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Aperçu de la thèse

Ce mémoire présente le travail accompli au cours des trois dernières années sur la

coordination des systèmes multi-agents et, en particulier, sur le contrôle en formation

des véhicules non-holonomes. En générale, résoudre un problème de coordination

distribuée pour un système multi-agent consiste à synthétiser l’entrée de commande

pour chaque agent afin de permettre à certaines grandeurs d’intérêt dans le groupe de

systèmes de réaliser une tâche commune, par exemple, former une certaine posture

géométrique, suivre un leader commun, ou bien décrire un comportement commun

en régime permanent (synchronisation).

Selon la procédure de conception des lois de commandes, deux types d’approches

se distinguent, les approches centralisées et les approches distribuées. Dans le premier

cas, chaque système reçoit une information globale qui consiste en le comportement

de référence qu’il est sensé produire en régime permanent. Dans ce cas, le problème de

coordination entre les différents systèmes est réduit à la commande en poursuite de

chaque système séparément vers son comportement de référence. Dans l’approche

distribuée, l’entrée de commande de chaque agent est conçue en utilisant unique-

ment des informations locales qui proviennent d’un certain groupe d’agents appelé le

groupe de voisins. L’interaction entre les agents se caractérise, des lors, par un graphe

de communication.

Les solutions distribuées aux problèmes de coordination des systèmes multiagents

ont été largement étudiées en automatique, nous citons par exemple:

[43], [93], [22], [79] and [106], la dernière référence est un état de l’art sur le sujet.

Deux axes principaux de recherche sont identifiés dans le contexte de la coordina-

tion distribuée des systèmes multi-agents. Le premier apparaı̂t lorsqu’on considère

la commande distribuée en présence de contraintes sur le processus de communi-

cation entre les agents, ce qui inclut le cas où le transfert d’informations est unidi-

rectionnel [102], [90], variable dans le temps, on parle dans ce cas de graph temps-

variant [104], [73], ou affecté par des retards de transmission ou des échantillonnages [1].

Le second cas survient lorsqu’on considère la dynamique individuelle des agents, par

exemple, le cas général des systèmes linéaires [54], les systèmes non-linéaires iden-

9
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tiques [40], ou les systèmes non-linéaires hétérogènes [98], [120].

Le problème général de la coordination distribuée du mouvement d’un groupe

d’agents mobiles a été aussi largement étudié dans le domaine de l’ingénierie automa-

tique au cours des dernières décennies. Un tel intérêt est dû à l’importance d’une telle

coordination dans de nombreuses applications, nous citons par exemple le cas des

robots mobiles [29], des véhicules aériens sans pilote [32], des véhicules sous-marins

autonomes [13], satellites [57], aéronefs et engins spatiaux [103], etc.

Parmi les problèmes les plus importants en coordination distribuée, deux catégories

de problèmes se distinguent:

Problème de consensus sans leader. Dans ce cas, l’objectif est de parvenir à un

arrangement entre les coordonnées des agents et de les faire converger asymptotique-

ment vers une posture commune. Les agents peuvent échanger uniquement des in-

formations avec un certain nombre de voisins. Le problème de consensus sans leader

a été étudié, par exemple, pour le cas des systèmes linéaires de premier ordre et de

second ordre [73], [56], [109], et aussi pour le cas de certaines classes de systèmes non-

linéaires [90, 92, 120]. Dans certaines applications, l’arrangement entre les états des

systèmes diffère légèrement du consensus classique, dans le sens où, au lieu de faire

converger les états vers une valeur commune, les agents devraient former une pos-

ture géométrique qui pourrait être constante ou variable dans le temps. Ce type de

problème est souvent appelé problème de formation à base de consensus. Il convient

de souligner qu’un changement de coordonnées est souvent adopté afin de permettre

la transformation du problème de formation en un problème de consensus [29].

Problème de consensus avec leader. L’objectif, dans ce cas, est de parvenir à un

arrangement entre les agents tout en poursuivant une trajectoire commune générée

par un agent leader. Comme dans le cas précédent, seule l’information concernant les

postures des agents voisins (qui peuvent inclure le leader) est accessible pour chaque

agent. L’interaction entre les agents, incluant le leader, se caractérise par un graphe

d’interconnexion augmenté. Le plus souvent, le comportement du système leader a

une grande influence à la fois sur la conception des lois de commande et aussi sur

l’analyse de la boucle fermée.

Dans ce document, les deux problèmes décrits ci-dessus sont étudiés dans le cas

où les agents sont des robots mobiles non-holonomes. La commande du robot mobile

non-holonome a été un domaine de recherche très actif en automatique non-lineaire au

cours des deux dernières décennies, voir par exemple [49] pour un état de l’art sur la

commande de ce type de systèmes; En règle générale, la commande d’un robot mobile

non-holonome consiste à résoudre l’un des trois problèmes suivants:

Le problème général de poursuite. Il consiste à définir un robot virtuel qui génère



Introduction and contributions 11

une trajectoire de référence que le robot commandé est doit poursuivre. En général,

les vitesses du robot leader sont des fonctions variables dans le temps, ainsi le système

en boucle fermée est le plus souvent non-linéaire et temps-variant – voir les chapitres

2-3.

Le problème de stabilisation. Il consiste à stabiliser les trajectoires du robot vers

une posture de consigne constant. Ce problème est pertinent en raison de la con-

trainte non-holonome qui empêche la résolution du problème en utilisant des lois de

rétroaction lisses et autonomes [15]. Le problème de stabilisation peut être reformulé

en un problème de leader-suiveur en introduisant un leader dont les vitesses sont

égales à zéro.

Le problème de poursuite-stabilisation simultanés. Il consiste à concevoir un

contrôleur unifié qui résout le problème de leader-suiveur pour le cas général des

vitesses du leader — voir Chapitre 2 pour une discussion plus détaillée.

L’extension naturelle du problème de stabilisation d’un véhicules non-holonomes

au cas multi-agent est le problème de consensus sans leader qui est étudié dans le

chapitre 4 sous l’hypothèse d’un graphe bidirectionnel connecté et d’une communi-

cation affectée par un retard variant dans le temps et borné. Le problème de leader-

suiveur pour un groupe de robots mobiles a également été considéré dans cette thèse.

Selon les vitesses du leader, Les chapitres 2 et 3 étudient les trois problèmes suivants,

sous l’hypothèse d’un graphe constant ayant une topologie particulière qui est celle

de l’arbre générateur dirigé.

1)- Problème de poursuite leader-suiveur. Dans ce cas, on résout le problème

de consensus leader-suiveur en supposant que les vitesses du leader décrivent une

function général variante dans le temps, de sorte que la norme de ses vitesses est un

signal a excitation permanente – voir Définition A.6.

2)- Problème de rendez-vous robuste leader-suiveur. Dans ce cas, les vitesses du

leader convergent vers zéro.

3)- Problème de poursuite-rendez-vous simultanés. Dans ce cas, on propose un

contrôleur unifié qui résout le problème de consensus leader-suiveur pour toutes les

configurations possibles des vitesses du leader.

Notre approche consiste à transformer chacun des problèmes cités précédemment

en un problème de stabilisation d’un ensemble invariant. Nos outils d’analyse re-

posent principalement sur la construction de fonctions de Lyapunov et de Lyapunov-

Krasovskii strictes pour des systèmes non-linéaires variant dans le temps et/ou re-

tardés. Ces fonctions sont, par la suite, utilisées pour établir des résultats de stabilité

uniforme et de robustesse pour le cas des robots mobiles.

Le premier chapitre de ce manuscrit présente des résultats techniques sur la sta-
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bilité des systèmes linéaires temps-variant inspirées du livre [72]. Notamment, on

présente les méthodes essentielles pour la construction de fonctions de Lyapunov

strictes. Ces méthodes sont employées dans tous les chapitres qui suivent pour la con-

ception des lois de commande et pour analyse de stabilité de la boucle fermée pour le

cas des robots mobiles en formation distribuée.



Introduction and Contributions

We present in this memoir the work accomplished in the last three years on multi-

agent coordination and in particular, on formation control of non-holonomic vehicles.

Generally speaking, solving multi-agent coordination problem consists on designing

the control input for each agent in order to allow certain quantities of interest in the

group of systems to realize a common task, for example, reaching a certain geomet-

ric pattern, following a common leader agent or describing a common steady state

behavior.

Depending on the control design procedure, we distinguish the centralized and the

distributed approaches. In the first approach each system receives a global information

which consists of its reference behavior. In this case, the multi-agent coordination

problem is reduced to the stabilization of each system separately toward its reference

behavior. In the distributed approach the control input for each agent is designed

using only local knowledge that is received from some agents called neighbors. The

interaction between the agents is characterized by a communication graph.

Distributed solution to multi-agent coordination, consensus or synchronization

problems have been extensively studied in the control literature, we cite for example:

[43], [93], [22], [79] and [106], where the last reference is a survey on this topic.

Two principle research axes can be identified in the context of distributed multi-

agent coordination. The first one appears when considering distributed control in

the presence of communication constraints between the agents, which include the

case when the transfer of information is unidirectional [102], [90], unreliable links

with time-varying graph topology [104], [73], delayed or sampled transfer of infor-

mation [1] to name few. The second one arises when considering individual dynamics

of the agents, for example, general linear systems [54], nonlinear homogeneous sys-

tems [40], or heterogeneous nonlinear systems [98], [120].

The general problem of distributed coordinated motion of mobile agents has been

extensively studied in control engineering during the last decades. Such an interest

is caused by importance of such a coordination in many different engineering ap-

plications, we cite here mobile robots [29], unmanned air vehicles [32], autonomous

13
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underwater vehicles [13], satellites [57], aircraft and spacecraft [103], etc.

Among existing approaches to the coordination task we mention here the following

two problems:

Leaderless consensus problem. In this case the objective is to reach an agreement

between the agents and in particular coordinates to make them converge asymptoti-

cally to a common value. In this case, agents can exchange information only with their

neighbors. The leaderless consensus problem of multiple dynamical systems has been

extensively studied, for example, linear systems, including first, second order and

general linear systems are considered in [56,73,109], and different classes of nonlinear

systems are considered in [90, 92, 120].

In some applications, an agreement between the systems is slightly different from

the classical consensus, in the sense that instead of common value, the agents should

follow some geometric pattern that can be constant or time varying. This type of prob-

lem is often referred to as leaderless consensus problem. It should be underlined here

that an appropriate change of coordinates allows to transform the formation task into

consensus one [29].

Leader-follower consensus problem. In this case the objective is to reach an agree-

ment between the agents defined by a common trajectory generated by a leader agent.

As in the previous case only the information of the neighboring agents (and may be

the leader), is accessible to the agents. The interaction between the agents, including

the leader, is characterized by an augmented graph of interconnections. Usually, the

behavior of the leader system has a great influence both on the control design and on

the closed-loop analysis.

In this document we study the two above described problems in the case where the

agents are modeled as a nonholonomic mobile robots. The control of nonholonomic

mobile robot has been an active research field in the control community during the last

two decades see for example [49] for a survey on the control of nonholonomic vehicles;

generally speaking, controlling a nonholonomic mobile robot consists of solving one

of the following three problems.

The general leader-follower problem. It consists in defining a virtual robot that

generates a reference trajectory to be followed by the controlled robot. In general, the

velocities of the virtual robot are time varying functions, as a result the closed-loop

system is usually nonlinear and time varying–see Chapters 2-3.

The stabilization problem. It consists in stabilization of the robot trajectories to a

constant set point. This problem is relevant because of the nonholonomic restriction

that enables the use of any smooth autonomous feedback law [15]. The stabilization

problem can be recast as a leader-follower problem by introducing a leader, whose
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velocities are equal to zero.

The simultaneous tracking-stabilization problem. It consists in the design of a

unified controller that solves the leader-follower problem both in the case where the

leader’s velocities are either general time varying functions or equal to zero — see

Chapter 2 for more detailed discussion.

The natural extension of the stabilization problem for nonholonomic vehicles to

the multi-agent case is the leaderless consensus problem which we study in Chapter 4

under assumptions of a general bidirectional graph and time varying communication

delays. The leader-follower problem for a multiple nonholonomic mobile robots has

also been considered in this thesis. Depending on the leader’s velocities, Chapters 2

and 3 study the three following problems, respectively, under a particular constant

communication graph topology that is a directed spanning tree.

1)- Leader-follower tracking problem. In this case, we solve the leader-follower

consensus problem under the assumption that the leader vehicle describes a general

time varying path, such that, the norm of its velocities is persistently exciting,–see

Definition A.6.

2)- Leader-follower robust agreement problem. In this case, we solve the leader-

follower consensus problem when the leader’s velocities converge to zero.

3)- Simultaneous tracking-agreement problem. In this case, we design a unified

controller that solves the leader-follower consensus problem for all possible configu-

rations of the leader’s velocities.

Our approach consists in transforming each one of the problems cited above into a

stabilization problem of an invariant set. Our analysis tools are based, mainly, on the

construction of strict Lyapunov functions and strict Lyapunov-Krasovskii functionals

for nonlinear time varying and/or delayed systems. These functions are then used to

establish stability and robustness results in the area of mobile robot control.

The first chapter of this manuscript presents our basic technical results of stability

for time varying linear systems. Notably, we present therein the essential methods

for the construction of the strict Lyapunov functions. These methods we employ in

all the subsequent chapters in the control design and the analysis of mobile robots.

The Lyapunov functions that we employ follow ideas proposed in [72]. However, the

constructions that we present for the specific case-studies of time-varying systems in

Chapter 1, and for mobile robots, in the subsequent chapters, are original. Moreover,

to the best of our knowledge, for the problems of formation control for autonomous

vehicles, we are the first to provide strict Lyapunov functions.

Our contributions are described in further detail below.
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Contributions of the thesis

We briefly summarize the main results of this thesis, chapter by chapter, and cite re-

lated publications. References correspond to the list of publications presented in p.

18.

• Chapter 1: We present some results on stability of persistently excited linear

time-varying systems with particular structures. Such systems appear in di-

verse problems, which include the analysis of model-reference adaptive systems,

persistently-excited observers, consensus of systems interconnected through time-

varying links and systems with time-varying input gain. The originality of our

statements lies in the fact that we provide smooth strict Lyapunov functions

hence, our proofs are constructive and direct. Moreover, we establish uniform

global exponential stability with explicit stability and decay estimates.

This chapter formed the subject of the following publications on: [(iv),(iii)].

• Chapter 2: We present controllers for leader-follower formation tracking and ro-

bust agreement control problems for a group of autonomous non-holonomic ve-

hicles. We consider general models composed of a velocity kinematics and a

generic force-balance equations. We assume that, each robot has a unique leader

and only the swarm leader robot knows the reference trajectory, but each robot

may have one or several followers. That is, the graph topology is a spanning

tree. For the tracking case, we establish uniform global asymptotic stability of the

closed-loop system under the assumption that the virtual vehicle velocities are

persistently exciting. The analysis relies on the construction of a strict Lyapunov

function for the position tracking error dynamics and a recursive argument for

cascaded systems. For the robust agreement case, we control the group of robots

that follow trajectories with a vanishing reference velocities. The control design

is based on a δ-persistently exciting controller (for the kinematics model) that

is robust to decaying perturbations. We construct strict Lyapunov functions to

guarantee integral input-to-state stability and small input-to state stability of the

closed-loop system at the kinematic level. At the same time we design a dynamic

level controller that ensures asymptotic convergence of the formation trajectories

even in the case when the inertia parameters are unknown.

These results were originally presented in the following publications with A.

Lorı́a and E. Panteley: [(viii), (i), (xii), (v), (xiii)].

• Chapter 3: We solve the leader-follower simultaneous tracking-stabilization control
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problem for a force-controlled nonholonomic mobile robots, assuming that the

leader’s velocities are either integrable (parking problem) or Persistently Exciting

(tracking problem). We introduce a simple control law that allows to extend the

idea of control design proposed in [119] to a more general class of controllers and,

then, to more general scenarios of the leader’s velocities. In particular we assume

that the leader’s velocities are either converging to zero or persistently exciting.

This permits to solve the leader-follower simultaneous tracking-agreement prob-

lem for a group of force-controlled nonholonomic mobile robots, under a span-

ning tree communication topology rooted at the virtual leader. We introduce a

simple decentralized control law and establish, for each agent, convergence to

zero of the tracking errors relatively to its neighbor.

Stability proofs that we present are based on the construction of strict Lyapunov

functions for classes of nonlinear time-varying systems and robustness analysis

tools such as iISS the strong iISS notions.

Publications related to the material presented in this chapter are in preparation

with A. Lorı́a and E. Panteley: [ (xviii), (xix) ].

• Chapter 4: We present a novel decentralized consensus-based formation con-

trollers for swarms of nonholonomic vehicles both for the kinematic and the dy-

namic models. We solve the leaderless consensus problem with a desired orien-

tations (partial consensus case), and the leaderless consensus problem in both po-

sitions and orientations (full consensus case). Moreover, we consider a case where

that the system interconnections are affected by time-varying delays. The net-

work is modeled as an undirected, static and connected graph. The controllers

that we propose are a smooth time-varying δ-persistently exciting controllers of

the PD and PID type. The stability analysis is carried out using a novel strict

Lyapunov function for both cases.

The material of this chapter was prepared in collaboration with E. Nuño-Ortega,

A. Bautista-Castillo, From University of Guadalajara, A. Lorı́a and E. Panteley

[(ix), (xv), (xvi)].

For clarity of exposition we have decided to present in this thesis only our results

on formation control of mobile robots and related topics. Thus, some of our results,

cited below,were excluded from the manuscript, some of them are either published or

under review and the others are in preparation:

• The papers [(vi), (xvii) ] are a joint works with E. Panteley and A. Loria on
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the synchronization of heterogeneous oscillators using singular perturbation ap-

proach.

• The papers [(xi), (xiv)] are joint work with D. Belleter, C. Paliotta, and K. Y.

Pettersen, from NTNU Trondheim, where we studied local and global path fol-

lowing problems for underactuated marine vessels in the presence of unknown

ocean currents using an observer based approach.

• The publication [(ii)] is a joint work with N. R. Chowdhury, S. Sukumar, from IIT

Bombay, and A. Lorı́a where we studied consensus problem under time-varying

bidirectional graph containing a persistently exciting spanning tree.
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Notations

Notations

R Field of real numbers.

R≥0 Field of positive real numbers.

Rn Linear space of real vectors of dimension n.

Rn×m Ring of matrices of size n×m.

xi The i-th element of the vector x.

In The identity matrix of size n× n.

1 Column vector of ones of dimension n.

diag(·) Diagonal matrix of the input arguments.

col(·) Column vector of the input arguments.

x̄ The diagonal matrix representation of x, i.e., x̄ = diag(xi).

|x| The Euclidean norm of x.

|x|∞ For a time varying vector x(t) denote, supt≥0 {x(t)}.
|x|A For a set A ⊂ Rn denote, miny∈A |x− y|.
A> The transpose matrix to A.

A⊥ The orthogonal matrix to A, i.e., A>A⊥ = 0.

|A| For a matrix A denote, induced Euclidean norm of A.

|M(t)|∞ For a time varying matrix M(t) denote, supt≥0 {|M(t)|}.
⊗ The Kronecker product.

ḟ , f̈ For function of scalar argument f : R→ Rs denote, respectively,

first and second order differentiation.

K Class of positive continuous and strictly increasing functions,

f : R≥0 → R≥0, with f(0) = 0.

K∞ Class of functions f ∈ K, with f(∞) =∞.

L Class of positive continuous and strictly decreasing functions,

f : R≥0 → R≥0, with f(∞) = 0.

KL Class of positive and continuous functions f : R≥0 × R≥0 → R≥0,

with f(·, y) ∈ K∞ and f(x, ·) ∈ L.
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Lp The space of p(> 0) integrable functions, f : R≥0 → Rn ∈ Lp
⇒
[∫∞

0
|f(s)|p ds

] 1
p <∞.

xt For x : R≥0 → Rn, denote the functional xt(θ) := xt(t+ θ), for all θ ∈ [−T, 0].

C[−T, 0] The space of functions which are continuous on [−T, 0].

|xt|A For a functional xt ∈ C[−T, 0] denote, maxθ∈[−T,0] |x(t+ θ)|A.

W [−T, 0] The space of functions which are absolutely continuous on [−T, 0],

and have square integrable first order derivatives.

‖xt‖A For a functional xt ∈ W [−T, 0] denote,

maxθ∈[−T,0] |x(t+ θ)|A + [
∫ 0

−T |ẋ(t+ s)|2 ds]1/2.

L2[−T, 0] The space of square integrable functions on [−T, 0].

For a symmetric positive semi-definite matrix L ∈ Rn×n, we define

λM(L) The maximum eigenvalue of L.

λm(L) The minimum eigenvalue of L.

λi(L) The ith eigenvalue of L greater then λm(L).

Acronyms

a.e. Almost Everywhere

PE Persistently Exciting

US Uniformly Stable

UAS Uniformly Asymptotically Stable

UES Uniformly Exponentially Stable

UGAS Uniformly Globally Asymptotically Stable

UGES Uniformly Globally Exponentially Stable

ISS Input-to-State Stability

iISS integral Input-to-State Stability

PD Proportional and Derivative

PI Proportional and Integral

PID Proportional, Integral and Derivative

SLF Strict Lyapunov Function

SLKF Strict Lyapunov Krasovskii Functional



Chapter 1

Strict Lyapunov functions for

time-varying systems with persistency

of excitation

Establishing uniform asymptotic stability of the origin for time-varying systems is a

difficult task in general, even for linear systems. For instance, for the latter, eigen-

value analysis is generally inconclusive, even for boundedness of the solutions. Much

of the control literature in which time-varying systems appear, relies on generic meth-

ods of proof that are based on “signal chasing” arguments such as Barbălat’s lemma,

properties of functions in Lp spaces, etc. In general, finding a strict Lyapunov func-

tion (that is, which is positive definite, radially unbounded and with negative definite

derivative) is an extremely challenging problem.

The notion of persistency of excitation, which was originally introduced in the con-

text of systems identification [11], is known to be necessary and sufficient for uniform

exponential stability of certain linear time-varying systems [82]. Early proofs of such

statement rely on concepts such as uniform complete observability [83], output injec-

tion arguments [7] and other (rather intricate) methods tailored specifically for linear

systems [41].

In so-called model-reference adaptive control [86], persistency of excitation plays a

fundamental role as a necessary and sufficient condition for uniform global asymptotic

stability. For functions that depend on the state and time, however, persistency of

excitation must be redefined and the stability anaysis demands a special treatment.

For instance, on occasions it appears convenient to analyse nonlinear time-varying

systems as linear time-varying [47, p. 659]. Such method of analysis renders possible

the extension of stability tools devoted to linear time-varying systems with persistency

of excitation, to the realm of nonlinear systems [63]. Nevertheless, as it is showed in

23
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the latter reference, it is fundamental to take special care in imposing a uniform variant

of persistency of excitation, independent of the initial conditions.

More recently, new notions of peristency of excitation tailored to establish uniform

attractivity for nonlinear time-varying systems, were introduced in [50, 51, 66, 99]. In

the first two, links between persistence of excitation and detectability are established.

In the latter two, necessary and sufficient conditions for uniform global asymptotic

stability of generic nonlinear time-varying systems are given.

Beyond stability analysis, persistency of excitation plays a fundamental role in con-

trol design, as for instance, in systems in which the control input is multiplied by a

time-varying function –see [61]. Such is the case of certain systems in aerospace engi-

neering applications –see e.g., [113], [4], and [69].

Persistency of excitation appears naturally in control design when there is a struc-

tural impediment to use autonomous smooth feedback, as in the case of chain-form

systems [64, 108]. In [108], under a change of coordinates and a preliminary feed-

back, the closed-loop system is transformed into a so-called skew-symmetric system,

roughly of the form ẋ = Ax + Bu with u ∈ R where A ∈ Rn×n is diagonal with only

one element different from zero andB ∈ Rn×n is skew-symmetric. Then, following the

design rationale from [108], in [64] uniform global asymptotic stability was established

for the closed-loop systems using controllers with persistency of excitation. Other con-

trol applications include the stabilization of parameterized time-varying systems [116]

and the analysis and design of observers for bilinear systems [14, 123].

As we shall show here, persistency of excitation also provides a naturally relaxed

condition for the solution to the so-called consensus problem [105] for systems with

time-varying interconnections. In this scenario, stating conditions of persistency of

excitation on the communication channels is particularly useful to characterize the

“minimal reliability” of the channels [115]. In much of the existing literature, how-

ever, the study of consensus under time-varying communication links makes use of

trajectory based approaches by means of a non differentiable Lyapunov functions to es-

tablish the contraction of trajectories. See for instance the seminal work of Moreau [79]

in which the communication signals take a arbitrarily positive values. Similar prob-

lems are treated, for example, in [37] and [38] under relatively relaxed conditions on

communication signals and on the graph topologies.

Furthermore, on top of stability and stabilisation one must also recognize the ques-

tion of performance. Specifically, to determine explicit exponential estimates that relate

the property of persistency of excitation to the overshoot and convergence rates. For

the so-called “gradient” systems explicit bounds were independently provided in [16]

and [63]. For more complex cases, such as that of model-reference adaptive control
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systems see [58]. It is to be noted, however, that the methods of proof in these refer-

ences are rather intricate since they do not rely on the construction of strict Lyapunov

functions.

In this first chapter we present the technical basis for the presentation of our contri-

butions in the subsequent chapters. We broach several case-studies of stability analysis

of time-varying systems:

• cascaded systems [97],

• consensus under spanning tree topology and time-varying communication links

[105],

• model-reference adaptive control [88],

• stabilization of non-holonomic systems [108],

• systems with time-varying input gain [19, 61].

For all these case-studies we establish statements of uniform global exponential sta-

bility via Lyapunov’s direct method. For each of these we give concrete examples in

which our results are useful. From a technical viewpoint, the design of our Lyapunov

functions is mostly inspired by [74] but we also use the results in [76] and [72], mainly

for the strictification of Lyapunov functions with a non-positive persistently-exciting

bounds on the time-derivatives.

Each of the case studies broached here is representative of a wide research area

hence, we do not develop them in depth. In the subsequent chapters we present part

of the work we accomplished in the period of this thesis (36 months). For clarity of

exposition we chose to focus on problems of stabilization and formation control (con-

sensus) of autonomous vehicles.

1.1 Case-study: a comparison positive system

We start with a simple statement that, in addition to setting the basis for our results, is

interesting in its own right. Consider the differential equation

v̇ = −q(t)v, v ∈ R (1.1)

where q : R≥0 → R≥0. Invoking standard results on adaptive control – see e.g., [41], one

may conclude that the origin is UGES if and only if
√
q is continuous and persistently

exciting, see Definition A.6, that is, if there exist T , µ > 0 such that∫ t+T

t

q(s)ds > µ ∀ t ≥ 0. (1.2)
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Here, we establish the same result, by providing a strict Lyapunov function. The

construction method for this and all other Lyapunov functions in this memoir is in-

spired from [72, 75]. It relies on a functional that is defined upon a locally Lipschitz

bounded persistently exciting function ψ : R≥0 → R≥0 with bounded first derivative

(a.e.), that is, we assume that there exists a constant ψ̄ > 0, such that

max
{
|ψ(t)|∞, |ψ̇(t)|∞

}
≤ ψ̄ a.e. (1.3)

Then, we define the functional Υ : (R≥0 → R≥0)→ R, such that, for all ψ : R≥0 → R≥0

Υψ(t) := 1 + 2ψ̄T − 2

T

∫ t+T

t

∫ m

t

ψ(s)ds dm (1.4)

and, for further development, we remark that this function is lower and upper bounded,

in particular,

1 ≤ Υψ(t) < Ῡψ := 1 + 2ψ̄T. (1.5)

Furthermore, after the fundamental theorem of calculus, the derivative of this function

has the form

Υ̇ψ(t) = − 2

T

∫ t+T

t

ψ(s)ds+ 2ψ(t) (1.6)

then, using persistency of excitation of the signal
√
ψ(t), we can upperbound the

derivative of Υψ as

Υ̇ψ(t) ≤ −2µ

T
+ 2ψ(t). (1.7)

Remark 1.1. The function

p(t) :=− 2

T

∫ t+T

t

∫ m

t

ψ(s)ds dm (1.8)

was first introduced in [74] under the equivalent form

p(t) =

∫ t+T

t

(s− t− T ) q(s)ds, (1.9)

which is obtained by simple change of the order of integration.

The following statement presents a strict Lyapunov function which establishes this,

otherwise well-known, result –cf. [60].

Lemma 1.1. Let q : R≥0 → R≥0 be essentially bounded and let inequality (1.2) hold. Under

these conditions, for the system (1.1), the function W : R≥0 × R→ R≥0, defined by

W (t, v) =
1

2
Υq(t)v

2 (1.10)
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is a strict Lyapunov function and the origin {v = 0} is uniformly globally exponentially stable.

Proof. Let q̄ be such that |q(t)| ≤ q̄ for all t ≥ t0 and define pM := q̄T . defining the

function p(t) using (1.8), we obtain that q(t) ≥ 0, −pM ≤ p(t) ≤ 0, and |p(t)| ≤ pM for

all t ≥ 0 hence, W (t, v) can be bounded as

1

2
v2 ≤ W (t, v) ≤

[1
2

+ q̄T
]
v2. (1.11)

The derivative of W along the trajectories of (1.1) yields

Ẇ (t, v) = −
[
q(t)Υq(t)−

Υ̇p

2

]
v2,

then using (1.5) and (1.6) we obtain

Ẇ ≤ −
[

1

T

∫ t+T

t

q(s)ds

]
v2 ∀t ≥ 0 (1.12)

and, in view of (1.2), we obtain that for all t ≥ t0 and v ∈ R

Ẇ (t, v) ≤ −µ
T
v2. (1.13)

Finally, using (1.11), we also have

Ẇ (t, v) ≤ − 2µ

(1 + 2q̄T )T
W (t, v) (1.14)

which, by integrating along the trajectories, yields

|v(t)| ≤
√

1 + 2q̄T |v(t◦)|exp
[
− µ(t− t◦)

(1 + 2q̄T )T

]
∀t ≥ t0. (1.15)

���

Remark 1.2. The requirement that q(t) ≥ 0 is not necessary —see [60, Lemma 1], that is,

under an extra condition on the excitation parameters (T, µ), one can establish UGES of (1.1)

under (1.2) without requiring q(t) to be positive. For example, one possible way to derive the

extra condition on the parameters (T, µ) is to decompose q(t) as q(t) := q1(t) + q2(t) where

q1(t) ≥ 0 verifies (1.9) and q2(t) is bounded, then using the Lyapunov function provided in

(1.10), in which we replace q(t) by q1(t), one can easily derive a sufficient condition, that relies

the excitation parameters (T, µ) to the upper bounds of both q1(t) and q2(t), such that the

time-derivative of (1.10), along trajectories of (1.1), is negative definite.

The simplicity of Lemma 1.1 should not eclipse its utility in stability analysis. For
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instance, along with the comparison lemma [47, Lemma 2.5], it may be used to es-

tablish uniform global asymptotic stability, with guaranteed convergence rates, for

certain nonlinear time-varying systems. To see this, consider the equation

ż = f(t, z) (1.16)

and let V : R≥0×Rn → R≥0 be positive definite, proper and decrescent, that is, assume

that there exist α1, α2 ∈ K∞ such that

α1(|z|) ≤ V (t, z) ≤ α2(|z|). (1.17)

Assume, further, that there exists a globally Lipschitz continuous function q : R≥0 →
R≥0, satisfying (1.2),

V̇ (t, z) ≤ −q(t)V (t, z). (1.18)

Then, let us define v(t) := V (t, z(t)), so that v̇(t) ≤ −q(t)v(t) for all t ≥ 0. In view

of the monotonicity properties of V and the comparison lemma, Lemma 1.1 directly

establishes UGAS of the origin, {z = 0}, with an explicit decay estimate. Indeed, from

(1.15), (1.17) and the comparison Lemma, we obtain

|z(t)| ≤ α−1
1

(
kvα2(|z◦|)e−λv(t−t◦)

)
(1.19a)

λv :=
µ

k2
vT
, kv :=

√
1 + 2q̄T . (1.19b)

Example: Nonlinear observer design

To illustrate further the utility of Lemma 1.1, consider the problem of designing an

observer for a bilinear system

ẋ = A(u, y)x+B(u, y) (1.20a)

y = C(u, y)x. (1.20b)

Since the system is linear in the unmeasured variable, we may proceed with a ”Luenberger-

like” design. To that end, let x̂ denote the state estimate and let us define its dynamics

through the equation

˙̂x = A(u, y)x̂+B(u, y)− L(u, y)C(u, y)[x̂− x] (1.21)

where the observer gain, L, is to be designed in order to ensure that the origin of the

estimation-errors system is UGES.



Chapter 1 29

Proposition 1.1. Consider the system (1.20) and the observer (1.21). Let L be continuous, and

let u, y be such that there exist a continuously-differentiable function P : R≥0 ×Rn → R≥0, a

continuous function qm : R≥0 → R≥0 and positive constants pm, pM , µ and T such that:

(i) defining A(t) := A(u(t), y(t)) − L(u(t), y(t))C(u(t), y(t)) and Q(t) := −Ṗ (t) −
P (t)A(t)−A(t)>P (t), we have

Q(t) ≥ qm(t)I ≥ 0 ∀ t ≥ 0;

(ii) √qm is persistently exciting uniformly in y(t) and u(t) i.e., it satisfies (1.2) with µ and

T independent of the initial conditions1;

(iii) the matrix P (t) is uniformly positive definite and bounded, i.e.,

pmI ≤ P (t) ≤ pMI.

Then, the estimation errors z(t) satisfy the bound

|z(t)| ≤ kv

√
pM
pm
|z◦|e−λv(t−t◦) (1.22)

where kv and λv are defined in (1.19b). �

Proof. Let the estimation errors be defined as z := x̂− x hence,

ż = A(t)z. (1.23)

Then, consider the function V : R≥0 × Rn → R≥0 defined by V (t, z) := z>P (t)z. This

function satisfies (1.17) with α1(s) := pms
2 and α2(s) := pMs

2. Moreover, defining

q(t) := qm(t)
pM

, a direct computation shows that the time-derivative of V along the trajec-

tories of (1.23) satisfies (1.18). Therefore, by Lemma 1.1, we see that

W(t, z) :=
1

2
Υq(t)[z

>P (t)z]2

is a Lyapunov function for the estimation error dynamics (1.23) and, moreover, (1.19a)

holds which, in this case, is equivalent to (1.22). ���

The statement of Proposition 1.1 generalizes some results that rely on a uniform

1See [63] for details.
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complete observability condition, e.g., the choice:

Ṗ = −εP −
[
A(u, y)>P + PA(u, y)] + 2C>C (1.24a)

L := P−1C>, P (t◦) ≥ pmI, (1.24b)

commonly used in observer design for bilinear systems –cf. [14], guarantees that P (t),

hence Q(t) := εP (t), is positive definite and bounded, for all t ≥ T . The persistency of

excitation condition onQ, imposed in Proposition 1.1, is less restrictive than positivity;

moreover, the gain L(t) as defined in (1.24b) may reach very high values [14]. Yet, the

advantage of this choice is that it leads directly to an exponential-convergence estimate

and provides a strict Lyapunov function for the estimation error-system. That is, this

construction naturally lends itself for output-feedback high-gain designs, notably for

systems with Lipschitz non-linearities –see e.g., [2]. On the other hand, for such type

of systems, notably chaotic oscillators, the main result in [68] provides an observer of

the type of (1.21), under the less restrictive persistency of excitation condition on Q(t).

Thus, the statement of Proposition 1.1 covers all the previously mentioned results by

providing an explicit stability bound under the weaker condition of persistency of

excitation.

1.2 Case-study: Cascaded systems

We extend the result in Lemma 1.1 by establishing a statement of stability for linear

cascaded systems that are persistently excited. We broach two case-studies: first, that

of a chain of single integrators and, second, a more general case of multivariable sys-

tems.

1.2.1 Chain of single integrators

For the sake of illustration, let us start with the 2nd-order system:

ẋ1 = −a1(t)x1 + a12(t)x2 (1.25a)

ẋ2 = −a2(t)x2 (1.25b)

under the assumption that a1, a2 and a12 are continuous, uniformly bounded functions,

and a1, a2 non negative having persistently exciting square root.

For this system, exponential stability of the origin {x1 = x2 = 0} may be assessed

following a direct cascades argument. Indeed, this follows, e.g., from the results in [97]
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observing that, by Lemma 1.1, the respective origins of

ẋ1 = −a1(t)x1 ẋ2 = −a2(t)x2 (1.26)

are UGES and a2(t) is bounded hence, the solutions x1(t) of equation (1.25a) are uni-

formly globally bounded. The statement also follows from the fact that (1.25a) is

ISS with Lyapunov function W (t, x1) defined by (1.10) and input x2. However, even

though the cascades argument is straightforward for the case of two interconnected

systems, the argument is hard to extend to cascades of n > 2 time-varying systems,

Σ′n :



ẋ1 =− a1(t)x1 + a12(t)x2

ẋ2 =− a2(t)x2 + a23(t)x3

...

ẋn−1 =− an−1(t)xn−1 + a(n−1)n(t)xn

ẋn =− an(t)xn,

(1.27)

relying purely on converse Lyapunov theorems. Our next statement removes this dif-

ficulty by providing a strict Lyapunov function.

Theorem 1.1. Consider the system (1.27) under the following hypotheses:

Assumption 1.1. (Non-negativity): ai(t) ≥ 0 for all i ≤ n and all t ≥ 0.

Assumption 1.2. (Boundedness): There exists ā > 0 such that

max
{
|ai(t)| ,

∣∣a(i−1)i(t)
∣∣} ≤ ā

for all t ≥ 0 and all i ≤ n.

Assumption 1.3. (Persistency of Excitation): There exist µ, T > 0 such that∫ t+T

t

ai(s)ds > µ ∀i ≤ n, ∀ t ≥ 0. (1.28)

Then, defining β1 := 1 and, for each i ≤ n,

βi :=
4βi−1T

2

µ2

[
(1 + 2āT ) ā

]2
, ∀i ≥ 2, (1.29)

the function Vn : R≥0 × Rn → R≥0, defined as

Vn(t, x) := x>P (t)x (1.30)
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with

P (t) :=
1

2
diag (Υai(t)βi) ,

is a strict Lyapunov function, and

V̇n(t, x) ≤ − µ

2T
xTdiag (βi)x. (1.31)

Consequently, the origin is uniformly globally exponentially stable.

The proof is reported in Appendix B.1.

Remark 1.3. From the previous theorem it also follows that the trajectories of the system (1.27)

satisfy

|x(t)|2 ≤ αM |x◦|2e−(µ/2TαM )(t−t◦) ∀t ≥ t◦

where αM := 1 + (2T + βn)ā. To see this, we observe that the Lyapunov function Vn(t, x)

satisfies (since βn > βn−1 > · · · β1 = 0)

(1/2)αM |x|2 ≥ Vn(t, x) ≥ (1/2)|x|2.

Example: consensus under spanning tree

To illustrate the utility of the case studied in Theorem 1.1, we consider a classical track-

ing consensus problem concerning n agents interconnected in a spanning-tree topol-

ogy with time-varying interconnection gains. In this case, each agent communicates

only with two neighbors. Even though here we consider that each agent communi-

cates always with the same neighbours, in general, this does not need to be the case

–cf. [6]. We limit our case-study to this topology because in concrete cases of formation

control, or follow-the-leader tracking control for that matter, using such communica-

tion topology excludes communication redundancy. This idea is pursued in Chapters

2-4 for the case of multiple nonholonomic mobile robots, where we are interested to

solve the leader-follower problem under different configurations of the leader’s veloc-

ities.

From a strictly theoretical viewpoint, however, our stability statement per se in this

section is covered by, e.g., [80]. On the other hand, as far as we know, we provide

for the first time a strict smooth Lyapunov function which, in turn, allows to establish

input-to-state stability (ISS) of the closed-loop system – see Appendix A.4.

Thus, let us consider n dynamical systems defined by

żi = fi(t, zi) + ui, zi ∈ Rm, i ≤ n (1.32)
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which are required to follow a reference trajectory z∗ : R≥0 → Rm generated by an

exogenous system ż∗ := f ∗(t, z∗). We assume that only the controller for the last (n-th)

agent has access to the reference trajectory. Then, the ith agent receives information

from the i + 1st, thereby establishing a spanning-tree topology, albeit through unreli-

able channels.

To recast this consensus-tracking problem into a stabilization one we introduce the

error system with state variables xi := zi − zi+1 for all i ≤ n, with zn+1 := z∗ and

fn+1 := f ∗. That is,

ẋi = fi(t, xi + zi+1(t))− fi+1(t, zi+1(t)) + ui − ui+1 (1.33a)

ẋn = fn(t, xn + z∗(t))− f ∗(t, z∗(t)) + un. (1.33b)

With this change of coordinates, the consensus problem boils down to stabilizing the

origin {x = 0}, with x := [x1, · · · , xn]>, for the non-autonomous system (1.33). To do

so, we use the control inputs

ui := −γai(t)[zi − zi+1] + wi, ai(t) ≥ 0, ∀ t ≥ 0 (1.34)

where the functions ai are assumed to be bounded and persistently exciting, γ > 0 is

the interconnection strength, and wi denote “additional” inputs to be defined. Then,

the closed-loop system is

ẋi = −γai(t)xi + γai+1(t)xi+1 + ψi(t, xi) + vi (1.35a)

ẋn = −γan(t)xn + ψn(t, xn) + vn (1.35b)

with vi := wi − wi+1 and

ψi(t, xi, zi+1) := fi(t, xi + zi+1(t))− fi+1(t, zi+1(t)), i ≤ n. (1.36)

Note that the system (1.35) may be regarded as a “perturbed” version of (1.27) hence,

the following statement, which implies robust consensus-tracking of (1.32), follows as

a corollary of Theorem 1.1.

Lemma 1.2. Consider the system (1.35) under assumptions 1.1–1.3. For each i ≤ n, let vi
be measurable functions, let ψi : R≥0 × Rm → Rm be such that there exist continuously-

differentiable class K∞ functions Li such that

|ψi(t, xi)| ≤ Li(|xi|). (1.37)
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Let Ri be such that for all xi ∈ BRi , where BRi := {xi ∈ R : |xi| ≤ Ri},∣∣∣∂Li
∂s

(
|xi|
)∣∣∣ ≤ `i

and the interconnection strength γ is such that

µγ

2T
> 2`i

[
1 + ā2T

]
.

Then, the system (1.35) is input-to-state-stable from the input v := [v1, · · · , vn]>, for all ini-

tial conditions t◦ ≥ 0 and xi◦ ∈ Rn which produce complete trajectories satisfying xi(t, t◦, xi◦) ∈
BRi .

Sketch of proof:

Following the proof of Theorem 1.1 the Lyapunov function Vn defined in (1.30)

satisfies

V̇n(t, x) ≤ −
n∑
i=1

[µγ
2T
− `i

[
1 + ā2T

] ]
x2
i +

[
1 + ā2T

]
xivi (1.38)

for all xi ∈ BRi . Then, we see that inequality |vi| ≤ `i|xi| imply that

V̇n(t, x) ≤ −
n∑
i=1

[µγ
2T
− 2`i

[
1 + ā2T

] ]
x2
i . (1.39)

Then, it follows that the function Vn defined in (1.30) is an ISS Lyapunov function

for all xi ∈ BRi and each i ≤ n. Hence, the system is input-to-state stable for all initial

conditions t◦ ≥ 0, xi◦ ∈ BRi generating complete trajectories that satisfy |xi(t, t◦, xi◦)| ≤
Ri for all t ≥ t◦ ≥ 0 and all i ≤ n. �

1.2.2 Multivariable cascaded linear time-varying systems

Let us consider now, the cascade of multivariable linear-time-varying persistently-

excited systems
ẋ1 =A1(t)x1 +B1(t)x2

...

ẋn−1 =An−1(t)xn−1 +Bn−1(t)xn

ẋn =An(t)xn, xi ∈ Rm,

(1.40)

where B(t) and A(t) : R≥0 → Rn×n are continuously differentiable, and the following

hypotheses hold:

Assumption 1.4. (Boundedness) There exists B̄ > 0 such that |Bi|∞ ≤ B̄.
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Assumption 1.5. (Lyapunov Equation) There exist positive definite matrices Pi(t), positive

semi-definite matrices Qi(t), positive constants PiM , Pim and time-varying function qim :

R≥0 → R≥0, such that; for all t ≥ 0,

PimIn ≤ Pi(t) ≤ PiMIn (1.41)

0 ≤ qim(t)In ≤ Qi(t) (1.42)

Ṗi + A>i Pi + PiAi = −Qi(t) (1.43)

Assumption 1.6. (Persistency of excitation) There exists a positive constants µ, T , such that:∫ t+T

t

qim(s)ds > µ ∀t ≥ 0. (1.44)

This type of systems generalizes that of the single chain of integrators presented

previously. We have the following.

Theorem 1.2. Under assumptions 1.4, 1.5 and 1.6 there exists a quadratic strict differentiable

Lyapunov function for (1.40).

Proof. For each i ≤ n, let us define Vi(t, x) = x>i Pi(t)xi. The derivative of each Vi along

the trajectories of (1.40), satisfies

V̇1 ≤− x>1 Q1(t)x1 + 2x>1 P1B1(t)x2

...

V̇n−1 ≤− x>n−1Qn−1(t)xn−1 + 2x>n−1Pn−1Bn−1(t)xn

V̇n ≤− x>nQn(t)xn.

(1.45)

Then, consider the modified Lyapunov function Wi : R≥0 × Rnm → R≥0 defined by

Wi(t, x) = (Υqim(t) + 2PiM)Vi(t, x). Using (1.6) and (1.5) we obtain

Ẇ1 ≤−
2µ

T
x>1 P1x1 + 2q1m(t)x>1 P1x1 − 2P1Mx

>
1 Q1(t)x1 + 2 (Υq1m(t) + 2P1M)x>1 P1B1x2

...

