N

N

Management of electric vehicle systems with
self-interested actors
Wenjing Shuai

» To cite this version:

Wenjing Shuai. Management of electric vehicle systems with self-interested actors. Networking and
Internet Architecture [cs.NI]. Ecole Nationale Supérieure des Télécommunications de Bretagne - EN-
STB, 2016. English. NNT: 2016TELB0408 . tel-01593254v2

HAL Id: tel-01593254
https://theses.hal.science/tel-01593254v2
Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01593254v2
https://hal.archives-ouvertes.fr

UNIVERSITE
BRETAGNE
LOIRE

THESE / Télécom Bretagne

sous |e sceau de |'Universite Bretagne Loire
pour obtenir le grade de Docfeur de Telecom Bretagne

En accréditation conjointe avec I'Ecole Docforale Mafisse
Mention:: Informatique

Management of electric vehicle
systems with self-interested actors

présenfée par
Wenjing Shuai

préparée dans le département Réseaux, Sécurité ef Multimédia (RSM)
Laboratoire Irisa

Thése soutenue le 13 septembre 2016
Devant le jury composé de :

Bruno Tuffin
Directeur de recherche, Inria-Rennes / président

Aline Cameiro Viana
Chargée de recherché (HOR), Inria-Saclay / rapporteur

Maurice Gagnaire
Professeur, Télécom ParisTech / rapporteur

Dominique Barth
Professeur, Université de Versailles Saint-Quentin / examinateur

Alexander Pelov
Maftre de conférences, Télécom Bretagne / examinateur

Patrick Maillé
Matre de conférences, Télécom Bretagne / directeur de thése




N° d’ordre : 2016telb0408

Sous le sceau de 'Université Bretagne Loire

Télécom Bretagne

En accréditation conjointe avec I’Ecole Doctorale Matisse

Ecole Doctorale — MATISSE

Management of electric vehicle systems with self-interested actors

Thése de Doctorat

Mention : Informatique

Présentée par WENJING SHUAI
Département : RSM

Laboratoire : OCIF

Directeur de thése : PATRICK MAILLE

Soutenue le 13 Septembre 2016.

Jury :

Mme. Aline CARNEIRO VIANA, Chargée de recherche (HDR), Inria-Saclay (Rapporteur)
M. Maurice GAGNAIRE, Professeur, Télécom ParisTech (Rapporteur)

M. Patrick MAILLE, Mattre de Conférences, Télécom Bretagne (Directeur de thése)

M. Dominique BARTH, Professeur, Université de Versailles Saint-Quentin (Examinateur)
M. Bruno TUFFIN, Directeur de recherche, Inria-Rennes (Examinateur)

M. Alexander PELOV, CEO, Acklio (Encadrant de thése)






Acknowledgements

I would like to thank the jury member: Prof. CARNEIRO VIANA, Prof. GAGNAIRE, Prof.
BARTH and Prof. TUFFIN for accepting to evaluate my manuscript, which is yet one more
responsibility at a busy time.

I would like to express my deep gratitude to my supervisor Prof. MAILLE and my
advisor CEO Alexander PELOV, for being very helpful throughout the 3 years and a half.
I appreciate their patience, their optimism and sense of humor but most importantly, their
professionalism and the exchange of ideas we have had.

I would like to thank my colleagues in the department of RSM, their kindness and
encouragement delights every single day of mine. I'll miss the joyful hours spent with other
PhD students.

Above all, I am grateful for the unconditional love and support from my parents and my
boyfriend.






Abstract

Electric Vehicles (EVs), as their penetration increases, are not only challenging the sustain-
ability of the power grid, but also stimulating and promoting its upgrading. Indeed, EVs
can actively reinforce the development of the Smart Grid if their charging processes are
properly coordinated through two-way communications, possibly benefiting all types of
actors. Because grid systems involve a large number of actors with nonaligned objectives,
we focus on the economic and incentive aspects, where each actor behaves in its own interest.
We indeed believe that the market structure will directly impact the actors’ behaviors, and as
a result the total benefits that the presence of EVs can earn the society, hence the need for a
careful design.

The thesis first provides an overview of economic models considering unidirectional
energy flows, but also bidirectional energy flows, i.e., with EVs temporarily providing energy
to the grid. We describe and compare the main approaches, summarize the requirements on
the supporting communication systems, and propose a classification to highlight the most
important results and lacks.

We propose to use the recharging processes of EVs to provide regulation to the grid
by varying the instantaneous recharging power. We provide an economic analysis of the
incentives at play, including the EV owners point of view (longer recharging durations and
impact on battery lifetime versus cheaper energy) and the aggregator point of view (revenues
from recharging versus regulation gains). In particular, we analyze the range of regulation
rewards such that offering a regulation-oriented recharging benefits both EV owners and
the aggregator. After that, we split the monopolistic aggregator into two competing entities.
We model a non-cooperative game between them and examine the outcomes at the Nash
equilibrium, in terms of user welfare, station revenue and electricity prices. As expected,
competing stations offer users with lower prices than the monopolistic revenue-maximizing
aggregator do. Furthermore, the amount of regulation service increases significantly than
that in the monopolistic case.

