
HAL Id: tel-01615829
https://theses.hal.science/tel-01615829

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Black-Box Optimization and Benchmarking
in Large Dimensions

Ouassim Ait Elhara

To cite this version:
Ouassim Ait Elhara. Stochastic Black-Box Optimization and Benchmarking in Large Dimensions. Ar-
tificial Intelligence [cs.AI]. Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLS211�.
�tel-01615829�

https://theses.hal.science/tel-01615829
https://hal.archives-ouvertes.fr

NNT : 2017SACLS211

1

Thèse de doctorat

de l’Université Paris-Saclay

préparée à l’Université Paris-Sud

Ecole doctorale n�580
Sciences et Technologies de l’Information et de la Communication

(STIC)
Spécialité de doctorat : Informatique

par

M. Ouassim AIT ELHARA
Stochastic Black-Box Optimization and Benchmarking in Large

Dimensions

Thèse présentée et soutenue à Gif-sur-Yvette, France, le 28 Juillet 2017.

Composition du Jury :

M. Marc Baboulin Professeur (Président du jury)
Universtié Paris-Sud

M. Cyril Fonlupt Professeur (Rapporteur)
Université du Littoral-Côte-d’Opale

M. Peter A.N. Bosman Senior Researcher (Rapporteur)
Centrum Wiskunde & Informatica

M. Tobias Glasmachers Junior Professor (Examinateur)
Institut für Neuroinformatik, Bochum

M. Nikolaus Hansen Directeur de recherche (Directeur de thèse)
Inria Saclay Ile-de-France

Mme Anne Auger Chargée de recherche (Directrice de thèse)
Inria Saclay Ile-de-France

2

Résumé

Cette thèse s’intéresse à l’optimisation stochastique de problèmes de grandes dimensions
qui se présentent sous forme de bôıtes noires. On s’intéressera surtout aux problèmes
dont les variables sont continues (contrairement aux problèmes qu’on appelle discrets ou
combinatoires).

L’aspect boite noire de ces problèmes limite le choix des algorithmes à utiliser pour les
résoudre. En e↵et, dans un problème en bôıtes noires, un algorithme n’a accès, comme
information, qu’à l’image de chaque solution qu’il requête. Celle image (valeur qu’on
obtient en appliquant la fonction objectif) reflète la qualité d’une solution, le but étant
de trouver la solution optimale; dans notre cas, celle qui minimise la fonction objectif.

On va essayer de répondre, dans cette thèse, à trois questions principales:

1. comment concevoir un mécanisme d’adaptation du pas, peu couteux et e�cace,
pour les stratégies d’évolution ?

2. comment construire des problèmes à dimension e↵ective réduite et généraliser cette
notion en la rendant moins restrictive ?

3. comment étendre, avec un cout raisonnable sans pour autant être triviales à résoudre,
un ensemble de fonctions de test (benchmark) de dimensions basses/moyennes à une
configuration grandes dimensions; et ceci, tout en conservant les propriétés orig-
inelles de ces fonctions ?

Après l’introduction générale du Chapitre 1, le Chapitre 2 présentera une étude
de l’état de l’art autour du sujet de l’optimisation continue, et plus spécifiquement,
l’optimisation continue en grandes dimensions. En suite, les trois questions présentées
ci-dessus seront adressées dans les trois chapitres suivants. On synthétise et conclue dans
le Chapitre 6 tout en présentant quelques perspectives.

Les contributions principales de cette thèse se présentent comme suit:

Le Mécanisme d’Adaptation du Pas : La Median Suc-

cess Rule (MSR)

Dans le Chapitre 3, on conçoit une nouvelle méthode d’adaptation du pas pour les
stratégies d’évolution en général et CMA-ES (Covariance Matrix Adaptation Evolution
Strategy) en particulier.

1

2

MSR est une méthode de succès, ce qui veut dire que le pas de l’algorithme évolue
suivant une mesure de succès de la population actuelle à un temps t comparée à la
population de l’itération précédente (t� 1). Pour le cas de MSR, c’est le succès, ou non,
de la médiane à l’itération t quand comparée au jeme

�

individu de l’itération t � 1 qui
détermine si le pas doit être augmenté ou diminué, j

�

étant un paramètre de MSR.
Le but principal de MSR est de pouvoir être utilisée dans un contexte de grandes

dimensions, et donc d’avoir un coût de calcul raisonnable. Ceci est garanti par le fait que
MSR est une règle de succès dont la complexité de calcul ne dépend que de la taille de la
population, et non pas de la dimension du problème. Ce qui fait de MSR une alternative
à CSA, la méthode d’adaptation du pas par défaut de la Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) pour résoudre des problèmes de grandes dimensions.

MSR est une généralisation de la règle du 1/5eme [Rechenberg, 1994]. Cette dernière
étant conçue pour le cas des stratégies d’évolution à un seul parent quand MSR s’utilise
au cas non-élitiste multi-parent

Un autre avantage de MSR est qu’elle fait moins de suppositions sur la nature de
la fonction objectif localement et sur les autres composantes de l’algorithme auxquelles
elle s’intègre (typiquement, CMA-ES), ce qui fait d’elle, comme les tests empiriques l’ont
montré, une alternative viable à CSA même quand le problème à traiter n’est pas de
grande dimension. Ces tests ont été conduits après avoir ajusté les paramètres de MSR,
dans un premier temps sur un modèle théorique, puis, empiriquement.

Dimensions E↵ectives Réduites et Dimensions epsilon-
E↵ectives

Le Chapitre 4 examine une classe de problèmes de grandes dimensions qu’on rencontre
souvent dans le monde réel, à savoir les problèmes à dimensions e↵ectives réduites. Dans
ces problèmes, un sous-ensemble relativement petit de variables (à une transformation
linéaire près) définit totalement l’image d’une solution par la fonction objectif. Ce qui
veut dire que n’optimiser que ce sous-ensemble su�t pour trouver la solution optimale
du problème. Cependant, ce sous-ensemble est inconnu pour l’algorithme étant dans un
contexte bôıte-noire.

On généralise ce concept de dimension e↵ective réduite en permettant à une portion
de l’image d’une solution de parvenir de variables qui ne sont pas dans le sous-ensemble
des variables e↵ectives. On fait en sorte que les problèmes à dimension epsilon-e↵ective
réduite obligent les algorithmes à ne pas se contenter d’explorer les variables e↵ectives
pour trouver la solution optimale (ou l’approcher en pratique). De plus, les deux fonctions
qu’on utilise pour construire la fonction à dimension epsilon-e↵ective réduite ne sont
pas alignées sur le même système de coordonnées, ni aucune d’elles sur un système de
coordonnées canonique; empêchant les algorithmes d’exploiter une telle propriété.

On benchmark un certain nombre d’algorithmes d’optimisation continue en grandes
dimensions sur ces nouveaux problèmes. On propose aussi une variante de CMA-ES
(inspirée par le travail fait dans [Wang et al., 2013]) conçue pour traiter ce genre de

3

problèmes. Cette variante montre des performances compétitives comparée aux autres
algorithmes d’optimisation continue en grandes dimensions.

L’Extension de COCO aux Grandes Dimensions

Enfin, le Chapitre 5 introduit une approche générique pour construire des matrices de
rotation (orthogonales) creuses (sparse) qui conservent certaines des propriétés des ma-
trices de rotations complètes, notamment introduire une non-séparabilité qui ne soit
pas facilement exploitable. Le fait que la matrice soit creuse permet un coût de calcul
de la fonction objectif qui reste linéaire en la dimension de l’espace de recherche, une
propriété importante quand il s’agit de problèmes de grandes dimensions permettant le
benchmarking d’algorithmes dans des temps raisonnables.

Les matrices de rotation proposées sont ensuite utilisées pour construire une ver-
sion grandes dimensions de la plateforme de comparaison d’algorithmes d’optimisation
continue COmparing Continuous Optimisers (COCO). Les fonctions d’origine ont subi
quelques modification afin de les rendre compatibles avec un scénario grandes dimensions.

En utilisant cette transformation, on a défini un nouveau benchmark sur lequel un
nombre d’algorithmes d’optimisation continue en grandes dimensions (des variantes de
CMA-ES) ont été testés. Les performances observées suggèrent que les algorithmes
n’arrivent pas à exploiter la forme particulière de la matrice de rotation utilisée. Le
fait que ce benchmark fasse partie de la plateforme COCO a permis d’exploiter directe-
ment les fonctionnalités de cette dernière, notamment celles concernant le traitement des
données générées et leurs visualisation; en plus d’o↵rir une interface multi-plateformes et
multi-langages.

https://github.com/numbbo/coco
https://github.com/numbbo/coco

4

Acknowledgments

I would like to thank my advisors Anne AUGER and Nikolaus HANSEN for giving me
this chance of doing a PhD thesis under their supervision. This thesis would simply not
have been possible without their continuous support, supervision and high level advise. I
also would like to thank Cyril FONLUPT and and Peter A.N. BOSMAN for reviewing my
thesis in great detail and Marc BABOULIN and Tobias GLASMACHERS for accepting
to be part of my jury and giving me invaluable feedback on my work. This thesis was
prepared in the TAO team that I deeply thank for provinding me with an ideal working
environement and surrounding me with amazing people. I am grateful to my family and
to my friends who were and still are always there for me.

Finally, and most importantly, I thank my parents for their everlasting support and
faith, thank you Yemma & Vava.

5

6

Contents

1 General Introduction 11
1.1 Main Contributions . 13

1.1.1 Cheap Step-Size Adaptation: The Median Success Rule 13
1.1.2 Relevance of Variables/Dimensions: Low E↵ective Dimensions and

Their Generalization . 13
1.1.3 Extension of a Benchmark to Large-Scales: from COCO to Large-

Scale COCO . 14

2 Background Study 15
2.1 Continuous Black-Box Optimization . 15

2.1.1 The Challenges of Large-Scale Continuous Optimization 16
2.1.1.1 Dimension of the Problem 16
2.1.1.2 Non-Separability . 17
2.1.1.3 Multi-Modality . 18
2.1.1.4 Ill-Conditioning . 18
2.1.1.5 Other Di�culties . 19

2.1.2 Evolutionary Algorithms for Continuous Black-Box Optimization 20
2.1.2.1 Di↵erential Evolution 21
2.1.2.2 Particle Swarm Optimization 21
2.1.2.3 Estimation of Distribution Algorithms 22

2.1.3 Evolution Strategies . 23
2.1.4 The Covariance Matrix Adaptation Evolution Strategies 25

2.1.4.1 The (µ/µ
w

,�)-CMA-ES 26
2.1.4.2 CMA-ES variants . 28

2.2 Large-Scale Continuous Optimization . 30
2.2.1 Direct Approaches . 31

2.2.1.1 Descent-Based Approaches 31
2.2.1.2 PSO, DE and EDA Variants 34
2.2.1.3 CMA-ES Variants . 37
2.2.1.4 Other Methods . 38

2.2.2 Divide & Conquer Approaches . 39
2.3 Benchmarking . 42

2.3.1 The BBOB-2009 test-bed . 43

7

https://github.com/numbbo/coco
https://github.com/numbbo/coco

8 CONTENTS

2.3.2 The CEC Benchmarks for Large-Scale Global Optimization 44

3 The Median Success Rule 47
3.1 Introduction . 47
3.2 Step-size Adaptation and Linear Convergence 48
3.3 The Median Success Rule Working-Principle 51

3.3.1 Motivations . 51
3.3.2 Preliminaries . 52
3.3.3 The Definition of Median Success 54
3.3.4 Implementation of the Median Success Rule 56

3.4 Parameter Setting . 58
3.4.1 Learning Rate . 59
3.4.2 Comparison Index . 60

3.4.2.1 The Linear Function . 61
3.4.2.2 The Sphere Function . 63

3.4.2.2.1 Asymptotic case 64
3.4.2.2.2 Finite dimension 67

3.4.2.3 The Ridge Function . 70
3.4.2.4 Comparison Index Formula 73

3.4.3 Damping parameter . 75
3.5 Benchmarking . 76

3.5.1 Parameter Configuration . 76
3.5.2 Result Discussion . 77

3.6 Conclusion . 79

4 E↵ective and "-E↵ective Dimensions 83
4.1 Introduction . 83
4.2 Function-Class Definition . 85
4.3 SS-CMA-ES . 89

4.3.1 RSS-CMA-ES and OSS-CMA-ES 89
4.3.2 Complexities . 91

4.3.2.1 In Number of Function Evaluations 91
4.3.2.2 CPU Time . 91

4.3.3 Conditioning of the Embedding Matrix A 93
4.4 Performance Assessment . 96

4.4.1 Test Functions . 96
4.4.2 Parameter and Experimental Settings 98

4.4.2.1 Performance Measure 99
4.4.2.2 Sub-Space dimension d

ss

, E↵ective Dimension d
e↵

and " 99
4.4.3 Stopping Criteria on SS-CMA-ES 100
4.4.4 Single Runs . 102
4.4.5 Scaling with the Optimization Sub-Space Dimension d

ss

. 107
4.4.6 Scaling with the Problem Dimension d 109

4.5 Discussion . 114

CONTENTS 9

5 The COCO Large Scale Suite 117
5.1 The BBOB-2009 Testbed . 117

5.1.1 The BBOB-2009 Transformations 118
5.1.1.1 Shift of Parameter and Fitness Spaces 118
5.1.1.2 Linear Transformations 119
5.1.1.3 Non-Linear Transformations 119

5.2 The Large-Scale Extension . 120
5.2.1 The Core Transformation Matrix 121
5.2.2 The Permutations . 124

5.2.2.1 Generating the Random Permutations 125
5.3 Transformation-Parameter Impact . 128

5.3.1 Impact of the Number of Swaps on the Proportion of Moved Variables129
5.3.2 Impact of the Parameters on the Structure of the Transformation

Matrix . 130
5.3.3 Measure of Di�culty . 132

5.4 Impact of the Block Condition Number 132
5.5 Parameter Choice for the Benchmarks 133

5.5.1 Initial Guess . 133
5.5.2 Empirical Validation on sep-CMA-ES 134

5.6 The Large Scale Benchmark . 138
5.6.1 Changes to the Raw Functions . 138
5.6.2 The Test-Suite Problem Definitions 140
5.6.3 Implementation Details and Cost of Applying the Transformation 140
5.6.4 CPU Timing . 144

5.7 Benchmarking Large-Scale Algorithms 146
5.8 Conclusion . 150

6 Final Conclusion 153

A Appendix 175
A.1 Benchmarking Large-Scale Algorithms 175

https://github.com/numbbo/coco

10 CONTENTS

Chapter 1

General Introduction

Large-scale optimization is one topic that is getting an increasing amount of attention
these last few years. With the increasingly powerful machines, CPU and memory wise,
both scientists and engineers conceive and model problems of larger sizes and higher
complexities. It is now fairly common to solve a classification problem using deep neural
networks with up to millions of weights to be optimized.

When dealing with large and complex problems, we generally do not have much
knowledge of the problem at hand, or when we do, incorporating this knowledge in the
problem-solving process can end up being a tedious task, too complex to implement.
This is where black-box optimization algorithms become handy. A block-box algorithm
only needs, as information, the fitness or quality of each solution it queries, which makes
it applicable on a large array of problems.

A number of questions are raised when dealing with continuous optimization problems
and large-scale problems in particular. We are first interested in the di�culties these
problems generally pose, in order to better design algorithms to solve them. Then,
in a large scale setting, one must take into account the additional constraints brought
by the large-scale property of the problem. The amount of data that can be stored
for each decision variable becomes more limited (generally constant or logarithmic in
the dimension of the problem). For example, it is not feasible to keep a full matrix
of all parameter interactions because of the quadratic cost it would produce. Memory
constraints are not the only ones that become increasingly important as the dimension
of the problem increases. The time complexity of the algorithm is also a critical matter,
even when the data is stored/used e�ciently or a limited amount of it is needed. An
algorithm that scales badly (a high scaling) in the problem dimension with regards to
the number of operations it conducts per iteration or the expected number of iterations
it needs to deliver good enough solutions become highly unpractical.

Because of the generally high computational costs that come with large-scale prob-
lems, more so on real world problems, the use of benchmarks is a common practice in
algorithm design, algorithm tuning or algorithm choice/evaluation. The question is then
the forms in which these real-world problems come. Answering this question is generally
hard due to the variety of these problems and the tediousness of describing each of them.
Instead, one can investigate the commonly encountered di�culties when solving contin-

11

12 CHAPTER 1. GENERAL INTRODUCTION

uous optimization problems. Once the di�culties identified, one can construct relevant
benchmark functions that reproduce these di�culties and allow to assess the ability of
algorithms to solve them. The impact of the presence of a di�culty on the performance
varies from one algorithm to another and might also depend on which other di�culties
or properties are present. We generally say that an algorithm succeeds in addressing a
di�culty when it becomes insensitive to its presence or, at least, when the impact of this
di�culty on its performance is reasonable (for example, does not prevent the algorithm
from solving the problem or makes it able to solve it only with an exceedingly high cost).

In the case of large-scale benchmarking, it would be natural and convenient to build
on the work that was already done on smaller dimensions, and be able to extend it to
larger ones. When doing so, we must take into account the added constraints that come
with a large-scale scenario such as the ones described above. We need to be able to
reproduce, as much as possible, the e↵ects and properties of any part of the benchmark
that needs to be replaced or adapted for large-scales (in our case, orthogonal transforma-
tion matrices). This is done in order for the new benchmarks to remain relevant. Only
simplifying or reducing the size/cost of these tools might introduce new properties to the
problem that algorithms can exploit or remove other relevant properties or reduce their
e↵ects. For example, one must be cautious when replacing full matrices with sparse ones,
using block-diagonal matrices introduces a block-diagonal property which is exploitable;
a diagonal matrix generally reduces the complexity of the problem by a high amount and
a highly random choice (high variance) of the non-zero elements of a sparse matrix can
reduce its rank and thus impact the e↵ective dimension of the problem and/or result in
a lack of control on the di�culty of the resulting problem....

It is common to classify the problems, and thus the benchmarks, according to the
di�culties they present and properties they possess. It is true that in a black-box sce-
nario, such information (di�culties, properties...) is supposed unknown to the algorithm.
However, in a benchmarking setting, this classification becomes important and allows to
better identify and understand the shortcomings of a method, and thus make it easier
to improve it or alternatively to switch to a more e�cient one (one needs to make sure
the algorithms are exploiting this knowledge when solving the problems). Thus the im-
portance of identifying the di�culties and properties of the problems of a benchmarking
suite and, in our case, preserving them.

One other question that rises particularly when dealing with large-scale problems is
the relevance of the decision variables. In a small dimension problem, it is common to
have all variable contribute a fair amount to the fitness value of the solution or, at least,
to be in a scenario where all variables need to be optimized in order to reach high quality
solutions. This is however not always the case in large-scales; with the increasing number
of variables, some of them become redundant or groups of variables can be replaced with
smaller groups since it is then increasingly di�cult to find a minimalistic representation
of a problem. This minimalistic representation is sometimes not even desired, for example
when it makes the resulting problem more complex and the trade-o↵ with the increase
in number of variables is not favorable, or larger numbers of variables and di↵erent
representations of the same features within a same problem allow a better exploration.

1.1. MAIN CONTRIBUTIONS 13

This encourages the design of both algorithms and benchmarks for this class of problems,
especially if such algorithms can take advantage of the low e↵ective dimensionality of the
problems, or, in a complete black-box scenario, cost little to test for it (low e↵ective
dimension) and optimize assuming a small e↵ective dimension.

In this thesis, we address three questions that generally arise in stochastic continuous
black-box optimization and benchmarking in high dimensions:

1. How to design cheap and yet e�cient step-size adaptation mechanism for evolution
strategies?

2. How to construct and generalize low e↵ective dimension problems?

3. How to extend a low/medium dimension benchmark to large-dimensions while re-
maining computationally reasonable, non-trivial and preserve the properties of the
original problem?

We start by presenting the general context of this thesis and a study of the state of the
art in Chapter 2. We then address these questions in three contribution-focused chapters
that we will briefly describe below. We finally conclude in Chapter 6 by summarizing
the contributions and answers this thesis brought and the open questions that it opens
for future work.

1.1 Main Contributions

1.1.1 Cheap Step-Size Adaptation: The Median Success Rule

In Chapter 3, we develop a new success-based step-size adaptation mechanism for the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and evolution strategies in
general that has a low computational cost and thus is applicable in a large-scale setting.
The use of a success-based rule allows to have a complexity that depends on the number of
o↵spring involved, not the dimension of the problem. The proposed strategy is meant as a
generalization of the simpler one-fifth success rule [Rechenberg, 1994], designed for single
parent evolution strategies, to the case of multi-parent non-elitist evolution strategies. It
also provides a strategy with less assumptions than the Cumulative Step-size Adaptation
(CSA) that it is meant to replace on the other components of the algorithm (sampling
the solutions).

1.1.2 Relevance of Variables/Dimensions: Low E↵ective Di-
mensions and Their Generalization

In Chapter 4, we investigate a class of large-scale problems that often appear in real
world applications: the class of low e↵ective dimension problems, where a few vari-
ables/dimensions or linear combinations of them define the problem. This is trans-
lated by the fitness function being flat (non-changing) in a large proportion of direc-
tions/dimensions. We also generalize this concept to one where a small proportion of

14 CHAPTER 1. GENERAL INTRODUCTION

the fitness is still defined by all the variables while the rest is similar to the low e↵ective
dimension part. This results in inherently ill conditioned problems, with a high condition
number which is a class of problems that is present in most of the relevant benchmarks.
We define the problems such that we encourage optimizing the e↵ective space while mak-
ing sure the non-e↵ective space is not neglected; otherwise, this becomes a low e↵ective
dimension problem. However, we only ask for the fitness in the non-e↵ective space to not
degrade in comparison to the initial solution, and make sure that the coordinate systems
on which the two functions are defined are not aligned to prevent exploitability. We look
into the performance of state of the art large-scale continuous optimization algorithms on
these problems and also propose a variant of CMA-ES, inspired by [Wang et al., 2013],
specifically designed to solve these problems in an e�cient manner by taking into account
their low e↵ective dimensionality.

1.1.3 Extension of a Benchmark to Large-Scales: from COCO
to Large-Scale COCO

Chapter 5 proposes a generic way of constructing sparse orthogonal (rotation) matrices for
large-scale optimization problems while retaining many of the properties a full rotation
matrix provides, most importantly, introduce reasonable amounts of non-separability.
The proposed transformation is then applied to the widely used COmparing Continu-
ous Optimisers (COCO) bencmarking platform in order to extend its single-objective
noiseless test-bed [Hansen et al., 2009], while also introducing a number of tweaks on
the functions in order to make them more large-scale compatible. This allows to define
a full test-bed of large-scale problems on which we benchmark a number of large-scale
CMA-ES variants. The proposed suite o↵ers an alternative to the only other prominent
large-scale test-bed, the one used in the CEC competition and special sessions on large-
scale optimization [Tang et al., 2007, Tang et al., 2009, Li et al., 2013], and addresses
some of its shortcomings such as the performance assessment. In addition, extending
the COCO benchmarks allows to use the already well-developed experiment-running and
data post-processing tools proposed by the platform.

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco

Chapter 2

Background Study

In this chapter, we start by presenting the general context of this thesis. We will also
introduce some notions and notations that will be encountered all along this thesis in
addition to defining the conventions that we will be using.

We describe the Covariance Matrix Evolution Strategy (CMA-ES) since it is highly
relevant in the context of this thesis and will often be used and referenced. We review
the state of the art on large-scale continuous optimization and the di↵erent approaches
used to tackle high dimensionalities.

2.1 Continuous Black-Box Optimization

In this thesis, we focus on the topic of black-box continuous optimization. That is
problems that consist in optimizing (finding the optimum/optima of) a function f defined
in a search space which is a subspace of Rd, d being the problem dimension and R the
set of real numbers. We are interested in finding the solution(s) x

opt

that minimizes the
function f that we call a fitness function:

x
opt

= argmin
x2S

f (x) , (2.1)

where S ✓ Rd is the search space, we will note the optimal fitness f
opt

, f
opt

= f(x
opt

).
When the search-space is not explicitly specified, we assume it to be Rd. We will use
bold symbols such as x and C to denote vectors and matrices, regular (non-bold) symbols
will generally represent scalar values, so x and x

t

are vectors while x
i

is a scalar (here a
coordinate of x).

We restrict ourselves to minimization problems without loss of generality since max-
imizing a function f is the same as minimizing its negative �f :

argmax
x2S✓Rd

(f (x)) = argmin
x2S✓Rd

(�f (x)) . (2.2)

In a black-box scenario (also called derivative-free scenario in the context of continuous
optimization), an algorithm is provided with no information other than the fitness of

15

16 CHAPTER 2. BACKGROUND STUDY

solutions that it chooses to query. In many cases, the cost of an optimization process
is expressed in number of function queries or evaluations that were carried. In fact, the
call to the objective function is the main, if not the only, interface between the algorithm
and the problem. This allows to have a measure for the cost of an optimization that is
independent of the optimization algorithm and, contrarily to CPU-time based measures,
independent of the machine and implementation of the algorithm. Optimizing the CPU
time, memory usage and parallelizing an already established algorithm are independent
problems that we do not focus on in this thesis. However, in real-world applications,
the actual overall time needed by an algorithm to solve a given problem is the most
prominent performance measure. Thus, providing, on top of the cost in number of
function evaluations, an estimation of the CPU time needed per function evaluation, in
addition to details such as the programming language and the machine on which the
algorithm is run, gives a better appreciation of the speed of an algorithm and allows
a more comprehensive assessment of its performance. Here, what we mean by CPU
time per function evaluation is the average CPU time allocated to the internal e↵ort
of the algorithm each time a function evaluations is conducted. Algorithms are, thus,
confronted with the double, contradicting, objectives of finding the best solutions using
the least function evaluations.

In this thesis, we consider single-objective noiseless problems, and especially focus
on large-scale problems. This means that in (2.1), the function f : S ✓ Rd ! R is
deterministic, so querying a same solution x always returns the same fitness (the value
f (x) is deterministic). The large-scale component is translated into the fact that d
is relatively high, or high enough that the scaling of the computational cost (internal
complexity) of the algorithm in the problem dimension becomes a critical factor. Values
of d that are at least in the hundreds seem a reasonable choice to be considered large-scale
problems in practice. However, we take into account the scaling of the algorithms to even
larger magnitudes of d and thus consider e�cient and usable in practice only algorithms
whose computational complexities (both in CPU time and in memory usage) are linear
or at most in the order of log(d) ⇥ d. Quadratic scalings and larger are generally not
acceptable in large-scale settings.

2.1.1 The Challenges of Large-Scale Continuous Optimization

A number of di�culties arise when dealing with continuous black-box optimization prob-
lems in general and large-scale cases in particular.

2.1.1.1 Dimension of the Problem

The first di�culty has to do with the number of parameters, also known as the dimension
of the problem, d in (2.1). As the dimension increases, so does the size of the search-
space and thus also the e↵ort needed to explore it and find optimal solutions. The
exponential increase of the size of the search space in d is often referred to as the curse
of dimensionality [Richard, 1957].

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 17

This exponential cost reduces the usefulness on larger dimensions of basic search
methods such as random search which generates solutions randomly without adapting
the distribution or exhaustive/brute-force search, more commonly used in discrete op-
timization with finite search-space and generally adapted to continuous optimization in
the form of grid-searches. Thus, more sophisticated search methods are required to solve
black-box problems on higher dimensions (brute force methods are already not reason-
able choices in continuous optimization for dimensions as small as 5); these methods can,
however, include a sub-component (generally local/in a neighborhood) which relies on
these simpler search strategies.

2.1.1.2 Non-Separability

We say that a problem is non-separable when its variables interact with each other and
thus one can not solve the problem by simply solving the sub-problems defined by each of
its variables (can not separate the problem into d independent sub-problems and expect
to solve it). The term epistasis is sometimes used as an analogy to the interactions
between genes; when the e↵ect of a gene di↵ers depending on the identity of the other
genes that are present.

On a separable problem, the behavior of the fitness function when varying a variable
x
i

only depends on the values of this same variable x
i

, not the other variables. Thus, the
optimal solution of the problem is the aggregation of the optimal solutions when consid-
ering d sub-problems each defined on a single variable. When a function is separable, we
have:

argmin
x2Rd

f(x) =
�
argmin

x12R
f(x

1

, x̃1

2

, . . . , x̃1

d

), . . . , argmin
xd2R

f(x̃d

1

, . . . , x̃d

d�1

, x
d

)
�T

, (2.3)

where (x̃j

i

)
i,j2{1,...,d},i 6=j

constant, arbitrary, values within the search-space and T will des-
ignate the transpose of a vector or of a matrix.

We see in (2.3) that separable problems can be e�ciently solved via d line-searches
on each of the sub-problems (a line search is a search method where a single direction is
followed with potentially di↵erent step-lengths). With the cost of performing these one-
dimensional line-searches independent of the dimension (constant in d since the dimension
of the problem at hand is 1), the overall cost of solving (2.1) is generally linear in d (in
the order of c ⇥ d where c is independent of d); which is considered a low cost in the
context of continuous optimization and the problem is considered easy as a result of that.

Non-separable problems are detrimental to the performance of coordinate-system
aligned line-search methods. Proper and improper rotation matrices (orthogonal ma-
trices) are commonly used to introduce arbitrary linear dependencies between the vari-
ables and coordinate system-independence. [Salomon, 1996] showed that some Ge-
netic Algorithms (GA), the Breeder Genetic Algorithm (BGA) [Schlierkamp-Voosen and
Mühlenbein, 1993] is used as an example, with small mutation rates see a drop in per-
formance when a rotation matrix is applied to the search-spaces; and suggests to use
invariant methods such as Evolution Strategies (ES see Section 2.1.3) to tackle such

18 CHAPTER 2. BACKGROUND STUDY

problems. This deterioration in performance is also noted on the widely used Particle
Swarm Optimization algorithm in [Hansen et al., 2011].

2.1.1.3 Multi-Modality

A multi-modal problem is a problem with one or more local optima in addition to the
global optimum. Even though the gradient information is unavailable in a black-box
setting, seeking the optimum by following the direction of improvement of the function
remains an intuitive and widely used method, especially in local search algorithms. This
makes multi-modality a relevant property to take into consideration.

When a problem is multi-modal, finding a solution which is locally optimal does
not guarantee its global optimality, and thus solving the problem. This is why restart
strategies, in which it is important to define the stopping criteria well in order to allow
for early detection of stagnation in local optima, are often used to tackle multi-modality.
Well set stopping criteria prevent the algorithms, among other things, from wasting its
budget in non-beneficial exploitation around local optima and instead allow it to use the
budget in a more promising way. Restarts allow the algorithm to increase the chances of
being caught in the basin of attraction of the global optimum (area of the search-space
that leads the algorithm to a given attractor, in our case an optimum) or increase the
chances of finding the global optimum by adapting the parameters of the algorithm (larger
number of solutions sampled in each iteration or a more global search with larger steps).
Some commonly used restart methods in Evolution Strategies (ES) will be presented in
Section 2.1.4.

Other approaches include techniques to escape from the local optima such as epsilon-
greediness and starting with a global search (exploration phase) then doing a more local
search (exploitation). An epsilon-greedy (✏-greedy) algorithm chooses, with a probability
✏ 2 [0, 1], an action which is considered non-greedy; that is an action which does not aim
at immediately improving the fitness (this action is generally chosen to be a random
action). The simulated annealing algorithm, first formalized in [Metropolis et al., 1953],
relies on the use of a temperature parameter that dictates the behavior of the search.
The higher the temperature, the more the particles move and thus the larger the steps
and more global the search. As the iterations go by, the temperature is reduced and the
search becomes more focused and local until it converges, ideally, to the global optimum.

2.1.1.4 Ill-Conditioning

The conditioning of a problem is, roughly speaking, the di↵erence in sensitivity of the
fitness function when varying di↵erent variables. We generally consider directions instead
of variables which means that the bases on which the conditioning is computed does not
need to be canonical and coordinate-system aligned. The conditioning of a convex-
quadratic function is well defined as the condition number of its Hessian matrix; that is
the ratio between the largest and smallest eigenvalues of the Hessian matrix.

Ill-conditioned problems are most problematic to algorithms with isotropic sampling
or that assume an isotropic landscape (do not learn or adapt the relative importance

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 19

of each direction and consider all dimensions to be equal). It is particularly tricky
when the conditioning of the problem changes depending on the position in the search-
space. Another particularly di�cult case is when the ill-conditioned problem is also
non-separable (see Section 2.1.1.2) since in such a case, the algorithm can not simply
check and learn the sensitivity of each variable apart. Instead, and for such an approach,
it needs to first transform the search-space into one where the function is separable. The
rotated Ellipsoid function (see f

10

in Table 5.3 for a variant of this function) is an example
of an ill-conditioned non-separable problem that has proven to be particularly di�cult for
algorithms that lack invariance (robustness or non-sensitiveness) to certain search-space
transformations (in this case, orthogonal transformations of the search-space).

In a generic ill-conditioned black-box setting, one can assume that a minimum of
d parameters need to be learned in order to account for the di↵erences of importance
between the d variables or directions and thus to be able to e�ciently solve the problem.
This is an example of how the dimension of the problems a↵ects a number of its aspects
and thus can increase its di�culty in more than the one direct way of resulting in larger
search-spaces.

2.1.1.5 Other Di�culties

Other di�culties that might be encountered when dealing with continuous black-box
problems are the absence of a global structure of the landscape and lack of patterns that
can be taken advantage of and might dispense an algorithm from learning each local area
independently from scratch. Skewness, which is represented by non-symmetric high slops
in the fitness landscape, is also another property that generally adds to the di�culty of
the problem.

Particular classes of continuous black-box optimization problems, other than large-
scale problems, come with their own di�culties.

Noisy Optimization
The noise, on noisy functions, generally requires the use of algorithms that are substan-
tially di↵erent from those used on noiseless cases. Often, the di↵erence with the noiseless
case is more pronounced as the algorithm approaches the optimal solution in which case
correctly guessing which of a set of solutions is the actual best becomes a tedious task.
Several evaluations are generally needed in order to estimate the real fitness of a solution,
and algorithm resort to assuming a model for the noise that needs to be learned/adjusted.

Another type of deterministic noise can come from a highly rugged search-space or one
that lacks continuity where solutions that are close in the search-space find themselves
distant in the objective space (when comparing their fitnesses). One quality that most
ES and evolutionary algorithms in general share is robustness when dealing with these
kinds of functions and capacity to solve them.

Expensive Optimization
In expensive optimization, the function evaluations are highly costly and the algorithm

20 CHAPTER 2. BACKGROUND STUDY

can a↵ord to perform only a few of them (for example, this is often the case when
a single function evaluation requires a full simulation). These problems are generally
solved using model-based approaches (some of which, CMA-ES based, will be presented
in Section 2.1.4) where the algorithm assumes, locally, that the fitness function follows
a certain model (quadratic, Gaussian,...) and adjusts the parameters of this model by
taking into account the few solutions that it evaluates on the real (expensive) fitness
function. This is done in the hope of making the model as resemblant as possible to the
actual fitness function without making the model too complex, too complicated or too
costly.

Constrained Optimization
Constrained optimization is another class where solutions, in addition to having a fitness,
are either feasible or not. The goal is then to find the best feasible solution. The
simplest case of constrained optimization is when the search-space is not Rd but a strictly
smaller sub-set S of it. In this case, solutions outside of S are not accepted and thus
are considered unfeasible. In other cases, the most common when describing constrained
problems, the constraints are defined using expressions whose truth values define the
feasibility of a solution. Constraints that simply limit the interval in which each variable
takes its values (for example [�5, 5]d) are generally called box constraints. There are two
main approaches to solving constrained-problems: (i) resampling, where the algorithm
discards unfeasible solutions and tries to resample feasible ones and (ii) penalization,
which requires the constraint to return more than just a binary value of whether the
solution is feasible or not, then a penalty measure is added to the unfeasible solutions to
favor feasible ones but still take them into account.

2.1.2 Evolutionary Algorithms for Continuous Black-Box Op-
timization

When dealing with black-box problems, algorithms do not have a direct access to any
information other than the fitness of each solution they query. An overview of the meth-
ods that are used to solve these problems, also called derivative-free optimization, can be
found in [Rios and Sahinidis, 2013]. Among these methods, population based algorithms
perform generally well when dealing with such problems and the di�culties they bring
along such as the ones presented in Section 2.1.1. They do not require additional informa-
tion such as the gradients (that might need to be estimated) and generally do not suppose
particular properties of the problem (continuity, di↵erentiability...) which makes them
particularly suited for black-box optimization. These algorithms are commonly known
as Evolutionary Algorithms (EA).

The core principle in evolutionary algorithms is inspired from the process of natural
evolution based on mutation and natural selection. A population of individuals is evolved
by means of mutation and cross-over and a selection pressure is applied through the
fitness functions: the better the fitness of an individual the more likely it is to survive
in the population and propagate its genome. In principle, the fitness of the solutions

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 21

in the population improves over time, which translates into the algorithm finding better
solutions and, ideally, ending up with a population where one or many of the solution
are of the desired fitness.

Notable population based methods that are often used to solve continuous optimiza-
tion problems include Particle Swap Optimization (PSO) [James and Russell, 1995],
Di↵erential Evolution (DE) [Storn and Price, 1997] (first appeared in [Storn and Price,
1995], Estimation of Distribution Algorithms (EDA) [Larranaga and Lozano, 2002] and
Evolutionary Strategies (ES) that will be the focus of the next section and that are the
most relevant to this thesis.

2.1.2.1 Di↵erential Evolution

In the basic version of Di↵erential Evolution introduced in [Storn and Price, 1997], each
individual xi

t

and at each iteration t takes part in a crossover operation with a mu-
tated individual x̂i

t

in order to construct the candidate individual x̃i

t

that will potentially
replace it. The mutated individual x̂i

t

is a linear combination of three distinct individ-
uals xp,i

t

,xq,i

t

,xr,i

t

, which are also di↵erent from xi

t

, and that are chosen randomly (so a
population size of at least four is required):

x̂i

t

= xp,i

t

+ F (xq,i

t

� xr,i

t

) , (2.4)

where F 2 [0, 2] is the di↵erential weight (adds the weighted di↵erence between xq,i

t

and
xr,i

t

to xp,i

t

). The candidate individual x̃i

t

is defined coordinate-wise:

[x̃i

t

]
j

=

(
[x̂i

t

]
j

if j = k or rand()  CR

[xi

t

]
j

otherwise
, (2.5)

where [x]
j

the jth coordinate of a vector x, k is a randomly chosen coordinate for each
individual at each iteration that insures that at least one coordinate comes from the
mutated individual x̂i

t

, rand() is a realization of a random uniform distribution in [0, 1]
and CR 2 [0, 1] the crossover rate that determines the expected proportion of coordinates
that will be taken from the mutated individual. The candidate individual x̃i

t

replaces xi

t

when it improves on its fitness (or has equal fitness for exploration-promoting purposes):

xi

t+1

=

(
x̃i

t

if f(x̃i

t

)  f(xi

t

)

xi

t

otherwise
. (2.6)

A number of variants of DE were developed, among which: Di↵erential Evolution with
Neighborhood Search NSDE [Liu and Li, 2010], Adaptive Di↵erential Evolution with
Optional External Archive [Zhang and Sanderson, 2009] and a Self adaptive Di↵erential
Evolution [Qin et al., 2009].

2.1.2.2 Particle Swarm Optimization

PSO is one of the most widely used EA in continuous optimization. In the basic version,
no selection mechanism is used so the algorithm consists in evolving a population of

22 CHAPTER 2. BACKGROUND STUDY

particles. Each particle xi

t

, at time t, is assigned a speed or velocity vi

t

that will serve to
help define its next position:

xi

t+1

= xi

t

+ vi

t

. (2.7)

The velocity of each particle is updated by taking into account its best seen position
pi

best

(fitness-wise) and the best seen position of the swarm g
best

. The idea is to make
the particle move, at time t + 1, towards these two solutions which have a high fitness.
This is done by updating the particle’s velocity using a linear combination of the the
directions that point to these two solutions:

vi

t+1

= vi

t

+ �
1

R
1

(pi

best

� xi

t

) + �
2

R
2

(g
best

� xi

t

) , (2.8)

where �
1

,�
2

2 R are parameters of the algorithm that determine the relative attraction
powers of p

best

and g
best

and R
1

,R
2

2 Rd⇥d are diagonal matrices (all non-diagonal
elements are zeros) whose diagonal elements are generated randomly at each iteration
and for each individual. It was empirically shown in [Hansen et al., 2011] that PSO
su↵ers from rotated search spaces (the functions become, in most cases, not aligned with
the coordinate-system). This makes PSO not rotation invariant. The performance of
a rotationally invariant algorithm on a function would, roughly speaking, be the same
regardless of the rotation that is applied to the search space (an identity transformation is
obtained when the rotation matrix is an identity matrix). The impact on the performance
of PSO observed in the paper is positively correlated with the condition number of the
function. Since the matrices R

1

and R
2

are diagonal and not adapted, their random
entries are independent only in an axis-parallel coordinate system.

One of the first improvements on PSO consists in decreasing its tendency to fall into
local optima by defining gi

best

for each particle as the best seen position in a neighborhood
or a sub-swarm. Thus one particle finding a local optimum, which generally dominates
most of the solutions in the search space, would only a↵ect the behavior of a portion of
the population instead of it (the local optimum) becoming an attractor of all individuals.

The variants of PSO that are found in the literature act on its di↵erent aspects. [Shi
and Eberhart, 1998] introduced an inertia weight, w, to the update of the speed in (2.8)
in the form of

vi

t+1

= wvi

t

+ �
1

R
1

(pi

best

� xi

t

) + �
2

R
2

(g
best

� xi

t

) , (2.9)

that controls the speed at which the velocities change, both in direction and module, thus
allowing a better control over the local versus global search behavior of the algorithm.
In [Montes de Oca and Stützle, 2008], an incremental population size is considered while
the neighborhoods that define the g

best

are dynamically updated in several variants of
the algorithm [Hu and Eberhart, 2002, Akat and Gazi, 2008, Liu et al., 2009].

2.1.2.3 Estimation of Distribution Algorithms

The purpose of Estimation of Distribution Algorithms is to learn a distribution that
maximizes the likelihood of sampling optimal solutions. The basic steps in the core of
an EDA are as follows:

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 23

1. Sample a population of solutions using the current distribution.

2. Evaluate the newly sampled solutions on the fitness function.

3. Select a portion of the population, generally the best fit solutions.

4. Update the current distribution using the information that was gathered from the
selected solutions (their distribution) and prepare for the next iteration.

5. Repeat from step 1. until a stopping criterion is met.

The distribution of the solutions (the sampling distribution) is adapted explicitly using
only the selected, most fit, individuals. Thus the likelihood of generating similar, and thus
generally well-fit, o↵spring is increased. Ideally, the algorithm converges to a distribution
of selected solutions close enough to the optimal solution.

Contrarily to many EAs, EDAs do not use mutation and cross-over in order to evolve
the population. Instead, the state of the algorithm, at a given point in time, is deter-
mined by the values of the parameters of its parameterized sampling distribution. So, a
population is generated at each iteration but it is the distribution that is evolved. In a
way, many Evolution Strategies (see Section 2.1.3), particularly those who adapt a fully
parameterized multi-variate normal distribution such as CMA-ES (see Section 2.1.4),
can be considered as estimation of distribution algorithms. In fact, in CMA-ES, the
sampling distribution is adapted given, among other things, the information about the
selected o↵spring. More details about the inner working of CMA-ES will be given in
Section 2.1.4.

Multi-variate normal distributions are widely used as distribution models in EDAs.
In order to increase the exploratory capabilities of the algorithm and reduce the impact
on the performance of falling into local optimal, generally, multiple Multi-variate normal
distributions are used and evolved in parallel.

One of the earlier implementations of EDAs can be traced back to [Baluja and Caru-
ana, 1995] on binary problems and in [Mühlenbein and Paass, 1996] and [Mühlenbein
et al., 1996] where the Breeder Genetic Algorithm (BGA) [Schlierkamp-Voosen and
Mühlenbein, 1993] is investigated. In the latter, two variants are proposed, the Uni-
form Distribution Breeder Genetic Algorithm and the Univariate Marginal Distribution
Breeder Genetic Algorithm. In both variants, the solutions (o↵spring) of an iteration
are sampled following the distribution of the selected points of the preceeding iteration
instead of being the result of crossover (as it is done in the original BGA). The paper
ends up suggesting the use of the distributi

[Larranaga and Lozano, 2002] lays the basis for using EDAs in discrete and continuous
optimization.

2.1.3 Evolution Strategies

Evolution Strategies (ES) are a sub-category of evolutionary algorithms that rely on
the use of multi-variate normal distributions to sample the population and that are

24 CHAPTER 2. BACKGROUND STUDY

generally specialized in continuous search-space optimization. It is important for an
evolution strategy to include an adaptation mechanism that allows it to adapt some of
the parameters of its (multi-variate normal) distribution online (within the optimization
process) since otherwise, it would be a simple variant of a random search algorithm.

[Igel et al., 2007]
The beginnings of evolution strategies can be traced back to [Rechenberg, 1973] and

[Schwefel, 1965]. Even though in the earlier implementations of multi-parent evolution
strategies (also called multimembered ES) such as [Schwefel, 1977], each individual of the
population was associated to a normal distribution, in this thesis, we are interested in
the study of the relatively recent variants of evolution strategies in which all the o↵spring
at a given time-step, that we call iteration, are generated from the same distribution.
Thus, the sampling distribution at iteration t is defined by its parameters, the mean
solution x

t

and the covariance matrix C
t

, and noted N(x
t

,C
t

). More recent examples
of evolution strategies that sample their populations from multiple normal distributions
and adapt the parameters of these distributions include the Multi-Objective Covariance
Matrix Adaptation Evolution Strategy (MO-CMA-ES) [Igel et al., 2007], a variant of
CMA-ES designed for multi-objective optimization. A good overview of the origins and
development of evolution strategies can be found in [Beyer and Schwefel, 2002].

In most evolution strategy studies, the covariance matrix is decomposed into a positive
scaling factor �

t

that is called the step-size and a symmetric positive-definite matrix that
is referred to, by abuse of language, as the covariance matrix C

t

. Roughly speaking, the
step-size determines the spread of the sampled solutions, that we call o↵spring, around
the mean x

t

while the covariance matrix shapes this spread. For example, a highly
conditioned covariance matrix results in the solutions being more spread (far from the
mean of the distribution) in some directions than in others while the larger the step-size,
the further away the generated solutions are, in expectation, from the mean solution.

We generally distinguish between elitist approaches, also called plus (+) strategies,
where solutions from the previous iteration are added to the selection pool of the cur-
rent iteration (and thus compete with the current o↵spring for selection) and non-elitist
strategies, also called comma (,) strategies, where the selection is restricted to the set of
solutions that were generated in the current iteration. We note the number of parents or
number of selected solutions µ and the population size �. We use the notation (µ/µ

w

,�)-
ES to designate weighted-recombination based strategies, that is strategies where the
selected µ parents are recombined in order to form a new mean solution x

t+1

; an alter-
native being to simply choose the best solution as the mean of the next iteration. The
weighted recombination process in evolution strategies is the preferred cross-over mech-
anism, especially since these strategies often deal with continuous domain problems.

In a (µ/µ
w

,�)-ES, at each iteration t, � o↵spring x1

t

, . . . ,x�

t

are sampled from the
current distribution:

xi

t

⇠ N(x
t

, �2

t

C
t

) , (2.10)

where x
t

is the current mean solution, �
t

is the current step-size and C
t

is the covariance
matrix.

Then, the o↵spring are ordered, after evaluation, depending on their fitness values

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 25

such that:
f (x1:�

t

)  · · ·  f (x�:�

t

) , (2.11)

where, thus, xi:�

t

designates the ith best individual of iteration t (among the � individuals
that were sampled).

Finally, the mean solution is updated to be the weighted recombination of the best
(selected) µ individuals:

x
t+1

=
µX

i=1

w
i

xi:�

t

, (2.12)

where w
1

� · · · � w
µ

are the recombination weights. Evolution strategies often consider
all weights to be positive (w

µ

� 0), and thus use only the information gathered from
the successful (selected) o↵spring. An alternative approach, called active update (and
the resulting algorithm active CMA-ES) was proposed in [Jastrebski and Arnold, 2006]
where the unsuccessful solutions are given negative weights after [Rudolph, 1997] showed
that negative weights can improve the performance of recombination based strategies on
some functions. The active update was later implemented into (µ/µ

w

,�)-ES in [Hansen
and Ros, 2010]. In addition, the optimal weights derived for the sphere function in
[Arnold, 2005] include positive weights for half the population and negative weights for
the other half (µ = �).

The other parameters of the distribution (other than the mean solution x
t

), the step-
size �

t

and covariance matrix C
t

, can also be updated taking into account the information
gathered thus far. Naturally, the adaptation of �

t

is called step-size adaptation and that
of the covariance matrix covariance matrix adaptation.

We notice that the above description of a (µ/µ
w

,�)-ES makes it invariant to strictly
increasing transformations of the fitness function. This means that a (µ/µ

w

,�)-ES is
expected to perform the same on a problem f (x) as on any problem (g �f)(x) = g(f (x))
with g : R ! R a strictly increasing function (y

1

> y
2

=) g(y
1

) > g(y
2

)). In order
to preserve this property, the distribution parameters need to be updated by using, as
information, only the ranking of the solutions (2.11), not their actual function values.
Invariances are a well desired concept when designing algorithms since they allow to
generalize results found on one problem to a class of problems sharing the properties to
which the algorithm is invariant. This is particularly sought-after in evolution strategies
whose use of standard normal distributions allows a number of theoretical studies of
performance and converge rates to the optimal. We will see some examples of such
important theoretical results in Chapter 3.

2.1.4 The Covariance Matrix Adaptation Evolution Strategies

The Covariance Matrix Adaptation Evolution Strategy is the reference evolution strategy
for solving black-box continuous optimization problems. As such, it is mainly concerned
in the adaptation of the parameters of the multi-variate normal distribution, the mean
solution x

t

, the step-size �
t

and the covariance matrix C
t

, used to sample the solutions.
It relies on a number of concepts that were introduced through the years to result in the
algorithm described in [Hansen et al., 2003].

26 CHAPTER 2. BACKGROUND STUDY

The first concept that was introduced is that of de-randomization in [Ostermeier et al.,
1994a]. In a de-randomized algorithm, the source of randomness used on the solution
parameters (to generate the o↵spring) is the same one that, after transformation, is
used to adapt the parameters of the strategy [Hansen et al., 1995]. In other words, the
mutation of the internal parameters of the algorithms depends deterministically on the
realizations of the random variables used to generate the solutions (a single source of
randomness is used).

The second concept is that of covriance matrix adaptation [Hansen and Ostermeier,
1996]. Correct covariance matrix adaptation allows the algorithm to be invariant to
any rotation of the coordinate system, resulting in a coordinate system independent
algorithm. In addition, by learning the correct scalings of the axes within the covariance
matrix, there is no need for a step-size for each dimension but a single, global, step-size
�
t

su�ces to represent, coupled with C
t

and x
t

, any multi-variate normal distribution.
An alternative covariance matrix adaptation method was introduced earlier in [Schwefel,
1981]. This methods relies on learning the individual step-sizes of each dimension (d
variances) and the d(d� 1)/2 rotation angles (number of degrees of liberty of a rotation
in Rd) that compose the covariance matrix. However, [Hansen et al., 1995] showed
experimentally that, because of the canonical base rotations that are used, this approach
is coordinate-system dependent.

One of the most important concepts that are used in CMA-ES is the concept of
cumulation that was introduced in [Hansen and Ostermeier, 2001]. In cumulation, the
update does not rely only on the information gathered form the current iteration but also
on that of previous iterations. The steps/direction that were performed in the previous
iterations, when updating the di↵erent parameters of the strategy (in this case, the step
size �

t

and the covariance matrix C
t

), are taken into account when updating these same
parameters in the current iteration.

Later, the CMA-ES was enhanced and its performance improved, especially when
relatively larger population sizes are at play, by the addition of what is called a rank-µ
update of the covariance matrix in [Hansen et al., 2003]. Contrarily the the rank one
update that only uses the information from the step performed by the mean solution, a
rank µ update takes into account a weighted sum of the steps, in isotropic space, of the
µ selected o↵spring. The use of the rank-µ update significantly improves the speed at
which the covariance matrix is learned, especially when the population size is high.