Ẇn−1 ≤−
2µ

T
x>n−1Pn−1xn−1 + 2qn−1m(t)x>n−1Pn−1xn−1 − 2Pn−1Mx

>
n−1Qn−1(t)xn−1

+ 2
(
Υqn−1m(t) + 2Pn−1M

)
x>n−1Pn−1Bn−1xn

Ẇn ≤−
2µ

T
x>1 P1x1 + 2q1m(t)x>1 P1x1 − 2P1Mx

>
1 Q1(t)x1

We define φi(t) := Υqim(t) + 2PiM , a nonsingular matrices νi : R≥0 → Rn×n such that

Pi(t) = νi(t)
>νi(t) and Mi(t) = φi(t)νi(t)Biνi+1(t)−1. Then using Assumption 1.6, from
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(1.45) we obtain that derivatives of the functions Wi(t, x) can be bounded as

Ẇ1 ≤−
2µ

T
|ν1x1|2 + 2(ν1x1)>M1(t)ν2(t)x2

...

Ẇn−1 ≤−
2µ

T

∣∣ν>n−1xn−1

∣∣2 + 2(νn−1xn−1)>Mn−1(t)νn(t)xn

Ẇn ≤−
2µ

T

∣∣ν>n xn∣∣2 .
(1.46)

Using the inequality

2(νixi)
>Miνi+1xi+1 ≤

µ

T
|νixi|2 +

T

µ
|Mi|2∞ |νi+1xi+1|2

to estimate cross terms in (1.46), we obtain the following bounds for the derivatives

Ẇ1 ≤−
µ

T
|ν1x1|2 +

T

µ
|M1|2∞ |ν2x2|2

...

Ẇn−1 ≤−
µ

T

∣∣ν>n−1xn−1

∣∣2 +
T

µ
|Mn−1|2∞ |νnxn|

2

Ẇn ≤−
µ

T

∣∣ν>n xn∣∣2 .
(1.47)

Finally, the strict Lyapunov function for the system (1.40) is given by

W(t, x) =
n∑
i=1

βiWi(t, xi)

where β1 = 1 and βi+1 = 2T 2

µ2 |Mi|2∞ βi, while its derivative satisfies the inequality

Ẇ(t, x) = −µ
T
|ν1x1|2 −

n∑
i=2

T

µ
βi−1 |Mi−1|∞ |νixi|

2 .

���

Example: master-slave synchronization

In order to illustrate the use of Theorem 1.2, let us consider the following case-study

of consensus-tracking control of Lagrangian systems,

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, τi, qi ∈ Rp. (1.48)
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The functions Di, Ci and gi are, respectively, the inertia matrix, the Coriolis matrix and

the potential forces vector. The control torques are denoted by τi.

We consider the problem of tracking and mutual synchronization —see [89] in

which all systems are required to follow a common exogenous trajectory t 7→ q∗. Now,

we assume that the systems are interconnected in a spanning-tree topology through

unreliable links hence, on intervals of time the nodes may be isolated.

First, to each system we apply the preliminary linearizing feedback (this is possible

because D is full rank) τi = Di(qi)ui + Ci(qi, q̇i)q̇i + gi(qi) so that the equation of each

node becomes q̈i = ui.

Then, emulating the unreliability of the communication channel by a square-pulse

function a : R≥0 → {0, ā} the control input becomes

ui = a(t)[−k1(qi − qi+1)− k2(q̇i − q̇i+1) + q̈i+1]

that is, the control is active only when a(t) = ā > 0.

Now, for each i ≤ n, define xi := [q>i q̇>i ]> − [q>i+1 q̇
>
i+1]>. We see that the error

dynamics, in closed-loop, takes the form

ẋi = Ai(t)xi +Bi(t)xi+1 + vi(t), i ≤ n− 1

where the perturbation vi, which stems from the fact the “feedforward” term q̈i+1 in ui
is not available all the time, is defined as vi(t) := [a(t)−1][q̈i+1(t)−q̈i+2(t)]. Furthermore,

Ai(t) :=

[
0 1

−a(t)k1 −a(t)k2

]
, Bi(t) =

[
0

a(t)

]

and, for i = n we have ẋn = An(t)xn + vn with vn(t) := [a(t)− 1]q̈∗(t).

By Theorem 1.2, for vi ≡ 0, the origin is uniformly exponentially stable and admits

a strict smooth Lyapunov function provided that Assumptions 1.4–1.6 hold. To verify

these assumptions, we follow the second construction in [61] for double integrators

with time-varying persistently-exciting input gain, ẍ = α(t)u, and define

a(t) :=
α(t)

α(t) + ε
, ε ∈ (0, 1). (1.49)

In the current example we used k1 = k2 = 1 for all agents but, in general, different

gains may be used.

Following the reasoning proposed in [61], we decompose the matrices Ai (i =

{1, ..., n− 1}) as follows
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Ai(t) = Ai0 +
ε

ε+ α(t)
Ai1, (1.50)

where

Ai0 :=

[
0 1

−1 −1

]
, Ai1 :=

[
0 0

1 1

]
.

We choose α(t) as a positive periodic pulse function of period T = 40s, with a duty

cycle of 70% and ε = 0.01. Hence, a(t) ≈ α(t) is also positive and
√
a(t) is persistently

exciting –see the bottom plot in Figure 1.1, thus the assumptions 1.1–1.3 hold.

The ”nominal” dynamics ẋi = Ai(t)xi has been studied in [61, Proposition 2]. In

our case, if we takeQi := 0.16255 I2, then there exists Pi ∈ R2 constant positive definite

such that

ATi0Pi + PiAi0 = −Qi,

and

ATi (t)Pi + PiAi(t) = −qim(t)I2.

with qim(t) ≥ 0 and qim(t) ≈ a(t). So we can see that Assumptions 1.5 and 1.6 hold for

this particular choice of α(t). Using Theorem 1.2, with vi(t) ≡ 0, we conclude UGES

hence, formation tracking control of (1.48). Input-to-state stability with respect to the

disturbance vi also may be concluded. Simulation results are presented in Figure 1.1,

for the case when all systems follow the reference trajectory q∗(t) = sin(t). The steady-

state error depicted in the zoomed portion of the figure illustrates the ISS statement.

1.3 Case-study: spiraling systems

In this second part, we address the question of stability for linear time-varying systems

of the general form

ẋ = [Ao(t) +As(t)]x, x ∈ Rn (1.51)

where Ao and As are bounded differentiable mappings R≥0 → Rn×n. The model (1.51)

has two essential constituting parts: the so-called oscillating drift Ao(t)x and the steer-

ing drift As(t)x. In words, it is assumed that under the action of the former, the trajec-

tories of (1.51) tend to oscillate while under the action of the latter, there exists a van-

ishing output y := C(t)>x. Under a detectability argument, provided by persistency of

excitation, the trajectories tend to the origin while describing attenuated oscillations.

Hence the name of spiraling systems.

To characterize the steering and oscillating properties of the system’s dynamics

we”’ introduce the following assumption
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Figure 1.1: Mutual synchronization of four Lagrangian systems

Assumption 1.7. 1) There exist two bounded smooth functions Ps and Qs taking values from

R≥0 to Rn×n such that, for all t ≥ 0, Ps(t) is symmetric positive definite, Qs(t) is symmetric

positive semi-definite, Qs(t) 6≡ 0, and

As(t)>Ps(t) + Ps(t)As(t) + Ṗs(t) = −Qs(t). (1.52)

2) There exists a smooth bounded function Po : R≥0 → Rn×n such that, for all t ≥ 0, Po(t) is

symmetric positive definite and

Ao(t)>Po(t) + Po(t)Ao(t) + Ṗo(t) = 0. (1.53)

Assumption 1.7 is fairly relaxed so it is not sufficient for exponential stability. The

following counter-example illustrates this fact, while our results establish further con-

ditions that correlate As and Ao to ensure exponential stability.

Example 1. Let a and b be piece-wise constant periodic functions taking non-negative

values and persistently exciting, and let

As(t) :=

[
−a(t) 0

0 0

]
, Ao(t) :=

[
0 −b(t)
b(t) 0

]
.
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For each integer n ≥ 0, let Jn := (π/b̄)[2n+ 1, 2n+ 2]. Then, for all t ∈ Jn, let a(t) := ā

and b(t) := 0 while for all t 6∈ Jn we have a(t) := 0 and b(t) := b̄. Hence, a(t)b(t) ≡ 0

and the trajectories generated by (1.51) satisfy the dynamics of a system whose dynamics

switches between Σa and Σb, defined as

Σa :

 ẋ1(t) =− b̄x2(t)

ẋ2(t) = b̄x1(t),
∀ t 6∈ Jn

Σb :

 ẋ1(t) =− āx1(t)

ẋ2(t) = 0
∀ t ∈ Jn.

This system satisfies Assumption 1.7 with Po = Ps = I2 and Qs(t) =

[
a(t) 0

0 0

]
and yet,

the analytic computation of its solutions, from the initial condition (x1◦, x2◦) = (0,−1)

shows that they do not converge. Indeed, for all t ∈ [0, π/b̄] the mode Σa is active, which

yields to (x1(t), x2(t)) = (sin(b̄t),− cos(b̄t)) for all t ∈ [0, π/b̄]. At t0 := π/b̄ the system

switches to the mode Σb with the initial condition (x1(t0), x2(t0)) = (0, 1), the trajectories

remain constants for all t ∈ J0. by induction we can see that for all tn := (π/b̄)(2n+1) (tn

the initial time of each sequence Jn) we have (x1(tn), x2(tn)) = (0,±1) and the trajectories

remain constants along all the interval Jn. �

Thus, additional assumptions, relating properties of the matrices Po and Ps, should

be imposed to ensure exponential stability of the origin. Below we present two re-

sults that address two case studies of spiraling systems and we present some technical

results that cover the state of the art in this topic.

1.3.1 Case-study: “adaptive control” systems

First, let us consider the case where matrix As(t) is constant, while the matrix Ao(t)
is skew-symmetric. This type of systems appears in the analysis of adaptive control

systems, for example, we recover the class of systems studied in [82]. If, in particular,

Ao ≡ 0 and As(t) is negative semidefinite we recover the systems studied in [83].

A particular case of the latter are “gradient-type” adaptive systems, defined as ẋ =

−φ(t)φ(t)>x, for which it is well known that persistency of excitation of φ is necessary

and sufficient for uniform exponential stability [83]. There are various distinct proofs

of this fact in the literature –see e.g. [16,63]; as far as we know, the first strict Lyapunov

function was provided recently in [20].
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More generally, the system (1.51) also includes the familiar equation [41, 47, 88][
ė
˙̃θ

]
=

[
A 0

0 0

]
︸ ︷︷ ︸
As

[
e

θ̃

]
+

[
0 −B(t)

C(t) 0

]
︸ ︷︷ ︸

Ao

[
e

θ̃

]
(1.54)

for which there exists P = P> > 0 such that A>P + PA < 0 (i.e., A is Hurwitz)

and C(t) := B(t)>P . In this case, Assumption 1.7 holds with Po = Ps := diag(P, I).

For such systems, which appear in the context of model-reference adaptive control (in

which case e represents tracking errors and θ̃ estimation errors), it is well known that

if in addition B(t) is bounded with a bounded derivative, and B(t) is also persistently

exciting, the origin is uniformly exponentially stable.

Stability analysis for this adaptive control schame can be found in numerous text-

books and research monographs, see for instance [41, 47, 88]. However, the first strict

Lyapunov function for model-reference adaptive control systems was provided only

recently in [75] —see also [74]. More precisely, in this reference vectors B and C co-

incide, i.e. B(t) = C(t) and depend both on time and the state, and A := A(x1) sat-

isfies x>1 A(x1)x1 ≥ c|x1|2 for some c > 0. Our first result (Theorem 1.3) provides a

strict Lyapunov function for the case in which As in (1.54) is time-varying and satis-

fies Lyapunov equation (1.52) hence, we relax the uniform-positivity condition on A

imposed [75]. The method consists in constructing a strict Lyapunov function starting

from a non strict one that satisfies V̇ (t, x) ≤ −q(t)V (t, x) —cf. Section 1.1.

In particular, consider the system ẋ1 =− A(t)x1 −B(t)>x2, x1 ∈ Rn

ẋ2 = C(t)x1, x2 ∈ Rm
(1.55)

where matrices A(t) and B(t) are uniformly bounded and have uniformly bounded

derivatives (a.e.).

The following result not only ensures exponential stability of this system but also

gives a strict Lyapunov function.

Theorem 1.3. For the system (1.55) assume that B ∈ C1 and there exists a positive definite

matrix function P ∈ C1 and positive semi-definite bounded matrix function Q ∈ C1, such
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that

PmI ≤ P (t) ≤ PMI (1.56)

Ṗ (t)− A(t)>P (t)− P (t)A(t) = −Q(t)

C(t) = B(t)P (t).

In addition, assume that the function ψ : R≥0 → R≥0 defined by

ψ(t) := λm(Q(t))
√
λm(B(t)B(t)>),

where λm denotes the smallest eigenvalue, is persistently exciting and satisfies (1.3). Then,

the null solution of (1.55) is uniformly exponentially stable and the system admits the strict

Lyapunov function

V (t, x) = λ2
m(Q(t))x1B(t)>x2 +

1

2

[
Υψ2(t) + α

] [
x>1 P (t)x1 + |x2|2

]
with

α ≥ (2T/µ)λ3
m(Q)|Ḃ|2∞ + (8T/µ)λm(Q)λ̇2

m(Q) |B|2∞ + (2T/µ)λ3
m(Q)|A>B>|2∞

+ λ2
m(Q)|B>|∞(1 + 1/Pm) + 2λm(Q)λm(BB>)PM + 2λm(Q)

∣∣B>C∣∣∞ . (1.57)

Indeed, we have

V̇ (t, x) ≤ −(µ/4T )
[
x>1 Px1 + |x2|2

]
.

Proof. In view of (1.5), the boundedness of B, Q, and P , as well as (1.57), V is positive

definite and radially unbounded. Indeed,

V (t, x) ≥ (α + 1)

2

[
λm(P ) |x1|2 + |x2|2

]
− 1

2
λ2
m(Q(t)) |B(t)|∞

[
|x1|2 + |x2|2

]
≥ 1

2

[
λm(P ) |x1|2 + |x2|2

]
(1.58)

and

V (t, x) ≤
[
Ῡψ2 + α

] [
λm(P ) |x1|2 + |x2|2

]
+ λ2

m(Q(t)) |B|∞
[
|x1|2 + |x2|2

]
(1.59)

we conclude using (1.57) that there exist η1, η2 > 0 such that

η1 |x|2 ≤ V (t, x) ≤ η2 |x|2 , x = [x>1 x
>
2 ]>.
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The time-derivative of V along trajectories of (1.55) yields

V̇ (t, x) = 2λm(Q)λ̇m(Q)x>1 B
>x2 − λ2

m(Q)x>1 A
>B>x2 − λ2

m(Q)x>2 BB
>x2

+λ2
m(Q)x>1 B

>Cx1 + λ2
m(Q)x>1 Ḃ

>x2 −
α

2
x>1 Qx1

−µ
T

[
x>1 Px1 + |x2|2

]
+ ψ2

[
x>1 Px1 + |x2|2

]
≤ −α

2
λm(Q) |x1|2 + λ2

m(Q)λm(BB>)x>1 Px1 + λ2
m(Q)x>1 B

>Cx1

−λ2
m(Q)x>1 A

>B>x2 + 2λm(Q)λ̇m(Q)x>1 B
>x2 + λ2

m(Q)x>1 Ḃ
>x2

−µ
T
|x2|2 −

µ

T
x>1 Px1. (1.60)

Then, we use the inequalities

λ2
m(Q)x>1 Ḃ

>x2 ≤
ε

2
λ4
m(Q)|Ḃ|2∞ |x1|2 +

1

2ε
|x2|2 ,

2λm(Q)λ̇m(Q)x>1 B
>x2 ≤ 2ελ2

m(Q)λ̇2
m(Q) |B|2∞ |x1|2 +

1

2ε
|x2|2 ,

λ2
m(Q)x>1 A

>B>x2 ≤
ε

2
λ4
m(Q)

∣∣A>B>∣∣2∞ |x1|2 +
1

2ε
|x2|2 ,

which hold for any ε > 0. Hence, setting ε = 2T/µ and in view of (1.57), it follows that

V̇ ≤ −(µ/4T )|x2|2 − (µ/T )x>1 Px1. ���

In the particular case of planar systems, i.e. x1, x2 ∈ R, Theorem 1.3 reduces to the

following statement, which plays a key role in robustness analysis of the closed-loop

systems considered in the next chapters.

Corollary 1.1. Consider the system ẋ1 =− a(t)x1 − b(t)x2, a(t) ≥ 0

ẋ2 = b(t)x1,
(1.61)

Then, provided that a and b satisfy (1.3) with ā and b̄ respectively. Assume, in addition, that

ψ := ab is persistently exciting. Then, the function V : R≥0 × R2 → R≥0, defined as

V (t, x) = a(t)2b(t)x1x2 +
1

2

[
Υa2b2(t) + α

]
[x2

1 + x2
2]
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with

α ≥ 2āb̄2

[
1 +

ā2T

4µ
(3 + ā)2

]
(1.62)

satisfies

V̇ (t, x) ≤ −(µ/2T )
[
x2

1 + x2
2

]
.

Example: Master-slave synchronization

In order to illustrate the utility of Theorem 1.3, we consider a simple example treat-

ing the master-slave synchronization problem for two harmonic oscillators, the slave

system ż = A(t)z +Bu and the master system ż∗ = A(t)z∗, where

A(t) :=

[
0 −ω(t)

ω(t) 0

]
, B =

[
1

0

]

That is, both oscillators spin at the same variable frequency ω(t), but out of phase.

Then, the problem consists in ensuring that z(t) → z∗(t) exponentially fast under the

assumption that the oscillators are linked through an unreliable channel.

To solve this problem the control law is designed so that the closed-loop system

has the structure given by equation (1.51): a steering drift and an oscillating drift. The

latter is natural to the harmonic oscillators while the former may be added through

the simple static output feedback u = −a(t)[z1 − z∗1 ]. Indeed, note that the closed-loop

system has exactly the form (1.61) with x1 := z1 − z∗1 , x2 := z2 − z∗2 and b(t) := ω(t).

We conclude that phase-lock synchronization is achieved provided that a and ω are

bounded, have bounded derivatives, and their product is persistently exciting.

Remark 1.4. Note that the closed-loop system in this case is similar to that in Example 1

with b(t) = ω(t). Hence, we conclude that persistency of excitation of a(t), which ensures the

steering of x1 to zero, and that of ω(t), which contributes to propagate the stabilization effect of

a(t), does not suffice alone to ensure the attractivity of the origin. For the stabilization effect to

be properly propagated from one coordinate to another it is required that the product of a(t)ω(t)

is persistently exciting.

1.3.2 Case-study: “skew-symmetric” systems

The case study addressed in this final section is motivated by stabilization problems

where non-autonomous feedback are imposed by the control problem. These include:

leader-follower tracking control [53], stabilization of non-holonomic systems [64,108],

stabilization of systems with time-varying input gain [61, 113].
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We consider a particular class of systems defined by the following ordinary differ-

ential equation

ẋ = −b(t)2BB>x+ a(t)Ax (1.63)

where matrix A ∈ Rn×n is neutrally stable, and matrix Ao(t) = a(t)A satisfies (1.53),

that is, there exists matrix Po ∈ Rn×n, constant positive definite, such that

Ao(t)
TPo + PoAo(t) = 0,

the pair (A,B) is controllable, and both a(t) and b(t) are scalar functions defined on

R≥0, such that the product a(t)2b(t) is persistently exciting. It is easy to see that under

the imposed conditions, Assumption 1.7 holds with As(t) := −b(t)2BB> and Ps = In.

Equation (1.63) intersects with the class of systems studied in [82] and covers the

class of systems studied in [19], where uniform global exponential stability is ensured

for the particular case that a(t) ≡ 1 andA is skew-symmetric. More significantly, in the

latter reference the proof is trajectory-based whereas here, we give a strict Lyapunov

function (Theorem 1.4).

Notice that the so-called skew-symmetric systems [108] represent a particular case

of the system (1.63). Indeed, the seminal work [108] on stabilization of nonholonomic

systems in chain form:

ż1 = u2

żi = u1zi−1

żm = u1,

where zi ∈ R, shows that using a suitable smooth global change of coordinates z 7→ x

and a preliminary feedback u2(t, z) in the new coordinates, the system may be written

as 
ẋ1

ẋ2

...

ẋm−1

 =


−k1 −k2u1 · · · 0

u1 0
. . . ...

... . . . . . . −km−1u1

0 · · · u1 0




x1

x2

...

xm−1

 (1.64)

ẋm = u1. (1.65)

The term skew-symmetric was introduced in [108] motivated by the fact that the matrix

in (1.64) may be written as the sum ofAs :=diag[−k1 0 · · · 0], which satisfies (1.52) with

Ps = Im, and a neutrally stable (”skew-symmetric”) matrixAo that satisfies (1.53) with
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Po :=diag [1, k2, k2k3, · · · ,
∏m−1

i=2 ki]. Alternatively, (1.64) falls in the model (1.63)

with B = [1, 0 · · · 0], b ≡
√
k1, and a(t) := u1(t, z(t)). Now, following the rationale

of [108] where non-uniform global asymptotic stability is proved, in [64] it is shown

that under certain persistency of excitation assumption on the control input u1, the

origin of the system (1.64) is uniformly globally asymptotically stable. The proof is

based on [63] and exploits the equation (1.64) as a linear-time-varying system obtained

by replacing the nonlinear function u1(t, z) with a parametrized, by initial conditions,

time signal u1(t, z(t)) —see the discussion in the Introduction. However, such proof

is very involved as it appeals to a recursive output-injection argument. Our approach

allows to construct a strict Lyapunov function for this system and provide a direct

proof.

Theorem 1.4. Consider the system (1.63). Let us assume that the functions a(·), b(·) and their

derivatives are bounded, i.e., there exists ā and b̄ such that (1.3) holds, and ψ(t) := a(t)b(t)

is persistently exciting. In addition, assume that the pair (A,B) is controllable and that there

exist a constant positive definite matrix P = P> ∈ Rn×n, such that:

pmIn ≤ P ≤ pMIn (1.66a)

A>P + PA = 0, (1.66b)

PBB> = BB>P := CC>. (1.66c)

Define V : R≥0 × Rn → R≥0 as

V (t, x) :=
1

2
[γ + Υa4b2(t)]x>Px+ b(t)2a(t)3x>PA

n∑
i=1

βiΓiPx (1.67)

where γ := γ1 + γ2,

γ1 :=
T b̄6ā6

2µPm

∣∣∣∣∣
n∑
i=1

βiC
>

i∑
j=1

[AΓiP − ΓiPA]

∣∣∣∣∣
2

(1.68)

γ2 :=
T ā4

µPm

n∑
i=1

βi
∣∣M>PC

∣∣2
∞ + b̄2ā3

∣∣∣∣∣P 1/2A
n∑
i=1

βiΓiP
1/2

∣∣∣∣∣ , (1.69)

Γi :=
i∑

j=1

Aj−1BB>Aj−1>. (1.70)

Under controlability of (A,B), the matrix P 1/2AΓnA
>P 1/2 is non singular, and we take βnI ≥

[P 1/2AΓnA
>P 1/2]−1 and constants βi are defined in reverse order, i.e., for each i ∈ {n −
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1, · · · , 1},

βi ≥
2nT

µPm

∣∣∣[PAiB]>M ∣∣∣2[ n∑
k=i+1

βk

]2

−
n−1∑
k=i+1

βk (1.71)

where M =
[
2ḃa + 3bȧ

]
A + ba2A2. Then, the function V is a strict differentiable Lyapunov

function for the system (1.63) and its origin is uniformly exponentially stable.

The proof is reported in Appendix B.2.

Remark 1.5. The strict Lyapunov function provided in Theorem 1.4 serves the corestone for

the analysis approach proposed in Chapter 2. the construction of Lyapunov function for a skew-

symmetric nonlinear time-varying systems in Proposition 2.1, and to establish some robustness

results with respect to external perturbations.

The following proposition extends Corollary 1.1 and, to some extent, Theorem 1.4

to a case of “skew-symmetric” systems, defined by (1.51), with

As := diag(−a1(t)2 0 · · · 0), (1.72a)

Ao(t) :=



0 −a2(t) 0 · · · 0

a2(t) 0 −a3(t) 0
...

0 a3(t) 0
. . . 0

... 0
. . . . . . −an(t)

0 · · · 0 an(t) 0


. (1.72b)

The following statement also generalizes [63, Theorem 2] and provides a direct proof

for it, as opposed to the recursive output-injection argument used in this reference.

Proposition 1.2. Let the functions ai(t) satisfy the bound (1.3) with ā. Assume in addition

that the function ψ := Πn
i=1ai(t), is persistently exciting, i.e., there exists T and µ > 0, such

that, ∫ t+T

t

ψ2(s)ds ≥ µ > 0, ∀t ≥ 0.

For each i ∈ [2, n] define x̄i := [x1 · · ·xi]> and

Φi(t, x̄i) =
i∑

j=2

[
aj

i∏
k = 2
k 6= j

a2
k

]
xj−1xj, i ∈ [2, n].

Then, provided that αi, for i = n down to i = 2, and γ satisfy the following:

αn = 1, αn−1 = ā+
4n(n− 1)2ā2nT

µ
(1.73)
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αi = ān−i +
nT

µ

 [ n∑
j=i+1

ā2jαj

][
n∑

j=i+1

αj ā
2(j−i)

]
+

[
n∑

j=i+1

αj2iā
(2j−1−i)

]2
(1.74)

γ ≥ T

µ
(ā2 + 1)

( n∑
i=2

αiā
2i−1

)2

+

(
n∑
i=2

2iαiā
2i−1

)2
+

n∑
i=2

αiā
2i−1

+
2T ā

µ

[
n∑
i=2

αiā
2i−1

]2

. (1.75)

We have that the function V : R≥0 × Rn → R≥0 defined as

V (t, x) =

[
1

2
Υψ2(t) + γ

]
|x|2 + a2

1

[
n∑
i=2

αiΦi(t, x̄i)

]

is a strict differentiable Lyapunov function for (1.51), (1.72), and its derivative satisfies

V̇ (t, x) ≤− µ

2T
|x|2.

Consequently, the origin is uniformly globally exponentially stable. �

The proof of the latter statement is presented in Appendix B.3.

Example: Control of underactuated ships

To illustrate the utility of Theorem 1.4, we briefly consider the tracking control problem

for underactuated ships that is solved in [53] under the assumption that the reference

trajectories are persistently exciting. For the purpose of this chapter, we remark that

the closed-loop system in this reference has the cascaded form

ẋ1 =
[
As +Ao(t)

]
x1 +G(t, x1, x2)x2, x1 ∈ R4 (1.76)

ẋ2 = Fx2, x2 ∈ R2, (1.77)

where F ∈ R2×2 is a Hurwitz constant matrix, As ∈ R4×4 is a diagonal constant matrix

with two negative elements and two zero elements, matrix G(·) has linear growth in

x1 and Ao(t) depends on the reference trajectories and satisfies the second part of As-

sumption 1.7 –see [53] for details. Following standard arguments for cascaded systems

it is possible to establish uniform global asymptotic stability of the origin, provided

that the same property holds for the nominal system ẋ1 =
[
As(t) + Ao(t)

]
x1. In [53]

this is established under the assumption of persistency of excitation of the reference
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velocity along with uniform-complete-observability and output-injection arguments.

Theorem 1.4 not only delivers a strict Lyapunov function to ensure exponential stabil-

ity for the nominal x1–dynamics but it also constitutes a fundamental step to carry on

a robustness analysis with respect to unmodelled perturbations.

1.4 Conclusion

We have presented original strict Lyapunov functions for uniform exponential stability

of linear time-varying systems with persistency of excitation that appear in a variety

of problems including adaptive control systems, state estimation of bilinear systems,

consensus with persistently-exciting interconnections, master-slave synchronization,

etc. The utility of our theoretical findings is briefly demonstrated through concise but

representative examples of meaningful control problems.

In the succeeding chapters we present a deeper analysis of a particular area: that of

consensus and formation control of mobile robots, using controllers with persistency

of excitation. Although many of our controllers are reminiscent of others that have

appeared in the literature, our contributions lie in the establishment of strong proper-

ties such as uniform global asymptotic stability, (integral) intput-to-state stability and,

most remarkably, in the construction of original Lyapunov functions for most of the

control problems that we solve.

We believe that the construction of strict Lyapunov functions for nonlinear time-

varying systems with structures as those investigated here may lead to a range of

open problems in stability and control theory. Notably, the problem of establishing ro-

bustness properties (Input-to-output stability) is a well-motivated avenue of research

for which our statements might be a starting point.
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Chapter 2

Leader-follower formation control of

nonholonomic vehicles

The landmark paper [46] introduced a follow-the-leader control approach for non-

holonomic mobile robots which translates a robotics problem into a standard stabi-

lization problem for time-varying systems. The approach consists in defining a virtual

robot that generates a reference trajectory that is supposed to be followed by the con-

trolled robot. In other words, the problem boils down to stabilizing the origin of the

error dynamics between the reference and the actual robot’s coordinates. This problem

has been studied extensively in the literature; moreover, it naturally blends into the

more general framework of leader-follower formation control. In this case, a swarm of

robots is required to follow each other, thereby creating a “chain” of leaders and fol-

lowers. From a graph theory view point, they compose what is known as a spanning

tree.

Following the ideas from [46] and based on the technical tools illustrated in the

previous chapter, we study the formation control problems in a variety of ways. De-

pending on the velocities of the virtual robot, that we shall denote by vr (forward

velocity) and ωr (angular velocity), we distinguish the following:

Problem 2.1 (Tracking). It is assumed that the virtual reference vehicle describes a path with

a time schedule that defines generic continuous reference functions vr and ωr — see Section

2.3.

Problem 2.2 (Stabilization). It is assumed that the leader vehicle is static hence, vr ≡ ωr ≡ 0.

Problem 2.3 (Parking). It is assumed that the velocities of the virtual reference vehicle are

”fastly” vanishing. Strictly speaking, the velocities (vr, ωr) are assumed to be integrable. This

problem is considered in Chapter 3.
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Problem 2.4 (Robust stabilization). This is a generalization of the parking problem above. As

in the previous case, velocities of the virtual vehicle are assumed to be vanishing. However, in

contrast with parking problem, here we do not impose restriction on the speed of convergence

of (vr, ωr) to zero, that is the assumption on the integrability of the leader’s velocities is not

imposed in this problem —see Section 2.5.

The robust stabilization and the parking problems are particular scenarios of the gen-

eral tracking problem, even if, technically speaking, their study is based on the study

of stabilization problem.

Problem 2.5 (Simultaneous tracking-stabilization). In this case, it is required to design a

universal controller which addresses both, the tracking and the parking problems —see Chapter

3.

The generic leader-follower problem has been addressed in hundreds of articles

since the early 1990s via a range of controllers and under distinct restrictions on the

reference velocities. For example, in [107] the control design relies on the condition

that at least one of the leader’s velocities does not converge; in [95] simple linear time-

varying controllers are given for which it is established that persistency of excitation

of the reference angular velocity is necessary and sufficient for uniform exponential

stabilization; in [21] where the translational leader’s velocity is assumed to be greater

than zero.

The stabilization problem has also been thoroughly studied; the motivation in the

community, triggered by the famous Brockett’s necessary condition which is not sat-

isfied by non-holonomic systems. This implies that the system is not stabilizable via

smooth static feedback. For example, in [10, 101] discontinuous controllers are pro-

vided, a time-varying continuous controllers are proposed in [84], and a smooth time-

varying in [108] and in [64, 67]. In the latter, uniform global asymptotic stability is

established.

In the case of the parking and the robust stabilization problems additional technical

difficulties appear from the fact that reference velocities converge to zero hence, many

of the schemes tailored for the generic tracking control problem fail in this case. Un-

der the assumption that the reference trajectories converge fast enough (they are inte-

grable) this problem was solved, for instance in —see [52], [27, 119].

It is important to stress that, most often, the constraints on the reference veloci-

ties impose a certain control design and, therefore, influence the statements that one

can establish. Hence, it is clear that the simultaneous tracking stabilization control

problem is the most challenging of all and, as far as we know, has only been treated

in [27, 52, 85, 119]
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Furthermore, the problems previously described may also be posed to the scenario

of formation control, in which a swarm of robots must advance in a coordinated man-

ner, as a single robot. Hence, the problems above have their natural counterparts in

the multi-agent framework. In order to solve the general formation tracking control

problem for a multiple non-holonomic mobile robots, two main approaches exist in

the literature, the virtual-structure and the leader-follower approach.

The virtual structure approach consists on defining a virtual formation moving

along a desired path, and then controlling each robot to reach its corresponding po-

sition on the virtual structure [39]. This approach removes the hierarchy between

agents in comparison with the leader-follower approach when the leader is not virtual,

and allows some robustness of the formation. In [117] a virtual structure approach is

adopted and a distributed coupling among agents is introduced in order to increase

robustness of the formation.

The leader-follower approach has the advantage of allowing simpler controllers

that are easily implementable. A comparison between the two methods is in [103].

In [118] a distributed virtual leader-follower formation tracking control problem is

considered under a force-controlled model and parameter uncertainty. In [29] leader-

follower formation tracking control problem is considered, for a general framework

of nonholonomic systems in chained form, under the assumption of persistence of

excitation on the rotational reference velocity, this solution has been extended in [30]

to provide a distributed solution to the same problem.

In [28] the leader-follower formation tracking control problem is solved using a

combination of the virtual structure approach in order to generate the reference trajec-

tories for each agent, then an output feedback control law is designed in order to track

each agent toward its reference trajectory. This work has been extended in [25], where

the problem with collision avoidance is considered. Under the assumption that the

robot is modeled as a point-mass (second-order integrators), time-varying formation

configurations are considered in [114].

In this Chapter we solve leader-follower formation control problem under the con-

figurations of the leader’s velocities described in Problems 2.1 and 2.4. Some of our

controllers are similar to what is proposed in the literature or inspired from it, but

our technical hypotheses are relaxed. For instance, for the tracking control problem we

assume that the sum of squares of the leader’s velocities (vr, ωr) is persistently excit-

ing. At the same time, we propose an original design for the robust stabilization control

problem, in this scenario, no restrictions are imposed on the convergence rate to zero

of the reference velocities, and still we obtain some strong robustness results.

In the case of formation control, we use a distributed approach and assume that
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the communications graph that contains both the leader and the followers, consists in

a spanning tree. That is, each robot communicates only with one neighbouring ”fa-

ther” and transmits its coordinates to one or several neighbouring ”children”. While

this may appear restrictive from a technical viewpoint, from the robotics viewpoint

it has the clear advantage of reducing the number of sensors needed, the amount of

processed data and is more natural.

To the best of our knowledge, some of our contributions were open questions. Such

is the case, for instance, of the leader-follower robust agreement control problem, that is

solved in this Chapter.

The simultaneous tracking and robust agreement control problem, which covers all sce-

narios, is another open problem that we have solved, but this is presented in Chapter

3.

In addition, most of our proofs rely on the construction of strict Lyapunov func-

tions which, moreover, are used to establish statements of robustness in the (integral)

input-to-state stability sense. All these are original contributions of this thesis.

2.1 Problem formulation

We start by introducing the dynamic model of a mobile robot, that we use here and in

next chapter. That is, we consider force-controlled autonomous vehicles modelled by

the equations 
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(2.1)

{
v̇ = f1(t, v, ω, q) + g1(t, v, ω, q)u1

ω̇ = f2(t, v, ω, q) + g2(t, v, ω, q)u2

(2.2)

The variables v and ω denote the forward and angular velocities respectively, the first

two elements of q := [x y θ]> correspond to the Cartesian coordinates of a point on

the robot with respect to a fixed reference frame, and θ denotes the robot’s orientation

with respect to the same frame. The two control inputs are the torques u1, u2.

The Equations (2.1) correspond to the kinematic model while (2.2) correspond to

the force-balance equations. The latter may take various forms, such as the Euler-

Lagrange equations [35]; see also [26] in the context of mobile robots. In this memoir,

we leave these equations undefined since our controllers are generic.

Generally speaking, the control strategy consists in designing virtual control laws
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at the kinematics level, i.e., considering v and ω as control inputs. Then, we design u1

and u2 to steer v and ω toward the ideal control laws v∗ and ω∗. That is, if v = v∗ and

ω = ω∗, the origin of the closed-loop system, for the kinematics equations is uniformly

globally asymptotically stable. Moreover, for (2.1), we establish robustness statements

in the sense of input-to-state stability hence, our statements are valid for any controller

that guarantees the stabilization of the origin at the force level —Equations (2.2). Thus,

except for the example provided in Section 2.2, we leave Equations (2.2) in generic

form.

2.1.1 Single follower case

For clarity of exposition, we start by describing the most elementary scenario, that of

leader-follower tracking control, as defined in [46]. Such problem consists in making

the robot to follow a fictitious reference vehicle modeled by

ẋr = vr cos θr (2.3a)

ẏr = vr sin θr (2.3b)

θ̇r = ωr, (2.3c)

and which moves about with reference velocities vr(t) and ωr(t).

More precisely, it is desired to steer the differences between the Cartesian coordi-

nates to some values dx, dy, and to zero the orientation angles and the velocities of the

two robots, that is, the quantities

pθ = θr − θ, px = xr − x− dx, py = yr − y − dy.

The distances dx, dy define the position of the robot with respect to the (virtual) leader.

In general, these may be functions that depend on time and the state or may be as-

sumed to be constant, depending on the desired path to be followed. In our study, we

consider these distances to be defined as piece-wise constant functions –cf. [62].

Then, as it is customary, we transform the error coordinates [pθ, px, py] of the leader

robot from the global coordinate frame to local coordinates fixed on the robot, that is,

we define 
eθ

ex

ey

 :=


1 0 0

0 cos θ sin θ

0 − sin θ cos θ



pθ

px

py

 . (2.4)

In these new coordinates, the error dynamics between the virtual reference vehicle
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and the follower becomes

ėθ = ωr(t)− ω (2.5a)

ėx = ωey − v + vr(t) cos(eθ) (2.5b)

ėy = −ωex + vr(t) sin(eθ) (2.5c)

which is to be completed with Eqs (2.2).

Hence, the control problem reduces to steering the trajectories of (2.5) to zero via

the inputs u1 and u2 in (2.2), i.e.,limt→∞ e(t) = 0. As we mentioned, a natural method

consists in designing virtual control laws at the kinematic level, that is, w∗ and v∗, and

control inputs u1 and u2, depending on the latter, such that the origin (e, ṽ, w̃) = (0, 0, 0)

with

ṽ := v − v∗, ω̃ := ω − ω∗, e = [eθ ex ey]
>, (2.6)

is uniformly globally asymptotically stable.

2.1.2 Multiple followers case

The previous setting naturally extends to the case in which a swarm of n robots is

required to follow a virtual leader, advancing in formation. This may be achieved in a

variety of manners. Here, we assume that the ith robot follows a leader, indexed i− 1,

thereby forming a spanning-tree graph communication topology.

The geometry of the formation may be defined via the relative distances between

any pair of leader-follower robots, dxi, dyi and it is independent of the communications

graph (two robots may communicate independently of their relative positions). Then,

the relative position error dynamics is given by a set of equations similar to (2.5), that

is,

ėθi = ωi−1(t)− ωi (2.7a)

ėxi = ωieyi − vi + vi−1(t) cos(eθi) (2.7b)

ėyi = −ωiexi + vi−1(t) sin(eθi) (2.7c)

For i = 1 we recover the error dynamics for the case of one robot following a virtual

leader that is, by definition, v0 := vr and ω0 := ωr. Then, we introduce the virtual

controls (v∗i , ω
∗
i ) depending on the type of problem under study, or more precisely, on

the configuration of leader’s velocities —see Problems 2.1-2.5 described on p. 52.
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The velocities (v∗i , ω
∗
i ) serve as references for the actual controls u1i and u2i in

v̇i = f1i(t, vi, ωi, ei) + g1i(t, vi, ωi, ei)u1i (2.8a)

ω̇i = f2i(t, vi, ωi, ei) + g2i(t, vi, ωi, ei)u2i, i ≤ n (2.8b)

whence, the velocity errors

ω̃i := ωi − ω∗i , ṽi := vi − v∗i .

As in the case of one follower, it is required to stabilize the origin of the closed-loop

system. In particular, it is required that for all i ≤ n,

lim
t→∞

ei(t) = 0. (2.9)

Remark 2.1. Solving such a problem under a general directed graph remains an interesting

open question. In Chapter 4, however, we solve the problem under general bi-directional graph

and time-varying delay but only when the leader’s velocities are equal to zero. In fact, due to

the non-holonomic restriction a natural extension of the existing works on consensus problem

of first and second order systems, [81, 102], to a multiple non-holonomic mobile robots case is

not possible.

2.2 Example of torque controller

Our contributions consists in controllers and stability proofs that concern the kine-

matics equation (2.7). We establish robustness statements with respect to converging

(fastly) errors ṽ and ω̃. In this section, we present an example of, an otherwise stan-

dard, control design at the force level. As we shall see, this is only one example of a

force controller that may be used with our kinematics’ controllers proposed in this and

next chapters.

Consider the following model of wheeled mobile robots –cf. [25],

q̇i = J(qi)νi (2.10a)

Mν̇i + C(q̇i)νi = τi (2.10b)

where τi is the torque control input; the variable νi := [ν1i ν2i] denotes the angular ve-

locities of the two wheels, M is an inertia matrix (hence positive definite, symmetric),
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C is the matrix of Coriolis forces (which is skew-symmetric), and

J(qi) =
r

2


cos θi − sin θi

sin θi cos θi

1/b −1/b


where r and b are positive constant parameters of the system. The relation between

the wheels’ velocities, νi, and the robot’s velocities in the fixed frame, q̇i, is given by[
vi

ωi

]
=

r

2b

[
b b

1 −1

][
ν1i

ν2i

]
⇔

[
ν1i

ν2i

]
=

1

r

[
1 b

1 −b

][
vi

ωi

]
(2.11)

which may be used in (2.10a) to obtain the model (2.1), (2.2) with[
u1i

u2i

]
=

r

2b

[
b b

1 −1

]
M−1τi

—see [25] for more details on this coordinate transformation.

Then, using (2.11), for any given virtual control inputs v∗i and ω∗i , we can compute

ν∗i := [ν∗1i ν
∗
2i]
> and define the torque control input

τi = Mν̇∗i + C(J(qi)νi)ν
∗
i +Dν∗i − kdν̃i, kd > 0

where ν̃i := νi − ν∗i . We see that the force error equations yields

M ˙̃νi +
[
C(q̇i(t)) +D + kdI

]
ν̃i = 0 (2.12)

in which we have replaced q̇i with the trajectories q̇i(t) to regard this system as (linear)

time-varying, with state ν̃i. Now, due to the skew-symmetry ofC(·) the total derivative

of

V (ν̃i) =
1

2
ν̃Ti Mν̃i,

along the trajectories of (2.12) yields

V̇ (ν̃i) ≤ −kd|ν̃i|2. (2.13)

Although this inequality holds independently of q̇i(t), Eq. (2.12) is valid only on the

interval of existence of q̇i(t), denoted [t◦, t
max), tmax ≤ ∞. Hence, so does (2.13) and,
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consequently,

|ν̃i(t)| ≤ κ|ν̃i(t◦)|e−λ(t−t◦) ∀ t ∈ [t◦, t
max) (2.14)

for some κ and λ > 0. From (2.11) it is clear that a similar bound holds for ηi(t) =

[ṽi(t) ω̃i(t)]. In other words, the velocity errors tend exponentially to zero uniformly in

the initial conditions and in the position error trajectories.

We assume that the inertia parameters and the constants contained in C(q̇i) are

unknown while r and b are considered to be known. Let M̂ and Ĉ denote, respectively,

the estimates of M and C. Furthermore, using,[
ν∗1i

ν∗2i

]
=

1

r

[
1 b

1 −b

][
v∗i

ω∗i

]
, (2.15)

let us introduce the certainty-equivalence control law

τ ∗i := M̂ν̇∗i + Ĉ(q̇i)ν
∗
i − kdν̃i, kd > 0 (2.16)

Then, let us define M̃ := M̂ −M and C̃ := Ĉ − C, so

τ ∗i := Mν̇∗i + C(q̇i)ν
∗
i − kdν̃i + M̃ν̇∗i + C̃ν∗i (2.17)

and, setting τi = τ ∗i in (2.10b), we obtain the closed-loop equation

M ˙̃νi + [C(q̇i) + kdI]ν̃i = Ψ(q̇i, ν̇
∗
i , ν

∗
i )>Θ̃i (2.18)

where Θi ∈ Rm is a vector of constant (unknown) lumped parameters in M and C,

Θ̂i denotes the estimate of Θi, Θ̃i := Θ̂i − Θi is the vector of estimation errors, and

Ψ : R3 × R2 × R2 → Rm×2 is a continuous known function. For this, we used the

property that (2.10b) is linear in the constant lumped parameters. In addition, we use

the passivity-based adaptation law –cf. [94],

˙̂
Θi = −γΨ(q̇i, ν̇

∗
i , ν

∗
i )ν̃i, γ > 0. (2.19)

Then, a direct computation shows that the total derivative of

V (ν̃i, Θ̃i) :=
1

2

[
|ν̃i|2 +

1

γ
|Θ̃i|2

]
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along the trajectories of (2.18), (2.19), yields

V̇ (ν̃i, Θ̃i) ≤ −kd|ν̃i|2.