Considering the possibility of discharging, we propose an approach close to Vehicle-to-
Grid, where EVs can give back some energy from their batteries during peak times. But we
also use EVs as energy transporters, by taking their energy where it is consumed. A typical
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example is a shopping mall with energy needs, benefiting from customers coming and going
to alleviate its grid-based consumption, while EV owners make profits by reselling energy
bought at off-peak periods. Based on a simple model for EV mobility, energy storage, and
electricity pricing, we quantify the reduction in energy costs for the EV-supported system,
and investigate the conditions for this scenario to be viable.



Résumé en francais

L arrivée sur le marché des véhicules électriques (VE), et leur pénétration de plus en plus
conséquente, ont un impact non négligeable sur le réseau électrique. De par la grande quantité
d’énergie demandée pour recharger ces véhicules, la stabilité méme des différents maillons du
réseau (production, transport, distribution) est susceptible d’étre menacée. Cependant, dans
I’optique de la transition du réseau électrique vers davantage d’adaptabilité et d’intelligence
supportée par les technologies de I’information et de la communication—le Smart Grid—,
les véhicules électriques peuvent aussi étre vus comme offrant de nouvelles opportunités.
En effet, la demande en énergie des VE étant relativement flexible (rechargement pendant
la nuit, notamment) et contrdlable a distance (véhicules connectés), leur présence sur le
réseau électrique ouvre la voie a des optimisations via le processus de recharge (lissage de la
demande, aide a la régulation offre-demande) ou méme par I’ utilisation de cette nouvelle
capacité de stockage d’énergie, distribuée géographiquement.

Néanmoins, 1’écosysteme associé aux véhicules électriques implique un grand nombre
d’acteurs divers, aux objectifs rarement alignés: les conducteurs souhaitent recharger rapi-
dement et a moindre cofit, les producteurs d’énergie souhaitent une demande flexible, les
intermédiaires comme les gestionnaires de stations de recharge cherchent a maximiser leurs
revenus, qui peuvent venir aussi bien des utilisateurs (paiement de la recharge) que des
gestionnaires du réseau électrique (rémunération pour la flexibilité de la demande).

Dans cette thése, nous nous intéressons aux aspects économiques liés a la recharge
de véhicules électrique, en prenant en compte le fait que chaque acteur peut prendre des
décisions stratégiques. Ainsi, les mécanismes de marché choisis devraient directement influer
sur les comportement des acteurs, et par conséquent sur les gains apportés par les VE a
chacun de ces acteurs et a la société en général. D’ou le besoin de précautions lors de la
définition des regles pour ces marchés.

Je présente tout d’abord un état de I’art structuré des différents modeles de la littérature
introduits pour ces problemes. Beaucoup se limitent a des flux d’énergie unidirectionnels
(du réseau électrique vers le véhicule), mais certains considerent également la possibilité
de transferts temporaires d’énergie dans le sens opposé. Nous décrivons et comparons les



principales approches, en mettant en évidence les besoins en communication des mécanismes
correspondants, et les principales propriétés économiques afin de souligner les résultats
les plus significatifs ainsi que les éventuels manques. Nous faisons ensuite une premiere
proposition, consistant a utiliser le processus de recharge des VEs pour fournir un service
de régulation au réseau électrique, en adaptant la puissance instantanée de charge. Nous
conduisons une analyse économique des incitations en jeu, en incluant le point de vue des
conducteurs (compromis entre prix et durée de la recharge, comptant également 1’impact sur
la durée de vie de la batterie), celui des agrégateurs/stations de recharge (revenus venant des
utilisateurs et/ou du réseau via les récompenses liées a la régulation). En particulier, nous
analysons les valeurs des incitations a la régulation qui sont suffisantes pour qu’une offre de
recharge-régulation soit bénéfique a la fois pour I’agrégateur et les conducteurs. Cette étude
étant initialement conduite dans le cas d’un monopole qui peut offrir une recharge normale
ou une recharge-régulation, nous regardons ensuite 1’impact de la compétition. Pour cela,
nous étudions a 1’aide de la théorie des jeux, la compétition entre un agrégateur n’offrant
que des recharges a puissance fixe, et un autre n’offrant que de la recharge-régulation. La
compétition semble préférable pour les utilisateurs et pour la société, puisque les prix sont
alors plus bas qu’avec le monopole, et que la participation aux services de régulation est bien
plus élevée.

Enfin, nous proposons d’utiliser une autre propriété des véhicules électriques, a savoir
leur capacité de stockage d’énergie. En effet, les VEs peuvent se charger pendant les heures
de faible demande, donc a des prix réduits, et éventuellement revendre une partie de 1’énergie
accumulée pendant les pics de demande. Nous définissons un scénario ou on utilise méme
la mobilité des VEs, en consommant 1’énergie apportée par des VEs, par exemple dans un
centre commercial ou certains clients revendent une partie de leur électricité pendant leur
durée de visite. Nous utilisons un modele markovien de mobilité des véhicules, afin de mener
une étude économique des gains et colits d’une telle approche. En particulier, des compromis
apparaissent dans le choix des puissances de décharge (pertes versus décharge insuffisante
si le temps de séjour des véhicules est court), et dans le choix du nombre de stations de
décharge a installer (probabilité de blocage versus cofits de maintenance). A partir de valeurs
réalistes des marchés de 1’électricité, nous déterminons numériquement les conditions pour
qu’un tel scénario soit viable, et quantifions les économies qu’il peut apporter.