2.1.4.1 The (µ/µ
w

,�)-CMA-ES

In order to describe the (µ/µ
w

,�)-CMA-ES algorithm with rank-µ update [Hansen et al.,
2003], we show the update equations of the step-size and the covariance matrix; the rest of
the algorithm uses the standard (µ/µ

w

,�)-ES update equations seen in Section 2.1.3.The
o↵spring generation and mean solution update are carried out the same way as in a
default (µ/µ

w

,�)-ES (see equations (2.10), (2.11) and (2.12)). Note that (2.10) can also
be written:

xi

t

⇠ x
t

+ �
t

C1/2

t

N(0, I
d

) , (2.13)

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 27

where I
d

is the identity (eye) matrix in dimension d (all entries are zeros but the diagonal

entries who are ones) and C1/2

t

refers to the unique positive-definite symmetric square

root matrix of C
t

, that is C1/2

t

C1/2

t

= C
t

and C1/2

t

has positive eigenvalues.
Cumulation is applied to both the step-size and covariance matrix using two respective

evolution paths, p�
t

and pc
t

; both initially 0
d

, the vector of zeros of size d (similarly, we
note 1

d

the vector of ones of size d). The step-size evolution path is updated as follows

p�
t+1

= (1� c
�

)p�
t

+
p
c
�

(2� c
�

)
p
µ
e↵

C�1/2

t

x
t+1

� x
t

�
t

, (2.14)

where c
�

2 [0, 1] a discount factor that determines the cumulation time for p�
t

(⇡ 1/c
�

),

µ
e↵

= 1/
P

µ

i=1

w2

i

the variance e↵ective selection mass and C�1/2

t

is defined similar to

C1/2

t

but with regards to C�1

t

, the inverse of C
t

, instead (C�1

t

C
t

= I
d

). Thus, p�
t

is
updated by taking into consideration the displacement of x

t

in the isotropic space.
On the other hand, the path of the covariance matrix is updated in a similar fashion

but not in the isotropic space (no multiplication by C�1/2

t

)

pc
t+1

= (1� c
c

)pc
t

+
p
c
c

(2� c
c

)
p
µ
e↵

x
t+1

� x
t

�
t

, (2.15)

where c
c

2 [0, 1] another discount factor that determines the cumulation time for pc
t

(which is ⇡ 1/c
c

).
These two paths are then used to update the parameters of the distribution. The new

step-size is computed as follows

�
t+1

= �
t

⇥ exp

✓
c
�

d
�

✓
kp�

t+1

k
EkN(0, I

d

)k � 1

◆◆
, (2.16)

where d
�

is the damping parameter that controls the amount of change of the step-size in
one iteration, and EkN(0, I

d

)k is the expected length of the path under random selection
(the o↵spring are ordered randomly). Thus, the step-size adaptation mechanism, Cu-
mulative Step-size Adaptation (CSA), compares the length of the cumulation path p�

t+1

to the length that would be obtained under random selection and increases or decreases
the step-size accordingly. Note that as a result of the update, log �

t

follows an unbiased
random walk under random selection.

For the covariance matrix:

C
t+1

= (1� c
1

� c
µ

)C
t

+ c
1

pc
t

(pc
t

)T + c
µ

µX

i=1

w
i

xi:�

t

� x
t

�
t

✓
xi:�

t

� x
t

�
t

◆T

, (2.17)

where c
1

, c
µ

2 [0, 1] are the learning rates for, respectively, the rank-one update (pc
t

(pc
t

)T)

and the rank-µ update (
P

µ

i=1

w
i

xi:�

t

� x
t

�
t

✓
xi:�

t

� x
t

�
t

◆T

).

The internal complexity of the (µ/µ
w

,�)-CMA-ES as presented above is in O(d3) per
iteration. This complexity comes from the singular value decomposition of C

t

needed

28 CHAPTER 2. BACKGROUND STUDY

both for sampling the solutions (2.13) and updating the isotropic path (2.14). In order
to reduce this complexity, [Hansen and Ostermeier, 2001] suggests to perform the decom-
position only once every a linear number of iterations in the dimension of the problem
(d/10) since the covariance matrix is not expected to change significantly in the course
of a few iterations. This amount of change depends, not only on the landscape of the
function, but also on the di↵erent learning rates of the covariance matrix (c

1

for the rank
one update and c

µ

for the rank µ update) and on the discount factor for the covariance
matrix cumulation path c

c

. The resulting complexity is in O(d2) which is acceptable in
a small to medium dimension setting; it is also the complexity of computing a vector-
matrix multiplication. However, further complexity reductions will be needed for the
algorithm to be usable in a large-scale setting as we will see in Section 2.2.1.3.

2.1.4.2 CMA-ES variants

Given its good performance on a variety of problems, several variants of CMA-ES were
developed through the years, either to further improve its performance both in general
and on specific function classes or to be applied in di↵erent optimization contexts such
as multi-objective, expensive, constrained and large-scale optimizations.

Restarted CMA-ES
After [Hansen and Kern, 2004] established that larger population sizes improve the per-
formance of CMA-ES on a number of multi-modal problems, [Auger and Hansen, 2005b]
proposed an increasing POPulation size CMA-ES (I-POP-CMA-ES). In I-POP-CMA-ES
after each restart triggered by a met stopping criterion (the stopping criteria of CMA-ES
are documents in [Hansen, 2009]), the population size is multiplied by 2. BI-POP-CMA-
ES [Hansen, 2009] relies on two regimes when changing the population size. The first
regime doubles the population size the same as I-POP while in the second regime, the
population size is decreased to a value in the interval [�

def

,�
l

], with �
def

the initial, de-
fault, population size and �

l

the last value of the population size (largest) obtained at
the end of the first regime. Both variants are further tweaked in [Loshchilov, 2013] with a
decreasing initial step-size upon each restart for I-POP in NIPOP and an adapted budget
for the two regimes depending on their performance in NBIPOP. The regime with the
better best-found solution is given double the budget of the other regime. These changes
resulted in some improved performance especially on multi-modal functions.

Online Parameter Adaptation
An online adaptation scheme for other parameters of CMA-ES (other than the population
size) is proposed in self-CMA-ES [Loshchilov et al., 2014]. The main idea of the algorithm
is to choose a parameter setting that maximizes the likelihood of generating the best fit
individuals (similarly to what is done in EDAs). In order to find these parameter values,
a second CMA-ES algorithm, called auxiliary CMA-ES, is run on the parameters of the
algorithm while the primary CMA-ES operates in the search-space of the problem. The
proposed algorithm improved the performance of CMA-ES when considering population

2.1. CONTINUOUS BLACK-BOX OPTIMIZATION 29

sizes that are larger than the default ones.

Meta-Model Based Variants
Several meta-model based methods were developed for CMA-ES. These methods are
generally suited for expensive optimization where the cost of performing a function eval-
uation is high and thus only a small budget can be a↵orded. They try to approximate
the original fitness function with a given model that they optimize instead of the original
fitness, thus avoiding to deplete the budget. The best solutions found on the meta-model
are then evaluated on the original function and injected to the model so it can be updated.

(1,�)-LS-CMA-ES [Auger et al., 2004] uses a quadratic model to approximate the
fitness functions. The model is constructed by minimizing the square error observed on
the quadratic model on the d2 most recently evaluated points on the original function.
Two modes are used, a local search mode (LS) and a CMA mode. The LS mode is used
whenever the precision of the approximated model exceeds a given threshold, otherwise,
the CMA mode is used. The model is re-computed once every n

upd

= 100 iterations.
In lmm-CMA-ES [Kern et al., 2006] a locally weighted quadratic regression (locally

weighted regression [Atkinson et al., 1997] with a full quadratic model) is used to build
a model that gives importance to the points (in the form of the weights associated)
depending on their distances to a current central solution. The covariance matrix learned
by CMA-ES is used to defined the metric needed for this weighting. The paper also
investigates the performance loss of CMA-ES given the number of perturbations of the
o↵spring rankings and finds out that the performance loss has a minor dependency on the
fitness function. [Bouzarkouna et al., 2010] investigates the shortcomings of lmm-CMA-
ES when larger population sizes and numbers of parents are considered and proposes
an alternative to the too restrictive condition for acceptance of a meta-model. The
original condition which was to preserve the ranking of all the µ best solution is replace
by a less restrictive condition of having the same µ best solution, regardless of their
order except the best individual which needs to remain the same between the model
and the original fitness function. After �/4 evaluations on the original function, only
the criterion on the best individual is verified. The proposed method, nlmm-CMA-ES,
outperforms lmm-CMA-ES especially with larger than default population sizes thanks
to its less restrictive conditions on the meta-model precision. nlmm-CMA-ES is applied
to the real-world problem of well placement in [Bouzarkouna et al., 2012] showing better
performance than a Genetic Algorithm but improved little over the default CMA-ES.
In [Auger et al., 2013], lmm-CMA-ES is benchmarked using another relaxed acceptance
criterion for the meta-model which now requires a threshold precision. In addition, the
meta-model construction phase is started earlier. The resulting algorithm shows results
on par with those of saACM [Loshchilov et al., 2012a] and improves on the original
lmm-CMA-ES on most functions.

[Loshchilov et al., 2010] proposes to use rank-based meta-models (in this case a
rank-based Support Vector Machine) as the meta-model of the algorithm. By doing
so, the surrogate algorithm preserves the important invariance property of the CMA-ES
to monotoneous transformations of the fitness function. This approach was improved

30 CHAPTER 2. BACKGROUND STUDY

in [Loshchilov et al., 2012b] by self-adapting the hyper parameters of the model using
an internal CMA-ES algorithm and setting its lifespan (number of iterations before it
is retrained) depending on the ranking error made by the surrogate on the new set of
points. A more intense exploitation of the meta-model by using larger population sizes
when optimizing it (the model) while keeping the default population-size on the original
function is proposed in [Loshchilov et al., 2013b] in order to improve the performance,
especially on uni-modal functions. The algorithm is further augmented by adding a line-
search method for better performance on separable function and using the NEWUOA
[Powell, 2006] algorithm in the first 10 ⇥ d evaluations given its rapid convergence on
a number of simple functions. The resulting algorithm is called Hybrid CMA (HCMA)
[Loshchilov et al., 2013a] and shows the best performance on the Black-Box Optimization
Benchmarking workshops on a number of functions.

Multiplicative Covariance-Matrix Update and Multi-Objective CMA-ES
A di↵erent approach to covariance matrix adaptation that uses a multiplicative update
instead of the additive update in (2.17) is proposed in [Krause and Glasmachers, 2015].
This approach was first applied to the Natural Evolution Strategy (NES) [Wierstra et al.,
2008] in xNES [Glasmachers et al., 2010] and proposes to update the covariance matrix
through matrix exponentiation that can be carried out with a complexity that is similar
to that of the additive update.

In [Igel et al., 2007], a Multi-Objective CMA-ES algorithm (MO-CMA-ES) is intro-
duced that uses a number of (1 + �)-CMA-ES algorithms to search for a Pareto front
(in multi-objective optimization, we are generally more interested in finding a set of non-
dominated solutions, the Pareto front, than in finding a single best solution. In fact, due
to the multiple objectives, a pair of solutions can end up being non-comparable, generally
leaving the choice of which of them is better in the hands of experts on the problem).

A number of large-scale variants of CMA-ES were also developed especially in the
last few years. These variants will be discussed in Section 2.2.1.

2.2 Large-Scale Continuous Optimization

The ever increasing computational power at the disposal of engineers and scientists is
naturally accompanied with a desire to solve larger and more complex problems. This
leads to more complex and more accurate models that are generally described by larger
numbers of parameters; which in turn increases the appeal of large scale optimization.
This can, for example, be seen on neural networks, and more specifically, deep neural
networks [Claudiu Ciresan et al., 2010, Coates et al., 2011, Dean et al., 2012, Krizhevsky
et al., 2012, Ngiam et al., 2011, Silver et al., 2016, Bottou et al., 2016]. These problems
end up having large numbers of parameters, namely the weights of the network that need
to be optimized. This is generally done using gradient descent on a fitness function that
is a least square error. Some other less recent examples include meteorology [Wang et al.,
1998] and shape optimization: turbine blades [Sonoda et al., 2003], aircraft wings [Vicini
and Quagliarella, 1999], heat exchangers [Foli et al., 2006].

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 31

The large number of parameters involved in these so called large-scale problems makes
solving them using regular optimization methods unpractical. This is mainly due to
their complexities or computational costs with regards to the problem dimensions. For
example, CMA-ES (see Section 2.1.4) by adapting a full covariance matrix needs, in order
to store this covariance matrix, an amount of memory which scales quadratically with the
number of variables. The sampling of o↵spring is also at least quadratic (we have seen
in the last paragraph of Section 2.1.4.1 that it is originally cubic when a full covariance
matrix is adapted) in time as it requires a matrix vector multiplication. These quadratic
complexities are generally considered un-a↵ordable in a large scale setting since they
only allow to tackle, within reasonable time and space costs, low to medium dimensions.
Thus large-scale optimization requires specifically designed algorithms with additional
constraints on the cost.

We can divide the methods and algorithms used to solve large-scale optimization
problems into two main categories: direct approaches and divide and conquer approaches.

2.2.1 Direct Approaches

Direct approaches solve the problems as it is, as a whole. The algorithms in question
are generally variants of standard algorithms that perform well on smaller dimensions.
These variants are conceived while taking into account the large-scale specific constraints,
mainly constraints of space and time costs in addition to potential properties that large-
scale problems might present (low e↵ective dimensionality that will be seen in Chapter 4,
limited variable interactions....).

2.2.1.1 Descent-Based Approaches

Gradient Descent and Newton Method
Some of the earliest large-scale optimization algorithms were designed around the gradient
descent and Newton approaches. Gradient descent follows the negative of the gradient
of the function (when available) in order to improve the fitness and, eventually, find a
local optimum. In optimization, the Newton method is used in order to find the zeros of
the gradient of the function, and thus potential local optima. Note that in a black-box
setting, the information about the gradient or the Hessian is not available, and thus can
only be estimated by the algorithm.

The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) that was developed inde-
pendently in [Broyden, 1970], [Fletcher, 1970], [Goldfarb, 1970] and [Shanno and Kettler,
1970] is a quasi-Newton method that relies on the estimation of the inverse of the lo-
cal Hessian matrix of the problem using rank one updates. Quasi-Newton methods are
generally used when the Hessian matrix is unavailable (for example in black-box opti-
mization) or too expensive to compute (high dimension). Instead, an estimation of this
matrix is computed and used in order to find the extrema of the function.The large-scale
version of the algorithm, called limited memory BFGS, first introduced in [Nocedal,
1980] and then formalized for large-scale optimization via L-BFGS in [Liu and Nocedal,
1989], is a variant that, instead of estimating a full, dense, inverse of the Hessian matrix,

32 CHAPTER 2. BACKGROUND STUDY

stores a certain, limited, number of vectors that were previously generated. The matrix
is then simulated using these same vectors and never stored explicitly as a full matrix.
In the same context, [Steihaug, 1983] used a trust region mechanism (a local, generally
quadratic, approximation model of the fitness function whose size changes depending on
its accuracy) coupled with a conjugate gradient to solve the local approximation.

More recently, [Liao et al., 2005] proposes a gradient-based method that relies on solv-
ing an ordinary di↵erential equation that approximates the optimization problems while
[Fasano and Lucidi, 2009] introduces an adaptive line-search approach that uses two direc-
tions: an approximation of a Newton step and a negative curvature direction. A di↵erent
approach, on a particular class of problems, is introduced in [Nesterov, 2014]. In this pa-
per, problems with sparse sub-gradients (generalization of gradient for non-di↵erentiable
functions) are considered and this sparsity is taken advantage of when computing matrix
vector products. Because of this sparsity, only a few entries are expected to change from
one iteration to an other; this allows an e�cient update of the results of these matrix-
vector products and coupled with simple sub-gradient methods, results in algorithms
that can handle large-dimension problems. A summary of the performance of several
gradient-based methods on large-scale problems can be found in [Yuan, 2010].

Coordinate Descent
Coordinate-descent algorithms consider sub-problems where one coordinate (or block of
coordinates) is optimized at a time. The problems are solved by iterating over these
sub-problems until a satisfactory solution is found (multiple passes are generally needed
on non-separable problems). Coordinate-descent algorithms are generally used to solve
convex problems with certain known properties such as having the expression of the
gradient or being partially separable. They are not often applied in the context of com-
plete black-box optimization, and do not perform well on fully non-separable problems.
However, they remain an important class of algorithms for large-scale continuous-domain
optimization thanks to their reduced complexity. In addition, in the recent years, and
with the rise of big data, these methods, along with other convex descent-based optimiza-
tion approaches, saw an increasing interest. This is especially the case when dealing with
what is commonly referred to as huge-scale problems (problems with millions of variables
where, in extreme cases, even linear complexities are considered prohibitive). They are,
in fact, some of the few methods that can be applied in such scenarios. In addition, one
does not expect huge-scale problems to have a fully dependent structure (all variables
depend on all the other variables) but rather to have groups of dependent variables and
a generally sparse dependence matrix.

[Nesterov, 2012] treats the case of (non black-box, convex) huge-scale optimization
problems. In order to limit the amount of expensive operations that are needed (even vec-
tor additions are considered expensive in this scenario), the proposed approach, Random
Coordinate Descent Method (RCDM), applies partial updates on randomly chosen vari-
ables at each iteration. The sampling of the random coordinates, which generally has a
complexity of O(d), is done in logarithmic time to accommodate the huge-scale scenario.
The results obtained in [Nesterov, 2012] are extended in [Richtárik and Takáč, 2014] to

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 33

composite problems using randomized block-coordinate descent. In block-coordinate de-
scent, at each phase, the optimization process is focused on a single block of variables that
it optimizes; thus reducing the per-iteration complexity of the algorithm which no longer
depends on the total number of variable d but only on the size of the current block (which
is generally significantly smaller). This is similar to the block-diagonal structure which
will be in the core of the dependency-introducing transformation proposed in Chapter 5.

In [Richtárik and Takáč, 2012], random and greedy choices of the descent coordinates
are considered on huge-scale (dimensions up to more than 3⇥106) instances of the Truss
Topology Design problem (real-world optimization problems encountered when designing
mechanical structures such as bridges).

A parallelized coordinate-descent method, similar to the Cooperative Coevolution
approach described in Section 2.2.2, is proposed in [Richtárik and Takác, 2013]. The
variables of the problem are partitioned and assigned to di↵erent nodes. Each node then
performs, at each iteration and in parallel, a standard coordinate descent on the set of
variables it was assigned. The resulting algorithm, named Hydra for HYbriD cooRdinAte
descent method, is applied to loss minimization in big-data problems.

Convex partially-separable functions with a block structure are considered in [Richtárik
and Takáč, 2016]1. The idea is to take advantage of the block-separable structure of the
function in order to speed-up the optimization process via the parallelization of inde-
pendent sub-components (a perfect scenario would be a speed up equal to the number
of separable sub-components). The proposed approach serves also as a more general
framework that includes [Richtárik and Takác, 2013] as a special case (with regards to
the sampling of the blocks).

Smooth but non-convex problems with a predefined structure are studied in [Patrascu
and Necoara, 2015] (and also in [Lu and Xiao, 2013]) proposing random coordinate
descent approaches for solving them. In [Patrascu and Necoara, 2015], the problems
are formed as the sum of a black-box smooth non-convex term and a convex term with
known structure. The proposed method, called 1-Random Coordinate Descent method
(1-RCD), approaches the problem one variable (or block of variables) at a time and solves
a quadratic approximation of the problem (which is accurate as long as the smooth non-
convex function satisfies some gradient continuity conditions). Once a variable (or block)
is chosen, the solution is updated by following a direction that minimizes the quadratic
approximation.

Large-Scale Optimization on Classification Problems
A number of coordinate descent (as seen above), gradient descent and Newton methods
are used in solving large-scale classification problems. These methods do, generally, not
consider a black-box setting since the fitness function is known and given in a closed form
that the solver can exploit. It is even up to the user to choose the fitness function for a
given classification problem that generally includes a penalization term (for the wrongly
classified examples) and a regularization term (to keep control on the parameters such as

1[Richtárik and Takáč, 2016] and [Richtárik and Takác, 2013] were written and submitted around
the same time period.

34 CHAPTER 2. BACKGROUND STUDY

preventing them from becoming too large or having too complex models). For example,
in Support Vector Machine (SVM) models, two main approaches are used to penalizing:
L
1

-SVM for a linear penalization and L
2

-SVM for a quadratic one.
Examples of notable large-scale algorithms applied to linear classification include

stochastic gradient descent (the gradient descent is applied on only one example per it-
eration) in [Zhang, 2004] that was later extended upon and coupled with sub-gradient
projections in PEGASOS [Shalev-Shwartz et al., 2011]; a coordinate descent algorithm on
the dual problem in Dual-CD [Hsieh et al., 2008a]; a trust region based newton method
TRON [Lin and Moré, 1999] that was applied in [Lin et al., 2008] to logistic regression on
large-scale classification problems and also on non-linear SVMs and SVMperf [Joachims,
2006] which uses a cutting planes methods (starts with an empty set of constraints that
is, at each step, augmented with the, new, most violated constraint) on an alternative for-
mulation of the SVM optimization problem. A good overview of large-scale optimization
algorithms applied to linear classification, mainly SVMs, can be found in [Yuan et al.,
2012].

One thing to note about most of the methods presented in this section is that they
consider the problem of converging to a state where the gradient tends to zero. They are,
by default, not suitable for multi-modal optimization and may perform sub-optimally
on non-smooth functions. They are also mostly concerned about solving the convex
problems that generally appear when dealing with machine-learning problems such as
classification problems.

2.2.1.2 PSO, DE and EDA Variants

The recent years saw an increase in the use of population-based algorithms to solve con-
tinuous optimization problems. More specifically, Evolutionary Algorithms (EA) based,
for the most part, on Particle Swarm Optimization (PSO), Di↵erential Evolution (DE)
and Evolution Strategies (ES).

PSO
In the variants of PSO (see Section 2.1.2.2 for a brief description), Rotated Particle
Swarm [Korenaga et al., 2007] applies a rotation to the coordinate system to address the
degeneracy in particle speeds observed on large-scale problems. The rotation is applied
on a limited number of pairs of axes such that the algorithm remains computationally
reasonable is high dimensions. Dynamic Multi-Swarm (DMS-PSO) [Zhao et al., 2008]
uses a large number of sub-swarms of reduced sizes. After each sub-swarm is done with
its search, a proportion of the best solutions is refined using a quasi-Newton local search.
The particles are then shu✏ed to form new sub-swarms and the process is reiterated.
After a certain number of iterations, the overall best found solution is refined with an-
other local search. In Dynamic Neighborhood Topology PSO (PSO-DNT) [Han and Fan,
2010], the particles are, here also, clustered into sub-swarms. A neighbourhood diversity
measure is used in order to detect when a sub-swarm reaches a local optimum, thus
hopefully allowing to dynamically renew the neighborhood connections when needed.

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 35

Incremental PSO with Local Search (IPSOLS) [Montes de Oca et al., 2008] uses an in-
creasing population size based on the framework first proposed in [Montes de Oca and
Stützle, 2008]. A local search procedure is also used to try and improve the best solution
found by each particle. It was redesigned in [Montes de Oca and Stützle, 2011] to handle
large-scale problems via an automatic algorithm configuration using Iterated F-Race2

[Birattari et al., 2010] on problems of smaller dimensions than the original problem. An
other approach to population size adaptation for large-scale PSO is the E�cient Popu-
lation Utilization Strategy for PSO (EPUS-PSO) [Hsieh et al., 2008b]. In EPUS-PSO,
if the global best solution found does not improve after a given number iterations k,
the population size in incremented as long as it does not exceed a fixed threshold, in
which case it is decremented instead to allow room for a new particle. This increase
in the population size is done in order to promote exploration. On the other hand, if
the global best solution is improved in successive iterations, exploration is encouraged
by decrementing the population size This is done in hope of increasing the speed and
e�ciency of exploitation and of reducing the redundancy of solutions.

DE
In the area of DE (see Section 2.1.2.1 for a brief description), jDEdynNP-F [Brest et al.,
2008] is a self adaptive di↵erential evolution algorithm that incorporates a population
reduction method. The population size is halved with a frequency that grants each
population size value an equal number of function evaluations (thus the larger, more
costly, population sizes are given less iterations). In the DE/current-to-pbest mutation
strategy, instead of selecting the best individual for mutation, one is selected randomly
from the the p⇥ 100% best individuals.

EDA
EDAs, and more specifically Gaussian-Distribution based EDAs generally do not scale
well in the problem dimension since they need to estimate the covariance matrix (matri-
ces) of the distribution which, by default, contain quadratic numbers of elements; thus are
not directly applicable in large-scale. Similarly to what we will see in Section 2.2.1.3 for
Evolution Strategies, large-scale approaches for Gaussian Distribution based EDA rely
mostly on using a restricted model of the covariance matrix to limit both the learning
and the sampling complexities.

The earlier implementations of EDAs in [Mühlenbein and Paass, 1996] and [Mühlenbein
et al., 1996] consider what is called a univariate EDA. In a univariate EDA, only the
means and variances of the variables are learned, which results in a linear complexity
and makes the approach applicable for high dimensions. It can also be seen as restricting
the learning of the covariance matrix to only the diagonal elements (the rest are set to
zeros), similarly to separable CMA-ES [Ros and Hansen, 2008]. As noted in [Bosman

2In F-Race, configurations are run in parallel with the worst configurations being gradually discarded.
The iterated version does so on several iterations; the candidate configurations are sampled from dis-
tributions that are updated, upon each iterations, by taking into account the best configurations of the
previous iteration.

36 CHAPTER 2. BACKGROUND STUDY

et al., 2013], considering a diagonal covariance matrix reduces the number of problems
solved by an EDA. However, the computational time needed with the diagonal approach
is considerably lower than when estimating a full-covariance matrix; which makes it a
reasonable alternative and compromise when dealing with large-scale problems. In [Wang
et al., 2010], a univariate EDA, MUEDA [Wang and Li, 2009] that uses a mixed Cauchy-
Gaussian distribution, is run in the first phase of optimization. Then, once a predefined
stopping criterion is triggered (small improvement of the best fitness over a number of
iterations), a di↵erential evolution algorithm is used in order to better improve the results
on the region of interest identified by the univariate EDA. The resulting serial cooper-
ation based algorithm, named ED-DE, is applied to a representation of a multi-model
real-world problem (Economic Load Dispatch), and produced improved best-known solu-
tions on a number of instances of this problem. It also compares well, performance-wise,
to a number of classical DE and PSO variants on standard benchmark functions that are
generally used in continuous optimization (although only on dimension d = 30).

[Dong et al., 2013] uses two steps in the large-scale EDA it proposes. First independent
variables are identified using a method called Weakly Dependent variable Identification
(WI) which computes the correlation, in the set of selected solutions, between the di↵erent
variables of the problem and assumes independent (with regards to all the other variables)
each variable whose correlations are all smaller than a given threshold. The independent
variables form a class W and the rest of the, assumingly dependent, variables another
class S. A full model is to be learned for the variables in S while a diagonal, univariate,
one is used for the variables in W (since they are supposed independent, so have null
correlations). Often, the size of the subset S remains too large, especially in a large-scale
settings, both for the computational cost that one can a↵ord and also given the relatively
reduced number of selected o↵spring (in comparison to the dimension of S) which a↵ects
the precision of the model. Thus S is randomly partitioned into a number of c subsets
(of variables) and a multi-variate model is learned on each subset by projecting the
selected o↵spring into the subspace spanned by this subset. So, the same set of selected
solutions is taken advantage of multiple-times by projecting it into the di↵erent sub-
spaces spanned by these subsets. This approach can be seen as learning a restricted
block-diagonal covariance matrix with the variables in W all belonging to blocks of size
1 (part diagonal part block-diagonal matrix).

In [Kabán et al., 2015], a number of sub-spaces of smaller dimensions than that of
the problem are defined using random projection matrices. The selected solutions are,
here also, projected into these sub-spaces and a covariance matrix is learned for each
sub-space. By learning the covariance matrix in the sub-spaces, this approach reduces
the computation cost of the algorithm (in comparison to learning in the original search-
space). Once the covariance matrices are learned, new solutions are sampled in each sub-
space and combined, using scaled averages (to accommodate the loss in vector lengths
and variance due to the orthogonal sub-space projections), in order to create the new
population in the original search-space.

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 37

2.2.1.3 CMA-ES Variants

One of the earliest alternatives to CMA-ES for large-scale optimization was proposed in
[Poland and Zell, 2001] with the Main Vector Adaptation (MVA) approach. The idea
in MVA is to find the most desired mutation direction and follow it instead of adapting
a full covariance matrix, making the algorithm less costly. In L-CMA-ES [Knight and
Lunacek, 2007], the most prominent m eigenvectors (those associated with the largest
eigenvalues) are learned instead of all the d vectors (assuming full rank) that form the
full covariance matrix. In order to avoid searching in a sub-space of dimension m < d and
thus potentially be unable to solve simple functions (because of the optimum not being
in the targeted subspace), an additional isotropic normal distribution on all dimensions is
considered with a variance equal to the square of the smallest computed eigenvalue. Later,
the separable CMA-ES algorithm (sep-CMA-ES) [Ros and Hansen, 2008] was developed
with a restricted diagonal covariance matrix. With its linear number of free parameters,
sep-CMA-ES is well suited for large-scale cases. However, and as experiments show, the
diagonal covariance matrix allows to e�ciently solve only problems that are separable or
block-separable with a relatively low block-condition number (see Chapter 5).

VD-CMA-ES
VD-CMA-ES [Akimoto et al., 2014] proposes to use a covariance matrix that covers a
larger set of problems by considering, in addition to the diagonal elements as in sep-
CMA-ES, an additional vector as follows:

C = D(I
d

+ vvT)D , (2.18)

where I
d

is the identity matrix in dimension d, D 2 Rd⇥d is the diagonal matrix and
v 2 Rd. In this version of CMA-ES, the step-size is adapted using a variant of CSA where
in (2.14) C�1/2

t

is replaced by (I
d

+vvT)�1/2D�1 in order to achieve linear complexity (the
inverse of I

d

+ vvT can be computed in linear time using the Sherman-Morrison formula
since I

d

is diagonal). VD-CMA-ES was generalized into VkD-CMA-ES in [Akimoto
and Hansen, 2016b] where instead of considering one additional vector v, k vectors are
considered:

C = D(I
d

+VVT)D , (2.19)

where V 2 Rd⇥k is no longer a vector but a matrix comprised of k 2 [0, d � 1] vectors
v
1

, . . . ,v
k

that need to be learned. The step-size is adapted using Two Point Adaptation
[Hansen et al., 2014]. VkD-CMA-ES has the advantage of generalizing both sep-CMA-
ES (k = 0) and the default full covariance matrix adapting CMA-ES (k = d � 1). One
important parameter to set in VkD-CMA-ES is the number of vectors k since it impacts
not only the performance of the algorithm (the larger the values of k the more likely the
problem can be well approximated using the corresponding restricted covariance matrix)
but also the complexity of the algorithm which is in O(k ⇥ d). The parameter k is
automatically adapted online in [Akimoto and Hansen, 2016a]. The authors start by
describing the e↵ects that one expects to see when the covariance matrix is richer than
needed or not rich enough given a convex-quadratic problem. The e↵ect of dropping

38 CHAPTER 2. BACKGROUND STUDY

each of the current axes is estimated by the change of condition number in the resulting
matrix (after dropping said vector). If this results in an increase of the condition number
that is not larger than a given threshold, �

dec

, the vector is dropped (the algorithm also
makes sure that it is not in a covariance-matrix adaptation phase that can lead to a larger
decrease in the condition number if said vector is dropped). The number of vectors k
is increased when the restricted covariance matrix does not change significantly and the
step-size converges slowly. This is reflected in all the condition number increases being
larger than a given threshold �

inc

. The empirical results showed that the model learned
by the proposed algorithms, and the number of vectors k, are nearly the optimal ones
on many functions. It does, however, result in a slowdown of the performance on fully
non-separable problems because of the time needed to adapt k = d� 1.

LM-CMA-ES
Another variant of CMA-ES, Limited Memory CMA-ES (LM-CMA-ES) [Loshchilov,
2014] was inspired from the limited memory BFGS [Nocedal, 1980] algorithm. It re-
tains the same idea of not conserving the full covariance matrix but a set of the m last
directions generated by the algorithm. These directions are then used to sample the new
solutions without ever needing to reconstruct the full convariance matrix. LM-CMA-ES
uses a new step-sized adaptation mechanism, the Population Success Rule (PSR) intro-
duced in [Loshchilov, 2014] and inspired by the Median Success Rule (MSR) [Ait Elhara
et al., 2013] which will be the main topic of Chapter 3. Similarly to MSR, PSR is a
success-based rule whose complexity is not directly dependent on the problem dimension
(can still depend on it through �) which makes it usable in a large-scale scenario. A
later version of LM-CMA-ES [Loshchilov, 2015] improves its performance by considering
a number of vectors m in the square root of d instead of taking m = � whose default
value is logarithmic in d. In order to remain in a reasonable complexity setting (m =

p
d

means the overall complexity would be in O(d3/2)), a smaller number m⇤ of vectors is
used in order to generate each individual. Another significant change that was done in
[Loshchilov, 2015] was to consider a Rademacher distribution (returns �1 or 1 equiprob-
ably) instead of the normal distribution that is commonly used in evolution strategies.
The sampling of Rademacher distributed variables is cheaper and PSR, the same as MSR,
does not assume a particular distribution of the o↵spring which allows such an approach.

2.2.1.4 Other Methods

We can find, in the literature, a number of large-scale optimization algorithms that
are not based on the algorithms described above. For example, Multi-Agent Genetic
Algorithm (MAGA) [Zhong et al., 2004] combines a multi-agent system with a genetic
algorithm while MA-SW-Chains [Molina et al., 2010] is a memetic algorithm that mixes
a Steady State Genetic Algorithm (SSGA) [Whitley et al., 1989] with the Solis and
Wets’ algorithm [Solis and Wets, 1981], chaining di↵erent local searches by passing on
the parameters from one to another. Memetic algorithms is a term that is generally
used to describe hybrids of evolutionary algorithms and local search methods. Many
of the examples cited above rely on this approach to improve the performance of the

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 39

evolutionary algorithms on large-scale problems. The idea is to rely on the EA mostly
for the exploration part while the local search is used as an exploitation mechanism that
tries to improve the best individuals found by the EA.

2.2.2 Divide & Conquer Approaches

The second category of approaches to solve large-scale problems relies on the divide
and conquer paradigm (D&C), which, in large-scale continuous optimization, is mainly
represented by the Cooperative Co-evolution (CC) approach, first proposed in [Potter
and De Jong, 1994]. Unlike the direct methods that tackle the whole problem at once, the
D&C methods divide the it into smaller, more a↵ordable and easier to solve sub-problems
that are, each, solved with an e�cient optimization method.

In CC, the partial solutions are generally called species. Each species is evolved via an
evolutionary algorithm, and its fitness is defined by that of the complete solution it forms
with the current best representatives of the other species. Generally, the sub-problems
are defined over subsets of variables that do not overlap, and when a sub-problems is
optimized, the variable from the other sub-problems are kept constant. A solution to the
global problem is, then, the aggregation of the partial solutions on each sub-problem (a
cross over between the solutions of the sub-problems).

The grouping phase of the CC process is a crucial one, more so on non-separable
problems where dependent variables need to be grouped and optimized together for the
optimization to be e�cient. Many of the CC based works focus specifically on finding
e�cient and well-performing ways of choosing these species. The original framework,
which puts each variable in a group of its own, turned out to be ine�cient whenever the
problems it faces are non-separable. [Shi et al., 2005] proposed a dividing in half strategy
(variables are put in two groups of equal size). This strategy performed significantly
better on non-separable problems but has a major shortcoming in its scaling in d since it
reduces the complexity of the sub-problems tackled by the underlying evolutionary algo-
rithms by only a constant factor and applies the EA that same factor of times (dividing
in half leads to 2 runs of the EA each on half the global dimension...). Most strategies
divide the d variables into an intermediate number of groups n

G

such as in [Van den
Bergh and Engelbrecht, 2004] with an ideally upper-bounded largest sub-component size
(in order to have a reasonable scaling in d).

In [Liu et al., 2001], the original CC approach is applied to Fast Evolutionary Pro-
gramming [Yao et al., 1999] in order to speed-up its convergence rates on large-scale
optimization problems. The results are promising, showing linear scaling of the perfor-
mance in the problem dimension d. However, all the problems that were considered are
separable problems, which does not tell much about the results that one expects to see
on non-separable problems where the grouping process becomes more relevant.

Random Groups
DECC-I and DECC-II [Yang et al., 2007] use the Self-adaptive DE with Neighborhood
Search (SaNSDE, described in details in [Yang et al., 2008c]) a variant of DE to solve

40 CHAPTER 2. BACKGROUND STUDY

the sub-problems. DECC-I randomly, and uniformly, groups the variables into m sub-
components. Each group is then optimized and given a weight, the weights of the best,
the worst and a random group are evolved after each iteration. DECC-II overcomes the
static grouping of variables in DECC-I by randomly selecting, at each iteration, a set of
variables that will be optimized; the other variables are kept constant. Overall, DECC-I
ended up better performing than DECC-II.

In [Yang et al., 2008a], the concepts of random grouping and adaptive weighting are
introduced. The first generates new random groups at each iteration, and by doing so,
increases the chances of evolving interacting/dependent variables together (see Section 3
of [Yang et al., 2008a] for the proof). The latter (adaptive weighting) attributes a weight
to each of the m groups, these weights are then evolved (m dimensional evolution instead
of the d dimensional one when considering the variables) in order to improve the overall
solution quality. The process is iterated in what is called cycles and the whole algorithm
is denoted EACC-G.

Co-Operative Micro Di↵erential Evolution (COMDE) [Parsopoulos, 2009] applies co-
operation to the micro DE which uses very small population sizes (a population size of 6
in [Parsopoulos, 2009]), regardless of the problem dimension d. The reduced population
size allows for a fast converge which, however, prevents good exploration. This lack of
exploration is addressed through the use of the cooperative scheme.

The Multi-Level CC (MLCC) [Yang et al., 2008b] tries to find the group sizes that
fit the best to the considered problem. Small group sizes are expected to work better
on separable problems while larger ones are generally necessary for a good performance
on non-separable problems thanks to a larger chance of optimizing interacting variables
together. At each cycle, each group size is given a probability of being selected that
is based on its past performances. [Omidvar et al., 2010a] proposes DECC-ML, an
improved version of MLCC. The paper starts by showing that a frequent variable grouping
(once a cycle) improves significantly the chances to evolve interacting variables together,
generalizing the result of [Yang et al., 2008a] to more than two variables. In addition
to this, the selection of the group sizes is made uniform instead of weighted, and only
carried out when the quality of the solution does not improve in two successive cycles. It
also gets rid of the adaptive weighting that, the paper shows, generally fails to improve
the fitness of the solution.

In variants of PSO for large-scale optimization, we can find Cooperative PSO (CPSO)
[Van den Bergh and Engelbrecht, 2004]. CPSO is improved upon in CCPSO [Li and Yao,
2009] by injecting random grouping and adaptive weighting. CCPSO is further improved
in CCPSO2 [Li and Yao, 2012] by mixing (using a probability p) between a Cauchy
distribution and a Gaussian distribution for the sampling of new points in the PSO
process. This is done to grant better search capabilities to the algorithm, a crucial
aspect in large scale optimization. It also, like in [Omidvar et al., 2010a], removes the
adaptive weighting in favor of a more frequent random grouping.

Variable-Interaction Based Groups
The concept of Delta Grouping is introduced in [Omidvar et al., 2010b] with the DECC-

2.2. LARGE-SCALE CONTINUOUS OPTIMIZATION 41

D/DML algorithm. Delta Grouping aims at finding the interacting variables in order to
group them together for improved performances on non-separable problems. The core
idea of the concept is that interacting variables have generally narrow improvement in-
tervals (intervals in which the fitness can be improved while keeping the other variables
constant) [Salomon, 1996]. Thus, at each cycle, the average amount of change in each
variable is calculated, and variables are sorted according to this amount; then, the group-
ing takes place by successively filling the groups with the sorted variables, increasing the
chances of grouping interacting variables together. DECC-DML self-adapts the group
sizes using simple random uniform sizes the same way as in [Omidvar et al., 2010a].

In Cooperative Coevolution with Variable Interaction Learning (CCVIL) [Chen et al.,
2011], a di↵erent approach, first proposed in [Weicker and Weicker, 1999], is used to learn
variable interactions. Two variables x

i

and x
j

are assumed dependent if there exist values
x1

i

, x2

i

for x
i

and x1

j

, x2

j

for x
j

and values (x
k

)
1kd,k/2{i,j} for the remaining variables such

that:

f(x
1

, . . . , x1

i

, . . . , x1

j

, . . . , x
d

) < f(x
1

, . . . , x2

i

, . . . , x1

j

, . . . , x
d

) (2.20)

and
f(x

1

, . . . , x1

i

, . . . , x2

j

, . . . , x
d

) > f(x
1

, . . . , x2

i

, . . . , x2

j

, . . . , x
d

) . (2.21)

This means that the result of the comparison of the fitness for a pair of values of x
i

,
f(. . . ,x1

i

, . . .) VS f(. . . ,x2

i

, . . .), depends on the value of x
j

for these same values of x
i

(x1

i

and x2

i

).The algorithm starts by considering all the variables independent and merges
the dependent variables whenever equations (2.20) and (2.21) are both satisfied. At each
step, equations (2.20) and (2.21) are verified using two individuals that are based on the
current best individual and whose coordinates i and j (the variables whose dependence is
investigated) are replaced with values from the current individual and a randomly chosen
one. It does not consider a round robin tournament to detect all possible interactions
(quadratic number of possible interactions), the dependency of the current variable/group
is only checked with the previous one, with a random arrangement of variables generated
at each cycle. The simulations show a good performance with regards to finding the
correct number of groups of a problems; however, the cost of learning these groups in
numbers of additional function evaluations (that are not exploited elsewhere) remains a
major drawback of the algorithm. A similar approach, called Di↵erential Grouping, was
proposed in [Omidvar et al., 2014] where instead of a simple binary comparison of the
fitness as in equations (2.20) and (2.21), the fitness di↵erence is tracked by defining:

�
1

= f(x
1

, . . . , x1

i

, . . . , x1

j

, . . . , x
d

)� f(x
1

, . . . , x2

i

, . . . , x1

j

, . . . , x
d

) (2.22)

and
�

2

= f(x
1

, . . . , x1

i

, . . . , x2

j

, . . . , x
d

)� f(x
1

, . . . , x2

i

, . . . , x2

j

, . . . , x
d

) . (2.23)

Then if |�
1

� �
2

| is larger than a certain predefined threshold ✏, the variables i and j
are marked as dependent. [Sun et al., 2015] first notes the fact that di↵erential group-
ing captures only direct interactions between variables. Then, it proposes the Extended

42 CHAPTER 2. BACKGROUND STUDY

di↵erential grouping that also identifies indirect interactions and groups indirectly inter-
acting variables together. Di↵erential grouping is further improved in [Mei et al., 2016]
in what is called Global Di↵erential Grouping by keeping track of the variable-interaction
matrix (the value of |�

1

��
2

| for each pair of variables). It is also one of the few algo-
rithms that take advantage of the good performance of CMA-ES on small to moderate
dimension problems and use it as the EA to optimize the sub-components. The resulting
algorithm, CC-GDG-CMAES, outperformed its state of the art counterparts in The CEC
2010 Large Scale Global Optimization Special Session.

A good survey of large-scale optimization methods and especially of Cooperative Co-
evolution based ones can be found in [Mahdavi et al., 2015]. Overall these methods give
promising results on several problems. However, their performance remains limited when
dealing with fully non-separable problems since the approach consists in optimizing sub-
sets of variables, of reasonably small sizes, together to bypass the use of an optimization
algorithm on a high dimension problem.

2.3 Benchmarking

Benchmarking is an important task in algorithm design. It allows to test and assess
the performance of algorithms before they deployment in a real-world setting. This is
especially practical when resources in the real-world scenario are limited or when the runs
take a long time to resolve so one can not a↵ord a large number of runs. Benchmarking
generally consists in, first, running the algorithm(s) in question on a set of predefined
functions/problems. Then, the data produced by the experiments, ideally quantifying
the performance, is processed and interpreted. A good benchmarking platform typically
provides, in addition to the resources needed to run the experiments, additional tools
to post-process the generated data and visualize it in a simple and easily interpretable
way. The possibility of comparing the performance of several algorithms is in the core
of the benchmarking procedure and should be provided in a simple way since it in the
core of the benchmarking process. An example of a benchmarking platform that provides
the features described above is COmparing Continuous Optimisers (COCO) that we will
describe in the following section.

Given the purpose of benchmarking, and in order for them to be meaningful, the
functions on which the algorithms are tested should relate to real-world problems. This
is required in order for the performance of the algorithm on a real-world scenario to not
di↵er from that on the benchmark, thus making the decisions taken on the benchmark
as relevant as possible in the real world scenario (reduce the di↵erence to the outcome
observed on the benchmark). This results in a lesser tinkering e↵ort needed on the,
generally more expensive, real world problems.

One way to design benchmark functions that are similar to real-world problems is
to identify the di�culties these real-world problems when confronting optimization algo-
rithms. Then, one can represent these problems via functions that possess properties that
translate into these same di�culties such as (see Section 2.1.1 for a more detailed but
not exhaustive list of the di�culties encountered in continuous black-box optimization):

https://github.com/numbbo/coco

2.3. BENCHMARKING 43

dimensionality, non-separability, multi-modality, ill-conditioning...

2.3.1 The BBOB-2009 test-bed

One widely used benchmarking platform in continuous black-box optimization is COm-
paring Continuous Optimisers, COCO (https://github.com/numbbo/coco). As previ-
ously mentioned, it provides both the tools needed to run the simulations (experiment
code) in di↵erent programming languages (C, C++, Java, Python, Matlab and Octave for
now) and a Python code that allows to post-process the data. Using the post-processing
code of COCO produces several practical and useful plots such as the scaling plots (e.g.,
Figure 5.8) and the Cumulative Distribution plots (e.g., Figure 5.9). It also provides a
set of tables and a data structure that allows the user to have access to and visualize
individual data-sets and personalized data-set lists.

The BBOB-2009 test-bed, and more specifically the noiseless test-bed, is the core of
the benchmarking procedure in COCO. It contains a set of 24 di↵erent problems whose
definitions can be found later in Table 5.3 and Table 5.4 and that are based on raw func-
tions that can be found in Table 5.1 and Table 5.2. Di↵erent transformations are applied
on these raw functions in order to generate the 24 problems. These transformations will
be detailed in Section 5.1.1. For each set of values of the parameters of these transfor-
mations, an instance of the problem is generated; which allows, in theory, an infinite
number of instances for problem. The problems can also be defined on any dimension
d � 2.

These problems are organized in five categories, each category containing a set of
problems that share some property/di�culty:

Separable Functions (f
1

-f
5

): these functions are considered to be easy since they can
be solved by a line search on each dimension. The Rastrigin functions (f

3

and f
4

)
present the additional di�culty of being highly multi-modal; which makes them
harder for most algorithms that do not explicitly exploit the separable nature of
these problems. These five functions are the only separable ones in the testbed.

Low/Moderately Conditioned Functions (f
6

-f
9

): these functions have a condition
number of about 100. The two first functions are uni-modal (single optimum) while
the Rosenbrock functions (f

8

and f
9

) have a second, local, optimum in dimensions
higher than 2. The non-rotated Rosenbrock function (f

8

) is partially separable,
with a band like dependency structure (each variables interacts directly only with
its immediate neighbors).

Unimodal Highly Conditioned Functions (f
10

-f
14

): these functions have a single
optimum. A descent method should, in theory (depending on the di↵erentiability
of the function, the presence of plateaus and how they are handled), be able to find
the optimum. They have a relatively high condition number (106 for f

10

, f
11

and
f
12

) in comparison to the functions of the previous category.

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco

44 CHAPTER 2. BACKGROUND STUDY

Multi-Modal Functions with Adequate Global Strucure (f
15

-f
19

): these functions
are highly multi-modal, with a number of local optima that depends on the dimen-
sion (e.g., exponential in the dimension for f

15

). However, the adequate structure
that might be exploited by algorithms means the local optima are generally sim-
ilarly shaped and distributed in a regular way. Thus, seen on a global scale, the
landscape of the function contains repetitive, symmetric, patterns.

Multi-Modal Functions with Weak Global Strucure (f
20

-f
24

): similar to the pre-
vious category in multi-modality but the landscapes of the function has less struc-
ture and symmetries are broken. Most algorithms find these problems to be the
hardest.

In addition to its noisy test-bed and the possibility of having an expensive setting
when visualizing the date, the COCO platform has recently extended its list of problem
suites to include that of bi-objective problems [Tusar et al., 2016, Brockho↵ et al., 2016].
The expensive setting introduces the notion of runlength-based target values. Instead of
fixing constant target precisions (as it is done in the classical approach approach), the
target precisions are, instead, generated depending on the performance of another algo-
rithm (in the present version, an artificial portfolio algorithm of the best results collected
in the 2009 BBOB workshop [Hansen et al., 2010b]) by choosing the targets that were
just not reached at given run-lengths (numbers of functions evaluations). Furthermore,
a constrained test-suite and a large-scale test-suite are in development to extend the
platform even more. Chapter 5 of this thesis deals with the large-scale extension.

2.3.2 The CEC Benchmarks for Large-Scale Global Optimiza-
tion

The most prominent large-scale continuous optimization benchmarks are the ones used
in the CEC Special Sessions and Competitions on Large-Scale Global Optimization. The
first iteration of this test-suite, proposed in [Tang et al., 2007] consisted in 20 problems
organized in four classes depending on their levels of separability:

• separable functions,

• partially separable functions with a single group of dependent variables,

• partially separable functions with several independent groups each group comprised
of dependent variables,

• fully non-separable functions.

The problems are constructed in a similar fashion to [Hansen et al., 2009] by applying
transformations on a number of basic/raw functions. The CEC benchmarks are based on
a subset of the raw functions used in COCO: the sphere function, the ellipsoid function,
the Rastrigin function and the Rosenbrock function (see Table 5.1 and Table 5.2 without
the normalization factor �(d)) in addition to the Ackley function and a di↵erent variant

https://github.com/numbbo/coco
https://github.com/numbbo/coco

2.3. BENCHMARKING 45

of the Schwefel function, Schwefel 1.2. The Ackley function, in its raw form, is defined
as follows

fAckley

raw

(x) = �20 exp

0

@�0.2

vuut1

d

dX

i=1

x2

i

1

A� exp

1

d

dX

i=1

cos (2⇡x
i

)

!
+ 20 + e , (2.24)

where x
i

designates the ith coordinate of the vector x. The variant Schwefel 1.2 on the
other hand:

fSchwefel1.2

raw

(x) =
dX

i=1

iX

j=1

x
i

!
2

. (2.25)

The partially separable problems are obtained by first dividing the variables into
groups and then applying a full rotation matrix to each group. The complexity of evalu-
ating the problems is limited thanks to constant group-sizes (set to 50 in the test-suite)
that make the cost of applying the rotations (the bottleneck of the computation) reason-
able despite the large-scale setting (since this group size is independent of the problem
dimension).

The main shortcoming of this test-bed is possible exploitation of its flat group struc-
ture (non-overlapping groups of the same size). This was noted in [Omidvar et al., 2015],
in addition to showing that the di↵erential grouping approach [Omidvar et al., 2014]
manages to learn the exact group structure on most problems of the benchmark. [Omid-
var et al., 2015] also proposes a number of features that a large-scale benchmark needs
to satisfy to reproduce real-world problem:

• non-uniform group sizes,

• non-uniform contributions of the groups,

• overlapping groups.

These features, in addition to a number of transformations borrowed from [Hansen et al.,
2009], are integrated in order to construct the CEC 2013 Large-Scale Benchmark Func-
tions [Li et al., 2013].

The problems are classified di↵erently in the new test-suite [Li et al., 2013]:

• fully-separable problems,

• partially, additively, separable problems (contains problems with a group of sepa-
rable variables and problems without a group of separable variables)

• overlapping problems (the groups share a number of variables, sub-problems formed
by these groups may or may not have the same optimal values on the shared
variables)

• fully non-separable problem (the Schwefel Problem).

46 CHAPTER 2. BACKGROUND STUDY

We note that the Rosenbrock problem, and because if its band-like structure (all variables
interact directly with the variables that are adjacent to them), is no-longer considered a
fully non-separable problem but an overlapping one (here, groups of 2 to 3 interacting
variables that overlap).

