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Chapter 1

Résumé

Contents
1.1 Introduction ... ... .. ...ttt eiinneeeenn 1
1.2 Résumédestravaux . . . . . . ..o v v v v v vt v v v v oo 5
1.3 Conclusion . . . ... i ittt it e it 9

1.1 Introduction

Dans les domaines de la fiabilité et de la sireté structurelle, I’exemple du réseau
routier hollandais met en avant la complexité d’une part, et la nécessité d’autre part, de
pouvoir modéliser les dynamiques d’un tel réseau. En effet, cet enchevétrement de voies
ne possede pas moins de 3200 kilometres de routes référencées dont 2200 kilometres
d’entres elles font partie du réseau autoroutier. Au sein de ce réseau de transport, on
compte approximativement 3000 ouvrages d’art. Dans ce contexte, 1’objectif majeur
pour les gestionnaires est de maintenir le réseau a un niveau satisfaisant des criteres de
sécurité et de confort. Toutefois, les facteurs rendant la tiche ardue de gérer un si vaste
réseau sont multiples. Concernant la fiabilité des ponts routiers, ceux-ci incluent péle-

méle, des innovations dans leur design et leur construction, 1’évolution du trafic routier
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conduisant a des dynamiques changeantes au niveau du poids auxquelles les ponts sont
soumis, les changements climatiques, etc. Une observation générale sur laquelle cette
these s’appuie est que ces facteurs exhibent de 1’aléa.

L’émergence d’approches purement probabilistes se réferent souvent aux travaux
de Abdel-Hameed [1975] ol un processus gamma a pour la premiere fois été employé
pour modéliser 1’'usure d’un composant. Depuis, une myriade de modeles s’appuyant
partiellement ou totalement sur des méthodes probabilistes ont été développés.

Les travaux présentés dans cette thése ont pour objectif de modéliser des prob-
lemes de dégradation d’infrastructures en grandes dimensions dans un cadre proba-
biliste. Les réseaux Bayésiens (RB) répondent a ces criteres. Ils proposent une com-
préhension intuitive des relations entre les nceuds du graphes au travers de dépendances
(in)conditionnelles. La littérature existante dénote une attractivité grandissante quant a
I’utilisation des RB en fiabilité [Weber et al., 2012]. Par ailleurs, les RB se basent sur
la version graphique de la propriété de Markov s’exprimant par les relations de dépen-
dances conditionnelles. A 1’instar des RB, les processus de Markov ont acquis une
1égitimité dans leur utilisation en fiabilité et stireté structurelle pour les ouvrages d’art
[Kallen, 2007].

Plus formellement, un RB est un graphe orienté acyclique fournissant une représen-
tation compacte d’une distribution de probabilité d’un ensemble de variables aléatoires

(X1, ..., X,) sous la forme de distributions conditionnelles. En utilisant des notions

Enfant

Figure 1.1 — A Bayesian Network on 4 variables



basiques de probabilité, a savoir la formule des probabilités totales, la densité jointe de

quatre variables aléatoires peut s’écrire

4

f(x1, z2, w3, 24) = f(21) Hf(xi\xl...xi,l) (1.1)

=2
Les prédécesseurs directs d’un noceud X; sont appelés parents et ’ensemble de tous
les parents de X; s’écrit Pa(X;). A chaque variable aléatoire est associée une prob-
abilité conditionnelle de cette variable sachant ses parents, fx; Xpa( Xi),z' = 1,...,4.
L’équation (1.1) appliquée au RB représenté en Fig. 1.1 peut ainsi étre simplifiée grace

aux propriétés de dépendance conditionnelles supposées par les RB :

4

f(z1, 29, ..., x,) = Hf(l'i‘l'pa(i)) (1.2)
i=1

Il existe plusieurs classes de RB. Selon la classe considérée, la paramétrisation d’'un RB
differe. Nous nous sommes concentrés dans ces travaux en particulier sur deux d’entre
elles. La premiere est la classe de RB dynamique discrete [Dagum et al., 1992, Murphy,
2002] ou les relations de dépendance s’expriment par des probabilités conditionnelles
classiques. La dimension dynamique intervient en termes de transitions temporelles en-
tre chaque nceud. Cependant, pour cette classe la quantification du RB croit de maniere
exponentielle ayant pour paramétres le degré ! de chaque nceud ainsi que leur nombre
d’états. Il est toutefois utile de mentionner que cette complexité peut étre atténuée en
générant de manicre systématique les probabilités conditionnelles concernant les rela-

tions temporelles nceud-a-nceud.

La seconde classe de RB est la classe des RB non-paramétrigue (RBNP) [Kurow-
icka and Cooke, 2005]. A titre comparatif, les RBNP peuvent comprendre aussi bien

des variables discretes, continues et méme un mélange continu-discret. Cependant, la

1. Le degré d’un nceud étant le nombre d’arrétes incidentes qu’il possede
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plus grande différence réside dans 1’expression de la dépendance probabiliste. Celle-ci
se traduit par des corrélations conditionnelles de rang et copules conditionnelles bi-
variées associées a chaque arréte. Les copules ne nécessitant souvent que tres peu de
parametres, e.g., un seul parametre pour la copule Gaussienne, les RBNP se révelent
étre peu couteux. Toutefois, les RBNP se limitent a une utilisation statique. En effet,
aucune caractéristique temporel n’a été étudiée mis a part de maniere marginale dans les
travaux de Morales-Napoles and Steenbergen [2014]. Une partie des travaux de cette

theése s’attache donc a construire un cadre dynamique dans lequel les RBNP s’inscrivent.

En pratique, la paramétrisation est effectuée a 1’aide de données. Les jugements
d’experts peuvent toutefois également étre employés si les données sont insuffisantes
ou de qualité ne permettant pas de les exploiter. Dans cette these, nous explorons un
scénario nécessitant de paramétrer un RB discret dynamique et pour lequel les données
disponibles sont insuffisantes. Nous employons la méthode de Cooke afin de combler
ce déficit [Cooke, 1991]. Comme nous I’avons précédemment évoqué, la quantification
d’un RB dynamique est trés couteuse et il serait par conséquent impossible d’avoir
recours aux jugements d’experts afin de résoudre ce probleme. Le choix d’utiliser un
RBNP est d’autant plus renforcé qu’il est de plus en plus courant d’obtenir des données

de corrélations conditionnelles de rang aupres d’experts [Werner et al., 2017].

En complément de leur qualité a traduire et organiser des problemes hautement di-
mensionnels, les RB possedent également un autre avantage communément appelé in-
férence ou update Bayésien. Concretement, 1’inférence consiste a calculer la distribu-
tion de certains noeuds pour lesquels aucune information n’est connue sachant la valeur
d’autres nceuds du RB. L’inférence peut étre effectuée aussi bien de "haut en bas" (diag-
nostique) que de "bas en haut" (prédiction). Cette propagation d’information s’effectue
encore une fois de maniere différente selon que 1’on traite les RB dynamiques ou les
RBNP. D’un c6té, I’inférence pour les RB dynamiques exige la résolution d’intégrales

multidimensionnelles dont la valeur croit exponentiellement [Pearl, 1988]. D’un autre



coté, les RBNP permettent d’accomplir I'update Bayésien de maniere analytique tant
que la copule Gaussienne est supposée. Si la loi jointe est donnée par une autre copule,

le RBNP est discrétisé et le probleme d’inférence retombe dans le cadre discret.

1.2 Résumé des travaux

Le Chapitre 32 développe un modele de prédictions de fissurations d’acier dues au
phénomene de fatigue pour des ouvrages d’arts autoroutiers. L’ objectif est d’exploiter
des données provenant d’un systéme installé a un point sensible du pont. Ceci permet
de formuler des prédictions pour les autres points du pont ne bénéficiant pas de don-
nées. Le modele requiert deux composantes sous-jacentes afin d’évaluer la durée de vie
restante du pont. Premierement, le mécanisme de fracturation élastique linéaire ainsi
que le type de fissuration pouvant apparaitre sont présentés en Section 3.2. Deuxieme-
ment, la Section 3.3 décrit le cadre de dépendance probabiliste ou un réseau Bayésien
non-paramétrique est proposé. Le RBNP a pour but d’exploiter les corrélations entre les
variables régissant le modele a travers les différents points sensibles du pont ayant des
caractéristiques identiques. Le but est de tirer parti de ces corrélations afin de propager
les informations venant du systeme de monitoring vers les sections n’étant pas moni-
torées.

Le cadre proposé par le RBNP nous permet par la suite d’effectuer des analyses de
sensibilité sur I’ensemble des variables du modele en Section 3.4. Les incertitudes au-
tour des prédictions de fissurations sont réduites en conditionnant par échantillonnage
Monte Carlo et en ne conservant que les simulations correspondant aux données de mon-
itoring. En conséquence, nous avons pu mettre en évidence des différences d’inférence
significatives concernant les variables régissant le modele.

Le Chapitre 4 * présente 1’analyse des données d’experts obtenues par la méthode de

2. Ce Chapitre est extrait de I’article de Attema et al. [2016].
3. Ce chapitre est basé sur I’article de Kosgodagan et al. [2016]
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Cooke afin de partiellement paramétrer le modele introduit au Chapitre 5. Le Chapitre
débute en présentant dans ses grandes lignes le modele de dégradation, qui est encore
un probléme de fissuration d’acier, en Section 4.2. La Section 4.3 énonce la méthodolo-
gie de Cooke et définit les deux métriques permettant de classer les experts, i.e., les
mesures de calibration et d’information. Ces métriques sont calculées a partir de vari-
ables de calibration qui sont elle-mémes construites a partir de données existantes rel-
atives a des mesures de fissuration présentés en Section 4.3.1. Les résultats de la per-
formance des experts sont présentées en Section 4.3.2 avangant, d’un cOté, les scores
médiocres de calibration obtenus pour chaque expert. Ceci étant probablement di au
faible nombre d’experts (3). D’autre part, la valeur combinée du score de calibration est
tres satisfaisante. Ce méme score est substantiellement amélioré apres que des tests de
robustesse sont effectués et décrit en Section 4.3.3. Les observations majeures de juge-
ment d’experts sont en premier lieu une grande incertitude exprimée dans 1’évaluation
de probabilités. Deuxieémement, la pertinence des variables de calibration est abordée,
notamment par rapport aux variables nécessitant de paramétrer le modele. Ces remar-

ques sont énumérées et discutées en Section 4.3.4.

