T. Demarcy, C. Vandersteen, N. Guevara, C. Raffaelli, and D. Gnansia, Automated analysis of human cochlea shape variability from segmented ?? CT images, Computerized Medical Imaging and Graphics, vol.59, pp.1-12, 2017.
DOI : 10.1016/j.compmedimag.2017.04.002

URL : https://hal.archives-ouvertes.fr/hal-01528489

C. Vandersteen, T. Demarcy, C. Roger, É. Fontas, C. Raffaelli et al., Impact of the surgical experience on cochleostomy location: a comparative temporal bone study between endaural and posterior tympanotomy approaches for cochlear implantation, European Archives of Oto-Rhino-Laryngology, vol.75, issue.Suppl 2, pp.2355-2361, 2015.
DOI : 10.1016/j.ijporl.2011.06.006

URL : https://hal.archives-ouvertes.fr/hal-01238195

T. Demarcy, C. Vandersteen, N. Guevara, C. Raffaelli, and D. Gnansia, Nicholas Ayache and Hervé Delingette. Uncertainty Quantification of Cochlear Implant Insertion from CT images. Clinical Image-Based Procedures, Peer-Reviewed Archived Conference and Workshop Papers ? Medical Imaging: 5th International Workshop. Held in Conjunction with MICCAI 2016, pp.27-35, 2016.

D. Gnansia, T. Demarcy, C. Vandersteen, C. Raffaelli, N. Guevara et al., Optimal Electrode Diameter in Relation to Volume of the Cochlea European Annals of Otorhinolaryngology , Head and Neck Diseases Estimation of Postoperative Cochlear Implant Electrode-Array Position From Clinical, Conclusion Conference Abstracts ? [Demarcy 2016a] (oral) Thomas Demarcy, pp.66-67, 2016.

C. Vandersteen, T. Demarcy, H. Delingette, C. Raffaelli, J. Laudanski et al., Teaching Tool for Advanced Visualization of Temporal Bone Structures by Fusion of µCT and CT Scan Images, 8 th International Symposium of Objective Measures in Auditory Implants, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108877

O. Adunka, H. Marc, M. Unkelbach, M. Mack, W. Hambek et al., Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: A histologically controlled insertion study, Acta Oto-Laryngologica, vol.89, issue.7, pp.807-819, 2004.
DOI : 10.1177/000348948609500502

. Aschendorff, T. Kromeier, R. Klenzner, and . Laszig, Quality Control After Insertion of the Nucleus Contour and Contour Advance Electrode in Adults, Ear and Hearing, vol.28, issue.Supplement, 2007.
DOI : 10.1097/AUD.0b013e318031542e

]. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

T. Avci-2014-]-ersin-avci, T. Nauwelaers, V. Lenarz, A. Hamacher, and . Kral, Variations in microanatomy of the human cochlea, The Journal of Comparative Neurology, vol.00, issue.48, pp.1-17

S. Heinrich-bartling, K. Peldschus, T. Rodt, F. Kral, H. Matthies et al., Registration and Fusion of CT and MRI of the Temporal Bone, Journal of Computer Assisted Tomography, vol.29, issue.3, pp.305-315, 2005.
DOI : 10.1097/01.rct.0000160425.63884.5b

S. Biedron, A. Prescher, J. Ilgner, and M. Westhofen, The Internal Dimensions of the Cochlear Scalae With Special Reference to Cochlear Electrode Insertion Trauma, Otology & Neurotology, vol.31, issue.5, pp.731-738, 2010.
DOI : 10.1097/MAO.0b013e3181d27b5e

P. Andrew, . Bradshaw, S. Ian, . Curthoys, J. Michael et al., A mathematical model of human semicircular canal geometry: a new basis for Bibliography interpreting vestibular physiology, Journal of the Association for Research in Otolaryngology, vol.11, issue.123, pp.145-59, 2010.

K. Braun, F. Böhnke, and T. Stark, Three-dimensional representation of the human cochlea using micro-computed tomography data: Presenting an anatomical model for further numerical calculations, Acta Oto-Laryngologica, vol.123, issue.6, pp.603-616, 2012.
DOI : 10.1121/1.2871682

]. Bresenham, Algorithm for computer control of a digital plotter, IBM Systems Journal, vol.4, issue.1, pp.25-30, 1965.
DOI : 10.1147/sj.41.0025

J. Robert, M. Briggs, K. Tykocinski, . Stidham, B. Joseph et al., Cochleostomy site: Implications for electrode placement and hearing preservation, Acta Oto-Laryngologica, vol.122, p.51, 2009.