Integrating the latter to infinity we obtain that ν̃ ∈ L2 ∩ L∞ and Θ̃i ∈ L∞. It follows,

e.g., from [41, Lemma 3.2.5], that ν̃i → 0 and, in view of (2.11),

lim
t→∞
|ṽi(t)|+ |ω̃i(t)| = 0. (2.20)

As it may be appreciated, the property that the velocity tracking errors converge,

i.e., (2.20) is fairly weak. Nevertheless, it is established under the realistic conditions

that the parameteres are unknown. Furthermore, the weakness of this property only

makes the significance of our next statements stronger; we show that all our controllers

are robust to the inputs ṽ and ω̃ → 0. In a few cases, however, it is imposed that ṽ ∈ L2

which is also established above.

2.3 Leader-follower tracking

We address now the tracking control goal as described in Problem 2.1 under the follow-

ing relaxed assumption —cf. [34, 44, 45]

Assumption 2.1. there exist positive numbers µ and T such that∫ t+T

t

[ωr(s)
2 + vr(s)

2]ds ≥ µ ∀ t ≥ 0. (2.21)

In [23], the authors proposed the controller

v∗ := vr(t) cos(eθ) + kxex (2.22a)

ω∗ := ωr(t) + kθeθ + vr(t)kyeyφ(eθ) (2.22b)

where φ is the so-called ‘sync’ function defined by

φ(eθ) :=
sin(eθ)

eθ
(2.23)

and establish (non-uniform) convergence of the tracking errors under the assumption

that the some of square of the leader’s velocities converge to a non null value. In this

chapter, for the same controller but under slightly relaxed conditions which is stated

in term of persistency of excitation in Assumption 2.1, we establish uniform global
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asymptotic stability for the closed-loop system and for the first time, we provide a

strict Lyapunov function.

The design of the controller (2.22), under Assumption 2.1, is motivated by the re-

sulting structure of the error dynamics for the tracking errors, which is reminiscent of

nonlinear adaptive control systems. Indeed, by setting ω = ω∗ and v = v∗, we obtain
ėθ

ėx

ėy

=


−kθ 0 −vr(t)kyφ(eθ)

0 −kx ω∗(t, e)

vr(t)φ(eθ) −ω∗(t, e) 0


︸ ︷︷ ︸

Avr(t, e)


eθ

ex

ey

 (2.24)

which has the structure of (1.54) except that, here, the ”regressor” function B(·) de-

pends on time and the state, as is generally the case in model-reference-adaptive con-

trol systems [48].

We obtain the crucial property that the trivial solution for this system is uniformly

globally stable (it is uniformly stable and all solutions are uniformly globally bounded).

To see this, note that the total derivative of V1 : R3 → R≥0, defined as

V1(e) =
1

2

[
e2
x + e2

y +
1

ky
e2
θ

]
(2.25)

corresponds to

V̇1(e) = −kxe2
x − kθe2

θ ≤ 0. (2.26)

Furthermore, after [99], it may be concluded that the origin of this system is uniformly

globally asymptotically stable provided that the vector [−vr(t)kyφ(eθ) ω∗(t, e)], sub-

ject to eθ = 0, is δ-persistently exciting with respect to ey —see Appendix A.7. Roughly,

this holds provided that this vector is persistently exciting for any ey 6= 0; condition

which, actually, reduces to (2.21). Thus, our first statement is the following.

Proposition 2.1 (Kinematic model). For the system (2.24) assume that Assumption 2.1

holds and there exist ω̄r, ¯̇ωr, ν̄, ¯̇ν > 0 such that

|ωr|∞ ≤ ω̄r, |ω̇r|∞ ≤ ¯̇ωr, |vr|∞ ≤ v̄r, |v̇r|∞ ≤ ¯̇vr. (2.27)

Then, the origin is uniformly globally asymptotically stable and locally exponentially stable,

for any positive values of the control gains kx, ky, and kθ. Moreover, there exists a positive

definite radially unbounded function V : R≥0 × R3 → R≥0 defined as the functional

V (t, e) := P[3](t, V1)V1(e)− ωr(t)exey + vr(t)P[1](t, V1)eθey (2.28)
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where P[k] : R≥0×R≥0 → R≥0 is a smooth function such that P[k](·, V1) is uniformly bounded

and P[k](t, ·) is a polynomial of degree k with non-negative coefficients. In addition, P[k](t, ·)
has the property that yields the total derivative of V along the trajectories of (2.24) satisfying

V̇ (t, e) ≤ −µ
T
V1(e)− kxe2

x − kθe2
θ. (2.29)

�

The contribution of Proposition 2.1 lies in its original proof which is based on Lya-

punov’s direct method and follows the method of construction proposed in Subsec-

tion 1.3.2 of Chapter 1. Next, we sketch the main proof steps that lead to the design of

V (t, e) in (2.28).

Sketch of the proof. Firstly, for any locally integrable function ϕ : R≥0 → R≥0,

such that supt≥0 |ϕ(t)| ≤ ϕ̄, let us introduce

Υϕ(t) := 1 + 2ϕ̄T − 2

T

∫ t+T

t

∫ m

t

ϕ(s)dsdm (2.30)

–cf (1.4). Note that Υϕ(t) has been introduced in (1.4) and satisfies:

Υ̇ϕ(t) = − 2

T

∫ t+T

t

ϕ(s)ds+ 2ϕ(t), (2.31)

1 ≤ Υϕ(t) < Ῡϕ := 1 + 2ϕ̄T

In the sequel, we use this function with ϕ = v2
r + ω2

r . We also introduce several poly-

nomial functions with positive coefficients, denoted by ρi : R≥0 → R≥0. These shall be

defined as needed in a manner that the derivative of

V2(t, e) := ρ1(V1)V1 +
[
Υv2

r
(t) + Υω2

r
(t)
]
V1 − ωr(t)exey

+vrρ2(V1)eθey + ρ3(V1)V1, (2.32)

with V1 defined in (2.25), be negative definite. In addition, note that

V2(t, e) ≥ 1

2


eθ

ex

ey


> 

ρ3(V1)/ky vrρ2(V1) 0

vrρ2(V1) ρ3(V1) −ωr
0 −ωr ρ3(V1)



eθ

ex

ey


so V2 is positive definite and radially unbounded if the matrix in this inequality is

positive semidefinite. The latter holds if ρ3 satisfies

ρ3(V1) ≥ 2
√
kyv̄2

rρ2(V1)2 + ω̄2
r .
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Finally, we introduce

V (t, e) = V2(t, e) + V1ρ4(V1) (2.33)

which is also positive definite. We shall show that for an appropriate choice of the

polynomials ρi, the total derivative of V along the trajectories of (2.24) yields

V̇ (t, e) ≤ −µ
T
V1(e)− kxe2

x − kθe2
θ, ∀ (t, e) ∈ R≥0 × R3 (2.34)

To that end, we rewrite (2.24) in the output-injection form

ė = A◦vr(t, e)e+ vr[φ(eθ)− 1]B◦(ey)e (2.35)

A◦vr(t, e) :=


−kθ 0 −vrky

0 −kx $◦vr
vr −$◦vr 0

 (2.36)

B◦(e) :=


0 0 −ky
0 0 kyey

1 −kyey 0

 (2.37)

$◦vr(t, e) = ωr(t) + kθeθ + vrkyey (2.38)

This partition, which facilitates the analysis, is motivated by the fact that vr[φ(eθ)−
1]B◦(ey)e = 0 if eθ = 0.

First, we establish that V2 is a LF for ė = A◦vr(t, e)e. Then, we evaluate V̇ includ-

ing the output injection term vr[φ(eθ) − 1]B◦(ey)e. See Appendix B.4 for a detailed

development. �

The value of having a strict Lyapunov function for (2.24) may not be overestimated.

Notably, this allows to carry on with a robustness analysis vis-a-vis of the dynamics

(2.2). For example, in order to solve the tracking control problem for (2.1), (2.2), using

Proposition 2.2 below, it is only left to design u1 and u2 such that, given the references

v∗ and ω∗, the origin of the closed-loop dynamics

˙̃v = f1cl(t, ṽ, ω̃, e) (2.39a)

˙̃ω = f2cl(t, ṽ, ω̃, e) (2.39b)
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is globally exponentially stable uniformly in the initial conditions and in e. In Section

2.2 we presented an example of an effective force controller. However, in general, the

design of the control inputs u1 and u2 depends on the problem setting and is beyond

the scope of this thesis.

We rather emphasize that the overall error dynamics takes the convenient form

ė = Avr(t, e)e+B(e)η, (2.40a)

η̇ = Fcl(t, η, e), Fcl := [f1cl f2cl], (2.40b)

where

B(e) :=


0 −1

−1 ey

0 −ex

 , η :=

[
ṽ

ω̃

]
. (2.41)

It is worth stressing that, based on the structure of the Lyapunov function in (2.28),

one can also establish that the system in (2.40a) is integral-input-to-state stable with

respect to η —see Definition A.4.

Proposition 2.2. Consider the system (2.40a) with kx, ky, and kθ arbitrary positive gains;

assume, moreover, that the references satisfy Assumption 2.1 and (2.27). Then, the system

(2.40a) is integral input-to-state stable with respect to the ”input” η. �

The proof of the last statement is reported in Appendix B.5.

Now, for the purpose of analysis, we replace the state ewith the trajectories e(t, ζ(t◦))

in (2.40b) so the closed-loop equations may be regarded as a cascaded nonlinear time-

varying system with state ζ := [e> η>]>. More precisely, in place of (2.40b) we write

η̇ = F̃cl(t, η)

where F̃cl(t, η) = Fcl(t, η, e(t)) –cf. [59]. Then, using arguments for cascaded systems

from [96] we can establish the following proposition:

Proposition 2.3. Consider the system (2.40) with initial conditions (t◦, ζ◦) ∈ R≥0 × R5.

Assume that kx, ky, and kθ are positive and that inequalities (2.21) and (2.27) hold. In addition,

assume that the solutions are complete and the origin of (2.40b) is globally asymptotically

stable, uniformly in the initial times t◦ ∈ R≥0 and in the error trajectories t 7→ e. Assume

further that the trajectories t 7→ η are uniformly integrable, that is, there exists φ ∈ K such

that ∫ ∞
t◦

|η(τ)|dτ ≤ φ(|ζ◦|) ∀ t ≥ t◦ ≥ 0. (2.42)

Then, the origin is uniformly globally asymptotically stable. �
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Proof. From Proposition 2.1, the origin {e = 0} is uniformly globally asymptotically

stable for (2.24). By assumption the same property holds for (2.40b). Since, moreover,

B is linear in e, the result follows from the main results in [96, Theorem 2]. ���

Remark 2.2. Technically, the function F̃cl is defined only on the interval of existence of e(t),

whence the assumption that the solutions exist on [t◦,∞). Nevertheless, this hypothesis may

be dropped if we impose that η → 0 uniformly in e(t) only on the interval of existence. This is

considered in our main result later on —see Proposition 2.4.

2.4 Leader-follower formation tracking control

We extend our previous results to the problem of multi-agent tracking control for a

group of N robots modeled by (2.1) and (2.2). Similarly to the controller proposed

previously, we define

v∗i := vi−1 cos(eθi) + kxiexi (2.43)

ω∗i := ωi−1 + kθieθi + vi−1kyieyiφ(eθi) (2.44)

which serve as references for the actual controls u1i and u2i in (2.8). Next, we use the

velocity errors

ω̃i := ωi − ω∗i , ṽi := vi − v∗i

and let us define ∆vj := vj − vr and ∆ωj := ωj − ωr for all j ≤ n (by definition,

∆ω0 = ∆v0 = 0). Then, we replace ωi with ω̃i + ω∗i and, respectively, vi with ṽi + v∗i in

(2.7), and we use

v∗i = [∆vi−1 + vr] cos(eθi) + kxiexi (2.45)

ω∗i = ∆ωi−1 + ωr + kθieθi + [∆vi−1 + vr]kyieyiφ(eθi). (2.46)

It follows that, for each pair of nodes, the error system takes the form

ėi = Avr(t, ei)ei +G(t, ei, ξi)ei +B(ei)ηi (2.47)
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–cf. (2.40a), where

ei := [eθi exi eyi ]
>, ηi := [ṽi ω̃i]

>

ξi := [∆ωi−1 ∆vi−1]>

G :=


0 0 −kyg1

0 0 g2

g1 −g2 0


g1 := ∆vi−1eyiφ(eθi)

g2 := ∆ωi−1 + ky∆vi−1eyiφ(eθi)

and B is defined in (2.41) —note that G(t, ei, 0) ≡ 0. Thus, the overall closed-loop

system has the convenient cascaded form (in reverse order):

ėn = Avr(t, en)en +G(t, en, ξn)en +B(en)ηn (2.48a)
...

ė2 = Avr(t, e2)e2 +G(t, e2, ξ2)e2 +B(e2)η2 (2.48b)

ė1 = Avr(t, e1)e1 +B(e1)η1 (2.48c)

and these closed-loop equations are complemented by the equations that stem from

applying the actual control inputs in (2.8), that is,

η̇i = Ficl(t, ηi, ei), Ficl := [fi1cl fi2cl ] (2.49)

for all i ≤ n.

To underline the good structural properties of the system (2.48)–(2.49) and to ex-

plain the rationale of our result, let us argue as follows. By assumption, the control

inputs u1i and u2i are such that ηi → 0, independently of the behaviour of ei. Fur-

thermore, we see from Equation (2.48c) that, as η1 → 0, we recover the system (2.24).

Hence, using Proposition 2.1, we may conclude that η1 → 0 implies that e1 → 0. With

this in mind, let us observe (2.48b). We have ξ2 := [∆ω1 ∆v1]> where ∆ω1 = ω1 − ωr
and ∆v1 = v1 − vr. On the other hand, by virtue of the control design, e1 = 0 implies

that ω∗1 = ωr and v∗1 = vr, in which case we have ∆ω1 = ω̃1 and ∆v1 = ṽ1. It follows

that e1 → 0 and η1 → 0 imply that ξ2 → 0. In addition, as η2 → 0 (by the action of

the controller at the force level), the terms G(t, e2, ξ2)e2 +B(e2)η2 in (2.48b) vanish and

(2.48b) becomes ė2 = Avr(t, e2)e2. By Proposition 2.1 we conclude that e2 also tends to

zero. Carrying on by induction, we conclude that e→ 0.

Although intuitive, the previous arguments implicitly rely on the robustness of
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ėi = Avr(t, ei)ei (i.e., of the system (2.24)) with respect to the inputs ηi and ξi. More

precisely, on the condition that the solutions exist on [t◦,∞) and, moreover, that they

remain uniformly bounded during the transient. In the following statement, which is

presented next, we relax these (technical) assumptions.

Proposition 2.4. For each i ≤ n, consider the system (2.7), (2.8) with control inputs u1i

and u2i which are functions of (t, vi, ωi, ei, v
∗
i , ω

∗
i ) and v∗i , ω∗i are defined in (1.40) and (2.44)

respectively. Let conditions (2.21) and (2.27) hold. Let ζi := [e>i η
>
i ]>. In addition, assume

that:

Assumption 2.2. for each i, there exists a function βi ∈ KL such that, on the maximal

interval of existence1 of t 7→ ei,

|ηi(t, t◦, η1◦, ei◦)| ≤ β(|ζi◦|, t− t◦) (2.50)

and (2.42) holds for some φi ∈ K.

Then, {ζ = 0}, where ζ := [ζ>1 · · · ζ>n ]>, is uniformly globally asymptotically stable. �

Assumption 2.2 means that ηi(t) converge uniformly to zero while the trajectories

ei(t) exist. In particular, if the system is forward complete 2.2 imposes uniform global

asymptotic stability of (2.49). Even though this may be a strong hypothesis in a general

context of nonlinear systems —see [59], it may be easily met in the case of formation

tracking control, as we illustrate below.

Proof. The proof follows along the arguments developed below (2.49). For i = 1 the

closed-loop dynamics, composed of (2.48c) and

η̇1 = F1cl(t, η1, e1(t)), (2.51)

is defined on the interval of existence of e1(t), denoted [t◦, tmax), and has a cascaded

form. By assumption, η1 satisfies the bound (2.50) for all t ∈ [t◦, tmax) hence, on this

interval,

V̇1(e1(t)) ≤ ∂V1

∂e1

(e1(t))B(e1(t)) |η1(t)| = −ω̃1eθ1/ky1 − ṽ1ex1

≤ c
√
V1(e1(t)) max

[t0,tmax]
{|η1(t)|} ≤ c′V1(e1(t)) + d (2.52)

where c is a positive number of innocuous value, d > 0 and c′ > max[t0,tmax] {|η1(t)|};
both are independent of the initial time. Integrating on both sides of the latter from t◦

1If necessary, we consider the shortest maximal interval of existence among all the trajectories ei(t),
with i ≤ n.
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to tmax we see that, by continuity of the solutions with respect to the initial conditions,

this interval of integration may be stretched to infinity. By the definition of V1(e1) we

obtain that e1(t) exists on [t◦,∞) – cf. [47, page 74], [66, Proposition 1]. Moreover, since

by definition ∆v0 = ∆ω0 = 0, we conclude from (2.45) and (2.46), that v∗1 and ω∗1 exist

along trajectories on [t◦,∞). It follows that the same property holds for v1(t) and ω1(t)

and, consequently, for ξ2(t) —recall that

ξ2 :=

[
v1 − vr
ω1 − ωr

]
.

From forward completeness and condition 2.2 it follows, in turn, that η1 = 0 is uni-

formly globally asymptotically stable for (2.51). Now we can apply a cascades argu-

ment for the system (2.48c), (2.51). Since B in (2.48c) is linear in e1 and the origin of

ė1 = Avr(t, e1)e1 is uniformly globally asymptotically stable, the same property holds

for the origin (e1, η1) = (0, 0) —see [96, Theorem 2]. This means that there exists a class

KL function β such that

|ζ1(t, t◦, ζ1◦)| ≤ β(|ζ1◦|, t− t◦) ∀ t ≥ t◦ (2.53)

where we recall that ζi = [e>i η>i ] for all i ≤ n. In particular, e1(t), η1(t) and, conse-

quently, ξ2(t), are uniformly globally bounded. To see this more clearly, we recall that,

by definition, ξ2 is a continuous function of the state ζ1 and time and equals to zero if

ζ1 = 0. Indeed, ξ2 = ψ(t, ζ1) where

ψ1(t, ζ1) =

[
ṽ1 + v∗1 − vr
ω̃1 + ω∗1 − ωr

]
=

[
ṽ1 + vr(t)[cos(eθ1)− 1] + kx1ex1

ω̃1 + kθ1eθ1 + vr(t)ky1ey1φ(eθ1)

]
(2.54)

Next, let i = 2 and consider the closed-loop equations:

ė2 = Avr(t, e2)e2 +G(t, e2, ψ1(t, ζ1))e2 +B(e2)η2 (2.55a)

ζ̇1 = Fζ1(t, ζ1) (2.55b)

η̇2 = F2cl(t, η2, e2(t)) (2.55c)

Note that we replaced e2 with e2(t) in (2.49) to obtain the “decoupled” dynamics equa-

tion (2.55c). Then, η2 is regarded as a perturbation to the system

ė2 = Avr(t, e2)e2 +G(t, e2, ψ1(t, ζ1))e2 (2.56a)

ζ̇1 = Fζ1(t, ζ1). (2.56b)
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which, in turn, is also in cascaded form. Now, in view of the structure of G, we have

∂V1

∂ei
G(t, ei, ξi)ei = 0, ∀ i ≤ n (2.57)

hence, the total derivative of V1 along the trajectories of (2.55a) yields

V̇1(e2(t)) ≤ c
√
V1(e2(t)) |η2(t)|[t0,tmax] ≤ c′V1(e2(t)) + d

with an appropriate redefinition of c and c′ –cf. Ineq. (2.52). Completeness of e2(t), and

therefore of η2(t), follows using similar arguments as for the case when i = 1. Conse-

quently, by Assumption 2.2, the origin of (2.55c) is uniformly globally asymptotically

stable.

To analyze the stability of the origin for (2.55) we invoke again [96, Theorem 2]. To

that end, we only need to establish uniform global asymptotic stability for the system

(2.56) (since B is linear and the origin of (2.55c) is uniformly globally asymptotically

stable). For this, we invoke [97, Theorem 4] as follows: first, we remark that the re-

spective origins of ė2 = Avr(t, e2)e2 and (2.56b) are uniformly globally asymptotically

stable. Second, note that condition A4 in [97, Theorem 4] is not needed here since

we already established uniform forward completeness. Finally, [97, Ineq. (24)] holds

trivially with V = V1, in view of (2.57). We conclude that (e2, ζ1, η2) = (0, 0, 0) is a

uniformly globally asymptotically stable equilibrium of (2.55).

For i = 3 the closed-loop dynamics is

ė3 = Avr(t, e3)e3 +G(t, e3, ψ2(t, ζ12)e3 +B(e3)η3 (2.58a)

ζ̇12 =: Fζ12(t, ζ12) (2.58b)

η̇3 = F3cl(t, η3, e3(t)) (2.58c)

where ζ12 := [ζ>1 ζ>2 ]>, ζ2 := [e>2 η
>
2 ], and

ψ2(t, ζ12) :=

[
ṽ2 + [ξ21 + vr(t)][cos(eθ1) + kx1ex1 − vr
ω̃2 + ξ22 + kθ1eθ1 + vr(t)ky1ey1φ(eθ1)

]

which corresponds to ξ3 —cf. (2.54). The previous arguments, as for the case i = 2,

apply now to (2.58) so the result follows by induction. ���

Remark 2.3. An example of torque controller for (2.2) that guarantees the integrability of the

vector [ṽ1, ω̃1, ..., ṽN , ω̃N ] is presented in the first part, that is, when we assume that all the

system parameters are known, we end up with equation (2.14).
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Figure 2.1: Reference velocities vr and ωr

2.4.1 Example

We consider a group of four mobile robots modeled as in (2.10a) and following a vir-

tual leader (2.3). In this simulation, the desired formation shape of the four mobile

robots is a diamond configuration that tracks the trajectory of the virtual leader. See

Figure 2.7. We define the reference velocities vr and ωr in a way that there sum of

squares is persistently exciting — see Figure 2.5. The physical parameters are taken

from [34]:

M =

[
m1 m2

m2 m1

]
, C(q̇i) =

[
0 cω

−cω 0

]
,

with m1 = 0.6227, m2 = −0.2577, c = 0.2025, r = 0.15, and b = 0.5. The ini-

tial conditions are set to [xr(0), yr(0), θr(0)] = [0, 0, 0], [x1(0), y1(0), θ1(0)] = [1, 2, 4],

[x2(0), y2(0), θ2(0)] = [0, 2, 2], [x3(0), y3(0), θ3(0)] = [0, 5, 1] and [x4(0), y4(0), θ4(0)] =

[2, 2, 1]; the control gains were set to kxi = kyi = kθi = 1. The formation shape

with a certain desired distance between the robots is obtained by setting all desired

orientation offsets to zero and defining [dxr,1 , dyr,1 ] = [0, 0], [dx1,2 , dy1,2 ] = [−1, 0] and

[dx2,3 , dy2,3 ] = [1/2,−1/2] and [dx3,4 , dy3,4 ] = [0, 1]. See Figure 2.3, The parameter kd = 15.

The results of the simulation are showed in Figures 2.2–2.3. In Figure 2.2, 2.4 we show

the convergence of the tracking errors between the agent and its neighborhood, the

control inputs and the parameter estimation errors.
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2.5 Leader-follower robust stabilization control

According to the robust stabilization control goal described in Problem 2.4, it is assumed

that

lim
t→∞
|vr(t)|+ |ωr(t)| = 0 (2.59)

hence, in particular, the persistency of excitation condition, crucial to solve tracking

control problem, is violated.

Remark 2.4. The latter restriction naturally excludes control methods based on conditions of

persistency of excitation in Section 2.4 or, even more restrictive, that the references are always

separated from zero –cf. [23, 26, 67].

As we saw in Section 2.4, our control strategy consists in designing virtual control

laws v∗ and ω∗ for the kinematics equations (2.5) and, then, using them as references

for the dynamics equation (2.2). Our contribution resides in the fact that our kinemat-

ics controller is robust with respect to any controller at the force dynamics level. That

is, we establish convergence of the tracking errors for any controller [u1, u2] guarantee-

ing that v → v∗ and ω → ω∗, that is, the errors ṽ := v − v∗ and ω̃ = ω − ω∗ verify

lim
t→∞
|ṽ(t)|+ |ω̃(t)| = 0. (2.60)

Consider the virtual control laws

v∗ = kxex + vr(t) cos eθ (2.61a)

ω∗ = ωr(t) + kθeθ + ky
[
e2
y + e2

x

]
p(t) (2.61b)

under the standing assumption that ṗ is persistently exciting —see Definition A.6, that

is, let there exist µ > 0 and T > 0 such that∫ t+T

t

ṗ(s)2ds ≥ µ ∀t ≥ 0. (2.62)

This type of controller is called δ-persistently exciting —see [64, 67, 119]. For in-

stance, the term φ(t, x) := [e2
y + e2

x]p(t), that appears in (2.61b), satisfies Definition A.7

with x = [ex, ey]
> and p being persistently exciting. The mechanism relies on the prop-

erties of φ(t, x) which, roughly speaking, is persistently exciting as long as the tracking

errors are away from the origin.

For the controller (2.61), we establish strong integral input-to-state stability with

respect to the reference trajectories vr and ωr, as well as the velocity tracking errors

ṽ = v − v∗ and ω̃ = ω − ω∗. In particular, the tracking errors converge to zero for any
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reference velocities satisfying (2.59) and any converging velocity errors, even slowly-

converging.

Proposition 2.5. Consider the system (2.5) with v = ṽ + v∗, ω = ω̃ + ω∗, and (2.61). Let

kx, kθ, and ky > 0 and let p and ṗ be bounded and persistently exciting. Then, the closed-loop

system is strongly integral input-to-state stable with respect to η := [vr ωr ṽ ω̃]>. �

Proof. We start by writing the closed-loop system (2.5) with (2.61) in the form of a

perturbed system, i.e.,

ė = A(t, e)e+B(e)η (2.63)

where e := [ex ey eθ]
>, η is a vanishing perturbation (due to (2.59) and (2.60)), and

A(t, e) :=


−kx ψ(t, e) 0

−ψ(t, e) 0 0

−kyp(t)ex −kyp(t)ey −kθ

 ,

B(e) =


0 ey −1 ey

sin(eθ) −ex 0 −ex
0 0 0 −1



ψ(t, e) := kθeθ + kyp(t)
[
e2
y + e2

x

]
.

Then, we carry out the analysis of stability for (2.63) in the following three steps:

1. we construct a strict Lyapunov function for the nominal system ė = A(t, e)e;

2. we use this Lyapunov function to establish the small input-to-state stability prop-

erty with respect to the input η —see Appendix A.3 for the characterization of

small input-to-state stability using Lyapunov functions;

3. we establish integral input-to-state-stability of (2.63) with respect to η —see Ap-

pendix A.4 for the characterization of small input-to-state stability using Lya-

punov functions.

Remark 2.5. Proving the last three items is equivalent, by definition, to establishing the strong

input-to-state stability of (2.63) with respect to η —see Appendix A.5.

Step 1. UGAS of the nominal system ė = A(t, e)e.
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Let φm and φM > 0 and consider the positive differentiable function φ : R≥0 →
[φm, φM ] satisfying

φ̇ = −kθφ+ kyp(t). (2.64)

Such function exists because p is bounded and persistently exciting [112]. Then, con-

sider the new error coordinate

ez = eθ + φ(t)
[
e2
y + e2

x

]
,

which satisfies

ėz = −kθez − 2φkxe
2
x. (2.65)

Then, in the new coordinates, the nominal system becomes

[
ėx

ėy

]
=

[
−kx φ̇[e2

y + e2
x]

−φ̇[e2
y + e2

x] 0

][
ex

ey

]
+ ez

[
0 kθ

−kθ 0

][
ex

ey

]
(2.66a)

ėz = −kθez − 2φkxe
2
x (2.66b)

Now, since ṗ is persistently exciting and φ satisfies the equation

φ̈ = −kθφ̇+ ṗ (2.67)

we conclude that φ̇ is also persistently exciting [41, Lemma 4.8.3]. Based on these

properties, Lemma 2.1, below, provides a strict differentiable Lyapunov function for

(2.66).

Lemma 2.1 (set-point stabilization). Consider the following nonlinear time-varying system

[
ėx

ėy

]
=

[
−kx φ̇[e2

y + e2
x]

−φ̇[e2
y + e2

x] 0

][
ex

ey

]
+ ez

[
0 kθ

−kθ 0

][
ex

ey

]
(2.68a)

ėz = −kθez − 2φkxe
2
x (2.68b)

let kθ, kx > 0, φ : R≥0 → R, φ̇ be persistently exciting and let

max
{
|φ|∞, |φ̇|∞, |φ̈|∞

}
≤ φ̄
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where

|φ|∞ := ess sup
t≥0
|φ(t)|

Then, the system (2.68) admits the following strict Lyapunov function

V3(t, e) := γ1

(
V1(e)

)
V1(e) + V2(t, e) + γ2

(
V1(e)

)
e2
z (2.69)

where V1(e) := e2
x + e2

y.

V2(t, e) := γ3

(
V1(e)

)
V1(e) + Υφ̇(s)2(t)V1(e)3 − φ̇(t)V1(e)exey (2.70)

Υφ̇(s)2(t) := 1 + φ̄2T − 1

T

∫ t+T

t

∫ m

t

φ̇(s)2dsdm, (2.71)

and γi : R≥0 → R≥0 are positive polynomials of V1 defined as

γ1(V1) :=
µ

16Tkx
V 2

1 +
1

2
φ̄V1 +

4kxφ̄
2

kθ
γ2(V1)V1 +

1

2
, (2.72)

γ2(V1) :=
8T φ̄2kθ
µ

V1 + 1 (2.73)

γ3(V1) :=
φ̄

kx

[
2φ̄V 2

1 +
1

4

[
3kx + 1

]
V1 +

T φ̄

µ

[
k2
x + 1

]]
. (2.74)

and its derivative satisfies the inequality

V̇3(t, e) ≤ − µ

8T
e6
y − kθγ2(V1)e2

z − kxe2
x −

µ

4T
V 3

1 . (2.75)

�

The proof of Lemma 2.1 is presented in the Appendix B.6, the construction of V3 is

inspired by [72].

Step 2. Small ISS property.

We recall that a system ẋ = f(t, x, η) is said to be ”small ISS” if it is input-to-state

stable for sufficiently small values of η. See the Appendix A.3 for precise definitions.

The proof of this property for the system (2.63) relies on the function V3 constructed

in Lemma 2.1 above; specifically on the order of growth in V1. For the purpose of
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analysis we remark that V3 in (2.69) can be written as

V3(t, e) ≡ V3(t, e, V1) (2.76)

where

V3(t, e, V1) := ρ(t, V1)V1 − φ̇(t)V1exey + γ2(V1)e2
z (2.77)

ρ(t, V1) := [γ1(V1) + γ3(V1)]V1 + Υφ̇(s)2(t)V 3
1 (2.78)

that is, ρ : R≥0 × R≥0 → R≥0 is a smooth function, uniformly bounded in t (since

|Υφ̇(s)2(t)| ≤ 1 + φ̄2T ) and ρ(t, ·) is a polynomial of degree 2 with strictly positive

coefficients. In particular, since Υφ̇(s)2(t) ≥ 1,

∂ρ

∂V1

≥ 0 ∀ (t, V1) ∈ R≥0.× R≥0

Now, by Lemma 2.1 the time-derivative of V3 along the nominal system (2.66) satisfies

(2.75) hence, the time-derivative of V3 along the trajectories of (2.63) satisfies

V̇3 ≤−
µ

4T
V 3

1 − kθγ2(V1)e2
z − kxe2

x −
µ

8T
e6
y +

∂V3

∂e
B(e)η. (2.79)

Now, note that B(e)η = K1(η)e+K2(η, e) where

K1(η) :=


0 ωr + ω̃ 0

−(ωr + ω̃) 0 0

0 0 0

 , K2(η, e) =


−ṽ

vr sin eθ

−ω̃

 ,
so using the fact that

∂V1

∂e
K1(η)e = 0,

we obtain

V̇3 ≤ −
µ

4T
V 3

1 − kθγ2(V1)e2
z − kxe2

x −
µ

8T
e6
y − φ̇[ωr + ω̃]V1

[
e2
y − e2

x

]
+
∂V3

∂e
K2(η, e)

≤− µ

4T
V 3

1 − kθγ2(V1)e2
z + φ̄

[
|ωr|+ |ω̃|

]
V 2

1 +

∣∣∣∣∂V3

∂e

∣∣∣∣ |K2|

− kxe2
x −

µ

8T
e6
y. (2.80)
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On the other hand, from (2.77) and (2.76) we obtain∣∣∣∣∂V3

∂e

∣∣∣∣ ≤ 2

[
∂ρ

∂V1

V1 + ρ(t, V1) + φ̄V1

] [
|ey|+ |ex|

]
+ 2

∂γ2

∂V1

[
|ey|+ |ex|

]
e2
z

+ 4γ2(V1)φ̄ |ez|
[
|ey|+ |ex|

]
+ 2γ2(V1)|ez|. (2.81)

Next, let us introduce the positive polynomial of second degree

γ4(V1) :=
∂ρ

∂V1

V1 + ρ(t, V1) + φ̄V1,

and the positive constant —see (2.73)

α :=
∂γ2

∂V1

,

so that, using them in (2.81) and observing that |K2| ≤ |η|, we obtain

V̇3 ≤−
µ

4T
V 3

1 − kθγ2(V1)e2
z + 2φ̄|η|V 2

1 − kxe2
x −

µ

8T
e6
y

+ 2γ4(V1)|η|
[
|ey|+ |ex|

]
+ 2α|η|

[
|ey|+ |ex|

]
e2
z

+ 4γ2(V1)φ̄|η||ez|
[
|ey|+ |ex|

]
+ 2γ2(V1)|η||ez|. (2.82)

Then, using the inequality |ez|
[
|ey|+ |ex|

]
≤ e2

z + V1/2 in (2.82) we obtain

V̇3 ≤−
µ

4T
V 3

1 − kxe2
x −

µ

8T
e6
y −

[[
kθ − 4φ̄|η|

]
γ2(V1)− 2α|η|

[
|ey|+ |ex|

]
− |η|

]
e2
z

+ 2φ̄|η|V 2
1 + 2γ4(V1)|η|

[
|ey|+ |ex|

]
+ 2γ2(V1)φ̄|η|V1 + γ2(V1)2|η|

≤ −
[ µ

4T
V 3

1 − Φ1(ex, ey)|η|
]
−
[kθ

2
γ2(V1)− Φ2(ex, ey)|η|

]
e2
z

− kxe2
x −

µ

8T
e6
y −

kθ
2
γ2(V1)e2

z (2.83)

where

Φ1 := 2φ̄V 2
1 + 2γ4(V1)

[
|ey|+ |ex|

]
+ 2γ2(V1)φ̄V1 + γ2(V1)2,

Φ2 := 4φ̄γ2(V1) + 2α
[
|ey|+ |ex|

]
+ 1.

Then, since |ey|+ |ex| ≤
√

2V1, γ2(V1) = O(V1), and γ4(V1) = O(V 2
1 ) there exist positive
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constants ai, with i ∈ [0, 4], of innocuous values1, such that

Φ1 ≤ [a2V
2

1 + a1V1 + a0][1 + a4V
1/2

1 ] (2.84)

Φ2 ≤ a1V1 + a4V
1/2

1 + a0. (2.85)

Furthermore, since V 1/2
1 ≤ a0 + a1V1 for all a0 ≥ 1, a1 ≥ 1, and V1 ≥ 0,

Φ1 ≤ a3V
3

1 + a2V
2

1 + a1V1 + a0 (2.86)

Φ2 ≤ a1V1 + a0. (2.87)

Now, let R > 0 and assume that η satisfies the following bound

|η| ≤ Rmin
{
V1(e)3 + e2

z, 1
}

(2.88)

which, in particular, implies that |η| ≤ R. We see that the factor of e2
z in (2.83) is non-

positive for sufficiently small R. Now, in regards to the term involving Φ1 in (2.83),

note that in case that V1 ≥ 1, since |η| ≤ R, we have Φ1|η| ≤ c1RV
3

1 , and Φ2|η| ≤ c2RV1

for some c1, c2 > 0. Otherwise, if V1 ≤ 1, then there exists c3, c4 > 0 such that Φ1,2 ≤ c3,4

and, in view of (2.88),

Φ1|η| ≤ c3R [V 3
1 + e2

z], Φ2|η| ≤ c4R [V1 + 1] (2.89)

We conclude that, for sufficiently small R, (2.83) and (2.88) imply that

V̇3(t, e) ≤ −kθ
4
e2
z − kxe2

x −
µ

8T
e6
y

so the system is small-input-to-state stable.

Step 3. The iISS property.

The proof of Proposition 2.5 is finalized by establishing integral input-to-state sta-

bility of the system (2.63) with respect to η. To that end, consider the proper positive-

definite Lyapunov function

W (t, e) = ln
(
1 + V3(t, e)

)
(2.90)

1Conventionally, ai (for any integer i ≥ 0) denote positive coefficients of polynomials so, without
loss of generality, we implicitly assume that they are redefined as needed, e.g., ai := aiaj + a2i − ai . . .
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and a positive definite function α : R→ R≥0 satisfying

α1(e) ≥ 1

1 + V3(t, e)

[
kxe

2
x +

µ

8T
e6
y + kθe

2
z

]
(2.91)

Then, in view of (2.83), the time-derivative ofW along the trajectories of (2.63) satisfies

Ẇ (t, e) ≤ −α(e) +
Φ1 + Φ2e

2
z

1 + V3(t, e)
|η|. (2.92)

From (2.72) and the fact that V2 ≥ 0 (see Lemma 2.1), there exist a1, a2, and a3 > 0,

such that

V3(t, e) ≥ a3V
3

1 + a2V
2

1 + a1V1 + γ2(V1)e2
z (2.93)

so, in view of (2.86), (2.87), and (2.73), the factor of |η| in (2.92) is bounded that is,

there exists c > 0 such that Ẇ (t, e) ≤ −α(e) + c|η|, so the system (2.63) is integral

input-to-state stable. ���

2.6 Leader-follower robust agreement control

We extend now the statement of Proposition 2.5 to the problem of multi-agent robust

agreement control for a group of N robots modeled by (2.1) and (2.2). Similarly to the

controller proposed previously, we define

v∗i = vi−1 cos(eθi) + kxiexi (2.94a)

ω∗i = ωi−1 + kθieθi + kyipi(t)
[
e2
yi

+ e2
xi

]
(2.94b)

where pi : R≥0 → [pmi, pMi], are bounded and smooth for all i ≤ N with bounded

derivatives up to the second. Moreover, we assume that each pi and its first derivative,

ṗi, are persistently exciting.

Proposition 2.6. Consider the network system composed by (2.5) for i = {1, ..., N}, let con-

stants kxi, kyi, kθi > 0 and let pi and ṗi be bounded and persistently exciting. Then, for the

network system (2.5), tracking errors converge to zero, i.e. (2.9) holds for i = {1, ..., N} when

[vr, ωr, ṽ1, ω̃1, ..., ṽN , ω̃N ] converge to zero, where

ṽi = vi − v∗i , ω̃i = ωi − ω∗i .

�
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Proof. To compact the notation, let us define

V1i(ei) := e2
xi

+ e2
yi

(2.95)

ψi(t, ei) := kθieθi + kyipi(t)V1i

so that, replacing

vi = v∗i + ṽi, ωi = ω̃i + ω∗i , (2.96)

and (2.94) in (2.5) we obtain

ėxi = [ω̃i + ωi−1 + ψi]eyi − ṽi − kxiexi (2.97a)

ėyi = −[ω̃i + ωi−1 + ψi]exi + vi−1 sin(eθi) (2.97b)

ėθi = −ψi − ω̃i (2.97c)

which has exactly the same structure as (2.63). Indeed, the equations (2.97) may be

re-written in the compact form

ėi = Ai(t, ei)ei +B(ei)ηi (2.98)

where ei := [eθi exi eyi ]
>,

Ai(t, ei) :=


−kxi ψi(t, ei) 0

−ψi(t, ei) 0 0

−kyipi(t)exi −kyipi(t)eyi −kθi


ηi := [vi−1 ωi−1 ṽi ω̃i]

>.

As η in Proposition 2.5, which contains vr and ωr, ηi may also be regarded as a van-

ishing perturbation. To see more clearly, we develop some expressions for vi−1 and

ωi−1 to exhibit their dependence on vr and ωr. Using, recursively, (2.96) and (2.94a) we
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obtain

vi−1 = vi−2 cos(eθi−1
) + kxi−1

exi−1
+ ṽi−1

=
[
ṽ2 + vi−3 cos(eθi−2

) + kxi−2
exi−2

]
cos(eθi−1

) + kxi−1
exi−1

+ ṽi−1

= ṽi−1 + ṽi−2 cos(eθi−1
) + ṽi−3 cos(eθi−2

) cos(eθi−1
)

+ vi−4 cos(eθi−3
) cos(eθi−2

) cos(eθi−1
)

+ kxi−3
exi−3

cos(eθi−2
) cos(eθi−1

)

+ kxi−2
exi−2

cos(eθi−1
) + kxi−1

exi−1

...

=
i−1∑
j=1

[ [
ṽj + kxjexj

] i−1∏
k=j+1

cos(eθk)
]

+ vr

i−1∏
j=1

cos(eθj)

2while, from (2.94b),

ωi−1 = ωi−2 + kθi−1
eθi−1

+ kyi−1
pi−1(t)V1i−1 + ω̃i−1

= ωi−3 + kθi−2
eθi−2

+ kyi−2
pi−2(t)V1i−2

+ kθi−1
eθi−1

+ kyi−1
pi−1(t)V1i−1 + ω̃i−1 + ω̃i−2

...

= ωr(t) +
i−1∑
j=1

ψj.

So we see that for each robot indexed by i ≤ N , vi−1 and ωi−1 depend on the tracking

errors of all the followers, indexed up to i − 1, including the reference vehicle. For

i = 1, the system (2.98) corresponds to (2.63) hence, by Proposition 2.5, e1 → 0. For

i = 2, η2 := [v1, ω1, ṽ1, ω̃1] where

v1 = ṽ1 + kx1ex1 + vr cos(eθ1)

ω1 = ωr + kθ1eθ1 + ky1p1(t)V11

hence, η2 → 0 and, by Proposition 2.5 we obtain that e2 → 0. The statement follows by

induction. ���

Remark 2.6. An example of torque controller that guarantees convergence to zero of the vector

[ṽ1, ω̃1, ..., ṽN , ω̃N ] is presented in Subsection 2.2.

2Conventionally,
∏0

j=1 cos(·) = 1.
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Figure 2.5: Reference velocities vr and ωr

2.6.1 Example

In this simulation, we consider a hexagonal desired formation shape for six mobile

robots where one of them is a virtual leader. See Figure 2.7. We impose a slowly

vanishing reference velocities (vr, ωr) (non integrable) — see Figure 2.5.

The physical parameters of the systems are presented in Subsection 2.4.1, while in

this case we assume that the inertia parameters and the constants contained in C(q̇i)

are unknown, that is, we use in this case the adaptive torque controller in (2.16).

the desired distance between the robots is obtained by setting all desired orienta-

tion offsets to zero and defining [dxr,1 , dyr,1 ] = [0.5,−0.5], [dx1,2 , dy1,2 ] = [1, 0], [dx2,3 , dy2,3 ] =

[1/2, 1/2], [dx3,4 , dy3,4 ] = [0.5,−0.5] and [dx4,5 , dy4,5 ] = [1, 0]. The initial conditions are

set to [xr(0), yr(0), θr(0)] = [0, 0, 0], [x1(0), y1(0), θ1(0)] = [1, 3, 4], [x2(0), y2(0), θ2(0)] =

[0, 2, 2], [x3(0), y3(0), θ3(0)] = [0, 4, 1], [x4(0), y4(0), θ4(0)] = [2, 2, 1] and [x5(0), y5(0), θ5(0)]

= [−2, 2, 1] ;

The control gains are set to kx = kxi = ky = kyi = 2.5 and kθ = kθi = 1 and the

function p(t) = 20 sin(t/8)+1/4, which has a persistently exciting time derivative. The

parameters (γ, kd) are taken equal to (10−6, 12). The parameters (γ, kd) are taken equal

to (10−5, 15), and Θ̂(0) = (m̂1(0), m̂2(0), ĉ(0)) = (0, 0, 0).

In Figures 2.6, 2.8, and 2.9 we show the convergence of the tracking errors between

each agent and its neighborhood, the control inputs and the parameter estimation er-

rors, respectively.
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Figure 2.6: Exponential convergence of the relative errors (in norm) for each pair leader-follower
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Figure 2.7: Illustration of the path-tracking in formation
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2.7 Conclusion

In this chapter we considered the leader-follower control problem for single and mul-

tiple agent cases. We identified several control problems that impose distinct tech-

nical difficulties, depending on nature of the leader’s velocities. First, we presented

a formation-tracking controller for autonomous vehicles that ensures uniform global

asymptotic stability of the closed-loop system, under the assumption that either the

angular or the forward reference velocity is persistently exciting. Then, we consid-

ered the case where the leader’s velocities converge to zero and presented a simple

decentralized controller for leader-follower robust agreement problem. In both cases,

we assumed that each robot has only one leader and may have one or more followers.

Moreover, a strict Lyapunov function is provided for the kinematic error dynamics.

