T. Traitement-des, 141 27 Diffusion de l'information d'instabilité, p.141

M. Infrastructure-de-mesure-l-'algorithme, . Fb, . Simd, . Omp, and . At, repose sur l'utilisation conjuguée de la parallélisation sur plusieurs coeurs avec OpenMP et de l'utilisation des instructions SIMD Afin d'évaluer l'impact de ces différentes parallélisations et optimisations algorithmiques, nous avons utilisé 4 machines de mesures (tab. 7.1) avec un nombre de coeurs allant de 8 à 57 et trois générations d'extensions SIMD : SSE4.2 sur les machines NHM 2×4 et IVB 2×12, AVX2 sur une machine HSW 2×14 et KNC sur le KNC 1×57 . La comparaison entre NHM 2×4 et IVB 2×12 renseignera donc sur l'impact du nombre de coeurs alors que la comparaison entre IVB 2×12 et HSW 2×14 renseignera sur l'impact du passage de SSE4.2 (CARD = 4) à AVX2 (CARD = 8). La machine KNC 1×57 est une carte accélératrice dont chaque coeur est doté de KNC (CARD = 16) qui est un sous-ensemble du futur AVX512. Tous les programmes ont été compilés avec icc 15. La table 7.2 récapitule les caractéristiques des machines utilisées pour les mesures

. Hauteur-de-la-tuile-largeur-de-la-tuile-fig, 3 ? Cartographie des cpp en fonction de la forme des tuiles pour la version MPAR FB + SIMD + OMP + AT (MAX)

S. La-version, M. Fb, . Simd, . Omp, and . At, MAX) est toujours plus efficace que la version MPAR FB + SIMD + OMP pour la machine HSW 2×14 (fig. 7.4), ce n'est pas le cas pour la machine KNC 1×57 où un surdécoupage de l'image (tuiles trop petites) rend inefficace la version avec tuiles. Pour chaque machine testée, l'optimum correspond à la même taille de tuile qui dépend donc des caractéristiques de la machine plus que de celles des images

W. Algorithmes, CONCLUSION Perspectives de recherche Au-delà des résultats, les travaux présentés dans ce manuscrit ont permis d'ouvrir de nouveaux axes de recherche

@. La-méthode-d, union récursive, utilisant des instructions atomic, peut s'appliquer aux algorithmes directs et peut potentiellement diminuer le temps des fusions de bandes. Il serait intéressant d'évaluer la performance de ce mécanisme sur les architectures classiques (GPP)

J. Stuart, P. Russell, and . Norvig, Artificial Intelligence : A Modern Approach. 3 e éd. Pearson Education, pp.0-13, 2009.

C. Urmson, Autonomous Driving in Urban Environments : Boss and the Urban Challenge » In : The DARPA Urban Challenge : Autonomous Vehicles in City Traffic. Sous la dir, pp.1-59, 2009.

S. Wybo, D. Tsishkou, C. Vestri, F. Abad, S. Bougnoux et al., Monocular vision obstacles detection for autonomous navigation, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
DOI : 10.1109/IROS.2008.4651245

P. Gora and I. Rüb, Traffic Models for Self-driving Connected Cars, Transportation Research Procedia, vol.14, pp.2207-2216, 2016.
DOI : 10.1016/j.trpro.2016.05.236

URL : http://doi.org/10.1016/j.trpro.2016.05.236

J. Koo, J. Kwac, W. Ju, M. Steinert, L. Leifer et al., Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.37, issue.4, pp.269-275, 2015.
DOI : 10.1518/001872095779049543

M. Wagner and P. Koopman, A Philosophy for Developing Trust in Self-driving Cars, pp.163-171, 2015.
DOI : 10.1007/978-3-319-19078-5_14

C. Lustig, K. Pine, B. Nardi, L. Irani, M. K. Lee et al., Algorithmic Authority, Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA '16, pp.1057-1062, 2016.
DOI : 10.1177/0162243915608948

K. Doi, Computer-Aided Diagnosis in Medical Imaging : Historical Review, Current Status and Future Potential ». In : Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 2017.
DOI : 10.1016/j.compmedimag.2007.02.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1955762

L. Marak, J. Cousty, L. Najman, and H. Talbot, « 4D Morphological segmentation and the miccai LV-segmentation grand challenge, MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge. MIDAS Journal 1. France : MIDAS, nov, pp.1-8, 2009.

N. Elias, . Malamas, G. M. Euripides, M. Petrakis, L. Zervakis et al., « A survey on industrial vision systems, applications and tools, Image and Vision Computing, Image and Vision Computing, vol.21, pp.171-188, 2003.