Cette dissertation se conclut par une prise de recul sur les contributions et sur les exten-
sions qui pourraient y étre apportées. Je décris également quelques directions de recherche
que je n’ai pas eu le temps de développer au cous de ma theése, mais qui me semblent

intéressantes comme travaux futurs.
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Chapter 1

Introduction

1.1 Thesis context

Diminishing oil supply and increasing environmental concerns strongly motivate research
efforts toward the electrification of transportation, and technological advances have fos-
tered a rapid arrival of Electric Vehicles (EVs) in the market. However, the charging of
EVs has a tremendous impact on the stakeholders in both the electricity and transportation
domains, such as electricity producers, power grid operators, policy makers, retailers, and
customers [23]. The EV load can drive electricity prices up [8], and alter the producers’ gener-
ation portfolios, resulting in an increase of CO, emission [30]. Additionally, high penetration
with uncontrolled charging threatens the sustainability of distribution networks [43, 86]. For
example, for an EV penetration of 25%, almost 30% of network facilities would need to be
upgraded, while this ratio drops to 5% if the charging load can be shifted to less crowded time
periods [24]. These research works reach a consensus that EV charging should be controlled
to avoid distribution congestion and higher peak-to-average ratios (i.e., demand sporadicity).

At the same time, the Power Grid is witnessing one of its major evolutions since its
conception at the beginning of the past century. The classical structure of electricity being
produced in a small number of big, centralized, power plants, and flowing through the
transmission and distribution networks to be consumed by end users is being challenged
by the increasing penetration of renewable energy sources. The possibility to communicate
bidirectionally with all elements of the grid—and as a consequence to achieve unprecedented
levels of monitoring and control-serves as a major technological enabler of the new Smart
Grid, allowing to accommodate new types of demand and production sources as illustrated
in Figure 1.1.

In this context, EVs impose new burdens due to the extra demands they constitute, but

also open opportunities thanks to the fact that their demands are relatively flexible, and
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1.2 Thesis contributions and organization 3

that their batteries can be temporarily used to support the power grid: EVs can be active
contributors in the smart grid instead of passive consumers.

The important aspect stressed in this thesis is that EVs cannot be assumed to be directly
coordinated by a central entity controlling all charging processes. Indeed, EVs belong to
individuals with specific preferences and constraints, who would not relinquish control of the
charging process without being properly compensated. Instead, it is reasonable to assume
that they react selfishly to management schemes: only when sufficient incentives are offered
may EV owners coordinate their charging time and power, i.e., reschedule (directly or by
giving some control to an external entity) the charging processes rather than recharging their
batteries within the shortest delay, which is convenient for them but problematic in the grid
operator perspective. Those incentives can take several forms, from fixed rewards for letting
the grid control the charging, to auctions for energy, or through time-varying prices set by
grid operators.

Therefore, we think EV charging must be managed using market mechanisms, where
participants are assumed to have different objectives. Hence an appropriate framework to
study the EV management schemes is that of economy, and more precisely game theory [33,
79] which provides specific tools to model and analyze the interactions among self-interested
actors.

1.2 Thesis contributions and organization

The contributions of the thesis consist of a survey of the current literature on this topic plus
two specific proposals dealing with EV charging management

The survey presented in Chapter 2 reviews the economy-driven schemes for EV charging
management proposed in the literature. While the research on that topic is quite flourishing
in the last years, there is to our knowledge no work presenting a comprehensive overview of
the different approaches considered. We classify the existing models, highlight their main
assumptions and results, in order to compare them and identify the most promising types of
mechanisms together with the directions that deserve further research.

EV charging management requires the support of a corresponding communication struc-
ture. In some algorithms, information is broadcasted from grid operators to EVs; bidirectional
unicast is sometimes needed to coordinate the charging behaviors of specific EVs; finally
EVs multicasting to charging stations (with or without station relaying) and stations re-
sponding (by unicast, multicast or broadcast) are necessary in reservation-based systems.
The importance of Information and Communication Technologies on the implementation of

Smart Grid can never be overemphasized [28, 102], and specially designed communication
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systems for vehicles [5] are also relevant for better scheduling the charging of EVs. Hence
charging algorithms and the corresponding communication systems should be considered
simultaneously to make the best of their economical and environmental potentials. Existing
works in the literature provide general overviews of the requirements and challenges; the
survey investigates the economic properties of the charging algorithms, but keep track of
their prerequisites on communication systems in terms of the volume and the frequency of
information exchanges.

