. Wu, Il s'agit d'une mesure sur l'étain mais impliquant un transfert du proton vers l'étain permettant d'augmenter l'intensité du signal et de diminuer la durée de l'impulsion gradient, 1996.

Y. Fukushima and S. Inagaki, Synthesis of an intercalated compound of montmorillonite and 6-polyamide, Journal of Inclusion Phenomena, vol.26, issue.4, pp.473-482, 1987.
DOI : 10.1007/BF00664105

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, Applications of advanced hybrid organic???inorganic nanomaterials: from laboratory to market, Chemical Society Reviews, vol.39, issue.2, pp.696-753, 2011.
DOI : 10.1002/1521-3773(20001002)39:19<3392::AID-ANIE3392>3.0.CO;2-M

C. Sanchez and F. Ribot, Design of Hybrid Organic-Inorganic Materials Synthesized Via Sol-Gel Chemistry, New J. Chem, vol.18, pp.1007-1047, 1994.

D. Y. Wu, S. Meure, and D. Solomon, Self-healing polymeric materials: A review of recent developments, Progress in Polymer Science, vol.33, issue.5, pp.479-522, 2008.
DOI : 10.1016/j.progpolymsci.2008.02.001

E. B. Murphy and F. Wudl, The world of smart healable materials, Progress in Polymer Science, vol.35, issue.1-2, pp.223-251, 2010.
DOI : 10.1016/j.progpolymsci.2009.10.006

D. Habault, H. Zhang, and Y. Zhao, Light-triggered self-healing and shape-memory polymers, Chemical Society Reviews, vol.6, issue.17, pp.7244-7256, 2013.
DOI : 10.1039/B916831A

F. Herbst, D. Döhler, P. Michael, and W. Binder, Self-Healing Polymers via Supramolecular Forces, Macromolecular Rapid Communications, vol.43, issue.3, pp.203-220, 2013.
DOI : 10.1021/ma9027646

Y. Yang and M. W. Urban, Self-healing polymeric materials, Chemical Society Reviews, vol.330, issue.17, pp.7446-7467, 2013.
DOI : 10.1126/science.1193497

L. M. De-espinosa, G. L. Fiore, C. Weder, J. Foster, E. Simon et al., Healable supramolecular polymer solids, Progress in Polymer Science, vol.49, issue.50
DOI : 10.1016/j.progpolymsci.2015.04.003

C. Sanchez, Designed Hybrid Organic???Inorganic Nanocomposites from Functional Nanobuilding Blocks, Chemistry of Materials, vol.13, issue.10, pp.3061-3083, 2001.
DOI : 10.1021/cm011061e

L. Nicole, C. Laberty-robert, L. Rozes, and C. Sanchez, Hybrid materials science: a promised land for the integrative design of multifunctional materials, Nanoscale, vol.42, issue.88, pp.6267-6292, 2014.
DOI : 10.1039/c3cs60045a

URL : https://hal.archives-ouvertes.fr/hal-01289930

P. Judeinstein and H. Schmidt, Polymetalates based organic-inorganic nanocomposites, Journal of Sol-Gel Science and Technology, vol.220, issue.3
DOI : 10.1007/BF00486557

Z. Zhang, L. Hong, Y. Gao, and W. Zhang, One-pot synthesis of POSS-containing alternating copolymers by RAFT polymerization and their microphase-separated nanostructures, Polymer Chemistry, vol.40, issue.3, pp.4534-4541, 2014.
DOI : 10.1021/ma061886f

P. Judeinstein, Synthesis and properties of polyoxometalates based inorganic-organic polymers, Chemistry of Materials, vol.4, issue.1, pp.4-7, 1992.
DOI : 10.1021/cm00019a002

S. Bocchini, New hybrid organic???inorganic nanocomposites based on functional [Ti16O16(OEt)24(OEMA)8] nano-fillers, Chemical Communications, vol.8, issue.20, pp.2600-2602, 2005.
DOI : 10.1557/PROC-271-57