]. and G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms, IMA Journal of Applied Mathematics, vol.6, issue.3, pp.76-90, 1970.
DOI : 10.1093/imamat/6.3.222

A. Buytaert, H. Wasil, M. Salih, P. Dierick, J. Jacobs et al., Realistic 3D Computer Model of the Gerbil Middle Ear, Featuring Accurate Morphology of Bone and Soft Tissue Structures, Journal of the Association for Research in Otolaryngology, vol.27, issue.6, pp.681-696, 2011.
DOI : 10.1097/00129492-200606000-00004

M. Ceresa, N. M. Lopez, H. D. Velardo, N. C. Herrezuelo, P. Mistrik et al., Patient-Specific Simulation of Implant Placement and Function for Cochlear Implantation Surgery Planning, Medical Image Computing and Computer-Assisted Intervention, pp.49-56, 2014.
DOI : 10.1007/978-3-319-10470-6_7

R. James, . Clark, M. Frank, J. J. Warren, and . Abbott, A Scalable Model for Human Scala-Tympani Phantoms, Journal of Medical Devices, vol.5, issue.34, pp.14501-14531, 2011.

T. Lawrence, J. Cohen, S. Xu, G. M. Xu, and . Clark, Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array, The American Journal of Otology, vol.17, issue.28, pp.859-865, 1996.

F. Tim, . Cootes, J. Christopher, . Taylor, H. David et al., Active Shape Models-Their Training and Application, Computer Vision and Image Understanding, vol.61, issue.1, pp.38-59, 1995.

]. Dang, M. Clerc, C. Vandersteen, N. Guevara, and D. Gnansia, In situ validation of a parametric model of electrical field distribution in an implanted cochlea, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp.667-670, 2015.
DOI : 10.1109/NER.2015.7146711

URL : https://hal.archives-ouvertes.fr/hal-01242020

C. Thomas-demarcy, D. Vandersteen, C. Gnansia, N. Raffaelli, H. Ayache et al., Estimation of postoperative cochlear implant electrode-array position from clinical computed tomography. Annales françaises d'Oto-rhino-laryngologie et de Pathologie Cervico-faciale, oct 2016, pp.123-126, 2016.

C. Thomas-demarcy, C. Vandersteen, D. Raffaelli, N. Gnansia, and . Guevara, Nicholas Ayache and Hervé Delingette. Uncertainty Quantification of Cochlear Implant Insertion from CT Images, pp.27-35, 2016.

T. Demarcy, C. Vandersteen, N. Guevara, C. Raffaelli, and D. Gnansia, Automated analysis of human cochlea shape variability from segmented ?? CT images, Computerized Medical Imaging and Graphics, vol.59, pp.1-12, 2017.
DOI : 10.1016/j.compmedimag.2017.04.002

URL : https://hal.archives-ouvertes.fr/hal-01528489

T. Deschamps, D. Laurent, and . Cohen, Fast extraction of minimal paths in 3D images and applications to virtual endoscopy11A preliminary version of this work was presented at the ECCV???2000 Conference., Medical Image Analysis, vol.5, issue.4, pp.281-299, 2001.
DOI : 10.1016/S1361-8415(01)00046-9

]. E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

E. Erixon, H. Högstorp, K. Wadin, and H. Rask-andersen, Variational Anatomy of the Human Cochlea, Otology & Neurotology, vol.30, issue.1, pp.14-22, 2009.
DOI : 10.1097/MAO.0b013e31818a08e8

B. Escudé, C. James, O. Deguine, N. Cochard, E. Eter et al., The Size of the Cochlea and Predictions of Insertion Depth Angles for Cochlear Implant Electrodes, Audiology and Neurotology, vol.11, issue.1, pp.27-33, 2006.
DOI : 10.1159/000095611

A. Adrien, . Eshraghi, W. Nathaniel, . Yang, J. Thomas et al., Comparative study of cochlear damage with three perimodiolar electrode designs, The Laryngoscope, vol.113, issue.3, pp.415-424, 2003.

]. Eslami, A. Karamalis, A. Katouzian, and N. Navab, Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI, Medical Image Analysis, vol.17, issue.2, pp.236-53, 2013.
DOI : 10.1016/j.media.2012.10.005

]. Eslami, Generative Probabilistic Models for Object Segmentation, 2013.