Our first proposal described in Chapter 3 provides economical incentives to EV owners
who consent to be recharged at a lower average power (real time recharging power could
change over the charging period). This of cause prolongs their recharging time, so is better
suited for users not facing imminent departures. For those impatient ones, we keep the
high-power recharging option available at a higher price. This price discrimination benefits
the EV owners who can accept longer recharging durations, meanwhile provides an extra
revenue for the charging stations, who can use the flexible recharging processes of those EV's
to offer services to the grid operators and earn remunerations in return. These remunerations
reflect the balance between supply and demand of the market thus vary significantly. High
remunerations favor the station, whereas lower ones would make it unworthy for the station
to offer both recharging options—when high-power recharging is offered only, some of the
patient clients would switch to this option while the rest can still decline and leave the system.
Note that entitling one single entity to provide both types of charging services perhaps results
in the low-power recharging option offered less often, because when the remuneration is
inferior to a certain threshold, the station would turn to the mode where only high-power
charging is offered. This jeopardizes user and grid operator in a way that one of them loses
a source of cheap energy and the other service. To avoid this, we break the monopolistic
charging station into two, each one being in charge of one service. Their relationship forms
a non-cooperative game. We examine the Nash equilibria of this game. By doing this,
the inexpensive low-power recharging option can endure lower remunerations while being
offered more often than in the monopolistic case, because here the station that does this has
no other revenue source to turn to. To the best of our knowledge, this model is innovative in
terms of giving the closed form revenue-maximizing electricity prices, as well as offering
some insight into whether providing regulation while recharging EVs consists a profitable
option for the aggregator.

Our second proposal is detailed in Chapter 4 and reverses the role of EV owners—they
are no longer customers but energy sellers, who discharge the surplus electricity stored in
their batteries to a facility, while the vehicles are parked in the facility’s parking lot. The
attractiveness for EV owners comes from the profits they acquire, through recharging more
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than sufficient energy in the batteries during off-peak periods of time and selling the excess
part to the facility. From the viewpoint of the facility, instead of buying electricity at on-peak
prices from the utility companies to cover its un-shiftable demand during peak time, it can
first purchase from the available EVs at a relatively lower price and only turn to the grid
to compensate the insufficient part. This proposal is suitable for the areas where the price
margin between on-peak and off-peak is large, and selling surplus energy to the grid is either
inconvenient or restricted for the EV owners. It turns out that price margins in different
countries and areas vary quite a lot. Scandinavian countries have the reputation of being
aggressive in adopting renewable energy and have taken a leading position in Smart Grid
applications. Price variations there appear to be wider than in most other countries. Although
some independent system operators allow to take electricity from individuals generated from
their on roof solar panels, this is not yet a wide spread policy. Even so, considering the
price they offer and the accessibility of the discharging equipments, we think giving energy
directly to the facility who is in need will still be an interesting choice. The originality of this
model lies in an analytical cost-minimizing discharging power, which provides a tradeoff
between buying electricity from local utility companies at peak price, and paying relatively
less to available EVs owners for purchasing surplus energy stored in their onboard batteries.

Finally, Chapter 5 concludes the thesis, by taking a step back on what we have done,
describing what extensions can be investigated for future work, and what other research
directions on the topic I think are worth investigating, although I did not have the opportunity
to develop them further within the limited time span of my PhD.






Chapter 2

Charging Electric Vehicles in the Smart
City: A Survey of Economy-driven
Approaches

This chapter reviews the state-of-the-art models. Following a discussion of the technical
environment of the charging problem, an introduction of the economic vocabulary and the
desirable properties of an EV management scheme, we present and classify the charging
schemes proposed in the literature to exploit the benefits and avoid undesirable outcomes
from EVs entering the grid ecosystem. This review covers both unidirectional charging
(energy only goes from the grid to the EV batteries) as well as bidirectional energy trading
(the grid can also take energy from the on-board EV batteries). Finally, we summarizes the
communication aspects of the schemes (type of exchanges, volume and frequency), while
provides a general classification of all models and approaches, stressing their limitations to

highlight the need for further research in specific directions.

2.1 Techno-economic environment of EVs

2.1.1 Facilities for Electric Vehicle Charging

The term “Electric Vehicle" can refer to a broad range of technologies. Generally speaking,
the extension of this concept covers all vehicles using electric motor(s) for propulsion,
including road and rail vehicles, surface and underwater vessels, even electric aircrafts. Since
this chapter concerns the charging management schemes and their impacts on the grid as well
as on their owners from an economic perspective, we narrow the use of “Electric Vehicle" to

mention a passenger car with a battery that needs refills of electricity from external sources.
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Table 2.1 Charging powers and corresponding charging duration 7 under the SAE J1772
standard

Level 1 Level 2
AC ~ 1.9kW ~ 19.2kW
T=17h T =1.2h

Level 1 Level 2 Level 3
DC ~ 36kW ~ 90kW ~ 240kW
T < 1h T <20min 7T < 10min

Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV) are two types
of Plug-in Electric Vehicles (PEV); PHEVs differ from BEVs in that the former have a
gasoline or diesel engine coexisting with an electric motor.

The economic mechanisms evoked in this chapter mainly differ in the way prices are
defined, in the mobility models (if any) of EVs, in the time scale considered, and in the
directions for power flows (from the grid to EVs, or both ways). The specificities of EVs—
being BEVs or PHEVs—do not play a major role with regard to the economic aspects, and
often schemes are proposed that can be indifferently applicable to each type of EV. Hence in
this survey we present mechanisms without always specifying the EV type; we do it when it
has an influence on the performance or applicability of the scheme.