Le Chapitre 5* introduit le modele intitulé réseau Bayésien dynamique co-varié
(RBDC). L’objectif est de modéliser la dégradation d’un réseau d’ouvrages d’art dans
scénario ou les données de détérioration sont limitées. Le modele de dégradation est
présenté en Section 5.2 ou un processus de Markov a temps discret est proposé pour
décrire la détérioration de chaque élément constituant le réseau. La Section 5.2.1 dé-
taille I’insertion de co-variables dans les probabilités de transitions qui rendent ces tran-
sitions dynamiques. Dans le but de connecter les éléments du réseau, le RBDC est
présenté en Section 5.2.2 ou les ensembles des graphes et des probabilités condition-
nelles sont donnés explicitement. Le modele ainsi construit décrit un réseau Bayésien

dynamique a deux dimensions, ou la seconde dimension est exprimée par la relation en-

4. Ce chapitre est basé sur I’article Kosgodagan et al. [2017]



tre co-variables. Une méthodologie est proposée en Section 5.2.3 afin d’étudier la sen-
sibilit¢ du RBDC lorsque I’on effectue I'inférence. Cette méthodologie est motivée par
la possible explosion combinatoire du réseau, qui plus est par I’ajout de cette seconde
dimension. Deux configurations d’inférence sont proposées qui visent a étre représen-

tatives de 1’ensemble des combinaisons existantes

La paramétrisation du modele est ensuite discutée en Section 5.3. Nous rappelons
que les résultats de jugement d’experts décrit au Chapitre 4 sont implémentés afin de
quantifier a la fois des probabilités de transitions du processus de Markov, ainsi que
probabilités conditionnelles requises par le RBDC. La Section 5.3.1 rappelle brievement
la méthode de Cooke et ses objectifs. En Section 5.3.2, les développements permettant
la quantification des probabilités de transitions sont exhibés au travers de temps moyen
de premier passage. La Section 5.4 présente le cas d’un probleme de détérioration pour
un réseau d’ouvrages d’art ot le mécanisme latent de dégradation considéré consiste en
I’apparition de fissurations se propageant dans le tablier due a la fatigue. Le RBDC est
choisi comme méthodologie dans ce contexte ou la structure de dépendance et le choix
des co-variables sont décrit en Section 5.4.1. Les co-variables choisies représentent
la densité du trafic et la sollicitation en poids induit par le trafic sur I’ouvrage d’art,
étant les principales causes endogenes du mécanisme de fatigue. Les données de terrain
permettant de quantifier ces deux co-variables sont discutées en Section 5.4.2. Les
résultats de sortie du jugement d’experts sont combinés avec ces mesures de trafic et
de poids afin d’obtenir in fine les matrices de transitions Markoviennes et de temps
moyen de premier passage, ainsi que les courbes de probabilités de survie des ponts.

Ces résultats sont décrit en Section 5.4.3.

La Section 5.5 illustre différentes expérimentations utilisant les métriques de sen-
sibilité¢ afin d’étudier la maniere dont le RBDC réagit. Nous avons d’abord observé
que I’insertion cumulative d’information domine au détriment d’une configuration ou

I’insertion est individuellement réalisée au cours du temps. Par ailleurs, la sensibilité
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de I’'information décroit en temps, quelque soit la maniere dont I’information a été in-
troduite (cumulative ou bien individuelle). Par conséquent, il serait privilégié d’adopter

une surveillance du réseau accrue a des périodes précoces.

Le Chapitre 6 traite de la démonstration théorique qu’un processus de Markov d’ordre
k peut étre représenté comme un RB non-paramétrique dynamique. Une définition
formelle du RBNP est tout d’abord formulée en Section 6.2. Les conditions néces-
saires et suffisantes afin de caractériser la partie probabiliste d’un RBNP sont données.
Il s’agit des distributions marginales associées a chaque nceud, 1I’ensemble des copules
conditionnelles bivariées et ’ensemble des corrélations conditionnelles de rang asso-

ciées a chaque arréte du graphe.

Les copules conditionnelles sont présentées en Section 6.3 s’inscrivant spécifique-
ment dans le cadre du processus Markovien d’ordre k. Le concept de la copule tem-
porelle est présenté, i.e., la copule extraite de n’importe quel processus stochastique a
deux pas de temps différents. Des explications concernant la relation entre copules et
probabilités conditionnelles sont également indiquées. Nous fournissons de maniere ex-
plicite la relation entre la mesure d’auto-corrélation pour un processus stochastique et

la formulation de corrélations conditionnelles de rang.

Le corps de la Section 6.4 développe la preuve de la représentation d’un proces-
sus Markovien d’ordre £ comme RBNP dynamique. Le théoréme que nous énongons
s’appuie sur les travaux de Joe [1996] concernant les constructions de copules bivariées
(pair-copula constructions), mais aussi sur les travaux récents Bauer and Czado [2016]
sur la formulation de la loi jointe d’'un RBNP en termes de copules conditionnelles
bivariées. Une procédure résumant étape par étape les éléments clés du théoreme est

fournie en fin de Section.

La Section 6.5 exhibe la factorisation de distributions marginales multidimension-
nelles pour des ensembles de nceuds. L'idée étant d’étudier I’expression analytique des

distributions conditionnelles apparaissant dans 1’expression des copules conditionnelles



bivariées. Deux cas sont traités. Le premier aborde celui ol aucune paire de nceuds de
I’ensemble de conditionnement n’a une longueur supérieure a 1’ordre & du processus de
Markov. La longueur ici représente la différence ordinale entre chaque nceud. Le sec-
ond cas traite la configuration complémentaire. Cette séparation en deux cas provient de
la capacité a séparer les ensembles de nceuds en utilisant la propriété de k-dépendance
conditionnelle de Markov. Deux lemmes sont présentés subséquemment et résument
ces découvertes. L’algorithme implémentant les deux lemmes est également décrit. Sa
complexité est abordée et nous conjecturons qu’il performe mieux que celui de Bauer
and Czado [2016]. Enfin, nous illustrons notre approche globale au travers d’un exem-

ple centré autour du mouvement Brownien.

1.3 Conclusion

Cette these s’est attelée a étudier des problemes de dégradation, notamment celui du
mécanisme de fissuration due a la fatigue, en grandes dimensions a travers les réseaux
Bayésiens. L’approche globale pronée dans ce manuscrit possede deux composantes
complémentaires en ce sens qu’elle fait appel a des outils a la fois probabilistes et statis-
tiques. La raison ayant motivé ce choix est double. Tout d’abord, les systemes se sont
complexifiés au cours des dernieres décennies et la part d’incertain relative a la fiabilité
et la stireté s’est accrue en conséquence. De plus, I’identification et la quantification de
leur causes, possédant souvent de 1’incertain aussi, apparaissent de plus en plus difficile.
Deuxiemement, 1’accessibilité grandissante de grands ensembles de données tendraient
a se diriger vers des méthodes statistiques. Nous avons mis en lumiere que les RB se
révelent €tre une approche versatile au sein de laquelle les angles probabilistes et statis-
tiques s’entrelacent. Leur efficacité dans le domaine de la modélisation de dégradation
pour des ouvrages d’arts a été testée et validée dans les Chapitres 3, 4 et 5. Bien

qu’aucune application orientée a la fiabilité n’ait été présentée dans le Chapitre 6, nous
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pouvons affirmer que 1I’approche développée est dans la lignée des chapitres précédant
concernant des considérations de détérioration et leur efficience. Un argument immédiat
serait que quelque soit la classe de RB considérée, la propriété de Markov symbolisée
par la dépendance conditionnelle a été, et continue d’€tre une approche attractive dans

des problématiques de détériorations structurelles.

De maniere globale, le mécanisme de fatigue de 1’acier provoquant un risque de
fissuration nous a conduit a explorer deux classes de RB ayant des représentations dif-
férentes de dépendance. Ce mécanisme peut €tre décrit comme probleme a grandes
dimensions et les RB se sont avérés étre une méthode adaptée pour y répondre. D’un
coté, lorsque la modélisation Markovienne est adéquate dans le cadre de dégradation
structurelle, les RB dynamiques sont apparus efficaces. En dépit de la possible explo-
sion combinatoire en termes de quantification, la dépendance traduite par les probabil-
ités conditionnelles peut étre évaluée de maniere systématique, a moins de supposer, par

exemple, des contraintes d’inhomogénéité.

La capacité des deux classes de RB a gérer ou non des distributions continues, dis-
cretes ou bien mixtes est également un aspect primordial. Théoriquement, il est presque
toujours possible de discrétiser des variables continues. Cependant, cela se révele en
général couteux en informations perdues et en temps de calcul durant I’étape de 1la mod-
élisation. Les RBNP ont prouvé leur efficacité en premier lieu pour répondre a cet
objectif. La dépendance probabiliste s’exprime a travers des copules conditionnelles
bivariées ainsi que des corrélations conditionnelles de rang. Brievement abordée au
Chapitre 3, ces deux caractéristiques de dépendance permettent de capturer une grande
variété de schémas de dépendances, e.g., des effets de queues, des localisations spé-
cifiques des masses dans les distributions, etc. Cette derniere caractéristique est par-
ticulierement intéressante lorsque la fiabilité structurelle exhibe des dépendances tres
changeante au travers d’un vaste réseau. A ce tire, nous avons montré au Chapitre 6

que les dépendances au sein d’'un RBNP peuvent également étre gérées de maniere
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dynamique. Cependant, les composantes de dépendance ainsi que les distributions
marginales sont calculées a partir du processus de Markov qui les suppose implicite-

ment.
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2.1 Context & motivation

The late prolific mathematician Paul Erd6s had been (and still is) famous for the
number that bears his name, the so-called Erd6s number. This number provides the
"collaborative distance" between the Hungarian mathematician and anyone else, as
measured by authorship of mathematical papers. Erdds explored and significantly con-
tributed to mathematics as he is credited with more than 1500 publications in various

mathematical branches. Amongst others was the graph theory that gave birth to the

Erdds number.

The study of graphs, or networks, can be traced back to the work of Euler in 1736

13
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and the well-known Konigsberg Bridge Problem. We do not develop on the problem
but the interested reader may refer to Newman et al. [2011] for a detailed explanation
of the problem. Graphs have experienced a growing popularity since then and lead
to the foundation of a sound theory [Harary, 1994, Gross et al., 2013]. Domains in
which graphs have been successfully applied are numerous from physics and computer
science to biology and the social sciences. Researchers quickly realized that networks
allow a great variety of ways to represent complex problems, and that there is much to

be learned by studying them.

In the civil engineering field, the Dutch national road network consists of around
3200 kilometres of roads, of which 2200 kilometres are highways. Within this network,
there are approximately 3200 bridges. In this setting, the key objective of decision
makers to keep the network in a satisfactory level can prove challenging. There can
be various factors which make civil infrastructure management a hard task. For bridge
reliability, these include the changes in construction design, the dynamics of loading
induced by traffic density, the impact of the weather, and more specifically meteorolog-
ical catastrophes, etc. However, all these factors exhibit uncertainty that is important to

account for.

Traditionally, deterministic physics-based models are put forward in literature to
describe degradation mechanisms. They attempt to describe the deterioration process
from a physical point of view, e.g. differential equations that govern the evolution of
a phenomenon. For example, the Paris law can be used for modelling the growth of
cracks in steel plates. The description of very complex relationships, however, make
these models intractable as these relationships are often not easy to identify or quantify.
Probabilistic dependence is able to achieve this, moreover, the ability to incorporate

randomness is enticing.

The emergence of pure probabilistic approaches in the reliability field often cites the

seminal work of Abdel-Hameed [1975] where a gamma process was first used to model
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the wear of a device. Since then, a myriad of probabilistic models have been developed.
The research presented in this thesis aims at modelling high dimensional deteri-
oration problems within a probabilistic framework. Bayesian networks (BN) comply
very well with the requirements cited above. They offer an intuitive understanding of
(un)conditional dependencies and a comprehensive visual representation. Models that
rely on BN in the area of reliability and risk-analysis are numerous [Weber et al., 2012].
Moreover, BN feature a Markov-based framework expressed through the conditional
independence statements. Markov processes have proven to be particularly suitable in
deterioration modelling for civil infrastructures [Kallen, 2007]. Nevertheless, little at-
tention has been given to multiple correlated Markov processes in reliability different
than through simple correlation as has been done traditionally. Moreover, such a naive
approach should have complex and inefficient parametrization characteristics.
Bayesian networks offer the possibility to tackle the high dimensionality component
in a consistent, continuous and, possibly, generic manner. Their attractiveness partly
comes from the causal reasoning one can perform. We can count at least four classes of

Bayesian networks in the literature
1. discrete (static) BN [Pearl, 1988] where dependence is handled through classic
discrete conditional probability
2. discrete dynamic BN [Dagum et al., 1992, Murphy, 2002] which are similar to
their static counterpart but add a time-varying layer

3. continuous Gaussian BN [Shachter and Kenley, 1989] where the joint distribu-
tion is assumed to be Gaussian as well as any sub-vector of marginal distribution
4. non-parametric or pair-copula BN (NPBN) [Kurowicka and Cooke, 2005]. This
class of BN is the most recent and was developed to relax the restrictive Gaussian
assumption of Gaussian BN and where dependence is handled through copulae

and rank correlation

The importance of flexibility in terms of dependence for the last class of BN has be-
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come very enticing over the past decade [Hanea et al., 2015]. However, no theoretical
development incorporating a structured dynamic aspect has been investigated thus far.
In this thesis, we first investigate a way to extend the dynamic BN to account for another

dimension that could be represented by space.