URL : https://hal.archives-ouvertes.fr/hal-00022616

G. Kickelbick, D. Holzinger, C. Brick, G. Trimmel, and E. Moons, Hybrid Inorganic???Organic Core???Shell Nanoparticles from Surface-Functionalized Titanium, Zirconium, and Vanadium Oxo Clusters, Chemistry of Materials, vol.14, issue.10, pp.4382-4389, 2002.
DOI : 10.1021/cm021216y

F. Périneau, New hybrid core???shell star-like architectures made of poly(n-butyl acrylate) grown from well-defined titanium oxo-clusters, Journal of Materials Chemistry, vol.9, issue.12, pp.4470-4475, 2011.
DOI : 10.1039/a903714d

U. Schubert, Cluster-based inorganic???organic hybrid materials, Chem. Soc. Rev., vol.38, issue.2, pp.575-582, 2011.
DOI : 10.1039/b817735j

G. Kickelbick, EXAFS Investigations on Nanocomposites Composed of Surface-Modified Zirconium and Zirconium/Titanium Mixed Metal Oxo Clusters and Organic Polymers, Monatshefte f???r Chemie / Chemical Monthly, vol.133, issue.6, pp.919-929, 2002.
DOI : 10.1007/s007060200062

L. Rozes, Reinforcement of polystyrene by covalently bonded oxo-titanium clusters, Progress in Solid State Chemistry, vol.33, issue.2-4
DOI : 10.1016/j.progsolidstchem.2005.11.031

F. Périneau, Supramolecular design for polymer/titanium oxo-cluster hybrids: an open door to new organic???inorganic dynamers, Polymer Chemistry, vol.131, issue.12, pp.2785-2788, 2011.
DOI : 10.1021/ja903726m

S. Kuo and F. Chang, POSS related polymer nanocomposites, Progress in Polymer Science, vol.36, issue.12, pp.1649-1696, 2011.
DOI : 10.1016/j.progpolymsci.2011.05.002

D. Neumann, M. Fisher, L. Tran, and J. G. Matisons, Synthesis and Characterization of an Isocyanate Functionalized Polyhedral Oligosilsesquioxane and the Subsequent Formation of an Organic???Inorganic Hybrid Polyurethane, Journal of the American Chemical Society, vol.124, issue.47, pp.13998-13999, 2002.
DOI : 10.1021/ja0275921

L. Mat?jka, Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Structure and Morphology, Macromolecules, vol.37, issue.25, pp.9449-9456, 2004.
DOI : 10.1021/ma0484577

P. T. Mather, H. G. Jeon, A. Romo-uribe, T. S. Haddad, and J. D. Lichtenhan, Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers, Macromolecules, vol.32, issue.4, pp.1194-1203, 1999.
DOI : 10.1021/ma981210n

N. Amir, A. Levina, and M. S. Silverstein, Nanocomposites through copolymerization of a polyhedral oligomeric silsesquioxane and methyl methacrylate, Journal of Polymer Science Part A: Polymer Chemistry, vol.8, issue.18
DOI : 10.1016/j.polymer.2005.09.070

W. Zhang, B. Fang, A. Walther, and A. H. Müller, Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water, Macromolecules, vol.42, issue.7, pp.2563-2569, 2009.
DOI : 10.1021/ma802803d

H. Li, A Highly Transparent and Luminescent Hybrid Based on the Copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate, Advanced Materials, vol.193, issue.22
DOI : 10.1002/chem.200400853

S. R. White, Autonomic healing of polymer composites, Nature, vol.2, issue.6822, pp.794-797, 2001.
DOI : 10.1021/om980683f

G. Lewis, B. Wellborn, L. Jones, and P. Biggs, A room-temperature autonomicallyhealing PMMA bone cement: influence of composition on fatigue crack propagation rate

M. M. Dailey, A self-healing biomaterial based on free-radical polymerization, Journal of Biomedical Materials Research Part A, vol.1, issue.9, pp.3024-3032, 2014.
DOI : 10.1007/BF00255445

X. K. Hillewaere, Autonomous Self-Healing of Epoxy Thermosets with Thiol-Isocyanate Chemistry, Advanced Functional Materials, vol.580, issue.35, pp.5575-5583, 2014.
DOI : 10.1016/j.nima.2007.05.099