Note that charging can be performed in diverse ways: EVs can use an on-board or
off-board charger [104, 105], or use inductive charging while parked, thanks to Inductive
Power Transmission (IPT) technology [100, 59]. The ultimate experience of IPT is charging
while in motion, of which a prototype named On-Line Electric Vehicle (OLEV) has been
designed in the Korea Advanced Institute of Science & Technology [88]. Those cases being
rare, we can consider in this chapter that the charging is done via a physical connection.

To insure safe electricity delivery to an EV from the source, some particular EV Supply
Equipment (EVSE) is needed, which puts tight constraints on how EVs can be recharged
(or discharged if possible). The charging rate limit, battery capacity and AC/DC conversion
efficiency vary among the different charging facilities and patterns. Two levels for AC
charging and three levels for DC charging are approved by the SAE J1772 standard', as
shown in Table 2.1, giving the estimated time 7" needed to fully recharge a battery with
25kWh usable pack size, starting from an initial State Of Charge (SOC) of 20%.

Note the the recharge duration is not simply the energy injected divided by the recharging
power level, since roughly 70% of energy is injected at a Constant-Current, whereas the rest

Uhttp://www.sae.org/smartgrid/chargingspeeds.pdf
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is obtained at a Constant-Voltage with the current diminishing to near zero. So the overall
charging process is not accomplished at a constant power.

There are other charging standard proposals, which roughly correspond to the categories
in Table 2.1. For example CHAdeMO? falls into DC Level 2, and Tesla Supercharger overlaps
with DC Level 3.

EV battery is recharged through its inlet, which has a fixed shape thus needs a compatible
connector (also known as coupler) to feed energy in. At the other end of the cable stretching
out from the connector is a plug that only a matching socket can secure it. With regard to
the connector/inlet pair and plug/socket pair, there are several world standards including
but not limited to: SAE J1772 (known colloquially as the Yazaki connector) in Northern
America; VDE-AR-E 2623-2-2 (known colloquially as the Mennekes connector) in Europe;
EV Plug Alliance proposal (colloquially known as the Scame connector) in Italy and JEVS
G105-1993 (known as the trade name CHAdeMO) in Japan. Albeit charging facility types
are numerous, the International Electrotechnical Commission has managed to propose a
worldwide charging mode standard. Four modes (1-4) are incorporated, specifying different
levels of power and safety protocols between an EV and its charging station.

Figure 2.1 summarizes the main categories in which we can divide the charging stations.
Individual stations capable of charging a single EV refer to those located in individual

Charging Facilities

Individual / / \\

. . On-road Battery Refueling Roadbed
charging Parking lot . - .
- fast charging swap  station infrastructure
station . .
station  station

Public Private

Public  Private/ Shared Dedicated
Home garages

Fig. 2.1 Classification of the charging facilities for EVs

homes. Parking lots for EVs are yet to be developed to their full potential: they contain many
individual EVSEs in physical proximity, belonging to the same entity. Public EV parkings
are open to any EV, while private EV parkings provide access only to a specific fleet of EVs,
e.g., owned by a single company. On-road stations are relays for EVs on long journeys, they
can generally charge EVs at the highest possible rate to minimize the delay.

Roadbed infrastructures for EVs are based on IPT technology [69]. We already witness
roadbed infrastructures that charge EVs at traffic intersections [73] or even without stop-

2http://www.chademo.com
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ping [63]. As some EVs can use other types of energy sources, they can be replenished in
refueling station, e.g. classical petrol stations, compressed air stations, or battery-swapping
stations. Those charging solutions are out of the scope of this chapter due to the fact that
they are either to some extent overlapping with refuelling problems for conventional cars, or
still in experimental stage.

2.1.2 EVs - An enabler of the Smart Grid and a participant in Elec-
tricity markets

The Smart Grid is an evolution of the Power Grid which is expected to lead to a more efficient
use of the grid resources, for example with a reduced Peak-to-Average power consumption
ratio, faster repairs, self-healing and self-optimizing possibilities, and full integration of
renewable energy sources.

Demand Response (DR) is the possibility for the power grid to alter the consumption
patterns of end users; it can be implemented through various mechanisms. DR was initially
used primarily toward large electricity consumers, but the transition to the Smart Grid
provides a paradigm shift, where every load, no matter how small, can participate in a DR
program. Energy Storage is a key technology for the integration of Renewable Energy
Sources to the grid. Pumped-storage hydroelectricity (PSH) accounts for 99% of the world
bulk storage capacity?, but there are physical limitations to the quantity of energy that these
types of storage can hold.

EVs can both participate in DR and serve as Energy Storage facilities. They can respond
to DR signals, such as price variations or direct control messages by modulating their power
consumption, thus providing necessary flexibility to the grid operator. In some cases, EVs
can also inject electricity back to the grid, thus serving as distributed energy sources. These
can be leveraged by the network operators to improve renewable energy integration, to help
self-healing or to provide ancillary services, so as to reduce the dependency on specialized
equipments like diesel generators.

Figure 2.2 shows the major entities related to EV charging. A Transmission System
Operator [27] (TSO, in Europe)—or in some contexts (in North America) an Independent
System Operator [29] (ISO)-is responsible for operating, ensuring the maintenance of and, if
necessary, developing the transmission system in a given area. Consumers equipped with
energy sources that can deliver electricity to the distribution network are called prosumers.

