Skip to Main content Skip to Navigation

Mobile collaborative sensing : framework and algorithm design

Abstract : Nowadays, there is an increasing demand to provide real-time information from the environment, e.g., the infection status of infectious diseases, signal strength, traffic conditions, and air quality, to citizens in urban areas for various purposes. The proliferation of sensor-equipped devices and the mobility of people are making Mobile Collaborative Sensing (MCS) an effective way to sense and collect information at a low deployment cost. In MCS, instead of just deploying static sensors in an interested area, people with mobile devices play the role of mobile sensors to sense the information of their surroundings, and the communication network (3G, WiFi, etc.) is used to transfer data for MCS applications. Typically, a MCS application not only requires each participant's mobile device to possess the capability of performing sensing and returning sensed results to a central server, but also requires to collaborate with other mobile and static devices. In order to make sensed results well represent the physical information of a target region, and well be suitable to a certain application, what kind of data can be used for different applications, and what kind of information needs to be included into the collected sensing data? Spatio-temporal data can be used by different applications to well represent the target region. In different applications, location and time information is two kinds of common information, and by using such information, the target region of an application is under comprehensive monitoring from the view of time and space. Different applications require different information to achieve different sensing purposes. E.g. in this thesis: i- MCS-Locating application: signal strength information needs to be included into the sensed data by mobile devices from signal transmitters; ii- MCS-Prediction application: the relationship between infecting and infected cases needs to be included into the sensed data by mobile devices from disease outbreak areas; iii- MCS-Routing application: real-time traffic and road information from different traffic roads, e.g., traffic velocity and road gradient, needs to be included into the sensed data by road-embedded and vehicle-mounted devices. With sensing the physical information of a target region, and making mobile and static devices collaborate with each other in mind, in this thesis three sensing based optimization applications are studied, and following four research works are conducted: - a MCS Framework is designed to facilitate the cooperativity of data collection, sharing, and analysis among different devices. Data is collected from different sources and time points. For deploying the framework into applications, relevant key challenges and open issues are discussed. - MCS-Locating: an algorithm LiCS (Locating in Collaborative Sensing based Data Space) is proposed to achieve target locating. It uses Received Signal Strength that exists in any wireless devices as location fingerprints to differentiate different locations, so it can be directly supported by off-the-shelf wireless infrastructure. LiCS uses trace data from individuals' mobile devices, and a location estimation model. It trains the location estimation model by using the trace data to achieve collaborative target locating. Such collaboration between different devices is data-level, and model-supported. - MCS-Prediction: a recognition model is designed to dynamically acquire the structure knowledge of the relevant RCN during disease spread. On the basis of this model, a prediction algorithm is proposed to predict the parameter R. R is the reproductive number which is used to quantify the disease dynamics during disease spread. - MCS-Routing: an eco-friendly navigation algorithm, eRouting, is designed by combining real-time traffic information and a representative factor based energy/emission model. Based on the off-the-shelf infrastructure of an intelligent traffic system, the traffic information is collected
Complete list of metadatas

Cited literature [168 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, September 28, 2017 - 10:36:32 AM
Last modification on : Monday, August 24, 2020 - 4:16:03 PM
Long-term archiving on: : Friday, December 29, 2017 - 1:54:29 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01597064, version 1


Yuanfang Chen. Mobile collaborative sensing : framework and algorithm design. Networking and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2017. English. ⟨NNT : 2017TELE0016⟩. ⟨tel-01597064⟩



Record views


Files downloads