We decouple the problems at the velocity-kinematics and force-dynamics levels. Inter-

estingly enough, our results apply to a range of controllers at the dynamic level. Thus,

one can use a variety of control schemes for Lagrangian and Hamiltonian systems,

including adaptive and output feedback control designs.
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Chapter 3

Leader-follower simultaneous

tracking-agreement control of

nonholonomic vehicles

In the previous chapter we presented several problem formulations for the forma-

tion control of nonholonomic vehicles, and emphasized how different scenarios of

the leader’s velocities influence both the control design and the stability properties

of the closed-loop system. Problem of unified controller that stabilizes the closed-

loop globally asymptotically for different scenarios of the leader’s velocities is a very

challenging problem. Indeed, to the best of our knowledge the simultaneous tracking-

stabilization problem for nonholonomic mobile robot has only been studied in [27, 52,

85, 119], where the goal is to design a unified velocity or torque controller for the fol-

lower robot in order to track the trajectories of the leader asymptotically under differ-

ent scenarios of the leader’s velocities. The possible scenarios include the case where

the leader describes a general time-varying path (tracking scenario), and stabilization

scenario where the leader converge to a set point (parking scenario) or, in a more gen-

eral case, where the leader’s velocities converge to zero robust stabilization scenario.

In [52] a saturated time-varying velocity controller is proposed to track the leader’s

trajectories under different scenarios of the leader’s velocities. In [85] a unified velocity

controller is provided to solve the problem under all possible configurations of the

leader’s velocities using the concept of transverse functions. In [27] and [119], a unified

torque controller is proposed in order to make the tracking error converging to the

origin under a tracking and a parking scenarios. In [119], a nice idea has been used

which consists of combining a tracking controller with stabilization controller via a

weighted sum, the weight function depends on the leader’s velocities and promotes

each controller depending on the current scenario.

87
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For the multi-agent formation case, the unified controller proposed in [85] has been

extended to the leader-follower formation case in [118] under a general force con-

trolled model of the mobile robot, while assuming that the leader’s coordinates are

accessible to all the network. Providing a distributed solution to the leader-follower

simultaneous tracking-agreement control problem is an open question to the best of our

knowledge.

In this chapter, we propose to extend the idea of control design established in [119]

to a more general class of controllers, and thus to allow a more general scenarios of

the leader’s velocities as in [85]. Also our original proofs allow a straightforward

extension to the leader-follower simultaneous tracking-agreement case under spanning

communication graph topology. As in the previous chapter, our results are based on

the construction of strict Lyapunov functions for a nonlinear time-varying systems

[72], and robustness analysis tools such as the integral Input-to-state Stability [8, 9],

and the Strong integral Input-to-state Stability [17, 18].

3.1 A larger class of controllers

The simultaneous tracking-stabilization control problem has been addressed in [26]

and [119], where a unified control law is provided to guarantee the global attractivity

of the origin of (2.5) under each one of the following scenarios:

S1: Tracking scenario. It is assumed that there exists T and µ > 0 such that, for all

t ≥ t0: ∫ t+T

t

(
|vr(τ)|2 + |ωr(τ)|2

)
dτ > µ, ∀t ≥ t0. (3.1)

S2: Stabilization scenario. It is assumed that there exists β > 0 such that, for all

t ≥ t0: ∫ t

t0

(|vr(τ)|+ |ωr(τ)|)dτ < β, ∀t ≥ t0. (3.2)

Remark 3.1. Obviously, the two scenarios cannot appear simultaneously, but the goal is to

design a unified controller that guarantees the global attractivity of the origin of the closed-loop

system (2.5), independently of the actual scenario of the leader’s velocities.

In the first part of this chapter we consider simultaneous tracking and parking

problem and design a universal controller that achieves the trajectory tracking objec-
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tives

lim
t→∞

e(t) = 0 (3.3)

and,

lim
t→∞

(ṽ, w̃) = (0, 0) (3.4)

under either of the two scenarios described above.

similar to Section 2.5, our contributions are the following:

• in the kinematic level, we propose control inputs v∗ and ω∗ that ensure uniform

global asymptotic stability of the origin of (2.5);

• on the dynamic level, for the velocity error kinematics in closed-loop, we estab-

lish integral input-to-state stability with respect to the error velocities [ṽ, ω̃];

• for any control inputs u1 and u2 ensuring that ṽ → 0 and ω̃ → 0, we establish

global attractivity of the origin provided that the error velocities (ṽ, ω̃) converge

sufficiently fast (they are square integrable).

The control laws that ensure the properties above are:

v∗ := vr(t) cos(eθ) + kxex, (3.5)

ω∗ := ωr + kθeθ + kyeyvrφ(eθ) + ρ(t)kyf(t, ex, ey) (3.6)

where φ is the so-called sync function defined by

φ(eθ) :=
sin(eθ)

eθ
,

the weight function ρ(t) is defined as

ρ(t) := exp

(
−
∫ t

0

[
|vr(τ)|+ |ωr(τ)|

]
dτ

)
, (3.7)

and f : R+ × R2 → R is a continuously differentiable function defined such that the

following technical assumptions hold.

Assumption 3.1. There exist non-decreasing function σ1 : R≥ → R≥0 and a constant σ2 > 0

such that

max

{
|∂f
∂t
|, | ∂f

∂ex
|, | ∂f

∂ey
|
}
≤ σ1(|ex ey|) (3.8)

|f(t, ex, ey)| ≤ σ2|ex ey|. (3.9)
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Assumption 3.2. Let f◦(t, ey) := f(t, 0, ey) then, ∂f
∂t

(t, 0, ey) is uniform δ−persistently ex-

citing with respect to ey —see Definition A.7 or [65, Definition 3].

Roughly speaking, the purpose of the function f is to excite the ey–dynamics as

long as |ey| is separated from zero.

The controller (3.6) which achieves both the tracking and the stabilization control

goals, is a weighted sum of the tracking controller of [70],

ω∗tra := ωr + kθeθ + kyeyvrφ(eθ),

and the stabilization controller that generalizes the ones proposed in [71, 78, 119],

ω∗stab := ωr + kθeθ + kyf(t, ex, ey).

The weight function ρ(t) acts as a smoothly-switching supervisor promoting the appli-

cation of either ω∗tra or ω∗stab, depending on the task scenario S1 or S2. More precisely,

from (3.7) we see that ρ satisfies

ρ̇ =−
[
|vr(t)|+ |ωr(t)|

]
ρ (3.10)

and ρ → 0 exponentially fast if (3.1) holds. Hence, the tracking scenario S1 is pro-

moted. If, instead, (3.2) holds, the reference velocities converge and ρ(t) > exp (−β).

Hence, the action of the stabilization controller is favoured.

Remark 3.2. The idea of such merging of two controllers for the scenarios S1 and S2 was

initially introduced in [78]. The class of controllers satisfying Assumptions 3.1-3.2 covers

those in [119]; in particular, the function f is not necessarily globally bounded and may depend

only on ey. A more significant contribution with respect to the literature is that we establish

uniform global asymptotic stability for (2.5) in closed-loop with (v, ω) = (v∗, ω∗); this is in

contrast with [119] and [26] where it is proved that (3.3) holds. In addition, we establish

integral ISS of (2.5) with respect to [ṽ, ω̃].

Proposition 3.1. Consider the system (2.5) with v = ṽ + v∗, ω = ω̃ + ω∗, and the virtual

inputs (3.5) and (3.6). Let kx, kθ, and ky > 0.

Assume that there exist ω̄r, ¯̇ωr, v̄r, ¯̇vr > 0 such that

|ωr|∞ ≤ ω̄r, |ω̇r|∞ ≤ ¯̇ωr, |vr|∞ ≤ v̄r, |v̇r|∞ ≤ ¯̇vr. (3.11)

Furthermore, let Assumptions 3.1-3.2 hold.

If either (3.1) or (3.2) is satisfied, then the closed-loop system resulting from (2.5), (2.6),

(3.5), and (3.6) has the following properties:
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(P1) if ṽ = ω̃ = 0, the origin {e = 0} is uniformly globally asymptotically stable;

(P2) the closed-loop system is integral input-to-state stable with respect to η := [ṽ ω̃]>;

(P3) if η → 0 and η ∈ L2, then (3.3) holds. �

3.1.1 Proof of Proposition 3.1

For each scenario, S1 and S2 we establish uniform global asymptotic stability for the

closed-loop kinematics equation (2.5) restricted to η = 0. Then, we establish the iISS

with respect to η by showing that the closed-loop trajectories are bounded under the

condition that η is square integrable —cf. [8].

Under Scenario S1

The proof of Proposition 3.1 under condition (3.1) is constructive, in particular, we

provide a strict Lyapunov function for the closed loop system. To that end, we start by

observing that the error system (2.5), (2.6), (3.5) and (3.6) has the form

ė =Avr(t, e)e+B1(t, e)ρ(t) +B2(e)η, (3.12)

where

Avr(t, e) :=


−kθ 0 −vr(t)kyφ(eθ)

0 −kx ω∗(t, e)

vr(t)φ(eθ) −ω∗(t, e) 0

 ,

B1(t, e) :=


−kyf(t, ex, ey)

kyf(t, ex, ey)ey

−kyf(t, ex, ey)ex

 , B2(e) :=


0 −1

−1 ey

0 −ex

 . (3.13)

Writing the closed-loop dynamics as in (3.12) is convenient to stress that the “nominal”

system ė = Avr(t, e)e has a familiar structure encountered in model reference adaptive

control, see Section 1.3.1. Moreover, defining

V1(e) :=
1

2

[
e2
x + e2

y +
1

ky
e2
θ

]
, (3.14)

we obtain, along the trajectories of ė = Avr(t, e)e,

V̇1(e) ≤ −kxe2
x − kθe2

θ.
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This is a fundamental first step in the construction of a strict Lyapunov function for

the “perturbed” system (3.12).

To establish the proof in the case of scenario S1, we follow the steps 1− 3 below:

1) We build a strict Lyapunov function V (t, e) for the nominal system ė = Avr(t, e)e.

This establishes P1.

2) We construct strict Lyapunov function W (t, e) for the perturbed system ė =

Avr(t, e)e+B1(t, e)ρ.

3) We use W (t, e) to prove integral ISS of (3.12) with respect to η (i.e., P2) as well

as the boundedness of the trajectories under the assumption that η ∈ L2. This and the

assumption that η → 0 implies (3.3), i.e., P3.

Step 1. We establish UGAS for the nominal system

ė = Avr(t, e)e (3.15)

via Lyapunov’s direct method. After Proposition 2.1, there exists a positive definite

radially unbounded function V : R≥0 × R3 → R≥0 defined as

V (t, e) := P[3](t, V1)V1(e)− ωr(t)exey
+vr(t)P[1](t, V1)eθey, (3.16)

and such that

F[3](V1) ≤ V (t, e) ≤ S[3](V1), (3.17)

where V1(e) is defined in (3.14), F[3], S[3] : R≥0 → R≥0, and P[k] : R≥0 × R≥0 → R≥0 are

smooth polynomials in V1(e) with strictly positive and bounded coefficients of degree

3 and k respectively. It is shown in Proposition 2.1 that the total derivative of V (t, e)

along the trajectories of (3.15) satisfies

V̇ (t, e) ≤ −µ
T
V1(e)− kxe2

x − kθe2
θ. (3.18)

Hence uniform global asymptotic stability of the null solution of (3.15) follows.

Step 2. Now we construct a strict Lyapunov function for the system

ė =Avr(t, e)e+B1(t, e)ρ(t). (3.19)

To that end, we start by “reshaping” the function V (t, e) defined in (3.16) to obtain a

particular negative bound on its time-derivative. Let

Z(t, e) := Q[3](V1)V1(e) + V (t, e) (3.20)



Chapter 3 93

where Q[3](V1) is a third order polynomial with a strictly positive coefficients. Then, in

view of (3.18), the total derivative of Z along the trajectories of (3.15) satisfies

Ż(t, e) ≤ −µ
T
V1(e)−Q[3](V1)

[
kxe

2
x + kθe

2
θ

]
. (3.21)

Next, we recall that in view of (3.1) ρ is uniformly integrable hence, for any γ > 0,

there exists c > 0 such that

G(t) := exp

(
−γ
∫ t

0

ρ(s)ds

)
≥ c > 0 ∀t ≥ 0. (3.22)

Thus, since Z(t, e) and V (t, e) are positive definite radially unbounded —see (3.17) and

(3.20), so is the function

W (t, e) := G(t)Z(t, e). (3.23)

Indeed, we have

exp

(
−γ
∫ ∞

0

ρ(s)ds

)
Z(t, e) ≤ W (t, e) ≤ Z(t, e).

Now, the time-derivative of W along trajectories of (3.19) verifies

Ẇ (t, e) ≤ −Y (t, e) + Ġ(t)Z(t, e) +G(t)
∂
(
Q[3](V1)V1 + V

)
∂e

B1(t, e)ρ(t)

Y (t, e) := G(t)
[µ
T
V1(e) +Q[3](V1)

[
kxe

2
x + kθe

2
θ

]]
. (3.24)

Note that, in view of (3.22), Y (t, e) is positive definite. We proceed to show that the

rest of the terms bounding Ẇ are negative semi-definite. To that end, we develop

(dropping the arguments of f(t, ex, ey) )

∂
(
Q[3](V1)V1 + V

)
∂e

B1(t, e) =
∂
(
Q[3](V1)V1 + V

)
∂V1

∂V1

∂e
B1(t, e)− ωrkyf(·)

[
ex + e2

y

]
− vrP[1](t, V1)kyf(·) [eθex + ey] (3.25)

and we decompose B1(t, e) into

B1(t, e) =


−kyf(·)

0

0

+


0 0 0

0 0 kyf(·)
0 −kyf(·) 0

 e.
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Then, since

∂V1

∂e


0 0 0

0 0 kyf(·)
0 −kyf(·) 0

 e = 0,

it follows that
∂V1

∂e
B1(t, e) = −∂V1

∂eθ
kyf(·) = −eθf(·).

Thus, using the latter equation, we obtain

Ẇ (t, e) ≤− Y (t, e) + Ġ(t)Z(t, e)−G(t)ρ(t)f(·)
∂
(
Q[3](V1)V1 + V

)
∂V1

eθ

+ vrf(·)G(t)ρ(t)P[1](t, V1) [−kyeθex − kyey]

+ ωrG(t)ρ(t)f(·)
[
−kyex + kye

2
y

]
. (3.26)

In view of (3.9) and the boundedness of vr and ωr, there exists a polynomialR[3](V1)

with non-negative coefficients, such that

R[3](V1)V1 ≥− f(·)
∂
(
Q[3](V1)V1 + V

)
∂V1

eθ + ωrf(·)
[
−kyex + kye

2
y

]
+ vrf(·)P[1](t, V1) [−kyeθex − kyey] . (3.27)

Hence, since V (t, e) ≥ F[3](V1)V1 —see (3.17), we obtain

Ẇ ≤ −Y (t, e) + Ġ(t)F[3](V1)V1 +G(t)ρ(t)R[3](V1)V1.

On the other hand, in view of (3.22), Ġ(t) ≤ −γG(t)ρ(t) for any γ > 0 and the coeffi-

cients of F[3](V1) are strictly positive. Therefore, there exists γ > 0 such that

γF[3](V1) ≥ R[3](V1)

and, consequently, Ẇ (t, e) ≤ −Y (t, e) for all t ≥ 0 and all e ∈ R3. Uniform global

asymptotic stability of the null solution of (3.19) follows.

Step 3. In order to establish iISS with respect to η and boundedness of the closed-

loop trajectories subject to η ∈ L2, we proceed as in Proposition 2.2. Let

W1(t, e) := ln (1 +W (t, e)) . (3.28)
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The derivative of W1 along trajectories of (3.12) satisfies

Ẇ1 ≤ −Gm

µ
T
V1(e) +Q[3]

[
kxe

2
x + kθe

2
θ

]
1 +W (t, e)

+

∣∣∂W
∂e
B2η

∣∣
1 +W (t, e)

(3.29)

with Gm := exp
(
−γ
∫∞

0
ρ(t)dt

)
.

Next, we decompose B2(e)η introduced in (3.12) into

B2(e)η := B21(η) +B22(η)e

where

B21(η) :=


−ω̃
−ṽ
0

 , B22(η) :=


0 0 0

0 0 ω̃

0 −ω̃ 0

 .
Then, using the fact that ∂V1

∂e
B22(η)e = 0, defining

H(t, e) := Q[3] + P[3] +
∂Q[3]

∂V1

V1 +
∂P[3]

∂V1

V1 + v̄r |eθ| |ey|
∂P[1]

∂V1

,

and

ξ =

[
eθ
ky

ex

]
, (3.30)

we obtain ∣∣∣∂W
∂e

B2η
∣∣∣ ≤ H(t, e)|ξ||η|+ ω̄r|ey||η|+ v̄rP[1]|ey||η|

+ ω̄rV1|η|+ v̄rP[1]|eθ||ex||η|

≤ H(t, e)
[ 1

2ε
|ξ|2 +

ε

2
|η|2
]

+ ω̄r

[ 1

2ε
V1 +

ε

2
V1|η|2

]
+ ω̄r

[ 1

2ε
V1 +

ε

2
|η|2
]

+ v̄r

[ 1

2ε
V1 +

ε

2
P 2

[1]|η|2
]

+ v̄rP[1]

[ 1

2ε
V1|eθ|2 +

ε

2
|η|2
]

≤
[
H(t, e) + v̄rP[1]k

2
yV1

] 1

2ε
|ξ|2 + [2ω̄r + v̄r]

1

2ε
V1

+
ε

2
|η|2

[
H(t, e) + ω̄rV1 + ω̄r + v̄rP

2
[1] + v̄rP[1]

]
.
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Next, we choose ε > 0 such that

H(t, e) + v̄rP[1]k
2
yV1

ε
|ξ|2 ≤ GmQ[3]

[
kxe

2
x + kθe

2
θ

]
,

2ω̄r + v̄r
ε

≤ Gm
µ

T
.

Such ε > 0 exists because Q[3] is a third order polynomial of V1 with strictly positive

coefficients. So (3.29) becomes

Ẇ1 ≤ −Gm

2

µ
T
V1(e) +Q[3]

[
kxe

2
x + kθe

2
θ

]
1 +W (t, e)

+
D[3](V1)

1 +W (t, e)

ε

2
|η|2 (3.31)

where D[3](V1) is a third order polynomial satisfying

H(t, e) + ω̄rV1 + ω̄r + v̄rP
2
[1] + v̄rP[1] ≤ D[3].

From the positivity of V , (3.17), and the definition of W , we have

GmQ[3](V1)V1 ≤ W1(t, e) ≤ S[3](V1)V1 (3.32)

hence,

Ẇ1 ≤ −Gm

2

µ
T
V1(e) +Q[3](V1)

[
kxe

2
x + kθe

2
θ

]
1 + S[3](V1)

+
D[3](V1)

1 +GmQ[3](V1)

ε

2
|η|2 . (3.33)

This implies the existence of a positive constant c > 0 and a positive definite function

α(e) such that

Ẇ1 ≤− α(e) + c |η|2 . (3.34)

The result follows from Lemma A.4.

Under the scenario S2:

The proof of Proposition 3.1 under condition (3.2) relies on arguments for stability of

cascaded systems as well as on tools tailored for systems with persistency of excitation.

We start by rewriting the closed-loop equations in a convenient form for the anal-

ysis under the conditions of Scenario S2. To that end, to compact the notation, let us
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introduce

fρ(t, ex, ey) := ρ(t)f(t, ex, ey) (3.35)

Φ(t, eθ, ex, ey) = kθeθ + kyfρ(t, ex, ey) (3.36)

Then, the closed-loop equations become

ė = fe(t, e) + g(t, e)η, η = [ṽ ω̃]>, (3.37)

where

fe(t, e) :=


−kθeθ − kyfρ − kyvrφ(eθ)ey

−kxex + Φey +
[
ωr + kyvrφ(eθ)ey

]
ey

−Φex −
[
ωr + kyvrφ(eθ)ey

]
ex + vr sin eθ

 ,

g(t, e) :=


0 −1

−1 ey

0 −ex

 .
Following the proof-lines of [97, Lemma 1] for cascaded systems, we establish the

following for the system (3.37):

Claim 1. The solutions are uniformly globally bounded subject to η ∈ L2,

Claim 2. The origin of ė = fe(t, e) is uniformly globally asymptotically stable (i.e., P1).

After [8] the last two claims together imply integral ISS with respect to η (i.e., P2).

Moreover, Claim 1 implies the convergence of the closed-loop trajectories to the origin

provided that the input η tends to zero and is square integrable (i.e., P3).

Proof of Claim 1. Let

W (e) := ln(1 + V1(e)), V1(e) :=
1

2

[
e2
x + e2

y

]
. (3.38)

The total derivative of V1 along the trajectories of (3.37) yields

V̇1(e) ≤ −kxe2
x + |ex||ṽ|+ |vr|| sin(eθ)||ey| (3.39)

hence,

Ẇ (e) ≤ 1

1 + V1

[
− kx

2
e2
x + |vr||ey|+

ṽ2

2kx

]
(3.40)

≤ |ey|
1 + V1

|vr|+
1

2kx[1 + V1]
ṽ2. (3.41)
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Integrating on both sides of (3.41) along the trajectories, from t0 to t, and invoking

the integrability of vr and the square integrability of η we see that W (e(t)) is bounded

for all t ≥ t0. Boundedness of ex(t) and ey(t) follows since W is positive definite and

radially unbounded in (ex, ey).

Remark 3.3. For further development, we also emphasize that proceeding as above from In-

equality (3.40) we conclude that ex ∈ L2, uniformly in the initial conditions.

Next, we observe that the ėθ–equation in (3.37) corresponds to an exponentially

stable system with bounded input u(t) = −kyvr(t)φ(eθ(t))ey(t) − kyfρ(t, ex(t), ey(t)) −
ω̃(t) hence, we also have eθ ∈ L∞.

Proof of Claim 2.

Let η = 0 and, for further development, let us split the drift of the nominal system

ė = fe(t, e) into the output injection form:

fe(t, e) = F (t, e) +K(t, e) (3.42)

where

K(t, e) :=


−kyvrφ(eθ)ey[

ωr + kyvrφ(eθ)ey
]
ey

−
[
ωr + kyvrφ(eθ)ey

]
ex + vr sin eθ

 (3.43)

and

F (t, e) :=


−kθeθ − kyfρ
−kxex + Φey

−Φex

 .
To establish UGAS for the origin of ė = fe(t, e) we invoke the output-injection

lemma–see Appendix A.6. According to the latter, UGAS follows if:

a) there exist: an “output” y, non decreasing functions k1, k2, and β: R≥0 → R≥0, a class

K∞ function k, and a positive definite function γ such that, for all t ≥ 0 and all e ∈ R3,

|K(t, e)| ≤ k1(|e|)k(|y|) (3.44)

|y(t, e)| ≤ k2(|e|) (3.45)∫ ∞
◦

γ
(
|y(t)|

)
dt ≤ β(|e(0)|); (3.46)

b) the origin of ė = fe(t, e) is uniformly globally stable;

c) the origin of ė = F (t, e) is UGAS.

Condition a. Using (3.43), a direct computation shows that there exists c > 0 such

that

|K(t, e)| ≤ c
(
|e|2 + |e|

)
| [vr ωr] |, (3.47)
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so (3.44) holds with k1(s) := c(s2 + s), k(s) := s, and y := [vr ωr]. Moreover, (3.45) and

(3.46) hold with γ(s) = s, since [vr ωr] ∈ L1, for a constant functions β and k2 which,

moreover, are independent of the initial state.

Condition b. Uniform global stability is tantamount to uniform stability and uni-

form global boundedness of the solutions —see [36]. The latter was established al-

ready for the closed-loop system under the action of the “perturbation” η hence, it

holds all the more in this case, where η = 0.

In order to establish uniform stability, we use Lyapunov’s direct method. Let R > 0 be

arbitrary but fixed.

We claim that, for the system ė = F (t, e), there exists a Lyapunov function candidate

V : R≥0 × R3 → R≥0 and positive constants α1, α2, and α3 such that

α1 |e|2 ≤ V (t, e) ≤ α2 |e|2 ∀t ≥ 0, e ∈ R3 (3.48)∣∣∣∂V (t,e)
∂e

∣∣∣ ≤ α3 |e| ∀t ≥ 0, e ∈ R3 (3.49)
∂V
∂t

+ ∂V
∂e
F (t, e) ≤ 0 ∀t ≥ 0, e ∈ BR. (3.50)

Furthermore, from (3.47) it follows that, for all t ≥ 0 and all e ∈ BR,

|K(t, e)| ≤ c(R + 1)
[
|vr|+ |ωr|

]
|e|.

Then, evaluating the time derivative of V along the trajectories of (3.42), we obtain, for

all e ∈ BR,

V̇ (t, e) ≤ ∂V (t, e)

∂e
K(t, e) ≤ α3c(R + 1)

[
|vr|+ |ωr|

]
|e|2

≤ α3c(R + 1)

α1

[
|vr|+ |ωr|

]
V (t, e). (3.51)

Defining v(t) := V (t, e(t)) and invoking the comparison lemma, we conclude, for all

e ∈ BR, that

v(t) ≤ exp

(
cα3(R + 1)

α1

∫ ∞
t◦

(|vr(s)|+ |ωr(s)|) ds
)
v(t◦)

and, in view of the integrability condition (3.2), we obtain

|e(t)|2 ≤ α2

α1

exp

(
α3c(R + 1)

α1

β

)
|e(t◦)|2

Thus, uniform stability of (3.42) follows.

It is left to construct a Lyapunov function candidate V for the system ė = F (t, e), that
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satisfies the conditions (3.48)-(3.50). To that end, consider the coordinates

ez = eθ + g(t, ey) (3.52)

where g : R≥0 × R≥0 → R≥0 defined by

g(t, ey) := e−kθ(t−t◦)g(t◦, ey) +

∫ t

t◦

kye
−kθ(t−s)f(s, 0, ey)ds

and, for further development we observe that

∂g

∂t
(t, ey) = −kθg(t, ey) + kyfρ(t, 0, ey). (3.53)

Let g(t◦, ey) be such that |g(t◦, ey)| ≤ |ey|which implies, using Assumption 3.1, that

|g(t, ey)| ≤ (1 + kyσ2) |ey| . (3.54)

In the new coordinates, we obtain

ėz = −kθez −
∂g

∂ey
Φex − kyf̃(t, ex, ey)

where f̃(t, ex, ey) := fρ(t, ex, ey)− f̃ρ(t, 0, ey). Then, Assumption 3.1 implies that for any

R > 0 there exists a positive constant cR > 0 such that

max
e∈BR

{
sup
t≥0

∣∣∣f̃ρ(t, ex, ey)∣∣∣ , sup
t≥0

∣∣∣ ∂g
∂ey

Φex

∣∣∣} ≤ cR |ex| .

Thus, consider the following Lyapunov function candidate

V (t, e) :=

[
1

2

c2
R

kθkx
+ (1 + kyσ2)2

] [
e2
x + e2

y

]
+

1

2
e2
z (3.55)

which trivially satisfies (3.49). Its total time derivative is

V̇ (t, e) =− c2
R

kθ
e2
x − ez

[
kθez +

∂g

∂ey
Φex + kyf̃(t, ex, ey)

]
≤− c2

R

kθ
e2
x − kθe2

z − cR|ez||ex| ≤ 0, ∀ ∈ BR, (3.56)

so (3.50) holds. Using (3.54) and the inequalities

e2
z ≥ e2

θ − 2|eθ||g(t, ey)|+ |g(t, ey)|2 ≥
1

2
e2
θ − (1 + kyσ2)2|ey|2.
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e2
z ≤ e2

θ + 2|eθ||g(t, ey)|+ |g(t, ey)|2 ≤ 2e2
θ + 2(1 + kyσ2)2|ey|2,

we see that the following bounds on V follow

V (t, e) ≥ 1

2

c2
R

kθkx

[
e2
x + e2

y

]
+

1

4
e2
θ

V (t, e) ≤
[

1

2

c2
R

kθkx
+ 2(1 + kyσ2)2

] [
e2
x + e2

y

]
+ e2

θ.

Thus the inequalities in (3.48) also hold.

Condition c. Since the solutions are uniformly globally bounded, for any r > 0,

there exists R > 0 such that |e(t)| ≤ R := {|e| ≤ R} for all t ≥ t◦, all e◦ ∈ Br, and all

t◦ ≥ 0. It is only left to establish uniform global attractivity. To that end, we observe

that the nominal ė = F (t, e) has the form

ėθ = −kθeθ − kyfρ(t, ex, ey) (3.57a)[
ėx

ėy

]
=

[
−kx Φθ(t, ex, ey)

−Φθ(t, ex, ey) 0

][
ex

ey

]
(3.57b)

where, for each eθ ∈ BR, we define the smooth parameterised function Φθ : R≥0×R2 → R
as

Φθ(t, ex, ey) := Φ(t, eθ, ex, ey).

Then, the system (3.57) may be regarded as a cascaded system —cf. [59]. Moreover,

the system (3.57a) is input-to-state stable and the perturbation term kyfρ(t, ex(t), ey(t))

is uniformly bounded. Therefore, in order to apply a statement for cascaded systems,

we must establish that the origin of (3.57b) is globally asymptotically stable, uniformly

in the initial conditions (t◦, ex◦, ey◦) ∈ R≥0 × R2 and in the “parameter” eθ ∈ BR. For

this, we invoke [65, Theorem 3] as follows. Since kx > 0 there is only left to show that

Φ◦θ(t, ey)ey, where

Φ◦θ(t, ey) := Φθ(t, 0, ey),

is uniformly δ-persistently exciting with respect to ey, uniformly for any θ ∈ BR —cf.

Definition A.7, [65, Definition 3], [63]. Since Φ◦θ is smooth, it suffices to show that for

any |ey| 6= 0 and r, there exist T and µ such that

|ey| 6= 0 =⇒
∫ t+T

t

∣∣Φ̃◦θ(τ, ey)∣∣dτ ≥ µ ∀ t ≥ 0 (3.58)

—see [65, Lemma 1].

Remark 3.4. In general, µ depends both on eθ and on ey, but since eθ ∈ BR andBR is compact,



102

by continuity, one can always choose the smallest qualifying µ, for each fixed ey. Therefore, as

in [65], µ may be chosen as a class K function dependent of |ey| only.

Now, we show that (3.58) holds under Assumption 3.2. To that end, we remark

that

Φ◦θ(t, ey) = kθeθ + kyρ(t)f◦(t, ey)

–cf. Eq. (3.36), satisfies

Φ̇◦θ = −kθΦ + kyρ̇f◦ + kyρ
∂f◦
∂t
− kyρ

∂f◦
∂ey

Φex

where we used ėθ = −Φ and ėy = Φex. Therefore, defining

KΦ(t, e) := kθ[Φ
◦
θ − Φ]− kyρ

∂f◦
∂ey

Φex

we obtain

Φ̇◦θ = −kθΦ◦θ − kyρ
∂f◦
∂t

+ kyρ̇f◦ +KΦ(t, e).

The latter equation corresponds to that of a linear filter with state Φ◦θ and input

Ψ(t, ey) := −kyρ(t)
∂f◦
∂t

(t, ey) + kyρ̇(t)f◦(t, ey) +KΦ(t, e(t))

therefore, after [66, Property 4], Φ◦θ is uniformly δ-PE with respect to ey, if so is Ψ. Now,

from Assumption 3.2 and uniform global boundedness of the solutions, for any r there

exists c > 0 such that

∣∣kyρ̇(t)f◦(t, ey(t)) +KΦ(t, e(t))
∣∣ ≤ c(r)

[
|ex(t)|+ |ρ̇(t)|

]
Therefore, uniform δ-PE with respect to ey of Ψ follows from Assumption A2 and the

fact that ρ̇ and ex are uniformly square integrable. That ρ̇ ∈ L2, with a bound uniform

in the initial times, follows from (3.10) because vr, ωr, and ρ are bounded and |vr|+ |ωr|
is uniformly integrable. That ex is uniformly L2 follows from (3.40) —see Remark 3.3.

This concludes the proof of UGAS for the nominal system ė = fe(t, e) hence, Claim 2.

is proved.

This completes the proof of Proposition 3.1.
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3.2 Control under relaxed conditions on the reference ve-

locities

In [85], simultaneous stabilization and tracking problem has been addressed under

a general tracking/stabilization scenario that includes all possible behavior of the

leader’s velocities (vr, ωr), by using the concept of transverse functions. In our case

we propose to extend the idea of control design proposed in [119] and, moreover, we

consider more general scenarios of leader’s velocities as in [85], Advantage of our ap-

proach is that it allows a straightforward extension to the leader-follower formation

case.

Consider the two following scenarios

S1: Tracking scenario. There exists T and µ such that, for all t ≥ t0:∫ t+T

t

(
|vr(τ)|2 + |ωr(τ)|2

)
dτ > µ > 0, ∀t ≥ t0. (3.59)

S3: Robust stabilization scenario.

lim
t→∞

vr(t) = 0 (3.60a)

lim
t→∞

ωr(t) = 0 (3.60b)

In this case, we propose the following family of virtual control laws at the kinematic

level

v∗ =vrcoseθ + kxex (3.61)

ω∗ =ωr + kθeθ + kyeyvrφ(eθ) + ρ(t)kyp(t)
√
e2
x + e2

y, (3.62)

ρ(t) := exp

(
−
∫ t

t0

F (vr(τ), ωr(τ)) dτ

)
(3.63)

where F : R× R→ R≥0 is a piecewise constant function that verifies the following

1. If S3 holds, then, ∫ t

t0

F (vr(τ), ωr(τ))dτ <∞, ∀t ≥ 0



104

2. If S1 holds, then, there exists T1 and µ1 such that∫ t+T1

t

F (vr(s), ωr(s))
2 ds ≥ µ1, ∀t ≥ 0.

Remark 3.5. The definition of ρ in (3.63) covers that in (3.7) employed in the previous section.

The following lemma establishes the existence of F by providing a candidate that sat-

isfies the last two items

Lemma 3.1. Let α(t) :=
√
v2
r(t) + ω2

r(t), where vr(t) and ωr(t) are two scalar continuous

functions. Assume that there exists ᾱ > 0 such that |α(t)|∞ ≤ ᾱ. Then, the functional

F (vr, ωr) := K(α) :=

{
α if α ∈ (0, µ

2T ᾱ
]

0 Otherwise
(3.64)

satisfies the following:

1. K(α(t)) is PE, if α(t) is PE.

2. K(α(t)) is integrable, if limt→∞ α(t) = 0 .

Proof. The proof of the second item is trivial, because K(α) is null after finite time Tf ,

and ∫ t

0

K(α(s))ds ≤
∫ Tf

0

K(α(s))ds, ∀t ≥ 0.

To prove the first item, we use [63, Lemma 2] which states that, if α(t) is PE
(∫ t+T

t
α(τ)dτ ≥ µ

)
.

Then for every t ≥ 0 there exists a non null measure set

It := {τ ∈ [t, t+ T ] : |α(τ)| ≥ a := µ/(2T ᾱ)} ,

and

meas(It) ≥ b := Tµ/(2T ᾱ2 − µ).

Using this lemma we obtain∫ t+T

t

K2(α(s))ds ≥
∫
It

K2(α(s))ds ≥
∫
It

a2ds ≥ a2b > 0.

Hence is K(α(s)) PE. ���

Proposition 3.2. Consider the system (2.5) with v = ṽ + v∗, ω = ω̃ + ω∗, and the virtual

inputs (3.61) and (3.62). Let kx, kθ, and ky > 0; let p and ṗ be bounded and persistently

exciting, and assume that there exist ω̄r, ¯̇ωr, v̄r, ¯̇vr > 0 such that (3.11) holds. Then,
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1) Under the condition of scenario S1, the closed-loop system is integral input-to-state sta-

ble with respect to η1 := [ṽ ω̃]>. Moreover, if η is a converging square integrable func-

tion, then the closed-loop trajectories converge to the origin.

2) Under the condition of scenario S3, the closed-loop system is strongly integral input-to-

state stable with respect to η2 := [vr ωr ṽ ω̃]>.

�

3.2.1 Proof of Proposition 3.2

Under the scenario S1:

We decompose the closed-loop system as follows

ė =Avr(t, e)e+B1(t, e)ρ(t) +B2(e)η, (3.65)

where

Avr(t, e) :=


−kθ 0 −vr(t)kyφ(eθ)

0 −kx ω∗(t, e)

vr(t)φ(eθ) −ω∗(t, e) 0

 , B1(t, e) :=


−kyp(t)

√
e2
y + e2

x

kyp(t)
√
e2
y + e2

xey

−kyp(t)
√
e2
y + e2

xex

 ,

B2(e) :=


0 −1

−1 ey

0 −ex

 . (3.66)

The proof under S1, follows exactly the same steps as in Proposition 3.1.

Under the scenario S3:

We start by rewriting the closed-loop system as

ė = A(t, e)e+B(e)η2 (3.67)
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where

A(t, e) :=

−kθ −kyp1(t)

√
e2x+e2y
ex

−kyp1(t)

√
e2x+e2y
ey

0 −kx ψ(t, e)

0 −ψ(t, e) 0

 ,
ψ(t, e) := kθeθ + kyp1(t)

√
e2
y + e2

x.

B(e) =


−kyeyφ(eθ) 0 0 −1

kye
2
yφ(eθ) ey −1 ey

sin(eθ)− kyexeyφ(eθ) −ex 0 −ex


To establish the strong iISS property of the closed-loop system with respect to η2, we

follow the same proof steps as for Proposition 2.5. That is,

Step 1. we construct strict Lyapunov function for the closed-loop system when

η2 = 0;

Step 2. we establish the small ISS property of the closed-loop with respect to η2;

Step 3. we establish the integral ISS property of the closed-loop with respect to η2.

Remark 3.6. To simplify the computations, we introduce

p1(t) := ρ(t)p(t), (3.68)

where ρ(t) is given in (3.63). It is important to notice that under S3, p1(t) has the same

properties as p(t). That is, functions p1 and ṗ1 are bounded and, since ρ̇(t) converges to zero

as t→∞, then ṗ1(= ρṗ+ pρ̇) is PE if ṗ is so –see Lemma A.9 in the Appendix.

Step 1. UGAS of the nominal system ė = A(t, e)e.

Let ψm, ψM and ψM ≥ ψm > 0 and consider a positive differentiable function ψ :

R≥0 → [ψm, ψM ] satisfying

ψ̇ = −kθψ + kyp1(t). (3.69)

Such a function exists because p1 is bounded and persistently exciting [112]. Then,

consider the new error coordinate

ez = eθ + ψ(t)
√
e2
y + e2

x,

which satisfies

ėz = −kθez − ψkx
e2
x√

e2
x + e2

y

. (3.70)
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In the new coordinates, the nominal system becomes[
ėx

ėy

]
=

[
−kx ψ̇

√
e2
y + e2

x

−ψ̇
√
e2
y + e2

x 0

][
ex

ey

]
+ ez

[
0 kθ

−kθ 0

][
ex

ey

]
(3.71a)

ėz = −kθez − ψkx
ex√
e2
x + e2

y

ex (3.71b)

Remark 3.7. Note that, by replacing ez with the trajectories ez(t) the system (3.71) covers a

cascaded form —see [59, 97]. Moreover, it is easy to show that ex and ey are bounded.

Now, since ṗ1 is persistently exciting (see Remark 3.6) and ψ satisfies the equation

ψ̈ = −kθψ̇ + ṗ1 (3.72)

we can conclude that function ψ̇ is also persistently exciting [41, Lemma 4.8.3]. Based

on these properties, Lemma 3.2 below provides a strict differentiable Lyapunov func-

tion for the system (3.71).

Lemma 3.2 (set-point stabilization). Consider the following nonlinear time-varying system

[
ėx

ėy

]
=

[
−kx ψ̇

√
e2
y + e2

x

−ψ̇
√
e2
y + e2

x 0

][
ex

ey

]
+ ez

[
0 kθ

−kθ 0

][
ex

ey

]
(3.73a)

ėz = −kθez − ψkx
e2
x√

e2
x + e2

y

(3.73b)

let kθ, kx > 0, ψ : R≥0 → R and ψ̇ be persistently exciting and let

max
{
|ψ|∞, |ψ̇|∞, |ψ̈|∞

}
≤ ψ̄

where

|ψ|∞ := ess sup
t≥0
|ψ(t)|

Then, the system (3.73) admits the following strict Lyapunov function:

V2(t, e) := P1(V1)V1(e) + Υψ̇(s)2(t)V1(e)2 − ψ̇(t)
√
V1exey +Q1(V1)e2

z (3.74)

where V1(e) := e2
x + e2

y,

Υψ̇(s)2(t) := 1 + ψ̄2T − 1

T

∫ t+T

t

∫ m

t

ψ̇(s)2dsdm (3.75)

— cf (1.4), P1 and Q1 : R≥0 → R≥0 are first order polynomials of V1 with positive coefficients
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defined as

P1(V1) :=
1

kx
ψ̄2V1 + ψ̄

V1

4
+

kx
4kθ

ψ̄2Q1(V1) + ψ̄2T (kx + kθ)

4µ
V1 + 1, (3.76)

Q1(V1) :=
T (kx + kθ)

µ
ψ̄2V1 + 1. (3.77)

with

V̇2(t, e) ≤ −1

2
kθQ1(V1)e2

z −
µ

2T
V 2

1 . (3.78)

The proof of Lemma 3.2 is presented in the Appendix B.7. Step 2. Small ISS prop-

erty.

Similarly to the proof of Proposition 2.5 in the previous Chapter, the proof of the

small ISS property, for the closed-loop system (3.67) with respect to η2, relies on the

function V2 constructed in Lemma 3.2 above; specifically on its order of growth in V1.

For the purpose of analysis we recall that V2 in (3.74) satisfies

V2(t, e) ≥ P1(V1)V1 − ψ̇
√
V1exey +Q1(V1)e2

z, (3.79)

where P1(V1) and Q1(V1) are first order polynomials with respect to V1 with positive

coefficients and time-derivative of V2(t, e) along the nominal part verifies

V̇2(t, e) = − µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z (3.80)

To establish the small ISS property of the closed-loop with respect to η, let us consider

the time-derivative of V2 along trajectories of (3.67)

V̇2(·) ≤− µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z +

∂V2

∂e
B(e)η (3.81)

After decomposing B(e)η as

B(e)η := B1(η, e)e+B2(η, e), (3.82)

with

B1 =


0 0 0

0 0 (ω̃ + ωr + kyvreyφ(eθ))

0 − (ωr + ω̃ + kyvreyφ(eθ)) 0

 ,
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and

B2 =


−ω̃ − kyvreyφ(eθ)

ṽ

vr sin eθ

 .
and using the fact that

∂V1

∂e
B1e = 0. (3.83)

we obtain

V̇2(·) ≤− µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z − 2ψ̇(ωr + ω̃)

√
V1

[
e2
y − e2

x

]
−

ψ̇
√
V1eyvr

[
e2
y − e2

x

]
+
∂V2

∂e
B2

≤− µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z + 2ψ̄ |ωr + ω̃|

√
V1V1

+ ψ̄
√
V1 |ey| |vr|V1 +

∂V2

∂e
B2. (3.84)

Next, we upperbound the term ∂V2

∂e
B2∣∣∣∣∂V2

∂e
B2

∣∣∣∣ ≤(P1(V1) +
∂P1

∂V1

V1 + 2ψ̄
√
V1

)
|[ex, ey]| |[ṽ, vr]|

+

(
∂Q1

∂V1

e2
z |[ex, ey]|+Q1(V1) |ψez|

)
|[ṽ, vr]|

+Q1(V1) |ez| |ey| |vr|+Q1(V1) |ez| |ω̃| (3.85)

to obtain the following bound on V̇2

V̇2(·) ≤− µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z + 2ψ̄ |ωr + ω̃|

√
V1V1 + ψ̄

√
V1 |ey| |vr|V1

+

(
P1 +

∂P1

∂V1

V1 + 2ψ̄
√
V1

)√
V1 |η|

+

(
∂Q1

∂V1

e2
z

√
V1 +Q1(V1)ψ̄ |ez|

)
|η|

+Q1(V1) |ez| |ey| |vr|+Q1(V1) |ez| |ω̃| .
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≤− µ

2T
V 2

1 − kθ
Q1(V1)

2
e2
z + 4ψ̄ |η|

√
V1V1 + ψ̄ |η|V 2

1

+

(
P1 +

∂P1

∂V1

V1 + 2ψ̄
√
V1

)√
V1 |η|

+

(
∂Q1

∂V1

V1e
2
z +Q1(V1)ψ̄2 +Q1(V1)e2

z

)
|η|

+Q1(V1)(e2
z + V1) |η|+Q1(V1)(e2

z + 1) |η| .

≤− V 2
1

[ µ
2T
−
(
ψ̄ +Q11

)
|η|
]

+ 2P11V1

√
V1 |η|

+ 4ψ̄ |η|
√
V1V1 + 2ψ̄ |η|V1 + P12

√
V1 |η|

+Q1(V1)
[
ψ̄2 + 1

]
|η|+Q12V1 |η| −

Q1(V1)

2
e2
z

[
kθ
2
− 4 |η|

]
. (3.86)

where Q11, Q12, P11, and P12 are positive constants, such that

Q1(V1) := Q11V1 +Q12, P1(V1) := P11V1 + P12.

So the small ISS property of (3.67) with respect to η follows by observing that the

system is ISS with respect to η for all η satisfying the bound

|η| < min

{
kθ
8
,

µ

2T
(
ψ̄ +Q11

)} ,
Step 3. The iISS property.