H. Talbot, D. Jeulin, and D. Hanton, « Image analysis of insulation mineral fibres, Microscopy Microanalysis Microstructures, vol.7, pp.5-6, 1996.
DOI : 10.1046/j.1365-2818.2000.00752.x

R. Smith, An Overview of the Tesseract OCR Engine, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2, pp.629-633, 2007.
DOI : 10.1109/ICDAR.2007.4376991

S. Rakshit and S. Basu, « Recognition of Handwritten Roman Script Using Tesseract Open source OCR Engine, CoRR abs/1003, p.5891, 2010.

A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. Marcal, C. Guedes et al., Optical music recognition: state-of-the-art and open issues, International Journal of Multimedia Information Retrieval, vol.46, issue.1, pp.173-190, 2012.
DOI : 10.1016/S0734-189X(89)80017-9

L. Matthies, Computer Vision on Mars, International Journal of Computer Vision, vol.17, issue.12, 2007.
DOI : 10.1007/s11263-007-0046-z

A. Kurakin, Z. Zhang, and Z. Liu, « A real time system for dynamic hand gesture recognition with a depth sensor, Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European. IEEE. 2012, pp.1975-1979

H. Chen and B. Bhanu, Human Ear Detection From 3D Side Face Range Images, Proceedings of the 17th International Conference on Pattern Recognition. ICPR'04, 2004.
DOI : 10.1007/978-1-4020-6182-0_6

A. Romero, M. Gouiffès, and L. Lacassagne, Covariance Descriptor Multiple Object Tracking and Re-identification with Colorspace Evaluation, IEEE ACCV -Workshop on Detection and Tracking in Challenging Environnements, 2012.
DOI : 10.1007/978-3-642-37484-5_33

F. Laguzet, A. Romero, M. Gouiffès, L. Lacassagne, and D. Etiemble, Color tracking with contextual switching: real-time implementation on CPU, Journal of Real-Time Image Processing 10, 2015.
DOI : 10.1109/TIP.2011.2182521

L. Lacassagne, A. Manzanera, J. Denoulet, and A. Mérigot, High performance motion detection: some trends toward new embedded architectures for vision systems, Journal of Real Time Image Processing, pp.127-148, 2008.
DOI : 10.1016/j.sysarc.2004.06.002

URL : https://hal.archives-ouvertes.fr/hal-01131002

L. Lacassagne, A. Manzanera, and A. Dupret, Motion detection: Fast and robust algorithms for embedded systems, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.3265-3268, 2009.
DOI : 10.1109/ICIP.2009.5413946

URL : https://hal.archives-ouvertes.fr/hal-01130889

V. Kantorov and I. Laptev, Efficient Feature Extraction, Encoding, and Classification for Action Recognition, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.332

URL : https://hal.archives-ouvertes.fr/hal-01058734

M. Berger and G. Simon, « Réalité augmentée : entre mythes et réalités »

O. Russakovsky, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/978-3-642-15555-0_11

URL : http://arxiv.org/pdf/1409.0575

. Cour-des-comptes, Rapport public annuel 2002 : Les aéroports de Paris, 2003.

P. Aéroport-de, Document de référence et rapport financier annuel 2015, 2016.

L. Cabaret, Entretien avec le service Presse Communication financière, Immobilier et Filiales du groupe ADP, 2016.

L. Lacassagne, « Détection de mouvement et suivi d'objets en temps réel, Thèse de doct, 2000.

J. Denoulet, G. Mostafaoui, L. Lacassagne, and A. Mérigot, « Implementing motion Markov detection on General Purpose Processor and Associative Mesh Computer Architecture and Machine Perception, IEEE, 2005.
DOI : 10.1109/camp.2005.31

J. Fung and S. Mann, Using graphics devices in reverse: GPU-based Image Processing and Computer Vision, 2008 IEEE International Conference on Multimedia and Expo, pp.9-12, 2008.
DOI : 10.1109/ICME.2008.4607358

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.330.6310

W. Victor and . Lee, Debunking the 100X GPU vs CPU Myth : An Evaluation of Throughput Computing on CPU and GPU », In : SIGARCH Comput. Archit. News, vol.383, 2010.