One major shortcoming in the CEC benchmarks is the performance evaluation proce-
dure. In COCO, the performance is measured in terms of the expected average number of
function evaluations needed to reach a given target precision. In the CEC benchmarks,
a fixed budget of function evaluations is given and the performance is measured in terms
of the best fitness observed once the budget is exhausted. In most cases, the best fitness
is a measure that can not be interpreted in a quantitative way. For example, one does
not know, a priori, and on di↵erent problems, the significance of the quantitative di↵er-
ence between a precision of 10�4 and a precision of 10�8. The e↵ort needed to improve
from the first to the second depends on the problem, and can vary drastically form one
problem to the other. In addition, applying an increasing transformation to the fitness
function (such as a scaling with a positive factor) leads to di↵erence performance results
even for comparison-based algorithm (such as CMA-ES) that are inherently invariant to
such transformations (this measure does not allow to see this invariance directly). On the
other hand, using the number of function evaluations needed to reach a target precision
allows to quantitatively compare algorithms and their speeds. An algorithm can be twice
faster than an other in reaching a target f

�

, can witness a speedup of 10 when a certain
parameter is self-adapted... Results and interpretations that are easier to understand
and apply.

https://github.com/numbbo/coco

Chapter 3

The Median Success Rule

This chapter aims at designing a new success based step-size adaptation mechanism for
evolution strategies, and more specifically, for CMA-ES and its variants. The proposed
mechanism has a complexity that does not directly depend on the problem dimension
d, which makes it large-scale friendly. In addition, it relies on the presence of fewer
properties of the sampling distribution than the step-size adaptation mechanism that
it replaces (Cumulative Step-size Adaptation) and can thus, in theory, be applied and
easily adapted to a large variety of population-based evolutionary algorithms. It can be
seen as a generalization of the one-fifth success rule to multi-parent non-elitist evolution
strategies.

3.1 Introduction

The default step-size adaptation mechanism in CMA-ES, the Cumulative Step-size Adap-
tation (CSA, see Section 2.1.4.1), and despite it being an e�cient method with state
of the art performance, has some shortcomings that make it unpractical to use in our
large-scale context. CSA relies on having normally distributed o↵spring, limiting its
use to algorithms that sample normally distributed o↵spring. It also performs better
when it is coupled with a covariance-matrix adaptation-mechanism such as CMA-ES
that presents it with an isotropic search space (after transformation via the covariance

matrix, thanks to C�1/2

t

in (2.14)). The complexity of learning this covariance matrix
is, at best, quadratic when done in a standard way (learning the full covariance matrix).
Such levels of complexity are generally not allowed in large-scale settings. In addition,
CSA needs the inverse of the covariance matrix in its update to end up in the isotropic
space (see (2.14)), so a strategy that adapts the covariance matrix in an e�cient (linear)
way, such as VD-CMA-ES [Akimoto et al., 2014], needs to provide, in a no less e�cient
way, the inverse of the restricted covariance matrix it learns (as seen in Section 2.2.1.3,
VD-CMA-ES does provide such a cheaply computed inverse by taking advantage of the
particular covariance matrix it adapts). This leads to additional e↵orts needed if one
wants to apply CSA in a large-scale setting. Other methods, such as LM-CMA-ES and
the VkD-CMA-ES [Akimoto and Hansen, 2016b] (generalized VD-CMA-ES), follow a

47

48 CHAPTER 3. THE MEDIAN SUCCESS RULE

similar approach to that of this chapter and use di↵erent, cheaper, step-size adaptation
mechanisms for large-scale optimization (Population Success Rule [Loshchilov, 2014] in
LM-CMA-ES and Two-Point [Hansen et al., 2014] Adaptation in VkD-CMA-ES). One
other shortcoming of CSA is found in Chapter 4 in the form of its slow convergence
rate on the simplest looking functions when these functions have low e↵ective dimension.
This is due to the fact that the step-size adaptation signal of CSA is derived from a com-
parison with the case of random selection, in which the steps are normally distributed.
The expected length of these steps depends on the problem dimension but the algorithm
uses a deceptive overall problem dimension d instead of the e↵ective dimension of the
problem d

e↵

. So, the algorithm mis-estimates the true expected value of the length of
the cumulation-path under random selection.

We propose the Median Success Rule (MSR) as an alternative for CSA that can
be used in large-scale optimization but also more generally as a step-size adaptation
mechanism that can be integrated to evolution strategies, and eventually to a larger array
of population-based algorithms when adapted properly. The proposed method and its
complexities do not depend directly on the problem dimension so it can be used in a large-
scale setting. Thus, MSR can be used with e�cient covariance matrix approximation
algorithms tackling large-scale problems. It is applied to an embedding-based version of
CMA-ES in Chapter 4 which produced competitive results, surpassing CSA and being on
par with other large-scale algorithms (it does not su↵er from the problem encountered by
CSA on low e↵ective dimension problems). MSR can also constitute, coupled with the
core of (µ/µ

w

,�)-ES (equations (2.10), (2.11) and (2.12)), a cheap stand-alone evolution
strategy with no covaraince matrix adaptation.

In Section 3.2, we explain the notion of Linear Convergence and how it relates to
the design of step-size adaptation methods. We introduce the Median Success Rule in
Section 3.3 where we also present the details of its implementation. The parameters of
MSR are investigated and tuned in Section 3.4 and the step-size adaptation mechanism
is benchmarked against CSA in Section 3.5. We conclude in Section 3.6.

3.2 Step-size Adaptation and Linear Convergence

In continuous optimization problems, we are generally interested in the speed at which
an algorithm finds or converges the optimal solution. It was already established that
the step-size, and more specifically, the way it is adapted, impacts the speed at which
evolution strategies converge to the optimal solution on a wide class of problems. In
fact, and with a well adapted step-size, one can achieve what we call linear convergence,
on a certain class of functions [Auger and Hansen, 2011]. Achieving a linear converge
speed is generally the desired theoretical goal when conceiving evolution strategies in
general and step-size adaptation mechanisms in particular. Thus, several methods of
adapting �

t

can be found in the literate of the domaine such as the one-fifth success rule
[Rechenberg, 1994], Self-Adaptation (SA) [Schwefel, 1995], Two-Point Adaptation (TPA)
[Hansen, 2008] and Cumulative Step-size Adaptation (CSA) [Ostermeier et al., 1994b].

In the context of evolution strategies, an ES converges linearly, in expectation, when

3.2. STEP-SIZE ADAPTATION AND LINEAR CONVERGENCE 49

there exists a positive constant CR that satisfies:

lim
t!1

1

�
E


ln
kx

t+1

� x
opt

k
kx

t

� x
opt

k

�
= �CR , (3.1)

where x
opt

is the optimal solution that is assumed to be unique and CR is called the
convergence rate of the algorithm. In evolution strategies, x

t

designates the mean solution
at iteration t and is generally considered to be the solution suggested by the algorithm as
the currently best solution. We obtain almost sure convergence and say that an algorithm
converges, almost surely, linearly when the following equality is satisfied almost surely:

lim
t!1

1

�

1

t


ln
kx

t

� x
opt

k
kx

0

� x
opt

k

�
= �CR , (3.2)

where x
0

represents the initial solution of the algorithm at iteration 0.
This linear convergence can be empirically investigated and is observed for certain

step-size adaptation schemes (we remain in the context of evolution strategies) on sev-
eral functions. However, formal proofs of such convergence remain relatively scarce and
exist only for some particular step-size adaptation algorithms on some function classes.
For example, su�cient conditions to obtain linear convergence on scale-invariant func-
tions were established, using Markov Chain analysis, in [Auger and Hansen, 2013a] for a
large class of evolution strategies. These conditions were verified for the (1+1)-ES with
one-fifth success rule on positively homogeneous functions (a subclass of scale-invariant
functions satisfying 9k 2 N, 8↵ > 0, f(↵x) = ↵kf(x)) in [Auger and Hansen, 2013b].

One important step-size adaptation scheme is one that produces a step-size propor-
tional to the distance to the optimum of the current mean solution,

�
t

= �⇤ ⇥ kxt

� x
opt

k
d

, (3.3)

where �⇤ is constant. The resulting artificial algorithm achieves linear convergence on
spherical functions, whiche are functions of the form f(x) = g(f sphere(x � x

opt

)) with g
strictly increasing, for finite dimensions when used with single parent strategies ((1+1)-
ES and (1,�)-ES) [Auger and Hansen, 2011]. The sphere function is defined as follows:

f sphere(x) =
dX

i=1

([x]
i

)2 = kxk2 , (3.4)

where [x]
i

designates the ith coordinate of x and kxk the euclidean norm of x. We use
the notation [x]

i

(instead of x
i

) in this chapter for convenience. This algorithm is an
artificial one since the distance to the optimum is supposed unknown to the algorithm
in a black-box setting.

Furthermore, linear convergence is the best convergence speed a single parent ES can
achieve on any function (Theorem 10.17 of [Auger and Hansen, 2011]). The resulting
convergence rate (CR in (3.1)) using distance to the optimum proportional step-size (3.3)

50 CHAPTER 3. THE MEDIAN SUCCESS RULE

is optimal (maximal) on the spherical functions (Theorem 10.20 of [Auger and Hansen,
2011]), for some value of �⇤. This sets an upper bound on the convergence rate of any
step-size adaptation method.

Regarding the multi-parent non-elitist recombination based evolution strategies ((µ/
µ
w

,�)-ES), a step-size which is proportional to the distance to the optimum (3.3) achieves,
also, linear convergence on finite dimension spherical functions [Auger et al., 2011]. In
addition, and due to its scale-invariance, (3.1) is satisfied not only for the limit on t but
for any t, i.e.,

1

�
E


ln
kx

t+1

� x
opt

k
kx

t

� x
opt

k

�
= �CR for all t 2 N . (3.5)

Optimality of this convergence rate is still to be proven but we assume it to be true.
We develop the Left-hand Side (LHS) of (3.5) and expend the expression of x

t+1

(2.12)
knowing that the o↵spring are sampled from our parameterized normal distribution (2.10)
with C

t

= I
d

, while assuming, without loss of generality (WLOG), that the optimum is
at zero (x

opt

= 0
d

), and obtain:

�CR =
1

�
E


ln
kx

t+1

k
kx

t

k

�

=
1

�
E


ln
k
P

µ

i=1

w
i

xi:�

t

k
kx

t

k

�

=
1

�
E


ln
kx

t

+ �
t

P
µ

i=1

w
i

Ni:�k
kx

t

k

�

=
1

�
E

"
ln k x

t

kx
t

k +
�
t

kx
t

k

µX

i=1

w
i

Ni:�k
#

,

(3.6)

where (Ni:�)
1i�

are the standard independent and identically distributed multivariate
normal vectors used to generate the o↵spring (the realizations of the standard multivari-
ate normal distribution in (2.13)):

xi

t

= x
t

+ �
t

Ni , (3.7)

and ranked such that

kx
t

+ �
t

N1:�k  kx
t

+ �
t

N2:�k  · · ·  kx
t

+ �
t

N�:�k . (3.8)

In other words, Ni:�, with 1  i  � corresponds to the realization of the multi-normal
distribution used for xi:�

t

that satisfies (2.11), xi:�

t

= x
t

+ �
t

Ni:� with the sphere function
as the fitness function.

We have
�
t

kx
t

k =
�⇤

d
(3.3) and we set

x
t

kx
t

k = e
1

, where e
1

is the first canonical basis

vector (1, 0, . . . , 0), without loss of generality due to the isotropy of both the spherical
functions and the multi-variate normal distribution used to generate the o↵spring. Then
we have:

� CR =
1

�
E

"
ln ke

1

+
�⇤

d

µX

i=1

w
i

Ni:�k
#

. (3.9)

3.3. THE MEDIAN SUCCESS RULE WORKING-PRINCIPLE 51

Taking the limit case of spherical functions with dimension tending to infinity (d !
1), the asymptotic convergence rate satisfies [Arnold, 2006]:

lim
d!1

d⇥ CR = ��⇤

�

µX

i=1

w
i

E[N i:�] +
1

2
�⇤

µX

i=1

w2

i

!
, (3.10)

where N i:�, 1  i  � is the ith order statistic (smallest individual) in a population or
� standard-normal distributed samples. Equation (3.10) is important as it allows us to
identify the parameter values that maximize the convergence rate in the asymptotic case.

For starters, we can derive with respect to �⇤ and find the optimal value of this
parameter:

�⇤
opt

= �
P

µ

i=1

w
i

E[N i:�]P
µ

i=1

w2

i

= �µ
e↵

µX

i=1

w
i

E[N i:�] , (3.11)

where µ
e↵

= (
P

µ

i=1

w2

i

)�1 is the variance e↵ective selection mass. We refer to the cor-
responding step-size, �⇤

opt

, as the optimal step-size. We extend this appellation to the
case of finite dimension and refer to the step-size that maximizes the convergence rate
as optimal step-size.

Then, the optimal weights are obtained by plugging, in (3.10), the value of �⇤
opt

from
(3.11) and deriving with respect to the weights w

i

. The resulting optimal weights are the
negatives of the order statistics of a standard normal distribution [Arnold, 2005] with �
individuals: �E[N i:�], i = 1, . . . , µ. Dividing the weights by a constant factor ↵ leads to
an ↵ times larger optimal step-size, but the resulting weights retain their optimal status
[Ait Elhara et al., 2013]. Thus, we can normalize the optimal weights to have them
summing to 1:

wopt

i

=
E
⇥
N i:�

⇤
P

µ

k=1

E [N k:�]
, i = 1, . . . , µ . (3.12)

When µ 6= �/2, we choose to set the weights to the values that would be obtained,
given µ, if � = 2µ, i.e., given µ, we use:

wopt

i:2µ

=
E [N i:2µ]P
µ

k=1

E [N k:2µ]
, i = 1, . . . , µ . (3.13)

This guarantees that all weights remain positive and are normalized to sum to 1. We
retain these weights as the default weights in this chapter (unless otherwise stated) and
simply refer to them, to lighten the notation, by w

i

(2µ will be deduced from the context).
Note that in Chapter 4, we use the default weights of CMA-ES (see Table 4.3).

3.3 The Median Success Rule Working-Principle

3.3.1 Motivations

The Median Success Rule (MSR) described in this chapter was mainly aimed to be an
alternative to the Cumulative Step-size Adaptation (CSA) for multi-parent non-elitist

52 CHAPTER 3. THE MEDIAN SUCCESS RULE

evolution strategies in large dimensions and/or for large values of µ. In fact, the reliance
of CSA on the adaptation of the covariance matrix, in order to adapt the isotropic
evolution path, leads to, at best, quadratic time and space complexities.

Success-based methods are, computationally (and comparatively) cheap, with a com-
plexity that is generally independent of the search-space dimension, or has a scaling in
it that is shadowed by other complexities (algorithms are generally not expected to have
less than linear complexities). For example, and as we will see, the complexity of MSR
depends on the population size �, which in turn is set by default to depend on the prob-
lem dimension d. However, since the population size is chosen to be logarithmic in the
dimension, MSR does not change the overall complexity of the algorithm. In addition,
success-based methods rely on less restrictive properties; the main assumption being the
ability to use the success probability, or a measure of it, as a reliable signal for step-size
adaptation.

3.3.2 Preliminaries

In a (1+1)-ES, we do not have much of a choice on how to define success, at least not
over a single iteration: the iteration is successful if, and only if, the o↵spring has an equal
or better fitness than the parent, i.e., f(x1:1

t

)  f(x
t

), where the equality is considered a
success in order to prevent stagnation on plateaus. As a result, and since we have single
parent single o↵spring elitist selection, a successful iteration means the next parent is
no worse than the current one (f(x

t+1

)  f(x
t

), although one does not necessarily need
to have the same success definition for the update of the mean x

t

as for the update of
the step-size).Once the notion of success is defined, we investigate the success probability
that is observed when desirable/optimal conditions (usually, convergence rate or progress
rate of the algorithm) are met on some usual functions such as the sphere function.
This procedure resulted in an optimal success probability p

opt

⇡ 1/5 for the (1+1)-ES
[Rechenberg, 1994].

In order to apply the same approach for (µ/µ
w

,�)-ES, a clear notion of success (
and thus of success probability) needs to be defined. On a (µ/µ

w

,�)-ES, we can think of
several success definitions over two successive iterations. We consider two iterations since
we are in a non-elitist configuration where only the o↵spring generated at time t will be
used to defined the next mean solution x

t+1

. For example, we can consider the improve-
ment of the mean solution x

t

(f(x
t+1

)  f(x
t

)) as a straightforward generalization of the
1/5th success rule; the improvement of the ith best individual (f(xi:�

t+1

)  f(xi:�

t

)), with i
a parameter to set; comparison of the ith best individual at iteration t+1 with the mean
at t (f(xi:�

t+1

)  f(x
t

))...
Each definition might produce a di↵erent optimal success probability p

opt

anywhere
between 0 and 1. However, and in order to have the most accurate estimation of the
success probability, p

opt

must be close to 1/2 since the algorithm will be estimating the
parameter of a Bernoulli distribution. Comparing the same individual (x

t+1

versus x
t

,
x1:�

t+1

versus x1:�

t

...) at successive iterations gives p
opt

closer to 0 and 1 than to 1/2 for
large enough µ since with an optimal step-size, the overall quality of the population is

3.3. THE MEDIAN SUCCESS RULE WORKING-PRINCIPLE 53

Figure 3.1: Left: Estimated target success probability when considering the improve-
ment of the mean solution (f(x

t+1

) vs f(x
t

)) for di↵erent values of µ on the asymptotic
sphere function (d!1). A (µ/µ

w

,�)-ES is considered with optimal weights (see (3.13)),
x
t

= e
1

and the step-size is set to its optimal value for each configuration (3.11). The
simulated derived formula is shown in (3.14). A total of 104 samples is used to estimated
each probability and all possible values of µ are considered (1  µ  �). Right: Empir-
ical Cumulative Distribution of o↵spring fitness at two successive iterations (t and t+1)
on a sphere function of dimension 20 with a population size of � = 10. A total of 105

pairs of populations at successive iterations are used for each value of the step-size. The
mean solution of the first iteration x

t

is set to e
1

so f(x
t

) = 1. We see the objective
function values on the x-axis with their corresponding empirical cumulative distribution
values considering all the o↵spring, over the di↵erent trials, at iterations t and t+1. The
”}”s show to which percentile of the population at t the median at t + 1 (designated
by ”�”s) must be compared in order to have a success probability of 1/2 (aligned in the
x-axis). The graphs are shown for three multiples of the optimal step-size, �

opt

/2, �
opt

and 2�
opt

.

expected to improve over the iterations in order for it to converge to the optimum.

For example, in the left plot of Figure 3.1, we show the target success probabilities
of a (µ/µ

w

,�)-ES operating on the asymptotic sphere function (d ! 1) when defining
success as being f(x

t+1

)  f(x
t

). We define the target success probability to be the
success probability that is observed when the step-size is optimal (maximal possible
convergence rate). We use the optimal step-size as defined in (3.11) and derive the
formula of the success probability when optimal weights (3.13) are used:

Pr
�
f(x

t+1

)  f(x
t

)
�
= Pr

2

µX

i=1

w
i

N i:� 
µX

i=1

w
i

E[N i:�]

!
, (3.14)

where (N i:�

t

)
1i�

the order statistics of a normal standard distribution with a pool of �
samples.

We see that most of the target success probabilities in the asymptotic case are closer to
1 than to 1/2. As to be expected from (3.14), the target success probability is positively
correlated with the population size �.

54 CHAPTER 3. THE MEDIAN SUCCESS RULE

3.3.3 The Definition of Median Success

We are interested in finding a definition of success that would result in optimal success
probabilities close to 1/2. To do so, we consider the populations at two successive iter-
ations (xi:�

t

)
1i�

and (xi:�

t+1

)
1i�

and define a notion of success that is parametized by
an index j

�

. Then we investigate the values of j
�

that produce the desired target success
probabilities on the asymptotic spherical functions where the notion of optimal step-size
is well defined.

Given j
�

, an iteration is successful if and only if the median o↵spring at t + 1 is at
least as good as the jth

�

best individual at t. Then, we need to find j
�

that satisfies:

Pr
⇣
f(xm:�

t+1

)  f(xj� :�

t

)
⌘
⇡ 1/2 , (3.15)

where m : �, and when there is no ambiguity just m, designates, the index of the median
o↵spring (function-value wise). Note that xm:�

t+1

is well defined only when � is odd but we
will see in the implementation section (Section 3.3.4) how we deal with even values of �.
We call the probability in the left hand side of (3.15) the Median Success Probability.

We want our comparison index j
�

, to allow a rapid convergence to the optimal step-
size (when it is defined), so we choose it to be the value that, when optimal conditions
are met, satisfies (3.15). As seen in Section 3.2, the optimal conditions on the sphere
function when d ! 1 are well known (see for example (3.11)). Then, we can set j

�

to
the value that, on the asymptotic sphere function and when the step-size is optimal, the
median success probability is 1/2. We will see later in this chapter (Section 3.4.2) how
we can chose the value of j

�

when the dimension is finite and on functions other than
the sphere.

The success probability introduced in (3.15) is usually di↵erent from 1/2 for all pos-
sible integer values of j

�

, thus we allow j
�

to be real valued. To determine j
�

given the
ranked o↵spring of two successive iterations (xi:�

t

)
1i�

and (xi:�

t+1

)
1i�

, we identify the
index, j�

�

with a median success probability, p�
s

, closest to 1/2 but smaller than 1/2. We
set, j+

�

= j�
�

+1 with its corresponding median success probability p+
s

. Then, j+
�

has the
closest median success probability to 1/2 that is larger than 1/2.

In order to estimate the value of j
�

, we linearly interpolate it to the value that would
give a 1/2 median success probability. The line passing by the points (j�

�

, p�
s

) and (j+
�

, p+
s

)
has as equation

p = (p+
s

� p�
s

)j + p�
s

� (p+
s

� p�
s

)j�
�

. (3.16)

To get the interpolated value of j
�

, we set p = 1/2 in (3.16) and obtain

j
�

= j�
�

+
1/2� p�

s

p+
s

� p�
s

. (3.17)

This amounts to giving the indexes j+
�

and j�
�

a weight proportional to the distance of
the success probability obtained using the other index (p�

s

and p+
s

respectively) to 1/2:

j
�

=
1

p+
s

� p�
s

⇥�
p+
s

� 1/2
�
j�
�

+
�
1/2� p�

s

�
j+
�

⇤
, (3.18)

3.3. THE MEDIAN SUCCESS RULE WORKING-PRINCIPLE 55

where 1/(p+
s

� p�
s

) is a normalization allowing the weights to sum up to 1.
Assuming for the moment that we have identified a real number j

�

(the process of
identifying j

�

will be explained later), we need, to be able to implement the algorithm,
to give a meaning to the random vector xj� :�

t

that is coming into play in (3.15). Since
we allow j

�

to be non-integer, xj� :�

t

is not necessarily part of the population.
To do so, we introduce a random variable j̃

�

that takes its values in {j�
�

, j+
�

}. The
probabilities of j̃

�

taking each value are chosen such that E[j̃
�

] = j
�

:

j̃
�

= j�
�

u1�{j�} + j+
�

u{j�} , (3.19)

were {j
�

} designates the fractional part of j
�

(j
�

� bj
�

c), the indicator function and
u a random variable uniformly distributed in [0, 1]. These notations will remain relevant
in the few following equations.

We can now define a generalized version of xj� :�

t

for a real valued index j
�

given the

o↵spring at iteration t, (xi:�

t

)
1i�

, as the random variable x
˜

j� :�

t

. Hence, xj� :�

t

satisfies

xj� :�

t

= xj

�
� :�

t

u1�{j�} + xj

+
� :�

t

u{j�} . (3.20)

Using this definition of xj� :�

t

(3.20), the median success probability reads:

Pr
⇣
f(xm:�

t+1

)  f(xj� :�

t

)
⌘
=(1� {j

�

})⇥ Pr
⇣
f(xm:�

t+1

)  f(xj

�
� :�

t

)
⌘

+ {j
�

}⇥ Pr
⇣
f(xm:�

t+1

)  f(xj

+
� :�

t

)
⌘

.
(3.21)

In practice, we are interested in the estimation of the success probability in (3.21)
over a single iteration given o↵spring (xi:�

t

)
1i�

and (xi:�

t+1

)
1i�

where the comparisons
yield binary results. The empirical estimation of the probability in (3.21), that we note

P̂r
MSR

t

(m, j
�

) and call empirical success probability, is defined as follows:

P̂r
MSR

t

(m, j
�

) := (1� {j
�

})⇥
f(x

m:�
t+1)f(x

j�� :�
t)

+ {j
�

}⇥
f(x

m:�
t+1)f(x

j+� :�
t)

. (3.22)

Note that an approach similar to what is done in equations (3.19) and (3.20) can also
be applied to xm:�

t+1

when � is even (m is not an integer). However, the implementation
of the MSR (see Section 3.3.4) does not use the median o↵spring directly. Thus, we do
not explicitly need to compute or estimate xm:�

t+1

when it is not part of the o↵spring.
Looking into the asymptotic sphere function, we find that the median success prob-

ability is negatively correlated with the step-size (see (3.57) in Section 3.4.2.2). This
correlation makes it possible to use the median success probability as a signal that guides
the step-size towards its optimal value for a well set value of j

�

. The optimal step-size
here refers to the step-size that results in the largest possible convergence rate. The way
we defined j

�

, a well set /optimal value is one that results in a targeted median success
probability of 1/2 when the step-size is optimal.

The right plot of Figure 3.1 shows an example on how the ideal comparison index (or
comparison percentile) j

�

depends on the step-size on a finite dimension (d = 20) sphere

56 CHAPTER 3. THE MEDIAN SUCCESS RULE

function. It shows the empirical cumulative distribution of the fitness of the o↵spring at
two successive iterations for di↵erent values of the step-size. The o↵spring are obtained
from a couple of iterations of a (µ/µ

w

,�)-ES.
The negative correlation between step-size and median success probability means that

the bigger the step-size, the larger the comparison index producing a median success
probability of 1/2. In the example of Figure 3.1, one would set the comparison index to
the 33%-tile (�/3) as this corresponds to an empirical median success probability (3.22)
of 1/2 on the estimated optimal step-size.

3.3.4 Implementation of the Median Success Rule

Limiting the estimation of success to only that of the median would result, similarly
to the single parent single o↵spring scenario, in a binary signal. However, being in a
configuration where the population size is larger than 2, we are expected to have a better
suited mechanism where more of the information at one’s disposal is used to estimate
the drift from the optimal step-size at iteration t.

In order to have a more accurate estimation of the success probability (more precisely,
of the distance to 1/2 which is our optimal success probability), we count the number of
successful o↵spring at t+ 1 when compared to the jth

�

best individual at t. By doing so,
and roughly speaking, a successful median would mean that at least half the o↵spring
are successful (and an unsuccessful one otherwise). We, first, generalize (3.22) to define
the empirical success probability of an individual xi:�

t+1

(or an index i) given the o↵spring
at iteration t and the comparison index j

�

:

P̂r
MSR

t

(i, j
�

) := (1� {j
�

})⇥
f(x

i:�
t+1)f(x

j�� :�
t)

+ {j
�

}⇥
f(x

i:�
t+1)f(x

j+� :�
t)

. (3.23)

To count the number of successes we have, we sum these empirical success probabilities
over all the o↵spring of iteration t+ 1:

Ksucc

t

=
�X

i=1

P̂r
MSR

t

(i, j
�

) . (3.24)

We see that in (3.24), we do not need to estimate xm:�

t+1

when � is even. In fact, we
sum over all integer indexes of iteration t+1, and if � is even, the median is, simply, not
taken into consideration in the computation of Ksucc

t

as it is not part of the o↵spring.
We see in the left plot of Figure 3.2 an example where the estimated empirical success

probabilities, P̂r
MSR

t

(i, j
�

) (3.23), are shown under each point. In the lower plot, Ksucc

t

is

an integer (Ksucc

t

= 2) since all individuals at t+ 1 are either better than xj

�
� :�

t

or worse

than xj

+
� :�

t

. However, in the upper plot, we have x4:�

t+1

whose fitness lies between those

of these two individuals (xj

�
� :�

t

and xj

+
� :�

t

). Then for this case, and following (3.23) and
(3.24), we have Ksucc

t

= 3 + {j
�

}.

3.3. THE MEDIAN SUCCESS RULE WORKING-PRINCIPLE 57

Figure 3.2: Left: Two examples showing how Ksucc

t

is computed. On the x-axes are
shown the fitness of an o↵spring on a fictive objective function, f . The ”•”s represent
the o↵spring at iteration t + 1 while ”⌥”s show the position, on the same axis, of the
two o↵spring of ranks j�

�

and j+
�

that are used to compute Ksucc

t

(3.24). The numbers

under each data point show the empirical success probabilities P̂r
MSR

t

(i, j
�

) (3.23) for
each corresponding point. Right: Smallest value of the comparison percentile yielding
a Median Success Probability larger that 1/2 on the linear function (3.39). The success
probabilities, (3.44), are empirically estimated over 103 realizations. The dotted lines
illustrate a lower bound on the default values of j

�

(3.62) established in [Ait Elhara
et al., 2013] for which we take d!1 for each weighting scheme while the solid lines are
for j

�

= 0.27�. Blue is for intermediate (equal) weights; Orange is for optimal weight
(3.13) and Green is for the single parent case µ = 1, w

i

=
i=1

.

We then normalize Ksucc

t

such that we obtain a signal at iteration t, z
t

, that is positive
whenever the median is successful (roughly half the o↵spring are successful):

z
t

= h

✓
2

�

✓
Ksucc

t

� �

2

◆◆
, (3.25)

where h is a monotonous function. We set h to the identity function in this chapter; using
a sign function (as explained in the beginning of this section) gave inferior results. This
normalization makes z

t

2 [��+1

�

, ��1

�

] with a successful median pushing towards (since
we use a learning rate, c

�

, the change in the step-size does not necessarily follow the sign
of z

t

) an increase to the step-size with z
t

� 0 and an unsuccessful one to a decrease. The
success or not of the median, then, marks the frontier between a successful iteration and
and unsuccessful one. In our context, we say that an o↵spring xi:�

t+1

is successful when

P̂r
MSR

t

(i, j
�

) = 1.

When � is odd, it is straightforward: the median o↵spring is x(�+1)/2:�

t+1

, Ksucc

t

� �+1

2

if P̂r
MSR

t

(m, j
�

) = 1; i.e., the median is successful. The lower-left plot of Figure 3.2 is an
example of an unsuccessful median.

When � is even, the median is not part of the o↵spring since �+1

2

/2 N. We look into

58 CHAPTER 3. THE MEDIAN SUCCESS RULE

xd(�+1)/2e:�
t+1

and find that:

⇣
P̂r

MSR

t

(d(�+ 1)/2e, j
�

) = 1
⌘

=)
✓
Ksucc

t

� �

2

◆
,

⇣
P̂r

MSR

t

(d(�+ 1)/2e, j
�

) = 0
⌘

=)
✓
Ksucc

t

<
�

2

◆
.

(3.26)

For intermediate values (0 < P̂r
MSR

t

(d�+1

2

e, j
�

) < 1), the sign of z
t

(same sign asKsucc

t

��

2

)
depends mainly on {j

�

}. In the upper-left plot of Figure 3.2, z
t

� 0 if, and only if,
{j

�

} � 1/2.
The signal, z

t

, is smoothed to take into consideration previous values by introducing
a learning rate c

�

:
s
t+1

= (1� c
�

)s
t

+ c
�

z
t

, (3.27)

where c
�

2]0, 1] and s
0

= 0.
Finally, s

t+1

is used to update the value of the step-size:

�
t+1

= �
t

exp(
s
t+1

d
�

) , (3.28)

where d
�

is the damping parameter that dictates the maximal amount of change on the
step-size in a single iteration (since s

t

is bounded).
The step-size adaptation mechanism of MSR is described by equations (3.24) to (3.28),

bar (3.26), and summed up in Algorithm 1.

Algorithm 1 The Median Success Rule (MSR)

j
�

: the comparison index; default value: see equation (3.62)
�
t

: step-size at previous iteration,
d
�

: damping parameter, d
�

> 0; default value: d
�

= 2� 2/d
c
�

: learning rate of the signal, 0 < c
�

< 1; default value: c
�

= 0.3
h: monotonous function; default choice: identity function,
f : objective function,
(xi:�

t

)
1i�

: o↵spring at previous iteration, ordered by fitness values,
(xi:�

t+1

)
1i�

: o↵spring at current iteration, ordered by fitness values,
s
t

: last value of the step-size update coe�cient.

1: Ksucc

t

=
P

�

i=1

P̂r
MSR

t

(i, j
�

) (see (3.23))
2: z

t

= h(2
�

(Ksucc

t

� �+1

2

))
3: s

t+1

= (1� c
�

)s
t

+ c
�

z
t

4: �
t+1

= �
t

exp(st+1

d�
)

3.4 Parameter Setting

Looking at Algorithm 1, we identify three main parameters for the Median Success Rule:
(i) the learning rate c

�

, (ii) the comparison index j
�

and (iii) the damping parameter d
�

.

3.4. PARAMETER SETTING 59

The next subsections will deal with setting the values of these three parameters. We set
the monotonous function h to be the identity function through this chapter.

3.4.1 Learning Rate

The learning rate c
�

2]0, 1] allows to smooth, to some extent, the step-size adaptation
coe�cient, s

t

, over time. It also allows to limit the maximal amplitude of change in this
coe�cient from an iteration to the next one. When c

�

< 1, s
t

is not a 100% reliant on
the information gathered from a single iteration, granting the strategy a certain level of
robustness against extreme single occurrences, the information in question being z

t

. Old
values of s

t

contribute to the current value, with a contribution that fades geometrically,
with reason (1 � c

�

), over time (see (3.27)). We choose to set the learning rate to the
smallest value allowing two iterations to be enough for the coe�cient s and the signal z
to match signs when the signal is constant and its amplitude (absolute value) maximal,
i.e.,

z
t

= z
t+1

= ±1� 1/� =) s
t+2

⇥ z
t

� 0 . (3.29)

This way, two successive observations of the same, maximal, signal are enough to make
the step-size change in the direction suggested by this signal (increase if positive and
decrease if negative). Meanwhile, a level of robustness against single extreme signals
(all successful, or no success) is guaranteed by choosing the smallest value of c

�

. These
extreme signals might be observed for example when the population sizes is too small.

Lemma 1. Let us note z
min

the smallest possible value of z
t

, z
min

= ��+1

�

. If c
�

�
1�

p
2

2

p
(2 + z

min

) then

z
t

= z
t+1

2 {z
min

, z
min

+ 2} =) s
t+2

⇥ z
t

� 0 . (3.30)

Proof. Let z
max

be, similarly, the largest values that z
t

can take, i.e.,

z
max

= z
min

+ 2 =
�� 1

�
. (3.31)

Starting from s
t+2

:
s
t+2

= (1� c
�

)s
t+1

+ c
�

z
t+1

, (3.32)

replacing s
t+1

by its values from (3.27) and with z
t

= z
t+1

:

s
t+2

= (1� c
�

)2s
t

+ (2� c
�

)c
�

z
t

= s
t

� 2c
�

s
t

+ c2
�

s
t

+ 2c
�

z
t

� c2
�

z
t

= �(z
t

� s
t

)c2
�

+ 2(z
t

� s
t

)c
�

+ s
t

.

(3.33)

On the other hand, we have:

z
min

 s
0

 z
max

=) z
min

 s
t

 z
max

, 8t 2 N . (3.34)

This can easily be proved using mathematical induction.

60 CHAPTER 3. THE MEDIAN SUCCESS RULE

Let us take the first worst case scenario (extreme unfavorable case for (3.30)). That
is z

t

= z
t+1

= z
max

and s
t

= z
min

. This is the worst case scenario since we have the largest
distance possible between the signal and the coe�cient, z

t

�s
t

= 2, and more importantly
the largest distance for them to match signs. By replacing in (3.33) we obtain:

s
t+2

= �2c2
�

+ 4c
�

+ s
t

. (3.35)

This is a second degree equation with a positive discriminant. For s
t+2

to be positive
and match signs with z

t

, and thus for (3.30) to be satisfied, we need:

1�
p
2

2

p
(2 + z

min

)  c
�

 1 +

p
2

2

p
(2 + z

min

) , (3.36)

with the right-side inequality being irrelevant since c
�

 1.
The other worst case scenario, z

t

= z
min

and s
t

= z
max

, z
t

� s
t

= �2, and by using
the same steps as the first worst case scenario, results in a formula similar to (3.36):

1�
p
2

2

p
(2� z

max

)  c
�

 1 +

p
2

2

p
(2� z

max

) . (3.37)

Since in our case z
min

 �z
max

, the bound in (3.36) is tighter than the one in (3.37); thus

c
�

� 1�
p
2

2

p
(2 + z

min

) covers both cases.

In practice, we choose to relax the values of z
min

and z
max

and set them to �1 and 1
respectively, ignoring the �1/�. Then, the bound on c

�

becomes: c
�

� 1�
p
2

2

' 0.293.
We take the rounded value with a single significant digit: c

�

= 0.3.

3.4.2 Comparison Index

In this section, we are interested in setting the second parameter of MSR, namely the
comparison index j

�

which is in the core of the proposed step-size adaptation strategy.
In order to asses the behavior of the Median Success Rule with di↵erent values of

the comparison index, and then to choose the values of this index in practice, we start
by considering three function settings, each setting having a di↵erent desired behavior of
the step-size:

Linear Function: Increasing step-size; increasing the step-size ad infinitum.

Sphere Function: Decreasing step-size; distance to the optimum proportional step-size,
see Section 3.2

Ridge Function: Constant step-size; when in the stationary state, the optimal step-size
is constant.

A more systematic approach for designing and assessing step-size adaptation mechanisms
can be found in [Hansen et al., 2014]. In [Hansen et al., 2014], five scenarios are suggested
in order to assess step-size adaptation mechanisms. In addition to the (i) linear and (ii)

3.4. PARAMETER SETTING 61

sphere functions that we consider here, the ridge function is replaced with a (iii) stationary
sphere function that simulates a constant optimal step-size in a spherical scenario. The
paper also assesses the step-size adaptation methods on (iv) random and flat functions,
to see whether a given strategy is biased towards a particular behavior (for example, Self
Adaptive step-size [Schwefel, 1995] has a step-size biased towards increase on random
functions) and (v) an ill-conditioned function, typically the ellipsoid function.

Since on the linear and ridge functions the optimal solution is infinite, using conver-
gence rates as a measure of performance is unpractical (the algorithm is supposed to
diverge solution-wise). This is why we use, instead, the notion of progress that quantifies
the evolution of the fitness of the mean solution in the desired direction (see, for example,
(3.61)).

3.4.2.1 The Linear Function

The linear function is defined as follows:

f linear(x) =
dX

i=1

[x]
i

, (3.38)

where x 2 Rd, d (positive) is the search-space dimension and [x]
i

the ith coordinate of
x. For the sake of simplicity, and with no loss of generality, we define the function on 1st

coordinate only; i.e.,
f linear(x) = [x]

1

, (3.39)

making the function dimension-independent. We use (3.39) as the definition of the linear
function through this chapter.

Then, the Median Success Probability on the linear function (left-hand side of (3.15))
reads:

Pr
linear

:=Pr
⇣
f linear

�
xm:�

t+1

�
 f linear

⇣
xj� :�

t

⌘⌘

=Pr
⇣⇥

xm:�

t+1

⇤
1


h
xj� :�

t

i

1

⌘

=Pr
⇣⇥

x
t+1

+ �
t+1

Nm:�

t+1

⇤
1


h
x
t

+ �
t

Nj� :�

t

i

1

⌘
,

(3.40)

where (Ni:�

t

)
1i�

are multi-variate standard-normal vectors ordered such that:

f linear(x
t

+ �
t

N1:�

t

)  f linear(x
t

+ �
t

N2:�

t

)  · · ·  f linear(x
t

+ �
t

N�:�

t

) , (3.41)

which derives, for �
t

> 0, into:

⇥
N1:�

t

⇤
1


⇥
N2:�

t

⇤
1

 · · · 
⇥
N�:�

t

⇤
1

. (3.42)

Since N1

t

⇠ N(0, I) (the non-ordered o↵spring) and the linear function is only defined on
the first coordinate (3.39), this order is the same as that of the one-dimensional standard

62 CHAPTER 3. THE MEDIAN SUCCESS RULE

normal variables ([N1

t

]
1

, [N2

t

]
1

,. . . , [N�

t

]
1

) that compose the first coordinate of each vector.
Thus:

Pr
linear

=Pr
⇣⇥

x
t+1

⇤
1

+ �
t+1

Nm:�

t+1

 [x
t

]
1

+ �
t

N j� :�

t

⌘

=Pr

 "
x
t

+ �
t

µX

i=1

w
i

Ni:�

t

#

1

+ �
t+1

Nm:�

t+1

 [x
t

]
1

+ �
t

N j� :�

t

!

=Pr

�
t

µX

i=1

w
i

N i:�

t

+ �
t+1

Nm:�

t+1

 �
t

N j� :�

t

!
,

(3.43)

where N i:�

t

is defined the same as in (3.10), and di↵erent time subscripts designate
independent samples. If we consider a constant step-size over two iterations (�

t

= �
t+1

),
the resulting Median Success Probability on the linear function would be:

Pr
linear

= Pr

Nm:�

t+1

 N j� :�

t

�
µX

i=1

w
i

N i:�

t

!
. (3.44)

We can see that this success probability is independent, not only of the search space
dimension d, but also of the the step-size �

t

. On the linear function, the desired behavior
of a good step-size adaptation mechanism is to increase the step-size indefinitely since
the optimum in at infinity. Thus, the linear success probability in (3.44) needs to be
larger than 1/2 for a correct behavior of the algorithm since success probabilities larger
than 1/2 push towards increasing the step-size (see Section 3.3.4).

We assess the performances of an algorithm over one iteration on the linear function
using its progress rate. The progress rate is defined as the one iteration improvement of
the fitness of the mean solution:

'
t

:= f(x
t�1

)� f(x
t

), 8t > 0 , (3.45)

and reads in the case of the linear function:

'
linear

=
⇥
x
t�1

⇤
1

� [x
t

]
1

= ��
t�1

�X

i=1

w
i

N i:� . (3.46)

The larger the value of the progress rate, the better the algorithm is.
Assuming w

1

� · · · � w
µ

and µ < � (both these conditions are generally satisfied),
we see in (3.46) that the expected progress rate on the linear function for a (µ/µ

w

,�)-ES
is positively correlated to the step-size. In the extreme case of equal weights (called
intermediate weights) and µ = �, we obtain null expected progress regardless of the
step-size:

E('
linear

) = ��
t�1

1

�
E

�X

i=1

N i:�

!

= ��
t�1

1

�
E

�X

i=1

N i

!
(no need for ordering since µ = �)

= 0 .

(3.47)

3.4. PARAMETER SETTING 63

Adding any selection mechanism, either by decreasing the number of parents µ, making
the weights not all equal or both can only result in a better expected progress rate (since
this leads to favoring better solutions). Thus, the generalization of the positive correlation
between step-size and progress only requires that the weights are non-increasing.

As expected in (3.44), we see a straightforward correlation between the success proba-
bility and the value of the index to which the median is compared (the comparison index
j
�

). In fact, j
�1

� j
�2

, Prj�1

linear

� Prj�2

linear

as the higher the value of this index j
�

, the
worse its objective value is in expectation; and thus, the better chances the median of
the next iteration has to be successful.

Regarding the weights, what can be considered as a worst case scenario, when linear
success probability is considered, is the case of intermediate weights. Here, the notion of
worst case scenario is taken in the sense that, all other things being equal, this scenario
gives the smallest linear success probability (3.44). An example of this can be seen in
Figure 3.2 as the blue graph (corresponding to intermediate weighted recombination with
µ = b�/2c) is clearly above the orange graph which has the same µ but with optimal,
strictly decreasing, weights (3.13) instead.

The right plot of Figure 3.2 depicts the smallest choices of the comparison index (or
comparison percentile) allowing Pr

linear

� 1/2 (increasing step-size) for di↵erent weighting
schemes and di↵erent values of µ. We see that the formula for the comparison index
(3.62), first suggested in [Ait Elhara et al., 2013] (the dashed lines), and for which a
lower bound is used by taking d ! 1, lies within the ”good behavior” region for the
considered weights and µ. For example, the configuration (optimal weights, µ = b�/2c)
results in a Median Success Probability over 1/2 as long as j � 0.11� while the value
used in the algorithm is around 0.27 ⇥ � for most values of �. Thus, we can proceed in
our investigation to other objective functions as the behavior on the linear function is
shown to be correct.

3.4.2.2 The Sphere Function

The sphere function is widely studied when investigating convergence rates of evolution
strategies. One reason for this is the presence of a solid theoretical model around the
spherical functions (see Section 3.2) that provides the optimal behavior of an evolution
strategy on them (maximal convergence rate, optimal step-size, optimal weights). Fur-
thermore, the use of Coavariance Matrix Adaptation, with which MSR will be eventually
coupled, is expected to result, locally and when possible, in a sphere-like/isotropic trans-
formed problem (if the function is convex-quadratic, the inverse of the Hessian would
be estimated). Thus, one purpose of the step-size adaptation rule would be to solve
the remaining sphere function e�ciently. We investigate the convergence rate of the
algorithm on the sphere function (3.4) in order to find the comparison percentile/index
allowing this convergence rate to be maximal on a spherical function. This will help set
this parameter’s default value.

We now derive the Median Success Probability (3.15) of a (µ/µ
w

,�)-ES on the sphere

64 CHAPTER 3. THE MEDIAN SUCCESS RULE

function [Ait Elhara et al., 2013]:

Pr
sphere

:= Pr
⇣
f sphere

�
xm:�

t+1

�
 f sphere

⇣
xj� :�

t

⌘⌘
. (3.48)

Similarly to Section 3.4.2.1, we consider that the step-size is constant in the two successive
iterations (�

t+1

= �
t

= �):

Pr
sphere

=Pr
⇣
kxm:�

t+1

k2  kxj� :�

t

k2
⌘

=Pr
⇣
kx

t+1

+ �Nm:�

t+1

k2  kx
t

+ �Nj� :�

t

k2
⌘

,
(3.49)

where the (Ni:�

t

)
1i�

(and similarly (Ni:�

t+1

)
1i�

) are ordered, each independently, fol-
lowing the fitness of their corresponding o↵spring; that is:

f sphere(x
t

+ �N1:�

t

)  · · ·  f sphere(x
t

+ �N�:�

t

) , (3.50)

and
f sphere(x

t+1

+ �N1:�

t+1

)  · · ·  f sphere(x
t+1

+ �N�:�

t+1

) . (3.51)

Then,

Pr
sphere

=Pr

kx

t

+ �

µX

i=1

w
i

Ni:�

t

+ �Nm:�

t+1

k2  kx
t

+ �Nj� :�

t

k2
!

. (3.52)

We set � = kx
t

k�
⇤

d
, which leads to a decomposition that suggests a distance to the

optimum proportional step-size (see Section 3.2) and algorithms trying to find the optimal
multiplying constant �⇤

opt

(a change of variable that is transparent to the algorithm). In
addition, and thanks to the isotropy of the standard multivariate normal distribution and
of the sphere function, we can replace the mean solution x

t

with a vector of the same
length without changing the success probability; in our case we choose to set, without

loss of generality,
x
t

kx
t

k = e
1

. Replacing then simplifying by kx
t

k:

Pr
sphere

= Pr

kx

t

+ kx
t

k�
⇤

d

µX

i=1

w
i

Ni:�

t

+ kx
t

k�
⇤

d
Nm:�

t+1

k2  kx
t

+ kx
t

k�
⇤

d
Nj� :�

t

k2
!

.

(3.53)
Finally,

Pr
sphere

= Pr

ke

1

+
�⇤

d

µX

i=1

w
i

Ni:�

t

+
�⇤

d
Nm:�

t+1

k2  ke
1

+
�⇤

d
Nj� :�

t

k2
!

. (3.54)

3.4.2.2.1 Asymptotic case We now consider the asymptotic case of d!1:

lim
d!1

Pr
sphere

= lim
d!1

Pr

ke

1

+
�⇤

d

µX

i=1

w
i

Ni:�

t

+
�⇤

d
Nm:�

t+1

k2  ke
1

+
�⇤

d
Nj� :�

t

k2
!

. (3.55)

3.4. PARAMETER SETTING 65

By developing the squares and simplifying we find:

lim
d!1

Pr

2

"
µX

i=1

w
i

Ni:�

t

+Nm:�

t+1

#

1

+
�⇤

d
k

µX

i=1

w
i

Ni:�

t

+Nm:�

t+1

k2

 2
h
Nj� :�

t

i

1

+
�⇤

d
kNj� :�

t

k2
◆

.

(3.56)

The asymptotic median success probability on the sphere function is derived in Propo-
sition 5 of [Ait Elhara et al., 2013]:

lim
d!1

Pr
sphere

= Pr

Nm:�

t+1

 N j� :�

t

�
µX

i=1

w
i

N i:�

t

� 1

2
�⇤

µX

i=1

w2

i

!
, (3.57)

where N i:�

t

(and similarly N i:�

t+1

) is the ith order statistic of a standard normal distribution
with � samples. The proof can be found in the Appendix of [Ait Elhara et al., 2013]
where the authors assume that

2

"
µX

i=1

w
i

Ni:�

t

+Nm:�

t+1

#

1

+
�⇤

d
k

µX

i=1

w
i

Ni:�

t

+Nm:�

t+1

k2

converges almost surely when d!1 to

2

µX

i=1

w
i

N i:�

t

+Nm:�

t+1

!
+ �⇤

µX

i=1

w2

i

+ 1

!
.

Since the optimal step-size for this model (asymptotic sphere) is theoretically known
(3.11), we can replace its value in (3.57) to obtain the expression of the asymptotic
median success probability on optimal conditions:

lim
d!1

Pr
�

⇤
=�

⇤
opt

sphere

= Pr

Nm:�

t+1

 N j� :�

t

�
µX

i=1

w
i

(N i:�

t

� 1

2
E[N i:�

t

])

!
. (3.58)

Then, we can define the optimal value of j
�

, jopt
�

, on the asymptotic sphere function, as
the value that, when replaced in (3.58), results in a success probability of 1/2. Figure 3.3
shows the results of simulating (3.58) with di↵erent values of � and j

�

. We are mostly
interested in the (relative) comparison indexes that result in a success probability close
to or equal to 1/2.

We see that for all but the bottom leftmost plot (µ = 1), these points of interest lie,
for most values of �, within an interval of the normalized rank between 0.20� and 0.30�.
The case µ = 1 results in more spread points of interest on the x-axis. This suggests a
linear correlation between the optimal comparison index jopt

�

and the population size �.
To check this linearity, Figure 3.4 shows, from the data used in Figure 3.3, the evo-

lution of the two integer indexes j�
�

and j+
�

with the closest success probabilities to 1/2

66 CHAPTER 3. THE MEDIAN SUCCESS RULE

Optimal

Intermediate

µ = b�/2c µ = b�/3c µ = b0.27�c

µ = 1 µ = b�/3c µ = b0.27�/2c

Figure 3.3: Median Success Probabilities when �⇤ = �⇤
opt

on the asymptotic sphere
function for di↵erent values of � and all possible integer values of j

�

simulated from (3.58).
The normalized ranks in the x-axis depict (j

�

� 1)/(�� 1) Di↵erent weightings schemes
and values of µ are considered. Upper plots: normalized optimal weights (3.13), from
left to right: µ = b�/2c, µ = b�/3c, µ = b0.27�c; Lower plots: intermediate (equal)
weights summing up to 1, from left to right: µ = 1, µ = b�/3c, µ = b0.27�c. Each
success probability is estimated using 106 data points.
Optimal

Intermediate

µ = b�/2c µ = b�/3c µ = b0.27�c

µ = 1 µ = b�/3c µ = b0.27�c

Figure 3.4: Evolution of the optimal comparison index with population size and for
di↵erent weighting schemes and numbers of parent (same configurations as Figure 3.3).
Shown are the lower optimal comparison indexes j�

�

”•”, the upper optimal comparison
indexes j+

�

”•” and the estimated interpolated optimal comparison index jopt
�

(3.17) ”•”.
The same data as for Figure 3.3 is used.

3.4. PARAMETER SETTING 67

and respectively smaller and larger. It also shows the estimation of jopt
�

as described in
(3.17) for the di↵erent configurations.

First, we see a step curve that is to be expected from Figure 3.3 since the indexes
j�
�

and j+
�

are both integer valued. However, this is not translated into the interpolated
average which has a fairy linear scaling in � in all but the case of µ = 1. This is due
to the way jopt

�

is computed in (3.17), even though successive values of � might have
the same j�

�

and j+
�

, their corresponding success probabilities, p�
s

and p+
s

are generally
di↵erent; thus the flexibility of the interpolated line.

