an arbitrary
function, i.e., @, of the Casimir functions, which are defined solving some PDEs.
The PDEs that must be solved for CbI with y are given in (3.8). In this section
we identify the PDEs that need to be solved for the application of Cbl with the
passive outputs yps and yup.

3.3.1 Cbl with the power shaping output

Although the PDEs for Cbl with yps and ypss are given in Proposition 6 of [42]
the simple propositions below give a clearer characterization of them.

Proposition 3.3.1 Consider the PH system X, with y(.y = yps, interconnected
with the PH controller . defined in (38.3) via the standard power—preserving
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interconnection (3.5). Assume F is full rank® and verifies

(3.17)
(i) The solutions C of the PDE
VC =—-F"1g, (3.18)
define Casimir functions for the interconnected system.
(ii) For all ® : R™ — R, the function (3.9) satisfies

W S ’UTyps.

(iii) If (x4, ) € R™ X R™ is an equilibrium of the interconnected system with
v = 0 and it is an isolated minimum of W, then it is stable in the sense
of Lyapunov with Lyapunov function W.

Proof: In Proposition 6 of [42] it is shown that the PDEs in this case are
FYVC = —g. Noting that F' is full rank it follows from Poincare’s Lemma that
a necessary and sufficient condition for solvability of this PDEs is (3.17). This
completes the proof.

O

Proposition 3.3.2 Consider the PH system (2.23), (2.29) interconnected with
the PH controller ¥, defined in (3.3) via the standard power-preserving intercon-
nection (3.5). Consider matrices Fs verifying (2.24), (2.27) and the additional
integrability condition

V(E ) = (V) (3.19)
(i) The solutions C of the PDE
VC=-Fg,
define Casimir functions for the interconnected system.
(iii) For all ® : R™ — R, the function
Ws(z,zc) = Hs(x) + He(z) + ®(Cx) — ). (3.20)

satisfies
i T
Ws S U Ypss-

(iv) If (z4,2c,) € R™ X R"™ is an equilibrium of the interconnected system with
v =0 and it is an isolated minimum of Wy, then it is stable in the sense
of Lyapunov with Lyapunov function Wj.

Proof: The proof is identical to the proof of Proposition 3.3.1 using F
instead of F.
O

6This assumption can be relaxed by conditions (2.14), (2.15) and using F'! instead of F~1.
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3.3.2 Cbl with the general passive output

The PDEs for Cbl with y,p and y.ps are, respectively, described in the following
propositions.

Proposition 3.3.3 Consider the PH system X, with y(.y = yup, interconnected
with the PH controller . defined in (3.3) via the standard power-preserving
interconnection (3.5).

(i) A necessary condition for the existence of mappings C : R™ — R™ such that
C(x) — z. are Casimir functions of the interconnected system is that the
parameters w and D are chosen as

w = —¢VC
D = -vc'gve, (3.21)

with C the solutions of the PDEs

FVC = —g. (3.22)

(ii) For all ® : R™ — R, the function (3.9) satisfies

W S ’UTwa-

(iii) If (x4, ) € R™ X R™ is an equilibrium of the interconnected system with
v =0 and it is an isolated minimum of W, then it is stable in the sense of
Lyapunov with Lyapunov function W.

Proof: The dynamics of the interconnected system is

T | F —g VH n g
e | | (g+20Tw)T —(wTw+ D) VH, ww+D |
Now, C — &, = 0 for all H, H. and v, if and only if
r _
T _ 9 _
which can be equivalently written as

(VO'F = (g+2¢"w)" (3.24)
(VO 'g = w'w+D (3.25)

Replacing ¢ from (3.24) into (3.25) yields
(VO)TFTVe -2(VC)T¢"w=w"w+ D.
The symmetric part of the equation above is

w'w=—(VC)"RVC + (VC) ¢ w +w' ¢pVC, (3.26)
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while, the skew-symmetric part is
D=—((VC)TIVC+ (VC) "¢ w—w¢VC). (3.27)
Now, using the factorization of R given in (2.7) we can write (3.26) as
(w+ ¢VC)" (w+¢VC) = 0,
which is satisfied if and only if
w=—¢VC. (3.28)
Replacing (3.28) in (3.27) yields
D = —((VO)TIVC+ (VC) ¢ ¢VC — (VC)T¢TVC)
= —(vo)Tgve.

The proof is completed replacing (3.28) in (3.24) that yields (3.22).
O

Proposition 3.3.4 Consider the PH system (2.23), (2.26) interconnected with
the PH controller ¥, defined in (3.3) via the standard power-preserving inter-
connection (3.5).

(i) A necessary condition for the existence of mappings C : R™ — R™ such that
C(x) — z. are Casimir functions of the interconnected system is that the
parameters ws and Dg are chosen as zero or

ws, = —¢sVC
D, = —-vc'7. Ve, (3.29)

with C the solutions of the PDEs

F,VC = —g. (3.30)

(ii) For all ® : R™ — R, the function (3.20) satisfies

Ws S 'UTwas-

(iii) If (2, zc,) € R™ X R™ is an equilibrium of the interconnected system with
v =0 and it is an isolated minimum of Wy then it is stable in the sense
of Lyapunov with Lyapunov function Wj.

Proof: The proof is identical to the proof of Proposition 3.3.3 using Fj
instead of F'.
O

Remark 3.3.1 Some straightforward computations show that replacing the in-
terconnection subsystem (3.5) by (3.13), the PDEs (3.22) and (3.30) become

FVC = —go
F,VC = —ga.
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3.4 EB-PBC with the general passive output

In this section we consider EB-PBC using the outputs y,p and yups. The as-
sumption below is needed in this subsection.

Assumption 3.4.1 Assume there is a mapping (not necessarily unique) L :
R™ — R™ ™ with rank m, such that

g(z) = —F(z)L(x). (3.31)
Proposition 3.4.1 Under Assumption 3.4.1, fix w and D in (2.8) as

w = —¢L
D = —-L'JL. (3.32)

The control u = U.(x) + v with
tie(x) = —LT(2)VH,(z), (3.33)
where H, : R™ — R is a solution of the PDE
Lt*VH, =0, (3.34)

ensures
T T
U, Yup = —H,g.

Moreover, the closed-loop system satisfies
H+ H, = —|VH — Lul% 4+ v yup.
Proof: Replacing (3.32) in (2.8) we get
Yoo = (9—2RL)'VH+L"(R—-J)Lu
= (-FL—-2RL)'VH+L"(R—J)Lu
= (~J+R—-2R)L) VH+ L (R—J)Lu
= (F'L)'VH - L"FLu
= L'FVH+ L gu
= L'z
where, for the second and fifth identity we used (3.31). Then
o)y =10, L. (3.35)
Now, from Lemma A.4 we have that, (3.33) and (3.34) are equivalent to
Li,=—-VH,.
Replacing the latter equation in (3.35), we get
o)y = —(VH,) & = —H,. (3.36)
Note that, for yu.p the power-balance equation takes the form
H=u"yp — |¢VH + wul?.

The proof is completed replacing (3.36) and (3.32) in the expression above.
(I
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Assumption 3.4.2 Assume there is a mapping (not necessarily unique) Ly :
R™ — R™*™ with rank m, such that

g(:L') = 7Fs(x)Ls(x)v (337)
where Fy verifies (2.24) and (2.27).
Proposition 3.4.2 Under Assumption 3.4.2, fix ws and Dy in (2.26) as

ws = _¢5Ls
Dy = —L]J.Ls. (3.38)

The control u = G.(z) + v with
ie(w) = —LY(x)VHa (), (3.39)
where H, : R™ — R is a solution of the PDE
LiVH, =0, (3.40)

ensures
~T .
U, YuDs = *Ha-

Moreover, the closed-loop system satisfies
Hy+ H, = —|VH, — Lyu%_ + v yups.

Proof: The proof is identical to the proof of Proposition 3.4.1 using Fs, Hs
instead of F, H.
O

Remark 3.4.1 Propositions 3.4.1 and 3.4.2 exhibit that, using the correspond-
ing passive output, the solutions of the PDEs in Cbl are also suitable solutions
of the PDFEs that arise in the EB-PBC approach. Nevertheless, we stress the
fact that the set of mappings L such that L& = yup is not fully characterized
by (3.31). Indeed, L must be a solution of

(VH@) FT@)] . [(VH@) (g(x) + 267 (£)w(z)
0" (@) ]L(”{ w” (@yw(z) + D() - 34D

A similar analysis can be carried out for Ls. This difference between the Casimir
functions and the integrals of the passive output will be further discussed in the
next chapter.

3.4.1 Comparing Cbl, EB and IDA

We find it convenient to recall the PDEs that must be solved and the conditions
for the various PBCs studied in this chapter. In order to do this we present
Tables 3.1 and 3.2, where a greater rank number implies a bigger set of solutions
for the corresponding PDE.

The relationship between the various Cbls is obvious. Also, since F' full rank
implies that L in (3.31) is unique and full rank, the PDEs of EB-PBC with yyp
become in this case

gtFVH, =0, (3.42)
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which coincide with the PDEs of Cbl with yps (or yyp) with 23", The equivalence
of the PDEs of this two methods when F' is not full rank is less obvious but can
be established with Lemma A.5, given in Appendix A. The proof of the latter
is presented for the case m = 1 but it can be extended verbatim to the general
case evaluating (3.31) column-by-column.

Unlike the other EB-PBCs studied in this chapter, IDA-PBC does not pro-
ceed from the creation of new passive outputs, hence this methodology is not
suitable for a CbI implementation. There are several reasons that motivate us to
include IDA-PBC” in Table 3.1. The most important one is that it is the most
powerful PBC technique available to date, in the sense of being applicable to the
largest class of PH systems. A second reason is that it has been widely adopted
in many practical applications, including mechanical, electromechanical, power
electronic and power systems.

Rank EB det{F} #0 | H,=H PDEs
i
2 y x v [ggTF } VH, =0
i
4 Ys x x [ggfﬂ VH, =0
6 Yps v v gt FVH, =0
8 Ypss X X g F,VH, =0
6 YuD X v FL=—g, LiVH,=0
8 Yubs X X FsLs = —g, LvaHa =0
6 Basic IDA X v gt FVH, =0
9 IDA x v g FyVH, = gL (F — Fy)VH

Table 3.1: PDEs to be solved in EB-PBC.

"See [35, 43] and Subsection 4.4.2 in Chapter 4
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Rank | Cbl | det{F}#0 | H,=H | o PDEs
F _
| | e [
i
2 | y+su v v v [ggﬂvco
F —
3 Ys X X X [gT] VC = [ Og}
i
4 Ys + SM X X v [ggfs} VC =0
5 Yps v v X VC = 7Filg
6 | yps+SM v v v gLFVC =0
7 Ypss X X X VC=-F1g
8 Ypss + SM X v v gtF,VC =0
5 YD X v X VC=-F1g
6 Yup + SM X v v gtFVC =0
7 YuDs X X X VC=-F1g
8 Yups + SM X X v gtF,VC =0

Table 3.2: PDEs to be solved in Cbl.

41
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3.5 Examples

In this section we present two examples that illustrate the main results given
in this chapter. In the first example we show the effects of the dissipation
obstacle and the manner in which the modification of the output variable helps
to overcome it. In the second example we illustrate the practicality of the
generation of new passive outputs presented in the previous chapter—see Section
2.4.

3.5.1 RLC circuit

Figure 3.4: Electrical circuit

Consider the RLC circuit given in Figure 3.4 composed by two linear resistors
ro,7T3, & linear capacitor C, a linear inductor L3 and a nonlinear inductor Lo
whose constitutive equation is given by

iz, = atanhxs.

This circuit is described by the PH model

0 -1 1 0
=11 —-re 0 |VH+ |[0|u (3.43)
-1 0 -—r3 1
with 79 > 0,73 > 0 and
H= —22 4 alncoshzs + ——a? (3.44)
= — n —_— .
5041 T alncoshz, 5L x3,

where the constant parameters a, L3, C' are positive. The control objective is
to stabilize the voltage V;., = reatanh zs in a constant value, hence the desired
equilibrium is given by

2. = (Craatanh Xy, Tax, Lya tanh o).

The gradient and the Hessian of H are given by

el
— 2 - 1 a 1
VH = atzinhxg , V2H =diag{s, == = I3 1
Ls3%3

Whence it is clear that (VH), # 03.
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Cbl

Consider the system (3.43)-(3.44) with y.y = y. Then, the PDE (3.8) takes the
form

0 1 -1 ocC

vore

—1 —T2 0 ;Cl 8
— dxs | T

1 0 r3 6C2 0

0 0 1 Das

which implies that VC = 03. Therefore we are not able to shape any state with
this selection of output variable. Below we propose a solution to overcome the
dissipation obstacle present in this example.

Proposition 3.5.1 Consider the system (3.43)-(3.44), with y.) = yps, inter-
connected with (3.3) via (3.5). The following holds true.

(i) The function

1
C = 7 T T 3.45
Ty + 73 (ro&1 + &2 + &3), ( )

where T; = x; — T, defines a Casimir function for the system.