N. Jose, . Fayad, H. Fred, and . Linthicum, Multichannel cochlear implants: relation of histopathology to performance. The Laryngoscope, pp.1310-1330, 2006.

R. Deborah, H. Fowler, P. Meinhardt, and . Prusinkiewicz, Modeling seashells, ACM SIGGRAPH Computer Graphics, vol.26, issue.59, pp.379-387, 1992.

D. Franz, M. Hofer, M. Pfeifle, M. Pirlich, M. Stamminger et al., Wizard-Based Segmentation for Cochlear Implant Planning, Bildverarbeitung für die Medizin 2014 SE -49, Informatik aktuell, pp.258-263, 2014.
DOI : 10.1007/978-3-642-54111-7_49

W. Gansca, G. Bronsvoort, L. Coman, and . Tambulea, Self-intersection avoidance and integral properties of generalized cylinders, Computer Aided Geometric Design, vol.19, issue.9, pp.695-707, 2002.
DOI : 10.1016/S0167-8396(02)00163-2

D. Gibson, M. B. Gluth, A. Whyte, and M. D. Atlas, Rotation of the osseous spiral lamina from the hook region along the basal turn of the cochlea: results of a magnetic resonance image anatomical study using high-resolution DRIVE sequences, Surgical and Radiologic Anatomy, vol.109, issue.8, pp.781-786, 2012.
DOI : 10.1016/j.aanat.2006.01.015

D. Gnansia, T. Demarcy, C. Vandersteen, C. Raffaelli, and N. Guevara, Optimal electrode diameter in relation to volume of the cochlea, European Annals of Otorhinolaryngology, Head and Neck Diseases, vol.133, pp.66-67, 2016.
DOI : 10.1016/j.anorl.2016.04.013

URL : https://hal.archives-ouvertes.fr/hal-01326507

G. Gooya, C. Biros, and . Davatzikos, Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling, IEEE Transactions on Medical Imaging, vol.30, issue.2, pp.375-390, 2011.
DOI : 10.1109/TMI.2010.2078833

Y. Olivier-goury, R. Nguyen, J. Torres, C. Dequidt, and . Duriez, Numerical Simulation of Cochlear-Implant Surgery: Towards Patient-Specific Planning, pp.500-507, 2016.

D. Donald and . Greenwood, A cochlear frequency-position function for several species?29 years later, The Journal of the Acoustical Society of America, vol.87, issue.6, pp.2592-2605, 1990.

]. Gulya and R. Steenerson, The Scala Vestibuli for Cochlear Implantation: An Anatomic Study, Archives of Otolaryngology - Head and Neck Surgery, vol.122, issue.2, pp.130-132, 1996.
DOI : 10.1001/archotol.1996.01890140020005

P. Gunz, M. Ramsier, M. Kuhrig, J. Hublin, and F. Spoor, The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach, Journal of Anatomy, vol.14, issue.Pt 2, pp.529-572, 2012.
DOI : 10.1002/evan.20165

]. Hatsushika, R. Shepherd, Y. Tong, G. M. Clark, and S. Funasaka, Dimensions of the Scala Tympani in the Human and Cat with Reference to Cochlear Implants, Annals of Otology, Rhinology & Laryngology, vol.97, issue.11, pp.871-876, 1990.
DOI : 10.1177/00034894870960S106

T. Heimann, S. Münzing, H. Meinzer, and I. Wolf, A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation, Inf Process Med Imaging, vol.20, pp.1-12, 2007.
DOI : 10.1007/978-3-540-73273-0_1

H. Meinzer, Statistical shape models for 3D medical image segmentation: a review, Medical Image Analysis, vol.13, issue.4, pp.543-63, 2009.

K. Robert, . Jackler, M. William, . Luxfor, F. William et al., Congenital malformations of the inner ear: A classification based on embryogenesis. The Laryngoscope, pp.2-14, 2009.

K. James, R. Albegger, S. Battmer, N. Burdo, O. Deggouj et al., Preservation of residual hearing with cochlear implantation: How and why, Acta Oto-Laryngologica, vol.114, issue.5, pp.481-491, 2005.
DOI : 10.1121/1.1649931

URL : https://hal.archives-ouvertes.fr/hal-00112328

M. Stephen and . Smith, A global optimisation method for robust affine registration of brain images, Medical Image Analysis, vol.5, issue.2, pp.143-156, 2001.