For information, the estimated value of jopt
�

for the asymptotic sphere with optimal
weights and µ = b�/2c reads:

jopt
�

(�,1) = 0.27�+ 0.83 . (3.59)

3.4.2.2.2 Finite dimension We now look into the more practical cases of finite
dimensions.

In the case where the dimension does not tend to infinity, we do not have a theoreti-
cally derived expression for the optimal step-size of a (µ/µ

w

,�)-ES on the sphere function.
However, we can still apply the definition of convergence rate in (3.9) and simulate it.
Then, we consider the empirically observed best convergence rate as being optimal, and
note the corresponding step-size multiplier �⇤

opt

accordingly. We can now, similarly to
the asymptotic case, look into the success probabilities for this optimal step-size (and for
other values of the step-size), following (3.54).

Figure 3.5 shows the evolution of the convergence rates ((3.9) and (3.10)) and success
probabilities ((3.54) and (3.57)) for di↵erent values of the distance to the optimal pro-
portional step-size multiplier �⇤ on the sphere function for a (µ/µ

w

,�)-ES with optimal
weights (3.13). This figure allows us to see the success probabilities of the di↵erent in-
dexes around optimal step-size conditions. It also gives estimates of the cost of drifting
from the optimal step-size in convergence-rate loss.

The convergence rate plots on finite and infinite dimensions seem to have similar
shapes. Left of the optimal step-size (�⇤ < �⇤

opt

), the convergence rates decrease with
decreasing step-size, with lim

�!0

CR = 0. However, on the right of �
opt

(�⇤ > �⇤
opt

),
the convergence rate decreases much quicker and the algorithm diverges (negative CR),
in the best of cases, as soon as the step-size reaches three times the optimal step-size.
This divergence is due to the generated o↵spring over-shooting the optimal solution,
resulting in fitness values of the o↵spring worse than those of the mean solution x

t

of the
distribution from which they were generated.

We also notice fairly similar success-probability graphs for the relatively small values
of j

�

. With larger j
�

and on the larger dimensions, the median success probabilities
decrease faster with the increasing step-size. For example in the case � = 10, the success
probability is around 0.3 when comparing the current median to the previous median
(purple dashed line) with 10 times the optimal step-size and d = 20 whereas it is close to
zero when d = 160 and goes to zero much faster (at about 3 times the optimal step-size)
for the asymptotic case of d!1.

68 CHAPTER 3. THE MEDIAN SUCCESS RULE

µ = b�/2c

Figure 3.5: Median success probabilities for all integer values of the comparison index
(j

�

= 1, . . . ,�) and normalized progress rates versus step-size on the sphere function. The
problem dimension and the population size are indicated on top of each plot (�, n) (here
the dimension is noted n), with the rightmost column plots dedicated for the asymptotic
case (denoted by d!1). The rainbow-colored solid lines represent the median success
probabilities (equation (3.54) for finite dimension and (3.57) for d!1). The comparison
index increases as the color goes from blue j

�

= 1 to red j
�

= �. The first quartile and
the median are indicated by pink and purple dashed lines respectively. Corresponding
success-probability values are shown on the left-side y-axes. The gray ”+”s correspond
to the normalized convergence rates; their values are shown on the right-side y-axis and
are either simulated from (3.9) for the finite dimension case or directly computed from
the limit in (3.10) for the asymptotic case. The solid vertical black line indicates the
optimal step-size for the given configuration (step-size that coincides with the maximum
of the gray ”+” graph). Empirical simulations were done for a total of 105 realizations
per data point.

3.4. PARAMETER SETTING 69

Note that the limits of the asymptotic medians success probabilities when �⇤ ! 0
correspond to the success probabilities on the linear function as we can see by comparing
(3.57) with �⇤ ! 0 to (3.44). These success probabilities can be seen on the leftmost
part of the plots, as the success probabilities seem to converge to stationary values with
decreasing �⇤.

In each plot, we are most interested in two points in particular:

(i) The first point is the crossing of the two perpendicular black lines, success probability =
1/2 (horizontal) and �⇤ = �⇤

opt

(vertical). This point gives an estimation of the optimal
comparison index for the given configuration since it corresponds to the j

�

whose re-
sulting median success probability with optimal step-size is 1/2. It does not necessarily
need to be on one of the median success probability plots since we already explained in
Section 3.3.3 how we allow and manage non integer comparison indexes. For example,
for a population size of � = 20, we see the evolution of jopt

�

: d = 20 =) jopt
�

' 7,
d = 160 =) jopt

�

' 6.3 and d!1 =) jopt
�

' 6.1.

(ii) The second point of interest is, once a comparison index j
�

is chosen, the intersection
of the success-probability plot for the given j

�

(or its interpolated one if j
�

/2 N) and the
1/2 success probability line. This shows the expected convergence rate of the algorithm
with this value of j

�

(on the sphere function in this case). In fact, the abscissa of said
intersection is the target step-size of the algorithm. This is due to the fact that the
algorithm tries to achieve a Median Success Probability of 1/2, and by doing so, makes
its step-size converge to the corresponding step-size that we can call the half median-
success step-size, that we note �̂

1/2

(j
�

). The expected convergence rate of the algorithm
can, thus, be deducted by looking into the convergence rate corresponding to �̂

1/2

(j
�

) in
Figure 3.5. If we look back at our example, (n = 20,� = 20), and set j

�

= 4, �̂
1/2

(j
�

)
would be about 1/3rd of the optimal step-size and the normalized convergence rate would
be around 0.10 instead of more than 0.15 (a bit over 30% loss).

The later point leads to our next set of plots: Figure 3.6; where we look into the
convergence rates that correspond to the di↵erent choices of j

�

on each configuration.

In this figure, and in contrast to Figure 3.5 where the drift from the optimal step-size
is investigated, we are interested in the e↵ects and amount of performance loss resulting
from a sub-optimal choice of j

�

. That is values of j
�

whose median success probabilities
are di↵erent from 1/2, or conversely, values of j

�

whose corresponding target step-sizes at
median success probability 1/2 are di↵erent from the optimal step-size. The performance
is measured in convergence rate multiplied by dimension (as a normalization). The plots
of Figure 3.6 are obtained, for each value of j

�

, by taking the convergence rate observed
on its corresponding �̂

1/2

(j
�

). The results are shown for di↵erent values of d and � with
optimal normalized weights and µ = b�/2c.

The plots seem quite similar for most cases, being more and more curved as the
dimension increases. The optimum jopt

�

(that corresponds to maximal convergence rate)
shifts to the left with growing dimension until reaching its limit, when d!1, of around
the 27%-tile (see (3.59)).

As expected, progress becomes null or negative for values of j
�

larger or equal to
�/2 (in our case µ = b�/2c) as the corresponding �̂

1/2

(j
�

) is too large. This can

70 CHAPTER 3. THE MEDIAN SUCCESS RULE

Figure 3.6: Convergence rates multiplied by problems dimension at �̂
1/2

(j
�

) versus fitness
comparison quantile (either (j

�

� 1/2)/� or (j
�

� 1)/(� � 1)), for di↵erent values of �
and the problem dimension (noted D) on the sphere function.

also be seen from Figure 3.5 by looking, for example, into the progress for �̂
1/2

(j
�

) with
j
�

= 0.5⇥� (purple dashed lines); this progress seems to be close to zero for all considered
configurations. Similarly, too small values of j

�

(10%-tile or smaller) give too small a
�̂
1/2

(j
�

) to see significant progress. In fact, and for the smallest values of j
�

(again looking
back at Figure 3.5) we see that the corresponding median success probabilities actually
never cross the 0.5 line (e.g., j

�

= 2 in (d = 20,� = 20)); which means that �̂
1/2

(j
�

)
would tend to 0. Since the median success probability is always smaller than 1/2, the
step-size would keep decreasing, eventually leading to a quasi-null progress.

On the other hand, we see the robustness of the Median Success Rule with regards to
the choice of the comparison percentile, as long as it remains within reasonable bounds
(see above for the extreme cases). For the considered configurations, any choice of j

�

between the 20%-tile and 40%-tile results in no worse than half the optimal convergence
rate. The convergence rate graphs become less and less flat as the dimension d increases,
with the optimal comparison percentile decreasing and going to its limit value for d!1
of around the 27%-tile (see (3.59)).

The results on the sphere show a good behavior of the algorithm (convergence rate)
and robustness with regards to the choice of the comparison percentile while also allowing
to define its bounds ([0.2�, 0.4�]).

3.4.2.3 The Ridge Function

The third and final function we consider is the ridge function:

f ridge(x) = [x]
1

+ �

dX

i=2

([x]
i

)2
!

↵/2

, (3.60)

3.4. PARAMETER SETTING 71

Figure 3.7: Median success probabilities for all j
�

= 1, . . . ,� and normalized progress
rates (3.61) versus step-size on the ridge function; see caption of Figure 3.5 for additional
details.

where ↵ determines whether the ridge is sharp (↵ = 1), parabolic (↵ = 2) or has another
shape. We consider the case of ↵ = 4 as it insures a finite optimal step-size (the condition
for this being ↵ > 2 [Arnold and MacLeod, 2008]); � = 1 in this chapter.

The ridge function (3.60) consists of two �-wise (� the step-size) opposite parts: the

quadratic part, �
⇣P

d

i=2

([x]
i

)2
⌘
↵/2

and the linear part, [x]
1

. The first part, similar to a

sphere function treated above, has a finite optimal solution and requires a step-size that
converges to zero. The second part, however, is similar to the linear function and has
no finite optimum. It requires a non zero step-size. A stationary state, when reached
(see [Ait Elhara et al., 2013] and [Arnold and MacLeod, 2008] for details), maintains a
distance to the ridge which is constant in expectation (constant value of the quadratic
part) whilst progress is achieved towards the direction of [x]

1

. This stationary state is
achieved with a constant step-size that the algorithms need to find.

Figure 3.7 is similar to Figure 3.5 with the di↵erences being: (i) first, the objective
function is the ridge function (3.60) instead of the sphere function (3.4). (ii) Second,
the step-size is no longer normalized by the distance to the optimum since such distance

72 CHAPTER 3. THE MEDIAN SUCCESS RULE

can not be finite, so we do not plot using �⇤ on the x-axis but simply against the actual
step-size of the algorithm �. (iii) Finally, the performance measure which is the progress
rate instead of the convergence rate. Since the ridge function has no finite optimum,
algorithms are not expected to converge to any particular finite solution. In addition,
the desired behavior on the ridge function is to be in the stationary state (with the
quadratic term being constant in expectation) and make progress parallel to the ridge
(the first linear term) as expressed in the following equation:

'
t

=
1

t� t
0

([x
t

]
1

� [x
t0]1) , (3.61)

where t
0

is the iteration count when the stationary state is first assumed to be met. In
the experiments of Figure 3.7, we set t

0

(the burn-in time) to half the chosen budget of
t, with t = 4⇥ 104 iterations. In addition, and in order to increase to likelihood of being
in the stationary state at time t

0

, the initial solution of the algorithm x
0

is set close to
the stationary state. Its first coordinate [x

0

]
0

= 0 and its quadratic term k[x
0

]
2...d

k = R,
with R defined in Equation (12) of [Arnold and MacLeod, 2008] and [x]

i...j

, i  j the
vector ([x]

i

, [x]
i+1

, . . . , [x]
j�1

, [x]
j

) that we note so for simplicity and convenience.
The first thing we notice that is strikingly di↵erent from the sphere function (Fig-

ure 3.5) is that the success probabilities are weakly, if at all, dependent on dimension;
and this, for the di↵erent population sizes that are considered. These success probabil-
ities seem to only depend on the population size � with similar success probabilities for
relative indexes (j

�

/�) especially for larger values of j
�

. This can easily be seen by com-
paring the success probabilities of the same highlighted dashed lines (purple and pink for
median and first quartile respectively) or of the same shades of blue/red across di↵erent �
configurations. Smaller comparison indexes seem to attract to lower success probabilities
as � increases and the median success probability graphs are generally steeper around
the crossing point (�, 0.5) with increasing population size. We also notice that as the
step-size increases, the success probability for j

�

= �/2 seems to converge to 1/2 on all
considered dimensions and population sizes, which means that successive medians are,
in average, on the same fitness level-set for large enough values of the step-size. How-
ever, we notice that these step-size values lead to a null progress on the first coordinate
(progress values are depicted in the right y-axis). This suggests that the linear part of
the function plays a major role in defining the relative fitness of a solution within an o↵-
spring. We remind that we saw a similar dimension-independent behavior on the linear
function (3.38) which we brought down to a single variable function (3.39) without loss
of generality. In fact, assuming we are in the stationary state, the function can be seen
as being, ultimately, a two variable function, the first variable represents the linear term
[x]

1

and the second represents the quadratic term k[x]
2...d

k. Progress is only measured in
the first variable while selection and success probability is computed on both. We also
notice that contrarily to the sphere function, we see hardly any divergence, even with
the largest step-size values. In fact, the progress rate plots seem symmetric when taking
the step-size � in a log-scale.

The median success probabilities of our j
�

’s of interest seem to be similar to the ones
observed on the sphere function. We confirm this by looking into the progress rate VS

3.4. PARAMETER SETTING 73

Figure 3.8: Normalized progress rates at �̂
1/2

(j
�

) versus fitness comparison quantile
((j

�

� 1/2)/� or (j
�

� 1)/(� � 1)), for di↵erent values of � and d on the ridge function
(3.60). The half median-success step-size �̂

1/2

(j
�

) is the same as in Figure 3.6 replacing
the sphere function by the ridge function.

j
�

in Figure 3.6.
In Figure 3.8 and similarly to Figure 3.6, the progress corresponding to each �̂

1/2

(j
�

)
is looked into for the di↵erent values of �, d and j

�

that are considered. We are interested
in the values of j

�

that we might consider reasonable in the sens that they result in the
algorithm seeking a step-size that leads to good progress rates.

The clear out-layers in this figure are the results for d = 2 (dark blue), f ridge((x
1

, x
2

)) =
x
1

+x4

2

, as we notice an almost constant progress rate for any choice of j
�

between the 10%-
tile and 90%-tile. For other values of d, we see a behavior similar to what was observed
on the sphere function with no progress when j

�

is larger than the index of the median or
smaller that 0.10�. The optimal values of j

�

are clearly within the [0.20�, 0.40�] interval.
However, the graphs seem much flatter than on the sphere (but still un-flattening as
dimension increases). This means the algorithm is less sensitive to the choice of j

�

with
less relative progress-loss when deviating from the optimal choice.

3.4.2.4 Comparison Index Formula

We saw that, for the three functions that were considered, the choice of the comparison
percentile is not highly critical; an acceptable behavior is observed for a wide enough
interval.

Putting aside the µ = 1 case, setting the lower bound of the comparison percentile
to the 20%-tile seems a reasonable choice. As we have seen, the optimal j

�

is generally
negatively correlated with the search-space dimension. This can be seen by comparing
the optimal values of j

�

in Figure 3.6 for increasing dimensions. Also, the linearity in
� is well established for several weighting scheme and number of parent choices; see for
example Figure 3.4.

Figure 3.9 investigate further dependencies of the optimal j
�

, or equivalently the opti-

74 CHAPTER 3. THE MEDIAN SUCCESS RULE

Figure 3.9: Optimal comparison quantile evolution with problem dimension and popu-
lation size. This index is set to the value whose corresponding target step-size (�̂

1/2

(j
�

))
maximizes the performance measure on the given function (convergence rate (3.5) on
the sphere function and progress rate (3.61) on the ridge function). Left: Asymptotic
sphere function. Two weighting schemes are considered, ”•”s for optimal weights (3.13)
and ”⇧”s for intermediate weights. Di↵erent values of µ are considered in order to obtain
the di↵erent values of µ

e↵

/�. For example, in the intermediate case, µ
e↵

/� = µ/� since
µ
e↵

= µ (its maximal value). The optimal comparison index is plotted against µ
e↵

/�.
Middle and Right: Finite dimension (the dimension is noted n in these plots) sphere
(middle) and ridge (right) functions. Optimal weights with µ = b�/2c. The plots show
the scaling with dimension of the comparison quantile. The dashed horizontal line shows
the limit on the asymptotic sphere function estimated using (3.59).

mal comparison quantile (j
�

�1/2)/� on the problem dimension (middle and right plots)
and on the weighting scheme, and more specifically on the variance e↵ective selection
mass µ

e↵

(left plot).

The leftmost plot shows a positive linear correlation with µ
e↵

/� of the optimal choice
of j

�

with values approaching 0.5 as µ
e↵

/� increases. The smaller values of µ
e↵

/� are
obtained when µ is relatively small and the intermediate weights (w

i

= 1/µ, 8i) produce
the largest possible µ

e↵

= µ (values for optimal weights stop at around µ
e↵

/� = 0.7
while they reach 0.9 for intermediate weights). We see in the other two plots that the
correlation with the dimension is negative, and we have already seen that the limit,
when the dimension goes to infinity, of the optimal comparison index percentile is larger
than one (see for example Figure 3.3 and (3.59)) on the sphere function. We see a
similar behavior on the ridge function (rightmost plot) with the stationary values being
reached relatively earlier. We also note that the actual values of the comparison percentile
are similar on the two functions. This suggests a scaling which is roughly inversely
proportional to the dimension.

Taking all this into consideration we set the value of j
�

that will be used to benchmark
the algorithm (Section 3.5), as follows:

j
�

= (1 + µ
e↵

/�+ 1/d)⇥ 20%-tile . (3.62)

The formula in (3.62) allows to have the value of j
�

well within the interval [20%, 40%]-tile
that was emphasized in Figure 3.6 and Figure 3.8 since we suppose d � 2 and µ  �.

3.4. PARAMETER SETTING 75

Figure 3.10: Average number of function evaluations (y-axis) of the MSR-ES (no covari-
ance matrix adaptation) algorithm to reach a target value of 10�8 on the sphere function
for di↵erent values of the damping parameter d

�

(x-axis, see Algorithm 1), dimension
(noted n) and population size. The number of parents µ is set to b�/2c and optimal
weights are used (3.13). The initial step-size is �

0

= 2 and the starting point e
1

with
an optimum at 0

n

. The data for values of d
�

that do not produce 100% success are not
plotted. The maximal number of function evaluations is 104 ⇥ n and each data point is
the average of 3 + b200/nc runs.

3.4.3 Damping parameter

The last remaining parameter to tune for the Median Success Rule (Algorithm 1) is the
damping parameter d

�

. This parameter allows to limit the amount of change on the
step-size over a single iteration and intervenes in (3.28) by dividing the step-size update
coe�cient s

t+1

. Since at any time-step t, 0  s
t

 1, the ratio between successive
step-sizes satisfies: �

t+1

/�
t

2 [exp(1/d
�

)�1, exp(1/d
�

)].
In Figure 3.10, the average number of function evaluations needed to reach a target

value of 10�8 of MSR-ES is plotted against di↵erent values of the damping parameter
for di↵erent values of the population size and the problem dimension (see caption for
details).

We see non-symmetric (in a log-scaled d
�

) uni-modal graphs. The optimal damping
values, that is values with the lowest average number of function evaluations, seem to
depend monotonously on the problem dimension. Larger dimensions require a larger
damping value. On the other hand, the population size dictates the flatness of the graph,
with smaller values resulting in flatter graphs.

Similarly to the reasoning used in [Brockho↵ et al., 2010], we want to have damping
values that are far enough from the unstable region (region where divergence is observed).
Decreasing the damping quickly results in diverging behavior of the algorithm which can
be seen from the lack of data points plotted (any value of the damping that results in at
least one failure is omitted in the plot). Conversely, larger than optimal damping values
see decreasing performance (larger numbers of function evaluations) but the algorithm

76 CHAPTER 3. THE MEDIAN SUCCESS RULE

still manages to converge to the optimal solution. This behavior of the damping is similar
and highly tied to that of the step-size on the sphere function. While smaller step-sizes
result in slower convergence rates that tend to 0 as the step-size tends to 0, larger ones
quickly lead to a diverging behavior. This can be seen in the convergence rate graphs in
Figure 3.5.

We set the default value of the damping as follows:

d
�

= 2� 2/d . (3.63)

In (3.63), the value of the damping does increase with dimension but remains upper
bounded by 2. Thus, on a single iteration, the largest step-size (increase) factor isp
e ' 1.649 while the smallest (decrease) factor is 1/

p
e '= 0.606 where e designates

the base of the natural logarithm.

3.5 Benchmarking

In this section, we benchmark the MSR-CMA-ES algorithm on the COCO noiseless test-
bed [Hansen et al., 2009] (see Tables 5.1, 5.2, 5.3 and 5.4 without the normalization term
�(d) for the definitions of the functions and Section 2.3.1 for a brief description of the
problem classes). We call MSR-CMA-ES the evolution strategy we obtain when using
the Median Success Rule described in Algorithm 1 to adapt the step-size instead of the
Cumulative Step-size Adaptation (CSA) in the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES, see Section 2.1.4.1) [Hansen and Ostermeier, 2001]. Similarly, CSA-
CMA-ES will denote the original CMA-ES algorithm with CSA. Note that MSR-CMA-ES
was also later benchmarked against CSA-CMA-ES and TPA-CMA-ES in [Atamna, 2015].

3.5.1 Parameter Configuration

The damping parameter of MSR-CMA-ES was set to d
�

= 2; CSA-CMA-ES uses its
default damping value

d
�

= 1 + 2max

0,

r
µ
e↵

� 1

d� 1
� 1

!
+

p
µ
e↵

2
⇣p

d+
p
µ
e↵

⌘ . (3.64)

The value of d
�

in (3.64) is generally close to 1.
The initial step-size on both algorithms was set to �

0

= 2. This is about a 1/4th of
the width of the region of interest since the optimal solutions of the problems in COCO
are in [�4, 4]d. A smaller value of the initial step-size (�

0

= 0.5) was tested for both
algorithms and resulted in an overall worse performance. The algorithms were allowed
up to 7 restarts (within the allocated budget) with a doubling population size upon each
restart (similar to [Auger and Hansen, 2005b]).

The comparison index of MSR is chosen following (3.62). The population size �, the
number of parents µ and the weights are chosen the same as in Table 4.3. The rest of the
parameters are taken with their default values that can be found in the CMA-ES Python
implementation CMA-ES (https://pypi.python.org/pypi/cma).

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://pypi.python.org/pypi/cma
https://pypi.python.org/pypi/cma

3.5. BENCHMARKING 77

3.5.2 Result Discussion

Figure 3.11 compares the scaling of the two algorithms, CSA-CMA-ES in blue and MSR-
CMA-ES in red, with the problem dimension on each of the 24 objective functions of
COCO.

The artificial best algorithm (brown lines in Figure 3.11) is an aggregation of the best
results observed on each function, for each dimension and on each target value in the
BBOB-2009-2009 workshop [Hansen et al., 2010b]. It amounts to a portfolio algorithm
(an algorithm which solves a problem by choosing one of the algorithms that compose
it) that uses all the algorithms proposed in the aforementioned workshop, and on each
(function,dimension,target value) triplets, chooses the best algorithm to solve it.

Statistically significant di↵erences of performance are signaled by a black star in the
marker of the better-performing algorithm; e.g., CSA-CMA-ES is significantly better
than MSR-CMA-ES on the sphere function with dimension 2 (Figure 3.11).

We first see an overall similar performance of the two algorithms. On several functions
(f

4

, f
5

, f
7

, f
15

, f
18

, f
21

, f
22

), we see no significantly di↵erent performance from one of the
algorithms on any dimension. On others (f

8

, f
12

, f
17

), the significant di↵erences are only
observed on the largest dimension, d = 40. However, a number of notable statistically
significant di↵erences in performance are observed.

On the Sphere (f
1

) Discus (f
11

) and Sharp Ridge (f
13

) functions, CSA-CMA-ES has a
better performance on smaller dimensions but MSR-CMA-ES seems to scale better, out-
performing CSA-CMA-ES on the larger dimensions. MSR-CMA-ES shows what seems
to be a sub-linear scaling in d on the sphere function. The di↵erence in performance is,
however, relatively small despite it being significantly di↵erent.

As expected, both algorithms perform in a similar fashion on the rotated (f
10

) and
axes-aligned non-rotated (f

2

) ellipsoid functions thanks to the covariance matrix adap-
tation. Some statistically significant ERT values are observed but the factor is at most
1.5. A similar behavior is seen on the Rosenbrock functions (f

8

and f
9

). However, the
plots suggest that the covariance matrix adaptation does not have the same e↵ect on the
non convex-quadratic Rastrigin functions (f

3

, f
15

). The two methods perform similarly
on the rotated version (f

15

) while MSR-CMA-ES has a clearly better performance for
d � 10 on the non-rotated version f

3

. This function being highly multi-modal (around
10d local optima [Hansen et al., 2009]), it requires a number of restarts to be solved by
CMA-ES and its variants. MSR-CMA-ES seems to allow more restarts, with the increas-
ing population size allowing the algorithm more chances of finding a solution within the
target value. We also see a fairly similar performance of the two algorithms on functions
f
12

and f
17

with CSA-CMA-ES doing better mainly on dimension 40, but with a speedup
which is still small.

On f
16

, f
19

and f
20

, CSA-CMA-ES performs significantly better, with a scaling of the
ERT in the problem dimension clearly lower than that of MSR-CMA-ES. On the other
hand, on the attractive sector (f

6

), MSR-CMA-ES performs similarly to CSA-CMA-ES
on dimensions up to 5, then scales much higher in the dimension as the latter becomes
larger. In f

6

, the volume of the subspace with better fitness values decreases exponentially
in the dimension; which a↵ects the performance of success-based strategies. The Sum of

https://github.com/numbbo/coco

78 CHAPTER 3. THE MEDIAN SUCCESS RULE

2 3 5 10 20 40

0

1

2

3

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

1 SShere

CSA-C0A-ES

0S5-C0A-ES

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

2 Ellipsoid sepDrDEle

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

3 5Dstrigin sepDrDble

2 3 5 10 20 40
0

1

2

3

4

5

6

7

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

4 6kew 5Dstrigin-Bueche seSDr

2 3 5 10 20 40

0

1

2

15, 15 LnstDnces

tDrget Df: 1e-8 0.0.0

5 LLneDr slope

2 3 5 10 20 40
0

1

2

3

4

5

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

6 AttrDctive sector

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

7 SteS-elliSsoid

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

8 5RsenbrRck RriginDl

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

9 5RsenbrRck rRtDted

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

11 Discus

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

12 Bent cigDr

2 3 5 10 20 40
0

1

2

3

4

5

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

13 ShDrS ridge

2 3 5 10 20 40
0

1

2

3

4

15, 15 instDnces

tDrget Df: 1e-8 0.0.0

14 Sum of different Sowers

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

15 5Dstrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 insWDnces
WDrgeW Df: 1e-8 0.0.0

16 :eiersWrDss

2 3 5 10 20 40
0

1

2

3

4

5

15, 15 instDnFes
tDrget Df: 1e-8 0.0.0

17 SFhDffer F7, Fondition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 instDnFes
tDrget Df: 1e-8 0.0.0

18 6FhDffer F7, Fondition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

15, 15 instDnFes
tDrget Df: 1e-8 0.0.0

19 GriewDnk-5RsenbrRFk F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

20 6chwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

21 GDllDgher 101 peDks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

22 GDllDgher 21 peDks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

15, 15 instDnces
tDrget Df: 1e-8 0.0.0

23 .DtsuurDs

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

15, 15 LnstDnces
tDrget Df: 1e-8 0.0.0

24 LunDcek EL-5DstrLgLn

C6A-C0A-E6

065-C0A-E6

Figure 3.11: Expected running time divided by dimension versus dimension of CSA-
CMA-ES and MSR-CMA-ES on the 24 functions of the COCO noiseless test-bed [Hansen
et al., 2009]. Shown are the scaling figures obtained using the post-processing tools of
COCO (https://github.com/numbbo/coco). The x-axes show the problem dimensions,
while the y-axes show the corresponding Expected Running Time ERT of each algorithm.
The brown solid lines show the performances of the artificial best algorithm. Thin ”�”’s
and ”5”’s indicate maximal numbers of function evaluations conducted by the respective
algorithms while the thicker ones are for the actual ERTs. Horizontal dashed lines depict
a linear scaling while slanted ones are for quadratic scaling.

https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco

3.6. CONCLUSION 79

Di↵erent Powers function (f
14

) is similar to the Ellipsoid without being convex-quadratic.
On this function, the performance of CSA-CMA-ES and MSR-CMA-ES is similar, with
no algorithm dominating the other and fairly close ERT values.

Finally, on the other highly multi-modal (more than 10d local optima) functions f
23

and f
24

, MSR-CMA-ES seems to give a dominating performance in comparison to CSA-
CMA-ES. On f

23

, MSR-CMA-ES scales better in d and manages to improve on the best
BBOB-2009 performance on dimensions 5 and 10. The ratio between the ERTs of the two
algorithms increases with the dimension, reaching a value larger than 10 on dimension
20. On the other hand, f

24

seems to be an overall harder problem with the best BBOB-
2009 algorithm managing to reach the final target value with high ERTs on dimensions
larger than 3. Both methods see a number of failed runs (the plotted ERTs are above the
budget used) but MSR-CMA-ES seems to manage some successful runs on dimensions
up to 10 with what seem to be statistically meaningful results on dimensions 3 and 10.
Note that the budget used in these experiments was lower than that needed in the best
BBOB-2009 for d � 3.

To sum up, we see that MSR-CMA-ES performs well overall in comparison to CSA-
CMA-ES. CSA-CMA-ES uses directly the covariance matrix adapted by CMA-ES in
assuming an isotropic search space which MSR-CMA-ES does not. The generally smaller
step-sizes and faster decrease of the step-size allows MSR-CMA-ES to reach stagnation
points and restart quicker than CSA-CMA-ES. This leads to a better performance on
some multi-modal functions, especially with the increasing population size.

Overall, MSR-CMA-ES seems a viable option as a step-size adaptation mechanism,
showing reasonable performance on a wide range of functions and having no clear dys-
functionalities when coupled with the covariance matrix adaptation evolution strategy.
As we will see in Chapter 4, by not assuming a particular shape of the search space or
a fully adapted covariance matrix, and having less dependence on the assumed problem
dimension d, the Median Success Rule solves some of the shortcomings of CSA on certain
classes of problems, in addition to scaling better and thus being more appropriate for
large-scale use.

3.6 Conclusion

In this chapter, we introduced a new success-based step-size adaptation mechanism for
evolution strategies. At an iteration t, the Median Success Rule relies on comparing the
o↵spring generate at this iteration to the jth

�

best individual of the previous iteration
(t � 1). The step-size is then adapted depending on the number of successes resulting
from this comparison, where the success of an individual is defined as it having a better
fitness than that of the jth

�

best individual at t� 1. The case of non-integer j
�

is handled
using a weighted aggregation over the closest integer indexes. The success or not of the
median at t determines whether the step-size will be increased (success) or decreased
(failure), thus the name Median Success Rule. This correlation between median success
and step-size change is obtained by having a target success rate of 1/2 and computing
the success rate as the proportion of successful o↵spring at t.

80 CHAPTER 3. THE MEDIAN SUCCESS RULE

Theoretical derivations and empirical simulations allowed to establish the optimal and
acceptable values of the main parameter of this strategy, namely the comparison index
j
�

, on three functions that require di↵erent step-size adaptation regimes to be solved
e�ciently: (i) the linear function requires an ever increasing step-size, (ii) the sphere
function a decreasing one proportionally to the distance of the mean solution to the
optimum and finally (iii) the ridge function that requires the algorithm, once a stationary
state is reached, to keep a constant steps-size. Interestingly, even though the optimal
comparison index di↵ers from one function to another, a wide range of values resulted
in the algorithm not loosing too much of its e�ciency in comparison to the optimal
case (see Figure 3.6 and Figure 3.8 for example). In addition, these good performance
intervals are similar across the functions. This allowed the establishment of a formula
of the comparison percentile (comparison index normalized by the population size) that
depend on the problem dimension and the weighting scheme used for the recombination
(3.62). We also tuned the other parameters of the strategy in order to have, in the end,
a fully functional step-size adaptation mechanism.

We, then, used MSR as the step-size adaptation mechanism of a (µ/µ
w

,�)-CMA-ES
and compared the performance of the resulting algorithm, MSR-CMA-ES, to that of the
default Cumulative Step-size Adaptation based CMA-ES (that we note CSA-CMA-ES
to di↵erentiate) on the noiseless COCO test-bed. MSR-CMA-ES showed comparatively
good performance and only fell short on performance on a few functions. It also performed
better than CSA-CMA-ES on some functions mainly because of its quicker step-size
decrease and thus quicker restart on multi-modal functions.

After establishing the feasibility of MSR we see that it is a viable replacement for
CSA that, in addition, comes with less restrictions. In fact, it does not directly rely on
a particular class of sample distributions so it can, a priori, be used on any population
based algorithm without necessarily normal distributed o↵spring (for example, in a re-
sampling constraint handling algorithm). In addition, contrarily to CSA, it does not need
an isotropic search space to operate on, which is practical especially when facing large
scale problems and expensive problems on which algorithms can generally not a↵ord
to learn full-models but only approximated ones. We will also see in Chapter 4 that
MSR performs significantly better than CSA on certain classes of functions (low e↵ective
dimension functions and low epsilon-e↵ective dimension functions) thanks to it having no
assumptions on the e↵ective dimension of a problem, that is on the number of dimensions
that actually contribute (significantly) in defining the fitness.

However, MSR being a success-based rule, it requires a negative correlation between
the success measure and the desired direction of change of the step-size (whether one
wants to increase or decrease the step-size). In addition, the chosen comparison index
needs to have limit success probabilities, for � ! 0 and � ! 1 respectively larger
and smaller than 1/2 since otherwise, the method will endlessly increase or decrease the
step-size.

Finally, we note that MSR preserves all the invariance properties originally present
in the Covariance Matrix Adaptation mechanism of CMA-ES. This includes invariance
to monotonic transformations of the fitness function (since its a rank-based mechanism)

https://github.com/numbbo/coco

3.6. CONCLUSION 81

and invariance to a�ne transformations of the search-space. In addition, it does not
require any additional cost in function evaluations and its internal computational cost
per iteration only depends linearly on the population size (no direct dependence on the
problem dimension).

82 CHAPTER 3. THE MEDIAN SUCCESS RULE

Chapter 4

E↵ective and "-E↵ective Dimensions

This chapter deals with a particular class of problems that are often encountered in
large-scale optimization: low e↵ective dimension problems. These problems have a large
number of parameters but can be solved e�ciently by considering an appropriate sub-
space of lower dimension. In fact, a relatively small number of dimensions (not necessarily
aligned with the coordinate system) define the whole fitness of each solution; this number
of dimensions is what we call the e↵ective dimension of the problem. We also propose a
natural generalization to the notion of low e↵ective dimension by allowing a small propor-
tion of the fitness, determined by a multiplier ", to come from all the variables. We call
this generalized notion the epsilon-e↵ective dimension, and thus we consider low epsilon-
e↵ective dimension problems. In addition, we construct low e↵ective dimension and low
epsilon-e↵ective dimension problems from functions that are commonly used to test con-
tinuous optimization algorithms and benchmark large-scale optimization algorithms on
them.

4.1 Introduction

One interesting question when dealing with large-scale problems is the form in which
these problems appear in real-world scenarios. Answering this question would help us
design realistic benchmarks to model these problems.

One kind of large scale problems that are encountered in the literature is that of prob-
lems having an e↵ective dimension d

e↵

smaller than that of their domains of definition
d. This means that optimizing the problems in a smaller, generally linear, subspace of
its original search space might su�ce to find satisfactory solutions. This property was
observed in the domain of integral estimation [Moskowitz and Caflisch, 1996, Wang and
Fang, 2003, Wang and Sloan, 2005] [Hutter, 2009, Bergstra and Bengio, 2012, Berthier
and Teytaud, 2015]. Low e↵ective dimensionality and similar properties can be encoun-
tered in a number of other domains. In Genetic Programming, this property is called
bloat and consists in parts of a program being unused (and variables related to these parts
having no impact on fitness) [Banzhaf and Langdon, 2002, Luke and Panait, 2006, Silva
and Costa, 2004, Ekárt and Németh, 2002, De Jong et al., 2001, Bleuler et al., 2001].

83

84 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

Bloat is even shown to be useful and removing it can hinder the performance [Langdon
and Poli, 1998, Soule, 2002]. We also find similar notions in reinforcement learning [Sut-
ton, 1996, Ratitch and Precup, 2004, Kearns et al., 2002], evolution of trees [Zhang et al.,
1997], Nash equilibria [St-Pierre et al., 2011] and SVM’s [Girosi, 1998].

However, it remains a topic which is relatively under-studied and under-represented
in the context of continuous optimization, especially in black-box settings. There are
a number of problems that exhibit this low e↵ective dimensionality. For example, auto-
matic configuration of the hyper parameters of state-of-the-art algorithms for solving SAT
(Boolean Satisfiability) problems and Mixed Integer Programs [Hutter, 2009] showed the
presence of a number of inconsequential parameters, especially when the parameter con-
figuration space is high-dimensional. In [Bergstra and Bengio, 2012], it was shown that
hyper-parameter optimization for neural networks and deep belief networks is, on most
data sets, a low e↵ective dimension problem. However, which dimensions are e↵ective
may vary from one data set to the other. The paper also shows a superior performance,
on the hyper-parameter optimization problem, of random search over grid search because
of this low e↵ective dimensionality. [Berthier and Teytaud, 2015] studies the robustness
of comparison-based algorithms when dealing with low e↵ective dimension (called codi-
mension in the paper) problems. The low e↵ective dimension problems used in this paper
are obtained by adding useless variables to problems from the BBOB-2009 test suite.

And yet, in addition to the theoretical interest that the study of this class of problems
in a continuous black-box setting and design of appropriate algorithms o↵er, such a study
will open a number of possibilities for broader real-world applications. In fact, algorithms
designed for low e↵ective dimensionality might turn out to be a good alternative to
the classical (classical in the sense that full e↵ective dimensionality is assumed) large-
scale optimization algorithms in a number of scenarios. For example, this can be the
case when the dimension of the problem is exceedingly large and sub-space optimization
seems inevitable. Another scenario is when the quality of a solution is highly tied to
the time needed to find it (optimality is, then, not a predominant criterion). In such a
case, exploring the most e↵ective subspaces (ones where the fitness varies the most) is
a good approach to allow a rapid improvement over the initial solution. One can, for
example, sample a number of directions with a given step-size and construct a sub-space
of those directions where the fitness varies the most. The embedding approach to solving
low e↵ective dimension problems, allows, as it was the case in [Wang et al., 2013] with
Bayesian Optimization and is the case in this chapter with CMA-ES, to take advantage
of highly e�cient algorithms that are otherwise unsuited for large-scale optimization (due
to their complexity or to the poor scaling of their performance with the dimension of the
search-space in which they operate).

Our intuition is that many large-scale problems could actually be of low e↵ective
dimensionality. This can, for example, be due to an over-parametrization in the modelling
of a problem. It is then important to construct low e↵ective dimension benchmarks for
large-scale optimization in order to assess large-scale optimization algorithms on this
particular class of problems. Chapter 5 will deal with the design of a benchmarking
test suite for large-scale continuous optimization. However, it will solely, in its current

4.2. FUNCTION-CLASS DEFINITION 85

version, rely on full e↵ective dimension problems. The proposed test suite extends on a
pre-existing benchmark designed for smaller dimensions while trying to preserve as much
of the properties of this benchmark (including full e↵ective dimensionality) as possible.
The introduction of low ("-)e↵ective dimension suites or problem classes is left for future
work.

A natural generalization of low e↵ective dimension functions is functions where not
all, but a large portion of the fitness is determined by a few variables/linear combinations
of variables. One main contribution of this chapter is to formally define such a class of
problems with what we call low epsilon-e↵ective dimension. In addition, we propose a
rigorous way of building low epsilon-e↵ective dimension test functions from functions that
are widely used in continuous black-box optimization, extending from the construction
method we use for low e↵ective dimension problems.

A low e↵ective dimension problems can be solved by optimizing in the subspace (of
dimension d

e↵

) in which the fitness is determined that we will refer to as the e↵ective
subspace. However, being in a black-box scenario, this e↵ective subspace and even its
dimension/size are a priori unknown to the algorithm. The latter has only access to
the overall search space in Rd. Ideally, an algorithm would embed the search space into
an optimization sub-space (of dimension d

ss

) that coincides with the e↵ective sub-space
(d

ss

= d
e↵

), thus reducing its complexity by searching instead of the whole search-space,
in a sub-space of reduced dimension d

e↵

= d
ss

< d. This approach of embedding into
a lower-dimensioned sub-space was already proposed and implemented in the Random
EMbedding Bayesian Optimization (REMBO) algorithm [Wang et al., 2013].

The embedding based approach allows to tackle large-scale problems as long as their
e↵ective dimension is low. In fact, the complexity of the algorithm is defined in terms of
the dimension of the optimization sub-space, d

ss

, instead of the dimension of the whole
search space d. The optimization sub-space dimension needs to be at least as large as
the e↵ective dimension in order to insure full exploration of the fitness space.

As previously mentioned, once the embedded space defined, one can use well estab-
lished low to medium dimension optimization algorithms, such as CMA-ES (see Sec-
tion 2.1.4), to optimize in this low dimensional sub-space.

In Section 4.2, we define the notions of low e↵ective dimension and low epsilon-
e↵ective dimension. We also prove two results allowing to rigorously construct low
e↵ective and low epsilon-e↵ective dimension problems. In Section 4.3, the embedding
based CMA-ES variant (SS-CMA-ES) is introduced in two versions, RSS-CMA-ES and
OSS-CMA-ES and the di↵erence between the two is investigated. We empirically com-
pare the performance of SS-CMA-ES to LM-CMA-ES, VD-CMA-ES and CMA-ES for
which di↵erent step-size adaptation mechanisms are considered on low e↵ective and low
epsilon-e↵ective dimension problems in Section 4.4. We conclude in Section 4.5.

4.2 Function-Class Definition

Definition 1 (E↵ective Dimension, [Wang et al., 2013]). A function fLow, fLow : Rd ! R
has e↵ective dimension d

e↵

when there exists a linear subspace T ✓ Rd of dimension d
e↵

86 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

such that for any x> 2 T and for any x? 2 T ?, where T ? is the orthogonal complement
of T , we have: fLow(x) = fLow(x> + x?) = fLow(x>).

In Definition 1, the e↵ective dimension does not need to be defined by a subset of
the variables of the problem, but only by a linear subspace of the search-space. The case
where a few variables define the fitness is a special case where the basis of the subspace
is canonical.

Let f : Rde↵ ! R be a function, and let us construct fLow, a function defined on
Rd ! R with an e↵ective dimension d

e↵

 d. One straightforward way of doing this
construction is to define the function fLow as a call to the function f on variables z 2 Rde↵

that will be defined for each solution x in the domain of definition of fLow:

fLow(x) = f (z) , (4.1)

where z = BTx and B 2 Rd⇥de↵ is a full-rank matrix that allows to map points from Rd

to a subspace of dimension d
e↵

spanned by its columns.
We introduce, in Lemma 2, a way of constructing low e↵ective dimension functions

from convex-quadratic ones without changing the eigenvalues of the convex-quadratic
function’s Hessian matrix 1:

“

Lemma 2. Let f : z 2 Rde↵ 7! zTHz, be a convex-quadratic function2 with H 2 Rde↵⇥de↵

its symmetric positive-definite Hessian matrix. Let B 2 Rd⇥de↵ be a full column-rank
matrix whose column vectors are orthonormal (orthogonal with vectors normalized to 1).
The Hessian matrix of the low e↵ective dimension function

fLow : x 2 Rd 7! f (BTx) 2 R (4.2)

constructed from f using B (similarly to (4.1)) has the same non-zero eigenvalues as H.

Proof. We investigate the eigenvalues of BHBT . Let �
1

,�
2

, . . . ,�
de↵

be the ordered
eigenvalues of H. Since H is positive semi-definite, there exists an orthogonal matrix
P 2 Rde↵⇥de↵ and a diagonal matrix ⇤ 2 Rde↵⇥de↵ such that H = P⇤PT . Let p

i

be the
ith column vector of P that is an eigenvector of H associated to the eigenvalue �

i

. Let us
define u

i

= Bp
i

. Then, and because BTB = I
de↵

(the identity matrix in dimension d
e↵

),
we have BTu

i

= p
i

. Thus

BHBTu
i

= BP⇤PTBTu
i

= BP⇤PTp
i

= BP⇤e
i

= �
i

BPe
i

= �
i

Bp
i

= �
i

u
i

, (4.3)

where e
i

the ith canonical-base vector in Rde↵ . Then, u
i

is an eigenvector of BHBT

with eigenvalue �
i

and we have thus proven that H and BHBT have similar non-zero
eigenvalues. ”

1This Lemma and its proof are taken from a draft-version of a paper co-authored with Anne Auger
and Nikolaus Hansen

2We assume WLOG that the optimum is in zero.

4.2. FUNCTION-CLASS DEFINITION 87

Another definition of e↵ective dimension can be found in the literature (e.g., [Caflisch
et al., 1997, Owen, 2002, Surkov, 2004, Tezuka, 2005, Wang and Sloan, 2005, Asotsky
et al., 2006]) where, in Definition 1, the fitness of x> needs only to be approximately
that of x> + x? not equal to it. Instead, in this chapter, we generalize the notion from
Definition 1 to that of epsilon-e↵ective dimension which will be, in some point, similar
to this relaxed definition.

We remind that the oscillation !
f

(S) of a function f on a set S is defined as:

!
f

(S) = sup
x2S

(f(x))� inf
x2S

(f(x)) . (4.4)

Let us note Ball
d

(x, �) the closed ball of radius � centered on x 2 Rd (in dimension d).

Definition 2 (Epsilon-E↵ective Dimension). A function f "L : Rd ! R has epsilon-
e↵ective dimension d

e↵

when there exist: (i) a d
e↵

-e↵ective dimensional function fLow :
Rd ! R, (ii) a function g : Rd ! R and (iii) a constant " � 0 such that for any x 2 Rd:

f "L(x) = fLow(x) + "⇥ g(x) , (4.5)

and for any (x⇤, �) 2 Rd ⇥ R⇤ (R⇤ the set of real numbers excluding zero) with x
opt

2
Ball

d

(x⇤, �):

!
g

(Ball
d

(x⇤, �))  !
f

Low(Ball
d

(x⇤, �)) , (4.6)

where x
opt

= argmin f "L(x).

In (4.6), we insure that on any ball that contains the optimum, the oscillation in the
non-e↵ective part of the function f "L (represented by "⇥ g in (4.5)) is upper bounded by
the oscillation in the e↵ective part (represented by fLow). Thus, when " < 1, the fitness
varies more, on this ball, because of fLow than because of g.

As previously mentioned when " = 0, Definition 2 coincides with Definition 1 so the
function becomes a low e↵ective dimension function. since said function can be written
as (4.5) with " = 0 (g can be replaced by any function, a constant function for example
and then (4.6) remains satisfied).

In a similar fashion to Lemma 2, the following proposition3 provides a way of con-
structing low epsilon-e↵ective dimension functions from a low-e↵ective dimension func-
tion.

“

Proposition 1. Let g be a normalized sphere function in dimension d:

g : x 2 Rd 7! 1

d

dX

i=1

x2

i

, (4.7)

3This Proposition and its proof are also taken from the draft-version of the paper co-authored with
Anne Auger and Nikolaus Hansen

88 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

and fLow : x 2 Rd 7! fLow(x) = f(BTx) be a d
e↵

-e↵ective dimension function with
f : x 2 Rde↵ 7! 1

de↵
xTHx a convex-quadratic function normalized by d

e↵

. Let B 2 Rd⇥de↵

be a full column-rank matrix whose column vectors are orthonormal. The function

f "L :Rd ! R,

x 7! fLow(x) + "⇥ g(x) ,
(4.8)

has epsilon-e↵ective dimension d
e↵

if and only if �
max

(H) � 4de↵

d

, where �
max

(H) is the
largest eigenvalue of H.

Proof. Since in Definition 2, the oscillation is investigated on a ball that contains the
minimum, the infimum of our functions on the ball is zero (value at the minimum) such
that the oscillation equals to the supremum of f on the ball. We have to control the
oscillation of g given that of fLow(x) = 1

de↵
xTBHBTx. We can assume without loss

of generality that BHBT is diagonal (because we can consider the coordinate system
where the matrix BHBT is diagonal otherwise using the isotropy of the sphere function
and of the oscillation conditions on balls for the euclidean norm). Let us consider the
worst case scenario for (4.6), that is find x⇤ that realizes the smallest oscillation in fLow

and the largest oscillation in g. This worst case scenario is achieved when x⇤ has zero

coordinates in the e↵ective space and maximal (within the ball [Ball(x⇤, �)) coordinates
in the non-e↵ective space as this maximizes the oscillation in g and minimizes it in fLow.
Then

!
g

([Ball(x⇤, �)) =
4�2

d
, (4.9)

as x⇤ is at distance � from the optimum x
opt

while the supremum is 2� away from the
optimum (x⇤ is the symmetry point between x

opt

and the supremum). Since fLow(x) =
1

de↵

P
i

�
i

x2

i

where �
i

are the eigenvalues of H by assuming, without loss of generality,
that the first d

e↵

coordinates correspond to the e↵ective coordinates, otherwise the writing
of fLow as a sum is more cumbersome (this can be obtained by a permutation which is,
itself, an orthogonal transformation that preserves eigenvalues). We have

!
f

Low([Ball(x⇤, �)) = �
max

(H)�2/d
e↵

, (4.10)

where �
max

(H) is the largest eigenvalue of H. Since the e↵ective coordinates are zero,

the supremum of fLow on [Ball(x⇤, �) is obtained when the coordinate with the largest

eigenvalue is maximized, which on [Ball(x⇤, �) makes it equal �. Hence (4.6) is satisfied
if and only if �

max

(H) �

2

de↵
� 4�

2

d

, that is �
max

(H) � 4de↵

d

.

”
We use this proposition in Section 4.4.1 to construct epsilon-low e↵ective dimension

functions.

4.3. SS-CMA-ES 89

4.3 SS-CMA-ES

We now propose the Sub-Space Covariance Matrix Adaptation Evolution Strategy (SS-
CMA-ES) that relies on an approach similar to [Wang et al., 2013] to solve low e↵ective
dimension and low epsilon-e↵ective dimension problems by taking advantage of the low
e↵ective dimension property. SS-CMA-ES relies on the following theorem from [Wang
et al., 2013]:

Theorem 1. Given a function fLow : Rd ! R with e↵ective dimension d
e↵

and a matrix
A 2 Rd⇥dss whose entries are independent standard-normally distributed, with d

ss

� d
e↵

;
we have with probability 1:

8x 2 Rd, 9y 2 Rdss : fLow(x) = fLow(Ay) . (4.11)

We call d
ss

the optimization-subspace dimension while d
e↵

and d are, respectively, the
e↵ective dimension and the problem/global dimension.

Theorem 1 ensures that for low e↵ective dimension functions, an optimal solution x
opt

can be found by performing the search in the subspace spanned by the column vectors
of the matrix A as there exists z

opt

2 Rdss satisfying f (x
opt

) = f (Az
opt

) , with x
opt

the
optimal solution of fLow.

We expect embedding based approaches to still remain e↵ective when the definition
of a low e↵ective dimension problem is relaxed and extended to allow for a relatively
small change in the fitness to come from the non e↵ective dimensions as in (4.5) when
" > 0, namely the low epsilon-e↵ective dimension problems (Definition 2).

The simple idea behind SS-CMA-ES is to use CMA-ES [Hansen and Ostermeier,
2001] (see Section 2.1.4) to search in the embedded subspace spanned by the columns
of A. CMA-ES replaces the Bayesian Optimization algorithm used in REMBO [Wang
et al., 2013] and has the advantage of not requiring the search-space to be bounded. It is
also a well developed algorithm with state of the art performance on several continuous
optimization benchmarks (see for example [Hansen et al., 2010b]).

4.3.1 RSS-CMA-ES and OSS-CMA-ES

We consider two variants of SS-CMA-ES depending on the nature of its embedding
matrix. In the first variant RSS-CMA-ES, for Random matrix Sub-Space Covariance
Matrix Adaptation, the matrix A 2 Rd⇥dss , has its entries independently distributed
following a normal distribution with mean 0 and variance 1/d. The length of the vectors
are normalized to have similar expected lengths across dimensions (these expected lengths

are in the interval [
p
dp

d+1

, 1] [Chandrasekaran et al., 2012]).
On the other hand in OSS-CMA-ES, for Orthonormal matrix Sub-Space Covariance

Matrix Adaptation, additionally, the column vectors of A are ortho-normalized, using
the Gram-Schmidt process. In this case, all vectors have length one and are mutually
orthogonal.