(ii) The point (x., (r2+73)%atanh xa,) is a stable equilibrium of the closed-loop
system with Lyapunov function Wy, defined in (3.20), where
HC = ng’ (I) = m (7’2551 + SEQ + jg — SCC)2 . (346)

Proof: To establish the proof note that, the PDE (3.18) takes the form

—TaTs3 T3 —T2 0
_ 1
VC = —4—| -rs -1 —1|]0
ro -1 -1 1
T2
_ 1
T ra+trs 1
1

Thus, (3.45) is a solution of the PDE above.
Now, from (3.44) and (3.46) we have

rok ! T2
atanh xo 1 . . B 1
vw = Lszs + Tatra)? (TQLL'l + 2o + X3 — ZL'C) HE
L (ra+r3)2 Te -1
_% 8 0 0 T% r2 T2 T2
0 0 0 1 1 -1
2 _ cosh? x 1 T2
V W = 0 0 2 LLS 0 =+ _(T2+T3)2 ro 1 1 -1
1
_0 0 0 Tt -1 -1 -1 1

Hence, evaluating both expressions above at (x,z.) = (74, (r2 + r3)%a tanh 24,
and noting that > 0, we get

_a
cosh? x5
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(VW) =04, (V2W), >0. (3.47)

This completes the proof.
O
The Figure 3.5 represents the closed-loop system as an electrical circuit, with

y—yps = —2RVH+u
= -2 (Tgatanh T2 + Z—izg) + C%zc

where

C.:= (ry +13)%

e = N A

- Y=Yes

L3

Figure 3.5: Electrical circuit resultant of the Cbl

EB-PBC

In the following proposition we present an EB-PBC which solves the stabiliza-
tion problem of the RLC circuit.

Proposition 3.5.2 Consider the system (3.43)-(3.44) in closed-loop with the
controller u = 1., where

~

1
e = — (7‘21'1 + Zo + X3 — (Tg + r3)2atanh$2*) (348)
ro + 173

with &; = x; — Xi. The equilibrium point (Creatanh xa., Tax, Lzatanh xa,) is
asymptotically stable with Lyapunov function

H;=H+ H,,
where

H, = rody + @g 4 I3 — (ro 4+ 73)%atanh 2o, )% (3.49)

2(7’2 —+ 7’3)2(

Proof: To establish the proof, first, notice that the equation (3.31) takes
the form

0 -1 1 0 1 T2
1 —r 0 |L=—|0| < L= 1
10 -y 1 EREEEE
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The expression above, in combination with (3.49), yields

LTVHG ﬁ (7’2551 + :EQ + jg - (TQ + T3)2atanhz2*)

= U,

where we used (3.48) to obtain the second equality. Thus, from Proposition
3.4.1 it follows that

Hy= —|VH — Li.|%. (3.50)
Moreover, the gradient and the Hessian of Hy are given by
Lo,
VH; = |atanhzs
1
573
T2
+m (T2$1 + &g + T3 — (ro +13) atanhxg*) 1
(Tz-g"s)z +7‘% ro
VHs = g | 7 1+ 2l
ro 1 1+ (T2+TS)

Therefore, evaluating both expressions above at x, we have
(VHq)s =03, (VZHy)..

The latter ensures the stability of the equilibrium.
To prove the convergence of the trajectories, note that from (3.50)

Hy;=0 = R(VH-Li,) =0

Lsatanhazs = =z
N { 3 2 3

RF-3: — 0. (3.51)

Combining both expressions in (3.51), we have
Ty = 0 } = 7 a . 1 ( a + 1 > . 0
. . I =——s—tdo— —d3=|—5—+—|do=
To = —iI3 ' cosh? 9 > Ls cosh®?zs L3 2
which implies

. 3 = 0
2 { = Creatanhzy 2 2

8
=
\

Hence, from (3.51) and the expression above we conclude that x = z,. The
proof is completed invoking the Barbashin-Krasovskii’s Theorem.?
O
Simulations are carried out with the following parameters: C' = 2uF, ro =
1.2k, r3 = 550, Ly = 50mH and a = 30mA. The desired voltage in 79 is
7V, which is obtained with a constant charge zo. = 197mH. The Figure 3.6
shows the simulation results for the closed-loop system under initial conditions
o = 03.

8See [26].
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Figure 3.6: Simulated response of the regulated RLC circuit.

3.5.2 Generation of new passive outputs

Consider the system

&= {(1) 01} VH + m u, (3.52)

where

H = cosxs + 1+ ax, (3.53)

with the constant a different from zero and y(.) = ywp, where w and D are
defined in (3.21). The control objective is to stabilize the equilibrium point
Zx = (214,0), which clearly satisfies z, € £. The gradient and the Hessian of
the storage function are given by

VH:[ 4 } VQH:[O 0 ] (3.54)
— sin xo 0 —cosxy

Notice that
a

(VH), = [0] . (V2H), = [8 01] .

Hence, both states need to be shaped to have a minimum at x,.
On the other hand, the Casimir functions for this system must satisfy

b lE]- 1)

22

and thus

Ve = [01} : (3.55)
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From the PDE above it is clear that the second state cannot be shaped for
any passive output with respect to H, and in consequence, the plant is not
stabilizable by Cbl considering H as storage function.

Proposition 3.5.3 Consider the system (3.52)-(3.53). The following holds
true.

(i) An alternative representation for the system is given by

-1 1 0
= {1 0} VH, + [1] u, (3.56)
where
H; = —cosza + 1 —a(z1 + x2). (3.57)

ii onstder the system (3.56)-(3. interconnected wit .3) via (3.9). e
ii) Consider th 3.56)-(3.57) ¢ d with (3.3) via (3.5). Th
point (z4,0) is a stable equilibrium of the closed-loop system with Lyapunov

function Wy, defined in (3.20), where

HC:%(xCJra)Q, o= %(z1+z2—ch:c1*+a)2. (3.58)
Proof: To establish the proof, first, note that
FVH = [Smﬂ .
a

Moreover, from (3.56) we have

FVH, — {sm 1132]
a

= FVH.

Now, consider y(.s = ywps With w, and D, selected as in (3.29). Then, the
PDE (3.30) takes the form

which implies

Therefore, the function
C=x1+22—214+0a

defines a Casimir function for the system (3.56)-(3.57).
From (3.57) and (3.58), we have

—a 1
VWs=|—a+sinze| + (1 + 22 — 21 +a—2x.) | 1
T.+ a -1
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Whence, (VW;). = 035. Moreover

0 0 0 1 1 -1
V2W,= 10 cosazs O+ |1 1 -1
0o 0 1 -1 -1 1
Hence
1 1 -1
(V2 Wy, =|1 2 —1|>0.
-1 -1 2

The latter implies that arg min{W;} = (z.,0). This completes the proof.



Chapter 4

Shaping the energy without
solving PDEs

An energy shaping controller for mechanical systems that does not require the
solution of PDEs has been recently proposed in [13]. In this chapter we pursue
this research line considering the more general case of PH systems [58]. The
starting point of the design is the well-known power shaping output [36], which
defines a passive output for the PH system with storage function its energy
function. As is well-known a PI controller around this output preserves the
passivity of the closed-loop. In [4] it is shown that, if the power shaping output
is “integrable”, the integral action of the PI is passive with storage function
defined as a quadratic term of the “integral” of the power shaping output,
which depends on the plant state. In this way we can generate a new storage
function for the closed-loop constructed as the sum of this function and the
original energy function of the PH system. Adding a suitably chosen constant
to the control makes this function positive definite, which then qualifies as a
Lyapunov function for the closed—loop system. The condition imposed on the
power shaping output boils down to a classical integrability condition of some
computable vector fields, hence it can be readily verified.

In this chapter we extend the results of [4] constructing a PI controller around
the general output y,p and providing alternatives to overcome the integrability
condition over the passive output. Another contribution is a comparison be-
tween the resultant PI with the Casimir function studied in the previous chap-
ter, from which it is shown that the set of stabilizable plants with the present
methodology is larger than the set stabilizable via Casimir generation.

4.1 Preliminaries

The following assumptions identify the class of PH systems for which the pro-
posed control strategy is applicable.

Assumption 4.1.1 The matriz F(z), in (2.6), is full rank or verifies (2.14)
and (2.15).

IThe methodology is presented for F' full rank, nevertheless, the results can be extended
considering FT instead of F~1.

49
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Assumption 4.1.2 The vector fields F~1(x)g;(x), with g;(z), i = 1,...,m,
the columns of the matrix g(z), are gradient vector fields. That is,
-1 —1 T
Y (F 7 @)gil@) = {V (F ' (@)gi()) } - (4.1)

As shown in Chapter 2—see also [36, 42]—if Assumption 4.1.1 holds, then
yps is a passive output for the PH system (2.6) with storage function H(zx).
More precisely, the following dissipation inequality holds

H < uyps. (4.2)

On the other hand, recalling Poincare’s Lemma it is easy to see that As-
sumption 4.1.2 ensures the existence of a mapping v : R” — R™ such that

VA(z) = —F~}(x)g(2). (4.3)
Furthermore,
A= (Vy(z) & = yps. (4.4)

4.2 Energy Shaping

In this section we define a static state-feedback such that the system (2.6), with
y(+) = yps, in closed—loop with this control preserves passivity of the mapping
v — yps but with a suitably modified storage function.

Proposition 4.2.1 Suppose Assumptions 4.1.1 and 4.1.2 hold. Define the map-
ping ups : R — R™

ws(e) = (I—Kpg" (@)F " (2)9(2)) " {Kpg" (@)F 7 (@) F(2)VH(2)
—Ki(y(x) + )} (4.5)

where v satisfies (4.3)2 and x € R™ and Kp, K; € R™*™ K Kp > 0, are free
parameters. The system (2.6) in closed—loop with the control u = upg(x) + v
defines a passive mapping v — ypg with storage function

Ha(x) = H(z) + 3 1y(x) + sk, (16)

Proof: To establish the proof, first, notice that from (2.11) and (4.4) the
control (4.5) reduces to

ups(z) = —K(y + k) — Kpyps. (4.7)
Therefore, differentiating (4.6) we get
Hy = H+ypsKi(v+k)

IN

yes (u+ K1 (7 + £))
= yps(v — Kpyps) < ypsv,
where we used (4.4) in the first equality, (3.1) in the first inequality, (4.7) for

the second equality, respectively, and Kp > 0 for the last inequality.
O

2Notice that the existence of y(z) is ensured by Assumption 4.1.2 and it can be computed
via direct integration.
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Remark 4.2.1 Strictly speaking, a PI controller on the passive output yps has
the form

w(t) = — Kpyes(t) — K /O yos(7)dr- (4.8)

Hence, at first glance it might seem appealing to propose 7 in (4.4) as

1ol = [ w0
However, replacing the latter in (4.8) yields

u=—Kpyps(t) — K1(v(z(t)) + Kr(v(2(0)),

which clearly depends on the initial conditions of the plant. This makes this
approach fragile and impractical to its implementation.

In contrast with the PI controller (4.8), the control law ups of Proposition
4.2.1 is independent of the initial conditions of the plant but still has a PI-like
architecture since

i( +,,£) _
at’ = Yes:

Despite the technical differences, in the sequel we refer to the control law ups
as PI-PBC.

Remark 4.2.2 The condition of integrability of the vector fields F~!(z)g; ()
appears also in the context of Cbl of PH systems, as a necessary and sufficient
condition for existence of Casimir functions, see Proposition 3.3.1 in Chapter 3.

4.3 Stabilization

From Proposition 4.2.1 it is clear that if the new storage function Hgy(z) is
positive definite (with respect to the desired equilibrium z,) it qualifies as a
bona fide Lyapunov function for the closed-loop system (with v = 0) that ensures
stability of z,. This fact is stated in the proposition below where we also give
an easily verifiable condition to check positivity of Hy(x).

Proposition 4.3.1 Consider the system (2.6), verifying Assumptions 4.1.1 and
4.1.2, in closed-loop with the control u = ups(x), where ups(x) is given by (4.5).
Fiz
k= K7 gl F.(VH), — 7. (4.9)
If ¢, € £ and
(V2Hg). >0 (4.10)

with Hq(x) defined in (4.6), then x, is stable (in the sense of Lyapunov) with
Lyapunov function Hy(x). It is asymptotically stable if yps, defined in (2.11),
s a detectable output, that is, if the following implication is true

ys(t) =0 = tlim x(t) = Tu.

— 00
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Proof: First, we will prove that x, is an equilibrium point of the closed-loop
system. From (2.11) we have that yps, = 0, hence (4.7)—at the equilibrium—
becomes upe, = —Kj (7« + k). The proof is completed noting that the choice of
k given in (4.9), together with the fact that . € £, guarantees that

F.(VH), — g. (K;(7« 4+ K)) = 0. (4.11)

To prove the stability claim we recall that from Proposition 4.2.1 and v =0
we have that Hy < —Kp|yps|?> < 0. Hence, invoking classical Lyapunov Theory
[26], it suffices to prove that Hg(x) is a positive definite function. From (4.11)
we get

(VH), = F7 9. K1(v. + k). (4.12)
Computing the gradient of Hy(x) at the equilibrium yields
(VHq)s (VH): + (V) K1(7+ + K)
= (VH). — F7'g.Kr(7+ + k) =0,

where the second and third identities are obtained replacing (4.3) and (4.12),
respectively. This ensures that x, is a critical point of Hy(x). The proof is
completed recalling that (4.10) is a sufficient condition for x, to be an isolated
minimum of Hy(x).

O

Remark 4.3.1 With the aim of preserving a Pl-like architecture of the con-
troller, a particular structure is imposed on Hg, that is, the open-loop energy
plus a quadratic term in v+ k. Nonetheless, a more general energy function Hy
can be designed, namely

Hd =H + (I)(’Y)a

where (V®), = glF, (VH),.. See Proposition 4.5.2 for further details.