M. Hussein, V. K. Alnuweiri, and . Kumar, « Fast Image Labeling Using Local Operators on Mesh-Connected Computers, IEEE Trans. Pattern Anal. Mach. Intell

A. «. Mérigot, Associative nets: a graph-based parallel computing model, IEEE Transactions on Computers, vol.46, issue.5, 1997.
DOI : 10.1109/12.589222

J. «. Denoulet, Architectures massivement paralleles de systemes sur circuits (SoC) pour le traitement de flux vidéos, Thèse de doct, 2004.

D. Wentzlaff, On-Chip Interconnection Architecture of the Tile Processor, IEEE Micro, vol.27, issue.5
DOI : 10.1109/MM.2007.4378780

A. James, . Kahle, N. Michael, . Day, . Peter-hofstee et al., Introduction to the cell multiprocessor, In : IBM journal of Research and Development, vol.4945, p.589, 2005.

G. Almaless and F. Wajsburt, « On the scalability of image and signal processing parallel applications on emerging cc-NUMA many-cores, Design and Architectures for Signal and Image Processing (DASIP), 2012 Conference on. IEEE. 2012, pp.1-8

G. Almaless and F. Wajsburt, « Does shared-memory, highly multi-threaded, singleapplication scale on many-cores, Proceedings of the 4th USENIX Workshop on Hot Topics in Parallelism, 2012.

G. Almaless, « Operating System Design and Implementation for Single-Chip cc-NUMA Many-Core, Thèse de doct, 2014.

T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and D. Etiemble, Algorithmic Skeletons within an Embedded Domain Specific Language for the CELL Processor, 2009 18th International Conference on Parallel Architectures and Compilation Techniques, pp.67-76, 2009.
DOI : 10.1109/PACT.2009.21

URL : https://hal.archives-ouvertes.fr/hal-00905054

F. Dias, F. Berry, J. Serot, and F. Marmoiton, Hardware, Design and Implementation Issues on a Fpga-Based Smart Camera, 2007 First ACM/IEEE International Conference on Distributed Smart Cameras, pp.20-26, 2007.
DOI : 10.1109/ICDSC.2007.4357501

D. Demigny, L. Kessal, R. Bourguiba, and N. Boudouani, How to use high speed reconfigurable FPGA for real time image processing?, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, pp.240-246, 2000.
DOI : 10.1109/CAMP.2000.875983

S. Pillement, R. David, and O. Sentieys, « Architectures reconfigurables : opportunités pour la faible consommation, papier invité aux journées Faible Tension Faible Consommation, 2003.
DOI : 10.3166/tsi.26.595-621

M. Fularz, M. Kraft, A. Schmidt, and A. Kasinski, A High-Performance FPGA-Based Image Feature Detector and Matcher Based on the FAST and BRIEF Algorithms, International Journal of Advanced Robotic Systems, vol.1, issue.1, 2015.
DOI : 10.1109/ICIP.2002.1038171

H. Ye, L. Lacassagne, D. Etiemble, L. Cabaret, J. Falcou et al., « Impact of High Level Transforms on High Level Synthesis for motion detection algorithm, IEEE International Conference on Design and Architectures for Signal and Image Processing (DASIP). 2012, pp.1-8

H. Ye, L. Lacassagne, J. Falcou, D. Etiemble, L. Cabaret et al., « High Level Transforms to reduce energy consumption of signal and image processing operators, IEEE International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS). 2013, pp.247-254

L. Lacassagne, D. Etiemble, A. Hassan-zahraee, P. Dominguez, and . Vezolle, High level transforms for SIMD and low-level computer vision algorithms, Proceedings of the 2014 Workshop on Workshop on programming models for SIMD/Vector processing, WPMVP '14, pp.49-56
DOI : 10.1145/2568058.2568067

URL : https://hal.archives-ouvertes.fr/hal-01094906

É. Grossiord, H. Talbot, N. Passat, M. Meignan, P. Tervé et al., Hierarchies and shape-space for pet image segmentation, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1118-1121
DOI : 10.1109/ISBI.2015.7164068

URL : https://hal.archives-ouvertes.fr/hal-01169944

M. J. Klaiber, Z. Wang, and S. Simon, « A Real-Time Process Analysis System for the Simultaneous Acquisition of Spray Characteristics ». In : Process-Spray : Functional Particles Produced in Spray Processes. Sous la dir. d'Udo Fritsching, pp.265-305, 2016.

F. Wende, G. Laubender, and T. Steinke, « Integration of Intel Xeon Phi Servers into the HLRN-III Complex : Experiences, Performance and Lessons Learned, CUG2014 Proceedings, 2014.