We will empirically investigate the e↵ect from orthogonalizing the vectors of the
embedding matrix A.

90 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

The pseudo-code of SS-CMA-ES is shown in Algorithm 2. The core of the embed-
ding based approach is that the algorithm searches only in a d

ss

-dimensional subspace
instead of the original, d dimensioned one. So all the original-algorithm complexities are
expressed in d

ss

instead of d.

Algorithm 2 Sub-Space Covariance Matrix Adaptation Evolution Strategy (SS-CMA-
ES)
d: problem dimension.
f : objective function.
d
ss

: Optimization-subspace dimension.
x
start

: initial solution.
�: step-size.
C: d

ss

⇥ d
ss

covariance matrix, initially I
dss .

D
CMA

: d
ss

⇥ d
ss

diagonal matrix containing the square roots of the eigenvalues of the
covariance matrix C.
B

CMA

: d
ss

⇥ d
ss

orthogonal matrix containing the normalized eigenvectors of C.
�: population size of the algorithm.
A: d⇥ d

ss

embedding matrix.
doUpdateBD: is true if and only if the singular value decomposition of C into
B

CMA

D
CMA

DT

CMA

BT

CMA

is to take place in the current iteration. Initially True.

1: y 0
dss

2: Generate A
3: while (No stopping criterion is met) do
4: set doUpdateBD depending on the iteration counter
5: if doUpdateBD then
6: D

CMA

,B
CMA

 SingularValueDecomposition(C)
7: end if
8: y1, . . . ,y� ⇠ y + �B

CMA

D
CMA

N (0
dss , Idss)

9: for 1  i  � do
10: xi Ayi + x

start

11: f i f (xi)
12: end for
13: Sort y1, . . . ,y� according to f 1, . . . , f�

14: Adapt y, � and C given y1, . . .y� and f 1, . . . , f�

15: end while

Algorithm 2 optimizes over the coordinates of y 2 Rdss and evaluates the fitness of
each y depending on the solution x in Rd that corresponds to it in the original search space
since the problem f is defined in Rd. Thus the sampled solutions (Line 8) are generated
in the optimization subspace. The embedding matrix A is then used to compute x from
y by taking into account the initial solution x

start

(Line 10).
The only di↵erence between RSS-CMA-ES and OSS-CMA-ES is in Line 2, and

whether the sampled embedding matrix A is orthogonalized or not.

4.3. SS-CMA-ES 91

4.3.2 Complexities

We will now investigate the complexity of Algorithm 2 in terms of cost per function
evaluation, number of function evaluations needed given certain scalings in the search-
space dimension and in terms of computational (CPU) time.

4.3.2.1 In Number of Function Evaluations

When comparing to a standard CMA-ES (operating on a same dimension d
ss

), SS-CMA-
ES has an added cost, per functions evaluation or per o↵spring, that comes from Line 10
in Algorithm 2.

For each o↵spring yi, computing its corresponding xi costs d ⇥ d
ss

multiplications
(multiplication of a d⇥d

ss

matrix with a vector of size d
ss

). This cost is to be added to the
innate internal complexity of CMA-ES. The number of operations needed to sample each
solution is in O(d2

ss

) (Line 8 in Algorithm 2), updating the covariance matrix (Line 14)
is in O(d2

ss

) and factorizing it in O(d3
ss

) (Line 6). The latter cubic complexity is brought
down to quadratic (O(d2

ss

)) by applying the covariance matrix update only once every a
linear number of generations [Hansen and Ostermeier, 2001, Ros and Hansen, 2008]. In
Algorithm 2, this is controlled by setting the parameter doUpdateBD in Line 4 making
it trigger in the desired iterations. Since d

ss

 d, the overall complexity per function
evaluation is in O(d ⇥ d

ss

). Note that in our case, the O8, O9 and Ô definitions of
asymptotic behavior when multiple variables are involved (in our case, d and d

ss

) from
[Howell, 2008] all apply.

Let us consider that the algorithm needs a linear (respectively quadratic), in the search
space dimension d

ss

, number of function evaluations in order to reach a given target value.
Then, SS-CMA-ES would use in the order of O(d⇥d2

ss

) (respectively O(d⇥d3
ss

)) function
evaluations to reach this target. In comparison, a CMA-ES operating on the original Rd

search space would need in the order of O(d3) (respectively O(d4)) operations, assuming
the same scalings in numbers of function evaluations.

These complexities are summarized in Table 4.1 where we suppose that, in a search-
space of dimension n, the algorithms need either linear (O(n)) or quadratic (O(n2)) times
in terms of number of function evaluations to find (within a given numeric precision) the
optimum.

One important thing to note in Table 4.1 is that these complexities (in search space
dimension) are expected to be relevant on low e↵ective dimension problems thanks to
Theorem 1 which states that searching in the d

ss

dimensioned sub-space is su�cient to
find the optimum. For full e↵ective dimension problems, one can not expect embedding
based algorithms to have these same linear or quadratic complexities in their optimization
subspace dimension since, in theory, the full search space is to be explored.

4.3.2.2 CPU Time

Regarding the CPU timing of SS-CMA-ES, the left plot of Figure 4.1 shows, for a given
problem dimension d and e↵ective dimension d

e↵

, the evolution of the average CPU times

92 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

algorithm RSS-CMA-ES OSS-CMA-ES CMA-ES

initialization O(d⇥ d
ss

) O(d⇥ d2
ss

) O(d)
cost per

O(d⇥ d
ss

) O(d⇥ d
ss

) O(d2)
f -evaluation
scaling in

O(d
ss

)|O(d2
ss

) O(d
ss

)|O(d2
ss

) O(d)|O(d2)
f -evaluations

overall cost
O(d⇥ d2

ss

)|O(d⇥ d3
ss

) O(d⇥ d2
ss

)|O(d⇥ d3
ss

) O(d3)|O(d4)
(linear|quadratic)

Table 4.1: Estimated internal complexities of RSS-CMA-ES and OSS-CMA-ES in com-
parison to CMA-ES on low e↵ective-dimension problems. Shown are (from top to bot-
tom): cost of initialization, cost per function evaluation, linear and quadratic scalings in
numbers of function evaluations and expected overall cost when considering these two
scalings.

Figure 4.1: Left: Average CPU time per function evolution versus optimization-
subspace dimension d

ss

on the f "LRosen function (see Section 4.4.1). Three values of
the problem dimension d are considered with d

e↵

= 16. The CPUs are averaged over
100 ⇥D function evaluations each. Right: Evolution of the best fitness on the current
iteration for RSS-CMA-ES and OSS-CMA-ES on f "LSphere. The problems dimension is
d = 100, the e↵ective dimension d

e↵

= 9, the optimization subspace dimension d
ss

= 36
and two values of " are considered: " = 0 (solid lines) and " = 10�8 (dashed lines).

per function evaluation of SS-CMA-ES for di↵erent values of d
ss

. The rightmost data
points (d

ss

=d) allow to compare to the standard CMA-ES algorithm.

As expected from the complexity study, we see a near linear scaling (compare with
the gray ”+”s) of the average CPU time per function evaluation with d

ss

. We also see
similar CPU times for the di↵erent values of the problem dimension d. This allows the
use of SS-CMA-ES for problems with large dimension as long as the value of d

ss

is small
enough. Since d

ss

needs only to be as large as the e↵ective dimension d
e↵

(Theorem 1),
SS-CMA-ES is reasonable, in practice, as a method of solving low e↵ective dimension
problems, even when the problem dimension d is large.

4.3. SS-CMA-ES 93

4.3.3 Conditioning of the Embedding Matrix A

One di↵erence between RSS-CMA-ES and OSS-CMA-ES is the conditioning of the prob-
lem that is passed to the optimization algorithm (in our case, CMA-ES). A priori, the
use of an orthonormal matrix should better preserve the eigenvalues, and thus the con-
ditioning, of the original problem. That is the original problem defined in Rd in contrast
to the subspace problem defined in Rdss that the optimization algorithm sees.

In this section, we quantify the change in conditioning observed on a low e↵ective
dimension problem when applying a random matrix or an orthonormal matrix A, which
represent, respectively, the RSS-CMA-ES and OSS-CMA-ES variants of SS-CMA-ES.
We define the conditioning  of a symmetric, positive semi-definite matrix M 2 Rn⇥n as
the ratio between its largest and smallest strictly positive eigenvalues:

(M) =
|�

1

(M)|
|�

m

(M)| , (4.12)

where �
i

is the ith largest, strictly positive, eigenvalues of M, and m satisfying �
1

�
, · · · � �

m

> 0; and when m < n, �
m+1

, . . . ,�
n

= 0.

Now, if we consider that M = AAT and cM = ATA with A 2 Rn⇥m and m < n,
then both matrices, M and cM, have the same m strictly positive eigenvalues with m =
rank(A). Consequently, and given the definition of conditioning in (4.12), (M) = (cM).

When considering RSS-CMA-ES, the matrix ATA is the same as the one defined in
[Edelman, 1989] as W(d

ss

, d). For this matrix, the limits of the largest eigenvalue �
1

and
the smallest strictly positive eigenvalue �

m=dss , when both d and d
ss

tend to infinity with
d
ss

/d! r 2 [0, 1], are given in Propositions 6.1 and 5.1 of [Edelman, 1989]:

1

d
�
1

a.s.! (1 +
p
r)2 , (4.13)

1

d
�
dss

a.s.! (1�
p
r)2 . (4.14)

Thus, the conditioning, for the same limits, satisfies:

(M)
a.s.! (1 +

p
r)2

(1�
p
r)2

. (4.15)

Numerical simulations shown in Figure 4.2 show consistent results with (4.15).
In Figure 4.2, we show (ATA) with fixed d and varying d

ss

(left plot) and when both
are varied while satisfying:

d
ss

= 4b3 log
2

d� 10c , (4.16)

(right plot) which will be the default formula for the optimization-subspace dimension
through this chapter (see Section 4.4.2.2). The results are only shown for A random
since it is not di�cult to show that for orthonormal A, the conditioning of A equals to
1 since in this case, ATA = I

dss (the column vectors of orthonormal A have norm 1 and
are mutually orthogonal).

94 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

Figure 4.2: Conditioning of ATA with A 2 Rd⇥dss a random matrix for di↵erent values
of d and d

ss

. The solid green lines show the corresponding (with the same value of
r = d

ss

/d) asymptotic value when both d and d
ss

tend to infinity (4.15). Left: d = 2048.
Right: d

ss

= 4b3 log
2

d � 10c. The results are obtained using 19 data points and show
the median (red line), the upper and lower quartiles (box limits), the lowest and highest
data points still within 1.5⇥ IQD (the Inter-Quartile Distance) of the lower quartiles and
higher quartile respectively (whiskers) and eventual outliers outside of the whiskers (+).
For the asymptotic case, when d = d

ss

, the conditioning tends to infinity as the smallest
eigenvalue tends, almost surely, to 0 (see (4.14)), thus the absence of extension on the
green line for the rightmost data point of the left plot.

The left plot shows that the asymptotic values remain accurate for relatively small
values of d and d

ss

. In the special case d = d
ss

, the limit when d!1 of the conditioning
is infinite (replace r with 1 in (4.15)) while it is high but remains finite for d = 2048. The
observed conditionings are significantly larger than 1, increasing steadily as r increases.
However, if we look into the values we are interested in (d

ss

= 4b3 log
2

d�10c) on the right
plot, this conditioning decreases as d increases. If we look into (4.15), this is justified by
the fact that d

ss

, as defined in (4.16), increases slower than d (we set d
ss

in the logarithm
of d), meaning that r, in this case, decreases as d increases:

r =
4b3 log

2

d� 10c
d

. (4.17)

The reason we see a pic of the conditioning, for both asymptotic and empiric values,
on the right plot is because in (4.17), r is not monotonous for smaller values of d, it is
smaller for d = 16 than for d = 32, and is strictly decreasing after d = 32. Its limit when
d!1 is 0.

Let us consider SS-CMA-ES (Algorithm 2) on a low e↵ective dimension problem
generated using B 2 Rd⇥de↵ on a sphere function (f in (4.1) is a sphere function):

fLowSphere(x) = f (z) , (4.18)

with z = BTx and f (z) = zTz.

4.3. SS-CMA-ES 95

Figure 4.3: Overall conditioning on fLowSphere, i.e., conditioning of ATBBTA given
the algorithm embedding matrix A 2 Rd,dss and e↵ective-dimension lowering matrix
B 2 Rd,de↵ . See caption of Figure 4.2 for the description of the box plots. The gray boxes
are for A random while the blue ones are for A orthonormal. The solid green lines show
the asymptotic values as defined in (4.15). Left: d = 2048, d

e↵

= b3 log
2

d � 10c = 23
and d

ss

varying on the x-axis. Middle: d = 2048, d
e↵

varying on the x-axis and d
ss

=
4b3 log

2

d� 10c = 92. Right: d, d
e↵

= b3 log
2

d� 10c and d
ss

= 4d
e↵

= 4b3 log
2

d� 10c.
The expressions for d

ss

and d
e↵

will be the default ones used for A and B respectively.

Since in SS-CMA-ES x = Ay+ x
start

(Line 10 of Algorithm 2), z = BT (Ay+ x
start

),
thus the function that the CMA-ES algorithm sees and optimizes is:

fSS : Rdss ! R
fSS(y) = (Ay + x

start

)TBBT (Ay + x
start

)

= kBT (Ay + x
start

)k2

= kBTAy +BTx
start

k2

= yTATBBTAy + 2xT

start

BBTAy + xT

start

BBTx
start

.

(4.19)

Then, one should look at the conditioning of ATBBTA for both cases: A random
and A orthonormal, since the solution the algorithm varies and optimizes is y not x.

Figure 4.3 shows estimates of (ATBBTA) from 19 independent pairs of the two
matrices A and B considering random and orthonormal A matrices. The matrices B are
orthonormal. We see that both types of A matrices (and thus RSS-CMA-ES and OSS-
CMA-ES) result in similar conditionings on the low e↵ective dimension sphere function.
The left and middle plots show rather similar conditioning values between RSS-CMA-
ES and OSS-CMA-ES for small values of d

ss

and d
e↵

with a di↵erence appearing as
these two values increase (larger conditioning values for RSS-CMA-ES). The final values
settle, when d

ss

= d or d
e↵

= d, at 1 for OSS-CMA-ES while staying at a larger value for
RSS-CMA-ES.

Looking into the right plots that show the results for the values of d
ss

and d
e↵

that
will be used by default, we only see some significant di↵erences on relatively small values
of d. For larger values, the conditioning values seem to stabilize around the same value
(around 7 for d = 2048).

Even though individually (not considering the low e↵ective dimension function), OSS-
CMA-ES generates smaller conditioning values (equal to 1 since the vectors of A are

96 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

orthonormal while larger for RSS-CMA-ES, see Figure 4.2), the application of B in order
to have a low e↵ective dimension problem results in there being no relevant di↵erence,
between the two variants, in the conditionings of the problems that the internal CMA-ES
algorithm tackles (defined in y). This suggests similar performance for RSS-CMA-ES and
OSS-CMA-ES on the low e↵ective dimension problems. Note that this result does not
apply directly to the case of full e↵ective dimension but low epsilon-e↵ective dimension
(Definition 2). This will be further investigated in the following sections.

4.4 Performance Assessment

We compare the performances of RSS-CMA-ES and OSS-CMA-ES to those of two stan-
dard (not designed for low e↵ective dimension optimization) large scale optimization al-
gorithms that, too, are based on CMA-ES: the Limited Memory CMA-ES (LM-CMA-ES)
[Loshchilov, 2014] and VD-CMA-ES [Akimoto et al., 2014]. Details of these algorithms
can be found in Section 2.2.1.3. In addition, we also compare to the default CMA-ES
algorithm [Hansen and Ostermeier, 2001] for which we consider di↵erent step-size adap-
tation mechanisms: (i) Cumulative Step-size Adaptation (CSA, see Section 2.1.4.1), (ii)
Two Point Adaptation (TPA) [Hansen et al., 2014] and (iii) Median Success Rule (MSR,
see Chapter 3) [Ait Elhara et al., 2013]. These three step-size adaptation mechanisms
will also be used in SS-CMA-ES (in the internal CMA-ES optimizer) and a variant of
VD-CMA-ES with TPA step-size adaptation is also considered.

TPA generates two points in the line between the actual mean solution and its prede-
cessor. These two points are then ranked in the current population. The ranking provides
the signal that will be used to adapt the step-size.

The performance comparison is carried on low epsilon-e↵ective dimension problems
including the special case of " = 0 which translates into low e↵ective dimension problems.

4.4.1 Test Functions

In this section, we provide the expressions of the di↵erent test functions used in this
chapter. In what follows, x 2 Rd is a solution in the original space, z 2 Rde↵ with
z = BTx is its counterpart in the e↵ective subspace. As in Proposition 1, the function g
is chosen to be the normalized sphere function (4.7).

The functions in Table 4.2 are meant to replace the function f in Proposition 1 used
to build the fLow part of (4.5) via fLow(x) = f (BTx) (as in (4.1)) and the resulting
function will be named accordingly. For example, f "LSphere is the low epsilon-e↵ective
dimension sphere function where, in (4.5), we replace fLow by fLowSphere, fLowSphere being
the function constructed similarly to (4.1) where f is a normalized sphere function (taken
form Table 4.2).

Since the tested algorithms are invariant to translations of the search space (that
would change x

opt

), we keep all the problems centered at zero. Thus, on the Rosenbrock
function which, originally, has its optimum in the vector of 1’s (1

d

), a translation is

4.4. PERFORMANCE ASSESSMENT 97

fLowCigar(x) = 1

de↵

⇣
z2
1

+ 106
P

de↵

i=2

z2
i

⌘

fLowCigtab(x) = 1

de↵

⇣
z2
1

+ 104
P

de↵�1

i=2

z2
i

+ 108z2
de↵

⌘

fLowDi↵pow(x) =

r
1

de↵

P
de↵

i=1

|z
i

|
⇣
2+4⇥ i�1

de↵�1

⌘

fLowElli(x) = 1

de↵

P
de↵

i=1

10
⇣
6

i�1
de↵�1

⌘

z2
i

fLowRosen(x) = 1

de↵�1

P
de↵�1

i=1

⇣
100 (ẑ2

i

� ẑ
i+1

)2 + (1� ẑ2
i

)
⌘

fLowSphere(x) = 1

de↵

P
de↵

i=1

z2
i

fLowTablet(x) = 1

de↵

⇣
106z2

1

+
P

de↵

i=2

z2
i

⌘

fLowTwoaxes(x) = 1

de↵

⇣
106
Pbde↵/2c

i=1

z2
i

+
P

de↵

i=bde↵/2c+1

z2
i

⌘

Table 4.2: Table of the low e↵ective dimension functions that are used to compare
the large-scale optimization algorithms. The solution z 2 Rde↵ in the e↵ective space is
obtained via z = BTx, with x 2 Rd and B 2 Rd⇥de↵ an orthonormal matrix. For the
Rosenbrock function, using ẑ = 1

de↵
� z allows to have the optimum of fLowRosen at

z = 0
de↵

, thus coinciding with that of g (the optimum of g is 0
d

and its image in the
e↵ective space is 0

de↵
).

applied to the search space, by defining the function on ẑ = 1
d

� z, such that the
optimum of the shifted problem is in 0

d

.

As a reminder, Proposition 1 prescribes that the matrices H of the functions f (z) =
1

de↵
zTHz used to build fLow need to have eigenvalues that satisfy �

max

(H) � 4d
e↵

/d in

order for the corresponding f "L functions to have d
e↵

epsilon-e↵ective dimension. Among
the convex-quadratic functions in Table 4.2 (the Rosenbrock and the Sum of Di↵erent
Powers functions are not convex quadratic), the sphere function has, originally (meaning
prior to the normalization by d

e↵

), the smallest largest eigenvalue �
max

= 1. Hence the
condition on �

max

(Proposition 1) is satisfied whenever d
e↵

 d/4.

In this chapter, we consider the problem dimensions d 2 2i, i 2 {4 · · · 11} and set the
corresponding e↵ective dimensions to:

d
e↵

= b3 log
2

d� 10c , (4.20)

thus, the condition d
e↵

 d/4 is satisfied.

The internal complexity (in number of operations) associated to these low epsilon-
e↵ective dimension functions is of the order of d

e↵

⇥ d while it is linear for the original
(without the e↵ective dimension reduction via B) functions. The highest order of com-
plexity comes from the matrix-vector multiplication in z = BTx and is directly a↵ected
by the e↵ective dimension d

e↵

, and how it scales with the problem dimension d. In our
case, the choice of d

e↵

in (4.20) leads to a complexity in O(d log d).

98 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

� µ w
i

µ
e↵

4 + b3 log dc b�/2c
log(�+1

2

)� log(i)

µ log(�+1

2

)�
P

µ

j=1

log(j)

1P
µ

j=1

w2

j

Table 4.3: Default parameter values common to all the considered evolution strategies.
In the columns: � is the population size, µ the number of parents, w

i

the weight associated
to the ith best individual and µ

e↵

the variance e↵ective selection mass.

c
c

c
s

d
s

CSA

4 + µ
e↵

/d

d+ 4 + 2µ
e↵

/d

µ
e↵

+ 2

d+ µ
e↵

+ 3
1 + 2⇥ ⇣(d, µ

e↵

) + c
s

TPA
0.3

4� 3.6/
p
d

MSR 2� 2/d

VD-CSA

p
µ
e↵

2(
p
d+
p
µ
e↵

)
1 + 2⇥ ⇣(d, µ

e↵

) + c
s

VD-TPA
0.3

4� 3.6/
p
d

LM 1/� 1

Table 4.4: Default parameter values, follow up to Table 4.3. In d
s

, ⇣(d, µ
e↵

) =

max
⇣
0,
q

µe↵�1

d+1

� 1
⌘
. The entries of the leftmost columns are to be su�xed by CMA-

ES (TPA-CMA-ES, VD-CSA-CMA-ES...etc.). The parameter values for SS-CMA-ES are
the same as for default CMA-ES (first three rows) replacing d by d

ss

(the dimension of
the algorithm’s search-space).

4.4.2 Parameter and Experimental Settings

Regarding the parameters used by the di↵erent algorithms, we start by describing the
parameters common to all of them in Table 4.3. The population size is noted � and the
number of parents µ. The weights in the recombination procedure are noted w

i

, i 2 [1, µ].
In addition, the initial step-size is set to �

0

= 2 and the starting point, in the Rd search
space, is set to x

start

= 1
d

. Thus all algorithms start from the same point which is at a
Euclidean distance

p
d from the optimum.

Then, we show the parameters that are not set to the same values for the di↵erent
algorithms or step-size adaption mechanisms in Table 4.4. The embedding based algo-
rithm uses the same parameter configuration as CMA-ES. Replacing d by d

ss

. In fact,
these parameters are defined in the search space dimension, and SS-CMA-ES searches in
a d

ss

-dimensioned subspace.

In addition to the parameters in Tables 4.3 and 4.4, we have the comparison index of
MSR [Ait Elhara et al., 2013] set to j = 0.3�, the target success rate of PSR (Population
Success Rule), that is used to adapt the step-size in LM-CMA-ES [Loshchilov, 2014]),
set to z⇤ = 0.25 and the number of vector that are stored to represent the covariance
matrix equals the population size (m = � = 4 + b3 log dc). Finally, on SS-CMA-ES, we

4.4. PERFORMANCE ASSESSMENT 99

set:
d
ss

= 4⇥ d
e↵

= 4⇥ b3 log
2

d� 10c . (4.21)

4.4.2.1 Performance Measure

The measure we use to assess the the performance of these stochastic algorithms and
how they scale with the problem dimension d is a variation of the estimated Expected
Running Time (ERT) [Auger and Hansen, 2005a]:

ˆERT =
AVG

success

p
s

, (4.22)

where AVG
success

is the average number of function evaluations of the successful runs
and p

s

the success rate (number of successful runs divided by total number of runs). A
successful run is a run in which the algorithm evaluates at least one solution which has
a fitness better than a given target fitness.

The original expression that can be found in [Auger and Hansen, 2005a] takes into
account the average number of function evaluations of the unsuccessful runs too. How-
ever, since we lack a solid control on the stopping criteria of the di↵erent algorithms, we
opted for the formulation in (4.22).

If all runs are unsuccessful, the measure in (4.22) is not defined in which case the ERT
is set to infinity (no data point is shown). This might happen for example if the chosen
budget or the number of runs are too small or simply because the algorithm does not
converge to the defined target value within a reasonable number of function evaluations.

The target values were set to correspond to a certain fitness (f e↵

target

) in the e↵ective
part of the function that we are most interested in and a fitness on the non-e↵ective part
(obtained on g) no worse than that of the initial point4:

f
target

= f e↵

target

+ "⇥ g(x
start

) , (4.23)

where, in our case, f e↵

target

= 10�8 will be used for all the ERT based experiments. The
idea is to encourage optimization in the e↵ective space without completely disregarding
the non-e↵ective part when " > 0. The case " = 0 allows to test algorithms on problems
where only the e↵ective part matters (low e↵ective dimension problems).

4.4.2.2 Sub-Space dimension d
ss

, E↵ective Dimension d
e↵

and "

Given a problem with low e↵ective dimension d
e↵

< d, the embedding based algorithm,
SS-CMA-ES, needs to have an optimization-subspace dimension d

ss

at least equal to d
e↵

(Theorem 1). This is due to the fact that at least one target solution (a solution with a
fitness better than the target value) needs to be in the optimization subspace spanned
by A. The latter condition is satisfied via Theorem 1 only when d

ss

� d
e↵

.

4Actually, since the d
e↵

e↵ective dimensions that are optimized are also involved in computing g, the
target value should be lower. However, the resulting target being, at most, a factor of 2 lower, we choose
to retain this simpler formulation.

100 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

d = 105, d
e↵

= 10 d = 1050, d
e↵

= 20

Figure 4.4: Success probability of SS-CSA-CMA-ES on f "LSphere versus di↵erent values
of " and d

ss

. Left: d = 105, d
e↵

= 10; Right: d = 1050, d
e↵

= 20. The target values
are chosen following (4.23) with f e↵

target

= 10�8. A total of 19 runs is used for each data
point. The leftmost data points, labeled 10�inf , are for " = 0.

Even though in a completely black-box setting the e↵ective dimension is an unknown
parameter, we chose to set its values, and more specifically those of d

ss

, such that the
probability of having the optimum in the optimization subspace is at least 0.5. When
" = 0 in (4.5) and d

ss

� d
e↵

, Theorem 1 insures that this is satisfied. However, for " > 0,
this result is no longer guaranteed since the theorem does not address the case of low
epsilon-e↵ective dimension. Thus we choose to set the value of d

e↵

as in (4.20) and choose
" and d

ss

accordingly.
Figure 4.4 shows the success probabilities of SS-CSA-CMA-ES on f "LSphere for di↵erent

values of d
ss

and ". We see a clear, and expected, monotony in d
ss

. Regarding ", we see
on the right plots a change of phase for half of the tested values of d

ss

around " = 10�7.5

with success probabilities going from 1 to 0. We end up setting d
ss

= 4d
e↵

. For ", in
addition to the case " = 0 and low e↵ective dimension, we choose the values " = 10�8 and
" = 10�7.5. The target values are, then, respectively, 10�8, 2 ⇥ 10�8 and approximately
4⇥ 10�8. Note that we make the assumption here that given an optimization subspace,
the algorithm manages to find its optimal solution. In other words, we assume that if a
target solution is in the optimization subspace, SS-CSA-CMA-ES finds it.

4.4.3 Stopping Criteria on SS-CMA-ES

Using the default stopping criteria of CMA-ES when running RSS-CMA-ES and OSS-
CMA-ES resulted, on some occasions, in the algorithms stopping prematurely. This can
be seen in Figure 4.5 where the best fitness of the current iteration is plotted against the
number of function evaluations of SS-CMA-ES on f "LSphere and f "LElli with " = 10�8.

We see on both functions that when using the default stopping criteria (⇥), and in
some cases, the algorithm stops sooner than when using the relaxed stopping criteria one
(+). Furthermore, the final fitness values reached by the relaxed version are, in the cases
where we see an improvement, significantly better than those of the default version. In
our cases, the relaxation even allows the algorithm to be successful on all runs for both

4.4. PERFORMANCE ASSESSMENT 101

f "LSphere f "LElli

Figure 4.5: Single runs of SS-CMA-ES on f "LSphere and f "LElli with d = 100 and " = 10�8.
⇥: default stopping criteria of CMA-ES; + relaxed stopping criteria as described in
Section 4.4.3. The gray dashed line corresponds to the target fitness value that would be
obtained using (4.23).

problems when the default version managed to do so only once on f "LSphere (successes
is achieved when the fitness passes below the gray dashed line that shows the target
value as defined in (4.23)). The default stopping criteria seem to sometimes prevent the
algorithm from finding the optimal value in its optimization subspace. So relaxing the
stopping criteria seems to be a better, and more e�cient, solution than simply restarting
the algorithm. Especially if the restarts are done from scratch, thus disregarding the
information gathered form the previous runs.

Here, the disabled stopping criteria in question are (range designated the di↵erence
between the smallest and largest values within a set):

• the smallest range of the function values within a same generation (tolfun),

• the maximal number of iterations with no improvement (tolstagnation),

• the minimal range of the best fitnesses over a certain number of iterations (tolfun-
hist).

These disabled stopping criteria are neither used by LM-CMA-ES nor by VD-CMA-ES.
Both only stop when reaching the provided target value, exhausting their budget or
generating extremely small step-size (10�40).

The original source codes that were used can be found: at PyPI cma 1.1.06 (https:
//pypi.python.org/pypi/cma/1.1.06) for CMA-ES, lmcma (https://sites.google.
com/site/lmcmaeses/) for LM-CMA-ES and vdcma (https://sites.google.com/site/
youheiakimotospage/pdf/vdcma.m) for VD-CMA-ES.

Note also that the code of CMA-ES was modified to make it able to handle covariance
matrices with larger condition numbers than the original code as several runs on the low
epsilon-e↵ective dimension functions stopped because of numerical problems. This is
especially the case for low epsilon-e↵ective dimension problems as these have a condition
number that is, at least, equal to "�1. A standard version of f "LSphere (no normalization

https://pypi.python.org/pypi/cma/1.1.06
https://pypi.python.org/pypi/cma/1.1.06
https://pypi.python.org/pypi/cma/1.1.06
https://pypi.python.org/pypi/cma/1.1.06
https://sites.google.com/site/lmcmaeses/
https://sites.google.com/site/lmcmaeses/
https://sites.google.com/site/lmcmaeses/
https://sites.google.com/site/lmcmaeses/
https://sites.google.com/site/youheiakimotospage/pdf/vdcma.m
https://sites.google.com/site/youheiakimotospage/pdf/vdcma.m)
https://sites.google.com/site/youheiakimotospage/pdf/vdcma.m
https://sites.google.com/site/youheiakimotospage/pdf/vdcma.m)

102 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

by the dimensions) has a condition number "�1 and for f "LElli this value is multiplied by
the inherent condition number of the ellipsoid (106 in our case) 5.

4.4.4 Single Runs

In order to compare the di↵erent algorithms, we start by looking into single runs on some
low e↵ective and low epsilon-e↵ective dimension problems.

We are first interested in the behaviors of OSS-CMA-ES and RSS-CMA-ES and
whether these two algorithms, as suggested by the results in Section 4.3.3 (solving prob-
lems with similar conditioning values), have the same performance, and thus need to be
merged into a single algorithm SS-CMA-ES.

We look into the evolution of the best fitness on a current iteration with the number
of function evaluations. The right plot of Figure 4.1 compares OSS-CMA-ES to RSS-
CMA-ES on f "LSphere.

We see no substantial di↵erence in behavior between the two algorithms. The or-
thonormalization of the A matrix does not seem to have an e↵ect on the behavior of
SS-CMA-ES. Note that we also observe (but not show) this similar behavior on other
functions and for other values of ". This extends the results of Section 4.3.3, where we
have seen that both variants deal with similar conditioning values on fLowSphere to low
epsilon-e↵ective dimension problems.

From this point on, we only consider RSS-CMA-ES (computationally cheaper since
no orthogonalization is needed), and simply refer to it by SS-CMA-ES. When no step-size
adaptation mechanism is mentioned, CSA is used by default.

In Figure 4.6, we see a typical run of SS-CMA-ES on the low epsilon-e↵ective dimen-
sion sphere function f "LSphere.

We see, in parallel on the four plots, two phases in which the optimization process
happens. In the first one (up to a little more than 4000 function evaluations), the
fitness and the step-size decrease up to a certain point (around f (x) = 2.5 ⇥ 10�8 and
� = 3 ⇥ 10�4, see top-left plot) at which point the fitness stagnates while the step-size
keeps decreasing. The behavior up to the stagnation point is similar to what is observed
in a typical convex-quadratic optimization with a well adapted covariance matrix.

We identify the start point of the second phase as the point where the step-size starts
increasing. At this point, the fitness value remains at the same level while the step-
size and the scaling of one of the axis of the non-e↵ective dimensions increase. We also
notice, in the bottom-left plot, that the d

e↵

e↵ective axes are optimized during the first
phase, decreasing as the algorithm converges to the stagnation point. These are the axes
that have their scaling values decrease continuously over the course of the optimization.
Because of the search space transformations that both of the matrices A and B apply
(no axis parallel coordinate system), the increase on one of the axis translates into a
simultaneous change on all the variables, in coordinate values and in standard deviations

5These values are given for the sake of illustration, for the actual values concerning the functions used
in this chapter, these condition numbers are also multiplied by d/d

e↵

because of the normalizations by
search-space dimension of fLow and g.

4.4. PERFORMANCE ASSESSMENT 103

Figure 4.6: Single run of SS-CMA-ES on f "LSphere with " = 10�8, d = 50, d
e↵

= 5 and
d
ss

= 15 showing the number of function evaluations in the x-axis. Top-Left: evolution
of the fitness, the step-size and the largest axes ratio; Top-Right: coordinate values
in the optimization subspace; Bottom-Left: scaling of the main axes of the covariance
matrix; Bottom-Right: standard deviation in the optimization subspace coordinates
normalized by the current step-size.

as seen in the rightmost plots (upper and lower) of Figure 4.6.
In this second phase, the fitness improvements coincide with pic values of the step-size

and of the currently explored axis. The algorithm seems to optimize the non-e↵ective
space one dimension at a time by increasing the length of its corresponding axis up to
a certain value (around 7 ⇥ 101 for the first non-e↵ective axis). Once a non-e↵ective
axis is optimized (reached its scaling pic value), it follows a similar behavior to that of
the e↵ective dimensions and a new non-e↵ective axis is addressed. The pic values of
the following axes seem to decrease with each additional addressed non-e↵ective axis.
These pic values are upper bounded by those of the previously optimized non-e↵ective
axes. The algorithm seems faced with an increasingly di�cult task of optimizing in
a dimension while not deteriorating the fitness obtained from the optimization of the
other dimensions, instead of the standard approach of optimizing variables all at once.
A process similar to a line search which dependencies between optimization variables
make tedious. This can be seen from the di↵erent stagnation values of the optimization
subspace coordinates (top-right plot).

The increasing axis ratio (red line in upper left plot), even in the first phase, is due

104 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

to the lengths of the non-e↵ective axes being very little changed in the first phase while
those of the e↵ective dimension decrease with the decrease in step-size and fitness value.
In the second phase, the e↵ective axis keep decreasing and the axis ratio is dictated by the
first optimized non-e↵ective axis (which eventually decreases at the same rate, leading
to a stationary value of the axis ratio). Basically, the search-space is comprised of d

e↵

e↵ective dimensions and d
ss

� d
e↵

non-e↵ective ones.

We now come to the comparison between the di↵erent algorithms. Figure 4.7 shows
the evolution of the best fitness of an iteration on problems of dimension d = 512 and
e↵ective/epsilon-e↵ective dimension d

e↵

= 17 for " = 0 and " = 10�8. As previously
stated, in addition to comparing with VD-CMA-ES and LM-CMA-ES, we also consider
di↵erent step-size adaptation mechanisms for CMA-ES and SS-CMA-ES, namely CSA,
MSR and TPA. TPA is also applied to VD-CMA-ES and we note the resulting algo-
rithm VD-TPA-CMA-ES. In the default VD-CMA-ES implementation, a modified, more
computationally e�cient, version of CSA is used (see Section 2.2.1.3).

First, we see that LM-CMA-ES and SS-CMA-ES seem to perform the best overall,
with an advantage for LM-CMA-ES on both sphere functions that SS-CMA-ES manages
to make up for with the use of TPA or MSR instead of CSA as step-size adaptation
mechanisms. Another observation is the greatly improved performance of CMA-ES with
the use of TPA (TPA-CMA-ES) and MSR (MSR-CMA-ES) in comparison to CSA (CSA-
CMA-ES). The largest such improvement is observed on the two sphere functions (first
row). An improvement is also observed for SS-CMA-ES but to a smaller extent. Using
TPA in VD-CMA-ES (VD-TPA-CMA-ES), and in comparison to standard VD-CMA-
ES, also results in an improvement of the performance on f "LSphere, where it actually
produces the best results among the algorithms in this study for " = 0, and on f "LRosen

but not on f "LElli. In the latter case (f "LElli), VD-TPA-CMA-ES stagnates at a relatively
high function value (around 1) despite its quicker early stage optimization. Overall,
on the low e↵ective dimension functions (" = 0), the algorithms, with the exception of
VD-TPA-CMA-ES, show a converging behavior on the three functions.

The better results observed on CMA, and to a lesser extent on SS-CMA-ES, when
using TPA and MSR instead of CSA to adapt the step-size are due to the search-space-
dimension dependent comparison that is carried in CSA. In order to adapt the step-
size, CSA compares the length of a d (and in the case of SS-CMA-ES, d

ss

) dimensional
vector to the expected length of the same vector had the selection been random. For
low e↵ective dimensions problems, only d

e↵

< d dimensions (the e↵ective dimensions
or e↵ective subspace) are relevant while the rest (the non-e↵ective dimensions or non-
e↵ective subspace) provide nothing but noise. This results in a slower than desired
step-size decrease. The smaller performance gap between CSA and TPA/MSR on SS-
CMA-ES, in comparison to CMA-ES, is due to smaller di↵erences between the search-
space dimensions (in our case d

ss

= 4⇥d
e↵

< d) and the e↵ective dimension d
e↵

, reducing
the relative e↵ect of the noise from the non-e↵ective space. This e↵ect is not observed
on LM-CMA-ES since it uses the Population Success Rule [Loshchilov, 2014] step-size
adaptation mechanism which is similar to MSR. TPA, on the other hand, decreases the
step-size faster which is generally the desired behavior.

4.4. PERFORMANCE ASSESSMENT 105

f "LSphere

f "LElli

f "LRosen

" = 0 " = 10�8

Figure 4.7: Single Runs (two for each) on (from top to bottom) f "LSphere, f "LElli and
f "LRosen. Left: " = 0; Right: " = 10�8. Evolution of the intra-iteration best fitness on
the y-axis for di↵erent evolution strategies. The dimension of the problems is d = 512,
and the e↵ective/epislon-e↵ective dimension d

e↵

= 17. For SS-CMA-ES, the optimization
subspace dimension is d

ss

= 4⇥ d
e↵

= 68. The horizontal dashed gray lines in the right
plots show the target value as defined in (4.23).

106 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

Figure 4.8: Single runs of: Left VD-CMA-ES; Right VD-TPA-CMA-ES on f "LElli with
" = 10�8, d = 100 and d

e↵

= 9.

However, when used in VD-TPA-CMA-ES, this results in the algorithm witnessing
premature convergence on the ellipsoid functions with the step-size decreasing too rapidly
in comparison to the fitness (see Figure 4.8).

When " = 10�8, two phases are generally observed. A first one where the plots are
similar to those of " = 0 and the second where the fitness improves by jumps followed
by what look like plateaus resulting in an overall slow improvement. The second phase
seems to start relatively close to the target value (4.23) for most algorithms (compare
with the horizontal, gray, dashed lines). The exceptions being the two algorithms that
use CSA (VD-CMA-ES and CSA-CMA-ES) for which the slowdown happens at earlier
stages. CSA-CMA-ES still manages to reach the designated target values on f "LSphere

and f "LRosen within the allocated budget, but at a significantly slower pace.
One important thing to notice is that the target value, as defined in (4.23), is, in

all the observed cases, lower, fitness-wise, than the starting point of the second phase.
In addition, with small enough step-sizes, and the e↵ective parts being optimized to a
certain extent, the variations in the non-e↵ective space become relevant in defining the
fitness. We see that LM-CMA-ES, TPA-CMA-ES, MSR-CMA-ES (except for a run on
f "LRosen which was stuck on a local optimum) and the di↵erent versions of SS-CMA-ES
manage to reach the desired target values (4.23). VD-CMA-ES and VD-TPA-CMA-ES,
on the other hand, can not solve the problems with " = 10�8. For f "LElli, VD-CMA-ES
uses all the budget before reaching the target value, however, on the other functions and
for VD-TPA-CMA-ES, the graphs seem to stagnate on higher fitness values. VD-TPA-
CMA-ES reaches better stagnation points than VD-CMA-ES on f "LSphere and f "LRosen.

In this case of low epsilon-e↵ective dimension (" = 10�8), the target values (4.23) are
only reached after doing some optimization on the non e↵ective subspace. In the second
phase, and in order to improve the overall fitness, the non-e↵ective fitness needs to be
improved. This must be done without penalizing (too much, " defining the weight of
each part) the already optimized e↵ective space, which results in the slower improvement
observed in this phase. The larger step-size values generated by CSA (for both CSA-
CMA-ES and VD-CMA-ES) result in seeing the non e↵ective part earlier. The random
steps in the non e↵ective space that are done in the first phase are of larger magnitude,

4.4. PERFORMANCE ASSESSMENT 107

resulting in the second phase starting at higher non-e↵ective fitness.
We see that LM-CMA-ES and the di↵erent versions of SS-CMA-ES manage to reach

the target values on the low epsilon-e↵ective dimension problems, even though the latter
only operate on a sub-spaces of the search space, and the problems have full e↵ective
dimension. On the other hand, VD-CMA-ES, in its two versions, seems unable to learn
an appropriate representation of the Hessian matrix that would allow it to optimize the
non e↵ective space.

4.4.5 Scaling with the Optimization Sub-Space Dimension dss

In this section, we look into the scaling of the performance (ERT) of SS-CMA-ES with the
optimization subspace dimension d

ss

. As seen in Section 4.4.2.2, the success probability
(probability of reaching a given target values) is monotonous in d

ss

on f "LSphere. However,
and because of the internal complexity of SS-CMA-ES (see Figure 4.1, left plot), the CPU
times per function evaluation scale linearly with d

ss

which means d
ss

needs to be controlled
and ideally minimized.

Figure 4.9 shows the ERTs (normalized by d and d
ss

) versus d
ss

on low e↵ective
dimension and low epsilon-e↵ective dimension functions given a fixed problem dimension
d = 512 and e↵ective/epsilon-e↵ective dimension d

e↵

= 17.
First, we notice that the non-normalized ERTs grow with d

ss

for values of d
ss

larger
than d

e↵

. This can be seen by comparing with the constant scaling lines (negative slope
slanted lines). The speeds at which this growth is witnessed di↵er depending, not only
on the function, but also on the step-size adaptation mechanism used.

SS-CSA-CMA-ES shows a scaling in d
ss

which is larger than linear in all plots (com-
pare with the horizontal lines). It even shows quadratic scaling on f "LSphere when
" = 10�8. In the low e↵ective dimension configurations (" = 0), SS-TPA-CMA-ES and
SS-MSR-CMA-ES show less than linear scalings on fLowSphere and fLowRosen and a linear
scaling on fLowElli. The scaling is even close to being constant for SS-MSR-CMA-ES on
fLowSphere. Overall, SS-MSR-CMA-ES and SS-TPA-CMA-ES have a similar scaling in
d
ss

on the tested functions; with a slight advantage for SS-MSR-CMA-ES that is most
noticeable on fLowSphere. The three algorithms su↵er some failed runs on fLowRosen, with
a failure rate decreasing as the optimization subspace dimension d

ss

increases (no failure
among the 3⇥ 19 runs with d

ss

= d). We note that, when d
ss

= d
e↵

, the three algorithms
show identical ERTs, the di↵erences reported above are only seen when the value of d

ss

becomes larger than d
e↵

.
When " = 10�8, the di↵erence in scaling between SS-CSA-CMA-ES and the other two

methods becomes smaller as the former seems to preserve a similar scaling to when " = 0
while the latter end up with larger scalings that are, at best, linear (SS-MSR-CMA-ES
on f "LSphere). We also see that, and contrarily to the case " = 0, none of the methods
manages to achieve a success when d

ss

= d
e↵

.
The increase in ERTs with d

ss

means that larger values of d
ss

, and ultimately d
ss

= d
(which translate into a default CMA-ES plus an orthogonal transformation of the search-
space applied by A), are not optimal, not only with regards to the CPU times as seen in

108 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

" = 0 " = 10�8

f "LSphere

f "LElli

f "LRosen

Figure 4.9: Scaling of ERT/(d
ss

⇥ d) with d
ss

for SS-CMA-ES with di↵erent step-size
adaptation mechanisms. From top to bottom: f "LSphere, f "LElli and f "LRosen all with
d = 512 and d

e↵

= 17. Left: " = 0; Right: " = 10�8. The budget is fixed to 104 ⇥ d,
the target values were set following (4.23) and 19 runs are done for each data point. The
numbers on the plots, coded by the algorithm colors, show the success rates when lower
than 1. The slanted grid lines are for constant and quadratic scalings (with d

ss

) while
linear scaling is represented by the horizontal grid lines.

Figure 4.1 but also in costs in numbers of functions evaluations. This follows from the fact
that the larger the search-space of the algorithm (in our case, Rdss), the more evaluations
needed to explore it. Knowing that budgets are generally defined with regards to the
problems not the particular algorithms in play (so one would typically define a budget
depending on the problem dimension d or even d

e↵

not the optimization space dimension
d
ss

), this further justifies the use of SS-CMA-ES to solve low e↵ective and low epsilon-
e↵ective dimensions problems. However, the success rates of the algorithm increase with

4.4. PERFORMANCE ASSESSMENT 109

d
ss

(except when failures are due to exhausted budgets and a larger than linear scaling
and a linear budget). In fact, the failure, when " = 10�8, that are not budget related
are because of the absence of solutions with good enough fitness (considering the target
values) in the optimization search space. The probability of this happening, given a fixed
", decreases as the optimization search space dimension d

ss

increases (see Figure 4.4).
Failures on fLowRosen are due to the algorithms being trapped in local optima and the
absence of a restart strategy. Here again, the failure rates decrease with increasing d

ss

.
The di↵erence in performance between SS-CSA-CMA-ES and SS-MSR-CMA-ES and

SS-TPA-CMA-ES is seen again on the scaling plots. As explained in Section 4.4.4,
the larger the di↵erence between the optimization space dimension d

ss

and the e↵ective
dimension d

e↵

of the problem, the larger the e↵ect of the non e↵ective space. We even
see that no di↵erence of performance is observed when d

ss

= d
e↵

and " = 0 as the
optimization subspace dimension coincides with the e↵ective dimension of the problem.
The slower performance of CSA is also present when " = 10�8 because of the slower early
stages of the optimization (see Figure 4.7) when the algorithms focus on the e↵ective
dimensions. The di↵erence when compared to MSR and TPA is, however, smaller in this
case since the non e↵ective space eventually plays a role in the optimization process, and
in the second phase of the optimization, the algorithms try to improve the fitness on a
full e↵ective-dimension problem.

When " = 10�8, the functions no longer have low e↵ective dimension. Their e↵ective
dimensions become d but with a low epsilon-e↵ective dimension. No algorithm solves the
problems for d

ss

= d
e↵

since, as explained above, some optimization in the non e↵ective
space (in the second phase) seems needed to reach the target values. The e↵ective space is
of dimension d

ss

so in order to optimize any part of the non-e↵ective space, the algorithms
need to have d

ss

> d
e↵

.
The general picture shows that smaller d

ss

leads to smaller ERT (in addition to the
smaller CPU times). However, the failure rates goes the other way as smaller values of
d
ss

are the most prone to failure (if one excludes insu�cient-budget caused failures). We
saw this e↵ect more clearly when " > 0 since the lower bound on d

ss

for the algorithm to
be successful is larger. However, in a complete black-box setting (no information about
the e↵ective or epsilon-e↵ective dimension of the problem is provided), the problem is
the same regardless of " since even for " = 0, d

ss

< d
e↵

is bound to result in failed runs.
One straightforward strategy in such a setting (unknown d

e↵

) is then to start with small
values of d

ss

, since such value cost little in terms of function evaluations and CPU time
Then, if the configuration fails, increase d

ss

, say by multiplying it by a constant factor
(similar to what is done for the population size in [Auger and Hansen, 2005b]) upon each
restart.

4.4.6 Scaling with the Problem Dimension d

In order to see how well the large-scale optimization algorithms considered in this chapter
scale with the problem dimension, their performance was assessed for di↵erent values of d
on low e↵ective dimension functions (" = 0) and low epsilon-e↵ective dimension functions

110 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

(with " = 10�8 and " = 10�7.5). Since we saw similar results for SS-MSR-CMA-ES and
SS-TPA-CMA-ES (except on the sphere functions) in the previous sections, we only
consider the latter for both CMA-ES and SS-CMA-ES. We also do not consider CSA-
CMA-ES since its performance is dominated by TPA-CMA-ES.

The evolution of the ERT’s (normalized by d) versus d is shown in Figures 4.10 and 4.11.

First, note that (d = 16, d
e↵

= 2) translates into the functions fLowElli, fLowTablet,
fLowCigar and fLowTwoaxes having the same expression (fLow(z) = (z2

1

+ 106z2
2

)/d
e↵

) and
fLowCigtab being similar with a larger condition number (108 instead of 106). This ex-
plains the similarity of the results on the leftmost data points for all algorithms on these
functions.

We see that VD-CMA-ES and VD-TPA-CMA-ES do not solve any of the problems
with " > 0 and VD-CMA-ES is dominated, when " = 0, by the other algorithms. Among
the low e↵ective dimensions problems, VD-CMA-ES manages to solve, in addition to
fLowSphere, fLowCigar, fLowCigtab and fLowRosen with what appears to be a linear scaling
in d. However, this scaling gets worse on fLowElli and the ERTs are relatively large on
fLowTablet. We see no success on dimensions larger that 16 on fLowTwoaxes.

VD-TPA-CMA-ES improves on the performance of VD-CMA-ES fLowSphere and fLowRosen.
Its scaling on fLowSphere is less than linear, showing, with SS-TPA-CMA-ES, the best over-
all performance on this function. A significant improvement is also observed for relatively
larger dimensions on fLowCigar and fLowCigtab, with the less than linear scaling appearing
again. However, on fLowElli and fLowTablet, VD-CMA-ES shows better results as we have
already observed on fLowElli in Figure 4.7.

The reason behind the failure of both VD version on low epsilon-e↵ective dimension
problems is that its restricted covariance matrix, C = D(I + vvT)D, is unable to learn
a good enough approximation of the Hessian matrices of the functions when the non
e↵ective part becomes involved. This can be seen for example on f "LSphere where the
Hessian is of the form 2(BBT + "I

d

) with BBT 6= I
d

that can not be modeled in the VD
representation.

The same reason is behind the poor performance of VD-CMA-ES on fLowElli and
fLowTablet. In fact, the application of B (a sort of rotation) results in the Hessian being
non-representable in the VD framework. However, taking B = I

d

makes VD-CMA-ES
solve both problems in an e�cient manner. This inability to solve the rotated ellipsoid
and tablet functions was already observed in the original VD-CMA-ES paper [Akimoto
et al., 2014]. On the ellipsoid function, the defect of CSA on low e↵ective dimension
problems seems to actually have a positive e↵ect on VD-CMA-ES, in comparison to VD-
TPA-CMA-ES, by adapting larger step-sizes. This can be seen in Figure 4.8 where the
evolution, on a single run, of both the fitness and the step-size on fLowElli is compared
for VD-CMA-ES and VD-TPA-CMA-ES. We see that VD-TPA-CMA-ES adapts smaller
step-sizes, and seems to be subject to a positive feedback e↵ect making the step-size
converge to zero prematurely. Note that the experiments were stopped whenever the
step-size reached a value smaller than 10�40.