]. Jenkinson, P. Bannister, M. Brady, M. Stephen, and . Smith, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, pp.825-841, 2002.
DOI : 10.1006/nimg.2002.1132

A. Kawano, H. Seldon, M. Graeme, and . Clark, Computer-Aided Three-Dimensional Reconstruction in Human Cochlear Maps: Measurement of the Lengths of Organ of Corti, Outer Wall, Inner Wall, and Rosenthal's Canal, Annals of Otology, Rhinology & Laryngology, vol.19, issue.9, pp.701-709, 1996.
DOI : 10.1177/019459988910000201

R. Darlene, D. Ketten, and . Wartzok, Three-Dimensional Reconstructions of the Dolphin Ear, Sensory Abilities of Cetaceans SE -6, pp.81-105, 1990.

R. Darlene, . Ketten, W. Margaret, G. Skinner, . Wang et al., In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays, Annals of Otology Rhinology & Laryngology, vol.175, issue.12, p.1998, 1998.

]. , M. Kjer, J. Fagertun, S. Vera, M. A. et al., Shape modelling of the inner ear from micro-CT data. Shape Symposium, pp.16-80, 2014.

S. Hans-martin-kjer, F. Vera, M. A. Pérez, G. Ballester, and R. Paulsen, Semi-automatic anatomical measurements on microCT 3D surface models, International Conference on Cochlear Implants and Other Implantable Auditory Technologies, pp.711-2014

J. Hans-martin-kjer, S. Fagertun, D. Vera, M. A. Gil, G. Ballester et al., Free-form image registration of human cochlear µCT data using skeleton similarity as anatomical prior, Pattern Recognition Letters, vol.48, pp.0-27, 2015.

S. Hans-martin-kjer, J. Vera, D. Fagertun, M. A. Gil, G. Ballester et al., Image registration of cochlear muCT data using heat distribution similarity, Lecture Notes in Bibliography Computer Science (Scandinavian Conference on Image Analysis -SCIA), pp.234-245

S. Hans-martin-kjer, J. Vera, F. Fagertun, J. H. Pérez, M. A. Jover et al., Predicting detailed inner ear anatomy from pre-operational CT for cochlear implant surgery, International Journal of Computer Assisted Radiology and Surgery, vol.10, issue.59, pp.98-99, 2015.

I. John, . Lane, J. Robert, C. L. Witte, . Driscoll et al., Imaging microscopy of the middle and inner ear: Part I: CT microscopy, Clinical Anatomy, vol.17, issue.8, pp.607-612, 2004.

I. John, . Lane, J. Robert, . Witte, W. Odell et al., Imaging microscopy of the middle and inner ear: Part II: MR microscopy, Clinical Anatomy, vol.18, issue.6, pp.409-415, 2005.

I. John and . Lane, MultiPlanar Reformation in CT of the Temporal Bone, pp.367-380, 2015.

]. Leake-1999, G. Leake, R. Hradek, and . Snyder, Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness, The Journal of Comparative Neurology, vol.79, issue.4, pp.543-62
DOI : 10.1016/0378-5955(93)90159-X

. Lesage-2009-]-david-lesage, D. Elsa, I. Angelini, G. Bloch, and . Funka-lea, A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical Image Analysis, vol.13, issue.6, pp.819-864, 2009.
DOI : 10.1016/j.media.2009.07.011

C. Liu, B. Donald, and . Rubin, ML estimation of the t distribution using EM and its extensions, ECM and ECME, Statistica Sinica, vol.5, pp.19-39, 1995.

]. J. , A. Maintz, and M. A. Viergever, A survey of medical image registration, Medical Image Analysis, vol.2, issue.1, pp.1-36, 1998.