Parametrization for Bayesian networks differs from class to class. For the discrete,
static or discrete, dynamic class, the quantification can quickly become tremendously
demanding. For each source vertex, i.e., parentless vertices, we associate marginal dis-
tributions, and for any child vertex a conditional probability is associated. The condi-
tional distribution is as large as the number of parents the child node has. This number
is usually referred to as the degree of the vertex which can be interpreted through a di-
mensional aspect where one parent means one dimension. For discrete, dynamic BN,
this burden can be mitigated by generating in a systematic fashion the conditional prob-

abilities for the time connection between vertices.

Compared to their discrete counterpart, NPBN can handle both discrete (in an ordi-
nal scale) and continuous variables. However,what sets them apart is the formulation of
probabilistic dependence which further significantly reduces the quantification task. In
fact, dependence is expressed through (conditional) bivariate copulae and (conditional)
rank correlations. Copulae often feature a few parameters to estimate, e.g., the Clay-
ton copula has one parameter, Gaussian has one parameter, etc. Rank correlations are
assigned to each of the edges. Altogether, even for very complex and large NPBN, the
quantification together with the dependence and distribution freedom make NPBN very

attractive for high-dimension modelling.

In practice, parametrization is often performed with data but can also be done through
expert judgment if data is insufficient or of poor quality. This thesis explores a scenario
where data is missing. Cooke’s method for eliciting expert opinion is used and should
be encouraged whenever limited data is available [Cooke, 1991]. As previously men-

tioned, quantifying a discrete BN can be a tremendous task and so it would be for experts
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also. The Bayesian network model limits the use of expert judgment for too complex
structures due to the increased elicitation burden. By complex we understand both the
degree ! of each of the nodes as well as the number of states per node. By consequence,
models can either be simplified to make quantification possible or another type of BN

could be chosen, for instance, NPBN.

Nonetheless, throughout the last decade the flow of collected data has kept grow-
ing, which has given rise to "Big data", analytics and machine learning. Aside from
the quantification task, measurements may then be used to perform inference. One
can calculate the distributions of unobserved vertices, given the values of the observed
ones. If the reasoning is done "bottom-up" (in terms of the reasoning logics and the
directionality of arcs), the BN is used for diagnosis, whereas if it is done "top-down",
the BN serves for prediction. Inference is performed differently in both classes of BN
that are considered in this thesis. For the discrete, dynamic BN, inference can become
very challenging in terms of computational demand, especially when the structure is
very large which is often the case when using dynamic BN. In fact, it is known to be
exponentially increasing [Pearl, 1988].0n the other hand, non-parametric BN offer the
possibility to perform analytical updating whenever the joint distribution is given by
a Gaussian copula. If the joint distribution is given by another copula than the Gaus-
sian, then because of computational advantages a discretization is recommended and

inference is performed accordingly.

Returning to the bridge degradation modelling case, a network of such elements is
comprised of underlying factors such as traffic that interact between each other. Thus, it
is natural to account for dependencies. Moreover, these factors can be deterministic or
random, hence a probabilistic methodology may be a logical choice. Another desirable
characteristic is the capacity to efficiently insert available evidence. By "efficiently" we

mean the computational demand. This would dynamically update degradation estimates

1. the degree of a node is the number of edges incident to it
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from one part of the network to the others in addition to future decision plans.

This thesis contributes to the existing literature through the following. Chapter 3
demonstrates the efficiency of NPBN for a highly dimensional crack growth predic-
tion problem. This problem includes no less than twenty random variables governing
the physical mechanism for which the NPBN is used to link them. For each of these
variables, the NPBN adds a spatial component translated by more than 300 additional
variables reaching an order of thousands of random variables. Even in this very complex
context, the NPBN shows an acceptable behaviour in terms of computational efficiency.
This computational characteristic also extends to inference which propagates data com-
ing from a monitoring system so that it eventually helps reduce the uncertainty of crack

growth prediction.

Chapter 4 highlights the benefit of using Cooke’s method for eliciting expert opin-
ions in order to partly parametrize the model. Chapter 5 highlights similar advantage
as those in Chapter 3, but considers a dynamic BN. We introduce a model that extends
this class of BN by adding a dimension that could be useful to incorporate a spatial
component. This dimension serves to represent a network-scale bridge degradation. For
a potentially very large network of bridges, the proposal proves could be efficient at
dynamically describing the stochastic evolution of each asset as well as measuring the

impact of information at both the local and network levels.

Lastly, Chapter 6 focuses on a theoretical proof linking Markov processes to NPBN.
More precisely, we show that any Markov process possesses a dynamic NPBN repre-
sentation. This specification provides a new angle from which one could build up a
Markov-based model where dependence considerations are of primary interest. The
NPBN metrics translate these considerations through copulae and rank correlation. In-
ference is also addressed as we provide the necessary and sufficient conditions to per-

form analytical conditioning that reduce to the solubility of integral form.

Since Bayesian networks lean on both graph and probability theory, it is useful to
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introduce them in this Chapter. We also benefit from the introduction of graph theoret-
ical terminology and preliminaries on probabilities to consistently use them throughout

this thesis.

2.2 Bayesian networks

In this Section, the basic principles of Bayesian Networks are explained. Leaning on
both graph and probability theory, we start by providing the essential elements related
to graphs. Comprehensive introduction to Bayesian networks can be found in Lauritzen
[1996], Cowell et al. [1999] and Hanea et al. [2015]. The research carried out in this
thesis presents both practical and theoretical developments for essentially two different
classes of Bayesian networks, known as discrete, dynamic BN and non-parametric BN.
However, it should be noted that the following principles hold regardless of the class we

consider.

2.2.1 Preliminaries on graphs

Let V # () be a finite set and let £ := {(v,w) € V XV : v # w} Then G = (V, E)
denotes a graph with vertex set V' and edge set F. G is said to contain an undirected
edge if there exists v,w € V such that (v,w) € E and (w,v) € E. Conversely, we
say that V' contains a directed edge if there exists v,w € V such that (v,w) € E and
(w,v) ¢ E. A graph containing only undirected edges is called an undirected graph
and, likewise, a graph containing at least one directed edge is called a directed graph.
The degree of a vertex is the number of edges incident with it. A path of length n from
a to b is a sequence a = ay,...,a, = b of distinct vertices such that (a;,_1,a;) € E,
for every ¢ = 1,...,n. A path from a; to a, is called directed if at least one of the
connecting edges is directed. We term a path from a to b a cycle if a = b. In particular,

a directed path from a to b is termed a directed cycle if a = b. A graph without directed
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cycles is known as a chain graph (CG). A CG containing at least one directed edge is
called a directed acyclic graph (DAG). We define the adjacency set of a vertex v € V
asad(v) :={w eV : (v,w) € Eor(w,v) € E}. If w ¢ ad(v), we say that v and w
are non-adjacent.

Let G = (V, E) be a DAG. Since all edges of G are directed, we can speak of paths

instead of directed paths. For v € V, we let

pa(v) :=={w €V : G contains (w,v)} (parents of v)

an(v) := {w € V : G contains a path from w to v} (ancestors of v)

de(v) :={w € V : G contains a path from v to w} (descendants of v)

= pa(v) U {v} (family of v)

=V \ ({v}Ude(v)) (non-descendants of v)

A set I C V is called ancestral if pa(v) C I for any v € I. The smallest ancestral set
containing [ is denoted by An(I). As is readily verified, An(I) = T U{U,cs an(v)}. A
bijection B : {1, ..., |V|} — V,i + v, satistying ¢ < j whenever G contains (v;, v;) for
some i,j € {1,...,|V|} is called a well-ordering of G. Note that in a well-ordered DAG

the set {vy, .., vx } is ancestral for all k£ € {1, ..., |V|}.

2.2.2 Directional separation and conditional independence

Directional separation (D-separation) is a criterion of directed graphs for deciding
whether a set of variables is independent of another set, given a third set. The idea is to
associate "dependence" with "connectedness" (i.e., the existence of a connecting path)
and "independence" with "unconnected-ness" or separation. Pearl [1988] was the first
to investigate the D-separation criterion to relate this graphical feature to probabilistic
conditional independence. From the graphical representation only, one can determine
conditional independencies.

Let X = {Xy,...X,,}, Y = {V,...Y,,} and Z = {Z,,..., Z,,} be pair-wise
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(a) Serial linking (b) Diverging linking (c) Converging linking

Figure 2.1 — D-separation configurations

disjoint sets of vertices, i.e. X,Y, Z C V, with nq, no, ng integers. A path from X to
Y is a path from a vertex X; € X toavertex Y; € Y.,i € {1,....n},j € {1,...,n2}.
We say that Z separates X from'Y in G, and write X | Y'|Z, if every path from X to
Y contains a vertex in Z. In particular, we write X | Y'|() or simply X | Y if there
exists no path between X and Y. There can be three graphical configurations where

the D-separation criterion can be examined. Fig 2.1 illustrates these three cases where:

1. The structure in Fig. 2.1(a) shows that if Z is not given it is clear that Y is
depending on X (through Z). However if Z is given, it is clear that X is not
influencing Y any more. Only Z is influencing X, but Z is not depending on

X anymore. X and Y are D-separated by Z.

2. The conditional independence characteristics of graph in Fig. 2.1(b) are similar

to those of Fig. 2.1(a)

3. The suggested structure in Fig. 2.1(c) is slightly counter-intuitive. If Z isn’t
given, X and Y are D-separated and because of that independent. If Z is given,
then this will influence pa(Z) depending on the quantification of their dependen-
cies. The remark is that if any of Z its children are given, this will (eventually)
reflect on Z and because of that possibly make X and Y conditionally depen-
dent. So altogether X and Y are D-separated if and only if no information is
given about Z and all its descendants.

We are now able to establish the connection between the the graphical property of D-
separation and conditional independence.

Let again G = (V,E) be a DAG on d = |V| vertices. Let X be an R%-valued

random variable. For any I C V, we write X; := (X,),e;. If I = {v} for some
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v € V, we write X,. Furthermore, we write X; | X ;| X whenever X; and X ;
are conditionally independent given X for pairwise disjoint sets I, J, K C V. Then,

conditional independence can be expressed through the D-separation property as
X, L Xnd(v)\pa(v) ’Xpa(v) forallv e V (2.1)

Since ad(v) N (nd(v) \ pa(v) = 0 for every v € V, it can be easily seen that the
conditional independence restrictions obtained from eq. (2.1) correspond to missing
edges in G. A probability measure satisfying eq. (2.1) is simply called G-Markovian.

A Bayesian network or (directed) graphical model based on a DAG § is a family
of G-Markovian probability measures. It provides a compact representation of high
dimensional uncertainty distribution over a set of variables X = {Xj, ..., X;} and en-
codes the probability density or mass function on X by specifying a set of conditional
independence statements in a form of an acyclic directed graph and a set of probability

functions. The joint density fx thus has the following factorization

fx(x) = H IX01 X oy (0| Tpa(ny)  forall e = (21, ..., 2q) € R? (2.2)

veV

2.3 Outline of the thesis

As a general overview, the first three Chapters discuss degradation models previ-
ously put forth while the last Chapter provides the theoretical validation that any k-th
order Markov process possesses a dynamic NPBN representation.