M. Gragert, M. Schunack, W. H. Binder, and . Azide, Azide/Alkyne-???Click???-Reactions of Encapsulated Reagents: Toward Self-Healing Materials, Macromolecular Rapid Communications, vol.44, issue.5, pp.419-425, 2011.
DOI : 10.1002/anie.200461496

K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, Self-healing materials with microvascular??networks, Nature Materials, vol.42, issue.8, pp.581-585, 2007.
DOI : 10.1016/j.compositesa.2004.06.016

A. P. Esser-kahn, Three-Dimensional Microvascular Fiber-Reinforced Composites, Advanced Materials, vol.77, issue.1
DOI : 10.1021/cen-v077n003.p065

S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, and P. T. Curtis, A smart repair system for polymer matrix composites, Composites Part A: Applied Science and Manufacturing, vol.32, issue.12, pp.1767-1776, 2001.
DOI : 10.1016/S1359-835X(01)00020-3

R. S. Trask and I. P. Bond, Biomimetic self-healing of advanced composite structures using hollow glass fibres, Smart Materials and Structures, vol.15, issue.3, p.704, 2006.
DOI : 10.1088/0964-1726/15/3/005

R. S. Trask, G. J. Williams, and I. P. Bond, Bioinspired self-healing of advanced composite structures using hollow glass fibres, Journal of The Royal Society Interface, vol.4, issue.13, pp.363-371, 2007.
DOI : 10.1098/rsif.2006.0194

B. Ghosh, K. V. Chellappan, and M. W. Urban, Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks, Journal of Materials Chemistry, vol.51, issue.38, pp.14473-14486, 2011.
DOI : 10.1016/j.polymer.2009.11.028

B. Ghosh and M. W. Urban, Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks, Science, vol.18, issue.8, pp.1458-1460, 2009.
DOI : 10.1038/nmat1934

T. F. Scott, A. D. Schneider, W. D. Cook, &. Christopher, and N. Bowman, Photoinduced Plasticity in Cross-Linked Polymers, Science, vol.308, issue.5728, pp.1615-1617, 2005.
DOI : 10.1126/science.1110505

Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, and K. Matyjaszewski, Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers through Reshuffling of Trithiocarbonate Units, Angewandte Chemie International Edition, vol.35, issue.7, pp.1660-1663, 2011.
DOI : 10.1021/ma020362m

Y. Amamoto, H. Otsuka, A. Takahara, and K. Matyjaszewski, Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light, Advanced Materials, vol.30, issue.29, pp.3975-3980, 2012.
DOI : 10.1122/1.549853

A. Rekondo, Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis, Mater. Horiz., vol.23, issue.2, 2013.
DOI : 10.1002/pol.1985.130231003

L. Imbernon, E. K. Oikonomou, S. Norvez, and L. Leibler, Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements, Polym. Chem., vol.8, issue.23
DOI : 10.1088/0022-3727/8/5/010

URL : https://hal.archives-ouvertes.fr/hal-01223860

Y. Lu, F. Tournilhac, L. Leibler, and Z. Guan, Making Insoluble Polymer Networks Malleable via Olefin Metathesis, Journal of the American Chemical Society, vol.134, issue.20, pp.8424-8427, 2012.
DOI : 10.1021/ja303356z

URL : https://hal.archives-ouvertes.fr/hal-00701675

J. Ling, M. Z. Rong, and M. Q. Zhang, Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives, Polymer, vol.53, issue.13, pp.2691-2698, 2012.
DOI : 10.1016/j.polymer.2012.04.016

J. Ling, M. Z. Rong, and M. Q. Zhang, Coumarin imparts repeated photochemical remendability to polyurethane, Journal of Materials Chemistry, vol.162, issue.45, pp.18373-18380, 2011.
DOI : 10.1016/j.mseb.2009.04.006

P. Froimowicz, H. Frey, and K. Landfester, Towards the Generation of Self-Healing Materials by Means of a Reversible Photo-induced Approach, Macromolecular Rapid Communications, vol.35, issue.5, pp.468-473, 2011.
DOI : 10.1246/cl.2006.80

C. Chung, Y. Roh, S. Cho, and J. Kim, Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition, Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition, pp.3982-3984, 2004.
DOI : 10.1021/cm049394+