]. Makary, J. Shin, P. Caruso, D. Hugh, . Curtin et al., A Histological Study of Scala Communis with Radiological Implications, Audiology and Neurotology, vol.15, issue.6, pp.383-93, 2010.
DOI : 10.1159/000307345

D. Manoussaki, S. Richard, and . Chadwick, Effects of Geometry on Fluid Loading in a Coiled Cochlea, SIAM Journal on Applied Mathematics, vol.61, issue.2, pp.369-386, 2000.
DOI : 10.1137/S0036139999358404

]. Maurer and V. Raghavan, A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.2, pp.265-270, 2003.
DOI : 10.1109/TPAMI.2003.1177156

]. Meshik, A. Timothy, . Holden, A. Richard, . Chole et al., Optimal Cochlear Implant Insertion Vectors, Otology & Neurotology, vol.31, issue.1, pp.58-63, 2010.
DOI : 10.1097/MAO.0b013e3181b76bb8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818088

M. Miroir, Y. Nguyen, G. Kazmitcheff, E. Ferrary, O. Sterkers et al., Friction Force Measurement During Cochlear Implant Insertion, Otology & Neurotology, vol.33, issue.2012, pp.1092-100, 2012.
DOI : 10.1097/MAO.0b013e31825f24de

URL : https://hal.archives-ouvertes.fr/hal-01148661

. Moseley, On the Geometrical Forms of Turbinated and Discoid Shells, Philosophical Transactions of the Royal Society of London, vol.128, issue.0, pp.351-370, 1838.
DOI : 10.1098/rstl.1838.0018

E. Neri, S. Berrettini, L. Salvatori, F. Forli, S. S. Franceschini et al., 3-D CT and MRI coregistration in the assessment of cochlear implantation. Medical science monitor : international medical journal of experimental and clinical research, pp.63-70, 2005.

M. Nguyen, G. Miroir, J. Kazmitcheff, M. Sutter, E. Bensidhoum et al., Cochlear Implant Insertion Forces in Microdissected Human Cochlea to Evaluate a Prototype Array, Audiology and Neurotology, vol.17, issue.5, pp.290-298, 2012.
DOI : 10.1159/000338406

URL : https://hal.archives-ouvertes.fr/hal-01148662

H. Jack, . Noble, B. Robert, R. Rutherford, O. Frederick-labadie et al., Modeling and segmentation of intra-cochlear anatomy in conventional CT, SPIE Medical Imaging, pp.762302-762302, 2010.

H. Jack, R. Noble, O. Frederick-labadie, . Majdani, M. Benoit et al., Automatic segmentation of intracochlear anatomy in conventional CT, IEEE Transactions on Biomedical Engineering, vol.58, issue.54, pp.2625-2657, 2011.

H. Jack, . Noble, H. René, R. F. Gifford, . Labadie et al., Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT, Medical Image Computing and Computer-Assisted Intervention, vol.15, issue.59, pp.421-429, 2012.

H. Jack, R. Noble, . Frederick-labadie, H. René, . Gifford et al., Image-Guidance enables new methods for customizing cochlear implant stimulation strategies, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.21, issue.59, pp.820-829, 2013.

. Sébastien-ourselin, S. Roche, N. Prima, and . Ayache, Block Matching : A General Framework to Improve Robustness of Rigid Registration of Medical Images. Medical Image Computing and Computer-Assisted Intervention, pp.557-566, 2000.

]. Patenaude, M. Stephen, . Smith, N. David, M. Kennedy et al., A Bayesian model of shape and appearance for subcortical brain segmentation, NeuroImage, vol.56, issue.3, pp.907-922, 2011.
DOI : 10.1016/j.neuroimage.2011.02.046

L. Peltonen, A. Antti, Y. Aarnisalo, M. Käser, . Kortesniemi et al., Cone-beam computed tomography: A new method for imaging of the temporal bone, Acta Radiologica, vol.50, issue.5, pp.543-548, 2009.
DOI : 10.1080/02841850902839700

J. Perona and . Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : http://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf

M. Kilian, J. Pohl, . Fisher, J. James, . Levitt et al., A unifying approach to registration , segmentation, and intensity correction, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol.3749, issue.83, pp.310-318, 2005.

M. Kilian, J. Pohl, W. Fisher, L. Eric, R. Grimson et al., A Bayesian model for joint segmentation and registration, NeuroImage, vol.31, issue.83, pp.228-239, 2006.

M. Kilian, J. Pohl, . Fisher, E. Martha, . Shenton et al., Logarithm Odds Maps for Shape Representation. Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.955-963, 2006.

A. Postnov, . Zarowski, . De-clerck, . Vanpoucke, . Erwin-offeciers et al., High resolution micro-CT scanning as an innovatory tool for evaluation of the surgical positioning of cochlear implant electrodes, Acta Oto-Laryngologica, vol.1, issue.5, pp.467-74, 2006.
DOI : 10.1364/JOSAA.1.000612

A. Anton, T. Poznyakovskiy, Y. Zahnert, R. Kalaidzidis, B. Schmidt et al., The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data, Hearing Research, vol.243, issue.12, pp.95-104, 2008.