In Chapter 3, a model is developed to assess prediction of fatigue cracking for a high-
way steel bridge. The objective is to exploit the output of a monitoring system placed at
a certain sensitive spot on the structure to make predictions for non-monitored locations.
The model requires two underlying components to assess the remaining lifetime of the

bridge. First, in Section 3.2, the type of cracks considered as being a serious threat to
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traffic safety are introduced, i.e. transverse cross section cracks and two types of lon-
gitudinal cross-section cracks. Also, the physics-based cracking mechanism known as

linear elastic fracturing is discussed.

Second, Section 3.3 depicts the dependence framework where a non-parametric
Bayesian network is constructed. The NPBN is meant to exploit correlations between
the governing random variables of the model across different locations over the bridge.
The goal is to make use of this characteristic to propagate information coming from

monitored sections into non-monitored parts.

The NPBN framework subsequently allows carrying out sensitivity tests as well as
root cause analyses in Section 3.4. Sample-based conditioning is performed through
Monte Carlo simulations. By keeping only those simulations corresponding to the mon-
itoring results, it helps reduce the uncertainty of the crack predictions and evidences
significant differences between conditional and unconditional distributions of the model

governing variables. This Chapter is based on the published paper Attema et al. [2016].

Chapter 4 outlines the structured expert judgment analysis carried out to assess in-
puts for the model presented in Chapter 5. The Chapter starts with a summarized de-
scription of the probabilistic model in Section 4.2 where the need of Cooke’s classical

method to fill in the missing data is incentivized.

Section 4.3 details Cooke’s methodology and defines the two metrics for ranking
the experts, i.e., calibration and information. These metrics are computed using seed
variables that are formulated using real-world data on fatigue cracking presented in Sec-
tion 4.3.1. Results of the experts’ performances are shown in Section 4.3.2 highlighting,
on the one hand, the poor calibration score per expert that may be due to the small num-
ber of experts (3). On the other hand, the satisfactory value of the same score for the
combined opinion can be notably mentioned. The experts’ performance is even im-
proved after robustness analysis is executed in Section 4.3.3. The main observations are

first on great uncertainty results for the assessment of probability estimates. Second, the
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relevancy of the seed variables is raised with respect to the variables of interest. These
remarks are finally discussed in Section 4.3.4. This Chapter is based on the published

article Kosgodagan et al. [2016].

Chapter 5 introduces the so-called covariate, dynamic Bayesian network (covariate-
DBN) model. The objective is to model the degradation for a network of "similarly
classified" assets under very limited data where attention is drawn to the modelling of
a large-scale network. The deterioration framework is explained in Section 5.2 where
a discrete-time Markov stochastic process is used to model the degradation for each of
the elements constituting the network. Section 5.2.1 details that compared to the classic
Markov transition probabilities, we also incorporate so-called covariates so that they
dynamically influence these transitions. In order to connect the elements the covariate
dynamic Bayesian network is specified in Section 5.2.2 where the sufficient and neces-
sary probabilistic and graph parts are explicitly exhibited. The constructed model thus
formulates a two-dimension, dynamic BN where the second dimension is expressed
through the covariate connection. Subsequently, a methodology to investigate infer-
ence sensitivity is proposed in Section 5.2.3. Since the network can grow in size very
quickly across the two dimensions, inference combinations quickly become intractable
as well. This motivates the development of a sensitivity metric where two representative

inference configurations are examined.

Next, the parametrization of the model is discussed in Section 5.3. Recall that the ex-
pert judgment outcome of Chapter 4 is used both to calibrate the transition probabilities
of the Markov chains as well as some required conditional probabilities stemming from
the Bayesian network framework. Section 5.3.1 briefly recalls the objective of Cooke’s
method. In Section 5.3.2, emphasis is made on the mathematical development for cal-
ibrating both the transition probabilities through expected first passage time and those
conditional probabilities. Discussion on the complexity of the model’s parametrization

is addressed too. The choice of assuming classes of assets significantly decreases the
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number of inputs to estimate as this number would grow across this second dimension.

Section 5.4 presents the case of deterioration for a network of bridges where the un-
derlying physical deteriorating process considered is fatigue crack growth in the bridge
deck plate. The covariate-DBN methodology previously developed is used from which
the dependence structure together with choice of the set of covariates is exhibited in
Section 5.4.1. The covariates are chosen to be traffic density and loading, as they are
known to be the main driving factors for motorway fatigue degradation. Data for these
covariates is available and introduced in Section 5.4.2. The output of the expert judg-
ment is used and combined with field data so that the Markov transition matrices, the
expected first passage time matrices and degradation curves are obtained. These are

shown in Section 5.4.3.

In Section 5.5, various experiments are presented showing the sensitivity of the pro-
posed model for the network-scale extension using the methodology presented in Sec-
tion 5.2.3. It was observed first that cumulative inserted pieces of information dominate
over individual piece of information. Second, the sensitivity of the inserted information
decreases in time so that pieces of evidence inserted at early epochs should be preferred

over later ones. This Chapter is based on Kosgodagan et al. [2017].

Chapter 6 treats the theoretical proof that any k-th order Markov process can be
represented as a dynamic non-parametric Bayesian network. A formal definition of
NPBN is first provided in Section 6.2. The necessary and sufficient condition to specify
the probabilistic part of any NPBN are given : the marginal distributions associated to
each vertex, and the set of all conditional pair-copula and conditional rank correlation

associated to each of the edges.

The metrics mentioned in Section 6.2 are presented in Section 6.3 in the k-th order
Markov process context. The concept of the so-called time-copula is introduced, i.e.,
the copula of any two different time-steps one can extract from a stochastic process. De-

tails on relationship between copulae and conditional probabilities are provided. Next,
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we make explicit the relation between autocorrelation for any stochastic process to the

formulation of conditional rank correlation.

The body of Section 6.4 stands for the central part of the Chapter where the proof of
the k-th order Markov process as a dynamic NPBN is exhibited. The theorem that we
develop first relies on the findings of Joe [1996] on pair-copula constructions, and sec-
ond on the recent derivations of Bauer and Czado [2016] to express the joint density for

an NPBN. A summarized procedure is provided at the end of the Section for guidance.

Section 6.5 provides the derivation for the marginal distribution of sets of vertices.
The motivation is to investigate the analytical expressions of conditional distributions
which are required in the pair-copula formulation. Two cases are addressed. One that
deals with sets of vertices where there are no pair of vertices whose length is less than the
order k of the Markov process. By the length we mean the difference of the respective
value of each vertex. The second case copes with sets of vertices possessing at least one
pair of vertices whose length is great than or equal to the order k. This case separation
is due to the conditional independence that split vertices whose length is great than k.
Two corresponding lemmas are formulated and algorithm is presented as well. The
computational complexity of the algorithm is discussed and how it performs better to
that of Bauer and Czado [2016]. We finally illustrate our findings through an example

focused on Brownian motion.

Lastly, Chapter 7 gathers up the conclusions of each Chapter and presents some

perspectives.

The pieces of work carried out in this thesis were half supported by the TNO program
"Enabling Technologies-Models" under the project GrAphical MEthods for Systems
Risk and Reliability (GAMES2R). This program mainly aims at establishing a generic
set of probabilistic models and methods, for application mainly in modelling systems

risk and reliability. The other half comes from a fellowship of the French Ministry of
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3.1 Introduction

Fatigue cracking is one of the main degradation mechanisms of steel bridges. Itis the

result of fluctuating stresses caused by the crossing of heavy vehicles. Especially welded

1. This Chapter is based on Attema et al. [2016]

29
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details in the deck structure are vulnerable to fatigue cracking [Maljaars et al., 2012]
because these details are directly loaded by passing wheels and because of the stress
concentrations, initial notches and high residual stresses that are specific to welded deck
structures. Some critical welded details occur multiple times in a bridge deck, so that
cracks can basically occur everywhere in the deck. On the other hand distribution of
loads to adjacent parts of the structure is often possible if a detail is weakened as a
result of a fatigue crack. The latter implies that critical crack lengths —- i.e. crack
lengths at which failure can be assumed —- are typically long (in the order of 400 mm
or longer) and that crack growth rates of large cracks are typically low as compared to
fatigue tests on single details. For these reasons monitoring systems aimed at identifying
fatigue cracks can be used to guarantee the safety of the bridge.

Although the costs of monitoring vary from bridge to bridge, it can be said that
monitoring systems are in general expensive, especially if a large surface such as a
bridge deck needs to be covered. Installation costs form a large portion of the total costs.
According to Issa et al. [2005] the installation time of a complete measurement system
for bridges can potentially consume over 75% of the total testing time. Installation
labour costs can approach well over 25% of the total system cost. But also maintenance
costs and costs of data processing can be significant. For this reason, this research
considers a system that monitors a small part of the bridge deck and uses the output
of the system in order to provide an assessment of the general condition of the non-
monitored part of the bridge deck.

The output provided by the monitoring system is used to probabilistically predict
the remaining life of the structure. Apart from the output of the monitoring system (ob-
servations), this prediction requires two underlying models required for the assessment

of the remaining lifetime of the bridge. The two models used in the assessment are:
1. a physical fracture mechanics model to evaluate the crack growth rate,

2. a non-parametric Bayesian network to update the crack growth and end-of-life
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prediction of the non-monitored part of the bridge deck based on the observa-

tions of the monitored part

Previous research has been devoted to incorporating monitoring data in the fatigue
life prediction. For example, Deng et al. [2014], Liu et al. [2010] have considered mon-
itoring of stress ranges and number of cycles. In other cases, the results of fatigue crack
inspections has been used in order to assess the remaining life, e.g. Boutet et al. [2013],
Toft et al. [2014]. Research in which the observations regarding crack size monitor-
ing are considered and used for prediction of the remaining resistance or life span is
less common in the literature. One of the main differences between inspections and
monitoring from the point of view of the models required, is that monitoring systems
usually only cover a part of the structure. Hence models that use the information ob-
tained from the monitored part of a structure in the assessment of the non-monitored
part are required. This is achieved here through the use of a non-parametric Bayesian

network.

The choice of the class of non-parametric Bayesian network comes essentially from
their ability to handle continuous distribution in more natural and efficient way than their
discrete counterpart. As we may see, the majority of the variables governing the model
have continuous distributions. Second, inference in discrete BN is known to be very
computationally demanding, especially when continuous distributions may sometimes
have to be discretized into hundreds of states. In the NPBN framework, inference can be
analytically and thus almost instantaneously achieved if the normal copula is assumed.
Otherwise, this can rapidly be done with approximation algorithms [Hanea et al., 2015]
however, without losing the modelling advantage.

The chapter is organized as follows. Section 3.2 introduces the considered types of
crack as well as the set of (random) variables governing the model. Section 3.3 presents
the dependence model through the NPBN used to quantify the complete dependence

structure of the random variables governing the model. Section 3.4 shows how to apply
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the monitoring results in order to make predictions about the non-monitored details.

Last, conclusions are summarized and discussed in section 3.5.

3.2 Description of the detail
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(b) Transverse cross-section (c) Longitudinal cross-section (d) Longitudinal cross-section
with surface crack with through-surface crack

Figure 3.1 — Crack of concern

The main focus is a type of crack that is observed in orthotropic steel bridge decks.
The crack starts from the root of the weld between a trapezoidal stringer and the deck
plate -— usually at the junction with a crossbeam — and subsequently grows along the
weld line (Figure 3.1). This type of detail occurs multiple times in a bridge deck. Per
crossbeam the number of heavily loaded details — i.e. details directly below the wheel

tracks — is approximately equal to 6. Depending on the span of the bridge, the total
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number of heavily loaded details varies between 10 and 100.