O. Diels and K. Alder, Synthesen in der hydroaromatischen Reihe, Justus Liebig's Annalen der Chemie, vol.29, issue.1
DOI : 10.1039/CT8844500410

X. X. Chen, A Thermally Re-mendable Cross-Linked Polymeric Material, Science, vol.295, issue.5560, pp.1698-1702, 2002.
DOI : 10.1126/science.1065879

Y. Heo and H. A. Sodano, Self-Healing Polyurethanes with Shape Recovery, Advanced Functional Materials, vol.52, issue.33
DOI : 10.1016/j.polymer.2011.11.007

G. Rivero, L. T. Nguyen, X. K. Hillewaere, and F. Du-prez, One-Pot Thermo-Remendable Shape Memory Polyurethanes, Macromolecules, vol.47, issue.6, pp.2010-2018, 2014.
DOI : 10.1021/ma402471c

X. Chen, F. Wudl, A. K. Mal, H. Shen, and S. Nutt, New Thermally Remendable Highly Cross-Linked Polymeric Materials, Macromolecules, vol.36, issue.6, pp.1802-1807, 2003.
DOI : 10.1021/ma0210675

Q. Tian, M. Z. Rong, M. Q. Zhang, and Y. C. Yuan, Optimization of thermal remendability of epoxy via blending, Polymer, vol.51, issue.8, pp.1779-1785, 2010.
DOI : 10.1016/j.polymer.2010.02.004

A. A. Kavitha and N. K. Singha, ???Click Chemistry??? in Tailor-Made Polymethacrylates Bearing Reactive Furfuryl Functionality: A New Class of Self-Healing Polymeric Material, ACS Applied Materials & Interfaces, vol.1, issue.7, pp.1427-1436, 2009.
DOI : 10.1021/am900124c

P. Reutenauer, E. Buhler, P. J. Boul, S. J. Candau, and J. Lehn, Room Temperature Dynamic Polymers Based on Diels-Alder Chemistry, Chemistry - A European Journal, vol.45, issue.8, pp.1893-1900, 2009.
DOI : 10.1002/chem.200802145

URL : https://hal.archives-ouvertes.fr/hal-00365049

N. Yoshie, M. Watanabe, H. Araki, and K. Ishida, Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide, Polymer Degradation and Stability, vol.95, issue.5, pp.826-829, 2010.
DOI : 10.1016/j.polymdegradstab.2010.01.032

S. Billiet, Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems, Nature Chemistry, vol.43, issue.9, pp.815-821, 2014.
DOI : 10.1021/ma902464a

D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, Silica-Like Malleable Materials from Permanent Organic Networks, Science, vol.172, issue.174, pp.965-968, 2011.
DOI : 10.1016/0022-3093(94)90431-6

URL : https://hal.archives-ouvertes.fr/hal-00681898

D. Montarnal, F. Tournilhac, M. Hidalgo, J. Couturier, and L. Leibler, Versatile One-Pot Synthesis of Supramolecular Plastics and Self-Healing Rubbers, Journal of the American Chemical Society, vol.131, issue.23, pp.7966-7967, 2009.
DOI : 10.1021/ja903080c

URL : https://hal.archives-ouvertes.fr/hal-00399104

K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, and E. J. Kramer, Model Transient Networks from Strongly Hydrogen-Bonded Polymers, Macromolecules, vol.42, issue.22, pp.9072-9081, 2009.
DOI : 10.1021/ma901668w

J. Hentschel, A. M. Kushner, J. Ziller, and . Guan, Self-Healing Supramolecular Block Copolymers, Self-Healing Supramolecular Block Copolymers, pp.10561-10565, 2012.
DOI : 10.1021/ma011223s

R. K. Bose, N. Hohlbein, S. J. Garcia, A. M. Schmidt, S. Zwaag et al., Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt, Phys. Chem. Chem. Phys., vol.72, issue.3, pp.1697-1704, 2014.
DOI : 10.1016/j.porgcoat.2011.06.016