A. Anton, T. Poznyakovskiy, Y. Zahnert, N. Kalaidzidis, R. Lazurashvili et al., A segmentation method to obtain a complete geometry model of the hearing organ, Hearing Research, vol.282, issue.24, pp.25-34, 2011.

J. Simon and . Prince, Computer vision: models, learning, and inference. Computer Vision: Models, Learning, and Inference, p.2012, 2012.

J. E. Oula-puonti, K. Iglesias, and . Van-leemput, Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling, NeuroImage, vol.143, pp.235-249, 2016.
DOI : 10.1016/j.neuroimage.2016.09.011

E. Bibliographyandersen, A. Erixon, H. Kinnefors, A. Löwenheim, W. Schrott-fischer et al., Anatomy of the human cochlea ? implications for cochlear implantation, Cochlear Implants International, vol.12, issue.s1, pp.13-21, 2011.

W. Andersen, E. Liu, A. Erixon, K. Kinnefors, and . Pfaller, Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.405, issue.Pt 1, pp.1791-811
DOI : 10.1038/35012009

S. Thomas, W. Rau, T. Würfel, O. Lenarz, and . Majdani, Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear, International Journal of Computer Assisted Radiology and Surgery, vol.8, issue.4, pp.481-509, 2013.

A. Fitsum, . Reda, H. Jack, A. Noble, . Rivas et al., Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans, Medical Physics, vol.38, issue.80, pp.5590-600, 2011.

A. Fitsum, . Reda, H. Jack, R. F. Noble, . Labadie et al., Automatic pre-to intra-operative CT registration for image-guided cochlear implant surgery, IEEE Transactions on Biomedical Engineering, vol.59, issue.80, pp.3070-3077, 2012.

A. Fitsum, . Reda, M. Benoit, . Dawant, R. Theodore et al., Automatic segmentation of intra-cochlear anatomy in post-implantation CT, Proc. SPIE, pp.86710-86710, 2013.

R. Fitsum, A. Reda, R. Theodore, R. Mcrackan, . Frederick-labadie et al., Automatic segmentation of intracochlear anatomy in post-implantation CT of unilateral cochlear implant recipients, Medical Image Analysis, vol.18, issue.107, pp.605-615, 0118.

A. Fitsum, . Reda, H. Jack, R. F. Noble, . Labadie et al., An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT, 2014.

K. Raviv, . Van-leemput, M. William, P. Wells, and . Golland, Joint Segmentation of Image Ensembles via Latent Atlases Tammy. Medical Image Computing and Computer-Assisted Intervention, p.82, 2009.

R. Pujadas-2016a-]-esmeralda-ruiz-pujadas, H. M. Kjer, G. Piella, M. Ceresa, M. A. et al., Random walks with shape prior for cochlea segmentation in ex vivo $$\mu \hbox {CT}$$ ?? CT, International Journal of Computer Assisted Radiology and Surgery, vol.23, issue.1, pp.1647-1659
DOI : 10.1007/s11263-008-0168-y

R. Pujadas-2016b-]-esmeralda-ruiz-pujadas, H. M. Kjer, S. Vera, M. Ceresa, M. A. et al., Cochlea segmentation using iterated random walks with shape prior, 2016.

A. Theodore, . Schuman, H. Jack, . Noble, G. Charles et al., Anatomic verification of a novel method for precise intrascalar localization of cochlear implant electrodes in adult temporal bones using clinically available computed tomography, The Laryngoscope, vol.120, issue.2010, pp.2277-83, 2010.

F. David and . Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of computation, vol.24, issue.111, pp.647-656, 1970.

L. Shi, D. Wang, W. C. Chu, R. Geoffrey, T. Burwell et al., Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis, NeuroImage, vol.54, pp.180-188, 2011.
DOI : 10.1016/j.neuroimage.2010.04.002

K. Shin, J. Lee, J. Kim, J. Yoo, C. Shin et al., Quantitative Analysis of the Cochlea using Three-Dimensional Reconstruction based on Microcomputed Tomographic Images, The Anatomical Record, vol.30, issue.Suppl 3, pp.1083-1091, 2013.
DOI : 10.1097/MAO.0b013e3181a32c0d

W. Margaret, D. R. Skinner, . Ketten, K. Laura, . Holden et al., CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients, Journal of the Association for Research in Otolaryngology : JARO, vol.3, issue.3, pp.332-50, 2002.