Figure 3.1 displays the type of crack considered here. The crack shapes considered
are a semi-elliptical surface crack and a through-thickness crack, indicated in Figures
3.1(c) and 3.1(d), respectively. If not repaired, a surface crack will grow and form a
through-thickness crack after a certain number of cycles. The dimensions of the surface
crack are indicated with depth @ and semi-length c¢. Those of the through-thickness
crack are the semi-length on the bottom side c, the semi-width on the top side d and the

effective height a, see Figure 3.1.

The type of crack in Figure 3.1 is considered as being a serious threat to the traffic
safety, because a wheel load rolling on one side of the crack may cause a level difference
between the two parts of the deck plate separated by the crack, implying that the vehicle
is uncontrollable. In addition, it is difficult to detect the type of crack because it is
covered by the surface finish on the top side and by the stringer on the bottom side.

Moreover, the type of crack is observed in many existing bridges in various countries.

Variables 1—4 in Table 3.1 provide the relevant geometric dimensions of the detail,
here a( and ¢, are the initial defect dimension at the weld root prior to fatigue loading.
Because ag and ¢, are correlated, a distribution is provided for the ratio between ay and
co. For each variable, the distribution function is provided together with the average, 1,
and the coefficient of variation, V. Moreover, a dependence structure between the vari-
ous locations of this type of detail in one bridge is imposed. This dependence structure
exists since these different details are exposed to similar conditions and it is quantified
by the rank correlation, r, between variables in different sections of the bridge. In par-
ticular, these are the correlations between variables in the monitored and non-monitored
sections of the bridge. All the variables in Table 3.1 are based on those presented in Mal-
jaars and Vrouwenvelder [2014] where a fracture mechanics model of a different detail
in the same type of orthotropic deck structure is provided. However, some modifications

accounting for the specific detail and models are considered here.
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Because we concentrate mainly on the Bayesian network modelling, we skip the part
explaining the physics-based model, i.e. the linear elastic fracture mechanics (LEFM).

However the reader is referred to Attema et al. [2016] for the complete clarification.

3.3 Dependence model

The crack growth model using LEFM outputs the crack growth development for
one detail of the bridge. As explained earlier, a bridge may contain hundreds of these
heavily loaded details. Correlation between variables in different sections of the bridge
has to be taken into account which can stem from various reasons, e.g. same welding
procedure, similar loading condition, etc. The goal is to make use of this characteristic
in order to propagate information coming from monitored sections into non-monitored
parts. The rank correlations, 7, of the random variables between different locations of
the detail of Section 3.2 are given in Table 3.1. These correlations were quantified by
field data, using previous literature and expert opinion (as provided in Maljaars and
Vrouwenvelder [2014]). The aim is at quantifying the complete dependence structure
of the random variables. In order to achieve this, a non-parametric Bayesian network
(NPBN) is used. From this Bayesian network, the variables in Table 3.1, used in the
crack growth model underlying every detail in a bridge, are sampled.

The set of random variables determining the crack growth development in the mon-
itored location is displayed in Table 3.1. It is assumed that these variables are indepen-
dent of each other. Moreover, one set of these variables for the crack growth develop-
ment is present in every other detail on the bridge in the non-monitored section. These
variables are correlated with each other. The dependence structure of each variable in
different parts of the bridge is described with an NPBN. The monitored section is the
most vulnerable section of the bridge due to the fact that the dynamic amplification

factor for this location differs from the one in the other locations.
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. ¢ Variable Units Distribution g V r

1 T Deck plate thickness mm uniform 12 0.03 0

2ty Weld throat mm uniform 5 0.03 0.3

3 a Initial crack depth mm lognormal 0.15 0.66 0

4  ap/co Initial aspect ratio - lognormal 0.62 0.40 0

5 R stress intensity ratio - normal 0.5 0.2 0.6

6 K,c fracture thoughness N/mm?/?  lognormal 6325 025 0

7 AK, crack growth threshold N/mm?*? lognormal 243 04 0.95
at R=0

g A crack growth parameter N,mm lognormal 21072 0.6 0.85

9 m crack growth exponent - deterministic 3 - -

10 p curvature parameter - lognormal 0.7 0.25 0.7

11 SCF stress  concentration - lognormal 2.1 0.1 08
factor at the crossbeam
web

12 I, extension length of mm lognormal 80 0.2 0.8
stress concentration

13 ¢ semi crack length of a mm lognormal 250 0.25 0
critical crack

14 sy, annual trend factor on - normal 0.002 0.1 1
axle loads

I5 nyy annual trend factor on - normal 0.011 0.2 1
number of vehicles

16 nypee max. annual number of - normal 2.5-10 0.15 1
heavy vehicles on slow
lane

17 mngue average number of - lognormal 4 0.15 1
axles per heavy vehicle

18  Oex dynamic amplification - normal 1.2 02 0
factor near expansion
joint

19 op dynamic amplification - normal 1 0.056 0.7
factor away from ex-
pansion joint

20 Cyne uncertainty factor - lognormal 1 0.17 0.85

Figure 3.2 displays both the typical dependence structure (Figure 3.2(a)) of these

variables and one sampled non-monitored location (Figure 3.2(b)). As an example,
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Figure 3.2 — Typical dependence structure for one monitored location together with
k others non monitored locations (a) and one sample of one location complying with
monitoring (b)

variable 11 from Table 3.1 is shown, i.e. the stress concentration factor at the crossbeam
web. The histograms represent the unconditional distributions both for the monitored
(parent) and for the non-monitored (children) locations elsewhere in the bridge. The
mean and standard deviation are displayed below the corresponding histogram. The
arcs connecting the nodes are also displayed in Figure 3.2(a) and the numbers .8 rep-
resent the rank correlation between the monitored and non-monitored locations. The
probability density function (PDF) illustrated in Figure 3.2(b) represents one of the k
sampled non-monitored locations and is obtained by Monte-Carlo simulations where

only those samples that agree with monitoring data are selected.

Both the dependence structure and sampled non-monitored locations for all other
variables listed in Table 3.1 are built in the same way as Figure 3.2. In this way, a
k-dimensional distribution for each variable has been obtained, and consequently, a
multidimensional distribution represented by sets of BNs similar to the one is shown in
Figure 3.2(a). It is important to mention that other dependence configurations have been
explored and discarded. The alternative configurations include, for example, a complete

graph (all variables connected to each other, so that correlations are also considered
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between all non-monitored locations for each variable), however, no significant differ-
ence in the output of the model was observed with respect to the simpler configuration

displayed in Figure 3.2(a).

3.4 Sample-based conditioning for the monitored sec-
tion

Let us consider a (fictitious) bridge with construction year 1991 and with a total
number of 492 heavily loaded details of type described in Section 3.2 (Figure 3.1).
The LEFM model describes the crack growth development of a crack in one such a
detail. Monte-Carlo simulations are used to sample the variables of Table 3.1 for both
the monitored and non-monitored details. The difference between these locations is
the location of the detail; the monitored detail is located close to the expansion joint,
experiencing a higher dynamic load (variable 18) than the non-monitored details away
from the expansion joint (variable 19).

Apart from the higher dynamic load in the monitored detail of the bridge, the same
model is used to predict the crack growth development in the non-monitored details. The
Monte-Carlo sampling also takes into account the dependence structure imposed by the
Bayesian network. In other words, each sample is drawn from a multivariate distribution
giving values for all the variables of Table 3.1 and for all the modelled details of the
bridge, taking into account the correlations between the different locations.

To reduce the uncertainty of the model, a crack monitoring system is installed near
the detail close to the expansion joint with the objective of updating believes regarding
crack growth of this detail. Let us assume that a crack is first detected in 2013, i.e.
22 years after construction of the bridge. The depth, a, of this first detected crack is
estimated between 3 and 6 mm. This monitoring result is now used to interfere in the

BNs. As stated, inference in NPBN may be exact under the normal copula assumption.
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In the case of the present application, however, the crack size resulting from the mon-
itoring system is output instead of input for the model, and hence, exact inference is
not possible. Instead, sample-based conditioning is performed by selecting only those
Monte-Carlo simulations that agree with the monitoring results. Out of a total of 10°
Monte-Carlo simulations, 2716 Monte-Carlo samples had a crack depth, a, between 3
and 6 mm in 2013. A selection of these conditioned samples is indicated in black in
Figure 3.3 for the monitored section. Figure 3.3 reveals that the extra information com-
ing from the monitoring system significantly decreases the variability of the outcomes

and thereby increases the accuracy of the crack growth predictions.
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Figure 3.3 — Crack growth development for monitored detail conditioned on the moni-
toring results

The variables of Table 3.1 can be conditioned on the monitoring results by selecting
the values for the variables of the Monte-Carlo simulations complying with the moni-
toring results. This enables us to obtain a first root cause analysis and find out which
variables have a significant influence in the current use-case. An example of the sample-
based conditioning for variable 11 is presented in Figure 3.2(b). Other variables in the
monitored and non-monitored sections of the bridge are conditioned similarly.

For these specific variables, sample-based conditioning shows different amplitude in

terms of sensitivity. While it was explored that for the majority of them the posterior dis-



39

tribution remains practically unchanged (e.g. variable 11 of Figure 3.2), a few, namely
variables 5 (stress intensity ratio) and 7 (crack growth threshold at R = 0) prove to be rel-
atively sensible with respect to conditioning. For variable 7, the conditional and uncon-
ditional distributions are displayed in Figure 3.4. Here, it is observed that the probability
distribution for the difference between the unconditional distribution and the distribu-
tion obtained after conditioning on the monitoring results. Quantitatively for variable
7, this is translated by the following: for the unconditional case, its average equals
243N/mm®/? and its standard deviation equals 97.2N/mm®2, whereas for the condi-

tional case, the average equals 189.34N/mm?>/? and standard deviation 61.55N/mm?/2.
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Figure 3.4 — Prior and posterior distribution of variable 7 (crack growth threshold at
R =0).



40 CHAPTER 3. NPBN FOR CRACK GROWTH PREDICTION
3.5 Conclusion

A crack growth model for cracks in welded details of the orthotropic deck structure
of steel bridges has been developed. The type of crack considered can be a serious
threat to bridge reliability and timely maintenance is crucial. Crack growth predic-
tions can therefore be very useful in determining maintenance intervals for which traffic
safety can be guaranteed without performing unnecessary maintenance. Monte-Carlo
simulation has been used to predict the 5, 50 and 95% quantiles of the crack growth
developments of cracks in a specific bridge.

In order to reduce some of the associated uncertainties, a monitoring system for
detecting fatigue crack activity has been installed. Sample-based conditioning on the
Monte- Carlo simulation was then used in order to obtain a new conditioned failure
year distribution. This conditioned failure year distribution shows less variation (with
a span of approximately 20 years) and enables us to give a more accurate crack growth
prediction.

Monitoring a complete bridge is expensive and might be unnecessary because crack
growth developments in different sections of the bridge are correlated. A Bayesian
network was used to describe the dependence structure between the different details of
the bridge and the monitored section which is, because of the presence of the expansion
joint, the heaviest loaded section of the bridge. Through the same approach, a new
conditioned failure year distribution is obtained not only for the monitored detail, but
also for other details of the bridge. The updated, more accurate prediction of the failure
year of the details considered causes a reduction of unnecessary maintenance and helps
preventing unplanned closure of the bridge due to ad hoc repairs.

In summary, the following conclusions can be derived:

— Installing a monitoring system significantly decreases the uncertainty of the

crack growth prediction.