4.4 Relation with Classical PBCs

In this section we discuss the relationship between the new controller and the
classical PBC techniques of EB and IDA.3

4.4.1 EB-PBC

The basic idea of EB-PBC (with the output yps) is to look for a state feedback
ugg : R™ — R™ such that .

Ha = _’U/E—:;yPSa
for some “added” energy function H, : R™ — R. In this case, setting u = ugp(x)
transforms the passivity inequality (4.2) into

H+H, <0,

and if H(x)+ H,(z) is positive definite the closed-loop system will have a stable
equilibrium at x,. The following proposition states that, for a suitable choice
of the tuning gains, the new controller is an EB-PBC.

3The interested reader is referred to [35, 42, 43] for further details on EB-PBC and IDA-
PBC.
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Proposition 4.4.1 Consider the PH system (2.6) verifying Assumptions 4.1.1
and 4.1.2. Fix Kp = 0 in ups(x). Then, the control u = ups(z) is an EB-PBC
with added energy function

Ha(a) = 3 (x) + ik, (113)
Proof: For Kp = 0 the mapping ups(z), given in (4.7), reduces to
ups(z) = — K1 (1(z) + ). (4.14)
On the other hand, from (4.4) and (4.13) we have
H, = yps K1 (7 + K) = —ypsuss,

completing the proof.

4.4.2 IDA-PBC

In IDA-PBC we fix the desired interconnection and damping matrices, hence,
fix the matrix Fy : R™ — R™*" such that sym{F;(z)} < 0, and look for a control
u = urpa(x) such that the closed-loop has the form

& = Fyg(x)VHy(z);

for some energy function Hg : R® — Rx>(, which has a minimum at the desired
equilibrium. It is easy to show that the assignable energy functions Hy(z) are
characterized by the solutions of the following PDE

gJ‘(z){Fd(x)VHd(z) - F(x)VH(x)} =0, (4.15)
and the control is uniquely defined as
uoa (@) == gT(:c){Fd(x)VHd(x) - F(x)VH(x)}. (4.16)

The proposition below establishes the relation between IDA-PBC and the
controller of Proposition 4.2.1.

Proposition 4.4.2 Consider the PH system (2.6) verifying Assumptions 4.1.1
and 4.1.2. Fix Kp = 0 in ups(x) and select the desired interconnection and
damping matrices as

Fy(z) = F(z). (4.17)

Then, the energy function H,(z) defined in (4.6) and the control u = ups(x)
given in (4.5) satisfy the IDA-PBC equations (4.15) and (4.16), respectively.

Proof: Replacing the gradient of Hy(x), given by
VHy=VH—F 'gK;(y+ k),

in the PDE (4.15) we get

gJ‘{F (VH — F 'K (v + 1)) — FVH} = gL 9K (v + k) =0
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On the other hand, the control law (4.5) is given by (4.14), which satisfies
(4.16) since, using (4.17),

Uy = QT{F (VH — F'gKi(y + x)) —FVH}
= —g'gK(y+ K) = ups.
O

Remark 4.4.1 It is well-known that the IDA-PBC* preserves the PH structure
in closed-loop. Hence, from Proposition 4.4.2 it is clear that, fizing Kp = 0 in
(4.7), the closed-loop system is a PH system.

4.5 Extensions of the PI

In this section we provide two extensions of the controller of Proposition 4.2.1.
First, we explore an alternative to relax Assumption (3.4.2) by modifying the
input-output port of the system. In the second part of this section we analyze
the use of y,p instead of yps to construct the PI controller and the differences
between Casimir functions and the first integrals of the passive output.

4.5.1 Change of coordinates

In this subsection we prove that the class of PH systems for which (4.3) is solv-
able can be enlarged via an input change of coordinates. For ease of presentation
we restrict ourselves to the case of full rank F(z), nonetheless, the extension
to the non-full rank case is straightforward. In this case, the passive output of
interest is the power shaping output [36] given in (2.11). We recall that the key
question for energy shaping with the methodology proposed in previous sections
is the existence of a mapping ~(z) such that (4.4) holds. Now, introducing an
input change of coordinates

u= M(z)u, (4.18)

with M : R™ — R™>*™ fyll rank, the power balance becomes
H < gps,
with the new input u and the new output
Ups = —M " (x)g" (2)F~ T (). (4.19)

It is clear then that imposing the integrability conditions to the new vector
fields F~1(x)g(z)M;(z) guarantees the existence of a mapping ~(x) such that

Y = YUps-

The proposition below states under which conditions there exists a full rank
matrix M (x) such that the required integrability conditions are satisfied.

Proposition 4.5.1 Define a mapping A : R" — R™<("=m) yerifying

4See [43, 35]
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(C1) rank {A(z)} =n—m
(C2) and

g ()F~ T (z)A(z) = 0. (4.20)
There exists a full rank matriz M : R™ — R™*™ such that

F~H(2)g(x)M (z) = Vy(2), (4.21)

where v : R™ — R™, if and only if the distribution

A = span{A(z)} (4.22)
is involutive, that is, if the Lie brackets of vector fields in A remain in A.

Proof: The proof proceeds as follows. First of all notice that, since M (x)
is full rank, we have that

ker {MT (z)g" (x)FﬁT(z)} = ker {gT (x)FﬁT(z)} .
Moreover, in view of (4.20),
At :=span {M " (z)g" (z)F~ " (2)}

is a co-distribution of A. The proof is completed invoking Frobenius Theorem
[53], the fact that a distribution A is completely integrable if and only if there
exist v; : R — R™, ¢ = 1,...,m, such that its co-distribution is given by

At = Spal {(V’h ('T))Ta ) (v,ym(x))T} ’

and defining v(x) := col(y1(z), . . ., ym(x)).
O

Remark 4.5.1 The matriz M (x) modifies the input-output port of the PH sys-
tem (2.6) and thus the negative feedback scheme. This is equivalent to changing
the interconnection subsystem (3.5) for (3.13) in CbI—see Subsection 3.1.1 in
Chapter 3.

4.5.2 First integrals

The selection y(.) = yps is appealing for three main reasons: the integrability
condition is straightforward to verify, the energy shaping is done without the
solution of PDEs and, in addition—as it is shown in Proposition 4.3.1—, an
appropriate selection of x ensures that x, is a critical point of the closed-loop
energy function. In spite of these advantages, the set of stabilizable PH systems
using the PI approach presented in previous sections can be enlarged with the
selection of y,p as output variable.

The proposition below establishes a more general construction of the PI
controller introduced in Propositions 4.2.1 and 4.3.1.

Proposition 4.5.2 Consider the PH system (2.6), (2.8). Assume there exist
mappings w(z) and D(x) such that the PDE

(V) F (2)  [(VH@) T (gx) + 267 (@)w(x))
07 (@) }Wx)‘[ w™ (@)w(z) — D(x) (4.23)

admits a solution v : R™ — R™. Then, the following statements hold true.
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(i) The system (2.6), (2.8) in closed-loop with the controller

u = v+ {I+Kpw (@)w(z) + D)} " { Vo w2
~Kp (g(x) + 26T ()w(x)) " VH(x)} |
defines a passive mapping v — yup with storage function
H;=H+ 2(y) (4.25)

where @ : R™ — R is to be defined.
(ii) Fiz v =0 in (4.24). If the equilibrium x, € £ satisfies
argmin{Hg} = x.,

and it is isolated, then is stable in the sense of Lyapunov with Lyapunov
Sfunction Hy.

(ii) The point is asymptotically stable if (ii) holds and

Hy=0+ z=uz,. (4.26)

Proof: Notice that the existence of vy solution of (4.23) implies that
Y = Yup- (4.27)
On the other hand, from (2.8) and (4.24) the control law reduces to
u=—V® — Kpygp. (4.28)
Therefore the time derivative of Hy is given by

Hy Yapl + & VAV

yop(u+ V@) . .
= _lwaﬁ(p + Yup¥ < Yy

A

where we used (4.27) and (4.28) to obtain the first and the second equality,
respectively. The rest of the proof is completed invoking classical Lyapunov
Theory and the Barbashin-Krasovskii’s Theorem.

O

Discussion on first integrals vs Casimir functions

In Proposition 4.5.2 the energy shaping is carried out by the generation of the
passive output’s first integrals. Comparing the PDEs (3.23) and (4.23), we
notice the absence of the term VH (z) in the first set of equations. This absence
forces a particular selection of the parameters w and D given in (3.21). As
a result of this specific selection, the passive output y,p does not enlarge the
set of PH systems for which Cbl is applicable as was proved in Chapter 3.
Nonetheless, this constraint in the choice of the parameters w, D is not present
in the generation of first integrals or EB approach.® Clearly, fixing C = ~(z),

5See Remark 3.4.1 in Chapter 2.
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any solution C of (3.23) is also a solution of (4.23), with the set of solutions of
(3.23) being strictly contained in the set of solutions of (4.23). Indeed, the set
of functions v that solve (4.23) is larger than the set of solutions of (3.23) due
to the presence of the term VH(z). An example that illustrates this point is
given in Section 4.6.

On the other hand, Proposition 4.4.1 establishes a relationship between the
PI controller (4.7) and the EB-PBC. Moreover, fixing L = V+, the equation
(4.23) is clearly the same as (3.41), this corroborates the relation between both
approaches.

Derivations similar to the ones done in Proposition 4.5.2 are reported in Sec-
tion 7.1 of [58] where, following the construction of [28], new passive outputs—
called “alternate” in [58]—are used for Cbl. There is a relation also with input-
output Hamiltonian systems with dissipation (IOHD) studied in [57], for which
the integrability condition (4.1) is implicitly assumed. See these references for
further details.

4.6 Examples

In this section we apply the proposed controller to a physical system and inves-
tigate, with the example of LTI systems, some of the limitations of the method.

4.6.1 Micro electro-mechanical optical switch

Consider the PH representation of the optical switch system®

0 1 0 0
t=|-1 -b 0 | VH(z)+ (0] u. (4.29)
0 o -1 1
The energy function is
1 1 1 1
Hr) = — 22 4 a4 mqogt 4 — = 2
(x) 5 2 + 51T] + 10271 + er(on T CO):C3,

where x1,xo are, respectively, the mass of the comb driver actuator and its
momentum, x3 denotes the charge in the capacitor, u is the voltage applied
on the electrodes, a; > 0,ae2 > 0 are the spring constants, b > 0,r > 0 are
resistive elements, cg > 0,c; > 0 are constants that determine the capacitance
function and, finally, m > 0 denotes the mass of the actuator. It is important
to underscore the physical constraint 1 > 0. See [5] for further details on the
model.
The assignable equilibria for this system is

(w2, 75.) = (0. (co + 1)y 20121, (a1 + 233 ) ) (4.30)

and the goal is to stabilize at the desire constant position x;, > 0.
Clearly, F' is full rank. Also, some simple calculations using (2.11) prove
that yps = ri3, therefore v(x) = rxs. Hence, Assumptions 4.1.1 and 4.1.2 hold.

6See [5].
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It only remains to show that the conditions of Proposition 4.3.1 hold. Some
simple computations yield

a1 + 3axa? + didy 0 —dd
(VQHd)* = 0 # 0 7
—dida 0 dy + 12K
with
B 2
31 - \/QCixl* (a1 + azai,) (4.31)
2 =

ci(co+zx1, )"
Hence, for all K; > 0 the condition (4.10) holds and . is a stable equilibrium
for the closed-loop.

To prove asymptotic stability, first, note that from (4.9) we get

1
K= 3. —rxs,. (4.32)

_Ercl (co+x1,)

Second, in the residual set where Hy = 0, we have

: T e s 1 = 0
Hy = ) |yps|%(P =0 { i = 0.
Furthermore, the following chain of implications hold true
21=0 <= 22=0
= 2 =0
= x3=(21+ ) \/2c1x1 (a1 + azx?). (4.33)
Hence, since @3 = 0, we have
701(;?_’_60) +Ki(res+k) = 0
\/20111(111—%1121?) \/20111*(1114-@2:3%*)
c1(z1+co) - c1(z1«+co) + KIT (1'3 - 1'3*) =0
= X1 = Tix,

where we used (4.33) and (4.32). Moreover, the analysis above implies that
r = x, and thus
Hd =0 x = x,..

Simulations

Simulation results are presented in Figure 4.1. Based on the results reported in
[5], the system parameters were chosen as cg = 15x1076, ¢; = 35.6x107°, m =
2.35 x 1072, a1 = 0.46, as = 0.0973, b = 5.5 x 107 and r = 100. Figure 4.1
shows the closed-loop system response with initial conditions zo = 03 and the
gain selection Kp = 1000, K; = 5 X 10~3. The control objective is to stabilize
x1 at 11, = 7x 107>, Thus, from (4.30), 22, = 0 and 23, = 1.2870 x 10710, As it
can be noticed from the plot, 1 > 0, which agrees with the physical constraint.
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Figure 4.1: Simulation results of system (4.29) in closed-loop with the PI-PBC.

4.6.2 LTI systems: Controllability is not enough

In the important paper [47] it was shown that IDA-PBC for LTT systems is a
universal stabilizer, in the sense that it is applicable to all stabilizable systems.
On the other hand, it was shown in [37] that stabilizability is not enough for
IDA-PBC of mechanical system. Indeed, in Proposition 4.1 of [37] it is shown
that if the system has uncontrollable modes, an additional condition of the pole
location, which is stronger than stabilizability, must be imposed for stabilization
with IDA-PBC.