The proof of Proposition 3.2 is finalized by establishing integral input-to-state sta-

bility of the system (3.67) with respect to η. To that end, we proceed similar to Propo-

sition 3.1 and we consider the proper positive-definite Lyapunov function

W2(t, e) = ln (1 + V2(t, e)) (3.87)

We can see that W2(t, e), is a proper Lyapunov function since so is V2. Moreover, the

total time-derivative of W2 along trajectories of the closed-loop system yields

Ẇ2 =
V̇2

1 + V2

≤ −
µ

2T
V 2

1 + kθ
Q1(V1)

2
e2
z

1 + V2

+
∂V2

∂e
Bη/(1 + V2) (3.88)

From (3.76) and (3.77), we conclude that there exists a first order polynomial g1(V1)
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with a strictly positive coefficients, such that

V2(t, e) ≥ g1(V1)
(
V1 + e2

z

)
(3.89)

From this, it follows that there exists a class K function α such that:

α(|e|) ≤
µ

2T
V 2

1 + kθ
q1(V1)

2
e2
z

1 + V2(t, e)
. (3.90)

Then, using (3.82), (3.83) and the inequality (3.85), we can bound Ẇ2(t, e) as

Ẇ2 ≤− α(|e|) +
2ψ̄ |ωr + ω̃|

√
V1V1

1 + g1(V1)V1

+
ψ̄
√
V1 |ey| |vr|V1

1 + g1(V1)V1

+

(
P1(V1) + ∂P1

∂V1
V1 + 2ψ̄

√
V1

)
|[ex, ey]| |[ṽ, vr]|

1 + g1(V1)V1

+

(
∂Q1

∂V1
e2
z |[ex, ey]|+Q1(V1) |ψez|

)
|[ṽ, vr]|

1 + g1(V1) (e2
z + V1)

+
Q1(V1) |ez| |ey| |vr|+Q1(V1) |ez| |ω̃|

1 + g1(V1)(e2
z + V1)

≤− α(|e|) +
2ψ̄ |ωr + ω̃|

√
V1V1

1 + g1(V1)V1

+
ψ̄ |vr|V 2

1

1 + g1(V1)V1

+

(
P1(V1)

√
V1 + ∂P1

∂V1
V1

√
V1 + 2ψ̄V1

)
|η|

1 + g1(V1)V1

+

(
∂Q1

∂V1
e2
z(V1 + 1) +Q1(V1) (ψ2e2

z + 1)
)
|η|

1 + g1(V1) (e2
z + V1)

+
Q1(V1) (e2

z + V1) |vr|+Q1(V1) (e2
z + 1) |ω̃|

1 + g1(V1)(e2
z + V1)



112

≤− α(|e|) +
2ψ̄ |ωr + ω̃|

√
V1V1

1 + g1(V1)V1

+
ψ̄ |vr|V 2

1

1 + g1(V1)V1

+

(
P1(V1)

√
V1 + ∂P1

∂V1
V1

√
V1 + 2ψ̄V1

)
|η|

1 + g1(V1)V1

+
|η|Q1(V1) +Q1(V1)V1 |vr|+Q1(V1) |ω̃|

1 + g1(V1)V1

+
|η| ∂Q1

∂V1
e2
z + |η|Q1(V1) (ψ2 + 1) e2

z

1 + g1(V1)e2
z

+
(|vr|+ |ω̃|)Q1(V1)e2

z

1 + g1(V1)e2
z

≤− α(|e|) + |η| 4ψ̄
√
V1V1

1 + g1(V1)V1

+ |η| ψ̄V 2
1

1 + g1(V1)V1

+ |η|
P1(V1)

√
V1 + ∂P1

∂V1
V1

√
V1 + 2ψ̄V1

1 + g1(V1)V1

+ |η| Q1(V1) +Q1(V1)V1 +Q1(V1)

1 + g1(V1)V1

+ |η|
∂Q1

∂V1
e2
z +Q1(V1)

(
ψ̄2 + 1

)
e2
z

1 + g1(V1)e2
z

+ |η| 2Q1(V1)e2
z

1 + g1(V1)e2
z

.

Since the functions g1(V1), P1(V1) and Q1(V1) are first order polynomials with strictly

positive coefficients, then all the fractionals in the last inequality are bounded, and

therefore, there exists a constant c > 0 such that

Ẇ3 ≤− α(|e|) + c |η| (3.91)

hence the closed-loop system is iISS with respect to η. This complete the proof of

Proposition 3.2.

If we compare the unified tracking/stabilization controllers proposed in Sections

3.1 and 3.2, it is easy to notice that the only difference is the more generic form for the

function ρ(t) that appears in the expression of ω∗ — compare (3.7) and (3.63).
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3.3 A leader-follower formation case

In this section we present extension of the unified controller design proposed in the

previous section to the case of formation control.

To the best of our knowledge, unified controller for leader-follower simultaneous

tracking stabilization formation problem is considered only in [118], extending the

idea of control design proposed in [85] for individual vehicle. Controller proposed in

this reference is a centralized one, indeed, accessibility of the leader’s coordinates to

all the agents in the network is required.

In this section we use controller from the previous section as a stumbling block for

distributed controller design. Particular type of graph topology (spanning tree) and

input to state stability properties of the closed-loop system allow a sequencing of the

controller design for individual agents in the network and simplify drastically stability

analysis of the networked system.

The controller of Proposition 3.2 is an important contribution, relative to that of

Proposition 3.1. Indeed, the former guarantees small ISS property of the closed-loop

system which renders (almost) direct the extension of our previous statements to the

general case of formation control.

The unified controller proposed in [85] has been extended to the leader-follower

formation case in [118] assuming the leader’s coordinates to be accessible to all the

network. In our case we relax the last assumption by considering a particular graph

topology.

Similarly to (3.61)-(3.93) we introduce the virtual controls

v∗i =vi−1coseθi + kxiexi (3.92)

ω∗i =ωi−1 + kθeθi + kyieyivi−1φ(eθi) + ρi−1(t)kyip(t)
√
e2
xi + e2

yi (3.93)

where,

ρi−1(t) := exp
−

∫ t
t0
F (vi−1(τ),ωi−1(τ))dτ (3.94)

which at the dynamic level, serve as references for the actual controls u1i and u2i in

v̇i = f1i(t, vi, ωi, ei) + g1i(t, vi, ωi, ei)u1i (3.95a)

ω̇i = f2i(t, vi, ωi, ei) + g2i(t, vi, ωi, ei)u2i, i ≤ n. (3.95b)
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Proposition 3.3. Consider the network system composed by (2.7) for i = {1, ..., N}, let con-

stants kxi, kyi, kθi > 0 and let pi and ṗi be bounded and persistently exciting, and assume that

there exist ω̄r, ¯̇ωr, v̄r, ¯̇vr > 0 such that (3.11) holds. Then, for the network system (2.7), the

errors converge to zero, (i.e. (2.9) holds for i = {1, ..., N}), provided that the leader’s velocities

satisfies one of the scenarios S1 and S3, and for all error velocities [ṽ1, ω̃1, ..., ṽN , ω̃N ] square

integrable and converging to zero. �

Proof. Under the scenario S1:, we start by decomposing the closed-loop equation of

each follower as

ėi =Avi−1
(t, ei)ei +B1i(t, ei)ρi(t) +B2i(ei)ηi, (3.96)

where

Avi−1
(t, ei) :=


−kθi 0 −vi−1(t)kyiφ(eθi)

0 −kxi ω∗i (t, ei)

vi−1(t)φ(eθi) −ω∗i (t, ei) 0

 , B1i(t, ei) :=


−kyipi(t)eyi
kyipi(t)e

2
yi

−kyipi(t)eyiexi

 ,

B2i(ei) :=


0 −1

−1 eyi

0 −exi

 . (3.97)

The proof under S1 follows two steps.

First, we prove the forward completeness of the trajectories using the following

Lyapunov function candidate

V1i(t, ei) :=
1

2

[
e2
xi + e2

yi +
1

kyi
e2
θi

]
(3.98)

its time-derivative along trajectories of (3.96) satisfies

V̇1i :=− kxie2
xi −

kθi
kyi
e2
θi − piρieθieyi −

1

kyi
eθiω̃i − exiṽi (3.99)

Under the assumption on boundedness of signals pi, ρi, ω̃i and ṽi, it is always possible

to find two positive constants ai and bi, such that

V̇1i ≤aiV1i + bi. (3.100)

which implies the forward completeness of trajectories of the formation.

The second step, consists in repetitive use of Proposition 3.3, exploiting the cas-

caded structure of the system. Indeed, for the first follower the closed-loop is reduced
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to (3.65), which, under the scenario S1, is integral Input-to-State Stable with respect to

the vector η1 := [ṽ1, ω̃1]. As a result, using square-integrability of η1(t) and its conver-

gence to zero, we obtain that errors e1(t) converge to zero. Consequently

lim
t→∞

v1(t) = vr(t), lim
t→∞

ω1(t) = ωr(t). (3.101)

Moreover, there exists c̄1 > 0 such that

max {v1, v̇1, ω1, ω̇1} ≤ c̄1. (3.102)

For i = 2 the closed-loop system (3.96) is equivalent to (3.65), if we replace vr by v1 and

ωr by ω1. Using (3.101), (3.102) and Lemma A.9 from Appendix A.7, we conclude that

there exists t1 > 0 and µ1 > 0 such that for all t ≥ t1, we have∫ t+T

t

(
v2

1(s) + ω2
1(s)

)
ds ≥ µ1, ∀t ≥ t1.

As a result, Proposition 3.2 is applicable for all t ≥ t1. Having the forward com-

pleteness of trajectories, assuming the convergence and the square integrability of

η2 := [ṽ2, ω̃2] we conclude that

lim
t→∞
|e2(t)| = 0, lim

t→∞
v2(t) = vr(t), lim

t→∞
ω2(t) = ωr(t). (3.103)

Moreover, there exists c̄2 > 0 such that

max {v2, v̇2, ω2, ω̇2} ≤ c̄2. (3.104)

Repeating the same argument, we conclude the same properties for all the agents.

Which proves the statement.

Under the scenario S3:, we decompose the closed-loop equation for each follower

as follows

ėi = Ai(t, ei)ei +B(ei)η2i (3.105)
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where p1i(t) = ρi(t)pi(t), as used in (3.68), and

Ai(t, ei) :=

−kθi −kyip1i(t)

√
e2xi+e

2
yi

exi
−kyip1i(t)

√
e2xi+e

2
yi

eyi

0 −kxi ψi(t, ei)

0 −ψi(t, ei) 0

 ,
ψi(·) := kθieθi + kyip1i(t)

√
e2
yi + e2

xi,

B(ei) =


−kyieyiφ(eθi) 0 0 −1

kyie
2
yiφ(eθi) eyi −1 eyi

sin(eθi)− kyiexieyiφ(eθi) −exi 0 −exi

 .
The proof follows using Proposition 3.2 recursively.

For i = 1, the system (3.105) is reduced to (3.67) and Proposition 3.2 is applicable,

and is strong iISS with respect to η21 := [vr, ωr, ṽ1, ω̃1]. Consequently, when η12 → 0, we

have

e1 → 0, v1 → 0, ω1 → 0.

Similarly, for i = 2, we have under convergence of [v1, ω1] the closed-loop (3.105) is

strong iISS with respect to η21 := [v1, ω1, ṽ1, ω̃1]. Consequently

e2 → 0, v2 → 0, ω2 → 0.

���

Remark 3.8. An example of torque controller for (2.2) that guarantees the square integrability

of the vector [ṽ1, ω̃1, ..., ṽN , ω̃N ] is presented in Subsection 2.2 of Chapter 2.

3.4 Simulations

We consider a group of four mobile robots following a virtual leader, the desired for-

mation shape is a diamond configuration that tracks the trajectory of the virtual leader.

See Figures 3.8 or 3.4. In the first part of the simulations, we define the reference ve-

locities vr and ωr in a way that they converge (slowly) to zero (robust stabilization

scenario S3). In the second part (tracking scenario S1), the leader’s velocities are de-

signed such that their sum of square is persistently exciting–see Figures 3.1 and 3.2,

respectively.

The physical parameters of the systems are introduced in Subsection 2.4.1, the iner-

tia parameters and the constants contained in C(q̇i) are supposed to be unknown. The

initial conditions are set to [xr(0), yr(0), θr(0)] = [0, 0, 0], [x1(0), y1(0), θ1(0)] = [1, 3, 4],
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Figure 3.1: Reference velocities vr and ωr for the scenario S3
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Figure 3.2: Reference velocities vr and ωr for the scenario S1
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Figure 3.3: Relative errors (in norm) for each pair leader-follower under S3

[x2(0), y2(0), θ2(0)] = [0, 2, 2], [x3(0), y3(0), θ3(0)] = [0, 4, 1] and [x4(0), y4(0), θ4(0)] =

[0, 3, 1]; the control gains were set to kxi = kyi = kθi = 1 and the function p(t) =

20 sin(0.5t), which has a persistently exciting time-derivative. The function F is de-

signed as follows

F (a, b) := K(
√
a2 + b2) :=

{√
a2 + b2 ∀α ≥ 0.1

0 Otherwise

}
.

The formation shape with a certain desired distance between the robots is obtained by

setting all desired orientation offsets to zero and defining [dxr,1 , dyr,1 ] = [0, 0], [dx1,2 , dy1,2 ] =

[−1, 0] and [dx2,3 , dy2,3 ] = [1/2,−1/2] and [dx3,4 , dy3,4 ] = [0, 1]. See Figure 3.8, The param-

eters (γ, kd) are taken equal to (10−5, 15), and Θ̂(0) = (m̂1, m̂2, ĉ) = (0, 0, 0).

For the stabilization scenario S3, the results of the simulation are shown in Fig-

ures 3.3–3.4. In Figure 3.3, 3.5, and 3.6, we show the convergence of the tracking errors

between the agent and its neighborhood, the control inputs and the parameter estima-

tion errors, and in Figures 3.3–3.6. In Figure 3.7, 3.9, and 3.10 for the tracking scenario.

3.5 Conclusion

In this chapter we considered leader-follower simultaneous tracking and stabilization

problem for nonholonomic vehicles. We proposed two kinematic level controllers that

ensure uniform global asymptotic stability of the kinematic closed-loop system. On

the dynamical level, the virtual kinematic level controllers serve as a reference for

the controller design. For dynamical level we proved that any controller that ensures

convergence to zero and square integrability of the velocity errors solves the leader-

follower simultaneous tracking and stabilization problem. The extension of these
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Figure 3.4: Illustration of the path-tracking in formation under S3
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Figure 3.5: Illustration of the torque inputs for each agent under S3
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Figure 3.7: Relative errors (in norm) for each pair leader-follower under S1
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Figure 3.8: Illustration of the path-tracking in formation under S1
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Figure 3.10: Illustration of the estimation parameter errors for each agent under S1

results to leader-follower simultaneous tracking and agreement formation problem,

presented in Section 3.3, is based on the controller design from Section 3.2 and ensures

asymptotic convergence of the formation errors under a spanning tree communication

graph topology.
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Chapter 4

Consensus-based formation control of

nonholonomic robots under delayed

interconnections

In previous chapters we addressed several problems on leader-follower formation

control for swarms of mobile robots under two standing assumptions:(i) the commu-

nication is reliable (notably, without delay) and (ii) the communication topology is re-

stricted to that of a spanning tree. On the other hand, the existence of a leader system

that imposes particular behaviors to the formation imposes certain technical difficul-

ties. In this chapter we restrict our attention to the leaderless consensus problem of

multiple mobile robots, but under the assumption that the robots are interconnected

in a general bidirectional graph and that the communications are affected by time-

varying delays.

As we have mentioned in previous chapters, one of the main difficulties appear-

ing in the formation control of nonholonomic systems is that the designed controller

has to be either discontinuous or time-varying [15]. Different approaches have been

proposed to deal with consensus-like control objectives. For instance, in [24] a decen-

tralized feedback control is introduced that drives a system of multiple nonholonomic

unicycles to a rendezvous point in terms of both position and orientation, the proposed

control law is discontinuous and time-invariant. In [55] necessary and sufficient con-

ditions for the feasibility of a class of position formations are presented. In [100] a dis-

tributed formation control law using a consensus-based approach is proposed to drive

a group of agents to a desired geometric pattern. In [121] the position/orientation

formation control problem for multiple nonholonomic agents using a time-varying

controller that leads the agents to a given formation using only their orientation is ad-

dressed. To solve the consensus and formation-control problems, in [31] a cooperative

123
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control law that is robust to constant communication delays is presented. In [3] a dis-

tributed consensus control law is proposed for a network of nonholonomic agents in

the presence of bounded disturbances with unknown dynamics in all inputs channels.

For an undirected graph, in [100] a smooth time-varying controller is proposed; it is

improved by adding in [12] a PD-like controller at the dynamical level. All these pre-

vious works, except for [12], solve the consensus problem without uniformity on the

initial time, and they only consider the simplified case of vehicle kinematics.

In this chapter we solve two problems of consensus stabilization for nonholonomic

vehicles interconnected through a bidirectional generic graph, under time-varying de-

lays. In the first case, we assume that each robot adopts a particular orientation, i.e.,

consensus is pursued only in their Cartesian positions on the plane. In the second case,

the robots are required to assume a common position and orientation. The solution is

based on the design of δ−PE controllers [64, 67]. We solve these problems under the

assumption that the graph is static, connected and undirected, and that there exists a

bounded time-varying delay in the interconnection.

As in previous chapters our proofs are constructive. Following [72], [74] and [33],

we provide a novel strict Lyapunov-Krasovskii functionals (SLKF), to establish uni-

form global asymptotic stability of the consensus set. This is important to guarantee

robustness with respect to bounded disturbances and to provide a method of gain tun-

ing. To the best of our knowledge this is the first work that provides a SLKFs in this

scenario.

4.1 Network model description

As it is customary in multi-agent consensus [90, 93], the complete dynamics of the

systems is composed of two parts:

i) the dynamics of the nodes, which are described by a second order nonholonomic

differential equations;

ii) the interconnection topology which is modeled using a Laplacian matrix [77].

4.1.1 Node dynamics

We recall the dynamical model of mobile robot given in (2.1) and (2.2), that is
ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

(4.1)



Chapter 4 125

{
v̇i = f1(t, vi, ωi, zi) + g1(t, vi, ωi, zi)u1i

ω̇i = f2(t, vi, ωi, zi) + g2(t, vi, ωi, zi)u2i

(4.2)

Assuming that g1(t, vi, ωi, qi) and g2(t, vi, ωi, qi) are invertible and using the complete

knowledge of the system states and parameters, let

u1i =g1(t, vi, ωi, zi)
−uvi − f1(t, vi, ωi, zi),

u2i =g2(t, vi, ωi, zi)
−uωi − f2(t, vi, ωi, zi)

so that we obtain the familiar second-order model
ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi,

(4.3)

{
v̇i = uvi

ω̇i = uωi.
(4.4)

The consensus problem consists in making each vehicle achieve a certain position rel-

ative to an unknown barycenter. In addition, the vehicles may be required to adopt a

common orientation or they may be allowed to adopt, each, a particular target orien-

tation.

In a compact form, we consider the following model of N second order nonholo-

nomic robots,

ż = Φ(θ)v (4.5a)

v̇ = uv (4.5b)

θ̇ = ω (4.5c)

ω̇ = uω (4.5d)

where z := [z>1 , ..., z
>
N ]> ∈ R2N ; zi := [xi − δxi, yi − δyi]> ∈ R2 is the translational error

of the global translational coordinates [xi, yi] ∈ R2, of the ith-robot, with respect to

a constant vector δi := [δxi, δyi]
> ∈ R2; the global translational coordinates [xi, yi] are

expressed with respect to a fixed frame; the constant vector δi determines the desired

position of the ith-robot relative to the barycenter of the formation zc when zi = zc;

v := [v1, ..., vN ]> ∈ RN ; vi is the linear velocity, Φ(θ) := diag[φ(θi)] ∈ R2N×N ; φ(θi) :=

[cos(θi), sin(θi)]
> ∈ R2; θ̃ := θ − θd := [θ1 − θd1, ..., θN − θdN ]> ∈ RN is the orientation

error of each robot; θd is a constant desired orientation; ω := [ω1, ..., ωN ]> ∈ RN ; ωi is

the angular velocity; and uv := [uv1, ..., uvN ]> ∈ RN and uω := [uω1, ..., uωN ]> ∈ RN are,
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respectively, the translational and the rotational control inputs.

Since θd is constant, the following two equations hold

Φ̇(θ) = −Φ(θ)⊥ω̄, Φ̇(θ)⊥ = Φ(θ)ω̄, (4.6)

where ω̄ = diag[ωi] ∈ RN×N , Φ(θ)⊥ = diag[φ(θi)
⊥] ∈ R2N×N and φ(θi)

⊥ = [sin(θi),− cos(θi)]
>.

The control objective is to steer each zi toward a common position zc, and each

orientation θi toward a specified constant θdi or to a common unknown orientation θc.

4.1.2 Interconnection Topology

The interconnection of the N agents is modeled using the Laplacian matrix L := [`ij] ∈
RN×N , whose elements are defined as

`ij =


∑
j∈Ni

aij i = j

−aij i 6= j
(4.7)

where Ni is the set of agents transmitting information to the ith robot hence, aij > 0 if

j ∈ Ni and aij = 0 otherwise.

Similar to passivity-based (energy-shaping) synchronization [5, 91] and in order

to ensure that the interconnection forces are generated by the gradient of a potential

function, the following assumption is used in this chapter:

Assumption 4.1. The interconnection graph is undirected, static and connected.

Assumption 4.2. The communication, from the j−th agent to the i−th agent, is subject to a

variable time-delay Tij(t) with a known upper-bound T ∗. Hence, it holds that

0 ≤ Tij(t) ≤ T ∗ <∞. (4.8)

Remark 4.1. By construction, L has a zero row sum, i.e., L1N = 0, where 1N is a vector of

N ones. Moreover, Assumption 4.1, ensures that L is symmetric, has a single zero-eigenvalue

and the rest of the spectrum of L is positive. Thus, rank(L) = N − 1.

4.2 Problem formulation

We solve the following two consensus problems: roughly speaking, in the first case

the robots achieve consensus in relation to their location only; in the second case, they

also achieve a common orientation, under a general time-varying delay.
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Delayed Partial Consensus Problem. Consider a network of N nonholonomic

robots satisfying (4.5). Design a decentralized controller verifying Assumptions 4.1-

4.2 such that all robots positions converge, globally, uniformly, and asymptotically, to

a given formation pattern with a desired given orientation θd ∈ RN , i.e., there exists

zc ∈ R2 such that

lim
t→∞

z(t) = 1N ⊗ zc; (4.9a)

lim
t→∞

θi(t) = θdi, (4.9b)

where θdi ∈ R is a given desired constant orientation for each robot, and zc is the

barycenter of the formation pattern.

Delayed Full Consensus Problem. Consider a network of N nonholonomic robots

satisfying (4.5). Design a decentralized controller verifying Assumptions 4.1-4.2 such

that all robots positions and orientation converge, globally, uniformly, and asymptoti-

cally, to a given formation pattern, i.e., there exists [zc θc] ∈ R3 such that

lim
t→∞

z(t) = 1N ⊗ zc; (4.10a)

lim
t→∞

θi(t) = θc, (4.10b)

where [θc zc] are the barycenter of the formation pattern. As in previous chapters, we

solve the afore-mentioned consensus problems by recasting them into classical sta-

bilization problems (of the origin or of a set)1. To that end, we first need to intro-

duce suitable error coordinates (e, s) such that if (e, s) = 0 then equivalently we have

z(t) = 1N ⊗ zc.
Let i ≤ n,

ei = φ(θi)
>
∑
j∈Ni

aij(zi − zj),

si = φ(θi)
⊥>
∑
j∈Ni

aij(zi − zj)

which, defining e := [e1 . . . eN ], s := [s1 . . . sN ], may be written in the equivalent vector

form

e =Φ(θ)>L2z, s = Φ(θ)⊥>L2z. (4.11)

On the other hand, in the presence of state delays, we introduce the delayed counter-

part of (ei, si), denoted by (edi, sdi), as

edi = φ(θi)
>
∑
j∈Ni

aij(zj(t− Tij(t))− zi(t)),

1–see Appendix A.2 for basic definitions and characterizations of stability
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sdi = φ(θi)
⊥>
∑
j∈Ni

aij(zj(t− Tij(t))− zi(t)).

Correspondingly, in vector form we have

ed =Φ(θ)>L2z + Φ(θ)>A(żt),

sd =Φ(θ)⊥>L2z + Φ(θ)⊥>A(żt).
(4.12)

where

A(żt) =


∑

j∈N1
a1j

∫ t
t−Tj1(t)

żj(δ)dδ
...∑

j∈NN aNj
∫ t
t−TjN (t)

żj(δ)dδ

 (4.13)

and we recall that L2 = L⊗ I2.

Then, the control objective (4.9a) (or (4.10a)) is achieved if we prove that (ed, sd, v)→
(0, 0, 0). In fact, having v = 0, implies that A(żt) = 0 and (ed, sd) = (e, s) then, after

Lemma 4.1 below, we know that verifying the control objective (4.9a) (or (4.10a)) is

equivalent to establishing that (e, s)→ (0, 0).

Lemma 4.1. Consider (e, s) given by (4.11), and assume that L satisfies Assumption 4.1.

Then L2z = 0⇔ (e, s) = (0, 0) and, moreover,

λ2(L)z>L2z ≤ |e|2 + |s|2 ≤ λN(L)z>L2z (4.14)

where λ2(L) and λN(L) are the second smallest and the largest eigenvalue of L, respectively.

Proof. Since the matrix

[
Φ(θ)>

Φ(θ)⊥>

]
is non singular. The first fact follows directly. For the

second fact, we remark that |e|2 + |s|2 = z>L2
2z = z>L

1
2
2L2L

1
2
2 z. Since L

1
2
2 z is orthogonal

to the eigenspace associated to the zero eigenvalue of L2, it holds that

λ2(L)z>L
1
2
2L

1
2
2 z ≤ z>L

1
2
2L2L

1
2
2 z ≤ λN(L)z>L

1
2
2L

1
2
2 z

so (4.14) follows. ���

4.3 Control design and stability analysis

Before providing the control inputs for each case-study, we introduce the following

useful functions.

First, we define the function p : R≥0 → R that satisfies the following assumption.
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Assumption 4.3. the function p : R≥0 → R and its derivatives, up to the third, are bounded.

Thus, there exists bp > 0 such that

max
{
|p|∞, |ṗ|∞, |p̈|∞, |p(3)|∞

}
≤ bp.

Moreover, ṗ(t) is persistently exciting, with excitation parameters (T, µ).

Next, we define the function q̄ : R≥0 → RN×N , as q̄(t) = diag(qi(t)) and which is

related to p(t) by the differential equation

q̄(3) +Kα ¨̄q +KI ˙̄q = ṗIn, (4.15)

where Kα and KI are diagonal positive definite matrices. Also, we define the function

f̄ : R≥0 → RN×N , as f̄(t) := diag(fi(t)) and which is related to p(t) by the following

differential equation
¨̄f +Kdθ

˙̄f +Kpθf̄ = p(t)In, (4.16)

in which, Kdθ and Kpθ are diagonal positive definite matrices.

If ṗ(t) satisfies Assumption 4.3 then, after Lemma B.1, it follows that ḟi and q̇i are

also persistently exciting 2 and so are the matrices ¯̇f(t) = ˙̄f(t) and ¯̇q(t) = ˙̄q(t) in the

sense of Definition A.6. Furthermore, there exist bf̄ > 0 and bq̄ > 0 such that

max
{∣∣f̄ ∣∣∞, ∣∣ ¯̇f

∣∣
∞,
∣∣ ¯̈f
∣∣
∞,
∣∣f̄ (3)

∣∣
∞

}
≤ bf̄ .

and

max
{∣∣q̄∣∣∞, ∣∣¯̇q∣∣∞, ∣∣¯̈q∣∣∞, ∣∣q̄(3)

∣∣
∞

}
≤ bq̄.

Remark 4.2. Lemma B.1 also provides an explicit estimation of the excitation parameters

(Tf , µf ) for ḟ , (Tq, µq) for q̇, and the constants bf̄ and bq̄, which are used in the construction of

the strict Lyapunov function.

Finally, for a bounded function ψ : R≥0 → RN , with |ψ|∞ = bψ > 0, we recall the

function Ῡψ2 : R≥0 → RN×N , as Ῡψ2(t) := diag
(

Υψ2
i
(t)
)

, with

Υψ2
i
(t) := 1 + 2b2

ψT −
2

T

∫ t+T

t

∫ m

t

ψi(s)
2ds dm (4.17)

–cf equation (1.4) in Chapter 1.

Recall also that Υψ2
i
(t) admits the following bounds 1 ≤ Υψ2

i
(t) < bΥi := 1 + 2b2

ψT

2This is reminiscent of the fact that the output of a stable proper minimum phase filter driven by a
PE input is also PE –see [41, Lemma 4.8.3]



130

and, furthermore,

Υ̇ψ2
i
(t) = − 2

T

∫ t+T

t

ψi(s)
2ds+ 2ψi(t)

2. (4.18)

Moreover, if ψ is persistently exciting, we obtain

Υ̇ψ2
i
(t) ≤ −2µ

T
+ 2ψi(t)

2. (4.19)

We are now ready to provide the translation and the rotation control laws (uv, uω) to

solve the partial and the full delayed and undelayed consensus problems.

4.3.1 Undelayed partial consensus problem

In the translational error coordinates (e, s), we employ a simple undelayed PD-like

controller as it was originally proposed in [12], that is,

uv = −Kdtv −Kpte, (4.20)

where Kdt and Kpt are diagonal positive definite matrices. For the rotational part, we

propose the following controller

uω = −Kdθω −Kpθθ̃ − p(t)κ(s, e) (4.21)

where Kdθ and Kpθ are diagonal positive definite matrices, and κ(s, e) is defined as

κ(s, e) =
1

2
[s2

1 + e2
1, ..., s

2
N + e2

N ]> ∈ RN . (4.22)

The closed-loop system, which results from Equations (4.5), (4.11), (4.20), and (4.21), is

ż =Φ(θ)v (4.23a)

v̇ =−Kdtv −Kpte (4.23b)

ė =− ω̄s+ Φ(θ)>L2Φ(θ)v (4.23c)

ṡ =ω̄e+ Φ(θ)⊥>L2Φ(θ)v (4.23d)
˙̃θ =ω (4.23e)

ω̇ =−Kdθω −Kpθθ̃ − p(t)κ(s, e). (4.23f)

Thus, equations (4.23a)-(4.23b) determine the closed-loop dynamics for the transla-

tional dynamics while equations (4.23e)-(4.23f) determines the closed-loop dynamics

of the rotational coordinates (θ̃, ω). These can be viewed as a stable second order sys-
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tem with input −p(t)κ(s, e) whose role is to excite the rotational velocity ω̄ when the

errors (s, e) are different from zero.

We establish uniform global asymptotic stability of the origin of the system (4.23).

Our proof is constructive as it relies on the construction of a strict Lyapunov function.

To that end, we introduce the following change of coordinates:

eθ = θ̃ + f̄(t)κ(s, e), eω = ω + ˙̄f(t)κ(s, e). (4.24)

Next, let us define Xt := [v>, e>, s>]> ∈ R3N and Xr := [e>θ , e
>
ω ]> ∈ R2N as the trans-

lational and the rotational components of the system, respectively. Additionally, let

ē = diag(ei), s̄ = diag(si), ēω = diag(eωi) and κ̄ = diag(κi). Then using (4.16), we

obtain

Ẋt =


−Kdt −Kpt 0

0 0 ˙̄fκ̄− ēω
0 − ˙̄fκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv (4.25a)

Ẋr =

[
0 IN

−Kpθ −Kdθ

]
Xr +

[
f̄
˙̄f

] (
ēΦ>L2 + s̄Φ⊥>L2

)
Φv. (4.25b)

We remark that in view of Lemma 4.1, (Xt, Xr) = (0, 0) is equivalent to (v, z, θ, ω) =

(0, 1N ⊗ zc, θd, 0), and the dynamics (4.23) is embedded in (4.25). Thus, solving the

consensus problem is equivalent to proving uniform global asymptotic stability of the

origin for (4.25).

Theorem 4.1. Consider the system (4.5) in closed-loop with (4.20) and (4.21). Assume that

Kdt, Kpt, Kdθ and Kpθ are diagonal positive definite and Assumption 4.3 holds. Then, the

origin (Xt, θ̃, ω) = (0, 0, 0) is uniformally globally asymptotically stable.

Proof. (Sketch) The proof is constructive; we provide a strict Lyapunov function. Only

the main steps are given here, the complete proof is in Appendix B.9.

First, we observe that (4.25a) admits the following non-strict Lyapunov function

V (v, z) = v>K−1
pt v + z>L2z. (4.26)

Indeed, in view of (4.14), it is concluded that V (v, z) is positive definite and radially

unbounded with regards to Xt = 0, and using (4.14) we obtain

v>K−1
pt v +

1

λN(L)

(
eT e+ sT s

)
≤ V (v, z) ≤ v>K−1

pt v +
1

λ2(L)

(
eT e+ sT s

)
.
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Moreover, the time-derivative of V along the trajectories of (4.23) yields

V̇ (θ,Xt) = −2v>K−1
pt Kdtv. (4.27)

The strict Lyapunov function for the closed-loop system (4.25) is

Γ(t,Xt, Xr) = W (t,Xt, V ) + ρ1(V )Z(Xr) + ρ2(V )V (4.28)

where

W = γ(V )V + V κ>Ῡḟ2(t)κ+ α(V )e>v − c1V e
> ¯̇fs+ c1bfλN(L)V 2

+ (λN(L) + |Kpt|)α(V )V,

ρ1(V ) =
2σ(V )

c2λm(Kdθ)
[α(V ) + c1bfV ] + 1, (4.29)

σ(V ) = max

{
16Tc1bf

µ
,
4λN(L)

∣∣K−1
dt Kpt

∣∣α(V )V

γ(V )

}
,

α(V ) = 4b2
fλN(L)V 2

∣∣K−1
pt

∣∣+ 4c1b
2
fλN(L)

∣∣K−1
pt

∣∣V 2 +
4c1

c4

∣∣∣ ˙̄f 2
(
Φ⊥>L2Φ

)2
∣∣∣
∞

∣∣K−1
dt

∣∣V +

c2
1c4b

2
f

∣∣K−1
pt

∣∣ ,
γ(V ) = 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡḟ2Φ>L2Φ
∣∣2
∞ + 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡḟ2Φ⊥>L2Φ
∣∣2
∞(4.30)

+
∂α

∂V
V (|Kpt|+ λN(L)) +

c4

2
c1V + 2α(V )

∣∣Φ>L2Φ
∣∣
∞

∣∣K−1
dt Kpt

∣∣
∞ (4.31)

+
c4

2

∣∣KptK
−1
dt

∣∣α2(V ) +
c4

2
α(V ) |Kdt|+ 2c1bfλN(L)V +

4

c4

V 2λN(L)
∣∣K−1

dt

∣∣(4.32)

+
c4

2
c2

1

∣∣K−1
dt Kpt

∣∣ ∣∣∣ ˙̄f 2
(
Φ>L2Φ

)2
∣∣∣
∞
, (4.33)

ρ2(V ) = ρ1(V )ρ3(V )V, ρ3(V ) =
c3λN(L)

∣∣K−1
dt Kpt

∣∣
2

(∣∣Φ>L2Φ
∣∣2
∞ +

∣∣Φ⊥>L2Φ
∣∣2
∞

)
,

and the constants c1, c2, c3 and c4 are:

c1 = 1 +
λN(L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)} , c2 =
2

λm(Kdθ)
+
λM(Kdθ) + 1

λm(Kpθ)
+ 1, (4.34)
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c3 = max

{
8 (2c2bf + bf )

2

c2λm(Kdθ)
,
8 (2c2bfλM(Kpθ) + bf )

2

λm(Kpθ)

}
, c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
.

Since ρ1 and ρ2 are positive functions and radially unbounded, positive definite-

ness of Γ is ensured by the facts that Γ(t, 0, 0) = 0, for all t ≥ 0, and

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡḟ2(t)κ(e, s) + 2c1bfλN(L)V 2

+2 (λN(L) + |Kpt|)α(V )V,

Z ≥ min {1, λm(Kpθ)}
(
e>θ eθ + e>ω eω

)
,

Z ≤ max {1 + c2, c2λM(Kpθ) + 1}
(
e>θ eθ + e>ω eω

)
.

After some term chasing and long cumbersome manipulations we get

Γ̇ ≤− µ

4T
V 3 − ρ1(V )

8

[
c2e
>
ωKdθeω + e>θ Kpθeθ

]
− 1

4
γ(V )v>KdtK

−1
pt v −

1

8
α(V )e>Kpte.

(4.35)

Therefore Γ̇ is negative definite and Γ qualifies as a strict Lyapunov function for sys-

tem (4.25). Global uniform asymptotic stability of the equilibrium (Xt, Xr) = (0, 0) is

ensured and thus the consensus problem is solved. ���

4.3.2 Delayed partial consensus problem

Using the delayed translational error coordinates (ed, sd), we employ the following

delayed PD-like controller for the translational input

uv = −Kdtv −Kpted. (4.36)

where Kdt and Kpt are diagonal positive definite matrices.

We introduce the rotational controller as

uω = −Kdθω −Kpθθ̃ − p(t)κ(sd, ed), (4.37)

where Kdθ and Kpθ are diagonal positive definite matrices, θ̃ = θ− θd and the function

κ is defined in (4.22).
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The closed-loop system resulting from the open loop equation (4.5) and the con-

trollers (4.12), (4.36) and (4.37) is

ż =Φ(θ)v (4.38a)

v̇ =−Kdtv −Kpted (4.38b)

ė =− ω̄s+ Φ(θ)>L2Φ(θ)v (4.38c)

ṡ =ω̄e+ Φ(θ)⊥>L2Φ(θ)v (4.38d)
˙̃θ =ω (4.38e)

ω̇ =−Kdθω −Kpθθ̃ − p(t)κ(sd, ed). (4.38f)

The closed-loop equation (4.38) is similar to (4.23) in which we replaced in the vector

field the errors (e, s) by their delayed version (ed, sd) introduced in (4.12). That is, we

modify the Lyapunov function constructed for the system (4.23) into a strict Lyapunov-

Krasovskii functional in order to establish uniform global asymptotic stability of the

origin of the system (4.38). To that end, we rewrite κ(ed, sd) as

κ(ed, sd) = κ(e, s) + κd(e, s, θ, żt) (4.39)

with,

κd(·) =
1

2


AT1 (żt)A1(żt) + 2e1φ(θ1)TA1(żt) + 2s1φ(θ1)⊥TA1(żt)

...

ATN(żt)AN(żt) + 2eNφ(θN)TAN(żt) + 2sNφ(θN)⊥TAN(żt)

 (4.40)

where żt denote the functional żt(θ) := ż(t+ θ), for all θ ∈ [−T, 0].

Let us use the same change of coordinates used in (4.24), that is

eθ = θ̃ + f̄(t)κ(s, e), eω = ω + ˙̄f(t)κ(s, e) (4.41)

where the matrix f̄ verifies (4.16).

Next, having Xt = [v>, e>, s>]>, Xr = [e>θ , e
>
ω ]>, ē = diag(ei), s̄ = diag(si), ēω =

diag(eωi), κ̄ = diag(κi) and using (4.16), we get

Ẋt =


−Kdt −Kpt 0

0 0 ˙̄fκ̄− ēω
0 − ˙̄fκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv −


KptΦ(θ)T

0

0

A(żt) (4.42a)
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Ẋr =

[
0 IN

−Kpθ −Kdθ

]
Xr +

[
f̄
˙̄f

] (
ēΦ>L2 + s̄Φ⊥>L2

)
Φv −

[
0

p(t)

]
κd(e, s, θ, żt). (4.42b)

The next result establishes uniform global asymptotic stability of the origin (Xt, Xr) =

(0, 0) of the system (4.42) provided that the following assumption holds

Assumption 4.4. The matrices Kdt and Kpt satisfy

1−
(
1 +N2ā2

)
T ∗λM(KptK

−
dt) ≥ 0. (4.43)

Hence, we recover uniform global asymptotic stability of (v, z, θ, ω) = (0, 1N ⊗
zc, θd, 0) in the original coordinates.

Theorem 4.2. Consider the system (4.5) in closed loop with (4.36) and (4.37). Assume that:

Kdt, Kpt, Kdθ and Kpθ are diagonal positive definite and Assumptions 4.1, 4.2, 4.3, 4.4 hold.

Then, the origin of the closed-loop system in the original state space, i.e, (e, s, v, θ̃, ω) =

(0, 0, 0, 0, 0) is uniformally globally asymptotically stable.

Proof. (Sketch) The proof is constructive; we provide a strict Lyapunov-Krasovskii

functional. Only the main steps are given here, the complete proof is in Appendix

B.10.

First, we observe that the translational part of the system admits the following non-

strict Lyapunov-Krasovskii functional

V (v, z, żt) = v>K−1
pt v + z>L2z +

∫ 0

−T ∗

∫ t

t+θ

ż(s)T ż(s)dsdθ, (4.44)

where T ∗ = maxi,j {Tij}.
Indeed, in view of (4.14), and the following inequality∫ 0

−T ∗

∫ t

t+θ

ż(s)T ż(s)dsdθ ≤ T ∗
∫ t

t−T ∗
|ż(s)|2 ds,

it follows that the function V is positive definite and radially unbounded with respect

toXt = 0, that is, there exist two classK∞ functions u and v, such that inequality (A.10)

holds with respect to Xt = 0. Which implies that V (v, z, żt) is Lyapunov-Krasovskii

candidate with respect to Xt = 0. Moreover, the time-derivative of V along the trajec-
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tories of (4.38) is

V̇ =− 2v>K−1
pt Kdtv + 2vTΦ(θ)TA(żt) + T ∗vTv −

∫ t

t−T ∗
ż(s)T ż(s)ds

≤− [2− T ∗λM(KptK
−
dt)]v

>K−1
pt Kdtv −

1

ā2N

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

T żi(s)ds

+ 2vTΦ(θ)TA(żt) (4.45)

then, we apply Jensen’s inequality∫ t

t−Tij
żi(s)

T żi(s)ds ≤ −
1

T ∗ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds (4.46)

and, we use

|A(żt)|2 ≤N
N∑
j=1

N∑
i=1

∫ t

t−Tij
żi(s)

Tdsa2
ij

∫ t

t−Tij
żi(s)ds (4.47)

to obtain

V̇ ≤− [2− T ∗λM(KptK
−
dt)]v

>K−1
pt Kdtv −

1

ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

+
N

2ε

N∑
j=1

N∑
i=1

∫ t

t−Tij
żi(s)

Tdsa2
ij

∫ t

t−Tij
żi(s)ds+ ελM(KptK

−
dt)v

TK−1
pt Kdtv. (4.48)

Taking ε = N2āT ∗ and the matrices Kdt and Kpt such that Assumption 4.4 is verified,

we get

V̇ ≤− v>K−1
pt Kdtv −

1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds (4.49)

The strict Lyapunov-Krasovskii functional for the closed-loop system (4.42) is

Γ(t,Xt, Xr, żt) = W (t,Xt, V, żt) + ρ1(V )Z(Xr) + ρ2(V )V (4.50)

where

W = γ(V )V + V κ>Ῡḟ2(t)κ+ α(V )e>v − c1V e
> ¯̇fs+ c1bfλN(L)V 2

+ (λN(L) + |Kpt|)α(V )V,
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Z = c2

(
e>ω eω + e>θ Kpθeθ

)
+ e>θ eω,

ρ1(V ) =
2σ(V )

c2λm(Kdθ)
(α(V ) + c1bfV ) + 1 + V,

σ(V ) = max

{
16Tc1bf

µ
,
4λN(L)

∣∣K−1
dt Kpt

∣∣α(V )V

γ(V )

}
,

α(V ) = 4b2
fλN(L)V 2

∣∣K−1
pt

∣∣+ 4c1b
2
fλN(L)

∣∣K−1
pt

∣∣V 2 +
4c1

c4

∣∣∣ ˙̄f 2
(
Φ⊥>L2Φ

)2
∣∣∣
∞

∣∣K−1
dt

∣∣V
+c2

1c4b
2
f

∣∣K−1
pt

∣∣ ,
γ(V ) = 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡḟ2Φ>L2Φ
∣∣2
∞ + 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡḟ2Φ⊥>L2Φ
∣∣2
∞

+
∂α

∂V
V (|Kpt|+ λN(L)) +

c4

2
c1V + 2α(V )

∣∣Φ>L2Φ
∣∣
∞

∣∣K−1
dt Kpt

∣∣
∞

+
c4

2

∣∣KptK
−1
dt

∣∣α2(V ) +
c4

2
α(V ) |Kdt|+ 2c1bfλN(L)V +

4

c4

V 2λN(L)
∣∣K−1

dt

∣∣
+
c4

2
c2

1

∣∣K−1
dt Kpt

∣∣ ∣∣∣ ˙̄f 2
(
Φ>L2Φ

)2
∣∣∣
∞

+ 8ā2N2T ∗λM(Kpt)α(V ),

ρ2(V ) = bpρ1(V )[1 + c2]N2ā2T ∗[λN(L)c5V + c6ρ1(V )] + ρ1(V )ρ3(V )V,

ρ3(V ) =
c3λN(L)

∣∣K−1
dt Kpt

∣∣
2

(∣∣Φ>L2Φ
∣∣2
∞ +

∣∣Φ⊥>L2Φ
∣∣2
∞

)
,

and the constants c1, c2, c3, c4, c5 and c6 are:

c1 = 1 +
λN(L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)} , c2 =
2

λm(Kdθ)
+
λM(Kdθ) + 1

λm(Kpθ)
+ 1,

c3 = max

{
8 (2c2bf + bf )

2

c2λm(Kdθ)
,
8 (2c2bfλM(Kpθ) + bf )

2

λm(Kpθ)

}
,

c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
, c5 =

bpN
2ā2T ∗[1 + c2]

min {1, λm(Kdθ)}
,
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c6 = 16bp[2λM(K−dθ) + λM(K−pθ)].