In a classical electricity market, end-users have contracts with an electricity retailer,
who buys the electricity produced by generators. The transaction can be brokered via a

3http://www.economist.com/node/21548495
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Fig. 2.2 Smart Grid Actors related to EV charging.
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bilateral agreement or on a wholesale market. As the aggregated energy consumption of a
big region can be known with satisfactory precision well in advance, contracts for buying
the bulk of the necessary electricity can be done a year or a month ahead on the futures
market. However, electricity consumption is heavily dependent on the weather, thus requires
a significant amount of energy to be traded 24 hours in advance on the day-ahead market.
Finally, fine adjustments can be made up to an hour ahead, which are traded on the intra-day
market.

To match supply and demand for electricity instantaneously, ISO/TSOs operate ancillary
services markets (generally using auctions) where they purchase ancillary services from
generators and/or consumers who have the ability to vary their generation or consumption
powers. ISO/TSOs also keep a close watch on the efficiency and effectiveness of those
markets.

2.1.3 Dealing with self-interested actors

As elaborated before, EV charging involves many Smart Grid actors, whose objectives are
not necessarily aligned: EV owners want to store enough energy as quickly as possible,
and at the lowest cost, whatever the impact on other EVs or on generation costs; electricity
producers and retailers are mainly driven by net benefits; while ISOs generally aim to ensure
the most efficient use of resources and to maintain the supply-demand balance.

Therefore, when designing mechanisms to decide allocations and prices paid, one has
to anticipate that the actors may try to play the system at their advantage. For example, if
decisions are made based on signals from users such as their willingness-to-pay, the rules
should ensure that reporting untruthful values does not bring any gain to the corresponding
actors: such a property is called incentive compatibility.

More generally, an appropriate framework to study the interactions among several
decision-makers is that of game theory [33]. A key notion is the Nash equilibrium, that is
an outcome (a decision made by each actor) such that no actor can improve his individual
payoff (utility) through an unilateral move. As stable situations, Nash equilibria are often
considered to be the expected outcomes from interactions. Hence many of the mechanisms
described in this chapter rely on that notion.

Nash equilibria can be attained when all actors have perfect knowledge of their opponents,
their decision sets, and their preferences. But those strong (and often unrealistic) conditions
are not necessary: in several cases the Nash equilibria can be reached or approached via
some limited information exchanges among actors, or even without such exchanges but just
by trying out decisions and learning the best ones [32].
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To summarize the EV charging problem setting, we recall the relevant actors and set up
the vocabulary as below:

* EV: A physical electric vehicle or its owner who will generally be assumed to have
a utility function (or benefit), that represents his preferences. We will mostly use the
classical quasi-linear utility model [72]: for a given price and energy allocation, the
EV owner utility will be the difference between the owner’s willingness-to-pay (or
valuation, i.e., the value of energy for him, expressed in monetary units) and the price
actually paid.

» Aggregator: An entity acting as an intermediary between the demand (retailers/users)
and supply (generators, ISO/TSO or charging stations in some scenarios) sides of the
electricity market [40]. When an aggregator is designed to be a representative of a
group of EV owners, its utility will be the aggregated user utility. Otherwise, when it
acts in its own interest as an intermediate energy supplier, the measure of utility will
similarly be the difference between revenues (the monetary gains from their clients) and
costs. That difference is often called benefit. The function of an aggregator sometimes
overlaps with that of a widely acknowledged market player called Electro-mobility
service provider. We adopt the former because the terms of Electro-mobility service
provider encompasses also the provision of EVs—their manufacturing, financing and
maintenance—which cannot be more important for the EV-ecosystem whereas the
topic is beyond the scope of this thesis. We tend to use aggregator to lead more
attention towards the side of smart grid and EVs’ interaction with it.

* EV charging station: The owner and/or operator of one or several EVSEs in physical
proximity, who allows EV recharging and/or discharging with the aim of maximizing
revenue, but always under some physical constraints such as local transformer capacity
and standard recharging power level.

* ISO (or TSO): An entity in charge of operating and maintaining the transmission
system in a given area. It sets a constraint for the aggregated EV load according to
the transformer capacity, and purchases ancillary services when necessary, in order to

maintain the supply-demand balance.

The aggregated utility of all users (here, EVs) is called user welfare, and the aggregated
utility of all suppliers (EV charging stations or aggregator) is the supplier welfare. Social
welfare (=user welfare+supplier welfare) quantifies the global value of the system for the
society, and is computed as the sum of all users’ valuations minus all costs (production,
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Table 2.2 Main questions related to the EV charging problem, and desirable properties

Question

Criteria

ExamplesIn this chap-

ter

How to settle the conflict be-

A desirable management

[34, 35,

Section 2.2.1,

tween EV demand and grid ca- scheme achieves higher EV 84, 94, 22.2
pacity? satisfaction and/or station 71, 7,

revenue, meanwhile lowers 82, 45,

the grid burden. 68, 49,

48, 31]
How to coordinate the time- A well designed pricing pol- [10, 74, Section2.2.1,
flexible EV demand scattered icy can incentivize participants 70, 36, 2.2.2,2.3.3
in individual EVs to perform to shift their demands in a dis- 89, 13,
load shedding, peak shaving, tributed manner, without intru- 65, 95,
and to smooth renewable en- sively taking full control over 101,
ergy output? their charging processes. 14]
How could an EV owner re- A satisfying charging program [20, Section 2.3.1
duce his/her electricity ex- is flexible in order to respect 50, 66,
penses by paying the time-of- EV owners’ travel plans, and 46, 67,
use electricity price? is robust to price uncertainty.  103]
How to dispatch ancillary ser- A good allocation satisfies [83,51, Section2.3.2
vice tasks as well as the associ- some fairness properties in 52, 25,
ated revenue among EVs pro- terms of actor utilities. 91, 92,
viding such services? 99, 98,
37]