S. Lokey, R. Iverson, and B. L. , Synthetic molecules that fold into a pleated secondary structure in solution, Nature, vol.375, issue.6529, pp.303-305, 1995.
DOI : 10.1038/375303a0

S. Burattini, A Healable Supramolecular Polymer Blend Based on Aromatic ??????? Stacking and Hydrogen-Bonding Interactions, Journal of the American Chemical Society, vol.132, issue.34, pp.12051-12058, 2010.
DOI : 10.1021/ja104446r

S. Burattini, A Supramolecular Polymer Based on Tweezer-Type ??????? Stacking Interactions: Molecular Design for Healability and Enhanced Toughness, Chemistry of Materials, vol.23, issue.1, pp.6-8, 2011.
DOI : 10.1021/cm102963k

J. Fox, High-Strength, Healable, Supramolecular Polymer Nanocomposites, Journal of the American Chemical Society, vol.134, issue.11, pp.5362-5368, 2012.
DOI : 10.1021/ja300050x

R. Vaiyapuri, B. W. Greenland, H. M. Colquhoun, J. M. Elliott, and W. Hayes, Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends ??? a route to property enhancement, Polymer Chemistry, vol.18, issue.18, pp.4902-4909, 2013.
DOI : 10.1021/cm0611643

P. Cordier, F. Tournilhac, C. Soulié-ziakovic, and L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly, Nature, vol.84, issue.7181, pp.977-980, 2008.
DOI : 10.1038/nature06669

URL : https://hal.archives-ouvertes.fr/hal-00399133

J. Cortese, C. Soulié-ziakovic, M. Cloitre, S. Tencé-girault, and L. Leibler, Order???Disorder Transition in Supramolecular Polymers, Journal of the American Chemical Society, vol.133, issue.49, pp.19672-19675, 2011.
DOI : 10.1021/ja209126a

URL : https://hal.archives-ouvertes.fr/hal-00681894

J. Cortese, C. Soulié-ziakovic, S. Tencé-girault, and L. Leibler, Suppression of Mesoscopic Order by Complementary Interactions in Supramolecular Polymers, Journal of the American Chemical Society, vol.134, issue.8
DOI : 10.1021/ja2119496

URL : https://hal.archives-ouvertes.fr/hal-00805766

C. Park, J. Yoon, and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, vol.44, issue.22, pp.6725-6760, 2003.
DOI : 10.1016/j.polymer.2003.08.011

Y. Chen, A. M. Kushner, G. A. Williams, and Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers, Nature Chemistry, vol.26, issue.6, pp.467-472, 2012.
DOI : 10.1021/ma00061a013

D. G. Kurth, Metallo-supramolecular modules as a paradigm for materials science, Science and Technology of Advanced Materials, vol.4, issue.1, p.14103, 2008.
DOI : 10.1016/0927-7757(93)80048-J

J. Zhou, G. R. Whittell, and I. Manners, Metalloblock Copolymers: New Functional Nanomaterials, Macromolecules, vol.47, issue.11, pp.3529-3543, 2014.
DOI : 10.1021/ma500106x

M. Burnworth, Optically healable supramolecular polymers, Nature, vol.42, issue.7343, pp.334-337, 2011.
DOI : 10.1107/S0021889809002222

Z. Wang and M. W. Urban, N???Cu) supramolecular polymer networks, Polym. Chem., vol.4, issue.18, pp.4897-4901, 2013.
DOI : 10.1038/nchem.1249

B. Yang, Self-healing metallo-supramolecular polymers from a ligand macromolecule synthesized via copper-catalyzed azide???alkyne cycloaddition and thiol???ene double ???click??? reactions, Polym. Chem., vol.123, issue.6, pp.1945-1953, 2014.
DOI : 10.1016/0010-8545(93)85056-A

S. Bode, Self-Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers, Advanced Materials, vol.4, issue.11, pp.1634-1638, 2013.
DOI : 10.1039/b711716g

S. Coulibaly, Reinforcement of Optically Healable Supramolecular Polymers with Cellulose Nanocrystals, Macromolecules, vol.47, issue.1, pp.152-160, 2014.
DOI : 10.1021/ma402143c