Γ is Lyapunov-Krasovskii candidate with respect to the origin due to the fact that

Γ(t, 0, 0, 0) = 0, for all t ≥ 0, V is Lyapunov-Krasovskii candidate with respect to

Xt = 0, and the following inequalities

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡḟ2(t)κ(e, s) + 2c1bfλN(L)V 2 + 2 (λN(L) + |Kpt|)α(V )V,

Z ≥ min {1, λm(Kpθ)}
(
e>θ eθ + e>ω eω

)
,

Z ≤ max {1 + c2, c2λM(Kpθ) + 1}
(
e>θ eθ + e>ω eω

)
.

After some lengthy computations we obtain

Γ̇ ≤− µ

4T
V 3 − ρ1(V )

16

[
c2e
>
ωKdθeω + e>θ Kpθeθ

]
− 1

4
γ(V )v>KdtK

−1
pt v −

1

16
α(V )e>Kpte.

(4.51)

Therefore, Γ̇ is negative definite and Γ qualifies as a strict Lyapunov-Krasovskii func-

tional for the system (4.42). Global uniformly asymptotic stability of the equilibrium

(Xt, Xr) = (0, 0) is ensured and thus the delayed partial consensus problem is solved.

���

4.3.3 Undelayed full consensus problem

In this case-study, we employ the translational controller introduced in (4.20), that is

uv = −Kdtv −Kpte, (4.52)

where by design, Kdt and Kpt are diagonal positive definite matrices.

The rotational controller uω is

ufω = −Lθ + Lq̄(t)κ(s, e) + α, (4.53a)
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α̇ = −Kαα−KIω + ṗκ(s, e), (4.53b)

whereKα andKI are diagonal positive definite matrices and κ(s, e) is defined in (4.22).

We solve the full consensus problem by studying the closed-loop of (4.5) under the

controllers (4.11), (4.20), and (4.53); we obtain

ż =Φ(θ)v (4.54a)

v̇ =−Kdtv −Kpte (4.54b)

ė =− ω̄s+ Φ(θ)>L2Φ(θ)v (4.54c)

ṡ =ω̄e+ Φ(θ)⊥>L2Φ(θ)v (4.54d)

θ̇ =ω (4.54e)

ω̇ =− Lθ + α− Lq̄(t)κ(s, e) (4.54f)

α̇ =−Kαα−KIω − ṗκ(s, e). (4.54g)

The translational part (4.54b)-(4.54d) is the same as (4.23b)-(4.23d) in the undelayed

partial consensus case, whereas, the rotation part in (4.54e)-(4.54g) has a PID-like struc-

ture instead of a PD-like structure as in (4.23e)-(4.23f).

We establish uniform global asymptotic stability of the invariant set

S :=
{

(v, e, s, θ, ω, α) ∈ R6N : (v, e, s, Lθ, ω, α) = 0
}
. (4.55)

The proof relies on the construction of a strict Lyapunov function. To that end, we

introduce the following change of coordinates

eθ = θ̃ + q̄(t)κ(s, e), eω = ω + ˙̄q(t)κ(s, e), eα = α + ¨̄q(t)κ(s, e). (4.56)

HavingXt = [v>, e>, s>]>, we introduce the rotational component asXr := [e>θ , e
>
ω , e

>
α ]>,

using ē = diag(ei), s̄ = diag(si), ēω = diag(eωi), κ̄ = diag(κi), and (4.15) we obtain

Ẋt =


−Kdt −Kpt 0

0 0 ˙̄qκ̄− ēω
0 − ˙̄qκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv (4.57a)

Ẋr =


0 IN 0

−L 0 IN

0 −KI −Kα

Xr +


q̄

˙̄q

¨̄q

(ēΦ>L2 + s̄Φ⊥>L2

)
Φv. (4.57b)
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Let us introduce the following set

D :=
{

(Xt, Xr) ∈ R6N : (Xt, Leθ, eω, eα) = 0
}
. (4.58)

Note that in view of Lemma 4.1, (Xt, Xr) ∈ D is equivalent to having (v, z, θ, ω, α)

belonging to the set S introduced in (4.55). Thus, in the following, we analyze the

stability of the set D.

Theorem 4.3. Consider the system (4.5) in closed-loop with (4.20) and (4.53). Assume that

Kdt, Kpt, KI and Kα are diagonal positive definite and Assumption 4.3 holds. Then, the set D
of the closed-loop state space is uniformally globally asymptotically stable. Moreover, the proof

is constructive; we provide a strict Lyapunov function.

Proof. (Sketch) The complete proof is in Appendix B.11, here we include only the main

steps.

First, the translational part of the system admits V (v, z) as a non-strict Lyapunov

function, using (4.26) and (4.27) and the fact that the translational part is the same in

(4.57) and in (4.25).

The strict Lyapunov function for the closed-loop system (4.57) is

Γ(t,Xt, Xr) = W (t,Xt, V ) + ρ1(V )Z(Xr) + ρ2(V )V (4.59)

where

W = γ(V )V + V κ>Ῡq̇2(t)κ+ α(V )e>v − c1V e
> ¯̇qs+ c1bqλN(L)V 2

+ (λN(L) + |Kpt|)α(V )V,

Z = c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
+ c5e

T
ωeα + eTθ Leω,

ρ1(V ) =
2σ(V )

c5λm(KI)
(α(V ) + c1bqV ) + 1, (4.60)

σ(V ) = max

{
16Tc1bq

µ
,
4λN(L)

∣∣K−1
dt Kpt

∣∣α(V )V

γ(V )

}
, (4.61)

α(V ) = 4b2
qλN(L)V 2

∣∣K−1
pt

∣∣+ 4c1b
2
qλN(L)

∣∣K−1
pt

∣∣V 2 +
4c1

c4

∣∣∣¯̇q2
(
Φ⊥>L2Φ

)2
∣∣∣
∞

∣∣K−1
dt

∣∣V
+c2

1c4b
2
q

∣∣K−1
pt

∣∣ ,
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γ(V ) = 2c4V
2λN(L)

∣∣K−1
dt Kpt

∣∣ ∣∣Ῡq̇2Φ>L2Φ
∣∣2
∞ + 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡq̇2Φ⊥>L2Φ
∣∣2
∞

+
∂α

∂V
V (|Kpt|+ λN(L)) +

c4

2
c1V + 2α(V )

∣∣Φ>L2Φ
∣∣
∞

∣∣K−1
dt Kpt

∣∣
∞

+
c4

2

∣∣KptK
−1
dt

∣∣α2(V ) +
c4

2
α(V ) |Kdt|+ 2c1bqλN(L)V +

4

c4

V 2λN(L)
∣∣K−1

dt

∣∣
+
c4

2
c2

1

∣∣K−1
dt Kpt

∣∣ ∣∣∣¯̇q2
(
Φ>L2Φ

)2
∣∣∣
∞
,

ρ2(V ) = c3ρ3(V ), ρ3(V ) = V ρ1(V )λn(L)
[∣∣φTLφ∣∣∞ +

∣∣φ⊥TLφ∣∣∞] , (4.62)

and the constants c1, c2, c3 and c4 are:

c1 = 1 +
λN(L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)} ,

c2 = 4c5λ(KIKα) + 4c5λM(K2
IKα) + 4c2

5λM(KIK
−
α )

+ 4λM(KIK
−
α ) + 2λn(L) + 4 + 2λM(KI)c

2
5,

c3 = 2b2
q

[
(2c2 + 1)2 +

λM(K−I )

c5

(2c2 + c5 + λn(L))2+

λM(K−αKI)

c2

(2λM(K−I ) + c5)2

] ∣∣K−dtKpt

∣∣ ,

c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
, c5 = 4λn(L)λM(K−I ).

Positive definiteness of Γ with respect toD is ensured, which means that Γ(t,Xt, Xr) ≥
0 and Γ(t,Xt, Xr) = 0 ⇔ |[Xt Xr]|D, for all t ≥ 0), using the fact that ρ1 and ρ2 are

positive radially unbounded functions and the following inequalities hold

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡq̇2(t)κ(e, s) + 2c1bfλN(L)V 2 + 2 (λN(L) + |Kpt|)α(V )V,

and

c2

2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
≤ Z ≤ 2c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
.
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After some term chasing and some cumbersome manipulations we get

Γ̇ ≤− ρ1(V )

8

[
c2e

T
αK

−
I Kαeα + c5e

T
ωKIeω + eTθ L

2eθ
]

− 1

4
γ(V )v>KdtK

−1
pt v −

1

8
α(V )e>Kpte−

µ

4T
V 3

(4.63)

Therefore Γ̇ is negative definite and Γ qualifies as a strict Lyapunov function for the

system (4.57). Global uniformly asymptotic stability of the set D is ensured and thus

the full consensus problem is solved. ���

4.3.4 Delayed full consensus problem

For the translational controller, we employ the same delayed PD-like controller used

in (4.36), that is,

uv = −Kdtv −Kpted. (4.64)

where Kdt and Kpt are diagonal positive definite matrices.

For the rotational part, we introduce for each i

uωi =−Kωiωi −Kωiq̇iκi(sd, ed)−
∑
j∈Ni

aij (θi − θj(t− Tij(t))) + αi

+
∑
j∈Ni

aij [qiκi(sd, ed)− qj(t− Tij(t))κj(sd(t− Tij(t)), ed(t− Tij(t)))] (4.65a)

α̇i =−Kαiαi −KIiωi + ṗκi(sd, ed). (4.65b)

with Kω, Kα and KI diagonal positive definite matrices.

Using the variable eθ := θ + q̄κ(e, s), the control law (4.65) has the following form

uω = −Kωω −Kω
¯̇qκ(sd, ed)− (Leθ +A(ėθt)) + α− (4.66a)


...∑

j∈Ni aijqi [κi(sd, ed)− κi(s, e)]
...

+


...∑

j∈Ni aijqj(t− Tij)

[
κj(sd(t− Tij), ed(t− Tij))−
κj(s(t− Tij), e(t− Tij))

]
...

 ,
α̇ = −Kαα−KIω + ṗκ(sd, ed), (4.66b)
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where

A(ėθt) =


∑

j∈N1
a1j

∫ t
t−Tj1(t)

ėθj(δ)dδ
...∑

j∈NN aNj
∫ t
t−TjN (t)

ėθj(δ)dδ

 , (4.67)

Leθ +A(ėθt) =


∑

j∈N1
a1j(eθ1 − eθj(t− Tj1))

...∑
j∈NN aNj(eθN − eθj(t− TjN))

 , (4.68)

and the function κ defined in (4.22).

Using (4.39) and the matrix D := diag
[∑

j∈Ni aij

]
, we obtain

uω = −Kωω −Kω
¯̇qκ(sd, ed)− (Leθ +A(ėθt)) + α−Dq̄κd(·) + B(t) (4.69a)

α̇ = −Kαα−KIω + ṗκ(sd, ed). (4.69b)

where

B(t) :=


...∑

j∈Ni aijqj(t− Tij)κdj
(
s(t− Tij), e(t− Tij), θ(t− Tij), żt−Tij

)
...

 ,
In this part, we use the controllers (4.12), (4.36), and (4.65), in closed-loop with the

system (4.5) to obtain

ż =Φ(θ)v (4.70a)

v̇ =−Kdtv −Kpted (4.70b)

ė =− ω̄s+ Φ(θ)>L2Φ(θ)v (4.70c)

ṡ =ω̄e+ Φ(θ)⊥>L2Φ(θ)v (4.70d)

θ̇ =ω (4.70e)

ω̇ =−Kωω − Leθ + α−A(ėθt)−Kω
¯̇qκ(ed, sd)−Dq̄κd(t) + B(t) (4.70f)

α̇ =−Kαα−KIω − ṗκ(sd, ed). (4.70g)

The closed-loop equation (4.70) is similar to (4.54) in which we replaced the errors (e, s)

by their delayed version (ed, sd) introduced in (4.12). In the next theorem, we propose

to extend the strict Lyapunov function constructed for the the system (4.54) to a strict

Lyapunov-Krasovskii functional in order to establish uniform global asymptotic sta-

bility of the set S introduced in (4.55) for the closed-loop system when B(·) = 0, then
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we use the output injection argument in Lemma A.7 to conclude the global uniform

asymptotic stability of the global closed-loop system.

Remark 4.3. The output injection argument in Lemma A.7 remains valid in the presence of

uniformally bounded time delay at least when the unperturbed system admits a strict Lyapunov-

Karasovskii functional.

Let us recall the change of coordinates used in (4.56)

eθ = θ̃ + q̄(t)κ(s, e), eω = ω + ˙̄q(t)κ(s, e), eα = α + ¨̄q(t)κ(s, e). (4.71)

Having Xt = [v>, e>, s>]>, Xr = [e>θ , e
>
ω , e

>
α ]>, ē = diag(ei), s̄ = diag(si), ēω = diag(eωi),

κ̄ = diag(κi) and using (4.15), we obtain

Ẋt =


−Kdt −Kpt 0

0 0 ˙̄qκ̄− ēω
0 − ˙̄qκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv −


KptΦ(θ)T

0

0

A(żt) (4.72a)

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0

+


q̄

˙̄q

¨̄q

(ēΦ>L2 + s̄Φ⊥>L2

)
Φv

−


0

Kω ˙̄q +Dq̄

ṗ

κd(e, s, θ, żt) +


0

B(t)

0

 . (4.72b)

Note that in view of Lemma 4.1, (Xt, Xr) belongs to the set D, introduced in (4.58), is

equivalent to having (v, e, s, θ, ω, α) belonging to the S introduced in (4.55). Thus, we

propose to study the stability of the set D, provided that the following extra assump-

tion holds

Assumption 4.5.

λm(Kω) ≥ 2T ∗2N2ā2

c2

[
1

6
+ 2c2

]
,

with,

c2 = 3λM(Kω)− 2λN(L) +
3

2
λM(KIK

−
α ).

Theorem 4.4. Consider the system (4.5) in closed-loop with (4.36) and (4.65) with B(t) = 0.

Assume thatKdt,Kpt,Kω,Kα andKI are diagonal positive definite and Assumptions 4.1, 4.2,
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4.3, 4.5 hold. Then, the setD, introduced in (4.58), of the closed-loop state space is uniformally

globally asymptotically stable.

Proof. (Sketch) The proof is constructive; we provide a strict Lyapunov-Krasovskii

functional. The complete proof is in Appendix B.12, the main steps are the follow-

ing

First, since the translational part of the system ((4.70b)-(4.70c)) is the same as in the

partial delayed case ((4.38b)-(4.38c)) then, using (4.44) and (4.45), we conclude that it

admits V (v, z, żt) as a non-strict Lyapunov-Krasovskii functional with respect to Xt =

0.

The strict Lyapunov-Krasovskii functional for the closed-loop system (4.72) with

B(t) = 0 is

Γ(t,Xt, Xr, żt, ėθt) = W (t,Xt, V, żt) + ρ1(V )Z(Xr, ėθt) + ρ2(V )V (4.73)

where

W = γ(V )V + V κ>Ῡq̇2(t)κ+ α(V )e>v − c1V e
> ¯̇qs+ c1bqλN(L)V 2

+ (λN(L) + |Kpt|)α(V )V,

Z = c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
+ eTθ Leω + c5

∫ 0

−T ∗

∫ t

t+h

ėTθ (s)ėθ(s)dsdh,

ρ1(V ) =
2σ(V )

c2λm(Kω)
(α(V ) + c1bqV ) + 1 + V,

σ(V ) = max

{
16Tc1bq

µ
,
4λN(L)

∣∣K−1
dt Kpt

∣∣α(V )V

γ(V )

}
,

α(V ) = 4b2
qλN(L)V 2

∣∣K−1
pt

∣∣+ 4c1b
2
qλN(L)

∣∣K−1
pt

∣∣V 2 +
4c1

c4

∣∣∣¯̇q2
(
Φ⊥>L2Φ

)2
∣∣∣
∞

∣∣K−1
dt

∣∣V
+c2

1c4b
2
q

∣∣K−1
pt

∣∣ ,
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γ(V ) = 2c4V
2λN(L)

∣∣K−1
dt Kpt

∣∣ ∣∣Ῡq̇2Φ>L2Φ
∣∣2
∞ + 2c4V

2λN(L)
∣∣K−1

dt Kpt

∣∣ ∣∣Ῡq̇2Φ⊥>L2Φ
∣∣2
∞

+
∂α

∂V
V (|Kpt|+ λN(L)) +

c4

2
c1V + 2α(V )

∣∣Φ>L2Φ
∣∣
∞

∣∣K−1
dt Kpt

∣∣
∞

+
c4

2

∣∣KptK
−1
dt

∣∣α2(V ) +
c4

2
α(V ) |Kdt|+ 2c1bqλN(L)V +

4

c4

V 2λN(L)
∣∣K−1

dt

∣∣
+
c4

2
c2

1

∣∣K−1
dt Kpt

∣∣ ∣∣∣¯̇q2
(
Φ>L2Φ

)2
∣∣∣
∞

+ 8ā2N2T ∗λM(Kpt)α(V ),

ρ2(V ) = c3ρ3(V ) + ρ1(V )bqV λm(KptK
−
dt)
(
λ2
N(L) + c6c5T

∗)+

2ā2N2T ∗ρ1(V )
[c2

2
(bq + bp)c7ρ1(V ) + c6c2bq(1 +

(
1 + λM(K−ωD)

)2
λM(Kω))V λN(L)+

c7

2
λM(Kω)

(
1 + λM(K−ωD)

)2
bqρ1(V ) +

2 (1 + λM(K−ωD))
2
λM(Kω)

c6

λN(L)V bq

]
,

ρ3(V ) = V ρ1(V )λn(L)
[∣∣φTLφ∣∣2∞ +

∣∣φ⊥TLφ∣∣2∞] ,
and the constants c1 − c7 are:

c1 = 1 +
λN(L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)} , c2 = 3λM(Kω) + 2λN(L) +
3

2
λM(KIK

−
α ),

c3 = b2
q

[
(2c2 + 1)2 + λM(Kω)(2c2 + λn(L))2 + λM(K−αKI)4λM(K−I )2

] ∣∣K−dtKpt

∣∣ ,
c4 = max

{
2,

2T

µ

(
2 +

8N

λ2(L)

)}
, c5 = ā2N2T ∗

[
1

6
+ 2c2

]
,

c6 = 16bq

[
λM(Kω) +

c5T
∗

c2

+ 2 + 2λM(K−I Kα)

]
,

c7 = 2N2T ∗ā2
[
bpλ

2
M(Kω) + λM(K−I )bp + λM(Kω)λN(L)bq

]

Notice that the functionalZ(Xr, ėθt) is a strict Lyapunov-Krasovskii functional with

respect to the set

Dr :=
{

(Leθ, eω, α) ∈ R3N / Leθ = eω = α = 0
}
,
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under the assumption 4.5, for the following delayed system

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0

 . (4.74)

In deed, Z(Xr, ėθt) is a Lyapunov-Krasovskii candidate with respect to the set Dr due

to the following inequalities

Z ≥ c2

2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
,

Z ≤ 2c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
+ 2c5T

∗
∫ t

t−T ∗
|ėθ(s)|2 ds

then, one can easily find the two classK∞ functions u and v such that inequality (A.10)

holds with respect to the set Dr.
The time-derivative of Z(Xr, θ̇t) along trajectories of (4.74) verifies

Ż(·) =− 2c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− eTθ L2eθ − eTθ LKωeω + eTθ Leα + eTωLeω

− eTθ LA(ėθt)− 2c2e
T
ωA(ėθt) + c5T

∗ėTθ ėθ − c5

∫ t

t−T ∗
ėTθ (s)ėθ(s)ds. (4.75)

Using the fact that Kω > IN both with the following inequalities

eTθ Leα ≤
1

2ε
eTθ L

2eθ +
ε

2
λM(KIK

−
α )eTαK

−
I Kαeα

eTωLeω ≤ λN(L)eTωKωeω,

−2c2e
T
ωA(eθt) ≤ ε1c2e

T
ωKωeω +

c2

ε1
|A(eθt)|2 ,

eTθ LA(eθt) ≤
1

2ε
eTθ L

2eθ +
ε

2
|A(eθt)|2 ,

eTθ LKωeω ≤
1

2ε
eTθ L

2eθ +
ελM(Kω)

2
,

|A(eθt)|2 ≤ N

N∑
j=1

N∑
i=1

(∫ t

t−Tij
ėθj(s)ds

)2

a2
ij,
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∫ t

t−T ∗
ėTθ (s)ėθ(s)ds ≥

1

ā2N

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
ė2
θj(s)ds,

∫ t

t−Tij
a2
ij ė

2
θj(s)ds ≥

1

T ∗

(∫ t

t−Tij
ėθj(s)ds

)2

a2
ij,

taking ε1 = 1
2
, ε = 3 and using Assumption 4.5 we obtain

Ż(·) =− 1

2
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− 1

2
eTθ L

2eθ. (4.76)

Since V and Z are Lyapunov-Krasovskii candidates with respect to Xt = 0 and Dr
respectively, then we conclude that Γ is so with respect to D using the following in-

equalities.

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡq̇2(t)κ(e, s) + 2c1bfλN(L)V 2 + 2 (λN(L) + |Kpt|)α(V )V.

Then, one can easily find the two class K∞ functions u and v such that equation (A.10)

holds with respect to the set D since it verifies D = {Xt = 0} ∩ Dr.
After some term chasing and some cumbersome manipulations we get

Γ̇ ≤− ρ1(V )

8

[
c2e

T
αK

−
I Kαeα + c2e

T
ωKωeω + eTθ L

2eθ
]

− 1

4
γ(V )v>KdtK

−1
pt v −

1

16
α(V )e>Kpte−

µ

4T
V 3.

(4.77)

This implies that Γ̇ is negative definite and Γ qualifies as a strict Lyapunov-Krasovskii

functional for system (4.72). Global uniformly asymptotic stability of the set D is en-

sured and thus the full delayed consensus problem is solved. ���

Corollary 4.1. Assume that Kdt, Kpt, Kω, Kα and KI are diagonal positive definite matrices

and let Assumptions 4.1, 4.2, 4.3, 4.5 hold. Then, for the closed-loop system (4.72) the set

D, introduced in (4.58), of the closed-loop state space is uniformally globally asymptotically

stable.

Proof. The proof of the corollary is a direct application of Lemma A.7. Indeed,

Item 1. the global closed-loop system (4.72) is uniformally globally stable, that is,

using the non strict Lyapunov-Karasovskii functional V introduced in (4.44) with a

time derivative along trajectories of (4.72a) given in (4.49), which concludes the uni-
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form global stability of translational coordinates. The rotational part in (4.72b) is com-

posed by the uniformally exponentially stable linear delayed system

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0


which is ISS with respect to the bounded perturbation vector

q̄

¯̇q

¯̈q

(ēΦ>L2 + s̄Φ⊥>L2

)
Φv −


0

Kω
¯̇q +Dq̄

ṗ

κd(e, s, θ, żt) +


0

B(t)

0


that depends on the translational coordinates thus, the first item follows.

Item 2. the uniform global asymptotic stability of the unperturbed (system (4.72)

with B(·) = 0) follows for theorem 4.4.

Item 3. the last condition to verify concerns the integrability of the vector B(·),

having

|B(t)|2 ≤
N∑
i=1

(∑
j∈Ni

aijqj(t− Tij)κdj(t− Tij)

)2

≤ N

N∑
i=1

∑
j∈Ni

a2
ijqj(t− Tij)2κdj(t− Tij)2

≤Nā2 |q|2∞
N∑
j=1

κ2
dj(t− T ∗j ) (4.78)

where

T ∗j (t) := argmax
i

{
κ2
dj(t− Tij(t))

}
.

Using (4.40) we obtain

κ2
dj(t− T ∗j ) ≤

∣∣gj(t− T ∗j )
∣∣ATj (żt−T ∗j )Aj(żt−T ∗j )

with

gj(t) =
1

4

[
Aj(żt) + 2ejφ(θj) + 2sjφ(θj)

⊥] [ATj (żt) + 2ejφ(θj)
T + 2sjφ(θj)

⊥T ] .
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Using (4.13) we obtain the following inequality

ATj (żt−T ∗j )Aj(żt−T ∗j ) ≤

∑
k∈Nj

akj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ

T ∑
k∈Nj

akj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ


≤N

∑
k∈Nj

a2
kj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)dδ.

From the last inequalities, we obtain

|B(·)|2 ≤N2ā2 |q|2∞
N∑
j=1

∣∣gj(t− T ∗j )
∣∣ ∑
k∈Nj

a2
kj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)dδ

≤N2ā2 |q|2∞ sup
j

{∣∣gj(t− T ∗j )
∣∣} N∑

j=1

∑
k∈Nj

a2
kj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)dδ.

Having the translational part of the closed-loop system globally bounded using the

non strict Lyapunov-Karasovskii candidate V introduced in (4.44), we conclude the

global boundedness of the term N2ā2 |q|2∞ supj
{∣∣gj(t− T ∗j )

∣∣}. Then, using the time

derivative of V along the trajectories of the translational coordinates Xt(t) in (4.49) we

conclude the uniform integralbility of the term

N∑
j=1

∑
k∈Nj

a2
kj

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)

Tdδ

∫ t−T ∗j

t−Tkj−T ∗j
żj(δ)dδ

since T ∗j ≤ T ∗, which conclude the proof of the corollary. ���

Remark 4.4. Two remarks are in order:

i) for simplicity, and without losing generality, the function p is taken equal for all the agents;

ii) the function κ in (4.22) may correspond to any class-K function with the following form

κ(sd, ed) = 1
2
[G(s2

d1 + e2
d1), ..., G(s2

dn + e2
dn)]>. The only condition on κ is that there exist two

positive polynomials P1(·) and P2(·) such that:

G(·) ≤ P1(·), and,
∣∣∣∣∂G(·)
∂(·)

∣∣∣∣ ≤ P2(·).

4.4 Conclusion

This chapter deals with the distributed formation control of multiple nonholonomic

robots under a general time-varying delay. We report a novel decentralized consensus-

based formation controllers that consider both, the kinematic and the dynamic model
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and a delayed exchanged information between the elements of the network, to uni-

formly and asymptotically solve the partial and the full consensus problems. The net-

work is modeled as an undirected, static and connected graph. The controller has

a smooth time-varying PD-like and PID-like scheme that is δ−persistently exciting.

Up to the authors’ knowledge this is the first work that provides a strict Lyapunov

function and a strict Lyapunov-Krasovskii functional, thereby guaranteeing uniform

global asymptotic stability for the closed-loop system. Simulations, using a network

with six agents, have been provided to illustrate our theoretical contributions.
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Conclusions & Future Work

The following concluding remarks are in order.

In Chapter 1. we presented some technical results on uniform exponential stability

of time-varying linear systems with particular structures that appear, for example,

in the analysis of model-reference adaptive systems, persistently excited observers,

consensus of systems interconnected through time-varying links and systems with

time-varying input gain. Stability proofs we presented in this section are based on the

explicit construction of strict Lyapunov functions. Such an approach allows not only

to conclude stability and convergence properties of the system trajectories but also to

give explicit decay estimates for the convergence rate.

In the subsequent chapters these stability results served as basis for the consensus

and formation control of mobile robots using controllers with persistency of excitation.

In Chapters 2-3. we identified several control problems for swarms of mobile

robots depending on nature of the leader’s velocities, notably the leader-follower track-

ing, robust agreement and simultaneous tracking-agreement problems. In all three

cases assuming a spanning tree communication graph topology, we considered two-

stage controller design – first at the kinematic and then at the dynamic level. At the

kinematics level, a nonlinear change of coordinates was used to transform the three

problems into that of uniform global asymptotic stabilization of the origin. Stability

analysis provided in these chapters relies on the extension of strict Lyapunov functions

proposed in Chapter 1, cascaded systems design, notions of iISS and strong iISS and

their characterization. In particular, we provided strict Lyapunov functions for the

closed loop systems at the kinematic level and demonstrated that at the dynamic level

one can use a variety of control schemes for Lagrangian and Hamiltonian systems that

ensure square intergrability of velocity errors.

In Chapter 4. we restricted our attention to the leaderless consensus problem of

multiple mobile robots, but under the assumption that the robots are interconnected

in a general bidirectional graph and that the communications are affected by time-

varying delays.

In particular, we considered 2 cases : in the first case, under the assumption that
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each robot adopts a particular orientation, i.e., consensus is pursued only in their

Cartesian positions on the plane while in the second case, the robots required to as-

sume both common position and orientation.

We proposed decentralized smooth time-varying PD-like and PID-like controllers

that consider both, the kinematic and the dynamic models to uniformly and asymp-

totically solve the partial and the full consensus problems. Assuming that there are

no delays in the communications, we designed new strict Lyapunov function that en-

sures uniform global asymptotic stability of the consensus set, these functions served

the basis to construct strict Lyapunov-Krasovskii functional for the formation with

delays.

Although many of controllers proposed in this thesis are reminiscent of others that

have appeared in the literature, our contributions lie in the establishment of strong

properties such as uniform global asymptotic stability, (integral) intput-to-state stabil-

ity and, most remarkably, in the construction of original Lyapunov functions for most

of the control problems that we addressed.

Chapter 1 is bound to present concrete case-studies of stability analysis for time-

varying systems. Each of this case-studies, we believe, may serve as a departure point

to different lines of research. In that light, the subsequent chapters are devoted to an in-

depth study of one case-study: that of consensus and formation control of autonomous

vehicles. Other concrete open questions include:

1. Design of strict differentiable Lyapunov function for the first order time varying

consensus problem studied in Subsection 1.2.1 for the case of directed graphs.

2. Establish necessary and/or more relaxed sufficient conditions for uniform expo-

nential stability of the spiraling systems (1.51).

3. Extension of the leader-follower tracking, robust-agreement and simultaneous

tracking-agreement controllers to more general graph topologies and in the pres-

ence of time delay.

4. Extension of the results of Chapter 4 on partial and full consensus of mobile

robots to the case of connected directed graph and to other types of moving

agents.
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Basic notions

A.1 Preliminaries

Our technical results are stability statements of nonlinear time-varying systems of the

form

ẋ = f(t, x). (A.1)

For simplicity, we assume that f is such that solutions exist and are unique.

A.2 Uniform Stability notions

Definition A.1. Consider the time-varying dynamical system

ẋ =f(t, x) (A.2)

where f : R≥0 × Rn → Rn is such that the solutions of (A.2) exist in finite time intervals for

all initial condition (t0, x(t0)) ∈ R× Rn and admit an invariant set A.

The invariant set A is Uniformly Stable (US) if there exist α ∈ K and r > 0, such that

|x(t, t0, x(t0))|A ≤ α(|x(t0)|A) ∀t ≥ t0, ∀ |x(t0)|A ≤ r. (A.3)

The invariant set A is Uniformly Asymptotically Stable (UAS) if there exists β ∈ KL, such

that

|x(t, t0, x(t0))|A ≤ β(t− t0, |x(t0)|A) ∀t ≥ t0, ∀ |x(t0)|A ≤ r. (A.4)
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The invariant set A is Uniformly Exponentially Stable (UES) if there exists γ1, γ2 > 0, such

that

|x(t, t0, x(t0))|A ≤ γ1 |x(t0)|A e
(t−t0) ∀t ≥ t0, ∀ |x(t0)|A ≤ r. (A.5)

The invariant set A is UGS, UGAS, UGES if equations (A.3), (A.4), (A.5) hold, respectively,

for all r > 0.

Definition A.2. Consider the delayed time-varying dynamical system

ẋ =f(t, xt), t ≥ t0. (A.6)

where f : R≥0 × C[−T, 0]→ Rn is continuous in both arguments and locally Lipschitz in the

second argument. and admits an invariant set A, that is,

|x(t0 + θ)|A = 0, ∀θ ∈ [−T, 0]⇒ f(t, xt0) = 0, ∀t ≥ t0.

The invariant set A is Uniformly Stable (US) if there exist α ∈ K and r > 0, such that

|x(t, t0, xt0)|A ≤ α(|xt0|A) ∀t ≥ t0, ∀ |xt0 |A ≤ r. (A.7)

The invariant set A is Uniformly Asymptotically Stable (UAS) if there exists β ∈ KL, such

that

|x(t, t0, xt0)|A ≤ β(t− t0, |xt0|A) ∀t ≥ t0, ∀ |xt0 |A ≤ r. (A.8)

The invariant set A is Uniformly Exponentially Stable (UES) if there exists γ1, γ2 > 0, such

that

|x(t, t0, xt0)|A ≤ γ1 |xt0|A e
(t−t0) ∀t ≥ t0, ∀ |xt0|A ≤ r. (A.9)

The invariant set A is UGS, UGAS, UGES if equations (A.3), (A.4), (A.5) hold, respectively,

for all r > 0.

Lemma A.1 (Lyapunov characterization). Suppose f : R≥0 × Rn → Rn; and that u; v; w

: R+ → R≥0 are continuous nondecreasing functions, u(s) and v(s) are positive for s > 0,

and u(0) = v(0) = 0. The invariant set A is uniformly stable if there exists a continuous

functional V : R≥0 × Rn → R, which is positive-definite radially unbounded with respect to

A, i.e.

u(|x(t)|A) ≤ V (t, x) ≤ v(|x|A).
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and such that its derivative along (A.6) is non-positive in the sense that

V̇ (t, x) ≤ −w(|x(t)|A).

If w(s) > 0 for s > 0, then the invariant set A solution is uniformly asymptotically stable. If

in addition lims→∞ =∞, then it is globally uniformly asymptotically stable.

Lemma A.2 (Lyapunov–Krasovskii characterization [33]). Suppose f : R≥0×C[−T, 0]→
Rn; and that u; v; w : R+ → R≥0 are continuous nondecreasing functions, u(s) and v(s) are

positive for s > 0, and u(0) = v(0) = 0. The invariant set A is uniformly stable if there exists

a continuous functional V : R≥0 × W [−T, 0] × L2[−T, 0] → R, which is positive-definite

radially unbounded with respect to A, i.e.

u(|x(t)|A) ≤ V (t, xt, ẋt) ≤ v(‖xt‖A). (A.10)

and such that its derivative along (A.6) is non-positive in the sense that

V̇ (t, xt, ẋt) ≤ −w(|x(t)|A).

If w(s) > 0 for s > 0, then the invariant set A solution is uniformly asymptotically stable. If

in addition lims→∞w(s) =∞, then it is globally uniformly asymptotically stable.

A.3 ISS and Lyapunov characterization

Definition A.3 (ISS [110]). Consider the time-varying dynamical system

ẋ =f(t, x, u) (A.11)

where f : R≥0 × Rn × Rm → Rn, is such that its solutions exist on the infinite time interval

for all initial condition (t0, x(t0)) ∈ R× Rn and u : R≥0 → Rm.

The dynamical system (A.11) is Input-to-State Stable (ISS), with respect to the input u, if there

exists a class KL function β(·, ·), and a class K∞ function γ(·), such that:

|x(t)| ≤ β(|x(t0)| , t− t0) + γ

(
sup

t0≤s≤∞
|u(s)|

)
(A.12)

Similarly, the dynamical system (A.11) is small Input-to-State Stable (ISS), with respect to the

input u, if there exists r > 0, such that equation (A.12) holds for |u| ≤ r.

Lemma A.3 ( [47]). Let V : [0,∞) × Rn → R be a continuously differentiable Lyapunov
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function such that:

α (|x|) ≤ V (t,X) ≤ α (|x|) (A.13)

∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W (x), ∀ |x| ≥ ρ (|u|) > 0 (A.14)

Where α, α are K∞ functions, ρ a class K function, and W a continous PD function, which

implies that the system ẋ = f(t, x, u) is ISS with respect to the input u.

Similarly, if there exists r > 0 such that (A.14) holds for |u| ≤ r then the system ẋ = f(t, x, u)

is small ISS with respect to the input u.

A.4 integral ISS and Lyapunov characterization

Definition A.4 (Integral ISS [110]). Consider the time-varying dynamical system

ẋ =f(t, x, u) (A.15)

where f : R≥0 × Rn × Rm → Rn, is such that its solutions exist on the infinite time interval

for all initial condition (t0, x(t0)) ∈ R× Rn and u : R≥0 → Rm.

The dynamical system (A.15) is Integral Input-to-State Stable (iISS), with respect to the input

u, if there exists a class KL function β(·, ·), and a class K∞ function γ(·), such that:

|x(t)| ≤ β(|x0| , t− t0) +

∫ t

t0

γ (|u(s)|) ds (A.16)

Lemma A.4 ( [42]). Let V : [0,∞) × Rn → R be a continuously differentiable Lyapunov

function such that:

α (|x|) ≤ V (t,X) ≤ α (|x|) (A.17)

∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −α1(|x|) + ρ(|u|) (A.18)

Where α, α are K∞ functions, α1 a positive definite function called dissipation rate, and ρ a

class K∞ function, which implies that the system ẋ = f(t, x, u) is integral ISS with respect to

the input u.
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A.5 Strong iISS

Definition A.5 (Strong iISS [17]). Consider the time-varying dynamical system

ẋ =f(t, x, u) (A.19)

where f : R≥0 × Rn × Rm → Rn, is such that its solutions exist on the infinite time interval

for all initial condition (t0, x0) ∈ R× Rn and u : R≥0 → Rm.

The dynamical system (A.19) is said to be strongly integral input-to-state stable (strongly

iISS) with respect to u, if it is integral input-to-state stable (iISS) with respect to u, and input-

to-state stable (ISS) with respect to sufficiently small values of u.

Lemma A.5 ( [18]). Consider the following cascaded interconnected system:

ẋ1 =f1(t, x1, x2, u1) (A.20)

ẋ2 =f2(t, x2, u2) (A.21)

Where f1 is strong iISS with respect to [x2 u1], and f2 is so with respect to u2, then the overall

system is strong iISS with respect to [u1 u2].

Remark A.1. The prove of the last lemma is provided in [18] for the autonomous case, but the

prove may be directly extended to the non-autonomous case, because it uses a catalog of prop-

erties introduced in [111], [8] and [9], and the crucial part when establishing these properties

uses the converse Lyapunov theorem for Asymptotic Stability which exists for the uniform

asymptotic stability,see for example [122].

A.6 Nonlinear output injection

Undelayed case

Lemma A.6 ( [99]). Consider the following system in the output injection form:

ẋ = f(t, x) = F (t, x) +K(t, x) (A.22)

The origin of (A.22) is UGAS follows if:

i. the origin of ẋ = f(t, x) is uniformly globally stable;

ii. the origin of ẋ = F (t, x) is UGAS;
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iii. there exist an ”output” y, non decreasing functions k1, k2, β: R≥0 → R≥0, and classK∞
function k, as well as a positive definite function γ such that

|K(t, x)| ≤ k1(|x|)k(|y|) (A.23)

|y(t, x)| ≤ k2(|x|) (A.24)∫ ∞
0

γ
(
|y(t)|

)
≤ β(|x(0)|). (A.25)

In the presence of time varying Delay

The following lemma is the extension of Lemma A.6 to the case of time varying de-

layed systems

Lemma A.7. Consider the following delayed system in the output injection form:

ẋ = f(t, xt) = F (t, xt) +K(t, xt) (A.26)

f : R+×C[−T, 0]→ Rn uniformly bounded in t and sufficiently smooth. The origin of (A.26)

is UGAS follows if:

i. the origin of ẋ = f(t, xt) is UGS;

ii. the origin of ẋ = F (t, xt) is UGAS and admits a strict differentiable Lyapunov-Karasovskii

functional continuous functional V : R+ ×W [−T, 0]× L2[−T, 0] → R with the prop-

erties

α(|x|) ≤ V (t, xt, ẋt) ≤ ᾱ(‖xt‖) (A.27)

V̇F (t, xt, ẋt) ≤ −α(|x|) (A.28)∣∣∣∂V (t,xt,ẋt)
∂x

∣∣∣ ≤ α∂(‖xt‖) (A.29)

where the functions α, ᾱ, α, α∂ ∈ K∞.

iii. there exist an ”output” y : R+ × C[−T, 0] → Rm, non decreasing functions k1, k2,

β: R≥0 → R≥0, and class K∞ function k, as well as a positive definite function γ such

that

|K(t, xt)| ≤ k1(|xt|)k(|y|) (A.30)

|y(t, xt)| ≤ k2(|xt|) (A.31)∫ ∞
−T

γ
(
|y(t, xt)|

)
≤ β(|xt(0)|). (A.32)
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Proof. Since the system ẋ = F (t, xt) is UGAS, and admits a continuously differentiable

Lyaunov-Karasovskii functional V (t, xt, ẋt).

Taking the derivative of V (t, x) along the trajectories of A.26 we obtain

V̇A.26(t, xt, ẋt) ≤ −α(|x|) + α∂(‖xt‖)k1(|xt|)k(|y|), (A.33)

and since the system is UGS, there exist γw ∈ K∞ such that

|x(t)| ≤ γw(|xt0|), ∀t ≥ t0.

Moreover, f(t, xt) uniformly bounded in t and continuous in xt with f(t, 0) = 0 then,

there exist a class K function κ : R+ → R+ and a nondecreasing function µ : R+ → R+

such that

‖xt‖ ≤ κ (|xt0|) , ∀t ≥ t0 + T

and

α∂(‖xt‖)k1(|xt|) ≤ µ(|xt0|), ∀t ≥ t0 + T.

Let assume that

|xt0| ≤ r, r > 0.

We claim that for a given positive definite function γ and k ∈ K∞, for each r, ν > 0

and ∆ > 0, there exists ρ > 0 such that

k(|y|) ≤ ν

µ(r)
+ ργ(|y|) ∀ |y| ≤ ∆ (A.34)

indeed, we can take

ρ := sup
s∈(0,∆]

{
k(s)− ν

µ(r)

γ(s)

}
= max

s∈[k−1( ν
µ(r)),∆]

{
k(s)− ν

µ(r)

γ(s)

}
. (A.35)

Let ∆ := k2 ◦ γw(r).

Using all these definitions in (A.33) we obtain that for all |y| ≤ ∆ and any ν > 0

there exists ρ = ρ(r, l, ν,∆) such that

V̇A.26(t, xt, ẋt) ≤− α(|x(t)|) + µ(r)

[
ν

µ(r)
+ ργ(|y(t)|)

]
(A.36)

=− [α(|x(t)|)− ν] + µ(r)ργ(|y(t)|), ∀t ≥ t0 + T. (A.37)

Let βrν(s) := ᾱ(κ(s)) + µ(r)ρβ(s), integrating on both sides of the inequality above,
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from t◦ to∞ and using A.27-A.29, we obtain that for any ν > 0∫ ∞
t◦

[α(|x(τ)|)− ν] dτ =

∫ t◦+T

t◦

[α(|x(τ)|)− ν] dτ +

∫ ∞
t+T

[α(|x(τ)|)− ν] dτ (A.38)

≤Tα(γω(|xt0|)) + ᾱ(κ (|xt0|)) + µ(r)ρ

∫ ∞
t◦

γ(|y(τ)|)dτ (A.39)

≤βrν(|xt0|). (A.40)

The proof is completed invoking integral Lemma A.8. ���

Integral lemma in the presence of time varying Delay

The following lemma is the extension of [99, Lemma 2] to the time varying delayed

systems

Lemma A.8. Consider the following delayed system:

ẋ = f(t, xt) (A.41)

f : R+ × C[−T, 0]→ Rn sufficiently smooth.

The system (A.41) is UGAS if it is UGS and there exists continuous positive definite

function γ : R+ → R+ and for each r, ν > 0 there exists βrν > 0, such that for all

(t0, xt0) ∈ R+ ×Br, all solutions x(·, t0, xt0) and all t ≥ t0,∫ t

t0

[γ(|x(τ, t0, xt0)|)− ν] dτ ≤ βν(|xt0|) . (A.42)

Proof. By assumption the system is UGS, thus we need to prove global uniform attrac-

tivity only.

From UGS it follows that there exists a class K∞ function γw such that |x(t)| ≤
γw(|xt0|) for all t ≥ t0.

Fix r and ε such that 0 < ε ≤ r and let δ = γ−1
w (ε). Since the system is UGS, we only

need to show that there exists T ∗(r, ε) > 0 such that for each t0 and each xt0 ∈ Br there

exists a time t′ ∈ [t0, t0 + T ∗], such that |x(t′, t0, xt0)| ≤ δ. We proceed by reductio ad

absurdum.

Let γm(δ, r) := min
s∈[δ, γw(r)]

γ(s) and1 assume that |x(t, t0, xt0)| > δ for all t ∈ [t0, t0 +T ∗]

1Note that γw(s) ≥ s so s ≥ γ−1
w (s). Therefore, γw(r) ≥ r ≥ ε ≥ γ−1

w (ε), so the interval [δ, γw(r)] is
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where T ∗(ε, r) :=
1

ν
β̄ν(r), where ν = γm(δ)/2 and β̄ν(r) = sup

0≤s≤r
βν(s). Then we find

that ∫ t0+T ∗

t0

γ(‖x(τ, t0, xt0)‖)dτ > T ∗γm(δ) = 2β̄ν(r) . (A.43)

On the other hand, from (1.40) it follows that∫ t0+T ∗

t0

γ(|x(τ, t0, xt0)|)dτ ≤
∫ t0+T ∗

t0

[γ(|x(τ, t0, xt0)|)− ν] dτ +

∫ t0+T ∗

t0

1

2
γm(δ)dτ

≤ βν(|xt0 |) + β̄ν(r) ≤ 2β̄ν(r)

which contradicts A.43. Therefore, the origin is uniformly attractive. ���

A.7 PE, δ-PE and Uniform δ-PE

Definition A.6 (Persistency of Excitation [87]). A piecewise continuous and bounded func-

tion ψ : R+ → Rn×m is said to be persistently exciting, with excitation parameters−(T, µ), if

there exist T, µ > 0 such that∫ t+T

t

ψ(s)ψ(s)Tds ≥ µIn ∀ t ≥ 0. (A.44)

Let x ∈ Rn be partitioned as xT := col[xT1 xT2 ] where x1 ∈ Rn1 and x2 ∈ Rn2 . Define

the column vector function φ : R× Rn → Rm and the set D1 := (Rn1\ {0})× Rn2 .