X. Wang, J. Sun, and H. Peng, Foreground Object Detecting Algorithm based on Mixture of Gaussian and Kalman Filter in Video Surveillance, Journal of Computers, vol.8, issue.3, pp.693-700, 2013.
DOI : 10.4304/jcp.8.3.693-700

K. Aneja, F. Laguzet, L. Lacassagne, and A. Merigot, « Video rate image segmentation by means of region splitting and merging, IEEE International Conference on Signal and Image Processing Applications, 2009.

L. Lacassagne, M. Milgram, and J. Devars, « Light Speed Labeling : un nouvel algorithme d'étiquetage en composantes connexes, Workshop Adéquation Algorithme Architecture, 2000.

L. Lacassagne and A. B. Zavidoviqe, Light Speed Labeling for RISC architectures, 2009 16th IEEE International Conference on Image Processing (ICIP), 2009.
DOI : 10.1109/ICIP.2009.5414352

Y. Yang and D. Zhang, A novel line scan clustering algorithm for identifying connected components in digital images, Image and Vision Computing, vol.21, issue.5, pp.10-1016, 2003.
DOI : 10.1016/S0262-8856(03)00015-5

K. Suzuki, I. Horiba, and N. Sugie, Linear-time connected-component labeling based on sequential local operations, Computer Vision and Image Understanding, vol.89, issue.1, pp.1-23, 2003.
DOI : 10.1016/S1077-3142(02)00030-9

F. Chang and C. Chen, A linear-time component-labeling algorithm using contour tracing technique, Computer Vision and Image Understanding, vol.93, issue.2, pp.206-220, 2004.
DOI : 10.1016/j.cviu.2003.09.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.6330

L. He, Y. Chao, and K. Suzuki, A Run-Based Two-Scan Labeling Algorithm, ICIAR. LNCS 4633, pp.131-142, 2007.
DOI : 10.1007/978-3-540-74260-9_12

K. Wu, E. Otoo, and A. Shoshani, Optimizing connected component labeling algorithms, Medical Imaging 2005: Image Processing, 2008.
DOI : 10.1117/12.596105

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.3529

C. Grana, D. Borghesani, and R. Cucchiara, Fast block based connected components labeling, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.4061-4064, 2009.
DOI : 10.1109/ICIP.2009.5413731

L. He, Y. Chao, and K. Suzuki, An efficient first-scan method for label-equivalence-based labeling algorithms, Pattern Recognition Letters, vol.31, issue.1, pp.28-35, 2010.
DOI : 10.1016/j.patrec.2009.08.012

]. L. He, Y. Chao, and K. Suzuki, « A New Two-Scan Algorithm for Labeling Connected Components in binary Images, Proceedings of the World Congress on Engineering. Sous la dir. de World Congress. T. 2. 2012, pp.1141-1146

U. H. Hernandez-belmonte, V. Ayala-ramirez, and R. E. Sanchez-yanez, Enhancing CCL Algorithms by Using a Reduced Connectivity Mask, Mexican Conference on Pattern Recognition, pp.195-203
DOI : 10.1007/978-3-642-38989-4_20

S. Gupta, D. Palsetia, M. M. Ali-patwary, and A. , Agrawal et A. Choudhary. « A New Parallel Algorithm for Two-Pass Connected Component Labeling, Parallel & Distributed Processing Symposium Workshops (IPDPSW). IEEE. 2014, pp.1355-1362

H. M. Alnuweiti and V. K. Prasanna, Parallel architectures and algorithms for image component labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.10
DOI : 10.1109/34.159904

A. David, J. Bader, and . Jájá, « Parallel Algorithms for Image Histogramming and Connected Components with an Experimental Study (Extended Abstract), pp.95-123, 1995.

R. Walczyk, A. Armitage, and D. Binnie, « Comparative study on connected component labeling algorithms for embedded video processing systems, 2010.

D. Bailey and C. Johnston, « Single Pass Connected Component Analysis ». In : Image and Vision New Zeland (IVNZ), pp.282-287, 2007.

M. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon, A memory-efficient parallel single pass architecture for connected component labeling of streamed images, 2012 International Conference on Field-Programmable Technology, pp.159-165
DOI : 10.1109/FPT.2012.6412129

M. Klaiber, D. Bailey, S. Ahmed, Y. Baroud, and S. Simon, A high-throughput FPGA architecture for parallel connected components analysis based on label reuse, 2013 International Conference on Field-Programmable Technology (FPT), pp.302-305
DOI : 10.1109/FPT.2013.6718372

M. Jablonski and M. Gorgon, Handel-C implementation of classical component labelling algorithm, Euromicro Symposium on Digital System Design, 2004. DSD 2004., pp.387-393, 2004.
DOI : 10.1109/DSD.2004.1333301

E. Mozef, S. Weber, J. Jaber, and E. Tisserand, Parallel architecture dedicated to connected component analysis, Proceedings of 13th International Conference on Pattern Recognition, pp.699-703, 1996.
DOI : 10.1109/ICPR.1996.547655

A. Rosenfeld and J. L. Platz, « Sequential operator in digital pictures processing, Journal of ACM, vol.134, pp.471-494, 1966.