R. Martín, Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers, Chemical Communications, vol.7, issue.66, pp.8255-8257, 2012.
DOI : 10.1039/c0sm01217c

M. A. Aboudzadeh, M. E. Muñoz, A. Santamaría, R. Marcilla, and D. Mecerreyes, Facile Synthesis of Supramolecular Ionic Polymers That Combine Unique Rheological, Ionic Conductivity, and Self-Healing Properties, Macromolecular Rapid Communications, vol.12, issue.4, pp.314-318, 2012.
DOI : 10.1039/c0cp00239a

M. A. Aboudzadeh, Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds, J. Mater. Chem. A, vol.52, issue.5, pp.2338-2343, 2015.
DOI : 10.1002/pola.27217

E. A. Appel, J. Barrio, . Del, X. J. Loh, and O. A. Scherman, Supramolecular polymeric hydrogels, Chemical Society Reviews, vol.43, issue.18, pp.6195-6214, 2012.
DOI : 10.1021/ma101434a

X. Yang, Self-healing polymer materials constructed by macrocycle-based host???guest interactions, Soft Matter, vol.34, issue.7, pp.1242-1252, 2015.
DOI : 10.1002/marc.201300731

R. Martin, The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges, Journal of Materials Chemistry A, vol.10, issue.16, pp.5710-5715, 2014.
DOI : 10.2478/v10026-008-0049-8

H. Puff and H. Reuter, Zur hydrolyse von monoorganylzinn-trihalogeniden III. Isolierung und r??ntgenstrukturanalyse von verbindungen mit dem neuartigen k??fig-ion [(i-PrSn)12O14(OH)6]2+, Journal of Organometallic Chemistry, vol.373, issue.2, pp.173-184, 1989.
DOI : 10.1016/0022-328X(89)85043-0

D. Dakternieks, H. Zhu, E. R. Tiekink, and R. Colton, Synthesis, structure and reactions of [(BuSn)12O14(OH)6]Cl2 ?? 2H2O: Solution studies using 119Sn NMR and electrospray mass spectrometry, Journal of Organometallic Chemistry, vol.476, issue.1, pp.33-40, 1994.
DOI : 10.1016/0022-328X(94)84137-3

A. Strachota, Preparation of Novel, Nanocomposite Stannoxane-Based Organic???Inorganic Epoxy Polymers containing Ionic bonds, Macromolecules, vol.45, issue.1, pp.221-237, 2012.
DOI : 10.1021/ma201178j

URL : https://hal.archives-ouvertes.fr/hal-01461433

C. Eychenne-baron, F. Ribot, and C. Sanchez, New synthesis of the nanobuilding block {(BuSn)12O14(OH)6}2+and exchange properties of {(BuSn)12O14(OH)6}(O3SC6H4CH3)2, Journal of Organometallic Chemistry, vol.567, issue.1-2, pp.137-142, 1998.
DOI : 10.1016/S0022-328X(98)00676-7

S. Durand, Cationic Organotin Clusters for Highly Efficient Alcohol Acetylation Catalysts, Organometallics, vol.19, issue.16, pp.3220-3223, 2000.
DOI : 10.1021/om990973b

F. Ribot and C. Sanchez, Organically Functionalized Metallic Oxo-Clusters: Structurally Well-Defined Nanobuilding Blocks for the Design of Hybrid Organic-Inorganic Materials, Comments on Inorganic Chemistry, vol.313, issue.4-6, pp.327-371, 1999.
DOI : 10.1557/PROC-346-163

F. O. Ribot, C. Eychenne-baron, and C. Sanchez, Monoorganotin Oxo-Clusters : Versatile Nanobuilding Blocks for Hybrid Organic-Inorganic Materials, Phosphorus, Sulfur, and Silicon and the Related Elements, vol.8, issue.1, pp.41-58, 1999.
DOI : 10.1021/ja00237a072

F. Ribot, F. Banse, F. Diter, and C. Sanchez, Hybrid Organic-Inorganic Supramolecular Assemblies Made from Butyltin Oxo-Hydroxo Nanobuilding Blocks and Dicarboxylates, New J. Chem, vol.19, pp.1145-1153, 1995.