The difference between these two cases is that, while for general IDA-PBC
there is no constraint on the structure of the desired energy function, for mechan-
ical systems a particular structure is imposed to it. Since in the methodology
proposed in this paper there is also a constraint on the desired energy function,
namely (4.6), it is expected that a condition stronger than stabilizability should
be imposed for the method to apply. Actually, we will prove that unlike IDA-
PBC for mechanical systems even controllability is not enough for the proposed
method to work.

Now, recall that for LTT systems the energy function is of the form H(z) =
%zTQz, the matrices F' and g are constant and, without loss of generality, we
can take z, = 0. Therefore, the control (4.5) becomes a simple linear, state-
feedback of the form

ups(z) = Ko (4.34)

with
Kpi=(In—Kpg F Tg)" (Kpg F"TFQ+Kig F~").

Notice that for linear systems, with z, = 0, the constant vector x given in
(4.9) is equal to zero. To prove the aforementioned conjecture we will construct
an LTT, controllable PH system for which the controller (4.34) yields an unstable
closed-loop system for all values of the tuning gains Kp, K;. It is important
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to note that the Lyapunov stability test used in Proposition 4.3.1 is sufficient,
but not necessary—even for LTI systems. Therefore, instability must be proved
checking directly the closed-loop system matrix. Also, the sign constraints im-
posed to the tuning gains, which are required to ensure positivity of the shaped
energy function, need not be imposed in the LTT case where, as indicated above,
a stability analysis—other than Lyapunov—will be carried out.

Consider the following controllable, LTT system

o= [0 e+ [0 w2

with a > 0. Some simple calculations show that it admits a PH representation

& = FQx + gu, (4.36)

with

o ol o] em

where F' is full rank and satisfies sym{F'} < 0. We remark that Assumption
4.1.2 is always satisfied for single input LTI systems.

Proposition 4.6.1 Consider the LTI, PH system (4.36), (4.37), in closed-loop
with the controller (4.34). For all positive values of the controller gains Kp and
K7 the closed-loop system is unstable.

Proof: From (4.37), the gain K, is given by
K. =[K Kp].

Therefore,
ups(ac) = Krz1 + Kpxs.

Hence, the closed-loop system takes the form

T = Aclxa

where
0 1

Aot = a+K; 1+Kpl|-

The eigenvalues of the closed-loop system matrix are

Kp+1 . V(Kp+1)2 +4(a+ Ky)

A} =
M2{Aa} 5 5

Note that for any positive gains Kp, K7 the closed-loop system has at least one
eigenvalue with positive real part. This completes the proof.
O
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4.6.3 First integrals example

Consider the PH system

0 1 0 I
i=|-10 o|VvH+|0]|u (4.38)
0 0 -1 1
with i i
H(x) = 5(301 + 29)? + 530% (4.39)

The control objective is to stabilize the point x, = (0,0, z3.), with 3, < 0.
Computing the gradient and the Hessian of H, we have

1+ X2 1 1 0
VH= |z14+x2|, V2H=|1 1 0 (4.40)
0 01

3
whence it is clear that (VH). # 0 and V2H is not full rank.

Proposition 4.6.2 Consider the system (4.38) with output variable yup. The
following holds true.

(i) There are no Casimir functions C(z) solution of the PDE

FVC = —g. (4.41)

(ii) The function

1
() = 530% + z3 (4.42)

satisfies

’7 = wa
with

0 0 0]
w=|0], ¢=[0 0 0]. (4.43)
~1 0 0 1]

Proof: Casimirs. Given F and g in (4.38), the PDE (4.41) takes the form

9 1 - .
0 1 0 oz —T1
-1 0 0| |&] = |0
0 0 -1 ac -1

O3 - -

0C 1
O -
ac
| = |0
_ac -1

6Z3 - - -

The equation above implies that

0
VC = |—T1
1
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and thus

v2C # (V2O)'.
This part of the proof is completed invoking Poincare’s Lemma.
First integrals. Replace (4.40) and (4.43) in (2.8), then

T+ T2
(21 0 1-2] |oy 4+ 22| + (2 + 1)u
€3

= mx(z1 +22) — a3+ (23 + Du
On the other hand,

Yup (4.44)

T
’7 = [1‘1 0 1} i‘2
T3
= I1%1 + I3
x1(x1 + 22 + 11u) — 23 + U

= YuD,

where we used (4.44) to obtain the last equality.
(]

Remark 4.6.1 Considering as output variable the power shaping output, it is
not possible to find a function v such that v = yps. This is easy to verify since

0 1 0] [z 0
Vy=—Fl¢g=1|-1 0 0| |0]| =|—x1
0 0 1|1 1

which is clearly not integrable. Moreover, still not integrable for any M (x) in
the input change of coordinates (4.18).

Proposition 4.6.3 Consider the system (4.38) in closed-loop with the con-
troller

1

YT T RKpuTwt L

{KI@ + k) + Kp(g+ 2¢Tw)TVH} (4.45)

with constant gains Kp, K; > 0 and

T3
K’
The equilibrium x. is asymptotically stable, in the sense of Lyapunov, with
Lyapunov function

R = —T34% —

(4.46)

Hy=H + %KI(W + k)2
Proof: Note that the control law (4.45) can be rewritten as
u=—Ki(y+ k) — Kpyup. (4.47)
On the other hand, the time derivative of Hy is given by

Hy = —|¢VH +wul® + yupu + yap K1 (7 + k)
= —|¢VH +wul]® + yup(u+ Kr(y + ))
—|¢VH +wul® = Kplyuw|?,
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where we used (4.47) to obtain the last equality. Moreover

(21 + 29 T
VH; = xr1 + X9 +K](’)/+I€) 0
L T3 1
(1 1 0 2 0 x 100
V?H; = |1 1 0|+K;|0 0 Of+K/(y+x)|0 0 0
0 0 1 1 0 1 0 0 O

Evaluating both expressions above at x,, we get

[0 0
(VHy), = |0 ] —as |0
_1‘3* 1
1 1 0 0 00 1 00
(V2Hd)* = 1 1 0O|+K7|10 0 O] —z3.|0 0 0O >0.
0 0 1 0 0 1 0 0 0

The stability of the point is proven invoking Lyapunov Theory. .
Now, to establish the convergence to the equilibrium, note that Hy = 0 if
and only if

¢VH +wu = 0 (4.48)
From (4.49) we have

1
u=—Kjy <§z%+x3+n> .
Replacing the latter in (4.48) we get

—21 K1 (323 + 23 + K)
0 =
23+ Kr(32% + a5 + k)

L o
T §x1+:c3+n
Kr (1,
71+K1 <2x1+n>

Replacing (4.46) and (4.51) in (4.50) we obtain

o O O

The latter implies that

0 (4.50)

3. (4.51)

1 1, 1
g (ca? — g — —as, ) =0 452
Ki+1t (2””1 Tae T ) (4.52)

The equation above only has solution for 1 = 0, replacing the latter in (4.51)
we get

Kr +1
r3 = T3 + — T34 | <= T3 = T34.
3 1+ K, 3 K13 3 3
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Now, notice that

r1=0=21=0= 29 =0. (453)
Hence, we conclude that
Hj =0+ 2= z.. (4.54)
The proof is completed recalling the Barbashin-Krasovskii’s Theorem.
O
Simulations
Figure 4.2 shows the simulation results of the closed-loop system for x3, = —4,

initial conditions at ¢ = (4, —2,2) and choosing the gains as K; =3, Kp = 1.

4 T T T T T

States

Il Il Il Il
0 1 2 3 4 5 6
Time [s]

Figure 4.2: Simulation results of system (4.38) in closed-loop with (4.45).

From the Figure 4.2 can be noticed that the control objective is achieved,
that is, the states of the closed-loop system converge to the desired value.

4.6.4 Change of coordinates for energy shaping
Consider the PH system

11 -1 a5 0
i=|-1 0 0|VH@)+| 1 o0fu, (4.55)
-1 0 -1 0 1
with
H(z) = 3laf?
E = {2eR|zy—a3—z1(x3+1)=0}.

The control objective is to stabilize the equilibrium z, = (1, 3, 1), which belongs
to £. Note that Assumption 4.1.1 is satisfied, then the first step towards the
control design is to verify that Assumption 4.1.2 holds. Therefore, we compute

1 0
1
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Using Poincare’s Lemma we can prove that the vector fields of F~1g;(z) are
not integrable. Thus, the PID-PBC design of Propositions 4.2.1 and 4.3.1 is not
applicable. We investigate now the possibility of extending it with the input
change of coordinates (4.18), as proposed in Subsection 4.5.1.

A full-rank basis for the kernel of g7 (z)F~ T (x) is given by

3 +1
Az)y=] -1
1

whose span defines an involutive distribution and thus Proposition 4.5.1 ensures
the existence of the required full-rank mapping M : R3 — R%?*2 that defines
input change of coordinates.

To compute M (x) we invoke again Poincare’s Lemma and solve the PDEs

yi=1,2,

V(Flg(@)m(x)) = [V(F " g(@)mi(2)]

where m; : R* — R? are the columns of M (z). A simple solution to these PDEs
is given by

1 0
M(z) = [xg 1] . (4.56)
Moreover
1 0
—Flg(x)M(z) = | 22 + 23 1
-1 + X2 1

Integrating the columns of (4.6.4) we get the mapping

1+ Toxz — 3 + L2
V() = 2

4.
Xro + I3 ’ ( 57)

that satisfies yps = 7.

In the proposition below we proceed with the design of the PI-PBC described
in (4.5) with the new input u, defined in (4.18), and the new output g, given by
(4.19).

Proposition 4.6.4 Consider the PH system (4.55) in closed-loop with the con-
troller w = M (z)u, with M(z) defined in (4.56), and

i={L—KpM g F TgM} " {~K;(y+r)+ KpM'g"F~TFVH}

(4.58)
where Kp = diag{ky, kp}, K1 = diag{k;, k;} with kp,k; > 0, v is given in (4.57)
and )
—7 =175
K= [ ki ] : (4.59)
-

Then, x,. = (1,3,1) is a locally asymptotically stable equilibrium of the closed-
loop system with Lyapunov function Hy defined in (4.6).

Proof: To establish the proof, first, note that the control law (4.58) can
be rewritten as

’l_l,ps = *Kpgps - K[(’)/ + Ii). (460)
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Moreover .

Hy = @' F~'a+ g (@+ Kr(y + k) (4.61)
— 83— (el <0 |
T3 Yeslkp, S V-

On the other hand,

(VHq). (VH). — F~ g M. K (v + k)

035

where we used the value of k given in (4.59). Furthermore,

ki+1 4k 2k;
(V2Hy). = | 4k 17k 9k —1
2k;  9k;—1 Bki+1

whose Schur complement analysis shows that is positive definite for any k; >
0.03.

To prove asymptotic stability, note that from (4.61) we have
3 = 0

Hy=0+{ = & = 0.
¢ { gps = 0 } ’
Furthermore, the expression above implies that

FVH —gMK;(y+K) = O3
FVH; = 0s.

Thus, since F is full rank, we have
VH; = 0s. (4.62)

The rest of the proof relies in the fact that x, is an isolated minimum of Hy.

Moreover, for a neighborhood of x,, the only solution of (4.62) is x..
O

States

3 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Time [s]

Figure 4.3: Simulation results of the system (4.55) in closed-loop with (4.18).
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Simulations

Figure 4.3 shows the response of the closed-loop system with initial conditions
xo = (—1,0,2) and choosing the PI-PBC gains as K; = diag{1.5,1.5}, Kp =
diag{2,2}. The simulation results confirm the convergence of the trajectories
to the desired equilibrium.
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Chapter 5

PID controller

Proportional-Integral-Derivative (PID) controllers overwhelmingly dominate en-
gineering applications where the control objective is to regulate some signal
around a desired value. Commissioning of PIDs reduces to the suitable selec-
tion of the controller gains, which is a difficult task for wide ranging operating
systems, where the validity of a linearized approximation is limited. Although
gain scheduling, auto tuning and adaptation provide some help to overcome
this problem, they suffer from well documented drawbacks that include being
time consuming and fragility of the design [1]. In contrast with this scenario in
PID-PBC, where the PID is wrapped around a passive output, the gain tun-
ing step is trivialized, as convergence of the output to zero and Ls-stability of
the closed-loop system is guaranteed for all positive gains—among which the
designer selects those that ensure best transient performance.

However, it is often the case that the signal to be regulated is not a passive
output or its reference output is nonzero. Another scenario of practical interest
is when the control objective is to drive the full system state to a desired con-
stant value. A classical example is under-actuated mechanical systems, whose
passive outputs are the actuated velocities, but in most applications the objec-
tive is to drive all positions to some desired constant values. To address these
problems two approaches have been adopted in the literature, first, to identify
passive systems for which the PID controller on the original passive outputs
assigns the equilibrium and preserves the passivity but with a new storage func-
tion that has a minimum at the desired equilibrium, which then qualifies as a
Lyapunov function for the latter. The identification of these systems boils down
to imposing some integrability conditions that allows us to express the integral
term of the PID as a function of the systems state. Second, to give conditions
under which the incremental model of the system is also passive [16, 19, 24],
property called “shifted passivity” in [58]. In this case, adding the PID around
the incremental variables ensures, not only that the incremental output goes to
zero, but also that the desired equilibrium is assigned to the closed-loop. The
first approach has been pursued in [13, 50] for mechanical systems and in the
last chapter we studied the construction of a PI for general PH systems. PID-
PBCs have been designed following the second line of research in [8, 19, 51] for
power converters, in [31] for photovoltaic systems and in [6] for general RLC
circuits. The addition of integral actions has also been proposed to robustify
PBCs, vis-d-vis external disturbances, in [12, 16, 39, 49].