J. M. Chassery and A. Montanvert, Géometrie discrète en analyse d'image. Traité des Nouvelles technologies, Hermes, pp.200-214, 1991.

M. B. Dillencourt, H. Samet, and M. Tamminen, « A General Approach to Connected-Component Labelling for Arbitrary Image Representations, pp.253-280
DOI : 10.1145/128749.128750

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.8846

R. Kadowaki, K. Motomura, S. Ohkura, and K. Aizawa, Graphs representing quadtree structures using eight edges, 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp.1-5, 2010.
DOI : 10.1109/ISCCSP.2010.5463412

V. Khanna, P. Gupta, and C. J. Hwang, Maintenance of connected components in quadtree-based image representation, Proceedings International Conference on Information Technology: Coding and Computing, pp.647-651, 2001.
DOI : 10.1109/ITCC.2001.918870

Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union problems, ACM Computing Surveys, vol.23, issue.3
DOI : 10.1145/116873.116878

M. A. Patwary, J. R. Blair, and F. Manne, Experiments on Union-Find Algorithms for the Disjoint-Set Data Structure, International symposium on experimental algorithms
DOI : 10.1007/978-3-642-13193-6_35

R. M. Haralick, « Some neighborhood operations ». In : Real-Time Parallel Computing Image Analysis, pp.11-35, 1981.

L. Lacassagne, L. Cabaret, and D. Etiemble, Farouk Hebache et Andrea Petreto. « A New SIMD Iterative Connected Component Labeling Algorithm, Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector Processing. WPMVP '16, 2016.

A. Bernard, M. J. Galler, and . Fischer, « An improved equivalence algorithm, Commun . ACM, vol.75, 1964.

R. Lumia, L. Shapiro, and O. Zungia, A new connected components algorithm for virtual memory computers, Computer Vision, Graphics and Image Processing, pp.287-300, 1983.
DOI : 10.1016/0734-189X(83)90071-3

C. Ronse and P. A. Dejvijver, « Connected components in binary images : the detection problems, 1984.

M. Sakauchi, Y. Ohsawa, M. Sone, and M. Onoe, « Management of the standard image database for image processing researches (SIDBA), ITEJ Technial Report, vol.838, pp.7-12, 1984.

B. Leininger, Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS), Defense Transformation and Net-Centric Systems 2008
DOI : 10.1117/12.784724

P. Vandewalle, J. Kovacevic, and M. Vetterli, Reproducible research in signal processing, IEEE Signal Processing Magazine, vol.26, issue.3, pp.37-47, 2009.
DOI : 10.1109/MSP.2009.932122

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, vol.8, issue.1, pp.3-30, 1998.
DOI : 10.1145/272991.272995

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.1141

V. Zorica, E. Djordjevic, A. Stanley, and . Margolina, « Site percolation threshold for honeycomb and square lattices, Journal of Physics A : Mathematical and General, vol.158, p.405, 1982.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the ACM, vol.22, issue.2, pp.215-225, 1975.
DOI : 10.1145/321879.321884

F. Veillon, One pass computation of morphological and geometrical properties of objects in digital pictures, Signal Processing, vol.1, issue.3, pp.175-179, 1979.
DOI : 10.1016/0165-1684(79)90018-5

L. Lacassagne and B. Zavidoviqe, Light speed labeling: efficient connected component labeling on RISC architectures, Journal of Real-Time Image Processing, vol.89, issue.1, pp.117-135, 2011.
DOI : 10.1016/S1077-3142(02)00030-9

L. Cabaret and L. Lacassagne, A review of world's fastest connected component labeling algorithms: Speed and energy estimation, Proceedings of the 2014 Conference on Design and Architectures for Signal and Image Processing, pp.1-8
DOI : 10.1109/DASIP.2014.7115641

L. Cabaret and L. Lacassagne, What is the world's fastest connected component labeling algorithm?, 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp.97-102
DOI : 10.1109/SiPS.2014.6986069

H. Sutter, The Free Lunch Is Over : A Fundamental Turn Toward Concurrency in Software, In : Dr. Dobb's Journal, vol.30, issue.3, 2005.