— The BN makes it possible to apply the monitoring results in order to make more
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accurate predictions about the non-monitored details.

— The BN also enables a root cause analysis, and indeed, it was discovered that the
crack growth threshold and the stress intensity ratio are the variables with most
influence in the crack growth model.

— The combination of the crack growth model and monitoring system provides
therefore valuable information about the degradation of the bridge.

Future research would profit from monitoring other sections of the bridge while tak-
ing advantage of the dependence model proposed for the non-monitored section of the
bridge. The Bayesian network can be used to incorporate knowledge on every detail of
the bridge, each time updating the crack growth predictions. The current model consti-
tutes a first step towards this goal.

The next steps constitute further calibration of distributions and correlations between

parameters using field measurements and information from fatigue tests. In addition,
further validation of the outcomes of the model by comparing it to reported cracks in

actual bridges is suggested.
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This chapter presents the seminal work of the model presented in chapter 5 which
addresses large-scale degradation issue. In particular, the model assumes hypothetical

types of assets ought to be representative for a whole stock and, by consequence, for
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which data does not exist. As mentioned in chapter 3, expert judgment is sometimes
required when data is not available, missing or of poor or dubious quality. An expert
judgment workshop was thus organized to partially calibrate the model using Cooke’s

method from which various analyses were accordingly executed.

4.1 Introduction

Ensuring a satisfactory level of safety and driving comfort are generally the pri-
mary objectives for motorway bridge managers. Throughout a bridge service life, nu-
merous maintenance type of interventions need to be performed to keep the structure
above such levels. If a newly constructed bridge is considered to be in a perfect con-
dition and the degradation phenomenon assumes a monotonic decreasing-shape func-
tion, a bridge’s condition can then be described as a function in time bouncing up and
down between these two phases. A schematic illustration of these cycles is proposed
in Fig. 4.1 where two different maintenance plans are implemented. One strategy typ-
ically proposes a corrective-and-rehabilitation option for maintaining the bridge (solid
line) while the other one’s purpose is to extend its service lifetime by coupling pre-
ventive and corrective maintenance decisions postponing a full renovation to the latest
(dashed line). Substantial financial investments are initiated in order to perform these re-
pairs and costs are typically non-linear especially when considering a full rehabilitation
compared to preventive or corrective actions. These are generally considered the three
principal maintenance categories available to decision makers. In Fig. 4.1 the areas sep-
arated by the dotted line labelled Preventive maintenance level divides preventive (area
above) and corrective (below) maintenance options. When the bridge degradation func-
tion hits the solid line Minimum acceptable level it necessarily entails a repair. Hence
a well-timed maintenance strategy aims to save money without jeopardizing safety and

functionality.
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Figure 4.1 — Schematic representation of bridge degradation and maintenance cycles
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Figure 4.2 — Three-dimensional view of the bridge considered cracks’ location (left);
longitudinal cross-section with ’trough to deck plate’ (TRDPL) crack location (right);.

Degradation modelling is of utter importance in such a context as future maintenance
plans are determined based upon the shape (slope and monotonicity) of the degradation
curve. Both deterministic and stochastic models have been widely surveyed to assess
deterioration mechanism in the bridge reliability field Morcous and Hatami [2011]. In
practice, a significant number of countries have integrated a so-called bridge manage-
ment system (BMS) that opts for a discrete-time stochastic Markov process (or chain)
as standard support tool to describe the degradation behaviour in time Mirzaei et al.

[2014]. The goal of this system is also to bring forward knowledge at a network scale.
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Indeed optimizing locally at the single bridge scale may not comply with the network-
scale optimization requirements, for instance if personnel and equipment available are
limited. However information per bridge does not necessarily facilitate the choice for
decision makers because dealing with sometimes hundreds of elements makes it diffi-
cult to prioritize. Hence a full probabilistic degradation model is sought encompassing
both the Markov framework and the network level case.

The deterioration phase is governed here by a combination of a Markov chain em-
bedded in a Bayesian network that provides in a compact way probabilistic information
to a bridge inventory. We draw much attention in the way both of these tools are quanti-
fied. In fact, the objective is to construct a network of bridges whose structure resembles
that of the Dutch bridge network. In particular, motorway orthotropic steel deck bridges
are of central attention. To properly quantify our model we use the classical, or Cooke’s,
method for structured expert judgement Cooke [1991]. It is frequently used when field
data is missing, difficult to obtain or of poor quality. In this case, variables that are
needed to be assessed refer to degradation inputs for moveable and fixed types of steel
bridges through transition durations between consecutive deterioration states.

The remainder of the chapter is presented as follows. Section 4.2 introduces the
main concepts of the the degradation model. Section 4.3 starts with the introduction
of the classical method and brings forward the choice of the calibration variables con-
structed from existing data on fatigue cracks. Results are then presented together with
a subsequent discussion. The chapter ends with section 4.4 by drawing conclusions and

presenting some perspectives.

4.2 Degradation modelling for orthotropic steel bridges

As we want to represent a network of steel bridges whose purpose is to resemble as

accurately as possible that of the Dutch motorway steel bridges network, two classes of
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steel bridge are considered: fixed and moveable. They do not refer to specific existing
bridges but describe more conventionally each type of fixed and moveable steel bridges
through various characteristics (key geometry aspects, type and thickness of overlay,
deck plate thickness, and so on). Fatigue cracking is generally considered as the main
phenomenon driving degradation for orthotropic steel bridges. It results from fluctu-
ating stresses caused by the crossing of heavy vehicles. Typically, loading and traffic
characteristics are key quantities when studying fatigue mechanism in this context. The
nature of these two variables is reasonably assumed to be random Morales-Napoles and
Steenbergen [2014]. Specifically we are looking at cracks located in the deck plate and
in "trough to deck plate’ parts as suggested in Fig. 4.2. Their number together with their
size are crucial parameters to monitor. The condition of a bridge is then broken down
into several states featuring characteristics on various degrees of severity on crack size,
location and number. These states subsequently stand for the state space .S of a Markov
chain {M;,t > 0}. The latter describes probabilistically the evolution of a bridge’s con-
dition in time. It is assumed that a bridge can either stay in the same state or move to its
next worst state at the next time step given its current condition state, thus p; ;, p; ;41 > 0
where p; ; = P(My1 = j|M, = i) with 4,5 € S. One of the goals is to quantify the
pi,; s through expert elicitation as detailed in section 4.3. To then address the network-
scale maintenance problem the Markov chain {M,} acts as time sequenced nodes in a

dynamic Bayesian network (DBN).

A Bayesian network (BN) is a directed acyclic graph (DAG) whose nodes represent
random variables and whose arcs designate probabilistic dependencies between nodes.
Most of the applications use discrete BNs where marginal distributions are specified for
the nodes with no parents, and conditional probability tables for child nodes. A BN
encodes in a compact way the probability density or mass function on a set of vari-
ables by specifying a set of conditional independence statements in the directed acyclic

graphs associated with a set of conditional probability functions. More specifically, a
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BN consists of a qualitative part, the DAG structure, and a quantitative part, the set of
conditional probability distributions. A full characterization of a BN lies entirely in
these two parts. The graphical property called directional separation (abbreviated as
d-separation) asserts conditional independence statements. This attribute covers three
different possible layouts for which variables can be d-separated. The attractiveness of
BNs comes thus partly from the ability to model high dimensional probability distribu-
tions in a relatively intuitive visual way. In addition, knowledge, on a state of a vari-
able for instance, can be inserted and propagated throughout the graph. This way, the
marginal distributions of other nodes for which evidence is not available are updated
accordingly using algorithms developed for this purpose Jordan [1999]. This mecha-
nism is called probabilistic inference. Readers are referred to Pearl [1988] for a full

mathematical treatment on BNs and foundations therein.

It is often sought in reliability modelling the need to describe dynamically, in the
sense of time-indexed, the evolution of degradation as opposed to the static or stationary
case. A special type of BN called dynamic BN (DBN) deals with domains containing
recurring networks that evolve over time. This is particularly desirable when stochas-
tic processes are involved Straub [2009]. The complete DBN model is presented in
Fig. 4.3. Nodes Tt(k) and Lﬁk) denote respectively traffic and loading variables where
superscript (k) refers to the bridge number. At each time slice, the structure suggests
that load depends on traffic and the degradation process {M;} depends on the load in
turn. We assume that this sequential connexion is a reasonable way to first describe that
explanatory variables Tt(k) and Lik) impact degradation in this manner. Second traffic
quantities link consecutively every traffic node proper to each bridge so that the network

is set up.

Various methods have been tested to quantify Markov chain’s transition probabilities
using field data, however since we are constructing general classes of bridges we do not

possess such material at hand. Additionally, BN’s conditional probabilities have to be
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Figure 4.3 — The DBN structure for the network of bridges

assessed as well. In practice, again, collected data generally provides the sufficient
quantification material to feed the BN with. In the absence of it, expert judgment is
applied to fill it out. The light blue arrows in Fig 4.3 correspond to the links for which
missing conditional probabilities are quantified by expert opinions. For the remainder
of the conditional distributions, field measurements are used to quantify Tt(k) and Lﬁk)

where each can have three condition states, High, Medium and Low, and Heavy, Normal

and Light, respectively.

Since the distance between degradation condition state in state space .S is not neces-
sarily constant and, in addition, assumption is made on the distance pattern (whether it
is linear or not), we narrow down the number of states to four, S = {1,2, 3,4}. Indeed,
the number of probabilities of transition to elicit for the Markov chain as well as the
conditional probabilities for the DBN is a direct consequence of the size of S; the larger
it gets the more tedious it is for experts. On this basis, experts answered a total of 24
questions of interest detailed in Table 4.1. We mention that items for Question 2 (V13
to V24) were not directly elicited in this way. Rather, out of a sample of size NV, experts

are asked to give a proportion of it.
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Table 4.1 — Variable of interest elicited as part of the expert opinion workshop aiming to
quantify probabilistic inputs for the degradation of motorway orthotropic steel bridges.

Question 1 Expected duration (in years) to transition between the following condition states
e under a normal load for e under a heavy load for

a moveable bridge a moveable bridge

Vi 1—2 V7 1—=2

V2 2—=3 V38 2—=3

V3 3—4 V9 3—4

a fixed bridge a fixed bridge

V4 1—2 V10 1—2

V5 2—=3 Vi1 2—=3

%) 3—4 V12 3—4

Question 2 Prob. of transitioning to next worse state conditional on load and state at previous time step for

e a moveable bridge e a fixed bridge

V13 P(M; =2|M;—1 =1,Ly = Normal) V19 P(M; =2|M;_1 = 1,L; = Normal)
V14 P(M, = 3|M,_ = 2,L, = Normal) V20 P(M, = 3|M,_1 = 2, L, = Normal)
V15 P(My =4|My_1 =3,Ly = Normal) V21 P(M; = 4|M;_1 = 3,L; = Normal)
V16 P(M; =2|M;_1 =1,L; = Heavy) V22 P(My =2|My—y =1,L; = Heavy)
V17 P(M; =3|M;—1 =2,L; = Heavy) V23 P(My = 3|My—1 = 2,L; = Heavy)
V18 P(M; = 4|M;_, = 3, Ly = Heavy) V24 P(M; = 4|M;_y = 3, Ly = Heavy)

4.3 Structured Expert Judgment

Eliciting data from expert’s opinion using Cooke’s method is a growing popular way
tested and applied in numerous fields Cooke and Goossens [2008]. The goal of applying
structured expert judgment fosters rational consensus as opposed to political consensus.
Opinions are combined via different possible weighted averaging schemes, where the
weights are based on performance measures. The classical model is extensively formal-
ized in Cooke [1991]. The main procedure and objectives are 2duced below.