P. Soille and . Soille, Morphological image analysis: principles and applications, 1999.

O. Stakhovskaya, D. Sridhar, H. Ben, . Bonham, A. Patricia et al., Frequency Map for the Human Cochlear Spiral Ganglion: Implications for Cochlear Implants, Journal of the Association for Research in Otolaryngology, vol.9, issue.10, pp.220-233, 2007.
DOI : 10.1016/S0196-0709(00)80112-X

. Stone, The Evolution of Ideas: A Phylogeny of Shell Models, The American Naturalist, vol.148, issue.5, 1996.
DOI : 10.1086/285962

]. Thompson, On growth and form, 1917.

A. Thorne, . Salt, M. Demott, . Henson, W. Odell et al., Cochlear Fluid Space Dimensions for Six Species Derived From Reconstructions of Three-Dimensional Magnetic Resonance Images, The Laryngoscope, vol.24, issue.10, pp.1661-1669, 1999.
DOI : 10.1121/1.1906929

. Qing-tian, H. Fred, . Linthicum, N. Jose, and . Fayad, Human cochleae with three turns: an unreported malformation. The Laryngoscope, pp.800-803, 2006.

R. Torres, G. Kazmitcheff, D. Bernardeschi, D. D. Seta, J. Loup-bensimon et al., Variability of the mental representation of the cochlear anatomy during cochlear implantation, European Archives of Oto-Rhino-Laryngology, vol.17, issue.8, 2015.
DOI : 10.1159/000338406

N. Toussaint, J. Souplet, and P. Fillard, MedINRIA: Medical Image Navigation and Research Tool by INRIA, Proc. of MICCAI'07 Workshop on Interaction in medical image analysis and visualization, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00616047

S. Kim, J. Van-der-marel, R. Johannes-briaire, J. Wolterbeek, . Snel-bongers et al., Diversity in cochlear morphology and its influence on cochlear implant electrode position, Ear and Hearing, vol.35, issue.1, pp.9-20, 2014.

C. Vandersteen, T. Demarcy, H. Delingette, C. Raffaelli, J. Laudanski et al., Teaching tool for advanced visualization of temporal bone structures by fusion of µCT and CT scan images, 8th International Symposium on Objective Measures in Auditory Implants, p.2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108877

C. Vandersteen, T. Demarcy, C. Roger, E. Fontas, C. Raffaelli et al., Impact of the surgical experience on cochleostomy location: a comparative temporal bone study between endaural and posterior tympanotomy approaches for cochlear implantation, European Archives of Oto-Rhino-Laryngology, vol.75, issue.Suppl 2, pp.2355-2361, 2015.
DOI : 10.1016/j.ijporl.2011.06.006

URL : https://hal.archives-ouvertes.fr/hal-01238195

M. Berit, J. H. Verbist, J. Frijns, . Geleijns, A. Mark et al., Multisection CT as a Valuable Tool in the Postoperative Assessment of Cochlear Implant Patients, American Journal of Neuroradiology, vol.26, issue.2, pp.424-429, 2005.

M. Berit, L. Verbist, J. Ferrarini, A. Johannes-briaire, H. Zarowski et al., Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery, Otology & Neurotology, vol.30, issue.24, pp.471-478, 2009.

M. Berit, . Verbist, W. Margaret, . Skinner, T. Lawrence et al., Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea, Otology & Neurotology, vol.31, issue.27, pp.722-752, 2010.

A. Max and . Viergever, Basilar membrane motion in a spiral-shaped cochlea, The Journal of the Acoustical Society of America, vol.64, issue.4, p.1048, 1978.

H. Arne, . Voie, A. Francis, and . Spelman, Analysis Of The Guinea Pig Cochlea Using A General Cylindrical Coordinate System, IEEE Engineer- Bibliography ing in Medicine & Biology Society, pp.206-207, 1990.