We see that TPA-CMA-ES, even though not a large-scale specific algorithm, shows
reasonably good performance ERT-wise. It manages to solve most of the problems for

4.4. PERFORMANCE ASSESSMENT 111

" = 0 " = 10�8 " = 10�7.5f "LSphere

f "LElli

f "LCigar

f "LCigtab

f "LTablet

f "LTwoaxes

Figure 4.10: Expected Running Time (ERT) divided by problem dimension d versus d
on low e↵ective and low epsilon-e↵ective dimension problems on quadratic fLow functions
(when replacing in (4.5)). From left to right: " = 0, " = 10�8 and " = 10�7.5. From
top to bottom: f "LSphere, f "LElli, f "LCigar, f "LCigtab, f "LTablet and f "LTwoaxes. The budget
is 104 ⇥ d and the target values are chosen following (4.23). A total of 19 runs are used
to compute each ERT. The numerical values seen on the plots, coded by the algorithm
colors, show the success rates when lower than 1. No runs where done for TPA-CMA-ES
on dimension 2048.

112 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

" = 0 " = 10�8 " = 10�7.5

f "LRosen

f "LDi↵pow

Figure 4.11: Follow up to Figure 4.10 on the non convex-quadratic fLow functions. Top:
fLowRosen; Bottom: fLowDi↵Pow. For details, see the caption of Figure 4.10.

the three values of " that are considered and shows less than linear scaling on fLowSphere

but not on any other function. However, it remains dominated by SS-TPA-CMA-ES
and even SS-CSA-CMA-ES, and this, despite the CSA defect on low e↵ective dimension
problems from which the latter su↵ers. It also seems to struggle in its scaling, when
" > 0, on functions with a high number of short axes. This is particularly the case on
f "LCigar where the scaling becomes worse for " = 10�8 and " = 10�7.5 as soon as d � 256.
Its main drawback remains the high internal complexity and CPU time which make it
unusable for large scale problems. In our case, d = 2048 took too long running times to
be included in the results.

Comparing the remaining algorithms, we see that SS-TPA-CMA-ES dominates (al-
though sometimes weakly, in the sens that the di↵erences may be non significant) SS-
CSA-CMA-ES on all the functions.

On the low e↵ective dimension functions (" = 0), LM-CMA-ES and SS-CMA-ES
do not show a clear dominance relationship. SS-CMA-ES has better performance on
fLowCigtab and fLowDi↵pow while LM-CMA-ES performs better on fLowCigar and fLowTwoaxes.
Both algorithms show less than linear scaling with the problems dimension d on all
the functions. These results suggest both methods take into account the low e↵ective
dimensions of the problems, and scale accordingly. On SS-CMA-ES, this is to be expected
since the algorithm actually operates on a lower dimension d

ss

which is of the same order
than d

e↵

(see (4.21)). LM-CMA-ES on the other hand seems to take advantage of the
low e↵ective dimension of the problem in an indirect way. Remember that it does not
su↵er from the CSA e↵ect explained above thanks to the use of a success based step-size
adaptation mechanism. Also, it uses a number of vectors, m, which is in our case in
the same order (logarithmic in d) but always larger than d

e↵

to estimate the covariance

4.4. PERFORMANCE ASSESSMENT 113

matrix.

We see that overall, SS-CMA-ES, and in comparison with LM-CMA-ES, seems to
better preserve the scaling that it has for low e↵ective dimensions problems into low
epsilon-e↵ective dimensions. This is with the exception of f "LCigar where it becomes
linear for " = 10�7.5. It is also the case for f "LDi↵pow as the less than linear scaling is
lost and SS-CSA-CMA-ES sees a large increase in ERT for the case " = 10�8. The most
visible example of the better scaling preservation of SS-CMA-ES (if we, again, disregard
problems with no successful run) is f "LElli on which LM-CMA-ES sees an increase in
the scaling that becomes larger than linear, with a more pronounced e↵ect for larger
values of d. On some functions, the di�culty of the problem for LM-CMA-ES seems
to increase around d

ss

= 512 with larger ERTs (f "LElli) or sudden failures to solve the
problems (f "LCigar and f "LTowaxes) due to premature convergence of the step-size (the
smallest accepted value is set to 10�40).

This decrease in performance of LM-CMA-ES might be due, as for VD-CMA-ES, to
the algorithm being unable to have its restricted covariance matrix representation match
enough the Hessian of the problems on the second phases (improvement of the fitness
by optimizing in the non-e↵ective space) when " > 0 to actually solve these problems.
LM-CMA-ES has overall good results (except on f "LDi↵pow) and seems dominated by
SS-TPA-CMA-ES on functions with a relatively high number of important variables for
" = 0. Here, we mean by important variables the variables in fLow (4.5) with relatively,
and in comparison to the other variables in fLow, high associated eigenvalues, not the
e↵ective variables of the global function f "L. One reason for this is it being unable to
learn enough important directions because of the limited number of vectors it uses to
estimate the covariance matrix.

For " > 0, the algorithms require more function evaluations to reach the target values.
Even when the target values are larger/easier for larger values of " (4.23), we have seen
in Figure 4.7 that optimization in the non-e↵ective space is needed in order to reach
these target values. In addition, this non-e↵ective space optimizations are slower, not
only because of the larger number of variables that come into play (all dimensions are
e↵ective) in comparison to a low e↵ective function (first phase of the optimization where
the non e↵ective spaces are quasi-invisible to the algorithm) and the added conditioning
(because of " and the normalizations by d

e↵

and d), but also because of the time needed
to re-adapt the representation of the problem since the algorithms see what is basically a
new function. We also see larger failure rates of both versions of SS-CMA-ES because of
fit enough solutions (given the target value) being absent from the optimization subspace.
In fact, we have already seen in Figure 4.4 that the success probabilities decrease with
increasing ".

Some peculiar results are observed when fLow is the non convex-quadratic Sum of
Di↵erent Powers function (bottom plots of Figure 4.11). In fact, only SS-TPA-CMA-
ES solves f "LDi↵pow with " = 10�8 within the allocated budget. In addition, the case
" = 10�7.5 seems less di�cult than the case " = 10�8 for both SS-CSA-CMA-ES and TPA-
CMA-ES; the most prominent e↵ect is seen on the former which shows a clearly better
scaling of performance when " = 10�7.5 than when " = 10�8. This seems to be a result of

114 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

the way the target value is chosen (4.23). A higher value of " means a larger target value
(the target value of the case " = 10�7.5 is more than double that of the case " = 10�8).
When this increase in the target value is not o↵set by a similar or larger increase in
di�culty, the problem with the higher value of " ends up being easier. We suspect this
to be the case on the larger dimensions of f "LDi↵pow (smaller ratios between d

e↵

and d).
The closer one gets to the optimum, the higher the di↵erences in sensitivity between the
variables of this function become (similar to an increase in the condition number if the
function were convex-quadratic); thus limiting the impact of a higher value of " (which
also impacts these sensitivities). To backup our assumption that this is a result of the
way the target values are chosen, we did some single runs, on this function, of SS-CSA-
CMA-ES in dimension 256 with " = 10�8 and with " = 10�7.5. The single runs, indeed,
show that the algorithm manages to reach lower fitness values (f (xbest) ' 2.683⇥ 10�8)
in the case " = 10�8 than in the case " = 10�7.5 (f (xbest) ' 4.157 ⇥ 10�8) within the
same budget. However, these fitness values reach the target value of the latter scenario
(f

target

' 4.162⇥ 10�8) but not that of the former scenario (f
target

' 2⇥ 10�8).

4.5 Discussion

In this chapter, we start by introducing the notions of e↵ective and of epsilon-e↵ective
dimensions and showing a way of constructing low e↵ective dimension and low epsilon-
e↵ective dimension problems from widely used benchmark functions. The notion of
epsilon-e↵ective dimensionality appears as a natural extension of the notion of e↵ective
dimensionality. However, to the best of our knowledge, this is the first time this no-
tion is formally expressed for large-scale continuous optimization and used to construct
a test set of low epsilon-e↵ective dimension functions. Even though the formalism might
seem non-trivial, this appears to be a reasonable way to define functions of low epsilon-
e↵ective dimension, confirmed by empirical results. This paves the way for the design
of low ("-)e↵ective dimension problems for benchmarking large-scale continuous opti-
mization algorithms, particularly those algorithms that are designed to handle this class
of problems. The following chapter of this thesis will present a di↵erent approach to
large-scale benchmarking that consists in extending an already existing benchmark for
lower dimensions to larger ones. There, the main purpose is to circumvent the large-scale
constraints that make the problems of the original benchmark unpractical for use in a
large-scale setting while preserving most of the properties of these original problems,
including their e↵ective dimensionalities (in our case, full e↵ective dimensionalities).

We, then, introduce SS-CMA-ES, an embedding based algorithm built around the
CMA-ES algorithm to optimize low e↵ective dimension problems. Two variants were
proposed depending on whether the search subspace spanning matrix is orthogonalized
or not. However, the study on the conditioning of the problems and the empirical com-
parison of the perforamnce of the two variants strongly suggest that orthonormalization
does not improve the performance on this specific set of functions.

We also saw that standard large scale optimization algorithms deal with these newly
introduced problems di↵erently. LM-CMA-ES shows very good performance in compar-

4.5. DISCUSSION 115

ison to VD-CMA-ES and even to SS-CMA-ES, even though the latter was specifically
designed to deal with this kind of problems. However, SS-CMA-ES shows a better
robustness with regards to the extension to full e↵ective dimensions and low epsilon-
e↵ective dimensions. Another important result observed in this chapter is the e↵ect of
non-e↵ective dimensions on the Cumulative Step-size Adaptation (CSA) step-size adap-
tation mechanism. The non-e↵ective dimensions provide noise that makes CSA adapt the
step-size more slowly, expecting to deal with a full e↵ective dimension problem. This,
however, is not the case for other step-size adaptation techniques such as Two Point
Adaptation (TPA) and the Median Success Rule (MSR) which do not depend directly
on the problem dimension.

In most of this chapter, d
ss

was set to four times the e↵ective dimension of the problem
d
e↵

, and we have seen that this value of d
ss

su�ces to see good performance on most of
the problems, even when " = 10�8. However, in a black-box setting, one is not expected
to have, beforehand, information on the e↵ective dimension of a problem. In addition,
the choice of d

ss

in this chapter was specifically done to guarantee a certain success-rate
of the algorithm in order to assess the performances of SS-CMA-ES. For SS-CMA-ES
to be competitive in real world applications, a self-adapting d

ss

must be introduced. A
straightforward solution would be to start with relatively low values of d

ss

and then
increase it, for example by, multiplying d

ss

by a certain constant factor on each restart.
The advantage of this approach is that, as we have seen in Section 4.4.5, low values of d

ss

result in small running times and higher failure rates, meaning that the budget wasted
on failed runs because of too small d

ss

might, in many cases, be smaller than the budget
used by standard CMA-ES to solve a low e↵ective dimension problem.

116 CHAPTER 4. EFFECTIVE AND "-EFFECTIVE DIMENSIONS

Chapter 5

The COCO Large Scale Suite

In this chapter, we are interested in the extension of a low/medium dimension bench-
marking suite to a large-scale one while preserving as much of the properties of this suite
and its problems as possible. The suite in question is the BBOB-2009 test suite. The
resulting benchmark problems will have, contrarily to the ones presented in the previ-
ous chapter, full e↵ective dimensionality. The design of a low ("-)e↵ective dimension
test suite will be left for future work. We propose a sparse and well-scaling orthogonal
transformation that can be used as a replacement of full orthogonal (rotation) matrices
that are generally used in benchamrking as a generic tool to introduce non-separability
and coordinate system-independence. This proposed transformation can be computed in
linear time in the problem dimension d and relies on the use of two permutation matri-
ces on either side of an orthogonal block-diagonal matrix. The resulting matrix retains
most of the properties of a full orthogonal matrix and allows us to define a practically
usable large-scale test-bed based on the BBOB-2009 noiseless test-bed. After includ-
ing the sparse transformation in the COCO framework, we benchmark three large scale
algorithms and analyze their performance.

5.1 The BBOB-2009 Testbed

The 24 problems defined in BBOB-2009 rely on the use of raw (base) functions to which
transformations are applied. The notion of raw function designates, generally, functions
that are defined on the simplest of bases (the canonical base).

Let us consider the Ellipsoid function which is a convex-quadratic function with a
diagonal Hessian matrix and eigenvalues uniformly distributed on the log-scale in the
interval [1, 106]. The raw version of the function, on a canonical base, reads:

fElli(x) =
dX

i=1

106
i�1
d�1x2

i

, (5.1)

where we retain d as the problem dimension. On the other hand, one can consider a
di↵erent coordinate system that is defined, for example, as a rotation of the canonical

117

https://github.com/numbbo/coco
https://github.com/numbbo/coco

118 CHAPTER 5. THE COCO LARGE SCALE SUITE

base using a matrix R. Then the corresponding transformed (as contrast to a raw
function) Ellipsoid function would be:

fElli(x) =
dX

i=1

106
i�1
d�1 z2

i

, (5.2)

where z = Rx and R an orthonormal matrix.
The raw functions used in benchamrking present, generally, a number of properties

that algorithms might be able to exploit. Looking at (5.2), we see that the raw ellipsoid
function is separable while its transformed counterpart (5.1) is not (assuming R is not
diagonal). In addition, the function is an even function on the vector level (f (x) =
f (�x), 8x 2 Rd) and on the coordinate level (f (x) = f (x̃), where x̃ is the same as x on
all but one coordinate i where x

i

= �x̃
i

). Furthermore, the optimal solution to (5.1) is
x
opt

= 0
d

and its corresponding fitness is f
opt

= 0.
One of the purposes of the transformations used in BBOB-2009 is to hide such prop-

erties. In addition, parameterized transformations allow to generate multiple instances of
a same problem by changing the values of the transformation parameters. The latter is
done by setting as seed of the Random Number Generator (RNG) a value that is directly
dependent on the instance number. In BBOB-2009, and on most functions, the initial
seed is: f

i

+ 10000⇥ i
i

, where f
i

is the function index (1  f
i

 24) and i
i

the instance
index (in theory, unbounded). Di↵erent seeds are sometimes used for the di↵erent trans-
formations within a same problem, but these seeds remain deterministically tied to the
initial seed.

Ideally, instances of a same problem possess the same properties and similar levels
of di�culty, assuming the notion of di�culty is properly defined. For example, taking
di↵erent orthonormal matrices R in (5.2) results in as many di↵erent instances of the
same, rotated ellipsoid, problem. The instances of (5.2) have the same condition number
(sinceR is an orthonormal matrix, see Lemma 2), so the di�culty related to the condition
number is the same across all instances of this problem. However, the level of non-
separability of the resulting problem depends on the structure of R (full matrix, sparse
matrix, band matrix, block-diagonal matrix...).

5.1.1 The BBOB-2009 Transformations

As previously mentioned, the 24 problems of BBOB-2009 are obtained by applying series
of transformations on a number of raw functions with relatively simple closed formulae.
We now present these transformations and, for each, briefly describe its purpose. We
note fnew : Rd ! Rd the transformed version of a function f .

5.1.1.1 Shift of Parameter and Fitness Spaces

Looking into the functions defined in [Hansen et al., 2009] and found in Table 5.1 and
Table 5.2, we see that most of them have optimal values x

opt

= 0
d

and f
opt

= 0. Such a
property can be exploited by algorithms and is artificial in that it does not reflect what

HTTPS://GITHUB.COM/NUMBBO/COCO

5.1. THE BBOB-2009 TESTBED 119

one expects to see in a real-world problem. For example, and on the spherical functions,
knowing the distance to the optimum of each solution allows to optimally set the step-
size of single parent evolution strategies ((1+1)-ES and (1,�)-ES)[Auger and Hansen,
2011]. In addition, modeling a real world problem such that its optimal parameter and
fitness values are centered in zero suggests these values are known beforehand, reducing
the need to resort to the use of black-box optimization algorithms and removing the
black-box property of the problem itself.

The optimal solution x
opt

and its fitness f
opt

are generated randomly and are used
such that they become the optimal values of the transformed function:

fnew(x) = f (z) + f
opt

, (5.3)

where z = x � x
opt

. When an algorithm queries a solution x, this solution is first
transformed into z = x�x

opt

, then applied to f . Thus, the optimal solution the algorithm
needs to find is x

opt

(since argmin
x2Rd f (x) = 0

d

). On the other hand, f and fnew have
the same optimum x

opt

and only di↵er in the fitness associated to this optimal solution:
0 for the former and f

opt

for the latter.
A penalization function, f

pen

is added to the fitness on a number of functions to insure
that the optimum is within the domain of interest [�5, 5]d by penalizing solutions outside
of it:

f
pen

(x) =
dX

i=1

max (0, |x
i

|� 5)2 . (5.4)

5.1.1.2 Linear Transformations

Linear transformations of the form

fnew(x) = f(Mx) , (5.5)

where depending on the composition and shape (sparsity) of M 2 Rd⇥d, the trans-
formation is used in order to either introduce non-separability and coordinate system
independence or control the condition number of a problem.

Diagonal matrices M are used to control the condition number of problems, and
are noted ⇤↵, where the ith diagonal element equals ↵

1
2

i�1
d�1 . On the other hand, the non-

separability is introduced using full orthogonal matricesM in (5.5), notedR andQ (some
problems require two di↵erent orthogonal matrices) in [Hansen et al., 2009] generated
using the Gram-Schmidt process on matrices with standard normally distributed entries.

5.1.1.3 Non-Linear Transformations

Two non-linear transformations are defined in [Hansen et al., 2009] and used in order to
reduce the regularity and symmetry of the problems.

120 CHAPTER 5. THE COCO LARGE SCALE SUITE

The raw functions are defined as relatively simple functions of x, or linear transfor-
mations of x. The function T osz (5.6) is used to prevent such linearity and regularity in
x by applying a non-linear oscillation:

T osz(x) = sign(x) exp(x̂+ 0.049(sin(c
1

x̂) + sin(c
2

x̂))) , (5.6)

where:

x̂ =

(
log(|x|) if x 6= 0

0 otherwise
, (c

1

, c
2

, sign(x)) =

8
><

>:

(10, 7.9, 1) if x > 0

(5.5, 3.1, 0) if x = 0

(5.5, 3.1,�1) otherwise

, (5.7)

On the other hand, T asy introduces a non-symmetry between the positive and negative
values of its parameters:

T asy

�

(x) =

(
x1+�

i�1
d�1

p
x, if x > 0

x, otherwise
. (5.8)

In COCO, T asy is used both on solutions x 2 Rd and on fitness values that are in R.
When used on a solution x 2 Rd, it is applied on each coordinate of that solution, so
T asy

�

(x) = xnew 2 Rd, where xnew

i

= T asy

�

(x
i

), 81  i  d.
The Rastrigin problem of COCO (f

15

) is a good example of a problem where all
the transformations defined in this section appear. The definition of the raw Rastrigin
function, that we note fRastrigin

raw

, can be found in Table 5.1. The transformed Rastrigin
function that defines problem f

15

is:

f
15

(x) = fRastrigin

raw

(z) + f
opt

, (5.9)

where z = R⇤10QT asy

0.2

(T osz (R (x� x
opt

))) and R and Q two d⇥ d orthogonal matrices.

5.2 The Large-Scale Extension

In this chapter, we want to design a computationally reasonable COCO large scale suite
based on the BBOB-2009 test-bed [Hansen et al., 2009]. Among the transformations
presented in Section 5.1.1, only the application of an orthogonal matrix R or Q does not
scale well in dimension. The rest scale linearly in d. Thus, iand n order to define the
large scale test-bed, we need to replace the full orthogonal matrices with more e�cient
transformations.

We want the introduced transformation matrix to retain some of the properties of
a full-orthogonal matrix without having the shortcoming of quadratic time and space
complexities. Thus we define three main criteria that it needs to satisfy in order to
be both a reasonable replacement and be applicable in a large-scale setting: (i) a cost
criterion, (ii) a non-separability criterion and (iii) an orthogonality criterion.

HTTPS://GITHUB.COM/NUMBBO/COCO
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco

5.2. THE LARGE-SCALE EXTENSION 121

1. Cost: In a large scale setting, both the memory needed to store the matrix and
the time complexity needed to apply it to each solution need to scale well with the
dimension of the problem. Generally, large-scale algorithms are identified as such
thanks to a cost that scales well in the problem dimension. So, to remain usable in
practice, the function evaluation of the test-bed should not be a bottleneck cost-
wise. Ideally, the cost of applying the transformation should be linear or close to
linear (d1+" with "⌧ 1), or at most in d log(d).

2. Non-separability: The main purpose of using the orthogonal matrices is to in-
troduce a generic way of generating non-separable problems from separable ones.
This is particularly practical since many of the raw functions are separable (see
Tables 5.1 and 5.2). Even though we can not reproduce the same level of non-
separability as a full matrix with a sparse one, we still want the transformed problem
to remain non solvable by algorithms that exploits separability, partial separability
or particular shapes of the Hessian matrix (when it exists); or, at least, make it
costly for algorithms to do so. Ideally, we want to have a parameter/set of parame-
ters that allows to control the level of non-separability of the transformed problem
in comparison to the original, non-transformed, problem.

3. Orthogonality: Since the matrices R and Q are orthogonal, they preserve the
eigenvalues and condition number (when they exist) of the original problem (see
Lemma 2). Thus, these matrices are not used to change these features of the
function, the latter is done via another diagonal matrix ⇤↵ that can be directly
applicable in large-scale because of its linear complexity.

The replacement transformations in our case are permuted orthogonal block-diagonal
matrices whose costs, in time and space, scale linearly in the problem dimension d and
that comply with the above defined criteria.

5.2.1 The Core Transformation Matrix

Before settling on using orthogonal block-diagonal matrices as the core transformation
matrix, other sparse matrices were considered. First, we know from the criteria that
we defined that diagonal matrices can not work. Not only do they not introduce non-
separability, they are simply a special case of the conditioning matrix ⇤↵ with ↵ = 1.
Such a matrix being the identity matrix in d (I

d

) it has a neutral e↵ect on the problem.
One idea of orthogonal sparse matrices is the one used in Chapter 4 in order to define
low e↵ective dimension problems. The idea consists in using rank-deficient matrices with
a majority of the columns being 0

d

vectors. However, in the context of this chapter, we
wish to retain as much of the original properties of the noiseless BBOB-2009 test-bed
as possible, including the full e↵ective dimensionality. Thus, the suite we define in this
chapter will consist of full e↵ective dimension problems.

Another idea was to consider band matrices which are matrices that have all their
non-zero elements constrained in a fixed number of the diagonals of the matrix. Let B

122 CHAPTER 5. THE COCO LARGE SCALE SUITE

be a matrix of size d⇥ d. We say that B is a band matrix with a lower bandwidth of k
1

and an upper bandwidth of k
2

when for any i, j, 1  i, j  d:

i� j > k
1

or j � i > k
2

=) b
i,j

= 0 , (5.10)

where b
i,j

designates the element at the ith row and jth column of B. A tri-diagonal
matrix has all its entries at 0 that are not on the main diagonal or the two diagonals
adjacent to the main diagonal.

However, band matrices can not be orthogonal unless the band width is 0, and thus
are diagonal matrices (contradicts Property 2). To see this, we take the simple example
of a 3⇥ 3 tri-band matrix:

B =

0

@
b
1,1

b
1,2

0
b
2,1

b
2,2

b
2,3

0 b
3,2

b
3,3

1

A . (5.11)

For B to be orthogonal, the following system of equations needs to hold:
8
><

>:

b
1,1

b
1,2

+ b
2,1

b
2,2

= 0

b
2,2

b
2,3

+ b
3,2

b
3,3

= 0

b
2,1

b
2,3

= 0

. (5.12)

By setting (because of the third equality) either b
2,1

= 0 or b
2,3

= 0, we can propagate
the zeros to b

1,2

or b
3,2

respectively and end up with b
i,j

= 0, 8i 6= j since the band matrix
is expected to be full that is all the elements within the band are di↵erent from 0 (or
replace the =) in (5.10) by an ()).

This proof can be generalized to any d⇥ d, d � 3 tri-diagonal matrix. In fact, setting
b
2,1

= 0 means that b
i+1,i

= 0, 8i, 1  i  d � 1 in order for the band matrix to remain
full. For the same reason, having b

1,2

= 0 means that b
i,i+1

= 0, 8i, 1  i  d�1. As with
the 3⇥ 3 matrix, we obtain the same result with a similar reasoning by setting b

2,3

= 0
instead b

1,2

= 0 (we have a symmetry around the diagonal).
For a generalized band matrix with k

1

lower bandwidth and k
2

upper bandwidth,
when k

1

+ k
2

+ 1  d, the same propagation principle can be used to show that for
the matrix to be full-band and orthogonal, we necessarily need k

1

= k
2

= 0 (diagonal
matrix). Since k

1

+ k
2

+ 1  d, we have, in our system of equations resulting from
the orthogonality of the matrix (similar to (5.12)) at least one equation with only one
product in the left-hand size:

b
k1+1,1

b
k1+1,j

= 0 , (5.13)

with j  d. This equations allows to eliminate either the diagonal b
i+k1,i or the diagonal

b
i,i+j�k1 . Once this is done, another diagonal can be eliminated which is involved in,
respectively, either of the following equations:

b
k1,1bk1,j�1

+ b
k1+1,1

b
k1+1,j�1

= 0 , (5.14)

where b
k1+1,1

= 0, or
b
k1+2,2

b
k1+2,j

+ b
k1+1,2

b
k1+1,j

= 0 , (5.15)

HTTPS://GITHUB.COM/NUMBBO/COCO

5.2. THE LARGE-SCALE EXTENSION 123

where b
k1+1,j

= 0. The process can, then, be carried on until only the diagonal is left.
A special case of (non-full) band matrices that can be non-diagonal and still orthog-

onal are block-diagonal matrices. A block-diagonal matrix B is a matrix of the form:

B =

0

BBB@

B
1

0 · · · 0
0 B

2

· · · 0

0 0
. . . 0

0 0 · · · B
nb

1

CCCA
, (5.16)

where n
b

� 1 is the number of blocks and B
i

, 1  i  n
b

are square matrices of sizes
s
i

⇥ s
i

satisfying s
i

� 1 and
P

nb
i=1

s
i

= d. The 0 designate matrices whose entries are all
0’s and that are of the appropriate size in (5.16) (depending on the s

i

’s).
Property 1 relies upon the number of non-zero entries of B:

dX

i=1

dX

j=1

bi,j 6=0

=
nbX

i=1

s2
i

, (5.17)

where
bi,j 6=0

is the indicator function that equals 1 when b
i,j

6= 0 and 0 otherwise. If we
simplify and consider blocks of equal sizes s, bar possibly the last block (in case s does
not divide d evenly), then n

b

= dd/se. We end up with at most d ⇥ s non-zero entries.
Then, in order to satisfy Property 1 with a number of non-zero elements linear in d, s
needs to be independent of d. In the case of di↵erent block-sizes, the same reasoning can
be applied to the largest block-size instead of s. That is we require max

1inb
(s

i

) to be
independent of d.

Concerning Property 2, we only need the matrices B
i

in (5.16) to be non-diagonal in
order for the functions that are originally separable to become non-separable since non
zero o↵-diagonal elements introduce correlations between the variables.

For Property 3, given the shape of B (block-diagonal), it is necessary and su�cient
to have orthogonal blocks B

i

for B to be orthogonal. We generate the matrices B
i

the
same way the matrices R and Q are generated in [Hansen et al., 2009]. Thus, we end up
with each matrix B

i

uniformly distributed in the set of orthogonal matrices of the same
size (the orthogonal group O(s

i

)). As in [Hansen et al., 2009] and in Section 5.1.1, we
first generate square matrices with entries i.i.d. standard normally distributed. Then we
apply the Gram-Schmidt process to orthogonalize these matrices. The resulting B

i

, and
thus B, are orthogonal and satisfy Property 3.

The orthogonal block-diagonal matrice B is the core of the orthogonal transformation
matrix of our large scale test-suite that is to replace full orthogonal matrices. The
description above allows us to identify its two parameters:

• d, defines the size of the matrix which coincides with the problem dimension,

• {s
1

, . . . , s
nb
}, the list of block sizes corresponding to, respectively, {B

1

, . . . ,B
nb
},

where n
b

is the number of blocks.

Since the problem dimension is defined by the problem, only the block-sizes remain as a
free parameter that needs to bet set.

124 CHAPTER 5. THE COCO LARGE SCALE SUITE

5.2.2 The Permutations

The block-diagonal matrices defined in Section 5.2.1 introduce dependencies between the
variables of each block. However, originally independent variables that do not fall into the
same block remain independent. In addition, given the way these blocks are structured,
they apply exclusively to adjacent variables. So, if we only use a block-diagonal matrix
B, the indexes of the variables would have a direct impact with regards to the application
of B.

Such a property can be exploited by algorithms. One way of doing so would, then, be
to learn a restricted block-diagonal matrix where the major learning e↵ort would be on
the free parameter of the transformation, namely, the block-sizes (s

i

)
1inb

. In fact, and
as we will see further in this chapter, even algorithms that learn an exclusively diagonal
matrix such as sep-CMA-ES [Ros and Hansen, 2008] can manage to solve block-diagonal
dependencies under some block condition-number conditions.

Ideally, to have a realistic representation of a black-box scenario, the problems we
define should not have properties that can be easily exploited by algorithm designers
even when these properties are known.

We apply two permutation matrices on both sides of B and the result completes the
transformation matrix as follows:

R = P
left

BP
right

, (5.18)

where B 2 Rd⇥d is an orthogonal block-diagonal matrix and P
right

,P
left

2 {0, 1}d⇥d are
the two permutation matrices; that is, matrices that have one and only one non-zero
element (equal to 1) on each row and each column. A permutation matrix can also be
seen as an identity matrix I

d

whose rows/columns were permuted.
The purpose behind applying these two permutations is to hide the block-diagonal

structure of B and make it even harder to exploit while retaining the properties granted
by the block-diagonal matrix. The additional cost of applying a permutation matrix is
linear in the size of this matrix. As we will see in Section 5.6.3, we can simply substitute
the permutation matrices by vectors and use these vectors for indexing the variables. The
non-separability dictated by Property 2 is satisfied since the number of non-zero entries
in B and in R is the same, meaning that R can not be diagonal, thus it necessarily
introduces dependencies between the variables. Finally, Property 3 remains satisfied
as permutation matrices are orthogonal, and the product of orthogonal matrices is an
orthogonal matrix. So R in (5.18) is an orthogonal matrix that preserves the eigenvalues
and condition number of the functions it is applied on (when existent).

The e↵ect of a permutation matrix on another matrix depends on the order of the
matrices in the product. In (5.18), P

left

shu✏es the rows of B while P
right

shu✏es its
columns. In order to better understand the e↵ect of P

left

and P
right

on a function, we
suppose a separable quadratic function f and transform it using R = P

left

BP
right

into
f
R

, that is define [Ait Elhara et al., 2016]:

f
R

(x) = f (z) = zTDz , (5.19)

HTTPS://GITHUB.COM/NUMBBO/COCO

5.2. THE LARGE-SCALE EXTENSION 125

where D is a diagonal matrix and z = P
left

BP
right

x. By replacing z in (5.19), we obtain

f
R

(x) = (P
left

BP
right

x)T DP
left

BP
right

x

= xTPT
right

BTPT
left

DP
left

BP
right

x

= x̃TBTD̃Bx̃

= z̃TDz̃

= f (z̃) ,

(5.20)

where x̃ = P
right

x, D̃ = PT
left

DP
left

and z̃ = Bx̃. Thus, if we look into the equivalent
problem that was transformed by only B (without the permutations): xTBTDBx, we see
that the permutations simply replace x by x̃ = P

right

x and D by D̃ = PT
left

DP
left

. Thus,
the permutation P

right

shu✏es the variables that the optimization algorithm sees and
queries. The performance of a good optimization algorithms is expected to be invariant
to this permutation, since the order in which the variables are presented should not be
relevant. On the other hand, P

left

, by applying to D, shu✏es the variables in which
the raw function is defined, that is the variables of the function before applying R. As
a result, and coupled with B, this permutation determines which coe�cients are used
within the blocks defined by B and, consequently, the block condition numbers and the
di�culty of the problem (see the Section 5.4).

5.2.2.1 Generating the Random Permutations

In what follows, we call a swap the exchange of positions of two variables. A swap
involves two variables, a first swap variable, i, and a second swap variable, j, that will
(the second swap variable j) generally depend, in some way, on the choice of the first
swap variable. Thus, a permutation is the order obtained after applying a given number
of swaps, that we will note n

s

. Ideally the parameterization of the permutations should
allow to have a certain level of control over the di�culty of the resulting problem. Since
we define a permutation as a succession of swaps, the first parameter of the permutation
would be the number of swaps n

s

. Then, it will also has any parameter that intervenes
in the swap strategy.

A first simple idea would be to apply a random uniformly chosen permutation of the
variables, which is equivalent to swapping each of the d � 1 first variables once with a
random uniformly chosen second swap variable j ⇠ U ({1, . . . , d}), where U(S) designates
the uniform distribution in the set S. The number of random uniform swaps one applies
to obtain the final permutation is a parameter that we can vary. However, the problem
with this approach is that the distance each variable travels is subject to a high amount of
variance for a low number of swaps (variance is maximized on a uniform distribution). In
fact, in the context of applying B too, and depending on which variables are swapped, the
resulting problem can di↵er substantially. Swapping variables which belong to the same
block has a significantly smaller e↵ect on a separable problem than swapping variables
that do not (belong to the same blocks).

In order to reduce this variance, we considered other strategies where, instead of
having j ⇠ U ({1, . . . , d}), we make j follow a Zipf-like distribution. That is a discrete

126 CHAPTER 5. THE COCO LARGE SCALE SUITE

power law where the probability of each element is inversely proportional to its rank. In
our case, we define the rank of a value j by its distance to i and generalize the distribution
with a parameter ↵ giving the distribution of j:

Pr
�
j = j̃|i = ĩ

�
=

8
><

>:

1

|̃i� j̃|↵
⇥ 1
P

d

k=1,k| 6=˜i |̃i� k|�↵

if j̃ 2 {1, . . . , d} and j̃ 6= ĩ

0 otherwise

,

(5.21)
where the parameter ↵ sets the penalization of the distance to the first swap variable.
This approach was also tried in a variant where we first sample the blocks of the variables
to be swapped similarly to (5.21) and then chose the variables within them uniformly at
random.

The main problem with the Zipf-like distribution based approach was the relatively
high number of swaps needed to obtain problems that are, separability-wise, significantly
di↵erent from the raw problems transformed by B.

In order to introduce more change in the shape of the block-matrix while keeping
control of this amount of change, we want each variable to be moved, in average, a fixed
distance. That is, in the produced permutation (after the n

s

swaps are done), we want to
have variables in positions which are, in average, a fixed distance away from their starting
positions. In order to reduce the number of swaps needed to obtain a significant change
in the shape of the block-matrix, we go back and use uniform distributions of the second
swap variables. However, and in order to retain control over these travel distances, we
introduce a parameter to the uniform distribution, the swap range r

s

that delimits the
support of the uniform distribution. We call this truncated uniform swaps.

For a given number of variables (problem dimension) d and a swap range r
s

and given
i, the first swap variable, j follows the distribution:

j ⇠ U ({l
b

(i), . . . , u
b

(i)}r {i}) , (5.22)

where l
b

(i) = max(1, i � r
s

) and u
b

(i) = min(d, i + r
s

). In all what follows, real valued
swap ranges are rounded down to the closest integer (the fractional part is ignored).

Roughly speaking (if we consider an infinite number of variables), each variable should
travel, in average, around r

s

/2 from its initial position. More precisely, we need to take
into account the borders imposed by the finite number of variables and the absence
of a circular placement of the variables (the first and last variables are not considered
neighbors and have a distance of d� 1 between them). Let us note the average distance
traveled by a variable i avg

dist

(i). If we suppose r
s

 (d � 1)/2, and consider the case
i� 1 < d� i, that is the first swap variable is closer to the first variable (or is this first
swap-variable) than to the last variable (we can obtain the other case by symmetry) and

HTTPS://GITHUB.COM/NUMBBO/COCO

5.2. THE LARGE-SCALE EXTENSION 127

that i < r
s

+ 1 (the value is otherwise straightforward to compute):

avg
dist

(i) =
1

r
s

+ i� 1

i+rsX

k=1,k 6=i

|i� k|

=
1

r
s

+ i� 1

⇣ rsX

k=1

k +
i�1X

k=1

k
⌘

=
1

2 (r
s

+ i� 1)

⇣
r
s

(r
s

+ 1) + i (i� 1)
⌘

=
1

2 (r
s

+ i� 1)

⇣
i2 � i+ r2

s

+ r
s

⌘
.

(5.23)

Then, we investigate the values of i that minimizes this average distance by deriving with
regards to i:

@ avg
dist

@i
=

1

2(r
s

+ i� 1)2

⇣
(2i� 1)(r

s

+ i� 1)� (i2 � i+ r2
s

+ r
s

)
⌘

=
1

2(r
s

+ i� 1)2

⇣
i2 + 2(r

s

� 1)i� (r2
s

+ 2r
s

� 1)
⌘

.

(5.24)

The discriminant of the numerator � = 8r2
s

=)
p
� = 2

p
2r

s

. Thus the solutions:
i
1

= 1 � (
p
2 + 1)r

s

< 0 that we discard and i
2

= 1 + (
p
2 � 1)r

s

that we retain and
which is the index that minimizes the average distance since the derivative is negative
for values smaller than i

2

and positive for values larger than i
2

.
We replace in the expression of avg

dist

(i) in (5.23) and find the minimal value:

min(avg
dist

(i)) = (
p
2� 1)r

s

+
1

2
. (5.25)

Given the behavior of the derivative, the maximal value is reached in the extremes of
the interval (i = 1 or i = d) or when i is at least r

s

away from the extremes and reads
(replacing in (5.23):

max(avg
dist

(i)) =
1

2
r
s

+
1

2
. (5.26)

This leaves us with average distances in the interval [(
p
2� 1)r

s

+
1

2
,
1

2
r
s

+
1

2
] which has

a size smaller than 10% of r
s

.
Algorithm 3 describes the process of generating a permutation vector p using a series

of the truncated uniform swaps described in (5.22).
The parameters used in Algorithm 3 are:

• d, the number of variables, which does not need to be set since it is defined by the
problem

• n
s

, the number of swaps. We choose values proportional to d to make the last
parameter the only free one,

128 CHAPTER 5. THE COCO LARGE SCALE SUITE

Algorithm 3 Truncated Uniform Permutations [Ait Elhara et al., 2016]
Inputs: problem dimension d, number of swaps n

s

 d, swap range r
s

.
Output: a vector p 2 Nd, defining a permutation.

1: p (1, . . . , d)
2: generate a uniformly random permutation ⇡
3: for 1  k  n

s

do
4: i ⇡(k), x

⇡(k)

as first swap variable
5: l

b

 max(1, i� r
s

)
6: u

b

 min(d, i+ r
s

)
7: S {l

b

, . . . , u
b

}r {i}
8: Sample j uniformly in S
9: swap p

i

and p
j

10: end for
11: return p

• r
s

, the swap range and eventually the only free parameter. The swap range can be
equivalently defined in the form r

s

= br
r

dc, with r
r

2 [0, 1] (r
s

= 0 is interpreted
as no swaps). Given r

s

, the average distance traveled by a variable in a single swap
is delimited by (5.25) and (5.26).

In Algorithm 3, we use the random permutation ⇡ to take the indexes of the variables
in a random order and avoid any bias with regards to which variables are selected as first
swap variables when less than d swaps are carried. We start with p initially the identity
permutation, then we apply the swaps defined in (5.22) taking p

⇡(1)

, p
⇡(2)

, . . . , p
⇡(ns),

successively, as first swap variable (that replace i in (5.22)). This way, as long as n
s

� d,
each variable is guaranteed to be swapped at least once. Values of n

s

larger than d can be
dealt with by cycling with a new random order of the variables ⇡. The resulting vector
p is returned as the desired permutation.

A di↵erent implementation was considered where Line 9 in Algorithm 3 swaps, in-
stead, p�1

i

with p�1

j

, where p�1 is the, dynamically updated, inverse permutation of p.
However, this variant has shown, empirically, no significant di↵erences to the version
implemented in Algorithm 3, so we only consider the latter.

5.3 Transformation-Parameter Impact

Now that we have decided upon the transformation matrix that we want to apply to the
raw functions, namely a permuted orthogonal block-diagonal matrix (5.18), and identified
its free parameters, (s

i

)
1inb

, n
s

and r
s

, we are interested in how these parameters, in
addition to the imposed problem dimension d, a↵ect the transformation matrix and more
generally, the transformed problem.

HTTPS://GITHUB.COM/NUMBBO/COCO

5.3. TRANSFORMATION-PARAMETER IMPACT 129

Figure 5.1: Left: Proportion of variables that are moved from their original position
in p (p

i

6= i) when applying Algorithm 3 versus problem dimension d. Each graph
corresponds to a di↵erent swap range r

s

indicated in the legend. Solid lines: n
s

= d;
Dashed lines: n

s

= d/2. The case r
s

= 0 means no swap is performed (p = (1, . . . , d)).
The averages of 51 repetitions per data point are shown. Standard deviations (not shown)
are at most 10% of the mean. Right: ERT of sep-CMA-ES divided by dimension on
the function defined in (5.36) versus block condition number c

b

for di↵erent values of
the block size s shown in the legend. The overall condition number of the problem is
set to c

o

= 108, the problem dimension to d = 1024 and the target value for computing
the ERT is 10�8. Three runs are done per data point, each with a budget of 105 ⇥ d
function evaluations. The numbers with the color codes represent the success rates of the
corresponding configurations in s (same color) when these are lower than 1. The dashed
gray lines show a linear scaling.

5.3.1 Impact of the Number of Swaps on the Proportion of
Moved Variables

Looking into Algorithm 3, we see a possibility for the final permutation to contain vari-
ables that remain in their positions (p

i

= i) or end up further than r
s

away from their
original position (|p

i

� i| > r
s

). This is due to the fact that variables can be involved
in swaps more than once (or, more precisely, more than dn

s

/de times) by being second
swap variables. Ideally, we want to guarantee than most of the variables move from their
original positions.

In the left plot of Figure 5.1, we look into the proportion of variables that are a↵ected
by the swap strategy and end up in positions di↵erent from their initial ones.

We see that as the problem dimension d increases, the ratio of moved variables (p
i

6= i)
approaches what seem to be stationary values at 100% and 70% for respectively n

s

= d
and n

s

= d/2 swaps. These stationary values are independent of the relative swap
range r

r

(we remind that r
s

= br
r

dc), except for relatively small dimensions. This is
particularly the case when n

s

= d. This probability is also a↵ected by the actual value
of the swap range r

s

: the larger the swap range, the smaller the probability of a variable
being swapped back to its original position. This is due to the fact that the probability
of swapping a variable back to its original position increases as the swap range decreases

130 CHAPTER 5. THE COCO LARGE SCALE SUITE

since the support of the truncated uniform distribution is smaller. Thus, for large enough
dimensions (which are the values we are most interested in in our context), only few
variables are left unmoved. We decide to fix the number of swaps to n

s

= d, leaving only
r
s

as a free parameter when generating the permutation matrices P
left

and P
right

.

5.3.2 Impact of the Parameters on the Structure of the Trans-
formation Matrix

In this part, we are interested in the e↵ect of (s
i

)
1inb

, r
s

and d on the shape of the
sparse orthogonal matrix defined in (5.18). To this end, we define a measure: sum of
distances to the diagonal of the non-zero elements and investigate its evolution with the
aforementioned parameters. This measure, (d

ToD

) is defined as follows:

d
ToD

(R) =
dX

i=1

dX

j=1

r(i,j) 6=0

|i� j| , (5.27)

where r
(i,j)

is element (i, j) of R and
r(i,j) 6=0

is the indicator function on the condition
r
(i,j)

6= 0.
Our reasoning is that this measure allows us to estimate how di↵erent from a diagonal

matrix the transformed matrix is, which gives us an idea of the non-separability of the re-
sulting problem (since a diagonal transformation matrix introduces no non-separability).

In Figure 5.2, we show a normalized d
ToD

of a simplified matrix R = P
left

B with
blocks of equal sizes. This normalized distance is plotted against the values of d, for
di↵erent values of s and r

s

.
For a full square matrix of size d, we compute the corresponding d

ToD

by replacing in
(5.27) and find:

d
ToD

(full) =
1

3
d(d� 1)(d+ 1) . (5.28)

From this equation, we deduce the value of d
ToD

for a block-diagonal matrix B with
blocks of equal sizes s:

d
ToD

(B) =

�
d

s

⌫
s

3
(s� 1)(s+ 1) +

1

3
c(c� 1)(c+ 1) , (5.29)

where c = d� s⇥ bd/sc accounts for a potential last block of size c < s.
For a better normalization of d

ToD

, we consider the following model:

d̂
ToD

(↵, d, s, r
r

) = ↵
0

(d+ ↵
1

)↵2 ⇥ (s+ ↵
3

)↵4 ⇥ (r
r

+ ↵
5

)↵6 ⇥ (
s

r
r

d
+ ↵

7

)↵8 , (5.30)

where ↵ = (↵
0

, . . . ,↵
8

) are the free parameters of the fit to be optimized. A simpler
model with ↵

8

= 0 was considered but resulted in no good fit.
We, then, use CMA-ES to find an optimal fit on ↵ of the empirical data by minimizing

↵
opt

= argmin
↵

#dataX

i=1

⇣
log
⇣
d̂
ToD

(↵, di, si, ri
r

)
⌘
� log

�
d
ToD

(Ri)
�⌘2

, (5.31)

HTTPS://GITHUB.COM/NUMBBO/COCO

5.3. TRANSFORMATION-PARAMETER IMPACT 131

Figure 5.2: Normalized sum of distances d
ToD

(B) (see (5.27)) of a full block-diagonal
matrix after applying a truncated uniform permutation (Algorithm 3), P

left

B, with n
s

=
d and equal block-sizes versus problem dimension d. Di↵erent block-sizes s and swap-
ranges r

s

are considered and shown in the legend. Each plotted symbol is the average of
19 repetitions. The same data is shown in the two plots with di↵erent normalizations.
Left: normalization by d⇥ s; Right: normalization by d⇥ s⇥ r

s

.

where Ri is the ith sampled matrix and di, si, ri
r

are its corresponding parameter values.
We use the logarithm in order to avoid biasing in favor of larger values of d (which result
in larger d

ToD

). The first fit obtained by optimizing over all the variables ↵
0

, . . . ,↵
8

reads

0.15⇥ (d� 2.25)2.03 ⇥ (s+ 0.07)0.95 ⇥ (r
r

� 0.00)1.01 ⇥ (
s

r
r

d
+ 2.85)1.25 . (5.32)

Then, we fix the values of some ↵’s: ↵
1

= 0 (since dimensions are expected to be signifi-
cantly larger than 2), ↵

3

= 0 and ↵
5

= 0 and exclude them from the next optimization
to end up with:

0.15⇥ d2.04 ⇥ s0.94 ⇥ r1.03
r

⇥ (
s

r
r

⇥ d
+ 2.83)1.24 . (5.33)

With the next round of rounding values and fixing them: ↵
2

= 2,↵
4

= 1,↵
6

= 1 resulting
in:

0.11⇥ d2 ⇥ s⇥ r
r

⇥ (
s

r
r

d
+ 3.91)1.27 . (5.34)

And finally: ↵
0

= 0.1,↵
7

= 4,↵
8

= 1.3:

d
ToD

(P
left

B) ⇡ 0.1⇥ d2 ⇥ s⇥ r
r

⇥
✓

s

r
r

d
+ 4

◆
1.3

. (5.35)

We see a quadratic dependency on the problem dimension d and a linear one on the
block-size s. In addition, the last term tends to be constant when s = O(d) which means
the scaling of d

ToD

is d⇥ s2. This is the same scaling as that of the non-permuted matrix
(P

left

= I
d

and/or r
s

= 0) (5.29), and thus also becomes a scaling in d3 for a single-block
matrix (s = d) (5.28). The e↵ect of the permutation can be estimated by the di↵erence
between the value in (5.35) and the value using the expression for the non permuted
block-matrix (5.29).

132 CHAPTER 5. THE COCO LARGE SCALE SUITE

5.3.3 Measure of Di�culty

In order to better quantify the e↵ect of the transformation matrix defined in (5.18), we
estimate the di�culty associated with a problem by the Expected Running Time (ERT)
of sep-CMA-ES on this problem, that is the expected number of function evaluations
needed (by the restarted algorithm) to reach a target value for the first time [Hansen
et al., 2010a]. The reason for this choice is that because of its restricted, diagonal,
covariance matrix model, sep-CMA-ES only manages to solve problems with either no
dependencies between the parameters or limited ones. It performs well when solving
separable and block-separable functions as long as the condition numbers of the blocks
are relatively small. Also, it is invariant to the coordinate permutation P

right

which allows
us to restrict our study to P

left

and B. Thus, by comparing a performance to that on the
original, non transformed and separable problem, we get an idea of how non-separable
the problem becomes; helping us decide on the parameter choice. Ultimately, we aim for
parameter values that make the problem unsolvable by sep-CMA-ES in reasonable time,
since otherwise, the properties of the problems can be exploited.

5.4 Impact of the Block Condition Number

In this section, we are interested in the e↵ect of the block-diagonal matrix B on the
di�culty of a problem as defined in Section 5.3.3. This di�culty is tightly related to the
condition numbers in the Hessian matrix of the transformed problem, within the blocks
defined by B. That is, the maximal ratio between the eigenvalues in the blocks that are
delimited by B.

To do so, we define a specific, ellipsoid-like, convex-quadratic function that suits
exactly the block structure of our matrix B:

f
B,D

(x) = xTBTDBx , (5.36)

where D 2 Rd⇥d is a diagonal matrix and B an orthogonal block-diagonal matrix with
blocks of the same size s. In order to have control over both the overall condition number
that we note c

o

and the block condition number c
b

of the Hessian matrix of (5.36), we
define the diagonal entries of D:

D
i,i

= c
(i%s
s�1)

b

⇥ c
bi/sc
ib

, (5.37)

where % designates the modulo operator, that is the rest of euclidean division, and c
ib

a
constant that ensures the overall condition number is kept under control by setting

c
o

= c
b

⇥ c
(nb�1)

ib

, (5.38)

where n
b

is the number of blocks in B. In D, the eigenvalues are distributed uniformly
in the logarithmic scale in what corresponds to the blocks of B. Since B is orthogonal,
D preserves its eigenvalues and thus condition numbers (block and overall).

HTTPS://GITHUB.COM/NUMBBO/COCO

5.5. PARAMETER CHOICE FOR THE BENCHMARKS 133

In the right plot of Figure 5.1, we show the ERT of sep-CMA-ES while varying the
block size s and the block condition number c

b

of the function defined in (5.36). The
overall condition number c

o

remains, however, constant to allow comparison between
problems of seemingly similar di�culty (we expect the standard CMA-ES to perform
similarly on these problems). The graph for s = 1 serves as a baseline comparison to
the case where no transformation matrix is applied (entries of the then diagonal B are
�1 and 1). Note that in such a case (s = 1), the value of the parameter c

b

is irrelevant
since each blocks contains a single element and thus has an internal condition number of
1 (the element in question is di↵erent from 0).

We see a linear scaling between the ERT and the block condition number (compare
with the dashed gray line). In addition, when keeping the same overall condition num-
ber c

o

, we see a reverse in the e↵ect of the block-size on the di�culty of the problems
depending on the block condition-number c

b

. For smaller values (c
b

< 102), smaller
block-sizes result in easier problems (although the di↵erence in ERT is relatively small)
while larger values (c

b

� 102) show a negative correlation of the ERT with the block-size.
For c

b

> 104, the algorithm does not manage to solve the problem regardless of the block
size (s = 1 excluded). We also see little di↵erence in the di�culty of the problem on
di↵erent low values of c

b

( 102), except when s 2 {2, 4}.
The block condition number has a direct e↵ect on the di�culty of the problem as we

define it. In fact, even without the permutations, a high enough block condition-number
results in a di�cult problem for sep-CMA-ES. This, despite the fact that sep-CMA-
ES manages to solve the non-transformed version of the problem with the same overall
condition number c

o

(horizontal dark blue for s = 1) and the fact that the transformation
matrix is orthogonal.

5.5 Parameter Choice for the Benchmarks

In this section, we set the remaining two parameters of our transformation P
left

BP
right

,
namely the block-size s and swap range r

s

or its multiplier r
r

. Out of the properties we
needed our transformation to satisfy that were defined in Section 5.2, only the orthogo-
nality property (Property 3) is independent of the parameter setting of R = P

left

BP
right

.
Thus, both the cost of applying R (Property 1) and the level of non-separability intro-
duced (Property 2) should be taken into consideration when deciding on the parameter
setting to adapt. We have seen in Section 5.4 that only introducing non-separability
might not be enough for the problem to be non-trivial and hard to solve for algorithms
such as sep-CMA-ES.