A group of experts are asked to assess their uncertainty of continuous quantities for
which the realizations are known post hoc. These variables are chosen to resemble the
quantities of interest, and/or to draw on the sort of expertise which is required for the
assessment of the variables of interest. They are called calibration or seed variables.

Experts then provide their uncertainty estimates through pre-chosen quantiles (usually
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the 5 50" and 95"). Note that variables of interest are assessed in a similar way.
Concisely, calibration measures the degree to which experts are statistically accurate
with respect to estimates provided for the seed questions. In turn, information measures
the degree to which experts’ uncertainty estimates are concentrated relative to a back-
ground measure (uniform or log-uniform generally). "Good expertise" corresponds to
good calibration (typically greater than 0.05) and high information.

More precisely, assume from expert e = 1,..., E/, each provide their uncertainty
estimates through the 5, 50" and 95" quantiles on items (or calibration variables)
¢t = 1,...,N. For each item, experts divide their belief range into four inter-quantile
intervals, for which the corresponding probabilities of occurrence are: p; = 0.05 for
a realization value less or equal than the 5", py = 0.45 for a realization value in the
inter-quantile range (5,50, p, = 0.45 for a realization value in the inter-quantile
range (50'",95"] and p, = 0.05 for a realization value strictly greater than the 95
percentile. Empirically we thus get for each expert e = 1, ..., E' the probability of the
relative frequency that realizations fall in the inter-quantile bins (0.05,0.45,0.45,0.05)

denoted by the vector s(e) = (s1(e), ..., s4(e)). The calibration score is given by
Ce) =1 = xu(2NI(s(e), p)) (4.1)

where I(s(e),p) = S.i_, si(e) In (%) and X2 is the Chi-square distribution with n

degrees of freedom. On the other hand the information score is computed per expert as

N f ‘
I(e) = Z feiln (—) (4.2)

where f.; and g; are the expert e’s density and the background measure on item ¢ re-
spectively.
Subsequently, scores are combined to form weights. These weights are constructed

to be a strictly proper scoring rule in an appropriate asymptotic sense, that is, experts
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Table 4.2 — Seed variables elicited as part of the expert opinion workshop aiming to
quantify probabilistic inputs for the degradation of motorway orthotropic steel bridges.

Item ID Measurement Location Year 1% Crack length  Year 27¢ Crack length
technique of crack measurement 15! (mm) measurement 2" (mm)

S1 Crack-PEC DPS 2008 200 2009 360

S2 Crack-PEC DPS 2008 250 2009 350

S3 Crack-PEC DPS 2006 100 2009 1040

S4 Crack-PEC DPS 2006 200 2009 500

S5 Crack-PEC DPS 2006 300 2009 350

S6 UT DPS 2009 30 2010 50

S7 UT DPS 2009 80 2010 90

S8 UT DPS 2009 100 2010 100

S9 uT DPS 2009 550 2010 590

S10 VO TRDPL 2008 100 2009 250

S11 VO TRDPL 2008 100 2010 250

S12 Crack-PEC DPS 2010 400 2011 500

receive their maximal expected long-run weight by stating their true belief. Impor-
tant to mention that statistical accuracy dominates informativeness, in other words poor
calibration cannot be compensated by high information. Calibration and information
constitute the essential metrics to weight the experts in view to combine their opinions.
The weighted combined uncertainty distribution is called the decision maker (DM) in
the sense of linear pooling. The DM is thus a weighted linear pool of experts’ individual

weight. Consider the following weighting score for expert e

wy(e) =1,(C(e)) x C(e) x I(e) 4.3)

where 1,(z) = 0if x < « and 1,(z) = 1 otherwise. This weighting score is re-
ferred to as global weighted score (GL) and complies with the above mentioned scoring

rule criterion. Let DM, (i) be the result of linear pooling for seed item ¢ with weights
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proportional to (4.3):

DM, (i) = wole)fei /Y wale) (4.4)
e=1,....E e=1,...,.E
Moreover, o can be chosen so as to maximize the DM combined score, we then speak
of optimized DM. It must be mentioned that other weighting scores are available to the
analyst. For the equal weight (EQ) score every expert receives the same weight, it is
the usual arithmetic weighted average. Then for the item weight score (IT), calibration
and information are computed per item as opposed to the global weight score where it
is used an average information scores. Note that the optimized DM only applies to GL

and IT DMs. Recall that the goal of the proposed DM is to reach rational consensus.

4.3.1 Data on fatigue cracking

To come up with the seed questions, we exploited data coming from crack mea-
surements performed at the Tacitus bridge. The latter is a steel box girder cable stayed
bridge located in the Dutch province of Gelderland. These measurements were per-
formed using three different techniques, namely Crack Pulsed Eddy Current, further de-
noted as Crack-PEC, Ultrasonic Testing (UT) and visual observation (VO). A detailed
explanation of each technique can be found in Jong [2007]. Next, the measurements
were carried out at various spots on the bridge, essentially located at the deck plate
(DPS) when preforming Crack-PEC and UT techniques and at the trough to deck plate
(TRDPL) spot for the VO measurements (see Fig. 4.2 for details). These inspections
were done between 30 to 35 years after the bridge was in service. The questions then
used combinations of the above variables so that experts were asked to assess crack
lengths. The seed variables are listed in Table 4.2 where each row reads as follows:

"A crack was detected by the measurement technique fo be crack length 15 (mm) in

Year 1°' measurement, what would be its length (mm) in Year 2"¢ measurement using
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the same measurement technique ?"

The realization of each question refers to the last column Crack length 2. The exper-
tise calls on experts’ reasoning, experience and ability to quantify own uncertainty on
how a crack develops between two crack length records. This way, a total number of
12 seed variables were obtained and elicited from the expert panel. The 5, 50" and
95" percentiles of estimates of each expert for these 12 seed questions are presented in
Fig. 4.4 including the DMs assessments as well as the realization (vertical red line). To-

gether with the variables of interest, we end up having 36 items that need to be assessed.

4.3.2 Results

For the elicitation, the pool of experts consists of £ = {1,2,3} whose field of
expertise is in the steel bridge management and reliability community, including various
type of inspections and decision-making more generally.

Table 4.3 — Results of the performance assessment for 3 experts and three different

decision makers (DMs) were compared: the equal weight DM, the global weight DM,
and item weight DM.

Expert ID Calibration Relative Normalized weight Normalized weight
information without DM with DM

Total Realization Global Equal Global Equal Item

Exp. 1 2.7E-4 242 0.52 0.17 1/3 79E-4 8.5E-4 63E4
Exp. 2 9.8E-5 1.79 1.21 0.15 1/3 6.8E-4 7.3E-4 54E-4
Exp. 3 6E-4 0.84 0.91 0.68 1/3 3.1E-3 34E-3 2.5E-3
Equal weight 0.446 0.445 0.36 0.995

Global weight 0.446 0.23 0.39 0.995

Item weight 0.446 1.093 0.49 0.996

After answering the 12 seed questions and the 24 variables of interest, the estimates
are processed in the EXCALIBUR software Cooke and Solomatine [1992]. Calibration

and relative information scores together with experts’ weight according to the different
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Figure 4.4 — Distributions for the 12 seed variables as represented by their 5th, 50th and
95th percentiles for 3 experts and combined distributions derived from the item weight
optimized DM (Itop), the equal weight DM (EQ) and the global weight optimized DM

(GLop). The vertical red line in each plot shows the true value for the seed variable.
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DMs (GL, EQ and IT) are presented in Table 4.3. Among the three experts’ calibration
score, none of them exceeds the cut-off level (0.05) as the greatest calibration value is
obtained by expert 3 (6E-4). Theoretically, a panel in which one or more experts’ cali-
bration score is greater than this threshold means that all the other experts are attributed
a zero weight. Regarding the three different DMs, they all have the same score (0.446)
which desirably proves to be significantly larger than individual calibrations. As for
relative information, both sub-columns (’Total’ and ’Realization’) refer to information
scores computed with respect to all the items and only the seed variables respectively.
Interesting to notice that expert 1 was quite informative regarding the overall question-
naire (2.42) but much less when looking at only the seed variables (0.52). The same
observation applies to expert 2 (1.79 and 1.21 respectively) with a lesser difference than
for expert 1. Expert 3 shows consistently a very similar degree of information between
all the variables (0.84) and the seed variables (0.91). For the DMs, information natu-
rally decreases between "Total’ and ’Realization’ while IT DM gets the highest score
in both (1.093 and 0.49). Experts commented unanimously that were more comfortable
in eliciting seed question compared to the variables of interest. Though it is interesting
to observe that informativeness is greater when looking at the overall score than when
focusing only the seed variables. In terms of weight attribution, the columns *’Normal-
ized Weights’ (with and without DM) are used in determining the DM. For ’Normalized
Weights without DM’ only GL and EQ DMs are computed since the weights used for
the IT DM vary from item to item. Expectedly, expert 3 gets the biggest weight (0.68)
for the GL DM while expert 1 (0.17) and 2 (0.15) contributions are low. When ac-
counting for the DM, for all three schemes the DM gets almost the whole weight (0.99)

whereas all three experts contribute marginally (< 0.003).
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4.3.3 Robustness tests

Part of the post hoc analysis of the results includes robustness tests to estimate how
stable the combined DMs outcomes are to (sets of) experts or calibration items. For
instance item-wise, one calibration question is removed at a time and the DMs scores
are re-computed. The similar procedure can be done expert-wise. Typically in our case,
all three experts missed to capture within their [5, 95'"] quantile range the realization
for S3 and S4 (see Table 4.2) as they all underestimated it. This is illustrated in Fig. 4.4
where the chosen abscissa scale is logarithmic due the fact that the realization is located
too far away on the right from each of the experts’ distribution. In other words, the latter
fell in their upper inter quantile range, i.e. above the 95" percentile. As a comparison,
the results of the performance assessments before and after performing the robustness
tests are displayed in Table 4.4. By removing only S3, the DMs’ calibration score
improves substantially by a factor almost as large as 2 having again all three the same
value (0.852). Similar to the general case, IT DM outperforms the other decision makers
having the highest information score (1.021) by a factor greater than 2 compared to EQ
DM (0.41) and by 5 to GL DM(0.19). We mention that robustness test on experts was
performed too but did not lead to any improvement. This is likely due to the small size

of the panel (3 experts).

The combined distributions for the variables of interest taking into account the out-
come on the robustness test are given in Fig. 4.5. The uncertainty intervals are narrower
for the item weight DM, than for the other DMs. In spite of this, rather large uncer-
tainties are expressed especially for variable V1, V4, V6, V7 and V10 for question 1
and for V14, V15, V18, V20, V21, V24. Specifically for V1, it reads that there is 0.9
probability that under a normal solicited load a moveable bridge would take between
3.09 and 49.45 years to transition between states 1 and 2, with a median equal to 21.62
years. We also observe that items regarding transition from state 1 to 2 (V1, V4, V7

and V10) show a great uncertainty interval compared to the other transitions asked to
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Table 4.4 — Results of the performance assessment for 3 experts and three different
decision makers (DMs) before (left table) and after (right table) robustness tests

Expert ID Calibration Relative Information Calibration Relative Information
Total Realization Total Realization
Exp. 1 2.7E-4 242 0.52 1.0E-3 2.42 0.35
Exp. 2 9.8E-5 1.79 1.21 8.3E-4 1.77 1.09
Exp. 3 6E-4 0.84 0.91 2.4E-3 0.80 0.80
Equal weight 0.446 0.445 0.36 0.825 0.410 0.244
Global weight 0.446 0.23 0.39 0.825 0.191 0.300
Item weight 0.446 1.093 0.49 0.825 1.021 0.431

experts no matter the type of bridge nor its loading configuration. Similarly, V15 and
V21 possess a larger uncertainty interval and have in common to address the exact same

question that only differs in the type of bridge considered.
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4.3.4 Discussion

Remarks coming from experts were partly related to the usage of the method as well
as the degradation modelling approach in this context. Narrowing down fatigue cracking
only to the deck plate and the trough-to-deck-plate locations was indeed addressed by

the pool of experts.