How to organize EV charging A good mechanism should [38,39, Section?2.2.2
market between self-interested be incentive compatible and 82, 45,
EV owners and revenue- achieve high (near-optimal) 68, 26]

pursuing charging stations?

user/supplier/social welfare.

transportation, if any). Note that money exchanges do not appear in that measure, since they
stay within the society.

To provide a guideline for future proposals, we list in Table 2.2 the main questions
raised by EV charging, and summarize from our point of view, the criteria that make a good
charging management scheme. Also, we indicate in which sections of this chapter those

points are addressed.
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2.2 Unidirectional charging mechanisms

In this section, we assume that energy can only go from the grid to EV batteries. Electricity
is expensive to store and supply over the grid must match demand at all instants: hence it
is not possible for the grid to simply produce in anticipation the power needed to satisfy
the charging requests that will occur from possibly many EVs over some periods of time.
Standby generation units can be swathed on, but incur high costs, hence this is not a satisfying
solution either. Remark that the generation part is not the only limiting factor: transmission
networks and transformer station limits constitute other bottlenecks. We therefore consider
here the scenario where several EVs are plugged-in for recharging, but the available energy is
not sufficient to feed them all (or producing extra energy incurs high costs), so the aggregator
is responsible for allocating the scarce resource among the clients.

This section reviews the main economic approaches to manage the (unidirectional) charg-
ing of EVs. We first describe static approaches for energy sharing (where the objective and
decisions are based on a snapshot of the system regardless of possible impacts of future varia-
tions), then extend the sharing problem to dynamic scenarios (where the uncertainty of future
events is taken into account); we also consider the mobility aspects of EVs (involving the
choice of locations to charge, and price/distance tradeoffs) and finally point out mechanisms

based on frequency regulation.

2.2.1 Static unidirectional recharging
Sharing energy efficiently among users

This subsection is devoted to the energy allocation problem within one indivisible time slot,
1.e., only the current demands are considered and there is no uncertainty considered about
future events (variations in supply and/or demand). We start with topology-free models,
where each EV’s consumption is constrained by its charger and battery, then together with
other EVs, jointly curbed by the supply (typically, from their common aggregator). Then we
move on to topology based models, where the throughput of the transformers further narrows
the feasible choices.

Sharing without topology-based constraints Consider a charging station with several
plugged-in EVs demanding electricity. How should the station dispatch the scarce available
energy among them? We suppose here that there is no discrimination among EVs caused
by the topology of the (sub-)grid they are connected to. Energy supply is considered as a
constant for models in [34, 35], and as a variable in [84, 94].
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Galus and Andersson [34] consider a large amount of PHEVs connected to an energy hub
which converts gas and electricity to cover a commercial area’s heat and electricity needs.
Hence the total energy available to PHEVs is the transferring limit of the hub, minus the
commercial area’s un-shiftable demand. Each PHEYV is assumed to report truthfully to the
aggregator an individual (utility) parameter describing its willingness-to-pay for one unit of
energy, at every time instant. This value depends on the gap between the current SOC and
its target, as well as the time left before its departure. The aggregator then dispatches the
available power, based on those parameters collected from all plugged EVs, to maximize
the total (declared) value of energy for PHEVs, generally feeding first the EVs with lower
SOC and imminent departure. A strong assumption made here is that EV owners do not try
to play the system by falsely declaring their utility parameters to obtain higher utilities. The
authors extend their work by adding a network operator, in charge of a higher-level dispatch
of electricity and gas over all the aggregators [35], thus the supply limit is simultaneously
restricted to the capability of the hub and the electricity and gas fed-in to an aggregator by
that network operator.

In contrast to [34] where energy supply is given as a constraint, Samadi et al. [84] let
the aggregator decide the amount of electricity to sell in order to maximize social welfare,
that is the aggregated benefit of all the self-interested users minus the generation cost. They
propose a distributed iterative algorithm where the aggregator updates the unit energy price
and each user responds by updating his load (to the utility-maximizing one under the present
price) until convergence, at which point energy allocations become effective. Here again, no
strategic behavior from users is assumed: they react myopically without integrating the fact
that their utilities depend only on the converged outcome.

In Tushar et al.’s model [94], users are not only informed of the price, but also of the
total consumption limit. Each user aims to maximize his utility function, while knowing that
if total demand exceeds the consumption limit, then none will be allocated any electricity.
This scenario is modeled as a Stackelberg game [79] (also known as leader-follower game),
with the aggregator as the leader, setting prices so as to maximize revenue; and EVs as the
followers—price-takers competing for resource through their demands. The leader sets the
price first, then the followers send their demand to an intermediary manager, until the unique
EV equilibrium for that price is reached. The total consumption is then sent to the leader,
who updates the price to achieve a higher revenue; that process being repeated until the
revenue is maximized.
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Sharing with topology-based constraints The following models share the assumption
that EVs are connected at the leaves of a tree-like distributed network. The objective of an
allocation can be efficiency [71] or fairness [7].