5.5.1 Initial Guess

The cost of applyingR depends solely onB and (s
i

)
1inb

since P
left

and P
right

have a pre-
determined cost of d (used as indexes) and thus would not increase any linear complexity.
If we assume that all blocks have the same size s (when block-sizes are di↵erent, we can
simply apply the same reasoning about complexity on the largest block), B would contain,

134 CHAPTER 5. THE COCO LARGE SCALE SUITE

in theory, s ⇥ d non-zero elements than need to be stored. The application of B also
scales in s⇥ d as we will see in detail in Section 5.6.3. Thus, for cost of s (memory and
number of operations) linear in d, we need s to be in O(1) of d. This implies a value
that does not scale with d, complexity-wise; the smaller the better. However, we still
need the blocks to be large enough to impact the di�culty of the problem, which results
in contrasting objectives. The largest considered orthogonal matrix in BBOB-2009 is of
size 40, so a parameter choice s = min(d, 40) seems reasonable, limiting the scaling of
the cost beyond dimension 40.

Then we set the swap range r
s

. We are interested in the di�culty of the resulting
problem in order to satisfy Property 2. Clearly, the swap range should not be too small
in comparison to the block-size, since otherwise, the block structure of B would not
change significantly enough when applying P

left

and P
right

. Complexity-wise however, the
permutations have a constant cost of d regardless of r

s

; so r
s

can be set dependent of d. Let
us consider an ellipsoid function with a fixed overall condition number. Since we consider
bounded block-sizes, when the problem dimension tends to infinity, the block condition-
numbers (similarly to the ones defined in Section 5.4) tends to 1. Having a constant swap
range will maintain this small block condition-number, since the eigenvalues associated
with the swapped variables would tend, as d!1, to be similar and the distance between
swapped variables is determined by r

s

which defines the largest distance in a single
swap. On a function like the ellipsoid where the eigenvalues are ordered and uniformly
distributed in the logarithmic scale, in order to obtain a constant expected ratio between
the eigenvalues of the swapped variables that does not tend to 1 as d ! 1, we need
r
r

= r
s

/d to be constant. Thus the expected relative distance between the swapped
variables remains invariant with the dimension. A relative swap range r

r

of a third of the
dimension seems reasonable. Smaller values would result in the problem keeping most of
its block-structure; an exploitable feature. Larger values have the reverse e↵ect, risking
to lose too much of the original block-structure and fall in a case similar to that of the
non-truncated uniform swaps (all other variables are equally likely potential second swap
variables) distribution where we lack control over the resulting matrix and di�culty of
the resulting problem.

5.5.2 Empirical Validation on sep-CMA-ES

In order to confirm the parameter choice suggested above, we investigate the evolution of
the di�culty of the problem, as we define it in Section 5.3.3, with di↵erent values of these
parameters. In fact, we expect the transformed problems to remain non-solvable by sepa-
rable algorithms such as sep-CMA-ES despite the restricted model of the transformation
matrix (no longer a full rotation matrix as is the case in BBOB-2009).

First, we look into the performance of sep-CMA-ES on a transformed Ellipsoid func-
tion since we based our reasoning about the choice of r

s

on it. In this case, we consider
the following problem

g(x) = fEllipsoid

raw

(z), (5.39)

where z = P
left

BP
right

x, �(d) = min(1, 40/d) and fEllipsoid

raw

as defined in Table 5.1. The

HTTPS://GITHUB.COM/NUMBBO/COCO

5.5. PARAMETER CHOICE FOR THE BENCHMARKS 135

Figure 5.3: ERT of sep-CMA-ES divided by problem dimension d on the transformed
ellipsoid function (5.39) versus the swap range r

s

for di↵erent values of the problem
dimension d and the block-size s. A budget of 105 ⇥ d is used with 3 runs on each
configuration. and a target value set to 10�8. The setting r

s

= 0 means no swap is
applied (P

left

= P
right

= I
d

). The numbers that are shown on the plots, coded by color
for the corresponding block-size, are for success rates when smaller than 1.

normalizing term �(d) is used to obtain, given a target precision, a similar di�culty level
across the dimensions. It also allows, in principle, to not increase the distance in the
objective space between the initial solution and the target solution by increasing the
dimension. We use the minimum in order to be backward compatible with BBOB-2009
where the largest dimension is 40.

In Figure 5.3, the ERT of sep-CMA-ES on (5.39) is plotted against di↵erent values
of r

s

, s and d.

We see that both s and r
s

increase the ERT as their values increase. sep-CMA-ES
manages to solve all non-permuted problems (r

s

= 0), even on the larger block-sizes. The
overall condition number is 108 which means the block condition-numbers are relatively
low for all block-sizes, c

b

⇡ 106/nb ; and do not exceed 103. For small swap-ranges, the

136 CHAPTER 5. THE COCO LARGE SCALE SUITE

ERTs do not seem to change, however, we notice a change in phase in the ERT between
r
s

= bd/33c and r
s

= bd/10c where the ERTs start increasing. For r
s

= bd/3c, sep-CMA-
ES solves only problems with up to s = 4 across the tested dimensions.

The permutation P
left

changes the ratios between the eigenvalues associated to each
set of dependent variables, where the dependencies are defined by the block-diagonal
matrix B. That is variables are dependent if they belong to the same block,/their indexes
coincide with indexes in B that are contained in the same block. This change in ratios
a↵ects the condition number within each block of dependent variables, an e↵ect similar
to that witnessed when manually varying the block condition numbers of non-permuted
block-diagonal matrices in Section 5.4. As seen in Section 5.4, this increases the di�culty
of the problem for sep-CMA-ES.

In Figure 5.4, we do the same experiments as in Figure 5.3 on transformed versions
of the Cigar, Tablet (also known as the Discus function), Sum of Di↵erent Powers and
Rosenbrock functions (see the raw functions in Table 5.1 with z = P

left

BP
right

x).

On the Sum of Di↵erent Powers function, the results are quite similar to what was
observed on the transformed Ellipsoid function while the generalized Cigar and Tablet
functions seem to be di�cult enough with the block-matrix transformation alone. The
only successes we see on these last two functions (for s > 1) are for s = 2 with the smaller
swap ranges.

On the other hand, the Rosenbrock function is not convex quadratic and is multi-
modal. It is also non-separable in its raw form, partially separable with a tri-band
structure where each variable interact directly only with the two variables that are adja-
cent to it. We see failed runs of sep-CMA-ES even on the raw function (s = 1, r

s

= 0).
However, we still observe an e↵ect of s and r

s

on the ERT to a lesser extent because of
the noise provided by the failed runs. We also notice the changes in phase between the
same two values of the swap range r

s

= bd/33c and r
s

= bd/10c, but only for relatively
higher block-sizes. For r

s

= bd/3c, successes are observed only for block-sizes as high as
s = 8.

On the generalized Tablet and Cigar functions, and for d = 128, 4 eigenvalues are
di↵erent from the rest (larger and smaller respectively). In the raw function, these
eigenvalues are adjacent in the first 4 positions (see Table 5.1). Thus, the largest block
condition number is equal to the overall condition number, except for the case s 2 {1, 2, 4}
and n

s

= 0 where it is equal to 1. This is why the only all-successful runs are observed
on these configurations. Further confirmation of this observation on Cigar and Tablet
functions with smaller overall condition numbers can be found in Figure 5.6 and Figure 5.5
respectively. This is also a good illustration of the e↵ect and importance of P

left

on the
structure and di�culty of the problems since we know that sep-CMA-ES is invariant to
the e↵ect of P

right

.

All unsuccessful runs in Figures 5.3,5.4, 5.6 and 5.5 terminate with the stop flag tolup-
sigma. This indicates (taken from the documentation of the CMA-ES algorithm (https:
//pypi.python.org/pypi/cma): “creeping behavior with usually minor improvements”.
We interpret this as the model of sep-CMA-ES being unable to fit these problems. Thus,
we consider that sep-CMA-ES fails to solve the problem in this scenario, which is the

HTTPS://GITHUB.COM/NUMBBO/COCO
https://pypi.python.org/pypi/cma
https://pypi.python.org/pypi/cma

5.5. PARAMETER CHOICE FOR THE BENCHMARKS 137

Figure 5.4: ERT of sep-CMA-ES divided by d on transformed functions in dimension
128. From left to right, top to bottom: Cigar, Tablet (or Discus), Rosenbrock and
Sum of Di↵erent Powers functions. The problems are defined as f (x) = f

raw

(z), with
z = P

left

BP
right

x and taking the corresponding f
raw

from Table 5.1. The experimental
setup is the same as in Figure 5.3 except on the transformed Rosenbrock functions where
the ERT is computed from 19 runs (because of higher variance).

desired result in our case.

Following these experiments, we see that a parameter setting r
s

= bd/3c and s = 16 is
su�cient to make the problems hard enough that sep-CMA-ES can not exploit the block-
diagonal structure. This parameter setting is also in accordance with the considerations
taken in the beginning of this section so we can safely choose

r
s

= bd/3c, s = min(d, 40) . (5.40)

138 CHAPTER 5. THE COCO LARGE SCALE SUITE

Figure 5.5: Similar to Figure 5.2 but only considering the Tablet (Discus) functions with
di↵erent overall condition numbers and di↵erent dimensions.

5.6 The Large Scale Benchmark

5.6.1 Changes to the Raw Functions

Before applying the new transformation matrix (5.18) in place of full orthogonal matrices,
we make two modifications to the raw functions in BBOB-2009. Table 5.1 describes all

HTTPS://GITHUB.COM/NUMBBO/COCO

5.6. THE LARGE SCALE BENCHMARK 139

Figure 5.6: Same as Figure 5.5 on the transformed Cigar function.

the raw functions used in the large-scale testbed. This testbed is derived from the BBOB-
2009 functions [Hansen et al., 2009] with two major changes. Note that these changes are
set such that the problem definitions remain backward compatible with the problems in
BBOB-2009. What we mean by backward compatible here is that the problems expressed
in this chapter are the same as the ones defined in BBOB-2009 when d  40 .

The first change, and as previously described, is that we normalize the raw functions
such that the di�cultly associated to a same target values is similar across the dimensions.
The backward compatibility is insured by making sure that �(d) = 1 when d  40. In
our case, we choose:

�(d) = min(1, 40/d) . (5.41)

This normalization was only applied to functions whose original definitions do not include
a similar normalization by the dimension. Thus, it (the normalization) is omitted from
the raw definitions of fWeierstrass

raw

, fScha↵ersF7

raw

, fGriewank�Rosenbrock

raw

, fSchwefel

raw

and fGallagher

raw

in
Table 5.2.

The second change is that the Cigar, Discus (Tablet) and the Sharp Ridge functions
(see new raw definition in Table 5.1) are generalized to have a (to some extent given the

140 CHAPTER 5. THE COCO LARGE SCALE SUITE

rounding) constant ratio between short axes and long axes. The backward compatibility
with BBOB-2009 is preserved by setting this ratio to 1/40 (non-integer values are rounded
to the closest larger integer).

5.6.2 The Test-Suite Problem Definitions

For each function, we consider the same transformations that are used in [Hansen et al.,
2009] except the full orthogonal matrices that we replace by R = P

left

BP
right

. Sec-
tion 5.1.1 describes these transformations that are, except for the orthogonal transfor-
mations, the same than those found in [Hansen et al., 2009]. The full list of the 24 large
scale problems of the benchmark is shown in Tables 5.3 and 5.4 where we can see the list
of transformations applied for each problem. The definitions of the raw functions used
in these problems are presented in Tables 5.1 and 5.2.

We keep the functions in their respective categories (as defined in [Hansen et al.,
2009]) since the introduced transformation satisfies Property 2 and Property 3.

5.6.3 Implementation Details and Cost of Applying the Trans-
formation

We now present some of the implementation details (mostly technical) that allow to store
and compute the transformation matrix R = P

left

BP
right

in an e�cient way.
In order to apply the transformation on a solution x and obtain its transformed

counterpart z, we naturally need to compute for each i 2 {1, . . . , d}:

z
i

= [Rx]
i

= [P
left

BP
right

x]
i

, (5.42)

where [x]
i

designate the ith coordinate of x, P
left

and P
right

are permutation matrices
and B is a block-diagonal matrix (orthogonality is not important here) with block-sizes
(s

i

)
1inb

.
We store B (5.16) in a list of vectors B̄ = (b̄

1

, b̄
2

, . . . , b̄
d

) that are the rows of the
matrices B

1

, . . . ,B
nb

that compose B (5.16). We denote b̄
i,j

the coordinate j of b̄
i

and
b
k

the kth row of B.
Since P

left

and P
right

are permutation matrices, they can, completely, be described
using permutation vectors such as the ones generated by Algorithm 3. Thus, we store
P

left

and P
right

as two index vectors pleft and pright respectively. They are index vector
in the sens that they are used to index the coordinates to be permuted: znew

i

= z
pi .

We also keep two lists of d elements, srow and jfirst. These lists are defined for each
k 2 {1, 2, . . . , d} as follows [Ait Elhara et al., 2016]:

• srow
k

is the size of the vector b̄
k

, which allows to only access as many entries per
vector as there are, in theory, non-zero ones (no extra accessing or checking for
entries that are, given the block-diagonal nature of B, set to 0)

• jfirst
k

is the number of leading zeros, excluding the eventual zeros in b̄
k

, of b
k

. It
allows to know the original position of each element b̄

k,j

in b
k

and is needed in
order to multiply b̄

k,j

by the corresponding coordinate of x as we will see in (5.45).

HTTPS://GITHUB.COM/NUMBBO/COCO

5.6. THE LARGE SCALE BENCHMARK 141

fSphere

raw

(z) = �(d)⇥
P

d

i=1

z2
i

fEllipsoid

raw

(z) = �(d)⇥
P

d

i=1

106
i�1
d�1 z2

i

fRastrigin

raw

(z) = �(d)⇥
⇣
10d� 10

P
d

i=1

cos (2⇡z
i

) + kzk2
⌘

fLinearSlope

raw

(z) = �(d)⇥
⇣P

d

i=1

⇣
5|sf5

i

|� sf5
i

z
i

⌘⌘
,

with sf5
i

= sign(xopt

i

)10
i�1
d�1

fAttractiveSector

raw

(z) = �(d)⇥ T osz

✓P
d

i=1

⇣
sf6
i

z
i

⌘
2

◆
0.9

,

with sf6
i

=

(
102 if z

i

⇥ xopt

i

> 0

1 otherwise

fStepEllispoid

raw

(z) = �(d)⇥ 0.1max
⇣
|ẑ

1

|/104,
P

d

i=1

102
i�1
d�1 z2

i

⌘

ẑ defined in Table 5.3

fRosenbrock

raw

(z) = �(d)⇥
P

d

i=1

⇣
100 (z2

i

� z
i+1

)2 + (1� z
i

)2
⌘

fDiscus

raw

(z) = �(d)⇥
⇣
106
Pdd/40e

i=1

z2
i

+
P

d

i=dd/40e+1

z2
i

⌘

fBentCigar

raw

(z) = �(d)⇥
⇣Pdd/40e

i=1

z2
i

+ 106
P

d

i=dd/40e+1

z2
i

⌘

fSharpRidge

raw

(z) = �(d)⇥
⇣Pdd/40e

i=1

z2
i

+ 100
qP

d

i=dd/40e+1

z2
i

⌘

fDi↵erentPowers

raw

(z) = �(d)⇥
P

d

i=1

|z
i

|(2+4⇥ i�1
d�1)

Table 5.1: Definitions of the raw functions used in the large-scale test-bed. These raw
functions are obtained from BBOB-2009 [Hansen et al., 2009] by assuming all trans-
formations are identity transformations (orthogonal matrices are I

d

, f
opt

= 0,...). The
problem dimension is d and we suppose all problems have, as input, a solution x

opt

that
will become the optimal solution of the generated problem (needed in order to properly
define sf5

i

and sf6
i

). In addition, a normalizing-by-dimension factor , �(d), is applied and
the Cigar, Discuss, and Sharp Ridge functions are generalized. All the functions of this
table are multiplied by �(d) = min(1, 40/d) such that a constant target value (e.g., 10�8)
represents the same level of di�culty across all dimensions d � 40. That is no additional
di�culty because of the larger number of variables and the fact that the functions defined
here are sums of d values. We use the variable z instead of x since these functions are
meant to be applied to the transformed variables.

Thus, in total we need to store B̄,pright,pleft, jfirst and srow which result in a memory cost
in the order of

4d+
nbX

i=1

s2
i

= 4d+ n
b

avg(s2
i

) , (5.43)

where avg(s2
i

) the average value of s2
i

.
If we consider equal block-sizes s

i

= s, we obtain:

n
b

avg(s2
i

) ⇡ n
b

avg(s
i

)2 = d⇥ avg(s
i

) ⇡ s⇥ d (5.44)

142 CHAPTER 5. THE COCO LARGE SCALE SUITE

fWeierstrass

raw

(z) = 10

1

d

dX

i=1

11X

k=0

1

2k
cos(2⇡3k(z

i

+ 1/2))� f
0

!
3

,

with f
0

=
P

11

k=0

1

2k
cos(⇡3k)

fScha↵ersF7

raw

(z) =

1

d� 1

d�1X

i=1

⇣q
sf17
i

+
q
sf17
i

sin2

�
50(sf17

i

)1/5
�⌘
!

2

,

with sf17
i

=
p

z2
i

+ z2
i+1

fGR

raw

(z) =
10

d� 1

d�1X

i=1

⇣ sf19
i

4000
� cos

�
sf19
i

�⌘
+ 10 ,

with sf19
i

= 100(z2
i

� z
i+1

)2 + (z
i

� 1)2

fSchwefel

raw

(z) = �1

d

P
d

i=1

z
i

sin
⇣p

|z
i

|
⌘
+ s

f20

,

with s
f20

= 4.189828872724339

fGallagher

raw

(z) =

10�

npeaks

max
i=1

w
i

exp
�
� 1

2d
(z� y

i

)T(z� y
i

)
�
!

2

,

with n
peaks

> 2 ,

w
i

=

8
<

:
1.1 + 8⇥ i� 2

n
peaks

� 2
if 2  i  k

10 otherwise
,

y
i

are the local optima (to be set) and x
opt

= y
1

fKatsuura

raw

(z) = �(d)⇥ 10

d2

dY

i=1

⇣
1 + i

32X

j=1

|2jz
i

� [2jz
i

]|
2j

⌘
10/d

1.2

� 1

!

fLR

raw

(z) = �(d)⇥
⇣
min

� dX

i=1

(x̂
i

� µ
0

)2, s
dX

i=1

(x̂
i

� µ
1

)2
�

+ 10
�
d�

dX

i=1

cos(2⇡z
i

)
�⌘

with x̂ = 2 sign(x
opt

)⌦ x , x
opt

= µ
0

1
d

(+�) ,
⌦ the element-wise multiplication,
1
d

(+�) 2 {�1, 1}d, entries chosen uniformly at random,

and s = 1� 1

2
p
d+ 20� 8.2

, µ
0

= 2.5, µ
1

= �
r

µ2

0

� 1

s

Table 5.2: Follow up to Table 5.1. The abbreviations GR for composite Griewank-
Rosenbrock and LR for Lunacek bi-Rastrigin are used. The functions that are inherently
normalized by d are not additionally multiplied by �(d).

HTTPS://GITHUB.COM/NUMBBO/COCO

5.6. THE LARGE SCALE BENCHMARK 143

f
1

(x) = fSphere

raw

(z) + f
opt

z = x� x
opt

f
2

(x) = fEllispoid

raw

(z) + f
opt

z = T osz (x� x
opt

)
f
3

(x) = fRastrigin

raw

(z) + f
opt

z = ⇤10T asy

0.2

(T osz (x� x
opt

))

f
4

(x) = fRastrigin

raw

(z) z = sf4
i

T osz (x� x
opt

) ,

+100f
pen

(x) + f
opt

sf4
i

=

(
10⇥ 10

1
2

i�1
d�1 if z

i

> 0 and i odd

10
1
2

i�1
d�1 otherwise

f
5

(x) = fLinearSlope

raw

(z) + f
opt

z
i

=

(
x
i

if xopt

i

x
i

< 25

xopt

i

otherwise
,

x
opt

= z
opt

= 5⇥ 1
d

(+�)
f
6

(x) = fAttractiveSector

raw

(z) z = Q⇤10R(x� x
opt

)
+f

pen

(x) + f
opt

f
7

(x) = fStepEllispoid

raw

(z) + f
opt

ẑ = ⇤10R(x� x
opt

) ,

z̃
i

=

(
b0.5 + ẑ

i

c if ẑ
i

> 0.5

b0.5 + 10ẑ
i

c/10 otherwise
,

z = Qz̃

f
8

(x) = fRosenbrock

raw

(z) + f
opt

z = max

1,

p
d

8

!
(x� x

opt

) + 1
d

,

z
opt

= 1
d

f
9

(x) = fRosenbrock

raw

(z) + f
opt

z = max

1,

p
d

8

!
Rx+

1

2
1
d

,

z
opt

= 1
d

f
10

(x) = fEllispsoid

raw

(z) + f
opt

z = T osz(R(x� x
opt

))
f
11

(x) = fDiscus

raw

(z) + f
opt

z = T osz(R(x� x
opt

))
f
12

(x) = fBentCigar

raw

(z) + f
opt

z = RT asy

0.5

(R((x� x
opt

))
f
13

(x) = fSharpRidge

raw

(z) + f
opt

z = Q⇤10R(x� x
opt

)
f
14

(x) = fDi↵erentPowers

raw

(z) + f
opt

z = R(x� x
opt

)

Table 5.3: Transformed functions used in the large-scale test-bed as an extension to
[Hansen et al., 2009]. The functions T osz and T asy are defined in Section 5.1.1 (respectively
(5.6) and (5.8)) and R is an orthogonal (rotation) matrix. The raw definitions of the
functions can be found in Table 5.1.

and the number of entries scales linearly in d only if avg(s
i

) = O(1) (as previously stated
in Section 5.5.1).

Thanks to the associativity of the matrix product, we can make the vector pleft

permute the rows of B (and also B̄) but the vector pright permute the coordinates of x,
instead of the columns of B, thus z

i

would satisfy:

z
i

=

end(p

left
i)X

j=start(p

left
i)

b̄
p

left
i ,j�start(p

left
i)

x
p

right
j

, (5.45)

144 CHAPTER 5. THE COCO LARGE SCALE SUITE

f
15

(x) = fRastrigin

raw

(z) + f
opt

z = R⇤10QT asy

0.2

(T osz (R (x� x
opt

)))
f
16

(x) = fWeierstrass

raw

(z) z = R⇤1/100QT osz(R(x� x
opt

))

+
10

d
f
pen

(x) + f
opt

f
17

(x) = fScha↵ersF7

raw

(z) z = ⇤10QT asy

0.5

(R(x� x
opt

))
+10f

pen

(x) + f
opt

f
18

(x) = fScha↵ersF7

raw

(z) z = ⇤1000QT asy

0.5

(R(x� x
opt

))
+10f

pen

(x) + f
opt

f
19

(x) = fGriewankRosenbrock

raw

(z) + f
opt

z = max

1,

p
d

8

!
Rx+

1

2
1
d

,

z
opt

= 1
d

f
20

(x) = fSchwefel

raw

(z) x̂ = 2⇥ 1
d

(�
+

)⌦ x ,
+100f

pen

(z/100) + f
opt

ẑ
1

= x̂
1

, ẑ
i+1

= x̂
i+1

+ 0.25(x̂
i

� xopt

i

)
z = 100(⇤10(ẑ� x

opt

) + x
opt

) ,
x
opt

= 4.2096874633/21
d

(+�)
f
21

(x) = fGallagher

raw

(z) + f
pen

(x) + f
opt

n
peaks

= 101 ,

z = C1/2

i

R(x� y
i

) + y
i

,

C
i

= ⇤̂↵i/↵
1/4

i

,

[⇤̂↵i]
j

= [⇤↵i]
⇡1(j), 1  j  d ,

↵
1

= 10002 ,

for i � 2, ↵
i

= 1000
2

⇡2(i)�2
npeaks�2

f
22

(x) = fGallagher

raw

(z) + f
pen

(x) + f
opt

same as f
21

with n
peaks

= 21 ,
f
23

(x) = fKatsuura

raw

(z) + f
pen

(x) + f
opt

z = Q⇤100R(x� x
opt

)
f
24

(x) = fLunacekbi�Rastrigin

raw

(z) z = Q⇤100R(x̂� µ
0

1
d

)
+104f

pen

(x) + f
opt

Table 5.4: Follow up to Table 5.3. On the Gallagher functions, ⇡
1

2 Nd and ⇡
2

2 Nnpeaks�2

are two random uniform permutations of the vectors (1, . . . , d)T and (1, . . . , n
peaks

� 2)
respectively. The ith element of a permutation is designated by ⇡(i).

where start(i) = jfirst
i

and stop(i) = start(i) + srow
i

allow to loop through the elements of
the row in question. The computational cost of the transformation is then at worse in
O(d⇥max

i

(s
i

)).

5.6.4 CPU Timing

We now look into the actual cost of computing the introduced transformation in practice
in terms of CPU time. Since we are in a large scale setting, we are particularly interested
in its scaling with the problem dimension d. For this part, we use the C version of the
COCO code (https://github.com/numbbo/coco).

Figure 5.7 shows the scaling of the CPU time per function evaluation spent in the
transformation defined in (5.42) on all coordinates and implemented as explained in

HTTPS://GITHUB.COM/NUMBBO/COCO
https://github.com/numbbo/coco
https://github.com/numbbo/coco

5.6. THE LARGE SCALE BENCHMARK 145

Figure 5.7: Average (over 104 samples) time needed to apply the transformation matrix
(5.18) to a solution in micro-seconds, µs, divided by dimension for di↵erent values of
the dimension d and of the block-size s. The solid black line shows the average cost of
computing the raw ellipsoid function (see Table 5.1) in each dimension.

Section 5.6.3. We want to estimate the additional cost coming from the application
of the permuted orthogonal block-diagonal transformation for di↵erent values of the
parameters defining this transformation. The cost of applying the permutations depends
only on d, so the parameters we consider are d and s (we assume blocks of equal sizes).
The initialization cost is not taken into account here (which also depends on n

s

) since
the initialization is done only once per run.

We compute the averages of the time spent within the transformationR = P
left

BP
right

,
that is the time between the start and the end of the code block responsible for the trans-
formation. The transformations are sequentially applied in COCO (no overlapping) and
the code is run sequentially (no parallelization) so the result is, in theory, independent
of which other transformations are in play. We also show, for comparison, the average
CPU time spent computing the raw Ellipsoid function (fElli

raw

) on the same machine (solid
black graph). These experiments were run on a MacBook Pro with a 2.3GHz quad-core
Intel Core i7 processor and 8 GB of RAM.

As expected from (5.45), the needed CPU time scales linearly with d when the block
size is kept constant and linearly with the block-size s for each given dimension. The
linear scaling in s can be deducted from the similar distances, in a log-scale, between the
graphs for di↵erent block-sizes since we considered block-sizes that increase by a constant
factor 2. Given that we choose s to be constant for d � 40 (see Section 5.5), the overall
CPU usage of the transformation is linear in d, which satisfies the cost related Property 1.

A linear scaling can still be unusable in practice because of a large constant multiplier.
In Figure 5.7, the transformation with the largest considered block-size s = 160 takes
around 40 times longer than computing the raw function value. We see a factor of around

https://github.com/numbbo/coco

146 CHAPTER 5. THE COCO LARGE SCALE SUITE

10 for the chosen maximal block-size in (5.40), s = 40 which we deem reasonable.

5.7 Benchmarking Large-Scale Algorithms

In this section, we benchmark three stochastic large-scale continuous optimization algo-
rithms sep-CMA-ES, LM-CMA-ES and VD-CMA-ES (see Section 2.2.1.3) on the newly
introduced large scale coco test-bed (see Section 5.6).

Regarding the choice of problem dimensions, we choose to start by the largest manda-
tory dimension in BBOB-2009, which is d = 20 and then increase the dimension by dou-
bling it. This allows backward compatibility with BBOB-2009 and makes the large-scale
suite complement the standard dimension one. In Fact, the chosen parameter setting of
s and �(d) in the large scale test-bed makes it so that for d  40, the problems are the
same than the ones in BBOB-2009; more so since the same methods are used to generate
the orthogonal matrices in BBOB-2009 and the blocks of the block diagonal matrix in
large scale (in dimensions 20 and 40, a single block is used and �(d) = 1).

Figure 5.8 shows the scaling plots of the three algorithms in problem dimension.
These plots show the Expected Running Time (ERT) to reach a target precision of 10�8

divided by dimension.
We note that functions f

1

to f
5

are separable functions that do not use the transfor-
mation matrix P

left

BP
right

. However, on dimensions larger than 40 the scaling factor �(d)
is applied and the Discus and Cigar functions no-longer have a single short, respectively
long, axis.

On uni-modal separable functions (f
1

, f
2

and f
5

), we see the regular behavior of
the three algorithms as they scale linearly in the problem dimension (compare with the
horizontal dashed gray lines) except for a slight less-than-linear scaling of LM-CMA-ES
on the sphere function and a more pronounced one for VD-CMA-ES on f

5

. The remaining
two functions are multi-modal with a number of local optima exponential in the problem
dimension which makes the problem hard for the considered algorithms even without the
rotations.

All but two (the original Rosenbrock function f
8

and the Schwefel function f
20

) of
the remaining problems (non-separable f

6

, . . . , f
24

) use between one and two instances
of the transformation matrix introduced in this chapter. We see that the algorithms
manage to solve only a few of these problems. Mainly sep-CMA-ES and VD-CMA-ES
(up to d = 160) on f

6

, all three algorithms on f
8

, VD-CMA-ES and LM-CMA-ES on f
9

and LM-CMA-ES on f
11

and f
12

. In addition, sep-CMA-ES manages to produce some
successful runs on f

17

(not all runs thought since the ERT is larger than the budget).
In Figure 5.9 and Figure 5.10, we look into another set of interesting plots generated

using the COCO post-processing code. These figures, generally referred to as cumulative
distribution figures, show the evolution of the proportion of problems solved by the
algorithm on the y-axis versus the number of function evaluations divided by dimension
shown in the x-axis [Hansen et al., 2010b]. In this context, a problem is defined by a
target precision on a function (more precisely, a given instance of a function). In COCO, a
total of 50 target precisions (di↵erence to the optimal f -value) are chosen per instance of

HTTPS://GITHUB.COM/NUMBBO/COCO
https://github.com/numbbo/coco
https://github.com/numbbo/coco

5.7. BENCHMARKING LARGE-SCALE ALGORITHMS 147

20 40 80 160 320 640

0

1

2

3

0.7.EetD.3

1 6Shere

VeS-C0A-E6

L0-C0A-E6

VD-C0A-E6

20 40 80 160 320 640
0

1

2

3

4

5

0.7.Eeta.3

2 Ellipsoid separaEle

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

3 5astrigin separable

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

4 6kew 5astrigin-Bueche seSar

20 40 80 160 320 640

0

1

2

0.7.beta.3

5 LLnear slope

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

6 Attractive sector

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

7 6teS-elliSsoid

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

8 5RsenbrRck Rriginal

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

9 5RsenbrRck rRtated

20 40 80 160 320 640
0

1

2

3

4

5

0.7.Eeta.3

10 Ellipsoid

20 40 80 160 320 640
0

1

2

3

4

5

0.7.betD.3

11 Discus

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

12 Bent cigar

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

13 6harS ridge

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

14 6um of different Sowers

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

15 5astrigin

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beWa.3

16 WeiersWrass

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

17 6Fhaffer F7, Fondition 10

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

18 6Fhaffer F7, Fondition 1000

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

19 Griewank-5RsenbrRFk F8F2

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

20 6chwefel x*sin(x)

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

21 Gallagher 101 peaks

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

22 Gallagher 21 peaks

20 40 80 160 320 640
0

1

2

3

4

5

0.7.beta.3

23 .atsuuras

20 40 80 160 320 640
0

1

2

3

4

5

0.7.EetD.3

24 LunDcek EL-5DVtrLgLn

VeS-C0A-E6 f24Rnly

L0-C0A-E6 f24Rnly

VD-C0A-E6 f24Rnly

Figure 5.8: Expected running time divided by dimension versus dimension of sep-CMA-
ES, LM-CMA-ES and VD-CMA-ES on the 24 functions of the COCO large-scale test-bed
introduced in this chapter. The first 5 instances of each problem are used with a budget
of 104 ⇥ d (shown by the smaller markers). The rest is the same as Figure 3.11 with a
di↵erent set of dimension values and without the artificial algorithm (no data yet).

https://github.com/numbbo/coco

148 CHAPTER 5. THE COCO LARGE SCALE SUITE

a function; these targets are uniformly spaced on the log-scale between 10�8 and 102. The
plots are shown for each function separately and aggregated over the di↵erent instances
of a same function. One can also generate plots aggregated over di↵erent functions of
a same group (separable, low condition number...) or simply over all the functions to
have a global overview of the performance. However, we avoid aggregating results on
di↵erent dimensions and rely on plots such as the ones in Figure 5.8 to study the scaling
of an algorithm with the problem dimension (the same figure can be plotted for di↵erent
target values which is actually done when not comparing algorithms).

First, in Figure 5.9, we compare the results on rotated and non-rotated version of the
Ellipsoid and Rosenbrock functions. We see that LM-CMA-ES is the least a↵ected by the
orthogonal transformation, managing to have similar performance on both functions. sep-
CMA-ES, however, su↵ers greatly from the rotation (actually, the matrices are orthogonal
not necessarily proper rotation matrices so rotation matrices here include both proper
rotation with a determinant of 1 and improper rotations with a determinant of �1) of
the search-space managing to e�ciently solve the non-rotated versions and barely solving
a small proportion of problems on f

9

and none on f
10

. VD-CMA-ES seems to take a
longer time to adapt its covariance matrix on f

10

and su↵ers greatly from the dimension
but manages to still solve f

9

except for d = 640.

On other rotated functions shown in Figure 5.10, other than what was already said on
Figure 5.8, that is LM-CMA-ES handles well the transformation matrix, VD-CMA-ES
to a lower extent and su↵ering significantly from increasing d and sep-CMA-ES being
unable to solve the rotated problems; we mainly notice that f

6

is surprisingly hard for
LM-CMA-ES when VD-CMA-ES and especially sep-CMA-ES perform well on it.

As to be expected, sep-CMA-ES only manages to solve non-rotated problems except
on the Attractive Sector where it solves the problem with a quasi linear scaling (see
Figure 5.8). In addition, the rotated problems seem to be so hard, separability wise, that
sep-CMA-ES reaches only a few of the targets. The good performance on f

6

is mainly
due to the relatively low overall condition number of the function, and thus even lower
block-condition numbers (see right plot of Figure 5.1).

Note that, because of the parameter setting chosen, the permuted block-separability
only appears for d > 40 so the results on dimensions 20 and 40 are the same as the
ones we would see in BBOB-2009. LM-CMA-ES retains its quite good performance
on some of the functions by managing to learn enough short axes to reach the target
values. However, it still su↵ers on functions such as the Attractive Sector and Sharp
Ridge despite its good performance on the Bent Cigar function which requires a similar
approach.

VD-CMA-ES seems to overall su↵er more from the increasing dimensionality. This
is probably due to the constant number of vectors it adapts in its covariance matrix
contrarily to LM-CMA-ES where this number of vectors is dependent on the problem
dimension. We expect the recently introduced generalized version of VD-CMA-ES, VkD-
CMA-ES [Akimoto and Hansen, 2016b], to perform better on this test-suite, especially
with the even more recent proposed k (number of vectors) online adaptation scheme
[Akimoto and Hansen, 2016a].

HTTPS://GITHUB.COM/NUMBBO/COCO

5.7. BENCHMARKING LARGE-SCALE ALGORITHMS 149

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

40-D

20-D

160-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DEEoE - f10
4 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

40-D

320-D

160-D

80-D

20-DEEoE - f10
5 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

40-D

160-D

20-D

80-DEEoE - f10
5 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

20-D

160-D

640-D

320-D

40-D

80-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

640-D

320-D

80-D

160-D

20-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

40-D

80-D

20-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

640-D

160-D

80-D

40-D

20-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

640-D

20-D

320-D

160-D

80-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

20-D

80-D

160-D

40-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure 5.9: Evolution of the proportion of solved problems with number of function
evaluations divided by the problem dimension.

The rest of the plots on the remaining functions can be found on the Appendix of
this Thesis.

150 CHAPTER 5. THE COCO LARGE SCALE SUITE

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

40-D

20-D

80-D

160-D

640-D

320-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

160-D

40-D

20-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

160-D

40-D

20-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

40-D

80-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

640-D

160-D

80-D

40-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

160-D

320-D

640-D

80-D

40-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure 5.10: Follow up to Figure 5.9 on other functions.

5.8 Conclusion

This chapter allowed the extension of the COCO framework, and more particularly the
BBOB-2009 testbed, to a larger scale in a practical and cost-wise reasonable way. The
proposed benchmark acts as a natural expansion to the already present low to medium
dimension test-beds and allows, given the parameter setting, backward compatibility.

Being computationally e�cient is not enough for a test-suite to be relevant, the pro-
posed problems need to be representative enough of the problems one is expected to

HTTPS://GITHUB.COM/NUMBBO/COCO
https://github.com/numbbo/coco

5.8. CONCLUSION 151

encounter in real life, and more specifically, representative of the di�culties and chal-
lenges these problems o↵er. We ensure this by using orthogonal transformation that,
while being sparse, manage to preserve a number of properties a full rotation matrix
o↵ers. In addition to conserving the eigenvalues when present, the proposed transfor-
mation allows to introduce non-separability in a similar way to full rotations. Also, the
parameterization of the proposed transformation is such that the level of non-separability
introduced can be controlled by two parameters: the block-size and the swap-range.

We deem the CPU e↵ort of applying this transformation reasonable given the block-
size choice. The space complexity of the transformation is similar, being only linear in
the problem dimension but depending also on the block-sizes. In practice, these costs
are reasonable in the sense that they do not introduce a bottleneck where an algorithm
spends most of its time evaluating the function, especially when said algorithm is large-
scale based and thus has a reduced complexity in the problem dimension to accommodate
large-scale settings. This would be the case have we used, instead, the original full
orthogonal matrices to introduce non-separability and coordinate system independence.

We also generalized the Discus, Cigar and Sharp Ridge functions in a way that makes
these functions more naturally interpretable and more importantly, more relevant in a
large-scale setting. Having a constant, and in this case small, number of axes with
a di↵erent length means that as the problem dimension increases, these function tend
to resemble a sphere function as the relative contribution of the di↵erently sized axes
diminishes. This e↵ect is witnessed more on the Cigar function since the di↵erently
sized axes are long ones. The new formulation allows to have a constant ratio of these
di↵erently sized axes. It can be seen as a generalization of the Two-Axes function in
which half the axes are short and half the axes long (with the same lengths of the short
axes and the same lengths of the long axes).

We normalize the raw functions (that are not already normalized) by the problem
dimension in order to have a similar level of di�culty across the dimensions; another
property which becomes more relevant in a large-scale setting.

The orthogonal transformation in our case uses a core block-diagonal matrix that
is permuted on both sizes in order to hide its block-diagonal structure. We have seen
the e↵ectiveness of these permutations by testing on a number of functions sep-CMA-ES
which solves, when the block-condition numbers are low enough, non-permuted versions
but not permuted ones.

One property that the proposed transformation does not conserve completely, when
compared to the original full matrix, is coordinate-system independence. This is both
because the core block-diagonal matrix is not coordinate system independent, and be-
cause the introduced permutations are not uniformly chosen from the set of all possible
permutations. A choice we make in order to allow control over the di�culty of the re-
sulting problem and the underlying variance in this di�culty and that (this choice) does
not allow complete unbiasedness with regards to the starting positions of the variables,
given a reasonable parameter choice (having s = d puts us back in the full orthogonal
matrix case, regardless of the permutations).

Overall, the proposed approach to large-scale benchmarking by extending on already

152 CHAPTER 5. THE COCO LARGE SCALE SUITE

established benchmarks produced the desired results. The resulting test-suite has the
advantage of being quite similar to the original one, retaining most of its properties
which makes interpreting the results easier. This means that it also reproduces these
properties that we expect to see in real-world problems, while introducing the large-scale
component. It also represents a good class of problems separability-wise, since most of the
time, we do not expect all the variables of a large-scale problem to be directly dependent,
but rather form groups that are not necessarily aligned with the order of the variables
neither as presented to the algorithm nor inside the problem. The benchmarking of three
large-scale evolution strategies did not result in any anomalies. None of the algorithms
managed to perform well on all problems and many properties we observed in smaller
dimension problems persist. There is, also, no problem with regards to the interaction
with other transformations or the raw function definitions since the transformations are
applied in an independent fashion.

It would definitely be interesting to extend the large-scale benchmarks even more
since larger dimensions allows for properties to appear that are generally not seen or, at
best, ignored or neglected (because of their small e↵ect) in small to medium dimensions.
One such property is the e↵ective and epsilon-e↵ective dimensionalities of a problem (see
Chapter 4). After the design of a large-scale test suite which is closely similar to its
lower-dimension counterpart, the next step would be to add, amongst others, test suites
or at least classes of problems whose e↵ective and/or "-e↵ective dimensionalities are low.

HTTPS://GITHUB.COM/NUMBBO/COCO

Chapter 6

Final Conclusion

This thesis brings three main contributions to continuous black-box optimization in gen-
eral and to the large-scale scenario in particular.

First, a new success-based step-size adaptation mechanism for evolution strategies, the
Median Success Rule, is proposed in Chapter 3. This method showed comparative results
to the widely used Cumulative Step-size Adaptation, notably on the COCO noiseless test-
bed. In addition, studying the impact of choosing a non-optimal comparison index (the
main parameter of the strategy) showed that the method is robust, and still converges
for a wide range of values on a number of typical functions.

Being a success-based method, MSR, and in comparison to CSA, relies on less re-
strictive properties of the distribution of solutions. It does not require the solutions to
be normally distributed neither does it need access to the steps in the isotropic space.
It does, however, rely on a correlation between the defined success probability and the
desired change in the step-size (ideally, toward an optimal step-size).

One other important feature of MSR is its low computational cost. It scales linearly
with the population size, a parameter that is set by the user unlike the dimension which
is inherent to the problem. It is true that the population size is generally set depending
on the problem dimension; but generally with values not exceeding a linear scaling in it.
In addition, the user can always set it according to the complexity constraints at hand.
This makes MSR ideal for large-scale algorithms where the scaling of the computational
cost in the dimension of the problem is critical. Not only that, but MSR is also expected
to remain e↵ective when the population size and the number of parents in recombination-
based strategies is high.

In Chapter 4, we formalize a method of constructing low e↵ective dimension problems
from commonly used continuous benchmarking functions. We also extend the notion of
low e↵ective dimension to become low epsilon-e↵ective dimension which allows for all the
variables to contribute to a relatively low proportion of the fitness defined by a parameter
".

A sub-space CMA-ES variant, SS-CMA-ES, is proposed to tackle specifically these
newly introduced problems. It relies on optimizing in an embedded sub-space of dimen-
sion lower than that of the problem. When comparing the performance of SS-CMA-ES to
default CMA-ES and other, large-scale, algorithms, a number of observations were made.

153

https://github.com/numbbo/coco

154 CHAPTER 6. FINAL CONCLUSION

First, an important result was that using CSA as a step-size adaptation method instead
of MSR or the Two Point Adaptation, which are success-based rules, resulted in worse
performance of the algorithm and slower convergence rates to the optimum. This is due
to CSA comparing the steps realized by the algorithms with the random steps. However,
these random steps are assumed to happen in the full dimension of the problem when
the problem has a lower e↵ective dimension. This prevents the algorithm from taking
advantage on the lower e↵ective dimension of the problem, and thus, in comparison to
other methods that do, makes it slower. On the other hand, SS-CMA-ES, using MSR
and TPA, and Limited Memory CMA-ES (LM-CMA-ES) performed remarkably well on
several low e↵ective and low epsilon-e↵ective dimension test problems. While this was
expected of SS-CMA-ES on low e↵ective dimension problems since the algorithm was de-
signed for this class of problems specifically, it also managed to solve low epsilon-e↵ective
dimension problems even though its search is carried out in a search space of lower di-
mension while the problem has full e↵ective dimension. In fact, with target values that
require the fitness not to deteriorate (in comparison to that of the initial solution) on the
non-e↵ective part, algorithms are encouraged to optimize the e↵ective space first, then
fine tune in the later stages of optimization the deterioration of the non-e↵ective fitness
that might have happened when optimizing the e↵ective part.

Chapter 5 focused on extending the COCO noiseless test-suite, to large scales. All
the problems of the suite are defined for any dimension. However, in a large-scale setting,
quadratic complexities that come from the use of full orthogonal matrices in order to in-
troduce non-separability need to be reduced. This is done, while keeping the main e↵ects
of the rotation matrices, by replacing full orthogonal matrices by permuted orthogonal
block-diagonal matrices.

We tested three large-scale optimization algorithms on this newly introduced test-bed.
These algorithms that rely on a restricted model of the covariance matrixare: sep-CMA-
ES, LM-CMA-ES and VD-CMA-ES. In general, we observed that the new transformation
introduces su�ciently challenging-enough problems whose structure can not be exploited
by these algorithms. The permutations, more specifically the permutation that is applied
to the rows of the block diagonal matrix, allow to hide the block structure of the un-
derlying matrix, and thus make it harder to exploit in comparison to other approaches
in the literature that only rely on permuting the columns of the matrix. The e↵ect of
this permutation is seen on the performance of sep-CMA-ES which manages to solve
functions with non-permuted block-diagonal transformation matrices up to certain block
condition-numbers but fails when the permutation of the rows is introduced. The other
permutation (on the columns) that simply changes the order of the variables as they are
presented to the algorithm has no e↵ect on the performance of sep-CMA-ES and most
evolution strategies.

The performance assessment of the above mentioned algorithms shows a smooth tran-
sition between dimensions 20 and 40 that reproduce the problems of the original small
to medium COCO test-bed and the higher dimensions that include the actual permuted
block-diagonal transformation. This means that the proposed method is a natural ex-
tension of the test-bed that does not break its properties.

https://github.com/numbbo/coco
https://github.com/numbbo/coco

155

In addition to the contributions described above, this thesis paves the way to a number
of future works in its area. The Median Success Rule can further be improved with
better tuned damping parameters and learning rates. In the context of low e↵ective
dimensions, a completely black-box adaptive SS-CMA-ES can be a competitive method
for e�ciently tackling low e↵ective and low epsilon-e↵ective dimension problems. It can
even be considered for more general classes of problems when the intended point is not
to find the optimal solution but just to produce a relatively high quality solution within
a limited budget and tight complexity constraints. A basic approach of starting with
small optimization sub-space dimensions and then increase after each failure was already
suggested in this thesis. However, one can also consider more sophisticated approaches
that allow the estimation of the e↵ective dimension of a problem online similarly to what
is done in [Akimoto and Hansen, 2016a] for the number of vectors. The large-scale test-
bed can definitely be enriched with a number of extensions. Allowing di↵erently sized
and/or overlapping blocks in the block-diagonal transformation-matrix proposed in this
thesis is a first extension that should not be complicated to implement and test.

Further down the line, it would be interesting to have di↵erent test-suites for large-
scale optimization that include other classes of problems such as the low e↵ective di-
mension and low epsilon-e↵ective dimension problems introduced in this thesis. Even
though it seems natural to make the large-scale test suite of Chapter 5 a low ("-)e↵ective
dimension one given the results of Chapter 4, we opted, as the first large-scale extension
of the bbob-2009 testbed, for a more natural generalization that does not deviate much
from the original test suite. This, however, does not diminish the importance of including
such a class of problems in the future variants and extensions of the large-scale test suite.
This is becoming especially relevant in the recent years since large-scale optimization
is increasingly used in machine-learning applications that deal with big-data problems.
These problems have, generally, sparse, low e↵ective dimension and block-structured
dependency functions to optimize (generally using gradient-based/inspired approaches).

156 CHAPTER 6. FINAL CONCLUSION

Bibliography

[Ait Elhara et al., 2013] Ait Elhara, O., Auger, A., and Hansen, N. (2013). A Median
Success Rule for Non-Elitist Evolution Strategies: Study of Feasibility. In Christian,
B. e. a., editor, Genetic and Evolutionary Computation Conference, pages 415–422,
Amsterdam, Netherlands. ACM, ACM Press. Author version with appendix.

[Ait Elhara et al., 2016] Ait Elhara, O., Auger, A., and Hansen, N. (2016). Permuted Or-
thogonal Block-Diagonal Transformation Matrices for Large Scale Optimization Bench-
marking. In GECCO 2016, Denver, United States.

[Akat and Gazi, 2008] Akat, S. B. and Gazi, V. (2008). Particle swarm optimization
with dynamic neighborhood topology: three neighborhood strategies and preliminary
results. In 2008 IEEE Swarm Intelligence Symposium.

[Akimoto et al., 2014] Akimoto, Y., Auger, A., Hansen, N., et al. (2014). Comparison-
based natural gradient optimization in high dimension. In Genetic and Evolutionary
Computation Conference GECCO’14.

[Akimoto and Hansen, 2016a] Akimoto, Y. and Hansen, N. (2016a). Online model se-
lection for restricted covariance matrix adaptation. In Parallel Problem Solving from
Nature 2016.

[Akimoto and Hansen, 2016b] Akimoto, Y. and Hansen, N. (2016b). Projection-based
restricted covariance matrix adaptation for high dimension. In Genetic and Evolution-
ary Computation Conference 2016.

[Arnold, 2005] Arnold, D. V. (2005). Optimal weighted recombination. In Foundations
of Genetic Algorithms, pages 215–237. Springer Verlag.

[Arnold, 2006] Arnold, D. V. (2006). Weighted multirecombination evolution strategies.
Theoretical Computer Science, 361(1):18–37.

[Arnold and MacLeod, 2008] Arnold, D. V. and MacLeod, A. (2008). Step length adap-
tation on ridge functions. Evol. Comput., 16(2):151–184.

[Asotsky et al., 2006] Asotsky, D., Myshetskaya, E., et al. (2006). The average dimen-
sion of a multidimensional function for quasi-monte carlo estimates of an integral.
Computational Mathematics and Mathematical Physics, 46(12):2061–2067.

157

158 BIBLIOGRAPHY

[Atamna, 2015] Atamna, A. (2015). Benchmarking ipop-cma-es-tpa and ipop-cma-es-
msr on the bbob noiseless testbed. In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation, pages 1135–1142.
ACM.

[Atkinson et al., 1997] Atkinson, C., Moore, A., and Stefan, S. (1997). Locally weighted
learning. Artif Intell Rev, 11(1-5):11–73.

[Auger et al., 2011] Auger, A., Brockho↵, D., and Hansen, N. (2011). Mirrored sampling
in evolution strategies with weighted recombination. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, pages 861–868. ACM.

[Auger et al., 2013] Auger, A., Brockho↵, D., and Hansen, N. (2013). Benchmarking the
local metamodel cma-es on the noiseless bbob’2013 test bed. In Proceedings of the
15th annual conference companion on Genetic and evolutionary computation, pages
1225–1232. ACM.

[Auger and Hansen, 2005a] Auger, A. and Hansen, N. (2005a). Performance evaluation
of an advanced local search evolutionary algorithm. In Evolutionary Computation,
2005. The 2005 IEEE Congress on, volume 2, pages 1777–1784. IEEE.

[Auger and Hansen, 2005b] Auger, A. and Hansen, N. (2005b). A restart CMA evolution
strategy with increasing population size. In Evolutionary Computation, 2005. The 2005
IEEE Congress on, volume 2, pages 1769–1776. IEEE.

[Auger and Hansen, 2011] Auger, A. and Hansen, N. (2011). Theory of evolution strate-
gies: A new perspective. In Auger, A. and Doerr, B., editors, Theory of Randomized
Search Heuristics: Foundations and Recent Developments, chapter 10, pages 289–325.
World Scientific Publishing Company.

[Auger and Hansen, 2013a] Auger, A. and Hansen, N. (2013a). Linear convergence of
comparison-based step-size adaptive randomized search via stability of markov chains.
arXiv preprint arXiv:1310.7697.

[Auger and Hansen, 2013b] Auger, A. and Hansen, N. (2013b). Linear convergence on
positively homogeneous functions of a comparison based step-size adaptive random-
ized search: the (1+1)-ES with generalized one-fifth success rule. arXiv preprint
arXiv:1310.8397.

[Auger et al., 2004] Auger, A., Schoenauer, M., and Vanhaecke, N. (2004). LS-CMA-ES:
A second-order algorithm for covariance matrix adaptation. In International Confer-
ence on Parallel Problem Solving from Nature, pages 182–191. Springer.