A successful implementation of Cooke’s method lies on a large extent on finding
suitable seed variables. As mentioned, those should in principle resemble as much as
possible variables of interest. Indeed experts’ performance on the seed variables should
be judged indicative for their performance on the variables of interest. In our case, the
link refers to cracking condition and development for the seed variables. In terms of
the variables of interest, this type of knowledge was integrated to bridge condition as
quantitative thresholds separating the different states (Question 1) and further extended
to conditional probabilistic assessments (Question 2). Undoubtedly, the latter turned out
to be challenging as many experts argued. However, the way conditional probabilities
were assessed through proportions out of a sample mitigated the risk of getting zeros or

ones in the estimates.

It is worth mentioning that the expert pool number here limits to three which claims
to be rather small compared to surveys using Cooke’s method Cooke and Goossens
[2008] where the number of experts usually ranges from 4 to 45. A larger panel of ex-
perts should likely enrich current results by bringing together additional experts’ knowl-
edge to the current combined DMs. Concretely, it could also entail having one or more

experts whose calibration score is greater than the cut-off level (0.05).

The combined distributions for the variables of interest obtained under the item
weight DM can readily be used to provide the input parameters for the degradation
model, since this DM obtained the highest performance before and after performing

robustness tests.
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4.4 Conclusions & perspectives

The research presented here proposed a structured expert judgment method to quan-
tify a degradation model composed of a combination of a Bayesian network and a
Markov chain. The use of the classical method to combine opinion was elaborated
to fulfill two objectives. First to explore the usefulness of applying the well-established
classical method of expert judgment elicitation to the field of steel bridge reliability and
maintenance. In fact, the ambition of this study is to provide insights in this particu-
lar domain via uncertainty assessments. In that sense, this can possibly highlight the
limited knowledge as well as attempting to give another viewpoint that current practice
has. Furthermore, although substantial material is available in various fields includ-
ing in the domain of infrastructure reliability using the classical method, no records
were found for this particular class of structures. Second, in either a little- or no-data
scenario, the probabilistic framework provided by Cooke’s method complies with first
objective. Though in this regard, addressing the quantification problem demonstrates
a rather great uncertainty interval proving how challenging this task still is, especially
when using discrete BNs whose requirements through probabilistic assessments can be
very demanding.

The exploitation of the expert judgment outcome is carried out in Chapter 5 where
the complete degradation model is introduced. As a perspective, a more extended model
could address the possibility of jumping by more than one state when deteriorating,
hence allowing for transitions probabilities p; 3, p 4,, €tc., or even considering main-
tenance actions entailing for instance p; ; with ¢ > j, to be non-null. An undesirable

consequence though would be a larger number of items to add to the current elicitation.
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This Chapter introduces a two-dimension dynamic Bayesian network further de-
noted as covariate-DBN. Prediction and stochastic modelling of degradation is still the
main concern and in line with the previous chapters. However, switching from single-
to multiple-asset perspective is the main difference in this chapter. A glimpse of the
main body of the model was given in chapter 4. The introduction of the "second" di-
mension through covariates aims to facilitate the fleet- or network-scale problem when
considering a stock of assets. Recall that calibration of the model is performed via the

combination of field measurements and the expert elicitation presented in chapter 4.

5.1 Introduction

Little attention has been drawn to fleet- or network-scale degradation problems.
More specifically, in the ground transportation infrastructure field, a few recent papers
treat bridge networks [Frangopol and Bocchini, 2012]. As one would expect, when
considering systems on a much larger scale, the number of variables and uncertainties
increases significantly as compared to looking only locally at individual assets. The
former approach does not further facilitate cost-efficient strategies in terms of future
maintenance plans at a larger scale. This has become even more desirable with the
growing use of continuous monitoring that asset managers may use to either update the
current knowledge of a system or formulate predictions on various key indicators. In the
reliability field many different type of assets are continuously and efficiently monitored

(e.g., roads, buildings, bridges, etc.), however it is often cost-prohibitive and not vital to
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place a monitoring installation at each individual asset. By consequence, collected data
varies in size and informativeness from asset to asset so that much effort is often given

to identifying the most relevant and sensitive elements.

Particularly for deterioration modelling, uncertainty surrounding the degradation
process is highly present from environmental conditions, material properties, etc. Markov-
based models are now widely accepted as suitable stochastic processes especially in the
bridge degradation modelling domain [Mirzaei et al., 2014]. It is common practice to ex-
ploit inspection data on various parts of an asset to model both the component-level and
the overall condition through Markov processes. The main task in Markov-based mod-
els reduces almost exclusively to the assessment of the transition probabilities. Several
general methodologies have been developed to using condition ratings data as well as
those specific to bridges [Jiang et al., 1988, Madanat et al., 1997, Micevski et al., 2002,
Reale and O’Connor, 2012, MasSovi¢ and Hajdin, 2013]. In the case where condition
ratings are not available, synthetic condition states can be sampled from assumed prior
distributions or degradation models. In particular, in Riveros and Arredondo [2014],
condition state values are randomly generated to represent a range of condition states
at each ten-year interval using Weibull distribution and a Latin hypercube simulation.
However the degradation pattern comes from knowledge of the specific area of concern
or is somewhat assumed a priori like in Kobayashi et al. [2010] where a hazard expo-
nential model is used to derive the Markov transition probabilities. While almost the
entire literature encourages the use of either the two methodologies mentioned, there is

a scarcity of models investigating the case where very limited field data are to be used.

The objective here is to model the degradation for a network of "similarly classi-
fied" assets under very limited data. It is denoted "similarly classified" assets as those
state evolutions are highly correlated. A new methodology is proposed to parametrize
the transition probabilities of a Markov chain of a particular asset. In absence of the

aforementioned data, or where data is very limited, it is proposed a method to quantify
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the mean duration of the first passage time between degradation conditions to derive
the transition probabilities through a simple linear equation. The expected durations
of transitions are elicited by means of the classical Cooke’s method [Cooke, 1991] for
combining expert opinions. This provides a procedure that fully quantifies in a prob-
abilistic way durations of transition. Furthermore, Cooke’s method also allows us to
provide a distribution-free method in order to obtain the transition probabilities. To
our knowledge, this is the first application of Cooke’s method to parametrize a Markov

chain.

Information on underlying mechanisms (covariates) interacting with one another
may be available for some of the most relevant elements. Their role is twofold: (1)
they serve as factors impacting degradation upon which the Markov process depends
and (2) to generate a coherent probabilistic framework to address dependency among
assets in the network-scale problem. Multi-dimensional (e.g., spatial) dependencies
that may exist in the network elements are conveyed through these covariates. The
new methodology proposed here extends the classic framework of dynamic Bayesian
networks (DBNs) by providing an approach to model the state of a large-scale set of
assets in a consistent manner without necessary data for the standard parametrization
approaches. The extended DBN, which is termed a covariate-DBN, also allows the
propagation of new information from assets for which data is available into others for
which data may be limited. The conditional probabilities of the DBN are also derived
using the structured expert judgment (SEJ) approach described above for the Markov

chain.

BNs have been extensively used in reliability and civil engineering where high-
dimensional probabilistic evaluation is necessary. For discrete BNs, the quantitative
burden related to both the quantification of conditional probability assessments and the
inference mechanism are known to be the main limitations. Castillo et al. [2015, 2016]

introduce a high-dimensional probabilistic model using BNs for safety and risk anal-
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ysis in the railway domain where 7,820 variables (on separate BNs) have been used.
Spackova and Straub [2012] proposed a DBN model for probabilistic assessment of
tunnel construction performance including a modified version of the Frontier algorithm
to perform inference. One of the advantages shown in each of the three above-cited
articles is that BNs can be a powerful tool to quantify the risk of extraordinary events. It
is provided a global methodology through the so-called covariate-DBN model for asset
management. Computationally-wise, it is shown that the inference combinations can
significantly be reduced by advantageously exploiting results regarding the sensitivity
of unexpected events. It should be noted that the Ferrandiz et al. [2005] have developed
an aggregated method and algorithm for classes of directed acyclic graphs thus encom-
passing BNs, but not solely. Their purpose is to model spatio-temporal data and can be
applied to every chain graph where an aggregation process is present. However, their
model is not able to capture timely updated information by the integration of covariates,
and thus also not measuring the impact of this data as we do. Our proposed model is not
restricted to spatio-temporal data, even though we consider this example for the bridge

network.

The use of embedded covariates in a DBN suggests an analogy with Markov switch-
ing models [Frithwirth-Schnatter, 2006] as they were introduced to model this type
of stochastic process by adding conditionality through either observed or unobserved
variables. These types of models were extensively developed in econometrics and fi-
nance whose main purpose is to capture switching regimes of time series data. The
method’s purpose here is, however, not to model changes in time series switching
regimes but rather covariates are introduced with the twofold above-mentioned role.
Secondly, modelling degradation through observable covariates also relates to the work
of Singpurwalla [1995] and Bagdonavicius and Nikulin [2001] in survival analysis. De-
terioration dynamics is driven by continuous stochastic processes and covariates in both

approaches, however, they do not address multi-dimensional distributions as is done
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through a DBN.

In a very recent paper by Trifonova et al. [2015], they develop a DBN approach
including nodes representing spatial dependency across different location for revealing
trophic dynamics in fisheries ecology. However, the proposed framework is specific
to the application considered through spatial nodes and thus does not offer a general
methodology to address classes of problems discussed above. Moreover, it is empha-
sized that the spatial characteristic may not be a systematic factor to generate the net-
work. One could also think of other links found between multiple elements, such as

common material properties, relationships between physics-based phenomena, etc.

5.2 Deterioration framework

A finite discrete-time Markov stochastic process { Dt(k),t > 0} is used to model the
degradation for element k. Whenever possible, it will be omitted superscript (k) for
every stochastic process. The goal is simply to describe the probability that each of the
elements can be in a particular state at time ¢ conditionally on the previous state and
some selected covariates. covariates are used to represent observable random variables
that influence the degradation process {D,;}. To address the network-scale issue, an
extension of the classic Dynamic Bayesian network (DBN) framework is presented.

For the reader’s convenience, notations can be found in Table 5.1

5.2.1 Markov Chain

Discrete-time Markov processes have been extensively used in the context of risk,
reliability and maintenance management for civil infrastructures [Baik et al., 2006,
Edirisinghe et al., 2015]. The Markov property mainly characterizes this class of stochas-
tic processes. Recall that this property stipulates that it is only needed to know where

the process D, stands at present time ¢ (first order), as opposed to rely on its complete
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Table 5.1 — Notations

Ca
D

fx

Ixyy

state space for covariate Qt(l]ft)

Markov chain describing deteriora-
tion for element £ at time ¢

probability density function of ran-
dom variable X

conditional probability density
function of X given Y

asset or element index

number of elements/assets

number of covariates per element k
and time ¢

Markov transition probability from
state 7 to j

set of parent variables

Markov transition probability ma-
trix

time horizon

matrix containing information for
each covariate across time and el-
ement

entry of matrix wg

sensitivity metric for deterioration
state ¢ under information ©

time at which a single piece of in-
formation is inserted

time up to which consecutive
pieces of information are inserted
starting at t = 0

covariate a for element £ and time
t

set of cova