69
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Surprisingly, in the controllers developed in Chapter 4 the derivative term
is absent. This is directly related to the relative degree of the passive outputs
used for its construction. Motivated by the wide range of applicability of PID
controllers, this chapter is devoted to the construction of PID stabilizers based
on the passive outputs reported in Chapter 2. Towards this end, we propose two
different schemes of PID-PBC and we show that the addition of the derivative
term enlarges the class of stabilizable plants with respect to the controllers
reported in Chapter 4.

5.1 PID controller

In this section we provide the necessary conditions for the construction of a PID
controller based on the passive output of the PH system (2.6). Therefore, we
restrict our attention to PID controllers of the form

u=—Kpy.)— Ki(v(z) + ) — Kpy, (5.1)
where v : R™ — R satisfies
Y=Yy

K € R™ is constant and the symmetric positive constant matrices Kp, K7, Kp €
R™>™ are the PID tuning gains.

5.1.1 Preliminaries

The first step towards the formulation of the PID controller is to ensure that the
control law (5.1) can be computed without differentiation nor singularities that
may arise due to the presence of the derivative term g.y. Clearly, the derivative
term can be added only when the output y(.) has relative degree equal to one,
that is, when w(z) = 0 and D(z) = 0, hence y.) is the natural output defined
in (2.10).

The following assumptions identify the class of PH systems for which the
proposed control strategy is applicable.

Assumption 5.1.1 There exists a function v : R™ — R that solves the follow-
ing PDE

-
ey E )] V1 = [ ot 2
Assumption 5.1.2 The mapping K : R™ — R™*™  defined as
K(z) = I + Kp(Vy) ' g(2),
is full rank.

Proposition 5.1.1 Fiz y.y =y and suppose Assumption 5.1.1 and 5.1.2 holds.
The control law (5.1) takes the form

u=—K () {pr + Kr(y(z) + k) + KD(Vy)TF(ac)VH(x)} , (5.3)

with vy solution of (5.2).
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Proof: The proof is straightforward from (2.10) and Assumption 5.1.2.
O
Before closing this subsection we note that in [58] PID control is viewed
from a different perspective. Namely, assuming that ¢ is computable, it is shown
that the closed-loop system can be represented as a PH system with algebraic
constraints. However, leaving aside the complexity of computing g, the stability
analysis of this kind of systems remains an essentially open question.

5.1.2 L,-stability analysis

PID controllers define input strictly passive mappings [58]. Thus, the Passivity
Theorem [11, 58] allows to immediately conclude output strict passivity—hence,
Lo-stability—of the closed-loop system. The proposition below establishes this
result for the PH system (2.6) in closed-loop with the PID-PBC (5.3).

Proposition 5.1.2 Consider the PH system (2.6) in closed-loop with the PID-
PBC (5.3) with an external signal d(x). The operator d — y is Lo-stable. More
precisely, there exists n € R such that

t 1 t
2 2
y(s dsgi/ds ds+mn, ¥Vt > 0.

Proof:  Proposition 2.2.1 ensures passivity of the mapping ¥ : u — y
defined by the PH system. On the other hand, output strict passivity of the
mapping 3. : y — (—u), defined by the PID-PBC, is proved noting that

u=—Kpy— Ki(v(z) + k) — Kpy. (5.4)

Therefore

y ' Kpy+y Ki(v+£)+y Kpy
Amin(Kp)|yl> +4TK1(y + &) +y " Kpy.

—u)

AVAN

Integrating the expression above we get

| et s = M0 [ ute) s = O, ~ O, >0,

The rest of proof follows directly from the Passivity Theorem [11].

5.1.3 Lyapunov Stability Analysis

A first step of the stability analysis is to ensure that z, is an equilibrium of the
closed-loop system. In contrast with the PI controller proposed in Chapter 4,
apart from the integrability condition, the plant to be stabilized needs to satisfy
an additional assumption to ensure that the PID controller (5.3) can assign the
desired equilibrium of the closed-loop system. This assumption is formulated
below.

Assumption 5.1.3 Let z. € £. The PH system (2.6) evaluated at x, verifies

R.(VH), = 0,. (5.5)
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The proposition below states that a necessary condition to assign the equi-
librium of the closed-loop system is that Assumption 5.1.3 holds. This clearly
stymies the applicability of the PID-PBC.

Proposition 5.1.3 Let x. an equilibrium of the open-loop system. Consider
the PH system (2.6), (2.10) in closed-loop with the PID-PBC (5.3). Hence, x.
is an equilibrium of the closed-loop system only if Assumption (5.1.3) is satisfied.

Proof: Note that Assumption 5.1.1 implies that

V) = (Vy)'a
= g'(@)VH(z) =y.

Therefore, y, = 0. Moreover, since z, € &, the following chain of implications
hold true.

= (VH)] F.(VH). + (VH), gou, =

= (VH)]R.(VH).

— R.(VH). =

I
coc oo

This completes the proof.
O

Remark 5.1.1 Assumption 5.1.8 is analogous to the dissipation obstacle present
in Cbl. In other words, dissipation cannot be present on the coordinates to be
shaped.

The proposition below establishes conditions for which the point z. is a
stable equilibrium, in the sense of Lyapunov, of the closed-loop system.

Proposition 5.1.4 Consider the PH system (2.6), (2.10) in closed-loop with
the PID-PBC (5.3). Suppose that Assumptions 5.1.1-5.1.3 hold. Let the closed-
loop energy function

1 1
Hy=H+35lv+ ali, + 5lylic,- (5.6)
(i) If v, € € and
argmin Hy(z) = ., (5.7)
and it is isolated. Then, the closed-loop system has a stable equilibrium
at z,, with Lyapunov function Hy.
(ii) The equilibrium is asymptotically stable if
Hy=0<z=uz,. (5.8)

Proof: To establish the proof we first show that H; is non-increasing along
the trajectories of the closed-loop system. Towards this end we compute

Hy < y'u+y " Ki(v+r)+y Kpy

= 7|y|%{}3 S 07

where we used (5.4) to obtain the equality.

Now, note that (5.7) implies that H, is positive definite with respect to
4. The proof is completed invoking Lyapunov Theory and the Barbashin-
Krasovskii’s Theorem.

O
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5.2 Alternative PID controller

In this section we propose an alternative PID controller based on the passive
outputs of the PH system (2.6). The starting point of this new PID-PBC is
the key property underscore in the Remark 4.4.1, that is, the integral action in
the controller ups of Propositions 4.2.1 preserves the PH structure of the closed-
loop system. Hence, the new PH system is passive and the desired equilibrium
is already a critical point of its storage function. Furthermore, a new static-
feedback will add a proportional and derivative term of the new PH system’s
output completing the PID-PBC design.

5.2.1 Preliminaries

In this subsection we define some mappings and assumptions which are instru-
mental in the design of the PID-PBC scheme proposed in this section.

Towards the construction of the new controller, suppose Assumptions 4.1.1
and 4.1.2 hold. Then, define the mappings H, : R — R and y, : R® — R™ as
follows

H,(x)

H(z) + 5+l (59)
Ya = gT(x)VHa(ac), (510)

where «y verifies (4.3).

As in Section 5.1, the following assumption is necessary to ensure that the
PID-PBC can be implemented without singularities due to the presence of the
derivative term.

Assumption 5.2.1 The mapping Kpsy : R™ — R™*"™  defined as
Kpsu(z) := I, + Kp(Vya) ' g(2),
is full rank.

If Assumption 5.2.1 holds, then it is possible to define the mapping vpg; R —
R™ as
vps(2) 1= —Kpey { KpPya + Kp(Vya) ' F(z)VHa(z)} . (5.11)

5.2.2 Energy shaping

In this subsection we define a new PID controller around yps and ¥y, such that
the closed-loop system preserves passivity properties.

Proposition 5.2.1 Suppose Assumptions 4.1.1, 4.1.2 and 5.1.3 hold. Define
the mapping upsy : R" — R™
upsn(z) := —Kr(y(z) + K) + vps, (5.12)

where 7 verifies (4.3)1, k € R™ is constant and the symmetric positive constant
matrices Kp, K1, Kp € R™*™ qre the PID tuning gains. The system (2.6) in

1The result is presented for F' full rank, nonetheless, some simple calculations show that
the same result holds for F not full rank, using F'T instead of F~!.
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closed-loop with the control uw = upsy + v defines a passive mapping v — Yy, with
storage function

1 1
Hy=H(x) + 517 + i, + Slvalkc,- (5.13)

Proof: To establish the proof, first, note that from (5.9) and (5.10) the
expression (5.11) takes the form

Ups = *pra - KDya- (514)

On the other hand, the derivative of H,, defined in (5.9), along the trajec-
tories of the closed-loop system verifies

H, = (VH,)'#
= (VH,) " (FVH + gu)
= (VH,)"FVH, + (VH,) " g(vps +v)
—|VH,|% +ya (ves + v), (5.15)

with y, defined as in (5.10). Furthermore,

Hd = Ha +y(;rKDga
—|VHa|% + y, (ves +v) + Y Kpa
= *|VHa|$27|ya|%(P+y;rU§yIva

where we used (5.15) and (5.14) to obtain the second and the last equality,
respectively.
[

Remark 5.2.1 In contrast with the PID-PBC on the natural output proposed
in Section 5.1, the controller upsy is not constructed around a passive output
but is consists in integral?, proportional and derivative terms of two different
mappings. This can be understood as a control law composed by two loops, where
the first one is an integral term of yps and the second loop adds the proportional
and derivative terms of y,.

5.2.3 Stabilization

In this subsection we present the main result of stabilization of PH systems with
the PID-PBC presented in Proposition 5.2.1.

The proposition below establishes the conditions for which the new storage
function Hgy(x) is positive definite (with respect to the desired equilibrium z,)
and thus qualifies as a Lyapunov function for the closed-loop system (with
v =0).

Proposition 5.2.2 Consider the system (2.6), verifying Assumptions 4.1.1,
4.1.2 and 5.1.8, in closed-loop with the control u = upsy, defined (5.12). Se-
lect k as in (4.9).

2See Remark 4.2.1.
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If v, € € and
(V2Hy). >0 (5.16)
with Hq(x) defined in (5.13), then x. is stable (in the sense of Lyapunov) with
Lyapunov function Hgq(x). It is asymptotically stable if the following implication
s true
Hd =0z ==z,

Proof: From Proposition 4.3.1 it follows that
(VH,)s = 0,,.
Hence, 94+ = 0. Furthermore,
(VHg)s = (VHy)s + (VYa)« KDYax = O

Hence, (5.16) in combination with the expression above imply that H, is positive
definite with respect to x,.. The proof is completed invoking Lyapunov Theory
and the Barbashin-Krasovskii’s Theorem.

O

Remark 5.2.2 We stress the fact that, in contrast with the PID-PBC proposed
in Section 5.1, the PID controller (5.12)-(5.11) —under Assumptions 4.1.1 and
4.1.2—ensures that the point x. € £ can be assigned as an equilibrium of the
closed-loop system even if Assumption 5.1.8 does not hold.

5.3 Examples

In this section we present two examples for which the PI controller presented
in Chapter 4 is not suitable but can be stabilized via the PID-PBC proposed in
this chapter. The first example is the LTT studied in the previous chapter and
its general version. The second example shows

5.3.1 LTI continued

In this subsection we show that the LTI system studied in Subsection 4.6.2
in Chapter 4 can be stabilized with the PID-PBC proposed in Section 5.1.
Moreover, this result can be extended to the controllability canonical form of
LTT systems of dimension 2.

Proposition 5.3.1 Consider the system (4.36), (4.37) in closed-loop with

K K K K
y o Krta D)x1+( p+ Kp)

1 KD 1 KD o, (517)

with Kp # 1. There exists a set of positive gains Ki, Kp, Kp such that the
origin is a stable equilibrium of the closed-loop system.

Proof: The first step to establish the proof is to show that Assumptions
5.1.1-5.1.3 are satisfied. Towards this end, note that y = —x3, whence we
propose v = —x1 as a solution to (5.2). Moreover,

(Vy)'g=-1
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hence, Assumption 5.1.2 holds for any Kp # 0. On the other hand, since
2+ = 09, Assumption 5.1.3 is satisfied and xk = 0.

Now, some simple calculations show that the PID-PBC given in (5.3) takes
the form (5.17). Moreover the closed-loop system is given by

T = ACISC

where

0 1
A= | kiva  Kpii |-
17KD 17KD

The eigenvalues of the closed-loop system matrix are

 Kp+1 \/(KP+1)2+4(G+KI)(1—KD)
Malda) = gy * 2(1— Kp) '

The proof is completed noting that for Kp > 1 and (K;+a) > 0, the eigenvalues
of A.; have negative real part.
O
The Proposition below establishes that any controllable LTI system of di-
mension 2 can be stabilized by the PID-PBC proposed in Section 5.1.

Proposition 5.3.2 Consider a LTI system described by
.10 1 0
T = [111 ag] x+ [J u. (5.18)

Then, for any constant parameters ay,as, there exists a set of positive gains
K;,Kp,Kp for the PID-PBC (5.3) such that the origin is a stable equilibrium
of the closed-loop system.