Definition A.7 (Uniform δ Persistency of Eexcitation [66]). A function φ(·, ·) where t →
φ(t, x) is locally integrable is said to be uniformly δ- persistently exciting (Uδ−PE) with re-

spect to x1 if for each x ∈ D1 there exist δ > 0, T > 0 and µ > 0 such that ∀t ∈ R+

|z − x| ≤ δ ⇒
∫ t+T

t

|φ(τ, z)| dτ ≥ µ (A.45)

If φ(·, ·) is Uδ−PE with respect to the whole state x we will simply say that ”φ is

Uδ−PE”.

Consider the system

ẋ = f(t, x) (A.46)

where f : R≥0 × Rn → Rn is such that the solution to (A.46) is forward complete. Let

φ(·, x(·, t0, x0)) is locally integrable for each solution x(·, t0, x0).

nonempty.
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Definition A.8 (Uniform δ Persistency of Excitation along trajectories [99]). A function

φ is called uniformly persistently exciting (Uδ−PE) with respect to x1 (along trajectories of

(A.46)) if for each r and δ > 0 there exist constants T (r, δ) > 0 and µ(r, δ) > 0, such that for

all (t0, x0) ∈ R≥0 × Br, all corresponding solutions satisfy{
min

s∈[t,t+T ]
|x1(s)| ≥ δ

}
⇒
{∫ t+T

t

φ(τ, x(τ, t0, x0))Tφ(τ, x(τ, t0, x0))dτ

}
. (A.47)

Remark A.2. In general, for multivariable functions, the two properties, in Definitions. A.8

and A.7, are different. Neither one implies the other –see [66] however, for the type of functions

of interest here, the following statement establishes a link between the two properties.

Lemma A.9 ( [87]). If u1 : R≥0 → Rn, u1 ∈ Ω(n,t0,T ), and u2 : R≥0 → Rn, with u2 → 0 as

t→∞. Then u1 + u2 ∈ Ω(n,t1,T ) for some t1 ≥ t0.

where

Ω(n,t0,T ) :=

{
u : R≥0 → Rn/

∫ t+T

t

uT (s)u(s)ds ≥ µ,∀t ≥ t0

}
.
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Proof of auxiliary results

B.1 Proof of theorem 1.1

The proof is constructed based upon that of Lemma 1.1. We show by recurrence that

the Lyapunov function candidate Vn is positive definite, proper and its total derivative

satisfies (1.31). Firstly, using (1.5), we conclude

1

2
diag (βi) ≤ P (t) ≤ 1

2
diag (βi(1 + 2āT )) .

Next, notice that for i ≥ 1 the system (1.27) corresponds to

Σ′i : ẋi = −ai(t)xi

and

Wi(t, xi) =
1

2
Υai(t)x

2
i (B.1)

is a strict Lyapunov function for Σ′i. The latter follows by mimicking the proof of

Lemma 1.1 to obtain

Ẇi(t, xi) ≤ −
µ

T
x2
i (B.2)

–cf. Eq. (1.13). For n = 2, the cascaded system Σ′2 corresponds to (1.25), for which we

define the function V2 : R≥0 × R2 → R≥0 as

V2(t, x̄12) = W1(t, x1) + β2W2(t, x2) (B.3)

with x̄1j := [x1 · · ·xj]> and, according to (1.29),

β2 ≥
4T 2

µ2

[
ā(1 + 2āT )

]2
. (B.4)
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Furthermore, using the bound ā ≥ max {ai, ai+1} ≥ 0, following the proof-lines of

Lemma 1.1, we see that the time-derivative of V2 satisfies

V̇2(t, x̄12) ≤ Ẇ1(t, x1)− β2
µ

T
x2

2 (B.5)

and, along the trajectories of (1.25a), V̇1 satisfies

Ẇ1(t, x1) ≤ −µ
T
x2

1 + Υa1(t)x1a12(t)x2.

In turn, this implies that

V̇2(t, x) ≤ − µ

2T
(x2

1 +
3

2
β2x

2
2) + φ2(t, x̄12, β2) (B.6)

φ2(t, x̄12, β2) := − µ

2T
x2

1 − β2
µ

4T
x2

2 + Υa1(t)x1x2a12(t). (B.7)

Now, notice that φ2 ≤ 0 if β2 satisfies (B.4). To show this, we introduce

ε :=
2T

µ
(B.8)

and we use the triangle inequality

x1a12(t)Υa1(t)x2 ≤
1

2ε
x2

1 +
1

2
ε (a12(t)Υa1(t))2 x2

2, (B.9)

to obtain

φ2(t, x̄12, β2) ≤− x2
1

2

[µ
T
− 1

ε

]
− x2

2

[
β2

µ

4T
− 1

2
ε
[
(1 + 2āT )ā

]2]
.

From (B.8) and (B.4) it follows that φ2 ≤ 0 hence, we conclude that

V̇2(t, x̄12) ≤ − µ

2T
x2

1 −
3µ

4T
β2x

2
2. (B.10)

Next, we proceed by induction. For any j ∈ (2, n], let Vj be a strict Lyapunov function

for Σ′j –cf. (1.27), and let it be defined as

Vj(t, x̄1j) = Vj−1(t, x̄1j−1) + βjW (t, xj). (B.11)

To evaluate its total time-derivative along the trajectories of Σ′j we first see that

V̇j−1(t, x̄1j−1) ≤ − µ

2T

j−2∑
i=1

βix
2
i −

3µ

4T
x2
j−1 +

∂Vj−1

∂xj−1

a(j−1)jxj
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and, in view of (B.11),
∂Vj−1

∂xj−1

=
[
Υaj−1

(t)βj−1

]
xj−1. (B.12)

Hence, it follows that

V̇j(t, x̄1j) ≤ −
µ

2T

j−1∑
i=1

βix
2
i −

3µ

4T
x2
j + φj(t, x̄1j, βj, βj−1)

where

φj(·) = − µ

4T
βj−1x

2
j−1 + βj−1Υaj−1

(t)a(j−1)j(t)xjxj−1

− βj
µ

4T
x2
j . (B.13)

Now, in view of (B.7), the factor of βj−1Υaj−1
(t)a(j−1)j(t)xjxj−1 is non-negative hence,

applying the triangle inequality to the last two terms on the right-hand side of (B.13),

we obtain that, for any ε > 0,

φj(·) ≤−
µ

4T
βj−1x

2
j−1 +

βj−1

2ε
x2
j−1 + βj−1

ε

2

(
Υaj−1

(t)a(j−1)j(t)
)2
x2
j

− βj
µ

4T
x2
j

which, in turn, using (1.5), we btain

φj(·) ≤ −
[
µ

4T
− 1

2ε

]
βj−1x

2
j−1 +

[
βj−1

ε

2
((1 + 2T ā) ā)2 − βj

µ

4T

]
x2
j

for all ε 6= 0. To render non-positive the factors of x2
j and x2

j−1 above, we choose

ε =
2T

µ
.

Then, the factor of x2
j−1 equals to zero if (B.8) holds, while the factor of −x2

j is non-

negative if

βj ≥
4T 2

µ2
βj−1 [(1 + 2āT ) ā]2

for all j ∈ (2, n] –cf. (1.29). It follows that φj ≤ 0 and, consequently,

V̇j(t, x̄1j) ≤ −
µ

2T

j−1∑
i=1

x2
i −

3µ

4T
x2
j . (B.14)

The latter holds for any integer j ∈ [3, n] hence, together with (B.2) and (B.10), the

inequality (1.31) follows. �
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B.2 Proof of theorem 1.4

In view of (1.5), the boundedness of a and b, we have

V (t, x) ≥1

2
[γ + Υa4b2(t)]x>Px− b̄2ā3

∣∣∣∣∣P 1/2A

n∑
i=1

βiΓiP
1/2

∣∣∣∣∣x>Px
V (t, x) ≤1

2

[
γ + Ῡa4b2(t)

]
x>Px+ b̄2ā3

∣∣∣∣∣P 1/2A
n∑
i=1

βiΓiP
1/2

∣∣∣∣∣x>Px
Using the bound γ > γ2, the function V is positive definite and radially unbounded.

Indeed, there exist η1, η2 > 0 such that

η1|x|2 ≤ V (t, x) ≤ η2|x|2 (B.15)

for all t ≥ 0 and x ∈ Rn.

Next, we compute the total derivative of V along the trajectories of (1.63). We use

the persistency of excitation of the product ψ = a2b, (1.7) and (1.66), and we reorganise

some terms to obtain

V̇ ≤ −γb2x>CC>x− µ

T
x>Px− a4b2x>

[
βnPAΓnA

>P − P +
n−1∑
i=1

βiPAΓiA
>P

]
x

−ba2
[[

2ḃa+ 3bȧ
]
[PAx]> + ba2[PA2x]>

] n∑
i=1

βiΓiPx

−b4a3[C>x]>
n∑
i=1

βiC
>[AΓiP − ΓiPA

]
x. (B.16)

To establish that V̇ is negative definite we first note that, since the pair A,B is control-

lable by assumption, the matrix ΦcΦ
>
c where Φc corresponds to Kalman’s controllabil-

ity matrix Φc := [B AB · · · An−1B], is positive definite and satisfies ΦcΦ
>
c = AΓnA

>.

Hence, in view of the definition of βn we have −βnx>PAΓnA
>Px+ x>Px ≤ 0. There-

fore, the sum of the first two terms in the second line of (B.16) is non-positive. Next,

note that the terms in the last line of (B.16) are bounded from above by

γ1b
2|C>x|2 +

µPm
2T b̄2

|x|2

where γ1 is defined in (1.68). Hence, using Γ1 = BB> and Γi = BB> + AΓi−1A for all
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i ≥ 2, as well as (1.66c), it follows that

V̇ ≤− ba2x>M>

[
P

n∑
i=1

βiCC
>+

n∑
i=2

βiPAΓi−1A
>P

]
x− γ2b

2|C>x|2 − µ

2T
x>Px

− b2a4x>
n−1∑
i=1

βiPAΓiA
>Px

where M is defined below (1.71). Next, observe that

n∑
i=2

βiPAΓi−1A
>P =

n∑
i=2

βi

i−1∑
j=1

PAjBB>Aj>P =
n−1∑
j=1

PAjBB>Aj>P

n∑
i=j+1

βi

n−1∑
i=1

βiPAΓiA
>P =

n−1∑
i=1

βi

i∑
j=1

PAjBB>Aj>P =
n−1∑
j=1

PAjBB>Aj>P

n−1∑
i=j

βi

so, in view of (1.69), we obtain

V̇ ≤ − µ

4T
x>Px− b2a4x>

[
n−1∑
j=1

PAjBB>Aj>P
n−1∑
i=j

βi

]
x

−ba2x>M>

[
n−1∑
j=1

PAjBB>Aj>P
n∑

i=j+1

βi

]
x. (B.17)

Then, defining Yj := [PAjB]>, it follows that

V̇ ≤− µ

4T
x>Px−

n−1∑
j=1

[
|ba2Yjx|2

n−1∑
i=j

βi +
[
YjMx

]>[
ba2Yjx

] n∑
i=j+1

βi

]
. (B.18)

Using the triangle inequality on the last term on the right hand side of (B.18), we see

that for any εj 6= 0,

V̇ ≤ − µ

4T
x>Px+

1

2

n−1∑
j=1

ε2j |YjMx|2

−
n−1∑
j=1

|ba2Yjx|2
[βj +

n−1∑
i=j+1

βi

]
− 1

2ε2j

[
n∑

i=j+1

βi

]2 .
Now, on one hand, defining

ε2j =
µPm

4nT |YjM |2
(B.19)
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we obtain

− µ

8T
x>Px+

1

2

n−1∑
j=1

ε2j |YjMx|2 ≤ 0. (B.20)

On the other, in view of (1.71), we have

βj +
n−1∑
i=j+1

βi ≥
1

2ε2j

(
n∑

i=j+1

βi

)2

≥ 0.

Thus, we conclude that

V̇ ≤ − µ

8T
x>Px

which completes the proof. �

B.3 Proof of Proposition 1.2

First, we remark that V is quadratic and having that ai satisfy (1.3) then, using (1.75)

and (1.5), we obtain

V (t, x) ≥ [1/2 + γ] |x|2 −
n∑
i=2

αiā
2i−1 |x|2 ≥ 1/2 |x|2 (B.21)

V (t, x) ≤
[
Ῡψ2 + γ

]
|x|2 +

n∑
i=2

αiā
2i−1 |x|2 (B.22)

We conclude that V is quadratic positive definite and radially unbounded Lyapunov

function candidate, that is, there exist c1, c2 > 0 such that

c1|x|2 ≤ V (t, x) ≤ c2|x|2.

Then, let introduce Π`(t) :=
∏`

k=1
|ak(t)|, the time-derivative of the first term in V

satisfies

d

dt

{
1

2

n∑
i=1

ΥΠ2
n
(t)x2

i

}
≤− µ

T

n∑
i=1

x2
i +

n∑
i=1

Π2
n(t)x2

i − a2
1ΥΠ2

n
(t)x2

1. (B.23)

On the other hand, the derivatives of Φi, satisfy the following.

Firstly, for i = 2, we have



d

dt

{
a2

1Φ2

}
≤− a2

1a
2
2x

2
2 + a2

1ā
3 |x1x2|+ a2

1ā
2 |x1x3|+ 4 |a1| ā2 |x1x2|+ a2

1ā
2x2

1 (B.24)

and, similarly, for each i ∈ [3, n− 1], we obtain

d

dt

{
a2

1Φi

}
≤2i

i−1∑
j=1

Πj ā
(2i−1−j) |xjxj+1|+

i−1∑
j=1

Π2
j(t)ā

2(i−j) |xjxj+2|

+ a1(t)2ā2(i−1)x2
1 − Π2

i (t)x
2
i + a2

1ā
2i−1 |x1x2| (B.25)

while, for i = n,

d

dt

{
a2

1Φn

}
≤− Π2

n(t)x2
n + a1(t)2ā2i−1 |x1x2|+

n−2∑
j=1

Π2
j(t)ā

2(n−j) |xjxj+2|

+ a1(t)2ā2(n−1)x2
1 + 2n

n−1∑
j=1

Πj(t)ā
(2n−1−j) |xjxj+1|. (B.26)

Thus, putting together (B.23) up to (B.26) we get

V̇ (t, x) ≤− µ

2T
|x|2 −

n∑
i=2

[αi − ān−i]Π2
i (t)x

2
i −

µ

4T
|x|2 +

n∑
i=3

i−1∑
j=2

Π2
j(t)

[
ā2(i−j)αi |xjxj+2|

]
+

n∑
i=3

i−1∑
j=2

Πj(t)
[
αi2iā

(2i−1−j) |xjxj+1|
]

+ φ1(t, x)

where we defined

φ1(t, x) :=
n∑
i=2

αi
[
a1(t)ā2i−1 |x1x2|+ a2

1ā
2(i−1)x2

1 + a2
1ā

2(i−1) |x1x3|

+2i |a1| ā2(i−1) |x1x2|
]
− γa1(t)2x2

1 −
µ

4T
|x|2. (B.27)

Now, notice that all positive terms above are (bounded by) cross products of |x2|
and |x3|with |a1x1| hence, they may be upper-bounded by

λ[a1x1]2 +
1

λ
[ε2x

2
2 + ε3x

2
3]

for appropriate values of ε2, ε3 and λ. It follows that for sufficiently small λ and choos-
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ing γ sufficiently large, as in (1.75), we have φ1 ≤ 0. Therefore,

V̇ (t, x) ≤− µ

2T
|x|2 + φ2(t, x)

where we defined

φ2(t, x) :=−
n∑
i=2

[
αi − ān−i

]
Πi(t)

2x2
i −

µ

4T
|x|2

+
n∑
i=3

i−1∑
j=2

Πj(t)
[
Πj(t)ā

2(i−j)αi |xjxj+2|+ 2iā(2i−1−j) |xjxj+1|
]
.

It is left to prove that φ2 ≤ 0. To that end, we start by changing the order of sum-

mation. Hence,

φ2(t, x) =−
n∑
i=2

[
αi − ān−i

]
Πi(t)

2x2
i −

µ

4T
|x|2 +

n−2∑
i=2

Πi(t)
2 |xixi+2|

n∑
j=i+1

ā2(j−i)αj

+
n−1∑
i=2

Πi(t) |xixi+1|
n∑

j=i+1

αj2iā
(2j−1−i)

which satisfies

φ2(t, x) ≤ − µ

4nT
x2
n +

n−2∑
i=2

[
−
[
αi − ān−i

]
Π2
ix

2
i + Π2

i

n∑
j=i+1

ā2(j−i)αj −
µ

4nT

[
x2
i+1 + x2

i+2

]
+Π2

i

n∑
j=i+1

ā2(j−i)αj |xixi+2|+
n∑

j=i+1

αj2iā
(2j−1−i)Πi |xixi+1|

]
−
[
αn−1 − ā

]
Π2
n−1x

2
n−1

+ [αn2(n− 1)ān] Πn−1|xn−1xn|

Now, as for φ1 in (B.27), we see that the cross terms in the first summation above

may be upper-bounded using the triangle inequality. That is, we use

2|xixi+2| ≤ εix
2
i +

1

εi
x2
i+2, 2|xixi+1| ≤ δix

2
i +

1

δi
x2
i+1,

which holds for any εi, δi > 0. In particular, setting

εi =
2nT

µ

n∑
j=i+1

ā2jαj, δi =
2nT

µ

n∑
j=i+1

[
αj2iā

(2j−1−i)]
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we see that choosing αn = 1 and αn−1 according to (1.73), while

αi = ān−i +
µ

4nT
δ2
i +

εi
2

[
n∑

j=i+1

αj ā
2(j−i)

]
,

φ2 is non-positive for all t and x –cf. (1.74).

B.4 Proof complement for Proposition 2.1

First, we show that the total derivative of V2 along the trajectories of ė = A◦vr(t, e)e is

negative definite. Firstly, since ρ1 is a polynomial that maps R≥0 → R≥0 and V1 satisfies

(2.26),
d

dt
{ρ1(V1)V1} ≤ −ρ1(V1)

[
kxe

2
x + kθe

2
θ

]
. (B.28)

Next, we use (2.31), as well as |e| ≥ |ey| and Υϕ > 0, to obtain

d

dt

{[
Υv2

r
+ Υω2

r
]V1

}
≤− 2

T

[∫ t+T

t

[
ωr(s)

2 + vr(s)
2
]
ds

]
V1

+ [ω2
r + v2

r ]
[
e2
x +

1

ky
e2
θ + e2

y] (B.29)

Then, using (2.36) and (2.38), we obtain

− d

dt
{ωrexey} = −ω̇rexey − ωr

[
− kxexey + ωre

2
y + kθeθe

2
y

+ kyvre
3
y − ωre2

x − kθeθe2
x − kyvreye2

x + vreθex
]
. (B.30)

Now, for the cross-terms we use the inequalities 2exey ≤ εe2
x + (1/ε)e2

y and 2eθe
2
y ≤

εV1e
2
θ + (1/ε)e2

y, which hold for any ε > 0, and we regroup some terms to obtain

− d

dt
{ωrexey} ≤ −ωr

[
− kxexey + ωre

2
y + kθeθe

2
y + kyvre

3
y

]
− ωr

[
− ωre2

x − kθeθe2
x − kyvreye2

x + vreθex

]
− ω̇rexey

≤− ω2
re

2
y + ω̄rkx

(
ε

2
e2
x +

1

2ε
e2
y

)
+ ω̄rkθ

(
εV1e

2
θ +

1

2ε
e2
y

)
+ ω̄rv̄rkye

3
y + ω̄2

re
2
x + ω̄r

kθ
2

(
e2
θ + 2V1e

2
x

)
+ ω̄rkyv̄r

(
1

2ε
e2
y +

ε

2
V1e

2
x

)
+
ω̄rv̄r

2

(
e2
θ + e2

x

)
+ ¯̇ωr

(
ε

2
e2
x +

1

2ε
e2
y

)
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≤− ω2
re

2
y + ω̄rv̄rkye

3
y +

1

2ε

[
(kx + kθ)ω̄r + ω̄rkyv̄r + ¯̇ωr

]
e2
y

+
[
ω̄rkx

ε

2
+ ω̄2

r + ω̄rkyv̄r
ε

2
V1 + ¯̇ωr

ε

2
+
ω̄rv̄r

2
+ ω̄rkθV1

]
e2
x

+
[
ω̄rkθεV1 + ω̄rkθ +

ω̄rv̄r
2

]
e2
θ (B.31)

≤− ω2
re

2
y +

ε

2
v2
rV1e

2
y + ρ5(V1)e2

x + ρ6(V1)e2
θ

+
1

2ε

[
ω̄2
rk

2
y + (kx + kθ)ω̄r + ω̄rkyv̄r + ¯̇ωr

]
e2
y (B.32)

where ρ5 and ρ6 are first-order polynomials of V1 defined as

ρ5(V1) =
ω̄r
2

[(
εkyv̄r + 2kθ

)
V1 +

(
kx +

¯̇ωr
ω̄r

)
ε+ 2ω̄r + v̄r

]
ρ6(V1) = ω̄r

[
kθ(εV1 + 1) +

v̄r
2

]
.

Next, we have

d

dt
{vrρ2(V1)eθey} = −ρ2(V1)v2

re
2
y − vrρ2(V1)

[
kθeθey + ωrexeθ

+ kθe
2
θex + kyvreyexeθ + vre

2
θ

]
+ ρ2(V1)v̇reθey

− vr
∂ρ2

∂V1

eθey
[
kxe

2
x + kθe

2
θ

]
. (B.33)

Hence, using again the triangle inequality to bound the cross-terms and regrouping

them, we obtain

d

dt
{vrρ2(V1)eθey} ≤ − kyv2

rρ2e
2
y − ρ2kθvreθey − ρ2vr

[
ωrexeθ + kθe

2
θex + kyvreyexeθ

]
+ ρ2v

2
re

2
θ + ρ2v̇reθey − vr

∂ρ2(V1)

∂V1

eθey
(
kxe

2
x + kθe

2
θ

)
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≤− kyv2
rρ2e

2
y + kθv̄r

(
ε

2
ρ2

2e
2
θ +

1

2ε
e2
y

)
+ ρ2v̄r

ω̄r
2

(
e2
x + e2

θ

)
+ ρ2v̄r

kθ
2

(
e2
θ + V1e

2
x

)
+ ρ2kyv̄

2
r

(
V1e

2
x +

e2
θ

2

)
+ v̄2

rρ2e
2
θ+

¯̇vr

(
ε

2
ρ2

2e
2
θ +

1

2ε
e2
y

)
+ v̄r

∣∣∣∣∂ρ2(V1)

∂V1

∣∣∣∣max{ky, 1}V1

(
kxe

2
x + kθe

2
θ

)

≤− kyv2
rρ2e

2
y +

1

2ε
(kθv̄r + ¯̇vr) e

2
y +

[
ρ2v̄r

ω̄r
2

+ kθV1ρ2v̄r

+ρ2kyv̄
2
rV1 + v̄r

∣∣∣∣∂ρ2(V1)

∂V1

∣∣∣∣max{ky, 1}V1kx

]
e2
x

+

[
kθv̄r

ε

2
ρ2

2 + ρ2v̄r
ω̄r
2

+ ρ2v̄r
kθ
2

+ ρ2
ky
2
v̄2
r + v̄2

rρ2

+¯̇vr
ε

2
ρ2

2 + v̄r

∣∣∣∣∂ρ2(V1)

∂V1

∣∣∣∣max{ky, 1}V1kθ

]
e2
θ

≤− kyv2
rρ2e

2
y + ρ7(V1)e2

x + ρ8(V1)e2
θ +

1

2ε
(kθv̄r + ¯̇vr) e

2
y (B.34)

where ρ7 and ρ8 are second-order polynomials of V1 satisfying

ρ7(V1) ≥ ρ2v̄r
[ ω̄r

2
+ (kθ + kyv̄r)V1

]
+ max{ky, 1}kxv̄rV1

∣∣∣∣∂ρ2

∂V1

∣∣∣∣
ρ8(V1) ≥ v̄rρ2(V1)

2

[
ω̄r + kθ(ερ2(V1) + 1) + (ky + 2)v̄r

]
¯̇vr
ε

2
ρ2(V1)2 + v̄r

∣∣∣∣∂ρ2

∂V1

∣∣∣∣max{ky, 1}kθV1.

Now we put all the previous bounds together. Using (2.21) in (B.29), we obtain, in

view of (B.31) and (B.34),

∂V2

∂t
+
∂V2

∂e
A◦vr(t, e)e ≤ −

2µ

T
V1(e)−

[
kyρ2(V1)− 1− ε

2
V1

]
v2
re

2
y

+
1

2ε

[
ω̄r
[
ω̄rk

2
y + kx + kθ + kyv̄r

]
+ ¯̇ωr + kθv̄r + ¯̇vr

]
e2
y

− e2
x

[
kxρ1 − ρ7 − ρ5 − v2

r − ω2
r

]
− e2

θ

[
kθρ1 − ρ8 − ρ6 −

1

ky

(
v2
r + ω2

r

)]
. (B.35)
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Hence, defining

ε :=
T

µ

[
ω̄r
[
ω̄rk

2
y + kx + kθ + kyv̄r

]
+ ¯̇ωr + kθv̄r + ¯̇vr

]
ρ1(V1) := 1 +

1

min{kx, kθ}

[
ρ5 + ρ6 + ρ7 + ρ8 +

[
1 +

1

ky

][
ω2
r + v2

r

] ]
.

ρ2(V1) :=
1

ky

[
1 +

ε

2
V1

]
we obtain

∂V2

∂t
+
∂V2

∂e
A◦vr(t, e)e ≤ −

µ

T
V1(e)− kxe2

x − kθe2
θ. (B.36)

That is, V2 is a strong Lyapunov function for the nominal dynamics ė = A◦vr(t, e)e.

Next, we evaluate the total derivative of V along the trajectories of (2.35) (i.e., in-

cluding the output injection term). From (B.36) we obtain

V̇3(t, e) ≤ ∂V2

∂t
+
∂V2

∂e
A◦vr(t, e)e+W (t, e) (B.37)

W (t, e) := −kθρ4(V1)e2
θ + vr[φ(eθ)− 1]

∂V2

∂e
B◦(ey)e (B.38)

for which we used (2.26), as well as the positivity of ρ4(V1) and of ∂ρ4/∂V1, to obtain

d

dt
{V1ρ4(V1)} = V̇1ρ4(V1) + V1

∂ρ4

∂V1

V̇1 ≤ −kθρ4(V1)e2
θ.

We show that W (t, e), defined in (B.38), is non-positive. To that end, note that

[φ(eθ)− 1] ≤ e2
θ (B.39)

and, in view of the structure of B◦, we have

∂V1

∂e
B◦(e)e = 0

hence,
∂V2

∂e
= vrρ2(V1)[ey 0 eθ]− ωr[0 ey ex]

and, moreover,

∣∣ [ey 0 eθ]B
◦(e)e

∣∣ =
∣∣− kye2

y + e2
θ − kyeyexeθ

∣∣ ≤ ∣∣e2
θ −

ky
2
e2
y +

ky
2
e2
xe

2
θ

∣∣
≤ 2kyV1 + 2k2

yV
2

1∣∣ [0 ey ex]B◦(e)e ∣∣ =
∣∣kye3

y + eθex − kyeye2
x

∣∣ ≤ 2kyV
2

1 + max{ky, 1}V1.
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Thus, W (t, e) ≤ 0 if

ρ4(V1) ≥ 2v̄r max{ky, 1}
kθ

[ [
kyρ2v̄r + ω̄r

]
V 2

1 +
[
ρ2v̄r + ω̄r

]
V1

]
and (2.34) follows from (B.36) and (B.37).

B.5 Proof of Proposition 2.2

Consider the function W : R≥0 × R3 → R≥0 defined by

W (t, e) := ln
[
1 + V (t, e)

]
(B.40)

where V : R≥0 → R3 → R≥0 is the continuously differentiable function defined in

(2.28).

The total derivative of W along the trajectories of (2.47) yields

Ẇ (t, e) ≤ V̇ (t, e)

1 + V (t, e)

which, in virtue of (2.29) implies that

Ẇ (t, e) ≤ −α(|e|) +
∂V

∂e

B(e)η

1 + V (t, e)
(B.41)

where

α(|e|) =
µ

2T

V1(e)

1 + V (t, e)
.

To establish the statement of the proposition we show that the second term on the

right hand side of (B.41) is bounded from above by γ|η| with γ > 0. For the sake of

argument, remark that V (t, e) = V(t, e, V1) where

V(t, e, V1) := P[3](t, V1)V1 − ωr(t)exey + vr(t)P[1](t, V1)eθey

and, in addition, note that there exists a fourth-order polynomial P̃4(V1) such that

V(t, e, V1) ≥ P̃4(V1), ∀ (t, e, V1) ∈ R≥0 × R3 × R≥0. (B.42)

Furthermore,
∂V

∂e
=

∂V
∂V1

∂V1

∂e
+
∂V
∂e
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Therefore

∂V

∂e

[
B(e)η

]
=
∂V
∂V1

∂V1

∂e
B(e)η +

∂V
∂e

[
B(e)η

]
Now, since P[3] is a polynomial of 3rd order, we have

∂V
∂V1

= P ′[3](V1) + vr(t)
∂P[1]

∂V1

eθey

where P ′[3] : R≥0 → R≥0 is the polynomial function of 3rd order defined as

P ′[3](V1) :=
∂P[3]

∂V1

V1 + P[3](V1).

Then, since P[1] is a polynomial of 1st order and eθey ≤ V1(e), there exists c > 0 such

that ∣∣∣∣ ∂V∂V1

∣∣∣∣ ≤ P ′[3](V1) + cv̄rV1.

Furthermore, B(e) is linear in e therefore, there exists c > 0 such that∣∣∣∣∂V1

∂e
B(e)η

∣∣∣∣ ≤ cV1|η|

and, on the other hand,

∂V
∂e

>
=


vr(t)P[1](t, V1)ey

−ωr(t)ey
vr(t)P[1](t, V1)eθ − ωr(t)ex

 (B.43)

Putting all these bounds together, we conclude that there exists a polynomial of fourth

order P ′4(V1) such that ∣∣∣∣∂V∂e [B(e)η
]∣∣∣∣ ≤ P ′4(V1)|η|.

and, therefore,

Ẇ (t, e) ≤ −α(|e|) + c|η|

where

c := lim sup
V1≥0

P ′4(V1)

1 + P̃4(V1)

and the claim follows.
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B.6 Proof of Lemma 2.1

First, we remark that V2, hence V , is positive definite and radially unbounded. This

follows since γ1(V1)V1 > (φ̄/2)V 2
1 and

−φ̇(t)V1(e)exey +
φ̄

2
V1(e)2 =

V1

2

[
ex

ey

]> [
φ̄ φ̇

φ̇ φ̄

][
ex

ey

]
≥ 0.

Next, we proceed now to compute the total derivative of V . By the fundamental

theorem of calculus, we have

Υ̇φ̇(s)2(t) = − 1

T

∫ t+T

t

φ̇(s)2ds+ φ̇(t)2.

Now, let µ, T > 0 be generated by the assumption that φ̇ is persistently exciting. Then,

Υ̇φ̇(s)2(t) ≤ −µ
T

+ φ̇(t)2.

Therefore, the time-derivative of V2 along the trajectories of the system[
ėx

ėy

]
=

[
−kx φ̇[e2

y + e2
x]

−φ̇[e2
y + e2

x] 0

][
ex

ey

]
(B.44)

satisfies

V̇2 ≤ −µ
T
V 3

1 + φ̇2V 3
1 − φ̇2e2

yV
2

1 + kxφ̇exeyV1

−2kxγ3(V1)e2
x − φ̈exeyV1 + 2φ̇eykxe

3
x + φ̇2V 2

1 e
2
x

≤ − µ

2T
V 3

1 −
µ

2T
e6
y + φ̇2

(
e4
x + 3e2

xe
2
y + 3e4

y

)
e2
x

+φ̇2e6
y − φ̇2e2

yV
2

1 + kxφ̇exey[e
2
x + e2

y]− 2kxγ3(V1)e2
x

−φ̈exeyV1 + 2φ̇exeykxe
2
x + φ̇2V 2

1 e
2
x
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Now, we use V1 = [e2
x + e2

y] and the inequalities

φ̇2
(
e4
x + 3e2

xe
2
y + 3e4

y

)
e2
x ≤ 3φ̄2V 2

1 e
2
x,

φ̇2e6
y − φ̇2e2

yV
2

1 ≤ 0,

3φ̇exeykxe
2
x ≤

3

2
V1φ̄kxe

2
x,

φ̇exeykxe
2
y ≤

φ̄

2

[1
ε
e6
y + εk2

xe
2
x

]
,

−φ̈exey[e2
y + e2

x] ≤
φ̄

2

[1
ε
e6
y + εe2

x + e2
xV1

]
to obtain

V̇2 ≤ − µ

2T
V 3

1 −
[
µ

2T
− φ̄

ε

]
e6
y

−
[
2kxγ3(V1)− 4φ̄2V 2

1 −
3

2
φ̄kxV1 −

εφ̄

2
[k2
x + 1]− φ̄

2
V1

]
e2
x

so, setting ε = 4T φ̄
µ

and γ3(V1) as in (2.74), we obtain

V̇2 ≤−
µ

2T
V 3

1 −
µ

4T
e6
y. (B.45)

Next, we compute the total derivative of V (t, ẽ) (recall that ẽ := [ex ey ez]
>) in (2.69)

along the trajectories of (2.66). Using (B.45), we obtain

V̇3 ≤ −2γ1(V1)kxe
2
x −

µ

2T
V 3

1 −
µ

4T
e6
y

+
∂V2

∂V1

∂V1

∂[ex ey]>

[
0 kθ

−kθ 0

][
ex

ey

]
ez

−∂(φ̇V1exey)

∂[ex ey]>

[
0 kθ

−kθ 0

][
ex

ey

]
ez

+2γ2(V1)ez[−kθez − 2φkxe
2
x].

However,
∂V1

∂[ex ey]>

[
0 kθ

−kθ 0

][
ex

ey

]
= 0

hence,

V̇3 ≤ − µ

4T
e6
y − kθφ̇ez[e4

y − e4
x]− 2kθγ2(V1)e2

z

−4φ(t)kxγ2(V1)eze
2
x − 2γ1(V1)kxe

2
x −

µ

2T
V 3

1 .
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Now, for any ε1, ε2 > 0 we have

−kθφ̇eze4
y ≤

1

2ε1
φ̄kθe

2
ze

2
y +

ε1
2
φ̄kθe

6
y

kθφ̇eze
4
x ≤

1

2ε1
φ̄kθe

2
zV1 +

ε1
2
φ̄kθe

2
xV

2
1

−4φ(t)kxγ2(V1)eze
2
x ≤

2φ̄

ε2
kxγ2(V1)e2

z + 2ε2φ̄kxγ2(V1)V1e
2
x,

therefore

V̇3(t, e) ≤ − µ

4T
V 3

1 −
[ µ

4T
− ε1

2
φ̄kθ

]
e6
y

−
[
2γ1(V1)kx −

ε1
2
φ̄kθV

2
1 − 2ε2kxφ̄γ2(V1)V1

]
e2
x

−
[
2kθγ2(V1)−

[kθ
ε1
V1 +

2

ε2
kxγ2(V1)

]
φ̄
]
e2
z.

So, setting

ε1 :=
µ

4T φ̄kθ
, ε2 :=

4kxφ̄

kθ

and using (2.72)–(2.74), (2.75) follows.
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B.7 Proof of Lemma 3.2

The time-derivative of V2 along trajectories of (3.73) satisfies the following inequalities

V̇2(t, e) ≤− 2P1(V1)kxe
2
x −

µ

T
V 2

1 + ψ̇2V 2
1 − ψ̈

√
V1exey − ψ̇

exey√
V1

kxe
2
x + ψ̇2V1e

2
x

− ψ̇e2
y

√
V1

(
−kxex + ψ̇

√
V1

)
+ ψ̇kθez

√
V1

(
e2
x − e2

y

)
+ 2Q1(V1)ez

(
−kθez − ψkx

e2
x√

e2
x + e2

y

)

≤−
[
2kxP1(V1)− 2ψ̇2V1 − ψ̇kx

√
V1

2

]
e2
x −

µ

T
V 2

1 + kxψ̇
√
V1e

2
yex + ψ̇kθV1

√
V1ez−

2Q1kθe
2
z − 2Q1(V1)ψkx

eze
2
x√
V1

≤−
[
2kxP1(V1)− 2ψ̇2V1 − ψ̇kx

√
V1

2

]
e2
x −

µ

T
V 2

1 + kx

∣∣∣ψ̇∣∣∣V1

(
1

2ε
V1 +

ε

2
e2
x

)
+∣∣∣ψ̇∣∣∣ kθV1

(
1

2ε
V1 +

ε

2
e2
z

)
− 2Q1kθe

2
z +

kx
δ
Q1(V1)e2

z + δf 2Q1(V1)kxe
2
x

≤−
[
2kxP1(V1)− 2ψ̇2V1 − ψ̇kx

√
V1

2
− δψ2Q1(V1)kx − kx

∣∣∣ψ̇∣∣∣ ε
2
V1

]
e2
x−[

µ

T
− kx

∣∣∣ψ̇∣∣∣ 1

2ε
− 1

2ε

∣∣∣ψ̇∣∣∣ kθ]V 2
1 −

[
2Q1(V1)

(
kθ −

kx
2δ

)
− ε

2

∣∣∣ψ̇∣∣∣ kθV1

]
e2
z

(B.46)

We take: ε = T
µ

(kx + kθ) ψ̄, and δ = kx
kθ

, and:

Q1(V1) ≥εψ̄V1 + 1 (B.47)

and,

P1(V1) ≥ 1

kx
ψ̄2V1 + ψ̄

√
V1

4
+
δ

4
ψ̄2Q1(V1) + ψ̄

ε

4
V1 (B.48)

We get finally,

V̇2(t,X) ≤− µ

2T
V 2

1 −
1

2
Q1(V1)kθe

2
z (B.49)

B.8 New Filtration Lemma

The following lemmas extend a well-known filtration property of persistently exciting

functions [41].
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Lemma B.1. Consider the two scalar second order systems:

f̈ + k1ḟ + k2f = p(t) (B.50)

and

q(3) + k1q̈ + k2q̇ = ṗ(t) (B.51)

where k1, k2 > 0 and p(t) is a time-varying input such that ṗ(t) is PE with excitation

parameters−(T, µ) and there exists bp > 0 such that max
{
p, ṗ, p̈, p(3)

}
≤ bp. Then ḟ(t)

and q̇(t) are both PE with excitation parameters−(Tf , µf ) and−(Tq, µq) respectively, given by

Tf = kfT ,

µf =

(
2(1 + k−1

2 )bprf
)2

b2
p

(
1 + k1k

−1
2 + k−1

2

)2
Tf
, (B.52)

and kf =

[
4(1+k−1

2 )bprf
µk−1

2

]
+ 1, Tq = kqT ,

µq =
(2bprq(2 + k2))2

b2
p(1 + k1 + k2)2Tq

, (B.53)

and kq =
[

4
µ
bprq(2 + k2)

]
+ 1.

Where

r2
f =

(a+ 1)ḟ(0)2 + 4(ak2 + 1)
(
f(0)2 + k−1

2 bp
2
)

+ bbp
2

c

min {1, k2}
, (B.54)

r2
q =

2
(a+ 1)q̈(0)2 + 4(ak2 + 1)

(
q̇(0)2 + k−2

2 b2
p

)
+

bb2p
c

+ k−2
2 bp

min {1, k2}
,

a = 2k−1
1 + k1k

−1
2 + k−1

2 + 1, b := 4k−1
2 + 1

ak1k2
2

and c := 1
4

min{ak1,k2}
a+2+ak2

.

Furthermore,

max
{
f, ḟ , f̈ , f (3)

}
≤ bf ,

max
{
q, q̇, q̈, q(3)

}
≤ bq,

with:

bf =
[
2 + k1 + k2 + k2

1 + k1k2 + k2

]
rf + [k1 + k−2 + 2]bp. (B.55)

bq =

(
2 + k1 + k2 +

2

k2

(k1 + 1)

)
rq +

(
1 +

2

k2

)
bp + |q(0)| . (B.56)

Proof. 1)- Consider the following linear change of coordinates for the first differential
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equation (B.50): x = f − k−1
2 p(t), y = ḟ . Then ẋ = y − k−1

2 ṗ(t) and ẏ = −k2y − k1x.

First, note that the overall trajectories are bounded, i.e., there exists rf > 0 that is a

function of (x(0), y(0), bp), such that |(x, y)| ≤ rf , ∀t ≥ 0. Consider now the following

time-derivative

d

dt

[
−ṗx− k−1

2 p̈y
]

=[−ṗ+ k1k
−1
2 p̈− k−1

2 p(3)]y + k−1
2 ṗ2

≥− bp
[
1 + k1k

−1
2 + k−1

2

]
|y|+ k−1

2 ṗ2,

then

bp
[
1 + k1k

−1
2 + k−1

2

] ∫ t+kfT

t

|y(s)|ds ≥∫ t+kfT

t

d

ds

[
ṗ(s)x(s) + k−1

2 p̈(s)y(s)
]
ds+

k−1
2

∫ t+kfT

t

ṗ(s)2ds ≥ −2
(
1 + k−1

2

)
bprf + k−1

2 kfµ

where kf is a positive integer and, to obtain the last inequality, we used the fact that

trajectories are bounded and that ṗ is PE with parameters (T, µ). Invoking the Cauchy-

Schwartz inequality on
∫ t+kfT
t

|y(s)|ds, we obtain

b2
p

(
1 + k1k

−1
2 + k−1

2

)2
kfT

∫ t+kfT

t

y(s)2ds ≥(
k−1

2 kfµ− 2
(
1 + k−1

2

)
bp
)2

Finally, we get ∫ t+kfT

t

y(s)2ds ≥
(
k−1

2 kfµ− 2
(
1 + k−1

2

)
bprf

)2

b2
p

(
1 +K1k

−1
2 + k−1

2

)2
kfT

(B.57)

Taking kf =

[
4(1+k−1

2 )bprf
µk−1

2

]
+ 1, we find Tf = kfT and µf =

(2(1+k−1
2 )bprf)

2

b2p(1+k1k
−1
2 +k−1

2 )
2
Tf

, such that

t+Tf∫
t

y(s)2ds ≥ µf . 2)- Consider the second equation case using the notation (x, y) =

(q̇, q̈). First, note that the overall trajectories are bounded, i.e., there exists rq > 0 that is

a function of (x(0), y(0), bp), such that ‖(x, y)‖ ≤ rq, ∀t ≥ 0. Consider now the following

time-derivative

d

dt
[ṗy − (p̈− k2ṗ)x] =− [ṗk1 + p(3) − k2p̈]x+ ṗ2

≥− bp [k1 + 1 + k2] |x|+ ṗ2,



Appendix B 185

then

bp [k1 + 1 + k2]

∫ t+kqT

t

|x(s)|ds ≥∫ t+kqT

t

d

ds
[ṗy − (p̈− k2ṗ)x]ds+∫ t+kqT

t

ṗ(s)2ds ≥ −2 (2 + k2) bpr + kqµ

where kq is a positive integer and, to obtain the last inequality, we used the fact that

trajectories are bounded and that ṗ is PE with parameters (T, µ). Invoking the Cauchy-

Schwartz inequality on
∫ t+kqT
t

|x(s)|ds, we obtain

b2
p (k1 + k2 + 1)2 kqT

∫ t+kqT

t

x(s)2ds ≥

(kqµ− 2 (2 + k2) bprq)
2

Finally, we get ∫ t+kT

t

x(s)2ds ≥ (2bprq(2 + k2))2

b2
p(1 + k1 + k2)2Tq

(B.58)

Taking kq =
[

4
µ
bprq(2 + k2)

]
+ 1, we find Tq = kqT and µq = (2bprq(2+k2))2

b2p(1+k1+k2)2Tq
, such that

t+Tq∫
t

x(s)2ds ≥ µq. In order to have an explicit estimation of (Tf , µf ) and (Tq, µq) it only

remains to estimate the upper bound of the trajectories rf and rq. For, let consider

the first deferential equation (B.50) and let us define the Lyapunov function candidate

V (x, y) = a (y2 + k2x
2) + xy with x = f − k−2 p(t), y = ḟ and a = 2k−1

1 + k1k
−1
2 + k−1

2 + 1.

V (x, y) verifies the following bounds

min {1, k2}(y2 + x2) ≤ V (x, y) ≤

max {a+ 1, ak2 + 1} (x2 + y2). (B.59)

V̇ , along the trajectories of the system, satisfies

V̇ (·) ≤− ak1y
2 + y2 − k1yx− k2x

2 + 2ṗx+ k−1
2 yṗ

≤− a

4
k1y

2 − 1

4
k2x

2 +

[
4k−1

2 +
1

ak1k2
2

]
ṗ2

≤− cV + bb2
p

where c := 1
4

min{ak1,k2}
a+2+ak2

and b := 4k−1
2 + 1

ak1k2
2
.