F. Ribot, F. Banse, C. Sanchez, M. Lahcini, and B. Jousseaume, Hybrid organicinorganic copolymers based on oxo-hydroxo organotin nanobuilding blocks, J. Sol-Gel Sci. Technol, vol.8, pp.529-533, 1997.

F. Ribot, D. Veautier, S. Guillaudeu, and T. Lalot, Hybrid Organic-Inorganic Materials Based on Nanobuilding Blocks Assembled through Electrostatic Interactions, Journal of Sol-Gel Science and Technology, vol.14, issue.1-3, pp.37-41, 2004.
DOI : 10.1007/s10971-004-5761-0

F. Ribot, D. Veautier, S. J. Guillaudeu, and T. Lalot, Poly[{(BuSn)12O14(OH)6}(AMPS)2] and poly[methyl acrylate-co-{(BuSn)12O14(OH)6}(AMPS)2]: hybrid polymers cross-linked through electrostatic interactions, Journal of Materials Chemistry, vol.37, issue.35-36, pp.3973-3978, 2005.
DOI : 10.1039/b507214j

K. Rodze?, A. Strachota, F. Ribot, and M. ?louf, Effect of network mesh size on the thermo-mechanical properties of epoxy nanocomposites with the heavier homologue of POSS, the inorganic butylstannoxane cages, European Polymer Journal, vol.57, pp.169-181, 2014.
DOI : 10.1016/j.eurpolymj.2014.05.016

A. Strachota, Tin-based ???super-POSS??? building blocks in epoxy nanocomposites with highly improved oxidation resistance, Polymer, vol.55, issue.16, pp.3498-3515, 2014.
DOI : 10.1016/j.polymer.2014.06.002

URL : https://hal.archives-ouvertes.fr/hal-01289947

A. Strachota, Behavior of Tin-Based ???Super-POSS??? Incorporated in Different Bonding Situations in Hybrid Epoxy Resins, Macromolecules, vol.47, issue.13, pp.4266-4287, 2014.
DOI : 10.1021/ma500507j

URL : https://hal.archives-ouvertes.fr/hal-01289945

F. Ribot, Probing Ionic Association on Metal Oxide Clusters by Pulsed Field Gradient NMR Spectroscopy: The Example of Sn12???Oxo Clusters, Chemistry - A European Journal, vol.10, issue.7
DOI : 10.1002/chem.200305604

F. Potier, Nano-building block based-hybrid organic???inorganic copolymers with self-healing properties, Polym. Chem., vol.123, issue.15, pp.4474-4479, 2014.
DOI : 10.1006/jmra.1996.0239

URL : https://hal.archives-ouvertes.fr/hal-01289920

E. O. Stejskal and J. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.
DOI : 10.1063/1.1730651

P. T. Callaghan, Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR. (Also available as: eBook | Paperback, 2011.

D. H. Wu, A. D. Chen, and C. S. Johnson, An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses, Journal of Magnetic Resonance, Series A, vol.115, issue.2, pp.260-264, 1995.
DOI : 10.1006/jmra.1995.1176

D. Wu, A. Chen, J. Johnson, and S. Charles, Heteronuclear-Detected Diffusion-Ordered NMR Spectroscopy through Coherence Transfer, Journal of Magnetic Resonance, Series A, vol.123, issue.2, pp.215-218, 1996.
DOI : 10.1006/jmra.1996.0239

N. J. Fernandes, T. J. Wallin, R. A. Vaia, H. Koerner, and E. P. Giannelis, Nanoscale Ionic Materials, Chemistry of Materials, vol.26, issue.1, pp.84-96, 2014.
DOI : 10.1021/cm402372q

R. Rodriguez, R. Herrera, L. A. Archer, and E. P. Giannelis, Nanoscale Ionic Materials, Advanced Materials, vol.30, issue.22, pp.4353-4358, 2008.
DOI : 10.1557/mrs2007.229

P. Agarwal, M. Chopra, and L. A. Archer, Nanoparticle Netpoints for Shape-Memory Polymers, Angewandte Chemie International Edition, vol.20, issue.37, pp.8670-8673, 2011.
DOI : 10.1002/adma.200800854