M. Niknam, P. Thulasiraman, and S. Camorlinga, « A Parallel Algorithm for Connected Component Labeling of Gray-scale Images on Homogeneous Multicore Architectures, Journal of Physics -High Performance Computing Symposium (HPCS), pp.1742-6596, 2010.

C. Chen, Y. Wu, S. Tseng, and W. Wang, Parallelization of Connected-Component Labeling on TILE64 Many-Core Platform, Journal of Signal Processing Systems, vol.5, issue.2, pp.169-183, 2013.
DOI : 10.1007/978-3-642-04697-1_30

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1
DOI : 10.1109/99.660313

N. Ma, D. Bailey, and C. Johnston, Optimised single pass connected components analysis, 2008 International Conference on Field-Programmable Technology, pp.185-192, 2008.
DOI : 10.1109/FPT.2008.4762382

L. Cabaret, L. Lacassagne, and D. Etiemble, « Parallel Light Speed Labeling : an efficient connected component labeling algorithm for multi-core processors, IEEE International Conference on Image Processing (ICIP). 2015, pp.1-4
DOI : 10.1109/icip.2015.7351452

L. Cabaret, L. Lacassagne, and D. Etiemble, Parallel Light Speed Labeling: an efficient connected component algorithm for labeling and analysis on multi-core processors, Journal of Real-Time Image Processing, vol.26, issue.3, pp.1-18, 2016.
DOI : 10.1109/MSP.2009.932122

URL : https://hal.archives-ouvertes.fr/hal-01361188

D. Robbins, « POSIX threads explained A simple and nimble tool for memory sharing

. Cilkplus, Intel Cilk Plus homepage, Consultée le 31 mars, 2016.

G. M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, Proceedings of the April 18-20, 1967, spring joint computer conference on, AFIPS '67 (Spring), pp.483-485, 1967.
DOI : 10.1145/1465482.1465560

J. Michael and . Flynn, « Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput, vol.21, issue.9

A. Rosenfeld, Geodesics in Digital Pictures Information and Control 36, pp.74-84, 1978.
DOI : 10.1016/s0019-9958(78)90237-1

URL : http://doi.org/10.1016/s0019-9958(78)90237-1

M. Mccool, A. D. Robison, and J. Reinders, Structured Parallel Programming : patterns for efficient computation, 2012.

S. Mehta, A. Misra, A. Singhal, and P. Kumar, Ankush Mittal et Kannappan Palaniappan. « Parallel implementation of video surveillance algorithms on GPU architectures using CUDA, 17th IEEE Int. Conf. Advanced Computing and Communications (ADCOM), 2009.

O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, Connected component labeling on a 2D grid using CUDA, Journal of Parallel and Distributed Computing, vol.71, issue.4, pp.615-620, 2011.
DOI : 10.1016/j.jpdc.2010.10.012

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:2139867/component/escidoc:2139866/Kalentev_Connected.pdf

V. Oliveira and R. Lotufo, « A study on connected components labeling algorithms using GPUs, Workshop of Undergraduate Works, XXIII Sibgrapi, Conference on Graphics, Patterns and Images, 2010.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.416-423, 2001.
DOI : 10.1109/ICCV.2001.937655

O. Stava and . Benes, « Connected component labeling in CUDA, GPU Computing Gems, 2010.

Q. Meunier, F. Pétrot, and J. Roch, « Hardware/software support for adaptive work-stealing in on-chip multiprocessor Special Issue on HW/SW Co-Design : Tools and Applications, Journal of Systems Architecture, vol.568, pp.392-406, 2010.

H. Liu, C. Dévigne, L. Garcia, Q. Meunier, F. Wajsbürt et al., RWT: Suppressing Write-Through Cost When Coherence is Not Needed, 2015 IEEE Computer Society Annual Symposium on VLSI, pp.434-439
DOI : 10.1109/ISVLSI.2015.35

URL : https://hal.archives-ouvertes.fr/hal-01362872

M. Lamine-karaoui, Q. L. Meunier, F. Wajsbürt, A. «. Greiner, and . Ge-cos, GECOS : M??canisme de synchronisation passant ?? l?????chelle ?? plusieurs lecteurs et un ??crivain pour structures cha??n??es, Techniques et sciences informatiques, vol.34, issue.1-2, pp.53-78, 2015.
DOI : 10.3166/tsi.34.53-78