Since x2 + y2 ≤ 1
min{1,k2}V , we can calculate the upper bound of the trajectories as
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‖(x, y)‖2 ≤ 1

min {1, k2}
max

{
V (0),

bb2
p

c

}
≤

(a+ 1)ḟ(0)2 + 4(ak2 + 1)
(
f(0)2 + k−2

2 b2
p

)
+

bb2p
c

min {1, k2}
= r2

f . (B.60)

To deduce the bound rq using rf we observe that the differential equations (B.50)

is equivalent to (B.51) if we replace f by q̇ and ḟ by q̈, also under the assumption

max
{
p, ṗ, p̈, p(3)

}
≤ bp we obtain,

(q̇ − k2p)
2 + q̈2 ≤

(a+ 1)q̈(0)2 + 4(ak2 + 1)
(
q̇(0)2 + k−2

2 b2
p

)
+

bb2p
c

min {1, k2}
. (B.61)

which implies,

q̇2 + q̈2 ≤

2
(a+ 1)q̈(0)2 + 4(ak2 + 1)

(
q̇(0)2 + k−2

2 b2
p

)
+

bb2p
c

+ k−2
2 bp

min {1, k2}
= rq. (B.62)

Finally, from the system dynamics, (B.60) and (B.62), we can find that f ≤ rf + k−2 bp,

ḟ ≤ rf , f̈ ≤ (k1 + k2)rf + bp and f (3) ≤ (k2
1 + k1k2 + k2)rf + (k1 + 1)bp so (B.55) follows.

Also, q̇ ≤ rq, q̈ ≤ rq, q(3) ≤ k1rq + k2rq + bp and q ≤ 2
k2
bp + 2

k2
(k1 + 1)rq + |q(0)| so (B.56)

follows. This concludes the proof. ���

B.9 Proof of theorem 4.1

First, we remark that W (·) and Z(·) are positive definite radially unbounded and sat-

isfy

W (·) ≥γ(V )V

W (·) ≤γ(V )V + V κT (e, s)Ῡḟ2(t)κ(e, s) + c1bf̄2λN(L)V 2+

2 [λN(L) + |Kpt|]α(V )V

Z(·) ≥min {1, λm(Kpθ)}
[
eTθ eθ + eTωeω

]
Z(·) ≤max {1 + c2, c2λM(Kpθ) + 1}

[
eTθ eθ + eTωeω

]
. (B.63)
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Next, we study the time derivative of each component in the Lyapunov function Γ(·)
along the trajectories of the closed-loop system (4.25), that is,

d

dt
(γ(V )V ) ≤− γ(V )vTKdtK

−
ptv, (B.64)

d

dt
(ρ2(V )V ) ≤− ρ2(V )vTKdtK

−
ptv, (B.65)

d

dt

(
V κT Ῡḟ2(t)κ

)
≤ −V κT 1

T

∫ t+T

t

ḟ 2(s)dsκ+

V κT ḟ 2(t)κ+ 2V κT Ῡḟ2

[
ēΦTL2Φv + s̄Φ⊥TL2Φv

]
. (B.66)

Since ḟ(t) is persistently exciting, with parameters−(µ, T ), then the following inequal-

ities holds

d

dt

(
V κT Ῡḟ2(t)κ

)
≤ −µ

T
V κTκ+ V κT ḟ 2(t)κ+

2V κT Ῡḟ2

[
ēΦTL2Φv + s̄Φ⊥TL2Φv

]
≤− µ

T
V κTκ+ V κT ḟ 2(t)κ+ 2V eT κ̄Ῡḟ2ΦTL2Φv+

2V sT κ̄Ῡḟ2Φ⊥TL2Φv (B.67)

where we used the facts that

κT Ῡḟ2 ēΦ
TL2Φv = eT κ̄Ῡḟ2ΦTL2Φv

and

κT Ῡḟ2 s̄Φ
⊥TL2Φv = sT κ̄Ῡḟ2Φ⊥TL2Φv.
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Moreover, we have

d

dt

(
V κT Ῡḟ2(t)κ

)
≤ −µ

T
V κTκ+ V κT ḟ 2(t)κ+

V

[
1

ε
eT κ̄e+ εvTΦTL2ΦῩ2

ḟ2κ̄ΦTL2Φv

]
+

V

[
1

ε
sT κ̄s+ εvTΦ⊥TL2ΦῩ2

ḟ2κ̄Φ⊥TL2Φv

]
≤− µ

T
V κTκ+ V κT ḟ 2(t)κ+ V

2

ε
κTκ+

V εvTΦTL2ΦῩ2
ḟ2κΦTL2Φv+

V εvTΦ⊥TL2ΦῩ2
ḟ2κΦ⊥TL2Φv

≤−
[
µ

T
− 2

ε

]
V κTκ+ V κT ḟ 2(t)κ+

V 2ελN(L)
(∣∣Ῡḟ2ΦTL2Φ

∣∣2
∞ +

∣∣Ῡḟ2Φ⊥TL2Φ
∣∣2
∞

)
×∣∣K−dtKpt

∣∣ vTKdtK
−
ptv (B.68)

where the following inequality

vTΦTL2ΦῩ2
ḟ2κΦTL2Φv ≤ λN(L)V

∣∣Ῡḟ2ΦTL2Φ
∣∣2
∞

∣∣K−dtKpt

∣∣×
vTKdtK

−
ptv, (B.69)

vTΦ⊥TL2ΦῩ2
ḟ2κΦ⊥TL2Φv ≤ λN(L)V

∣∣Ῡḟ2Φ⊥TL2Φ
∣∣2
∞×∣∣K−dtKpt

∣∣ vTKdtK
−
ptv, (B.70)

and

sT κ̄s ≤ 2κTκ

are used in order to obtain

d

dt

(
V κT Ῡḟ2(t)κ

)
≤ −

[
µ

T
− 2

ε

]
V κTκ+ V sT ḟ 2(t)κ̄s+

b2
f̄λN(L)V 2

∣∣K−pt∣∣ eTKpte+

V 2ελN(L)
(∣∣Ῡḟ2ΦTL2Φ

∣∣2
∞ +

∣∣Ῡḟ2Φ⊥TL2Φ
∣∣2
∞

)
×∣∣K−dtKpt

∣∣ vTKdtK
−
ptv (B.71)

where the following inequality is used

V κT ḟ 2(t)κ ≤ V sT ḟ 2(t)κ̄s+ b2
f̄λN(L)V 2

∣∣K−pt∣∣ eTKpte.
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d

dt

(
α(V )eTv

)
≤ −

(
∂α

∂V

)
eTvvTKdtK

−
ptv+

α(V )
[
vTΦTL2Φv + sT ḟ κ̄v − eTKdtv − eTKpte− vT ēωs

]
≤− α(V )eTKpte−

(
∂α

∂V
eTv

)
vTKdtK

−
ptv+

α(V )vT
(
ΦTL2ΦK−dtKpt

)
KdtK

−
ptv+

α(V )sT ḟ κ̄v − α(V )eTKptKdtK
−
ptv − α(V )vT ēωs

≤− α(V )eTKpte−
(
∂α

∂V
eTv

)
vTKdtK

−
ptv+

α(V )
∣∣ΦTL2Φ

∣∣
∞

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv+

1

ε
sT ḟ 2κ̄2s+

ε

4

∣∣KptK
−
dt

∣∣α2(V )vTKdtK
−
ptv+

1

ε
α(V )eTKpte+

ε

4
α(V ) |Kdt| vTKdtK

−
ptv − α(V )vT ēωs (B.72)

where the following inequalities are used

vTΦTL2Φv ≤
∣∣ΦTL2Φ

∣∣
∞

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv, (B.73)

α(V )sT ḟ κ̄v ≤ 1

ε
sT ḟ 2κ̄2s+

ε

4

∣∣KptK
−
dt

∣∣α2(V )vTKdtK
−
ptv, (B.74)

and

αeTKdtv ≤
1

ε
α(V )eTKpte+

ε

4
|Kdt|α(V )vTKdtK

−
ptv. (B.75)

Also, we have

d

dt

(
α(V )eTv

)
≤ −α(V )eTKpte

(
1− 1

ε

)
+

λN(L)

ε
V sT ḟ 2κ̄s− α(V )vT ēωs+[

−
(
∂α

∂V
eTv

)
+ α(V )

∣∣ΦTL2Φ
∣∣
∞

∣∣K−dtKpt

∣∣+
ε

4

∣∣KptK
−
dt

∣∣α2(V ) +
ε

4
α(V ) |Kdt|

]
vTKdtK

−
ptv. (B.76)
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d

dt

(
−c1V e

T ḟ s
)
≤ −eT f̈ sV c1 + c1[eT ḟ s]vTKdtK

−
ptv−

c1V
[
vTΦTL2Φḟ s+ sT κ̄ḟ 2s− eT ḟ 2κ̄e+ eT ḟΦ⊥TL2Φv−

sT ēωḟ s+ eT ḟ ēωe
]

≤− c1V s
T ḟ 2κ̄s+

ε

4
b2
f̄c

2
1e
T e+

1

ε
V 2sT s+(

c1e
T ḟ s

)
vTKdtK

−
ptv+

ε

4
c2

1

∣∣K−dtKpt

∣∣ ∣∣∣ḟ 2
(
ΦTL2Φ

)2
∣∣∣
∞
vTKdtK

−
ptv

+
1

ε
V 2sT s+ b2

f̄c1λN(L)V 2eT e+

1

ε
c1

∣∣∣ḟ 2
(
Φ⊥TL2Φ

)2
∣∣∣
∞

∣∣K−dt∣∣V eTKpte+
ε

4
c1V v

TKdtK
−
ptv+

c1V s
T ḟ ēωs− c1V e

T ḟ ēωe (B.77)

where the following inequalities are used

c1V e
T f̈ s ≤ ε

4
c2

1b
2
f̄e
T e+

1

ε
V 2sT s, (B.78)

c1V v
TΦTL2Φḟ s ≤ ε

4
c2

1

∣∣∣ḟ 2
(
ΦTL2Φ

)2
∣∣∣
∞

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv

+
1

ε
V 2sT s, (B.79)

and

c1V e
T ḟΦ⊥TLΦv ≤1

ε
c1V

∣∣∣ḟ 2
(
Φ⊥TL2Φ

)2
∣∣∣
∞

∣∣K−dt∣∣ eTKpte

+
ε

4
c1V v

TKdtK
−
ptv. (B.80)

Then, we obtain

d

dt

(
−c1V e

T ḟ s
)
≤ −c1V s

T ḟ 2κ̄s+
[
c1e

T ḟ s+

ε

4
b2
f̄c

2
1

∣∣K−dtKpt

∣∣ ∣∣∣(ΦTL2Φ
)2
∣∣∣
∞

+
ε

4
c1V

]
vTKdtK

−
ptv+[

b2
f̄c1λN(L)

∣∣K−pt∣∣V 2 +
1

ε
c1

∣∣∣ḟ 2
(
Φ⊥TL2Φ

)2
∣∣∣
∞

∣∣K−dt∣∣V
+
ε

4
b2
f̄c

2
1

∣∣K−pt∣∣] eTKpte+

2

ε
V 2sT s+ c1V s

T ḟ ēωs− c1V e
T ḟ ēωe. (B.81)



Appendix B 191

Next, we use the following inequality

V 2sT s ≤V 2λN(L)
∣∣K−dt∣∣ vTK−ptKdtv +

4n

λ2(L)
V κTκ (B.82)

to obtain

d

dt

(
−c1V e

T ḟ s
)
≤ −c1V s

T ḟ 2κ̄s+
[
c1e

T ḟ s+

ε

4
b2
f̄c

2
1

∣∣K−dtKpt

∣∣ ∣∣∣(ΦTL2Φ
)2
∣∣∣
∞

+
ε

4
c1V

]
vTKdtK

−
ptv+[

b2
f̄c1λN(L)

∣∣K−pt∣∣V 2 +
1

ε
c1

∣∣∣ḟ 2
(
Φ⊥TL2Φ

)2
∣∣∣
∞

∣∣K−dt∣∣V
+
ε

4
b2
f̄c

2
1

∣∣K−pt∣∣] eTKpte+

2

ε
V 2λN(L)

∣∣K−dt∣∣ vTK−ptKdtv +
8n

λ2(L)ε
V κTκ+

c1V s
T ḟ ēωs− c1V e

T ḟ ēωe. (B.83)

Using the previous inequalities, we are able to study the time derivative of W (·) along

the trajectories of the closed-loop system (4.25), that is

Ẇ (·) ≤−
[
γ(V )− V 2ελN(L)

(∣∣Ῡḟ2ΦTL2Φ
∣∣2
∞+∣∣Ῡḟ2Φ⊥TL2Φ

∣∣2
∞

) ∣∣K−dtKpt

∣∣+

(
∂α

∂V
eTv

)
−

α(V )
∣∣ΦTL2Φ

∣∣
∞

∣∣K−dtKpt

∣∣− ε

4
|Kpt|α2(V )−

ε

4
α(V ) |Kdt| −

(
c1e

T ḟ s
)
−

ε

4
c2

1

∣∣K−dtKpt

∣∣ ∣∣∣(ΦTL2Φ
)2
ḟ 2
∣∣∣
∞
− ε

4
c1V−

2

ε
V 2λN(L)

∣∣K−dt∣∣] vTKdtK
−
ptv

−
[
α(V )

(
1− 1

ε

)
− b2

f̄λN(L)V 2
∣∣K−pt∣∣−

b2
f̄c1λN(L)

∣∣K−pt∣∣V 2 − 1

ε
c1

∣∣∣ḟ 2
(
Φ⊥TL2Φ

)2
∣∣∣
∞
×∣∣K−dt∣∣V − ε

4
b2
f̄c

2
1

∣∣K−pt∣∣] eTKpte

−
[
c1 − 1− λN(L)

ε

]
V sT ḟ 2κ̄s−

[
µ

T
− 2

ε
− 8n

λ2(L)ε

]
V κTκ

− α(V )vT ēωs+ c1V s
T ḟ ēωs− c1V e

T ḟ ēωe. (B.84)
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Taking ε = max
{

2, 2T
µ

(
2 + 8n

λ2(L)

)}
, γ(V ), α(V ), and c1 as in (4.30)−(4.34) respectively,

we obtain

Ẇ (·) ≤− 1

2
γ(V )vTKdtK

−
ptv −

1

4
α(V )eTKpte−

µ

2T
V κTκ

− α(V )vT ēωs+ c1V s
T ḟ ēωs− ḟ c1V e

T ḟ ēωe. (B.85)

Considering, now, the time derivative of the remaining part in the Lyapunov function

Γ(·), that is,

d

dt
(ρ1(V )Z(Xr)) ≤ ρ1(V )

[
−c2e

T
ωeω + eTωeω − eTθKpθeθ − eTθ eω

]
+

c22eTω ḟρ1(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

c22eTθKpθfρ1(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

eTωfρ1(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

eTθ ḟρ1(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
. (B.86)

Using the fact that Z(Xr) is a strict Lyapunov function for the system

Ẋr =

[
0 In

−Kpθ −Kdθ

]
Xr,

we obtain

d

dt
(ρ1(V )Z(Xr)) ≤ ρ1(V )

[
−eTω

[
c2 − In −

δ

4

]
eω − eTθ

[
Kpθ −

1

δ

]
eθ

]
+

c22eTω ḟρ1(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

c22eTθKpθfρ(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

eTωfρ(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
+

eTθ ḟρ(V )
[
ēΦT (θ)L2ΦT (θ)v + s̄Φ⊥T (θ)L2ΦT (θ)v

]
. (B.87)
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Taking δ = 2
λM (Kpθ)

λm(Kpθ)
and the parameter c2 as in (4.34), we obtain

d

dt
(ρ(V )Z(Xr)) ≤ ρ(V )

[
−c2

2
eTωeω −

1

2
eTθKpθeθ

]
+(

c22bf̄ + bf̄
)
ρ(V )

[∣∣eTω ēΦT (θ)L2Φ(θ)v
∣∣+∣∣eTω s̄Φ⊥T (θ)L2Φ(θ)v

∣∣]+(
c22Kpθbf̄ + bf̄

)
ρ(V )

[∣∣eTθ ēΦT (θ)LΦ(θ)v
∣∣+∣∣eTθ s̄Φ⊥T (θ)L2Φ(θ)v

∣∣]
≤ρ(V )

[
−c2

2
eTωeω −

1

2
eTθKpθeθ

]
+

πρ

2

∣∣ēΦT (θ)L2ΦT (θ)v
∣∣2 +

πρ

2

∣∣s̄Φ⊥T (θ)L2ΦT (θ)v
∣∣2 +(

c22Kpθbf̄ + bf̄
)2
ρ(V )2

eTθ eθ
π

+
(
c22bf̄ + bf̄

)2
ρ(V )2

eTωeω
π

. (B.88)

Next, taking π = max

{
8(2c2bf̄+bf̄)

2

c2λm(Kdθ)
,

8(2c2Kpθbf̄+bf̄)
2

λm(Kpθ)

}
, we get

d

dt
(ρ1(V )Z(Xr)) ≤ −ρ1(V )

[
c2

4
eTωeω +

1

4
eTθKpθeθ

]
+

πρ1

2

∣∣ēΦT (θ)L2Φ(θ)v
∣∣2 +

πρ1

2

∣∣s̄Φ⊥T (θ)L2Φ(θ)v
∣∣2 . (B.89)

Finally, using the inequalities

∣∣ēΦTL2Φv
∣∣2 ≤ λN(L)V

∣∣ΦTL2Φ
∣∣2
∞

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv (B.90)

and

∣∣s̄Φ⊥TL2Φv
∣∣2 ≤ λN(L)V

∣∣Φ⊥TL2Φ
∣∣2
∞

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv (B.91)

we verify the following

d

dt
(ρ1(V )Z(Xr)) ≤ −ρ1(V )

[
a

4
eTωeω +

1

4
eTθKpθeθ

]
+

π

2
λN(L)

(∣∣ΦT (θ)L2Φ(θ)
∣∣2
∞+∣∣Φ⊥T (θ)L2Φ(θ)

∣∣2
∞

) ∣∣K−dtKpt

∣∣ ρ1(V )V vTKdtK
−
ptv

≤− ρ1(V )

[
c2

4
eTωeω +

1

4
eTθKpθeθ

]
+ ρ2(V )vTKdtK

−
ptv. (B.92)

As a last step, we use the previous inequalities to show that the time derivative of

the global Lyapunov function Γ(·) along trajectories of the system (4.25) is negative
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definite, that is,

Γ̇(·) ≤− ρ1(V )

[
c2

4
eTωeω +

1

4
eTθKpθeθ

]
− 1

2
γ(V )vTKdtK

−
ptv

− 1

4
α(V )eTKpte−

µ

2T
V κTκ− α(V )vT ēωs+

c1V s
T ḟ ēωs− c1V e

T ḟ ēωe. (B.93)

Furthermore, using the following inequalities

α(V )vT ēωs ≤
λN(L)

∣∣K−dtKpt

∣∣
c3

α(V )V vTKdtK
−
ptv +

c3

4
α(V )eTωeω

and

c1V e
T
ω ḟ (s̄s− ēe) ≤ c1V bf̄

[
c3

4
eTωeω +

4

c3

κTκ

]
,

we obtain

Γ̇(·) ≤− ρ1(V )

[
a

4
eTωeω +

1

4
eTθKpθeθ

]
− 1

2
γ(V )vTKdtK

−
ptv

− 1

4
α(V )eTKpte−

µ

2T
V κTκ+

c3

4

(
α(V ) + bf̄c1V

)
eTωeω+

λN(L)
∣∣K−dtKpt

∣∣
c3

α(V )V vTKdtK
−
ptv +

4c1bf̄
c3

V κTκ. (B.94)

Next, taking c3(V1) = max

{
16Tc1bf̄

µ
,

4λN (L)|K−dtKpt|α(V )V

γ(V )

}
, we obtain

Γ̇(·) ≤− ρ1(V )

[
c2

4
eTωeω +

1

4
eTθKpθeθ

]
− 1

4
γ(V )vTKdtK

−
ptv

− 1

8
α(V )eTKpte−

µ

4T
V κTκ+

c3

4

(
α(V ) + bf̄βV

)
eTωeω. (B.95)

Finally, taking ρ1 as in (4.29), we obtain

Γ̇(·) ≤− ρ1(V )

2

[
c2

4
eTωeω +

1

4
eTθKpθeθ

]
− 1

4
γ(V )vTKdtK

−
ptv

− 1

8
α(V )eTKpte−

µ

4T
V 3. (B.96)

Which completes the proof.



Appendix B 195

B.10 Proof of theorem 4.2

We start observing that the transnational part of the closed-loop system (4.42) admits

the following non-strict Lyapunov-Krasovskii functional candidate

V (θ,Xt, żt) = v>K−1
pt v + z>L2z +

∫ 0

−T ∗

∫ t

t+θ

ż(s)T ż(s)dsdθ (B.97)

where T ∗ = maxi,j {Tij}.
Indeed, in view of the following inequality∫ 0

−T ∗

∫ t

t+θ

ż(s)T ż(s)dsdθ ≤ T ∗
∫ t

t−T ∗
|ż(s)|2 ds

one can easily establish that V (θ,Xt, żt) is Lyapunov-Krasovskii functional candidate

with respect to Xt. Moreover, the time derivative of V (·) along the trajectories of (4.42)

is given by

V̇ (·) =− 2v>K−1
pt Kdtv + 2vTΦ(θ)TA(żt) + T ∗vTv −

∫ t

t−T ∗
ż(s)T ż(s)ds

≤− [2− T ∗λM(KptK
−
dt)]v

>K−1
pt Kdtv −

1

ā2N

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

T żi(s)ds+

2vTΦ(θ)TA(żt). (B.98)

Applying Jensen’s inequality, we obtain the following∫ t

t−Tij
żi(s)

T żi(s)ds ≤ −
1

T ∗ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds. (B.99)

Moreover, using the inequality

|A(żt)|2 ≤N
N∑
j=1

N∑
i=1

∫ t

t−Tij
żi(s)

Tdsa2
ij

∫ t

t−Tij
żi(s)ds (B.100)
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we obtain

V̇ (·) ≤− [2− T ∗λM(KptK
−
dt)]v

>K−1
pt Kdtv−

1

ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds+

N

2ε

N∑
j=1

N∑
i=1

∫ t

t−Tij
żi(s)

Tdsa2
ij

∫ t

t−Tij
żi(s)ds+ ελM(KptK

−
dt)v

TK−1
pt Kdtv. (B.101)

Next, taking ε = N2āT ∗ and the matrices Kdt and Kpt such that Assumption 4.4 holds,

we get

V̇ (·) ≤− v>K−1
pt Kdtv −

1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds (B.102)

From the previous section, the time derivative of W (·) along the trajectories of the

following un-delayed system

Ẋt =


−Kdt −Kpt 0

0 0 ¯̇fκ̄− ēω
0 − ¯̇fκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv (B.103)

verifies the following upper bound

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

8
α(V )eTKpte−

µ

4T
V κTκ+

ρ1(V )

8
c2e

T
ωKpθeω. (B.104)

If we consider the delayed case in (4.42a) we obtain

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

8
α(V )eTKpte−

µ

4T
V κTκ+

ρ1(V )

8
c2e

T
ωKpθeω

− γ(V )

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds− α(V )eTKptΦ(θ)TA(żt)

− ∂α

∂V
eTv

(
1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
. (B.105)

Using the inequalities

−α(V )eTKptΦ(θ)TA(żt) ≤
α(V )

16
eTKpte+ 4α(V )λM(Kpt) |A|2
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and

|A|2 ≤ N
N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

we obtain

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

16
α(V )eTKpte−

µ

4T
V κTκ+

ρ1(V )

8
c2e

T
ωKpθeω. (B.106)

On the other hand, the time derivative ρ1(V )Z(Xr) along the following un-delayed

system

Ẋr =

[
0 IN

−Kpθ −Kdθ

]
Xr +

[
bf̄
¯̇f

] (
ēΦ>L2 + s̄Φ⊥>L2

)
Φv (B.107)

satisfies the following upper bound

d

dt
(ρ1(V )Z(Xr)) ≤− ρ1(V )

[
c2

4
eTωKdθeω +

1

4
eTθKpθeθ

]
+

1

2
ρ2(V )vTKdtK

−
ptv

− Z(Xr)V̇ . (B.108)

If we consider the delayed case as in (4.42b), we obtain

d

dt
(ρ1(V )Z(Xr)) ≤− ρ1(V )

[
c2

4
eTωKdθeω +

1

4
eTθKpθeθ

]
+

1

2
ρ2(V )vTKdtK

−
ptv + 2ρ1(V )Kptc2e

T
ωκd + ρ1(V )Kpte

T
θ κd

− Z(Xr)

(
− 1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
.

(B.109)

Using the fact that

κd =
1

2


|A1|2

...

|AN |2

+ ēΦTA(żt) + s̄Φ⊥TA(żt)
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we obtain

d

dt
(ρ1(V )Z(Xr)) ≤− ρ1(V )

[
c2

4
eTωKdθeω +

1

4
eTθKpθeθ

]
+

1

2
ρ2(V )vTKdtK

−
ptv

+ 2ρ1(V )Kptc2e
T
ω

1

2


|A1|2

...

|AN |2

+
(
ēΦT + s̄Φ⊥T

)
A(żt)



+ ρ1(V )Kpte
T
θ

1

2


|A1|2

...

|AN |2

+
(
ēΦT + s̄Φ⊥T

)
A(żt)


− Z(Xr)

(
1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
.

(B.110)

Using the following inequalities

λM(Kpt)c2ρ1(V ) |eω| |A|2 ≤
λM(Kpt)c2

2ε1
|eω|2 |A|2 + λM(Kpt)c2ρ1(V )2 ε1

2
|A|2 ,

1

2
λM(Kpt)ρ1(V ) |eθ| |A|2 ≤

λM(Kpt)

4ε1
|eθ|2 |A|2 + λM(Kpt)ρ1(V )2 ε1

4
|A|2 ,

2ρ1(V )Kptc2e
T
ω

(
ēΦT + s̄Φ⊥T

)
A(żt) ≤ 2

λM(Kpt)ρ1(V )c2

ε
|eω|2

+ λM(Kpt)c2ρ1(V )
(
e2 + s2

)
ε |A|2 ,

and

ρ1(V )Kpte
T
θ

(
ēΦT + s̄Φ⊥T

)
A(żt) ≤

λM(Kpt)ρ1(V )

ε
|eθ|2 + ρ1(V )λM(Kpt)

(
e2 + s2

) ε
2
|A|2
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we obtain

d

dt
(ρ1(V )Z(Xr)) ≤− ρ1(V )

[
c2

4
eTωKdθeω +

1

4
eTθKpθeθ

]
+

1

2
ρ2(V )vTKdtK

−
ptv

+
λM(Kpt)ρ1(V )

ε
(2c2 + 1)

(
|eω|2 + |eθ|2

)
+
λM(Kpt)

2ε1

(
c2 +

1

2

)(
|eω|2 + |eθ|2

)
|A|2

+ λM(Kpt)ρ1(V )

[(
c2 +

1

2

)
ρ1(V )

ε1
2

+

(
c2 +

1

2

)
λN(L)V ε

]
|A|2

− Z(Xr)

2ā2NT ∗

(
N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
. (B.111)

Taking ε1 = c5, ε = c6, and using the inequalities

Z ≥ min {1, λm(Kpθ)}
(
e>θ eθ + e>ω eω

)
and

|A|2 ≤ N
N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

we obtain

d

dt
(ρ1(V )Z(Xr)) ≤− ρ1(V )

[
3c2

16
eTωKdθeω +

3

16
eTθKpθeθ

]
+

1

2
ρ2(V )vTKdtK

−
ptv

+ λM(Kpt)ρ1(V )

[(
c2 +

1

2

)
ρ1(V )

ε1
2

+

(
c2 +

1

2

)
λN(L)V ε

]
|A|2 .

(B.112)

Finally, we conclude

Γ̇(·) ≤− 1

8
γ(V )vTKdtK

−
ptv −

1

16
α(V )eTKpte−

µ

8T
V κTκ

− ρ1(V )

[
c2

16
eTωKdθeω +

1

16
eTθKpθeθ

]
. (B.113)

Which completes the proof.

B.11 Proof of theorem 4.3

First, since ρ1(V ) and ρ2(V ), in (4.60) and (4.62) respectively, are strictly positive func-

tions and radially unbounded, positive definiteness of Γ is ensured using the fact that



200

Γ(t, 0, 0) = 0, for all t ≥ 0,

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡq̇2(t)κ(e, s) + 2c1bfλN(L)V 2 + 2 (λN(L) + |Kpt|)α(V )V,

and

c2

2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
≤ Z ≤ 2c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
.

Furthermore, since the translational part of (4.57) is similar to the one presented in

(4.57a), it becomes straightforward to conclude the following

Ẇ (·) ≤− 1

2
γ(V )vTKdtK

−
ptv −

1

4
α(V )eTKpte−

µ

2T
V κTκ

− α(V )vT ēωs+ c1V s
T ḟ ēωs− ḟ c1V e

T ḟ ēωe. (B.114)

Then, using the following inequalities

α(V )vT ēωs ≤
λN(L)

∣∣K−dtKpt

∣∣
σ

α(V )V vTKdtK
−
ptv +

σ

4
α(V )eTωeω,

c1V e
T
ω ḟ (s̄s− ēe) ≤ c1V bf̄

[
σ

4
eTωeω +

4

σ
κTκ

]
,

and taking σ = max

{
16Tc1bq

µ
,

4λN (L)|K−dtP |α(V )V

γ(V )

}
, we obtain

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

8
α(V )eTKpte−

µ

4T
V κTκ+

σ

4
(α(V ) + bqc1V ) eTωeω

(B.115)

and

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

8
α(V )eTKpte−

µ

4T
V κTκ+

ρ1(V )

8
c5e

T
ωKIeω. (B.116)

Notice that the function Z(Xr) is a strict Lyapunov function for the following system

Ẋr =


0 IN 0

−L 0 IN

0 −KI −Kα

Xr, (B.117)
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it’s time derivative along the trajectories of (B.117) satisfies

Ż(Xr) ≤ −
1

2

[
c2α

TK−I Kαα + c2e
T
ωKIeω + eTθ L

2eθ
]

(B.118)

and along the trajectories of (4.57) it satisfies

d

dt
(ρ1(V )Z(Xr)) ≤−

1

2
ρ1(V )

[
c2e

T
αK

−
I Kαeα + c5e

T
ωKIeω + eTθ L

2eθ
]

+ ρ1e
T
θ L [2c2q̄ + ¯̇q]

(
ēΦTL2 + s̄Φ⊥TL2

)
Φv

+ ρ1e
T
ω [2c2

¯̇q + Lbq̄ + c5
¯̈q]
(
ēΦTL2 + s̄Φ⊥TL2

)
Φv

+ ρ1e
T
α

[
2K−I

¯̈qc2 + c5
¯̇q
] (
ēΦTL2 + s̄Φ⊥TL2

)
Φv. (B.119)

Using the following inequalities

eTθ L [2c2q̄ + ¯̇q]
(
ēΦTL2 + s̄Φ⊥TL2

)
Φv ≤ 1

4
eTθ L

2eθ

+ 2b2
qλM(L) (2c2 + 1)2 V

[∣∣ΦTLΦ
∣∣
∞ +

∣∣Φ⊥TLΦ
∣∣
∞

] ∣∣K−dtKpt

∣∣ vTKdtK
−
ptv, (B.120)

eTω [2c2
¯̇q + Lbq̄ + c5

¯̈q]
(
ēΦTL2 + s̄Φ⊥TL2

)
Φv ≤ 1

4
c5e

T
ωKIeω

+ 2b2
qλM(L)

λM(K−I )

c5

(2c2 + c5 + λN(L))2 V

×
[∣∣ΦTLΦ

∣∣
∞ +

∣∣Φ⊥TLΦ
∣∣
∞

] ∣∣K−dtKpt

∣∣ vTKdtK
−
ptv, (B.121)

and

ρ1e
T
α

[
2K−I

¯̈qc2 + c5
¯̇q
] (
ēΦTL2 + s̄Φ⊥TL2

)
Φv ≤ 1

4
c2e

T
αK

−
I Kαeα

+ 2b2
qλM(L)

λM(K−αKI)

c2

(
2c2λM(K−I ) + c5

)2
V

×
[∣∣ΦTLΦ

∣∣
∞ +

∣∣Φ⊥TLΦ
∣∣
∞

] ∣∣K−dtKpt

∣∣ vTKdtK
−
ptv (B.122)

we obtain

d

dt
(ρ1(V )Z(Xr)) ≤−

1

4
ρ1(V )

[
c2e

T
αK

−
I Kαeα + c5e

T
ωKIeω + eTθ L

2eθ
]

+ 2b2
qρ1(V )λM(L)

[
(2c2 + 1)2 +

λM(K−I )

c5

(2c2 + c5 + λN(L))2

+
λM(K−αKI)

c2

(
2c2λM(K−I ) + c5

)2
]
V

×
[∣∣ΦTLΦ

∣∣
∞ +

∣∣Φ⊥TLΦ
∣∣
∞

] ∣∣K−dtKpt

∣∣ vTKdtK
−
ptv, (B.123)
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also

d

dt
(ρ1(V )Z(Xr)) ≤−

1

4
ρ1(V )

[
c2e

T
αK

−
I Kαeα + c5e

T
ωKωeω + eTθ L

2eθ
]

+ ρ2(V )vTKdtK
−
ptv. (B.124)

Which yields to the following upper bound on the time derivative of the global Lya-

punov function Γ(·) along the trajectories of (4.57)

Γ̇(·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

8
α(V )eTKpte−

µ

4T
V κTκ

− 1

8
ρ1(V )

[
c2e

T
αK

−
I Kαeα + c5e

T
ωKIeω + eTθ L

2eθ
]
. (B.125)

Which completed the proof.

B.12 Proof of theorem 4.4

We start by invoking Section B.10, that is, we observe that the translational part of the

closed-system (4.72), which is the same as in the partial delayed case in (4.42a), admits

the following non-strict Lyapunov-Krasovskii functional candidate

V (θ,Xt, żt) = v>K−1
pt v + z>L2z +

∫ 0

−T ∗

∫ t

t+θ

ż(s)T ż(s)dsdθ. (B.126)

where T ∗ = maxi,j {Tij}.
It’s time derivative along the trajectories of the closed-loop system (4.72) satisfies the

following upper bound

V̇ (·) ≤− v>K−1
pt Kdtv −

1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds. (B.127)

On the other hand, the functional Z(Xr, ėθt) is a strict Lyapunov-Krasovskii functional,

under Assumption 4.5, for the following delayed system

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0

 . (B.128)
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Indeed, we have

Z ≥ c2

2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
,

Z ≤ 2c2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
+ 2c5T

∗
∫ t

t−T ∗
|ėθ(s)|2 ds.

and the time derivative of Z(Xr, θ̇t) along trajectories of (B.128) is given by

Ż(·) =− 2c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− eTθ L2eθ − eTθ LKωeω + eTθ Leα + eTωLeω

− eTθ LA(ėθt)− 2c2e
T
ωA(ėθt) + c5T

∗ėTθ ėθ − c5

∫ t

t−T ∗
ėTθ (s)ėθ(s)ds. (B.129)

Using the fact that Kω > In both with the following inequalities

eTθ Leα ≤
1

2ε
eTθ L

2eθ +
ε

2
λM(KIK

−
α )eTαK

−
I Kαeα,

eTωLeω ≤ λN(L)eTωKωeω,

−2c2e
T
ωA(eθt) ≤ ε1c2e

T
ωKωeω +

c2

ε1
|A(eθt)|2 ,

eTθ LA(eθt) ≤
1

2ε
eTθ L

2eθ +
ε

2
|A(eθt)|2 ,

eTθ LKωeω ≤
1

2ε
eTθ L

2eθ +
ελM(Kω)

2
,

|A(eθt)|2 ≤ N
N∑
j=1

N∑
i=1

(∫ t

t−Tij
ėθj(s)ds

)2

a2
ij,

∫ t

t−T ∗
ėTθ (s)ėθ(s)ds ≥

1

ā2N

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
ė2
θj(s)ds,

∫ t

t−Tij
a2
ij ė

2
θj(s)ds ≥

1

T ∗

(∫ t

t−Tij
ėθj(s)ds

)2

a2
ij,

taking ε1 = 1
2
, ε = 3 and using Assumption 4.5, we obtain

Ż(·) =− 1

2
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− 1

2
eTθ L

2eθ. (B.130)

Since V is Lyapunov Krasovskii functional candidate, Γ(t, 0, 0, 0, 0) = 0, for all t ≥ 0,

and the following inequalities hold

W ≥ γ(V )V,

W ≤ γ(V )V + V κ>(e, s)Ῡq̇2(t)κ(e, s) + 2c1bfλN(L)V 2 + 2 (λN(L) + |Kpt|)α(V )V,

then Γ is Lyapunov Krasovskii functional candidate for the closed-loop system.
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Using the previous section, the time derivative of W (·) along the trajectories of the

following un-delayed system

Ẋt =


−Kdt −Kpt 0

0 0 ¯̇fκ̄− ēω
0 − ¯̇fκ̄+ ēω 0

Xt +


0

Φ>L2

Φ⊥>L2

Φv −


KptΦ(θ)T

0

0

A(żt) (B.131)

satisfies

Ẇ (·) ≤− 1

4
γ(V )vTKdtK

−
ptv −

1

16
α(V )eTKpte−

µ

4T
V κTκ+

ρ1(V )

8
c2e

T
ωKpθeω. (B.132)

Moreover, the time derivative ρ1(V )Z(Xr) along the following system

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0

 (B.133)

satisfies the following upper bound

d

dt
(ρ1(V )Z(Xr)) ≤−

ρ1(V )

2
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− ρ1(V )

2
eTθ L

2eθ. (B.134)

Now, if we consider the delayed system in (4.72b) when B(t) = 0, which has the fol-

lowing form

Ẋr =


0 IN 0

−L −Kω IN

0 −KI −Kα

Xr −


0

A(ėθt)

0

+


bq̄
¯̇q

¯̈q

(ēΦ>L2 + s̄Φ⊥>L2

)
Φv

−


0

Kω (¯̇q + bq̄K
−
ωD)

ṗ

κd(e, s, θ, żt), (B.135)

M :=
(
ēΦ>L2 + s̄Φ⊥>L2

)
Φ.
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We obtain

d

dt
(ρ1(V )Z(Xr)) ≤−

ρ1(V )

2
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− ρ1(V )

2
eTθ L

2eθ

− 2c2ρ1(V )
[
eTωKω

(
¯̇q + bq̄K

−
ωD
)
κd + ṗeTαK

−
I κd

]
− ρ1(V )eTθ LKω

(
¯̇q + bq̄K

−
ωD
)
κd

+ ρ1(V )c5T
∗ [vTMb2

q̄Mv + 2eTωbq̄Mv
]

+ ρ1(V )eTθ L (2c2q̄ + ¯̇q)Mv + ρ1(V )eTω (c2
¯̇q + Lbq̄)Mv

+ ρ1(V )eTα
(
2c2K

−
I

¯̈q
)
Mv

− Z(Xr)

(
1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
.

(B.136)

Using the following equality

κd =
1

2


|A1|2

...

|AN |2

+ ēΦTA(żt) + s̄Φ⊥TA(żt)

we obtain

d

dt
(ρ1(V )Z(Xr)) ≤−

ρ1(V )

2
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− ρ1(V )

2
eTθ L

2eθ

− 2c2ρ1(V )
[
eTωKω

(
¯̇q + bq̄K

−
ωD
)

+ ṗeTαK
−
I

]
∗

1

2


|A1|2

...

|AN |2

+ ēΦTA(żt) + s̄Φ⊥TA(żt)



− ρ1(V )eTθ LKω

(
¯̇q + bq̄K

−
ωD
)1

2


|A1|2

...

|AN |2

+ ēΦTA(żt) + s̄Φ⊥TA(żt)


+ ρ1(V )c5T

∗ [vTMb2
q̄Mv + 2eTωbq̄Mv

]
+ ρ1(V )eTθ L (2c2q̄ + ¯̇q)Mv + ρ1(V )eTω (c2

¯̇q + Lbq̄)Mv

+ ρ1(V )eTα
(
2c2K

−
I

¯̈q
)
Mv

− Z(Xr)

(
1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

)
.

(B.137)
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Using the following inequalities

c2ρ1(V )bq
(
1 + λM(K−ωD)

)
|Kωeω| |A|2 ≤

c2bq
2ε1

λM(Kω)2 |eω|2 |A|2+
c2bq

2

(
1 + λM(K−ωD)

)2
,

∗ε1 |A|2 ρ1(V )2,

2c2ρ1(V )eTωKω

(
¯̇q + bq̄K

−
ωD
) (
ēΦT + s̄Φ⊥T

)
A ≤ 2

c2

ε
ρ1(V )bqe

T
ωKωeω+

εc2

(
1 + λM(K−ωD)

)2
ρ1bqλM(Kω)

(
e2 + s2

)
|A|2 ,

c2ρ1(V )bp
∣∣K−I eα∣∣ |A|2 ≤ c2bp

2ε1

∣∣K−I eα∣∣2 |A|2 +
c2bpε1

2
|A|2 ρ2

1(V ),

2c2ρ1(V )eTαK
−
I ṗ
(
ēΦT + s̄Φ⊥T

)
A ≤ 2

c2λM(K−αK
−
I )

ε
ρ1(V )bqe

T
αKαK

−
I eα

+εc2bqρ1(V )
(
e2 + s2

)
|A|2 ,

ρ1(V ) |Leθ|λM(Kω)
(
1 + λM(K−ωD)

)
bq |A|2 ≤ |A|2 λM(Kω)bq

1

2ε1
|Leθ|2

+
1

2
λM(Kω)bq

(
1 + λM(K−ωD)

)2 |A|2 ε1,

ρ1(V )eTθ LKω

(
¯̇q + bq̄K

−
ωD
) (
ēφT + s̄φ⊥T

)
A ≤ λM(Kω)ρ1(V )

bq
ε

(
eTθ L

2eθ
)

+

λM(Kω)

2

(
1 + λM(K−ωD)

)2
ε
(
e2 + s2

)
bq |A|2 ρ1(V ),

ρ1(V )eTθ L (2c2q̄ + ¯̇q)Mv ≤ ρ1(V )
bq
2ε

∣∣eTθ L∣∣2+
bqε

2
ρ1(V ) (2c2 + 1)2 |M |2

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv,

ρ1(V )eTω (c2
¯̇q + Lbq̄)Mv ≤ ρ1(V )

c2bq
2ε

eTωKωeω +
bqε

2c2

ρ1(V )λM(Kω) (2c2 + λN(L))2

∗ |M |2
∣∣K−dtKpt

∣∣ vTKdtK
−
ptv,

ρ1(V )eTα
(
2c2K

−
I

¯̈q
)
Mv ≤ ρ1(V )

c2bq
ε
eTαKαK

−
I eα + ερ1(V )

(
c2λM(K−I K

−
α )bq

)
∗ |M |2

∣∣K−dtKpt

∣∣ vTKdtK
−
ptv

c5T
∗ρ1(V )vTMT b2

q̄Mv ≤ c5T
∗ρ1(V )b2

q |M |
2
∣∣KdtK

−
pt

∣∣ vTKdtK
−
ptv,

2c5T
∗ρ1(V )eTωbq̄Mv ≤ c5T

∗ρ1(V )bq
ε

eTωKωeω + ρ1(V )λM(K−ω )εbqc5T
∗ |M |2

∗
∣∣K−dtKpt

∣∣ vTKdtK
−
ptv,

taking ε1 = c7, ε = c6 and using the inequalities

Z ≥ c2

2

(
eTθ Leθ + eTωeω + eTαK

−
I eα

)
,
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|A|2 ≤ N

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds

we obtain

d

dt
(ρ1(V )Z(Xr)) ≤−

ρ1(V )

4
c2

[
eTαK

−
I Kαeα + eTωKωeω

]
− ρ1(V )

4
eTθ L

2eθ

+
1

2
ρ2(V )vtKdtK

−
ptv +

1

2
ρ2(V )

N∑
j=1

N∑
i=1

a2
ij

∫ t

t−Tij
żi(s)

Tds

∫ t

t−Tij
żi(s)ds.

(B.138)

Finally, we obtain

Γ̇ ≤− ρ1(V )

8

[
c2e

T
αK

−
I Kαeα + c2e

T
ωKωeω + eTθ L

2eθ
]

− 1

4
γ(V )v>KdtK

−1
pt v −

1

16
α(V )e>Kpte−

µ

4T
V 3.

(B.139)

Which completes the proof.
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Abstract : In this thesis, we propose a

Lyapunov based approaches to address some

distributed solutions to multi-agent coordina-

tion problems, more precisely, we consider

a group of agents modeled as nonholonomic

mobile robots, we provide a distributed con-

trol laws in order to solve the leader-follower

and the leaderless consensus problems under

different assumptions on the communication

graph topology and on the leader’s trajecto-

ries. The originality of this work relies on the

closed-loop analysis approach, that is, it con-

sists on transforming the last two problems

into a global stabilization problem of an in-

variant set.

The stability analysis is mainly based on the

construction of strict Lyapunov functions and

strict Lyapunov-Krasovskii functionals for a

classes of nonlinear time-varying and/or de-

layed systems.
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Mots clefs : automatique, méthodes de Lyapunov, véhicules autonomes, robotique mobile,
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Résumé : Dans cette thèse, des méthodes

dites de Lyapunov sont proposées afin de

résoudre des problèmes liés à la coordina-

tion distribuée des systèmes multiagent, plus

précisément, un groupe de systèmes (agents)

non-linéaires formés de robots mobiles non-

holonomes est considéré. Pour ce groupe de

systèmes, des lois de commande distribuée

sont proposées dans le but de résoudre des

problèmes de type leader-suiveur en forma-

tion et aussi des problèmes de type forma-

tion sans-leader par une approche de consen-

sus, sous différentes hypothèses sur le graphe

de communication et surtout sur les vitesses

du leader. L’originalité de ce travail est dans

l’approche proposée pour l’étude de stabilité

de la boucle fermée, cette approche consiste

à transformer les deux derniers problèmes en

des problèmes de stabilisation globale asymp-

totique d’un ensemble invariant. L’analyse

de stabilité est basée sur la construction

de fonction de Lyapunov et de fonction

de Lyapunov-Karasovskii strictes pour des

classes de systèmes non-linéaires variant dans

le temps présentant des retards bornés et vari-

ant dans le temps.
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