Proof: To establish the proof, first, note that the system (5.18) admits a
PH representation®

& = FQzx+ gu,
[ 0 —sign(asz)
F = .
sign(az) —l|az] (5.19)
Q = diag{sign(az)ai, —sign(az)}
0
|

Now, we proceed to corroborate that Assumptions 5.1.1-5.1.3 are satisfied. In
order to do that note that y = —sign(as)x2, thus we propose v = —sign(as)z1
as a solution of the PDE (5.2), which implies that Assumptions 5.1.1 and 5.1.3
are satisfied (with k = 0). Furthermore,

(Vy) g = —sign(as),

hence the selection Kp # 1 ensures that Assumption 5.1.2 holds.

3We will consider sign(0) = 1.
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Finally, to prove stability of the closed-loop system note that the control law
(5.3) takes the form

_ sign(a2) (K1 + a1 Kp) sign(a2)(Kp + asKp)
1 — sign(az2)Kp 1 — sign(az)Kp

xrg.

Moreover, the closed-loop system takes the form

T = Aclza
where
0 1
Ao = a14+81gn(a2) K1 az+81gNn(a2)Kp

1-8ign(a2)Kp  1-8tgN(a2)Kp

The eigenvalues of A.; are given by

as+Kp \/(a2+KP)2+4(a1+KI)(1*KD)

AofAg) =4 207KP) 3(1-Kp) if ax >0,
5 C as—K \/(llz—K )2+4(a1—K )(1+K ) .
2(i+Kg) + - 2(1+Kp) - DLt ag < 0.

The proof is completed noting that

Kp>1,(a1+K;)>0 for as >0,

(a1 — K1) <0 for ag <0 } = R{da{da}} <0.

O
5.3.2 Alternative PID-PBC
Consider the PH system
0 0 1 0 0
t=|0 -1 O0|VH+]|1 0|u (5.20)
-1 0 -1 0 1
with )
H = 5(301 +x2)2+a$1 + 1+ coszs, (5.21)

where the constant parameter a is different from zero and z3 € [fg, %] Define
X = [fg, %}, then the equilibria set of this system is given by
E:={z€R*x X |sinz3 =0}. (5.22)

The control objective is to stabilize the constant point . = (z14, zax,0),
with 21, independent from z2.. Note that the PID-PBC (5.3) is not suitable
since

0
R(VH). = |@14 + 224 | - (5.23)
0
Moreover, the latter expression is equal to 03 if and only if x1, = —x2., which

is not necessarily true.
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On the other hand, the matrix F' is full rank and
0 1

_F_lg = V'y = 1 0 s
0 0

which admits a solution linear in x7 and x5. The latter implies that Assumptions
4.1.1 and 4.1.2 are satisfied. Furthermore, we propose

v = {””2} . (5.24)

X1

Now, selecting K; = diag{k;1, kia} with k;1,k;2 > 0, the gradient and the
Hessian of H,, defined in (5.9), are given by

_$1 + a0+ a+ k/’ig(l'l + Hg)
VHa = xr1 + xo + kil (SCQ + Hl) (525)
i —sinxsg
1+ ki 1 0
V?H, = 1 1+ ki 0
0 0 —Ccos T3

Therefore, evaluating (5.25) at x. we obtain (VH,). = 03 for

T1xFTox
R | T T TR
K= L@] -~ [ e e | - (5.26)

_:I;l* i2

Note that the Hessian of H, has no definite sign at x,., and in consequence,
the PI proposed in Chapter 4 cannot ensure the stability in closed-loop of the
equilibrium. Therefore, in order to add a derivative term that helps to shape
the energy of the overall system, we compute

[501 + o+ ki (z2 + Ii1)]

Ya sin x3
1 0 (5.27)
Vyoe = |1+kq 0
0 — Ccos T3

In the proposition below we design the PID controller proposed in Proposi-
tions 5.2.1 and 5.2.2.

Proposition 5.3.3 Consider the system (5.20)—(5.21) in closed-loop with the
PID controller defined in (5.12)—~(5.11), where 7, k are chosen as in (5.24) and
(5.26), respectively, Hy,y, are described by (5.25) and (5.27), respectively; and
the gain matrices are selected as

i . kg Kk
K1 = diag{ki1, kie}, Kp = diag{kp1,kp2}, Kp = { dl dQ] ,

kao ka3

with kil,k/’ig,kpl,kpg,k/’dl,k’dg > 0 and kg1kqs > kga. Then, the point T, =
(14, T2x,0) is an asymptotically stable equilibrium of the closed-loop system
with Lyapunov function Hy defined as in (5.13).
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Proof: It has been shown that Assumptions 4.1.1 and 4.1.2 hold. There-
fore, to construct the PID-PBC it remains to prove that Assumption 5.2.1 is
satisfied. Towards this end, we compute

P L ) R P R R PR (1)8
PN 101 kao kaz| |0 0 —cosz3| |

_ 1+ kdl(l + kil) —kgo cosxs
- kdg(l + k11> 1 — kg3 cosxs

whose determinant is given by
det{Kpsy} = 1+ ka1 (1 + k1) + { (k3o — karkas)(1 + ki) — ka3 } cos x3.

Hence, an appropriate selection of the tuning gains ensures that the mapping
Kopgy is invertible and thus the Assumption 5.2.1 holds.
On the other hand, the Hessian of the overall system is given by

ka1 + 1+ kio Ean(1+ ki) +1 —kaz cos 3
V2Hg = |kat(1 + ki) + 1 kar(1+ k)2 + 14+ ki —kao(1 4 ki1) cos 3
—kgo cos T3 —ka2(1 + ki1)cosxg kg3 cos® x3 — cos x3

Therefore, evaluating the latter at x, we have

ka1 + 1+ ko kan(1+ ki) +1 —ka2
(VPHy)s = |kat(L+ ki) +1 kat(L4+ka)? + 14k —kao(1+ ki)
—kao —kaa(1 + ki1) kaz — 1

Moreover, a Schur complement analysis shows that (V2Hg), > 0 for kg3 > 1.
Hence the stability of the point z, follows from Propositions 5.2.1 and 5.2.2.

To prove the convergence of the trajectories to the desired equilibrium, note
that

. Ya = 0
H; =0+ T = 0
9 = 0.
Furthermore, the latter implies
r3 = 0
3 = 0
1+ 2o + k/’il(l'g + /il) =0 (529)
xr1 + o +a+ki2(:c1 +I€2) = 0. 530)
Hence, combining (5.29) and (5.30) we obtain
ki(zo + k1) = a+ kio(z1 + Ka) (5.31)
<= k(2 — 22x) = kia(x1 — 214) '

where we used (5.26). Moreover, replacing the latter in (5.29) we get

T1 — 1« + I,zzf (1 —x14) F kig(x1 —214) = O
> (ki1 + kio + kinki2) (x1 —x14) = 0

T = Tix-

Therefore, substituting the latter in (5.31), we have that x2 = x2, and thus we
conclude that Hy = 0 < = = z,.. This completes the proof.
O
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Simulations

Figure 5.1 shows the simulation results of the closed-loop system with the con-
stant parameter ¢ = 2 and the desired equilibrium at z, = (2,1,0). The
simulations are carried out for initial conditions xo = (0,—1, %) and selecting
the tuning gains as

K; = diag{3,2}, Kp =diag{5,6}, Kp = |:i) (15] .

From the figure it is clear that the states converge to the desired equilibrium.
This corroborates the result of Proposition 5.3.3.

25 . .

15 - 2

States

05 -

Time [s]

Figure 5.1: Simulation results of system (5.20) in closed-loop with (5.12).



Chapter 6

Flexible inverted pendulum

The problem of stabilization of under-actuated mechanical systems, both in the
domain of ordinary and partial differential equations, has been widely addressed
by several control researchers in recent years. In the domain of flexible mecha-
nisms and robots, flexibility in the links is the main source of under actuation.
If the deformations due to flexibility are small it is possible to use an uncon-
strained Lagrange formulation and invoke the Assumed Modes Method (AMM)
[29] to obtain a simple, finite-dimensional model—see [15] for a recent liter-
ature review. This modeling procedure, however, is inapplicable for systems
with large deformations, for which a constrained EL formulation is required.
This approach has been adopted in [45] to derive an accurate model for a single
ultra-flexible link fixed to a cart. Potential energy change owing to ultra-large
deformations in the presence of gravity is considered in [45] using the constant
length of the beam as a holonomic constraint. For a survey on recent control
techniques for this class of systems see [45, 56, 2].

The objective of this Chapter is to design an energy shaping controller with
guaranteed stability properties for the model of a single ultra-flexible link fixed to
a cart reported in [45]. As is well known [34] the application of energy shaping
controllers is stymied by the need to solve PDEs that identify the mechanical
structure (Lagrangian or Hamiltonian) that is assigned to the closed-loop. To
propose a truly constructive energy shaping scheme, that does not require the
solution of PDEs, it was recently proposed in [13] to relax the constraint of
preservation in closed-loop of the EL structure. The design in [13] proceeds
in two steps, first, we apply a partial feedback linearization (PFL) [54] that
transforms the system into Spong’s normal form—if this system is still EL, two
new passive outputs are immediately identified. Second, a classical PID around
a suitable combination of these passive outputs completes the design.

In this chapter it is shown that this technique, developed for standard EL
systems in [13], is also applicable to the constrained EL system at hand. This
extension is far from obvious, because the (lower order) dynamics that results
from the projection of the system on the manifold defined by the constraint is
not an EL system. In spite of this fact it is shown that, because of the workless
nature of the forces introduced by the constraints, it is still possible to identify
the two new passive outputs to which the PID is applied.

81
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6.1 System dynamics and problem formulation

In [45] a dynamic model that accurately describes the behavior of the single
ultra-flexible link fixed to a cart depicted in Fig. 6.1 is reported. The main
feature of this model, which distinguishes it from other models, is that to take
into account large deformations of the link its length is assumed constant—
giving rise to a holonomic constraint. The model is rigorously developed using
a constrained EL formalism, combined with a standard application of the AMM,
and its validity is experimentally corroborated. In this section we present this
model, first, in its constrained EL form and then in a reduced form—obtained
via the elimination of the constrained equations.

6.1.1 Constrained EL model

The model reported in [45] admits a constrained EL representation of the form

D(q)+C(q,4)g+ Blg) + Rg = esm+AA(q)
I'(q) = 0, (6.1)
where ¢ = col(6, z., 2) € D x R>g x R are the generalized coordinates, R > 0
is a matrix of damping coefficients. D > 0 is the inertia matrix, C'q¢ are the
Coriolis and centrifugal forces, B is a conservative force vector due to poten-
tial energy, 7 is the control vector, AA is a vector of virtual forces due to the

holonomic constraint, with A the Lagrange multiplier, and T' is the (constant
length) constraint function given by

I'(q) == /0 1+ [0 (2)dz — L, (6.2)

with L > 0 the length of the link and ¢ the mode shape function of the AMM
[29] reported in [27], that is,

¢(x) = cosh (%) — o8 (%) + v {sin (%) — sinh (77_;)} ;

where n and « are constants defined in Table 6.1. The analysis made in [45]
considers only one mode where the deflection «(6, x) is given by

az,d) = ¢(x)6.

The different terms entering into the System (6.1) are defined as

D(q) := 0 Ds 0 |,
Do(x.) 0 Dy
Aq1(0,x.)
Alg) = VI(g) = A2(%xe) ,
R = diag{Ri,0, Rs},
%Cl(ze):be 6(ze,9,2) %Cg(l‘e)ibe.
C(Qad) = 75(5667972) 0 7%02(566)9 )

105(ze) e 1Co ()0 0
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a(6,%e)

D3 (tip mass)

Figure 6.1: Single ultra-flexible link with base excitation

with

and

B(q) :==VV(q) = {32(97 Te

. 1 |
6(we,0,2) == §Cl($e)9+ 502(%)27

Bl (9, $e>
1
0

where V is the potential energy of the system given by

Vig) = )

S (L C)) .
El/o {1+[9¢’(z)]2}3d Pt

E,I, D3, Ry, R3 are constant parameters and the remaining functions are defined

as follows

Al (97 :Ce)

A2 (97 ZEe)

Bl (97 x(i)

BQ (97 xe)

Cl (xe)

D1 (SCe)

/ \/1+ [0¢/ (x

1+ 00/ (20)].

o [ 016" (@) {1 — 200/ ()]}
N

BI[0¢" (x.))?

{1+ 100/}
)

2D3¢(xe)P (we), Ca(xe) := D3’ (z.).

L
pAo / (6(x)2da + Dslé(z.)?,

dz,

3 + Dsg.

N =
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L
Da(ee) = Dsdlze) + pA / o(z)da,
0
D4 = D3 + Mc + p.AQL

Problem formulation: Given the system (6.1) find a control input 7 that
places the beam at its vertical position with the cart stopped at the zero posi-
tion, i.e., that renders the point ¢, := (0, L,0) a (locally) asymptotically stable
equilibrium.

Remark 6.1.1 In [45] the model (6.1) is obtained applying EL equations to
the constrained Lagrangian

L(q,4,\) =T(4,q) — V(q) + AT(q)

where ) is a Lagrange multiplier and T is the kinetic energy of the system given
by
1

T(3,q) = 54" D(a)i-

Remark 6.1.2 Tt should be noted that the well-known [40] skew-symmetry
property )
D(q) = C(g,d) +C " (a.9), (6.4)

is satisfied. Nevertheless, this important property is of no use for controller
design in the present context.