H. Xiao and N. Cezar, Organo-modified cationic silica nanoparticles/anionic polymer as??flocculants, Journal of Colloid and Interface Science, vol.267, issue.2, pp.343-351, 2003.
DOI : 10.1016/S0021-9797(03)00716-1

N. Su, H. B. Li, H. M. Zheng, S. P. Yi, and X. Liu, Synthesis and characterization of poly(sodium-p-styrenesulfonate)

S. Livi and E. P. Giannelis, An improved process for the surface modification of SiO2 nanoparticles, Green Chemistry, vol.44, issue.11, pp.3013-3015, 2012.
DOI : 10.1016/j.watres.2009.10.014

P. M. Visintin, R. G. Carbonell, C. K. Schauer, and J. M. Desimone, Chemical Functionalization of Silica and Alumina Particles for Dispersion in Carbon Dioxide, Langmuir, vol.21, issue.11, pp.4816-4823, 2005.
DOI : 10.1021/la047823c

M. J. Harrington, A. Masic, N. Holten-andersen, J. H. Waite, and P. Fratzl, Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings, Science, vol.33, issue.19, pp.216-220, 2010.
DOI : 10.1073/pnas.191189098

N. Holten-andersen, pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli, Proc. Natl. Acad
DOI : 10.1042/bj2840687

S. Krauss, T. H. Metzger, P. Fratzl, and M. J. Harrington, Self-Repair of a Biological Fiber Guided by an Ordered Elastic Framework, Biomacromolecules, vol.14, issue.5, pp.1520-1528, 2013.
DOI : 10.1021/bm4001712

F. S. Bates and G. H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment, Annual Review of Physical Chemistry, vol.41, issue.1, pp.525-557, 1990.
DOI : 10.1146/annurev.pc.41.100190.002521

T. Pakula, Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl acrylate)-b-polystyrene block copolymers, Polymer, vol.52, issue.12, pp.2576-2583, 2011.
DOI : 10.1016/j.polymer.2011.04.021

S. Jiang, Mechanoresponsive PS-PnBA-PS Triblock Copolymers via Covalently Embedding Mechanophore, ACS Macro Letters, vol.2, issue.8, pp.705-709, 2013.
DOI : 10.1021/mz400198n

Y. Luo, X. Wang, Y. Zhu, B. Li, and S. Zhu, -polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Polymerization, Macromolecules, vol.43, issue.18, pp.7472-7481, 2010.
DOI : 10.1021/ma101348k

URL : https://hal.archives-ouvertes.fr/in2p3-01478539

S. Robin, O. Guerret, J. Couturier, R. Pirri, and . Gnanou, -styrene) Triblock Copolymers Using a Dialkoxyamine as Initiator, Macromolecules, vol.35, issue.10, pp.3844-3848, 2002.
DOI : 10.1021/ma011223s

URL : https://hal.archives-ouvertes.fr/hal-01478759

M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials, Advanced Materials, vol.76, issue.11, pp.1331-1349, 2005.
DOI : 10.1016/S0921-4526(97)00877-6

J. Chiefari, Living Free-Radical Polymerization by Reversible Addition???Fragmentation Chain Transfer:?? The RAFT Process, Macromolecules, vol.31, issue.16, pp.5559-5562, 1998.
DOI : 10.1021/ma9804951

R. T. Mayadunne, Living Polymers by the Use of Trithiocarbonates as Reversible Addition???Fragmentation Chain Transfer (RAFT) Agents:?? ABA Triblock Copolymers by Radical Polymerization in Two Steps, Macromolecules, vol.33, issue.2, pp.243-245, 2000.
DOI : 10.1021/ma991451a

S. Srinivasan, Experimental study of the spontaneous thermal homopolymerization of methyl and n-butyl acrylate, Journal of Applied Polymer Science, vol.110, pp.1898-1909, 2010.
DOI : 10.1002/app.32313

K. Yu, P. Taynton, W. Zhang, M. L. Dunn, and H. J. Qi, Reprocessing and recycling of thermosetting polymers based on bond exchange reactions, RSC Adv., vol.7, issue.4, pp.10108-10117, 2014.
DOI : 10.1063/1.3564955