[Baluja and Caruana, 1995] Baluja, S. and Caruana, R. (1995). Removing the genetics
from the standard genetic algorithm. In Machine Learning: Proceedings of the Twelfth
International Conference, pages 38–46.

BIBLIOGRAPHY 159

[Banzhaf and Langdon, 2002] Banzhaf, W. and Langdon, W. B. (2002). Some considera-
tions on the reason for bloat. Genetic Programming and Evolvable Machines, 3(1):81–
91.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. The Journal of Machine Learning Research, 13(1):281–
305.

[Berthier and Teytaud, 2015] Berthier, V. and Teytaud, O. (2015). On the codimension
of the set of optima: large scale optimisation with few relevant variables. In Inter-
national Conference on Artificial Evolution (Evolution Artificielle), pages 234–247.
Springer.

[Beyer and Schwefel, 2002] Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution
strategies–a comprehensive introduction. Natural computing, 1(1):3–52.

[Birattari et al., 2010] Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010).
F-race and iterated f-race: An overview. In Experimental methods for the analysis of
optimization algorithms, pages 311–336. Springer.

[Bleuler et al., 2001] Bleuler, S., Brack, M., Thiele, L., and Zitzler, E. (2001). Multiob-
jective genetic programming: Reducing bloat using spea2. In Evolutionary Computa-
tion, 2001. Proceedings of the 2001 Congress on, volume 1, pages 536–543. IEEE.

[Bosman et al., 2013] Bosman, P. A., Grahl, J., and Thierens, D. (2013). Benchmarking
parameter-free amalgam on functions with and without noise. Evolutionary computa-
tion, 21(3):445–469.

[Bottou et al., 2016] Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization
methods for large-scale machine learning. arXiv preprint arXiv:1606.04838.

[Bouzarkouna et al., 2010] Bouzarkouna, Z., Auger, A., and Ding, D. Y. (2010). Investi-
gating the local-meta-model cma-es for large population sizes. In European Conference
on the Applications of Evolutionary Computation, pages 402–411. Springer.

[Bouzarkouna et al., 2012] Bouzarkouna, Z., Ding, D. Y., and Auger, A. (2012). Well
placement optimization with the covariance matrix adaptation evolution strategy and
meta-models. Computational Geosciences, 16(1):75–92.

[Brest et al., 2008] Brest, J., Zamuda, A., Boskovic, B., Maucec, M., and Zumer, V.
(2008). High-dimensional real-parameter optimization using self-adaptive di↵eren-
tial evolution algorithm with population size reduction. In Evolutionary Computa-
tion, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on, pages 2032–2039. IEEE.

[Brockho↵ et al., 2010] Brockho↵, D., Auger, A., Hansen, N., Arnold, D. V., and Hohm,
T. (2010). Mirrored sampling and sequential selection for evolution strategies. In
Parallel Problem Solving from Nature, PPSN XI, pages 11–21. Springer.

160 BIBLIOGRAPHY

[Brockho↵ et al., 2016] Brockho↵, D., Tušar, T., Tušar, D., Wagner, T., Hansen, N., and
Auger, A. (2016). Biobjective performance assessment with the coco platform. arXiv
preprint arXiv:1605.01746.

[Broyden, 1970] Broyden, C. G. (1970). The convergence of a class of double-rank mini-
mization algorithms 1. general considerations. IMA Journal of Applied Mathematics,
6(1):76–90.

[Caflisch et al., 1997] Caflisch, R. E., Moroko↵, W. J., and Owen, A. B. (1997). Valuation
of mortgage backed securities using Brownian bridges to reduce e↵ective dimension.
Department of Mathematics, University of California, Los Angeles.

[Chandrasekaran et al., 2012] Chandrasekaran, V., Recht, B., Parrilo, P. A., and Will-
sky, A. S. (2012). The convex geometry of linear inverse problems. Foundations of
Computational mathematics, 12(6):805–849.

[Chen et al., 2011] Chen, W., Weise, T., Yang, Z., and Tang, K. (2011). Large-scale
global optimization using cooperative coevolution with variable interaction learning.
Parallel Problem Solving from Nature–PPSN XI, pages 300–309.

[Claudiu Ciresan et al., 2010] Claudiu Ciresan, D., Meier, U., Gambardella, L. M., and
Schmidhuber, J. (2010). Deep big simple neural nets excel on handwritten digit recog-
nition. arXiv preprint arXiv:1003.0358.

[Coates et al., 2011] Coates, A., Ng, A. Y., and Lee, H. (2011). An analysis of single-layer
networks in unsupervised feature learning. In International Conference on Artificial
Intelligence and Statistics, pages 215–223.

[De Jong et al., 2001] De Jong, E., Watson, R., and Pollack, J. (2001). Reducing bloat
and promoting diversity using multi-objective methods.

[Dean et al., 2012] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,
Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep
networks. In Advances in Neural Information Processing Systems, pages 1223–1231.

[Dong et al., 2013] Dong, W., Chen, T., Tiňo, P., and Yao, X. (2013). Scaling up esti-
mation of distribution algorithms for continuous optimization. IEEE Transactions on
Evolutionary Computation, 17(6):797–822.

[Edelman, 1989] Edelman, A. (1989). Eigenvalues and Condition Numbers of Random
Matrices. PhD thesis, Massachusetts Institute of Technology.

[Ekárt and Németh, 2002] Ekárt, A. and Németh, S. Z. (2002). Maintaining the diversity
of genetic programs. In European Conference on Genetic Programming, pages 162–171.
Springer.

BIBLIOGRAPHY 161

[Fasano and Lucidi, 2009] Fasano, G. and Lucidi, S. (2009). A nonmonotone truncated
newton–krylov method exploiting negative curvature directions, for large scale uncon-
strained optimization. Optimization Letters, 3(4):521–535.

[Fletcher, 1970] Fletcher, R. (1970). A new approach to variable metric algorithms. The
computer journal, 13(3):317–322.

[Foli et al., 2006] Foli, K., Okabe, T., Olhofer, M., Jin, Y., and Sendho↵, B. (2006).
Optimization of micro heat exchanger: Cfd, analytical approach and multi-objective
evolutionary algorithms. International Journal of Heat and Mass Transfer, 49(5):1090–
1099.

[Girosi, 1998] Girosi, F. (1998). An equivalence between sparse approximation and sup-
port vector machines. Neural computation, 10(6):1455–1480.

[Glasmachers et al., 2010] Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., and Schmid-
huber, J. (2010). Exponential natural evolution strategies. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pages 393–400. ACM.

[Goldfarb, 1970] Goldfarb, D. (1970). A family of variable-metric methods derived by
variational means. Mathematics of computation, 24(109):23–26.

[Han and Fan, 2010] Han, M. and Fan, J. (2010). Particle swarm optimization using
dynamic neighborhood topology for large scale optimization. In Intelligent Control
and Automation (WCICA), 2010 8th World Congress on, pages 3138–3142. IEEE.

[Hansen, 2008] Hansen, N. (2008). Cma-es with two-point step-size adaptation. arXiv
preprint arXiv:0805.0231.

[Hansen, 2009] Hansen, N. (2009). Benchmarking a bi-population cma-es on the bbob-
2009 function testbed. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pages
2389–2396. ACM.

[Hansen et al., 2014] Hansen, N., Atamna, A., and Auger, A. (2014). How to assess step-
size adaptation mechanisms in randomised search. In Parallel Problem Solving from
Nature–PPSN XIII, pages 60–69. Springer.

[Hansen et al., 2010a] Hansen, N., Auger, A., Finck, S., and Ros, R. (2010a). Real-
Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup. Re-
search Report RR-7215, INRIA.

[Hansen et al., 2010b] Hansen, N., Auger, A., Ros, R., Finck, S., and Poš́ık, P. (2010b).
Comparing results of 31 algorithms from the black-box optimization benchmarking
bbob-2009. In Proceedings of the 12th annual conference companion on Genetic and
evolutionary computation, pages 1689–1696. ACM.

162 BIBLIOGRAPHY

[Hansen et al., 2009] Hansen, N., Finck, S., Ros, R., and Auger, A. (2009). Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defini-
tions. Research Report RR-6829, INRIA.

[Hansen and Kern, 2004] Hansen, N. and Kern, S. (2004). Evaluating the cma evolution
strategy on multimodal test functions. In International Conference on Parallel Problem
Solving from Nature, pages 282–291. Springer.

[Hansen et al., 2003] Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing
the time complexity of the derandomized evolution strategy with covariance matrix
adaptation (cma-es). Evolutionary computation, 11(1):1–18.

[Hansen and Ostermeier, 1996] Hansen, N. and Ostermeier, A. (1996). Adapting arbi-
trary normal mutation distributions in evolution strategies: The covariance matrix
adaptation. In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, pages 312–317. IEEE.

[Hansen and Ostermeier, 2001] Hansen, N. and Ostermeier, A. (2001). Completely
derandomized self-adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195.

[Hansen et al., 1995] Hansen, N., Ostermeier, A., and Gawelczyk, A. (1995). On the
adaptation of arbitrary normal mutation distributions in evolution strategies: The
generating set adaptation. In ICGA, pages 57–64.

[Hansen and Ros, 2010] Hansen, N. and Ros, R. (2010). Benchmarking a weighted neg-
ative covariance matrix update on the bbob-2010 noiseless testbed. In Proceedings
of the 12th annual conference companion on Genetic and evolutionary computation,
pages 1673–1680. ACM.

[Hansen et al., 2011] Hansen, N., Ros, R., Mauny, N., Schoenauer, M., and Auger, A.
(2011). Impacts of invariance in search: When cma-es and pso face ill-conditioned and
non-separable problems. Applied Soft Computing, 11(8):5755–5769.

[Howell, 2008] Howell, R. R. (2008). On asymptotic notation with multiple variables.
Technical report, Citeseer.

[Hsieh et al., 2008a] Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sun-
dararajan, S. (2008a). A dual coordinate descent method for large-scale linear svm. In
Proceedings of the 25th international conference on Machine learning, pages 408–415.
ACM.

[Hsieh et al., 2008b] Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., and Tsai, S.-J. (2008b). Solv-
ing large scale global optimization using improved particle swarm optimizer. In 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress on Computa-
tional Intelligence), pages 1777–1784. IEEE.

BIBLIOGRAPHY 163

[Hu and Eberhart, 2002] Hu, X. and Eberhart, R. (2002). Multiobjective optimization
using dynamic neighborhood particle swarm optimization. In Evolutionary Computa-
tion, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2, pages 1677–1681.
IEEE.

[Hutter, 2009] Hutter, F. (2009). Automated configuration of algorithms for solving hard
computational problems. PhD thesis, University of British Columbia.

[Igel et al., 2007] Igel, C., Hansen, N., and Roth, S. (2007). Covariance matrix adapta-
tion for multi-objective optimization. Evolutionary computation, 15(1):1–28.

[James and Russell, 1995] James, K. and Russell, E. (1995). Particle swarm optimiza-
tion. In Proceedings of 1995 IEEE International Conference on Neural Networks, pages
1942–1948.

[Jastrebski and Arnold, 2006] Jastrebski, G. A. and Arnold, D. V. (2006). Improving
evolution strategies through active covariance matrix adaptation. In 2006 IEEE In-
ternational Conference on Evolutionary Computation, pages 2814–2821. IEEE.

[Joachims, 2006] Joachims, T. (2006). Training linear svms in linear time. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 217–226. ACM.

[Kabán et al., 2015] Kabán, A., Bootkrajang, J., and Durrant, R. J. (2015). Toward
large-scale continuous eda: A random matrix theory perspective. Evolutionary com-
putation.

[Kearns et al., 2002] Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse sam-
pling algorithm for near-optimal planning in large markov decision processes. Machine
Learning, 49(2-3):193–208.

[Kern et al., 2006] Kern, S., Hansen, N., and Koumoutsakos, P. (2006). Local meta-
models for optimization using evolution strategies. In Parallel Problem Solving from
Nature-PPSN IX, pages 939–948. Springer.

[Knight and Lunacek, 2007] Knight, J. N. and Lunacek, M. (2007). Reducing the space-
time complexity of the cma-es. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 658–665. ACM.

[Korenaga et al., 2007] Korenaga, T., Hatanaka, T., and Uosaki, K. (2007). Performance
improvement of particle swarm optimization for high-dimensional function optimiza-
tion. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 3288–
3293. IEEE.

[Krause and Glasmachers, 2015] Krause, O. and Glasmachers, T. (2015). A cma-es with
multiplicative covariance matrix updates. In Proceedings of the 2015 Annual Confer-
ence on Genetic and Evolutionary Computation, pages 281–288. ACM.

164 BIBLIOGRAPHY

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

[Langdon and Poli, 1998] Langdon, W. B. and Poli, R. (1998). Fitness causes bloat:
Mutation. In European Conference on Genetic Programming, pages 37–48. Springer.

[Larranaga and Lozano, 2002] Larranaga, P. and Lozano, J. A. (2002). Estimation of
distribution algorithms: A new tool for evolutionary computation, volume 2. Springer
Science & Business Media.

[Li et al., 2013] Li, X., Tang, K., Omidvar, M. N., Yang, Z., Qin, K., and China, H.
(2013). Benchmark functions for the cec 2013 special session and competition on
large-scale global optimization. gene, 7(33):8.

[Li and Yao, 2009] Li, X. and Yao, X. (2009). Tackling high dimensional nonseparable
optimization problems by cooperatively coevolving particle swarms. In Evolutionary
Computation, 2009. CEC’09. IEEE Congress on, pages 1546–1553. IEEE.

[Li and Yao, 2012] Li, X. and Yao, X. (2012). Cooperatively coevolving particle swarms
for large scale optimization. IEEE Transactions on Evolutionary Computation,
16(2):210–224.

[Liao et al., 2005] Liao, L.-Z., Qi, L., and Tam, H. W. (2005). A gradient-based contin-
uous method for large-scale optimization problems. Journal of Global Optimization,
31(2):271–286.

[Lin and Moré, 1999] Lin, C.-J. and Moré, J. J. (1999). Newton’s method for large
bound-constrained optimization problems. SIAM Journal on Optimization, 9(4):1100–
1127.

[Lin et al., 2008] Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2008). Trust region newton
method for logistic regression. Journal of Machine Learning Research, 9(Apr):627–650.

[Liu and Nocedal, 1989] Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs
method for large scale optimization. Mathematical programming, 45(1-3):503–528.

[Liu and Li, 2010] Liu, Y. and Li, S. (2010). Di↵erential evolution with neighborhood
search. In Computational Intelligence and Natural Computing Proceedings (CINC),
2010 Second International Conference on, volume 1, pages 76–79. IEEE.

[Liu et al., 2001] Liu, Y., Yao, X., Zhao, Q., and Higuchi, T. (2001). Scaling up fast evo-
lutionary programming with cooperative coevolution. In Evolutionary Computation,
2001. Proceedings of the 2001 Congress on, volume 2, pages 1101–1108. IEEE.

[Liu et al., 2009] Liu, Y., Zhao, Q., Shao, Z., Shang, Z., and Sui, C. (2009). Particle
swarm optimizer based on dynamic neighborhood topology. In International Confer-
ence on Intelligent Computing, pages 794–803. Springer.

BIBLIOGRAPHY 165

[Loshchilov, 2013] Loshchilov, I. (2013). CMA-ES with restarts for solving cec 2013
benchmark problems. In 2013 IEEE Congress on Evolutionary Computation, pages
369–376. Ieee.

[Loshchilov, 2014] Loshchilov, I. (2014). A computationally e�cient limited memory
CMA-ES for large scale optimization. arXiv preprint arXiv:1404.5520.

[Loshchilov, 2015] Loshchilov, I. (2015). LM-CMA: An alternative to L-BFGS for large-
scale black box optimization. Evolutionary computation.

[Loshchilov et al., 2010] Loshchilov, I., Schoenauer, M., and Sebag, M. (2010).
Comparison-based optimizers need comparison-based surrogates. In International Con-
ference on Parallel Problem Solving from Nature, pages 364–373. Springer.

[Loshchilov et al., 2012a] Loshchilov, I., Schoenauer, M., and Sebag, M. (2012a). Black-
box optimization benchmarking of ipop-saacm-es and bipop-saacm-es on the bbob-2012
noiseless testbed. In Proceedings of the 14th annual conference companion on Genetic
and evolutionary computation, pages 175–182. ACM.

[Loshchilov et al., 2012b] Loshchilov, I., Schoenauer, M., and Sebag, M. (2012b). Self-
adaptive surrogate-assisted covariance matrix adaptation evolution strategy. In Pro-
ceedings of the 14th annual conference on Genetic and evolutionary computation, pages
321–328. ACM.

[Loshchilov et al., 2013a] Loshchilov, I., Schoenauer, M., and Sebag, M. (2013a). Bi-
population CMA-ES agorithms with surrogate models and line searches. In Proceedings
of the 15th annual conference companion on Genetic and evolutionary computation,
pages 1177–1184. ACM.

[Loshchilov et al., 2013b] Loshchilov, I., Schoenauer, M., and Sebag, M. (2013b). Inten-
sive surrogate model exploitation in self-adaptive surrogate-assisted cma-es (saacm-es).
In Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pages 439–446. ACM.

[Loshchilov et al., 2014] Loshchilov, I., Schoenauer, M., Sebag, M., and Hansen, N.
(2014). Maximum likelihood-based online adaptation of hyper-parameters in CMA-
ES. In International Conference on Parallel Problem Solving from Nature, pages 70–79.
Springer.

[Lu and Xiao, 2013] Lu, Z. and Xiao, L. (2013). Randomized block coordinate non-
monotone gradient method for a class of nonlinear programming. arXiv preprint
arXiv:1306.5918.

[Luke and Panait, 2006] Luke, S. and Panait, L. (2006). A comparison of bloat control
methods for genetic programming. Evolutionary Computation, 14(3):309–344.

166 BIBLIOGRAPHY

[Mahdavi et al., 2015] Mahdavi, S., Shiri, M. E., and Rahnamayan, S. (2015). Meta-
heuristics in large-scale global continues optimization: a survey. Information Sciences,
295:407–428.

[Mei et al., 2016] Mei, Y., Omidvar, M. N., Li, X., and Yao, X. (2016). A competi-
tive divide-and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion. ACM Transactions on Mathematical Software (TOMS), 42(2):13.

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092.

[Molina et al., 2010] Molina, D., Lozano, M., and Herrera, F. (2010). MA-SW-Chains:
Memetic algorithm based on local search chains for large scale continuous global opti-
mization. In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

[Montes de Oca and Stützle, 2011] Montes de Oca, Marco Aand Aydın, D. and Stützle,
T. (2011). An incremental particle swarm for large-scale continuous optimization prob-
lems: an example of tuning-in-the-loop (re) design of optimization algorithms. Soft
Computing, 15(11):2233–2255.

[Montes de Oca et al., 2008] Montes de Oca, M., Van den Enden, K., and Stützle, T.
(2008). Incremental particle swarm-guided local search for continuous optimization.
Hybrid Metaheuristics, pages 72–86.

[Montes de Oca and Stützle, 2008] Montes de Oca, M. A. and Stützle, T. (2008). To-
wards incremental social learning in optimization and multiagent systems. In Proceed-
ings of the 10th annual conference companion on Genetic and evolutionary computa-
tion, pages 1939–1944. ACM.

[Moskowitz and Caflisch, 1996] Moskowitz, B. and Caflisch, R. E. (1996). Smoothness
and dimension reduction in quasi-monte carlo methods. Mathematical and Computer
Modelling, 23(8):37–54.

[Mühlenbein et al., 1996] Mühlenbein, H., Bendisch, J., and Voigt, H.-M. (1996). From
recombination of genes to the estimation of distributions ii. continuous parameters.
In International Conference on Parallel Problem Solving from Nature, pages 188–197.
Springer.

[Mühlenbein and Paass, 1996] Mühlenbein, H. and Paass, G. (1996). From recombina-
tion of genes to the estimation of distributions i. binary parameters. In International
Conference on Parallel Problem Solving from Nature, pages 178–187. Springer.

[Nesterov, 2012] Nesterov, Y. (2012). E�ciency of coordinate descent methods on huge-
scale optimization problems. SIAM Journal on Optimization, 22(2):341–362.

[Nesterov, 2014] Nesterov, Y. (2014). Subgradient methods for huge-scale optimization
problems. Mathematical Programming, 146(1-2):275–297.

BIBLIOGRAPHY 167

[Ngiam et al., 2011] Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V., and Ng,
A. Y. (2011). On optimization methods for deep learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 265–272.

[Nocedal, 1980] Nocedal, J. (1980). Updating quasi-newton matrices with limited stor-
age. Mathematics of computation, 35(151):773–782.

[Omidvar et al., 2010a] Omidvar, M., Li, X., Yang, Z., and Yao, X. (2010a). Cooperative
co-evolution for large scale optimization through more frequent random grouping. In
Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE.

[Omidvar et al., 2010b] Omidvar, M., Li, X., and Yao, X. (2010b). Cooperative co-
evolution with delta grouping for large scale non-separable function optimization. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC), pages 1762–1769.

[Omidvar et al., 2014] Omidvar, M. N., Li, X., Mei, Y., and Yao, X. (2014). Cooperative
co-evolution with di↵erential grouping for large scale optimization. IEEE Transactions
on Evolutionary Computation, 18(3):378–393.

[Omidvar et al., 2015] Omidvar, M. N., Li, X., and Tang, K. (2015). Designing bench-
mark problems for large-scale continuous optimization. Information Sciences, 316:419–
436.

[Ostermeier et al., 1994a] Ostermeier, A., Gawelczyk, A., and Hansen, N. (1994a). A
derandomized approach to self-adaptation of evolution strategies. Evolutionary Com-
putation, 2(4):369–380.

[Ostermeier et al., 1994b] Ostermeier, A., Gawelczyk, A., and Hansen, N. (1994b). Step-
size adaptation based on non-local use of selection information. In Davidor, Y. et al.,
editors, Parallel Problem Solving from Nature (PPSN III), volume 866 of Lecture Notes
in Computer Science, pages 189–198. Springer Verlag.

[Owen, 2002] Owen, A. B. (2002). Necessity of low e↵ective dimension.

[Parsopoulos, 2009] Parsopoulos, K. (2009). Cooperative micro-di↵erential evolution for
high-dimensional problems. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 531–538. ACM.

[Patrascu and Necoara, 2015] Patrascu, A. and Necoara, I. (2015). E�cient random co-
ordinate descent algorithms for large-scale structured nonconvex optimization. Journal
of Global Optimization, 61(1):19–46.

[Poland and Zell, 2001] Poland, J. and Zell, A. (2001). Main vector adaptation: A CMA
variant with linear time and space complexity. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1050–1055. Citeseer.

168 BIBLIOGRAPHY

[Potter and De Jong, 1994] Potter, M. and De Jong, K. (1994). A cooperative coevo-
lutionary approach to function optimization. Parallel Problem Solving from Nature–
PPSN III, pages 249–257.

[Powell, 2006] Powell, M. J. (2006). The newuoa software for unconstrained optimization
without derivatives. In Large-scale nonlinear optimization, pages 255–297. Springer.

[Qin et al., 2009] Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Di↵erential
evolution algorithm with strategy adaptation for global numerical optimization. IEEE
transactions on Evolutionary Computation, 13(2):398–417.

[Ratitch and Precup, 2004] Ratitch, B. and Precup, D. (2004). Sparse distributed memo-
ries for on-line value-based reinforcement learning. In European Conference on Machine
Learning, pages 347–358. Springer.

[Rechenberg, 1973] Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologishen Evolution. Frommann-Holzboog.

[Rechenberg, 1994] Rechenberg, I. (1994). Evolutionsstrategie ’94. Frommann-Holzboog
Verlag.

[Richard, 1957] Richard, B. (1957). Dynamic programming. Princeton University Press,
89:92.

[Richtárik and Takáč, 2012] Richtárik, P. and Takáč, M. (2012). E�cient serial and
parallel coordinate descent methods for huge-scale truss topology design. In Operations
Research Proceedings 2011, pages 27–32. Springer.

[Richtárik and Takác, 2013] Richtárik, P. and Takác, M. (2013). Distributed coordinate
descent method for learning with big data. arXiv preprint arXiv:1310.2059.

[Richtárik and Takáč, 2014] Richtárik, P. and Takáč, M. (2014). Iteration complexity
of randomized block-coordinate descent methods for minimizing a composite function.
Mathematical Programming, 144(1-2):1–38.

[Richtárik and Takáč, 2016] Richtárik, P. and Takáč, M. (2016). Parallel coordinate
descent methods for big data optimization. Mathematical Programming, 156(1-2):433–
484.

[Rios and Sahinidis, 2013] Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free opti-
mization: a review of algorithms and comparison of software implementations. Journal
of Global Optimization, 56(3):1247–1293.

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-
ES achieving linear time and space complexity. In Parallel Problem Solving from
Nature–PPSN X, pages 296–305. Springer.

BIBLIOGRAPHY 169

[Rudolph, 1997] Rudolph, G. (1997). Convergence properties of evolutionary algorithms.
Kovac.

[Salomon, 1996] Salomon, R. (1996). Re-evaluating genetic algorithm performance under
coordinate rotation of benchmark functions. a survey of some theoretical and practical
aspects of genetic algorithms. BioSystems, 39(3):263–278.

[Schlierkamp-Voosen and Mühlenbein, 1993] Schlierkamp-Voosen, D. and Mühlenbein,
H. (1993). Predictive models for the breeder genetic algorithm. Evolutionary Compu-
tation, 1(1):25–49.

[Schwefel, 1965] Schwefel, H.-P. (1965). Kybernetische evolution als strategie der experi-
mentellen forschung in der strömungstechnik. Master’s thesis, Technical University of
Berlin.

[Schwefel, 1977] Schwefel, H.-P. (1977). Numerische optimierung von computer-modellen
mittels der evolutionsstrategie, volume 1. Birkhäuser, Basel Switzerland.

[Schwefel, 1981] Schwefel, H.-P. (1981). Numerical optimization of computer models.
John Wiley & Sons, Inc.

[Schwefel, 1995] Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley.

[Shalev-Shwartz et al., 2011] Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A.
(2011). Pegasos: Primal estimated sub-gradient solver for svm. Mathematical pro-
gramming, 127(1):3–30.

[Shanno and Kettler, 1970] Shanno, D. F. and Kettler, P. C. (1970). Optimal condition-
ing of quasi-newton methods. Mathematics of Computation, 24(111):657–664.

[Shi and Eberhart, 1998] Shi, Y. and Eberhart, R. (1998). A modified particle swarm
optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress
on Computational Intelligence., The 1998 IEEE International Conference on, pages
69–73. IEEE.

[Shi et al., 2005] Shi, Y., Teng, H., and Li, Z. (2005). Cooperative co-evolutionary dif-
ferential evolution for function optimization. Advances in natural computation, pages
428–428.

[Silva and Costa, 2004] Silva, S. and Costa, E. (2004). Dynamic limits for bloat control.
In Genetic and Evolutionary Computation Conference, pages 666–677. Springer.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
et al. (2016). Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489.

170 BIBLIOGRAPHY

[Solis and Wets, 1981] Solis, F. J. and Wets, R. J.-B. (1981). Minimization by random
search techniques. Mathematics of operations research, 6(1):19–30.

[Sonoda et al., 2003] Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendho↵, B.,
and Schreiber, H.-A. (2003). Advanced high turning compressor airfoils for low reynolds
number condition: Part 1—design and optimization. In ASME Turbo Expo 2003,
collocated with the 2003 International Joint Power Generation Conference, pages 437–
450. American Society of Mechanical Engineers.

[Soule, 2002] Soule, T. (2002). Exons and code growth in genetic programming. In
European Conference on Genetic Programming, pages 142–151. Springer.

[St-Pierre et al., 2011] St-Pierre, D. L., Louveaux, Q., and Teytaud, O. (2011). On-
line sparse bandit for card games. In Advances in Computer Games, pages 295–305.
Springer.

[Steihaug, 1983] Steihaug, T. (1983). The conjugate gradient method and trust regions
in large scale optimization. SIAM Journal on Numerical Analysis, 20(3):626–637.

[Storn and Price, 1995] Storn, R. and Price, K. (1995). Di↵erential evolution-a simple
and e�cient adaptive scheme for global optimization over continuous spaces, volume 3.
ICSI Berkeley.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Di↵erential evolution–a simple
and e�cient heuristic for global optimization over continuous spaces. Journal of global
optimization, 11(4):341–359.

[Sun et al., 2015] Sun, Y., Kirley, M., and Halgamuge, S. K. (2015). Extended di↵er-
ential grouping for large scale global optimization with direct and indirect variable
interactions. In Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pages 313–320. ACM.

[Surkov, 2004] Surkov, V. (2004). Valuation of Mortgage–Backed Securities in a Dis-
tributed Environment. PhD thesis, University of Toronto.

[Sutton, 1996] Sutton, R. S. (1996). Generalization in reinforcement learning: Success-
ful examples using sparse coarse coding. Advances in neural information processing
systems, pages 1038–1044.

[Tang et al., 2009] Tang, K., Xiaodong, L., Suganthan, P. N., Yang, Z., and Wiese, T.
(2009). Benchmark functions for the cec’2010 special session and competition on large-
scale global optimization. Technical report, Nature Inspired Computation and Appli-
cations Laboratory (NICAL), School of Computer Science and Technology, University
of Science and Technology of China, Electric Building No. 2, Room 504, West Campus,
Huangshan Road, Hefei 230027, Anhui, China.

BIBLIOGRAPHY 171

[Tang et al., 2007] Tang, K., Yáo, X., Suganthan, P. N., MacNish, C., Chen, Y.-P., Chen,
C.-M., and Yang, Z. (2007). Benchmark functions for the cec’2008 special session and
competition on large scale global optimization. Nature Inspired Computation and
Applications Laboratory, USTC, China, pages 153–177.

[Tezuka, 2005] Tezuka, S. (2005). On the necessity of low-e↵ective dimension. Journal
of Complexity, 21(5):710–721.

[Tusar et al., 2016] Tusar, T., Brockho↵, D., Hansen, N., and Auger, A. (2016). Coco:
The bi-objective black box optimization benchmarking (bbob-biobj) test suite. arXiv
preprint arXiv:1604.00359.

[Van den Bergh and Engelbrecht, 2004] Van den Bergh, F. and Engelbrecht, A. (2004).
A cooperative approach to particle swarm optimization. Evolutionary Computation,
IEEE Transactions on, 8(3):225–239.

[Vicini and Quagliarella, 1999] Vicini, A. and Quagliarella, D. (1999). Airfoil and wing
design through hybrid optimization strategies. AIAA journal, 37(5):634–641.

[Wang and Fang, 2003] Wang, X. and Fang, K.-T. (2003). The e↵ective dimension and
quasi-monte carlo integration. Journal of Complexity, 19(2):101–124.

[Wang and Sloan, 2005] Wang, X. and Sloan, I. H. (2005). Why are high-dimensional
finance problems often of low e↵ective dimension? SIAM Journal on Scientific Com-
puting, 27(1):159–183.

[Wang and Li, 2009] Wang, Y. and Li, B. (2009). A self-adaptive mixed distribution
based uni-variate estimation of distribution algorithm for large scale global optimiza-
tion. In Nature-Inspired Algorithms for Optimisation, pages 171–198. Springer.

[Wang et al., 2010] Wang, Y., Li, B., and Weise, T. (2010). Estimation of distribution
and di↵erential evolution cooperation for large scale economic load dispatch optimiza-
tion of power systems. Information Sciences, 180(12):2405–2420.

[Wang et al., 1998] Wang, Z., Droegemeier, K., and White, L. (1998). The adjoint new-
ton algorithm for large-scale unconstrained optimization in meteorology applications.
Computational Optimization and Applications, 10(3):283–320.

[Wang et al., 2013] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and de Freitas, N.
(2013). Bayesian optimization in a billion dimensions via random embeddings. arXiv
preprint arXiv:1301.1942.

[Weicker and Weicker, 1999] Weicker, K. and Weicker, N. (1999). On the improvement
of coevolutionary optimizers by learning variable interdependencies. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3. IEEE.

172 BIBLIOGRAPHY

[Whitley et al., 1989] Whitley, L. D. et al. (1989). The genitor algorithm and selection
pressure: Why rank-based allocation of reproductive trials is best. In ICGA, volume 89,
pages 116–123.

[Wierstra et al., 2008] Wierstra, D., Schaul, T., Peters, J., and Schmidhuber, J. (2008).
Natural evolution strategies. In 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence), pages 3381–3387. IEEE.

[Yang et al., 2007] Yang, Z., Tang, K., and Yao, X. (2007). Di↵erential evolution for
high-dimensional function optimization. In Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, pages 3523–3530. Ieee.

[Yang et al., 2008a] Yang, Z., Tang, K., and Yao, X. (2008a). Large scale evolutionary
optimization using cooperative coevolution. Information Sciences, 178(15):2985–2999.

[Yang et al., 2008b] Yang, Z., Tang, K., and Yao, X. (2008b). Multilevel cooperative
coevolution for large scale optimization. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, pages
1663–1670. IEEE.

[Yang et al., 2008c] Yang, Z., Tang, K., and Yao, X. (2008c). Self-adaptive di↵erential
evolution with neighborhood search. In 2008 IEEE Congress on Evolutionary Compu-
tation (IEEE World Congress on Computational Intelligence), pages 1110–1116. IEEE.

[Yao et al., 1999] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made
faster. Evolutionary Computation, IEEE Transactions on, 3(2):82–102.

[Yuan et al., 2012] Yuan, G.-X., Ho, C.-H., and Lin, C.-J. (2012). Recent advances of
large-scale linear classification. Proceedings of the IEEE, 100(9):2584–2603.

[Yuan, 2010] Yuan, Y. (2010). Gradient methods for large scale convex quadratic func-
tions. In Optimization and regularization for computational inverse problems and ap-
plications, pages 141–155. Springer.

[Zhang et al., 1997] Zhang, B.-T., Ohm, P., and Mühlenbein, H. (1997). Evolutionary
induction of sparse neural trees. Evolutionary Computation, 5(2):213–236.

[Zhang and Sanderson, 2009] Zhang, J. and Sanderson, A. (2009). Jade: adaptive dif-
ferential evolution with optional external archive. Evolutionary Computation, IEEE
Transactions on, 13(5):945–958.

[Zhang, 2004] Zhang, T. (2004). Solving large scale linear prediction problems using
stochastic gradient descent algorithms. In Proceedings of the twenty-first international
conference on Machine learning, page 116. ACM.

[Zhao et al., 2008] Zhao, S., Liang, J., Suganthan, P., and Tasgetiren, M. (2008). Dy-
namic multi-swarm particle swarm optimizer with local search for large scale global

BIBLIOGRAPHY 173

optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress
on Computational Intelligence). IEEE Congress on, pages 3845–3852. IEEE.

[Zhong et al., 2004] Zhong, W., Liu, J., Xue, M., and Jiao, L. (2004). A multiagent
genetic algorithm for global numerical optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 34(2):1128–1141.

174 BIBLIOGRAPHY

Appendix A

Appendix

A.1 Benchmarking Large-Scale Algorithms

175

176 APPENDIX A. APPENDIX

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

20-D

40-D

80-D

160-D

320-D

640-Dbbob - f1
5 instDnces

0.7.betD.3

1 6Shere

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

20-D

40-D

80-D

160-D

320-D

640-Dbbob - f1
5 instDnces

0.7.betD.3

1 6Shere

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

20-D

40-D

80-D

160-D

320-D

640-Dbbob - f1
5 instDnces

0.7.betD.3

1 6Shere

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

40-D

20-D

160-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-DEEoE - f2
5 instDnces

0.7.EetD.3

2 (llipsoid sepDrDEle

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

80-D

40-D

20-DbbRb - f3
5 instDnces

0.7.betD.3

3 5Dstrigin sepDrDble

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f3
5 instDnces

0.7.betD.3

3 5Dstrigin sepDrDble

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f3
5 instDnces

0.7.betD.3

3 5Dstrigin sepDrDble

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

80-D

640-D

160-D

320-D

40-D

20-DbbRb - f4
5 instDnces

0.7.betD.3

4 6kew 5Dstrigin-Bueche seSDr

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f4
5 instDnces

0.7.betD.3

4 6kew 5Dstrigin-Bueche seSDr

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f4
5 instDnces

0.7.betD.3

4 6kew 5Dstrigin-Bueche seSDr

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.1

A.1. BENCHMARKING LARGE-SCALE ALGORITHMS 177

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

80-D

320-D

40-D

160-D

20-Dbbob - f5
4 LnstDnces

0.7.betD.3

5 /LneDr slope

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

20-D

40-D

80-D

320-D

160-Dbbob - f5
5 LnstDnces

0.7.betD.3

5 /LneDr slope

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

20-D

40-D

80-D

320-D

160-D

640-Dbbob - f5
5 LnstDnces

0.7.betD.3

5 /LneDr slope

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f6
5 instDnces

0.7.betD.3

6 AttrDctive sector

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

40-D

80-D

20-Dbbob - f7
5 instDnces

0.7.betD.3

7 6teS-elliSsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f7
5 instDnces

0.7.betD.3

7 6teS-elliSsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

160-D

320-D

80-D

40-D

20-Dbbob - f7
5 instDnces

0.7.betD.3

7 6teS-elliSsoid

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

20-D

160-D

640-D

320-D

40-D

80-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

640-D

320-D

80-D

160-D

20-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

40-D

80-D

20-DbbRb - f8
5 instDnces

0.7.betD.3

8 5RsenbrRck RriginDl

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.2

178 APPENDIX A. APPENDIX

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

320-D

640-D

160-D

80-D

40-D

20-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

40-D

640-D

20-D

320-D

160-D

80-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

20-D

80-D

160-D

40-DbbRb - f9
5 instDnces

0.7.betD.3

9 5RsenbrRck rRtDted

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DEEoE - f10
4 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

40-D

320-D

160-D

80-D

20-DEEoE - f10
5 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

40-D

160-D

20-D

80-DEEoE - f10
5 instDnces

0.7.EetD.3

10 (llipsoid

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

20-D

80-D

160-D

640-D

320-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

160-D

40-D

20-Dbbob - f11
5 instDnces

0.7.betD.3

11 Discus

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

160-D

40-D

20-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-Dbbob - f12
5 instDnces

0.7.betD.3

12 Bent cigDr

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.3

A.1. BENCHMARKING LARGE-SCALE ALGORITHMS 179

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

40-D

80-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

320-D

640-D

160-D

80-D

40-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

160-D

320-D

640-D

80-D

40-D

20-Dbbob - f13
5 instDnces

0.7.betD.3

13 6hDrS ridge

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

20-D

80-D

160-D

320-D

640-Dbbob - f14
4 instDnces

0.7.betD.3

14 6uP of different Sowers

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

160-D

80-D

320-D

640-D

20-Dbbob - f14
5 instDnces

0.7.betD.3

14 6uP of different Sowers

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

20-D

640-D

320-D

160-D

80-Dbbob - f14
5 instDnces

0.7.betD.3

14 6uP of different Sowers

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

80-D

40-D

20-DbbRb - f15
5 instDnces

0.7.betD.3

15 5Dstrigin

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f15
5 instDnces

0.7.betD.3

15 5Dstrigin

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / diPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f15
5 instDnces

0.7.betD.3

15 5Dstrigin

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

40-D

80-D

20-Dbbob - f16
5 insWDnces

0.7.beWD.3

16 WeiersWrDss

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f16
5 insWDnces

0.7.beWD.3

16 WeiersWrDss

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

20-D

40-D

80-Dbbob - f16
5 insWDnces

0.7.beWD.3

16 WeiersWrDss

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.4

180 APPENDIX A. APPENDIX

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

40-D

160-D

20-D

320-D

80-Dbbob - f17
5 instDnFes

0.7.betD.3

17 6FhDffer)7, Fondition 10

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f17
5 instDnFes

0.7.betD.3

17 6FhDffer)7, Fondition 10

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f17
5 instDnFes

0.7.betD.3

17 6FhDffer)7, Fondition 10

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

160-D

640-D

40-D

80-D

20-Dbbob - f18
5 instDnFes

0.7.betD.3

18 6FhDffer)7, Fondition 1000

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-Dbbob - f18
5 instDnFes

0.7.betD.3

18 6FhDffer)7, Fondition 1000

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

20-D

40-Dbbob - f18
5 instDnFes

0.7.betD.3

18 6FhDffer)7, Fondition 1000

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / GiPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f19
5 instDnFes

0.7.betD.3

19 GriewDnk-5RsenbrRFk)8)2

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / GiPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f19
5 instDnFes

0.7.betD.3

19 GriewDnk-5RsenbrRFk)8)2

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / GiPensiRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f19
5 instDnFes

0.7.betD.3

19 GriewDnk-5RsenbrRFk)8)2

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

80-D

160-D

40-D

20-Dbbob - f20
5 instDnces

0.7.betD.3

20 6chwefel x*sin(x)

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

20-D

320-D

160-D

80-D

40-Dbbob - f20
5 instDnces

0.7.betD.3

20 6chwefel x*sin(x)

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

20-D

80-D

40-D

160-D

320-D

640-Dbbob - f20
5 instDnces

0.7.betD.3

20 6chwefel x*sin(x)

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.5

A.1. BENCHMARKING LARGE-SCALE ALGORITHMS 181

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

80-D

160-D

640-D

40-D

320-D

20-Dbbob - f21
5 instDnces

0.7.betD.3

21 GDllDgher 101 peDks

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

320-D

40-D

80-D

160-D

640-D

20-Dbbob - f21
4 instDnces

0.7.betD.3

21 GDllDgher 101 peDks

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1.0

320-D

640-D

160-D

80-D

40-D

20-Dbbob - f21
5 instDnces

0.7.betD.3

21 GDllDgher 101 peDks

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / GiPension)

0.0

0.2

0.4

0.6

0.8

1.0

20-D

160-D

80-D

320-D

40-D

640-Dbbob - f22
5 instDnces

0.7.betD.3

22 GDllDgher 21 peDks

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / GiPension)

0.0

0.2

0.4

0.6

0.8

1.0

80-D

320-D

640-D

160-D

40-D

20-Dbbob - f22
5 instDnces

0.7.betD.3

22 GDllDgher 21 peDks

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / GiPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

20-D

40-D

640-D

80-D

160-Dbbob - f22
5 instDnces

0.7.betD.3

22 GDllDgher 21 peDks

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

20-D

160-D

40-D

80-D

320-D

640-Dbbob - f23
5 instDnces

0.7.betD.3

23 .DtsuurDs

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

40-D

160-D

80-D

640-D

20-Dbbob - f23
5 instDnces

0.7.betD.3

23 .DtsuurDs

0 1 2 3 4 5 6 7 8
log10 of (# f-evDls / diPension)

0.0

0.2

0.4

0.6

0.8

1.0

40-D

80-D

160-D

20-D

320-D

640-Dbbob - f23
5 instDnces

0.7.betD.3

23 .DtsuurDs

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / dLPensLRn)

0.0

0.2

0.4

0.6

0.8

1.0

320-D

80-D

40-D

160-D

640-D

20-DbbRb - f24
5 LnstDnces

0.7.betD.3

24 /unDcek bL-5DstrLgLn

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / dLPensLRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f24
5 LnstDnces

0.7.betD.3

24 /unDcek bL-5DstrLgLn

0 1 2 3 4 5 6 7 8
lRg10 Rf (# f-evDls / dLPensLRn)

0.0

0.2

0.4

0.6

0.8

1.0

640-D

320-D

160-D

80-D

40-D

20-DbbRb - f24
5 LnstDnces

0.7.betD.3

24 /unDcek bL-5DstrLgLn

sep-CMA-ES LM-CMA-ES VD-CMA-ES

Figure A.6

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Optimisation stochastique de problèmes en boîtes noires et benchmarking en grandes
dimensions.

Mots clés : optimisation continue, benchmarking, stratégies d'évolution, grandes dimensions

Résumé : Etant donné le coût élevé qui
accompagne, en général, la résolution de
problèmes en grandes dimensions, notamment
quand il s'agit de problèmes réels ; le recours à
des fonctions dites benchmarks et une approche
communément utilisée pour l'évaluation
d'algorithmes avec un coût minime.
Il est alors question de savoir identifier les
formes par lesquelles ces problèmes se
présentent pour pouvoir les reproduire dans ces
benchmarks.
Une question dont la réponse est difficile vu la
variété de ces problèmes, leur complexité, et la
difficulté de tous les décrire pertinemment.
L'idée est alors d'examiner les difficultés qui
accompagnent généralement ces problèmes,
ceci afin de les reproduire dans les fonctions
benchmarks et évaluer la capacité des
algorithmes à les résoudre.
Dans le cas des problèmes de grandes
dimensions, il serait pratique de pouvoir
simplement étendre les benchmarks déjà utilisés
pour les dimensions moins importantes.
Cependant, il est important de prendre en
compte les contraintes additionnelles qui
accompagnent les problèmes de grandes
dimensions, notamment ceux liés à la
complexité d'évaluer ces fonctions benchmark.
Idéalement, les fonctions benchmark en grandes
dimensions garderaient la majorité des
propriétés de leurs contreparties en dimensions
réduites tout en ayant un coût raisonnable.
Les problèmes benchmark sont souvent
classifiés en catégories suivant les difficultés
qu'ils présentent.

Même dans un scénario en boîte-noire où ce
genre d'information n'est pas partagé avec
l'algorithme, il reste important et pertinent
d'avoir cette classification.
Ceci permet d'identifier les lacunes d'un
algorithme vis-à-vis d'une difficulté en
particulier, et donc de plus facilement pouvoir
l'améliorer.
Une autre question importante à se poser en
modélisant des problèmes de grandes
dimensions est la pertinence des variables.
En effet, quand la dimension est relativement
petite, il n'est pas rare de voir toutes les
variables contribuer à définir la qualité d'une
solution.
Cependant, quand la dimension grandit, il arrive
souvent que des variables deviennent
redondantes voire inutiles ; notamment vu la
difficulté de trouver une représentation
minimaliste du problème.
Ce dernier point encourage la conception et
d'algorithmes et de fonctions benchmark traitant
cette classe de problèmes.
Dans cette thèse, on réponde, principalement, à
trois questions rencontrées dans l'optimisation
stochastique continue en grandes dimensions :
1. Comment concevoir une méthode
d'adaptation du pas d'une stratégie d'évolution
qui, à la fois, est efficace et a un coût en calculs
raisonnable
2. Comment construire et généraliser des
fonctions à faible dimension effective ?
3. Comment étendre un ensemble de fonctions
benchmarks pour des cas de grandes dimensions
en préservant leurs propriétés sans avoir des
caractéristiques qui soient exploitables

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title: Stochastic Black-Box Optimization and Benchmarking in Large Dimensions

Keywords: Continuous Optimization, Benchmarking, Evolution Strategies, Large Scale

Abstract: Because of the generally high
computational costs that come with large-scale
problems, more so on real world problems, the
use of benchmarks is a common practice in
algorithm design, algorithm tuning or
algorithm choice/evaluation. The question is
then the forms in which these real-world
problems come. Answering this question is
generally hard due to the variety of these
problems and the tediousness of describing
each of them. Instead, one can investigate the
commonly encountered difficulties when
solving continuous optimization problems.
Once the difficulties identified, one can
construct relevant benchmark functions that
reproduce these difficulties and allow assessing
the ability of algorithms to solve them.
In the case of large-scale benchmarking, it
would be natural and convenient to build on the
work that was already done on smaller
dimensions, and be able to extend it to larger
ones. When doing so, we must take into
account the added constraints that come with a
large-scale scenario. We need to be able to
reproduce, as much as possible, the effects and
properties of any part of the benchmark that
needs to be replaced or adapted for large-
scales. This is done in order for the new
benchmarks to remain relevant.
It is common to classify the problems, and thus
the benchmarks, according to the difficulties
they present and properties they possess. It is
true that in a black-box scenario, such
information (difficulties, properties...) is
supposed unknown to the algorithm. However,
in a benchmarking setting, this classification
becomes important and allows to better identify
and understand the shortcomings of a method,
and thus make it easier to improve it or
alternatively to switch to a more efficient one
(one needs to make sure the algorithms are
exploiting this knowledge when solving the
problems). Thus the importance of identifying
the difficulties and properties of the problems
of a benchmarking suite and, in our case,
preserving them.

One other question that rises particularly when
dealing with large-scale problems is the
relevance of the decision variables. In a small
dimension problem, it is common to have all
variable contribute a fair amount to the fitness
value of the solution or, at least, to be in a
scenario where all variables need to be
optimized in order to reach high quality
solutions. This is however not always the case
in large-scales; with the increasing number of
variables, some of them become redundant or
groups of variables can be replaced with
smaller groups since it is then increasingly
difficult to find a minimalistic representation of
a problem. This minimalistic representation is
sometimes not even desired, for example when
it makes the resulting problem more complex
and the trade-off with the increase in number of
variables is not favorable, or larger numbers of
variables and different representations of the
same features within a same problem allow a
better exploration.
This encourages the design of both algorithms
and benchmarks for this class of problems,
especially if such algorithms can take
advantage of the low effective dimensionality
of the problems, or, in a complete black-box
scenario, cost little to test for it (low effective
dimension) and optimize assuming a small
effective dimension.
In this thesis, we address three questions that
generally arise in stochastic continuous black-
box optimization and benchmarking in high
dimensions:
1. How to design cheap and yet efficient step-
size adaptation mechanism for evolution
strategies?
2. How to construct and generalize low
effective dimension problems?
3. How to extend a low/medium dimension
benchmark to large dimensions while
remaining computationally reasonable, non-
trivial and preserving the properties of the
original problem?

	General Introduction
	Main Contributions
	Cheap Step-Size Adaptation: The Median Success Rule
	Relevance of Variables/Dimensions: Low Effective Dimensions and Their Generalization
	Extension of a Benchmark to Large-Scales: from COCO to Large-Scale COCO

	Background Study
	Continuous Black-Box Optimization
	The Challenges of Large-Scale Continuous Optimization
	Dimension of the Problem
	Non-Separability
	Multi-Modality
	Ill-Conditioning
	Other Difficulties

	Evolutionary Algorithms for Continuous Black-Box Optimization
	Differential Evolution
	Particle Swarm Optimization
	Estimation of Distribution Algorithms

	Evolution Strategies
	The Covariance Matrix Adaptation Evolution Strategies
	The -CMA-ES
	CMA-ES variants

	Large-Scale Continuous Optimization
	Direct Approaches
	Descent-Based Approaches
	PSO, DE and EDA Variants
	CMA-ES Variants
	Other Methods

	Divide & Conquer Approaches

	Benchmarking
	The BBOB-2009 test-bed
	The CEC Benchmarks for Large-Scale Global Optimization

	The Median Success Rule
	Introduction
	Step-size Adaptation and Linear Convergence
	The Median Success Rule Working-Principle
	Motivations
	Preliminaries
	The Definition of Median Success
	Implementation of the Median Success Rule

	Parameter Setting
	Learning Rate
	Comparison Index
	The Linear Function
	The Sphere Function
	Asymptotic case
	Finite dimension

	The Ridge Function
	Comparison Index Formula

	Damping parameter

	Benchmarking
	Parameter Configuration
	Result Discussion

	Conclusion

	Effective and Epsilon-Effective Dimensions
	Introduction
	Function-Class Definition
	SS-CMA-ES
	RSS-CMA-ES and OSS-CMA-ES
	Complexities
	In Number of Function Evaluations
	CPU Time

	Conditioning of the Embedding Matrix A

	Performance Assessment
	Test Functions
	Parameter and Experimental Settings
	Performance Measure
	Sub-Space dimension, Effective Dimension and epsilon

	Stopping Criteria on SS-CMA-ES
	Single Runs
	Scaling with the Optimization Sub-Space Dimension
	Scaling with the Problem Dimension

	Discussion

	The COCO Large Scale Suite
	The BBOB-2009 Testbed
	The BBOB-2009 Transformations
	Shift of Parameter and Fitness Spaces
	Linear Transformations
	Non-Linear Transformations

	The Large-Scale Extension
	The Core Transformation Matrix
	The Permutations
	Generating the Random Permutations

	Transformation-Parameter Impact
	Impact of the Number of Swaps on the Proportion of Moved Variables
	Impact of the Parameters on the Structure of the Transformation Matrix
	Measure of Difficulty

	Impact of the Block Condition Number
	Parameter Choice for the Benchmarks
	Initial Guess
	Empirical Validation on sep-CMA-ES

	The Large Scale Benchmark
	Changes to the Raw Functions
	The Test-Suite Problem Definitions
	Implementation Details and Cost of Applying the Transformation
	CPU Timing

	Benchmarking Large-Scale Algorithms
	Conclusion

	Final Conclusion
	Appendix
	Benchmarking Large-Scale Algorithms