Remark 6.1.3 In [45] the analysis of the open-loop equilibria of (6.1) is carried
out. In particular, it is proven that the open-loop equilibrium set is given by

E = {(9,.1‘6,2) cD x Rzo x R | A1By — AsBy = 0}, (65)

where the arguments 0, x. are omitted in A;, B;, with ¢ = 1,2. Furthermore,
and not surprisingly, it is shown that the desired equilibrium ¢, € £ and is
unstable.

6.1.2 Reduced purely differential model

In this subsection we apply the standard constraint differentiation procedure
[20] to transform the algebro-differential equations (6.1) to a purely differential
form of reduced order.

Proposition 6.1.1 The system dynamics (6.1) is equivalent to

Dg(0)0 + D.(0)% + Cp(0)6% + R16 + By() = 0
D.(0)0 + Dys 4+ C.(0)0> + R3z = 7 (6.6)

with the functions Dy, Cy, By, D, and C, given in (6.9).

Proof: Differentiating the constraint equation (6.2), we get

A1(0,2)0 + Ay (0, x)E, = O
Al(ev xe)é + AQ (97 xe)fée + A3 (97 xe)éi'e + A4 (97 xe)i'

+A5(0,2)62 = 0, (6.7)

NN O
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where
A3(95ze) = M,
1+ [9¢/(xe)]2
A4(95$e) = w,

1+ (06! (x.)]”
Te / 2
As(0,z.) = / ') Tda.
" {14100 @)}
Now, the partial derivative with respect to x. of the constraint (6.2), given by

2
As(0, ), is clearly bounded away from zero. Thus, invoking the Implicit Func-
tion Theorem [26] we can guarantee the existence of a function Z.(0) such that

Equivalently, it is possible to express x. in terms of 0, that is
Te = i'e (9) (68)

Replacing (6.7) in (6.1) it is possible to eliminate the Lagrange multiplier
A—as done in [45]. Moreover, using (6.8), we can eliminate the coordinate
e to reduce the order of the system. After some lengthy, but straightforward
calculations, this leads to the equations (6.6) with the definitions

A3 (0, 3(0)

Dy(6) = Dl(@e(9)>+D3m
B AI(Q je(e)) 1 . Al(ev-i'e(e))
@O = Ppeaae) T 2 Le50)
BG(H) = Bl (9, ie(t?)) — B2(97 :Ce(e)) ﬁ; EZ, ;:EZ§§
D.(0) = Da(&(0))
C.(0) = _02(@6(9)&1?;:%%’ (6.9)

Remark 6.1.4 The first equation in (6.7) can be rewritten as follows
AT (q)¢ = 0. (6.10)

Consequently, differentiating the total energy of (6.1)—given by H(q,q) :=
T(q,q) + V(g)—and using the skew-symmetry property (6.4) yields the usual
power balance equation '

H=—q"Rj+ gs.



86 CHAPTER 6. FLEXIBLE INVERTED PENDULUM

This means that the virtual forces introduced in the equations due to constrained
Lagrange formulation are workless, that is, they are not responsible for addition
or removal of energy from the system. This key property is used later to identify
the passive outputs used for the design of the energy shaping controller.

Remark 6.1.5 The admissible initial conditions for the reduced system (6.6)
are restricted to the set

{(6,2) €D x R | (0, 2.(0)) = 0},

where, clearly, the system evolves.

6.2 Energy Shaping Control

As explained in the introduction the energy shaping control of [13] proceeds in
three steps: a partial feedback linearization, identification of two passive outputs
and the addition of a PID loop around a suitable combination of these outputs.
These steps are applied to the system (6.6) in the following subsections.

6.2.1 Partial feedback linearization

The lemma below describes a first static state—feedback that performs the PFL
of the system (6.6).

Lemma 6.2.1 Consider the system (6.6) in closed—loop with the control

D o D, _ . D D?
= Ry’ L, — == 0> — —ZRi0 - =B Dy — =2 |u. 11
T R32+<C D909> D, 0~ 5, 9+< 4 De)u (6.11)

Then, the system can be written in Spong’s normal form

Dp(0)6 + Co(0)6% + R0+ Bg(0) = Go(O)u
;o= o, (6.12)

where
Go(0) := —D.(0).

Proof: The proof proceeds rewriting the first equation of (6.6) as follows

1

0= Dy

(D.%+ Co0® + R160 + By) . (6.13)

Now, replacing the latter expression in the second equation of (6.6), we get

D, : . .
D (D.% 4 Cob* + R0+ By) + Dyi + C.0> + Ryz = 1.
[/

Substituting the control law (6.11) in the equation above we obtain the second
equality of (6.12). The first equation results, replacing 2 = u in the first equation
of (6.6). O
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6.2.2 Identification of the passive outputs

In the following lemma the new cyclo-passive maps for the system (6.12) are
identified.

Lemma 6.2.2 Consider the system (6.12). The signals
Ya = z
yu = Ga(0)0,
define cyclo—passive maps u — ¥y, and u — ¥y, with storage functions

H,(2) = %,52 (6.14)

1 .
respectively, where
Vo(0) :=V(0,%.(0)).
More precisely, the time derivative of the functions H, and H, along the solu-
tions of (6.12) satisfy the dissipation inequalities
Ha < UYaq, Hu < UYy. (616)
Proof: First, notice that

: ov. oV .
‘/9 = @9 + a—jeiEe
= Bl(é’,xe)é + B2(97xe)£'e

= Bi(0,2.(0))0 + Ba(0, 2.(0)) .
= Bl(eai'E(e)) - BQ(eai'E(o))
= By(6)9, (6.17)

where we have used (6.3) for the second identity, (6.8) for the third one and the
first equation in (6.7) for the fourth one.

Now, we will prove that . '
Dy = 2Cy0. (6.18)

Indeed, computing the time derivative of Dy we get

. . Ay A2
Dg = D1 + 2D3A_%A1 — 2D3A_3A2
oD, A [0Ar . DA, . A2 04y OAs.
= 9D Lop, AL (94 94 ) o Al (0225 Of2s
95, et 3Ag<ae +a@ez> s\ o0 " T on "

= Clxe + 2D3A_% |:A59 + 51431'6 — A_2 (51439 + A4.’L‘e):|
B A A,
= {Cl 2, +2Ds 2 g] 0

= 2040,
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where we used the first equation of (6.7) to eliminate &. in the fourth identity,
the arguments 0, %.(0) are omitted.
The time derivative of (6.15) along the system trajectories is

H, = Dybb + §D992 + Vo
. . 1. .\ .
= (G@U — Cp0? — R10 + §D99) 0
= fR19.2 + Ggéu < UYy-

where (6.13) and (6.17) were used in the second equality while the third one was
obtained invoking (6.18).
On the other hand, the time derivative of (6.14) along the system trajectories
s
Ha = ZZ = UYq.

This completes the proof. (I

6.2.3 PID controller

Similarly to [13] the controller design is completed adding a PID around a
suitably weighted sum of the two cyclo-passive outputs (y, and y,,) identified
in Lemma 6.2.2. More precisely, the controller implements the relationship

t
keu = — (KPQ + KI/ G(s)ds + KDyL) ) (6.19)
0

where
¥ = kaVYa + Eulu (620)

with ke, kg, ky € Rand Kp, K7, Kp € R>g the PID gains. As explained in [13],
and illustrated below, these gains are selected to shape the energy function.

To implement the controller (6.19) without differentiation the term § is re-
placed by its evaluation along the system dynamics (6.12). Since the system is
relative degree one this brings along some terms depending on u that are moved
to the left hand side of (6.19). Some lengthy, but straightforward, calculations
show that (6.19) is equivalent to

K@)u=— (Kpg + K; /Ot g(s)ds> — Kpk,S(6,6),

where we defined the functions

50.0) = Gl — S (ol + Rad + By
6
G3(9)
K = K 0 .
(9) ke+ D |:ka+kuD6(9>:|

Clearly, a sufficient condition for the controller to be implementable is that the
function K is bounded away from zero, that is,

|K|>6>0. (6.21)
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To analyze the stability of the system (6.12) in closed—loop with the PID
(6.19), (6.20) we propose the function

Kr [ [t ° K
W(t,g, 9; 9; Z) = ke[kaHa(z) + kuHu(ev 9)] + 71 (/ g(s)ds) + TDQQa
0
and make the reasonable assumption that the friction forces acting on the beam
are negligible, hence set R; = 0. The derivative of W yields

t
W ke(kaHy + ko HL) + K1) / i(s)ds + —2D i
0

t
kefu+ Krj / g(s)ds + %yy
0
= —Kpj’,
where we used the dissipation inequalities (6.16)—that under the assumption
R; = 0 become equalities—to get the second identity and replaced (6.19) to
find the last one.

The final step in our stability analysis is to show that the function W can be
expressed as a positive definite (with respect to the desired equilibrium) function
of the state (6, z,0, 2) of the system (6.12). Notice that for this reduced system
the desired equilibrium is simply the origin.

To express W as a function of the state we only need to deal with the integral
term. For, we define the function

0 L
Vn () := Dg/o d(Ze(s))ds — <pA0/O (b(z)d:c) 0,

whose time derivative is given by

Vn = —Dsg(i.(0))0 — (P-AO/O ¢($)d$>9

= -D.0
= Gof
= Yu (6.22)
Consequently
t
/ g(s)ds = kqz(t) + k, VN (0(¢)) + ¢,
0

where ¢ € R is an integration constant. Using the latter and the definitions of
H,, H, and § we can prove that, up to an additive constant,

6
2

W (t,5,0,0, %) :% [ﬂ Da(6) [

where we defined

] + Va(8,2) =: Ha(6, 2,0, %) (6.23)

kekyDg(0) + k2K pG2(6) kokyKpGo(0)

Da(0) = [ kako K pGo(0) keko + k2K D (6.24)

Va0, 2) := keky Vo (0) + %K; [kaz + ku VN (0)]% . (6.25)
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Remark 6.2.1 Without the assumption that Ry = 0 a term —keky Ry 62 ap-
pears in W. As will be shown below, see also [13] and Remark 6.2.2, to make
the upward position a minimum of the total energy function H, it is necessary
to flip the potential energy of the pendulum, which is done selecting k.k, < 0,
making positive the dissipation term. The deleterious effect of dissipation in en-
ergy shaping methods is well known and has been reported in various references
[64, 18].

6.2.4 Main stability result

The proposition below, which essentially gives conditions on the controller gains
to ensure Hy is positive definite, is the main result of this section.

Proposition 6.2.1 Consider the system (6.1) in closed—loop with the controller
(6.11) where the outer—loop control « is given by the PID (6.19) with

§ = kaz + k,Gy(0)6. (6.26)

Set the constant gains ke, k, and the PID gains Kp, K; and Kp to arbitrary
positive numbers while k,, is negative and, for some small € > 0, satisfies

ke
ky < —k (ka + KD) — €, (6.27)

where £ is a positive constant verifying

(6.28)

(i) The origin of the reduced dynamics (6.6), which corresponds to the desired
equilibrium ¢, = (0, L,0) of (6.1), is stable with Lyapunov function Hy
given in (6.23).

(i) It is asymptotically stable if the signal § defined in (6.26) is detectable
with respect to (6.12).

Proof: In Lemma 6.2.1 it has been shown that the dynamics of the system
(6.1) in closed-loop with the controller (6.11) is described by (6.12). Therefore,
given the derivations above, it only remains to prove that the non—increasing
function Hg, defined in (6.23), is positive definite. This will be established
proving that, under the conditions of the proposition Dg > 0 and Vg has an
isolated minimum at the origin.

To prove the first claim notice from (6.24) that the (2,2) term of Dy is
positive. Hence it only remains to show that its determinant is also positive.
Now,

det{Dq} = kekyDg (keka + k2K p) + kek2ka KpGy
= keku (Do (keka + k2Kp) + kuko K pGp|

Dy k
= kokyko K pG? {— <ka + = ) + ku] )
P G2 Kp
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Since keky, < 0, the term outside the brackets is negative. Furthermore, if (6.27)
and (6.28) are satisfied, the term inside the brackets is also negative, yielding
det{Dd} > 0.

We proceed now to prove that the condition (6.21), which ensures realizability
of the control (6.19), is satisfied. This is established noticing that

Do(8)  Dy(0) ke
Gg(e)KDK(Q) - 70 <ka+ KD> + k.

Hence, invoking (6.27), we have that (6.21) holds.
To establish the proof of the second claim we compute the gradient of Vg as

vV, = [kek’uVVe + K1kuVVn (kaz + kuVN):|

Kk, (kzaz + k/’uVN)
| kekyBo — K1ky D, (koz + ki Vi)
B Kk, (kzaz + kuVN) ’

Using the fact that Bp(0) = 0 and Vn(0) = 0 we conclude that VVy(0) =
c0l(0,0). Now, the Hessian of Vy is given by

o2y, - kokuV2Vy + K1ky V2 (kaz + ku V)  —KrkukaD.
d —KikukoD, Kik?
_ V(ovz) *KlkukaDz
T | = Kikyk,D, Kk? :

where we defined the function
v(0,2) := kekyV?Vo + K1k2D? — K1k VD, (kaz + kJVN) .