P. Wardrop, D. Whinney, J. Stephen, . Rebscher, W. Thomas-roland et al., A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of Nucleus banded and Nucleus Contour??? electrodes, Hearing Research, vol.203, issue.1-2, pp.54-67, 2005.
DOI : 10.1016/j.heares.2004.11.006

S. Weber, K. Gavaghan, W. Wimmer, T. Williamson, N. Gerber et al., Instrument flight to the inner ear, Science Robotics, vol.38, issue.4, 2017.
DOI : 10.1097/00004691-200210000-00007

]. Whiting, K. Bae, and M. W. Skinner, Cochlear Implants: Three-dimensional Localization by Means of Coregistration of CT and Conventional Radiographs, Radiology, vol.221, issue.2, pp.543-552, 2001.
DOI : 10.1148/radiol.2212010275

S. Blake, . Wilson, F. Michael, and . Dorman, Cochlear implants: a remarkable past and a brilliant future, Hearing Research, vol.242, issue.12, pp.3-21, 2008.

G. Charles, . Wright, S. Peter, and . Roland, Temporal bone microdissection for anatomic study of cochlear implant electrodes, Cochlear Implants International, vol.6, issue.4, pp.159-168, 2005.

G. Wu, Q. Wang, D. Zhang, F. Nie, H. Huang et al., A generative probability model of joint label fusion for multi-atlas based brain segmentation, Medical Image Analysis, vol.18, issue.6, pp.881-890, 2013.
DOI : 10.1016/j.media.2013.10.013

P. Paul, J. Wyatt, and . Noble, MAP MRF joint segmentation and registration of medical images, Medical Image Analysis, vol.7, issue.83, pp.539-552, 2003.

]. Xu, . Shi-ang, . Xu, T. Lawrence, G. M. Cohen et al., Cochlear view: Postoperative radiography for cochlear implantation, American Journal of Otolaryngology, vol.21, issue.1, pp.49-56, 2000.
DOI : 10.1016/S0196-0709(00)80112-X

X. Helen, . Xu, H. Grace, E. P. Kim, S. Snissarenko et al., Multi-channel cochlear implant histopathology: are fewer spiral ganglion cells really related to better clinical performance?, Acta Oto-Laryngologica, vol.132, issue.5, pp.482-90, 2012.

K. Sun, G. Yoo, . Wang, T. Jay, M. W. Rubinstein et al., Three-dimensional modeling and visualization of the cochlea on the Internet, IEEE Transactions on Information Technology in Biomedicine, vol.4, issue.2, pp.144-51, 2000.

K. Sun, G. Yoo, . Wang, T. Jay, . Rubinstein et al., Three-dimensional geometric modeling of the cochlea using helico-spiral approximation, IEEE Transactions on Biomedical Engineering, vol.47, issue.27, pp.1392-402, 2000.

K. Sun, G. Yoo, . Wang, T. Jay, . Rubinstein et al., Semiautomatic segmentation of the cochlea using real-time volume rendering and regional adaptive snake modeling, Journal of Digital Imaging, vol.14, issue.4, pp.173-181, 2001.

A. Paul, J. Yushkevich, H. C. Piven, . Hazlett, S. Smith et al., User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability, NeuroImage, vol.31, issue.3, pp.1116-1144, 2006.

J. Zhang and K. Xu, Nabil Simaan and Spiros Manolidis. A pilot study of robot-assisted cochlear implant surgery using steerable electrode arrays, Medical Image Computing and Computer-Assisted Intervention Intervention, vol.9, pp.33-40, 2006.

]. Zhang, F. Li, X. Wang, Z. Wu, L. Shi-qing-xin et al., Automatic registration Bibliography of vestibular systems with exact landmark correspondence, Graphical Models, vol.123, p.117, 2014.

J. Zou, J. Lähelmä, J. Koivisto, A. Dhanasingh, N. Claude et al., Imaging cochlear implantation with round window insertion in human temporal bones and cochlear morphological variation using high-resolution cone beam CT, Acta Oto-Laryngologica, vol.522, issue.5, p.2015, 2015.
DOI : 10.1002/cne.23594

. Zrunek, I. Lischka, K. Hochmair-desoyer, and . Burian, Gr????enverh??ltnisse der Scala tympani in bezug auf Durchmesser von Mehrkanalelektroden, Archives Of Oto-Rhino-Laryngology, vol.72, issue.3-4, pp.159-165, 1980.
DOI : 10.1007/BF02565517

M. Zrunek and . Lischka, Gr??????enverh???ltnisse der Scala vestibuli und die Fl???cheninhalte beider Treppen, Archives of Oto-Rhino-Laryngology, vol.72, issue.1, pp.99-104, 1981.
DOI : 10.1007/BF00464279