FEvaluating it at the origin yields

9 - v(0) —Krkyk,D.(0)
V Vd(O) - [—K]kukaDz(O) K]I{/’g B (629)
where
v(0) = kekuV2Vy(0) + Krk; DZ(0).
Now,

& (0) Z(0)
V2V,(0) = EI "(x)?dx — D "(2)2dx
2(0) / 6" (@)] 3g/0 ¢ (2)dz,

which can be shown to be negative [45]. Since k.k, < 0 the (1,1) term of
V2V,4(0) is positive. Moreover,

det{V?V(0)} = kek,V*Vy(0) K k2,

which is also positive, ensuringV?V;(0) > 0.

The previous analysis ensures that the origin is an isolated minimum for
the function Vi as claimed above. The proof is completed invoking classical
Lyapunov theory [26]. O
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Remark 6.2.2 Notice that the condition V?V4(0) < 0 is consistent with the
well known fact that the upward pendulum position is unstable in open—loop.
Similarly to the rigid case [13] the maximum of the open—loop potential energy
is transformed into a minimum in closed—loop multiplying Vy by the negative
number kok,—see (6.25).

Remark 6.2.3 The critical condition (6.27) is satisfied in a neighborhood of
the origin replacing C' by

D3¢? (L) + pAo foL ¢? (z)dx _ D9(0)_
[D3¢(L) +p A J ¢(x)dx} G3(0)

Remark 6.2.4 The term kqz + k,Vn(0) in (6.25) is a new potential energy
corresponding to a virtual spring attached to the cart—thereby enabling to
stabilize the cart position.

Remark 6.2.5 The choice of the free gains of Proposition 6.2.1 is given just
as an illustration. From the proof it is clear that, depending on the particular
problem, other (possibly less conservative) choices are available.

6.3 Simulation Results

Table 6.1: System parameters

Parameter Symbol Value Units
Pendulum cross section area A, 8 x 1076 m>2
Young’s modulus E 9 x 1019 L
Gravitational acceleration g 9.81 5;‘72
Moment of inertia 1 1.066 x 10713 | kg -m?
Pendulum length L 0.305 m
Tip mass M 2.75 x 1072 kg
Cart mass M. 0.1 kg
Function of the system 0 11741 B
natural frequency
Dimensionless constant ~ 0.9049 —
Pendulum density p 8400 %
Viscous friction at the R 986 % 104 kg
pendulum base seg
Viscous friction between k
the rail and the cart R 7.69 ﬁ

In this section we assess the performance of the proposed controller via Mat-
lab® simulations choosing different sets of gains and different initial conditions.
We simulated the system (6.12) in closed—loop with the PID controller (6.19),
(6.26) with the parameters given in Table 6.1.
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We have chosen three different initial conditions, given in Table 6.2, corre-
sponding to radically different scenarios of the system. Namely, an arbitrary
point (ICsl), one of the stable open-loop equilibria (ICs2) and an initial condi-
tion with the cart far from the origin and the tip mass located at the unstable
open—loop equilibrium (ICs3).

For the selection of suitable gains for the controller, we fixed the gain k., = 1
and linearized the closed—loop system. We based our criterion to choose the
gains, always satisfying (6.21) and (6.27), and observing the eigenvalues of
the closed—loop matrix of the linearized system around the desired equilibrium
point. Particular attention has been paid to the eigenvalue closest to the imagi-
nary axis, which is directly related to the rate of convergence of the cart position.
Three sets of gains were selected and they are given in Table 6.3. For the Set 1
the real part of the slowest pole was —0.58, —0.75 for the Set 2 and —1.33 for
Set 3.

Table 6.2: Initial conditions

0 [m] | =[m] | 6[m/s] | 2 [m/s]
ICs1 | —0.08 | —0.1 0 0
ICs2 [ 0134 | 0 0 0
ICs3| 0 |[—015] 0O 0

Table 6.3: Gains sets

ke ko ke Kp Kp K;
Set1| 1 05 | —50.77 | 1.47 | 1.94 | 0.35
Set2 | 1 6137 | 128 | 1.92 | 052
Set3 | 1 1 | —43.04| 218 | 3.66 | 1.35

Tip mass position vs Time

—setd)|
0.05) —Set2
0.04] —Set1

10 10
Time [s] Time [s]

Cart position vs Time Cart acceleration vs Time

umis?
h

-0.25 2 o [—ser3] — Set3
—Set 2, - — Set 2,
—set1 —set1

1 10
Time [s] Time [s]

Figure 6.2: Simulation results for ICs 1

Simulation results of the energy shaping control are shown in Figures 6.2—
6.4, where the variation of the cart position and control input acceleration is
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X, vs Time Tip mass position vs Time

o.
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Figure 6.3: Simulation results for ICs 2
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Figure 6.4: Simulation results for ICs 3

observed to be within practical limits, hence the control objective of simultane-
ous stabilization of cart position while suppressing the cantilever vibrations is
achieved.

To evaluate the effect of the gains on the estimate of the domain of attraction
of the closed-loop systems provided by the Lyapunov function H; we show in
Figure 6.5 the level curves of the desired potential energy V; for each set of
gains. As expected, there is a trade off between convergence rate and the size
of the domain of attraction—as the slowest closed—loop pole of the linearized
system moves farther to the left the closed sub level sets shrink.

6.4 Experimental Results

Experiments were also carried out to assess the performance of the proposed
controller. The physical description of the experimental setup is provided in
the Appendix B. The partial feedback linearization was replaced by the stan-
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Figure 6.5: Level curves of the desired potential energy V(0, z) for the different
sets of gains

X, vs Time Tip mass position vs Time

—— Experiments.
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—— Simulation

10 15 ] 5 10 15
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Cart position vs Time Cart ion vs Time

—— Experiments
02 Experiments
Simulation

Simulation

5
Time [s] Time [s]

Figure 6.6: Comparison of simulation and experimental results for ICs 2

dard procedure of obtaining the desired trajectories for z via the integration
of the cart acceleration, which is numerically reconstructed. It was observed
that the gains used in the simulation do stabilize the physical pendulum but
with a reduced domain of attraction, that is, placing the pendulum closer to the
upward position. It is not surprising that the domain of attraction predicted
by the model is reduced in the practical application. To show a comparison
of the simulation and the experiment starting from the same initial conditions
and using the same controller it was decided to select another set of gains.
Figure 6.6 presents the comparison of simulation and experiment for the set
of initial conditions ICs 2 and the set of gains: k. = 1, k, = 1, k, = —47.5,
Kp =19, Kp =3 and K; =0.9. The results demonstrate that the control task
is achieved in a similar time although the trajectory in the experiments shows
more oscillations with high frequency components of the vibrations of the beam.
These oscillations are not captured by the simulation model that, as explained
in Section 6.1.1, retains only the first deflection mode. However, as shown in the
plots, these high frequency vibrations degrade the transient performance but do
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not induce instability.

A video of the simulations and experiments can be watched at

https://youtu.be/aG53XaQPP3c.


https://youtu.be/aG53XaQPP3c

Chapter 7

Conclusions & Future work

In this chapter we summarize the main results presented in the thesis. Addi-
tionally, we propose some points to be addressed as future work in the same line
of research of the problems studied in previous chapters.

7.1 Concluding remarks

Below, we present some concluding remarks of this thesis.

All the passive outputs reported in the literature can be represented by
the parameterization given in (2.8).

EB-PBC can be understood as Cbl with regulated sources as is exposed
in Chapter 3.

The PDEs to be solved in Cbl using yps and y,p are the same when F is
full rank.

The solutions of the PDEs to be solved in Cbl are also solutions of the
PDEs to be solved in EB-PBC.

If the passive output ypg is integrable, then it is possible to design a PI-
PBC based on yps such that:
— The energy shaping is carried without the necessity of solving PDEs.

— The PI-PBC assigns the desired equilibrium to the overall system with
an appropriate selection of k.

— The closed-loop system has a stable equilibrium point at the desired
equilibrium if the conditions given in Proposition 4.3.1 hold.

The integral action of the PI-PBC preserves the Hamiltonian structure of
the closed-loop system.

The PI-PBC is a particular case of IDA-PBC.
EB-PBC using yps is a particular case of the PI-PBC.

An input change of coordinates enlarges the class of systems that are
stabilizable with the PI-PBC. This is shown in Chapter 4 Subsection 4.5.1.
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Another extension of the PI-PBC, proposed in Chapter 4 Section 4.2, is
to use the first integrals of the more general passive output yyp.

In LTI systems, controllability is not a sufficient condition to might be
stabilized by the PI-PBC.

A PID-PBC based on the natural output can be constructed if Assump-
tions 5.1.1 and 5.1.2 are satisfied.

The PID-PBC based on the natural output is hampered by the dissipation
obstacle.

All the controllable LTT system of dimension 2 can be stabilized by the
PID-PBC.

An alternative PID-PBC based on two different passive outputs can be
designed as is exposed in Proposition 5.2.1. In this case, the equilibrium
assignment is not stymied by the dissipation obstacle.

In general, the derivative term in both PID-PBC designs destroys the
Hamiltonian structure for the closed-loop system.

The applicability of the PID-PBC proposed in [13] can be extended to
EL system with constraints as is done in Chapter 6. Where the control
objective is achieved using a simplified model of the ultra flexible inverted
pendulum.

7.2 Future work

The results reported in the previous chapters have motivated the following future

work.

To study the Cbl approach proposing as controller an IOHD system.
Then, compare the results with the controllers reported in Chapter 3.

To establish a comparison between IDA-PBC and the PID-PBCs reported
in Chapter 5.

To design a PID-PBC similar to the one constructed in Proposition 5.2.1,
using y,p instead of yps.

To look for a more general result for LTI systems in closed-loop with the
PID-PBC presented in Chapter 5.

To generalize the result for constrained EL systems in closed-loop with
the PID-PBC presented in Chapter 6.

To look for alternatives in the design of the PID-PBC of Chapter 6 such
that the PFL is not needed.
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Appendix A

Lemmata

Lemma A.1 (Poincare’s Lemma) Given f : R® — R", f € Ct. There exists
@ :R™ — R such that Vo = f if and only if Vf = (Vf)T.

Lemma A.2 The equation
F'ZF =—-F (A1)

with unknown Z : R™ — R™*™ s consistent (i.e., at least one such Z exists) if
and only if (2.14) is satisfied.

Proof: Equation (A.1) is a particular case of the linear matrix equation
AXB =C, (A.2)

where X is unknown. According to Theorem 2.3.2 of [48] the equation above is
consistent if and only if
AATCB'B = C. (A.3)

By matching the terms in (A.1) and (A.2) we get
A=F", X=2%, B=F, and C = —F.
Replacing these in (A.3) we obtain
~F"(F)Y'FF'F=-F < F'(F))TF=F,

where we used the definition of generalized inverse.

Lemma A.3 Equations (2.15) and (A.1) imply that
F'Z=—g. (A.4)

Proof: Equation (2.15) implies the existence of a mapping 3 : R” — R"*™
such that

g=Fp.
On the other hand, equation (A.1) implies that

F'ZF=—F3

for any . Combining the last two equations yields (A.4).
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Lemma A.4 Let g : R® — R"™ ™ m < n with rank g = m. For any b €
R™, a € R™

i
gb =0
b+ga=0 < _
g { a = —(g'g)'g"b.

1
Proof: Since rank {g*} = n — m, the n-dimensional matrix {‘(;T] is full

rank. Hence N

b+ga=0 <« [ggT](b+ga):0.
Moreover, the right-hand term of the equivalence above takes the form
gtb = 0
gfb+a = 0.
O

Lemma A.5 Consider the mappings L : R® - R" g : R" - R” and F' : R" —
R™ "™ verifying

F+FT < 0
FL = -—g.
The sets
S = {zeR"|LJ‘z:O}
Sy = {zGR”|gLFz:O},

verify S1 = Ss.
Proof: The chain of implications below proves that z € §; = z € Sa.

z€8 = dae€Rsuchthat z= La
= Fz=FLa
= Fz=—ga«a
= gltFz=0
& zeSs.

The opposite direction, that is, z € So = z € 81, is established by contradic-
tion.

z# LB, VB eER
Fz# FLB
Fz#—g8
gtFz 40

z2 ¢ Ss.

Z¢81

S



Appendix B

Experimental
Implementation

Figure B.1: Inverted flexible pendulum.

Figure B.1 shows the picture of the setup used for experimental implementa-
tion. A fatigue resistant Cu-Be alloy material is used for fabrication of the beam.
Cart is guided by a rail and driven through a toothed belt driven by a motor
(Maxon Motor AG: 236670). An encoder reads the position z of the motor and
hence the cart. An H-bridge amplifier (Nex Robotics Hercules 36V,15A) is used
to drive the motor. Strain gauges (TML Tokyo Sokki Kenkyujo Co.: FLA-5-11)
in full bridge configuration along with an amplifier (Data@ Instruments 5B38-
02) are used for feedback 6. The derivatives 0 and # are computed numerically
using a digital derivative filter. Interfacing of the motor, strain amplifier, and
encoder is done with data acquisition system ds 1104 from dSPACE GmbH via
PWM, DAC, and encoder interfaces. Careful horizontal leveling of the cart and
rail, and meticulous adjustment of the beam and the center of gravity of the tip
mass is carried out to make sure that the unstable equilibrium is perfectly verti-
cal and other equilibria are symmetric about the unstable equilibrium position.
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Several nonlinear terms in the control law (6.19) are integral function of § with
length constraint giving . as limit of integration and thus are computationally
demanding to evaluate in real time. Hence a look up table arrangement is used
for evaluation of these terms in real time. Appropriate signal conditioning is

used to balance detrimental effects of noise on one side and filter delay on the
other.
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