Maillé and Tuffin [71] propose a solution to share resource among self-interested users
over a tree structure, through an auction and with the objective of maximizing social welfare.
The mechanism was initially defined for bandwidth sharing in telecommunication access
networks, but is also applicable to energy: an EV can send several bids to the auctioneer, each
with the form of a (unit_price,quantity) pair; the auctioneer then computes energy allocations
and prices based on the bids submitted by all EVs. The number of pairs one EV can submit is
chosen as a trade-off between efficiency and (communication and computational) complexity.
The mechanism in [71] follows the principle of Vickrey-Clarke-Groves mechanisms [96, 19,
441]; it incentivizes truthful bidding for the users and guarantees efficient allocation—in the
sense of user welfare maximizing, since no costs are assumed here.

Rosenberg and Keshav [7] aim at finding a proportionally fair [54] sharing of a fixed
amount of energy among users. The algorithm consists in each link computing its congestion
or shadow price [55], and transmitting downwards the total congestion price from the
root of the tree (wherefrom energy is available) to users plugged at leaves; the latter then
demand their utility-maximizing amount after receiving the price (assuming logarithmic
utility functions). Such a method converges to the proportionally fair allocations. Note that
users here are not aware of the links capacity limits, so their initial demands might exceed
them before reaching convergence, an outcome not occurring in [94] where users sharing a

link know its capacity and act to avoid outstripping it.

Example Now we illustrate some of those approaches via a simple example.
Consider an aggregator having to allocate energy to two users A and B with (non-
decreasing) concave quadratic valuation functions 0 (indicating their willingness-to-pay for

energy) as expressed below:

2 b

—ax“+bx x< 5

0x) =1 ., " 2.1
Za X > 50,

where x is the allocated energy and a, b are user-specific parameters. Note that 2% is the

maximum amount of energy that the user wants, i.e., giving him more than this value won’t

increase his valuation. Users A and B differ in their preferences: set ay = 0.5,ap =1 (the

respective values of parameter a for player A and B) and b4 = bp = 2. The utility of each
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player is therefore the difference between his valuation function, and the price he is charged
(typically, px with p denoting the unit price).

The aggregator acts as a representative of the EVs in [34, 71], trying to maximize the
aggregated user utility. Similarly, in [7] the aggregator has also a user-based objective,
namely proportional fairness. In contrast, in [94, 84] he plays “against” EV users, trying to
maximize his revenue by setting the unit price p. The supply constraint is a tight bound of C
in [94], while in [84] it is part of the decision variables, the authors assume a cost of aC?
and consider C to be optimized by the aggregator.

Table 2.3 shows the outcomes of those approaches for our example. Remark that welfare-
oriented approaches [34] (and [71] if C; > C) for example) lead to the same allocations as
the revenue-oriented ones [94, 84]. Those allocations correspond to demands at the market
price (the unit price as which demand equals supply); indeed such allocations are efficient,
but also allow the aggregator to extract the maximum surplus from users. Note however that
the prices paid are different: with VCG-based schemes, users are charged below the market
price, which can be interpreted as the cost for having them reveal truthfully their valuation
(while this information-revealing aspect is not considered in [94, 84]).

For the models in [7, 71], that consider tree-like network topologies, we take in our
example the simple topology of Figure 2.3, where C; and C; are capacity limits.

User A User B

XA+XB< Ci
Feeder(C1) Sub-feeder(Cz2)

Fig. 2.3 Capacity constraints: a simple tree topology.

The objective in [7] is to achieve proportional fairness in this setting, or equivalently, to
maximize logxs + logxp under the capacity constraints. Hence energy is shared equally if
the constraints allow it, as shown in Table 2.3.
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Table 2.3 Comparing mechanisms proposed for static scenarios on a toy example

Aggregator objective Constraints Allocation x4 Allocation xp
34 max0y(ua)+65(ip)  xa+xp<C min{1, %} min{3,§
[94] nzzjulzp(xA +xp) xa+xp<C min{1, % min{J, %
[84] n;%xp(xA +xp) — aC?>  xs+xp<C %C = 2+23a %C = 2+13a
x4 +xp < C; min{l,max{%,

il G
[71] gi);GA(xA)+GB(xB) 25 < Co Ci—min{L, G511} min{3, 3, G}

<
xp+xp < C C —min{%,Cg} min{%,cz}

[7] gi);long—l—long x5 < Cs

Electricity sharing over several time slots

This subsection adds the dimension of time when scheduling EV charging. A given time
interval is divided into multiple time slots. Unlike the previous subsection which treats as
decision variables the amount of electricity to be allocated among EVs, in this subsection
those variables now expand on time, becoming vectors, to exploit the time flexibility of
allocation. Therefore the problem is to reshape the aggregated charging load curve under
constraints on the total energy transferred. We start with models aiming at forming a flat load
curve, then turn to those that can shape the load into an arbitrary curve.

Flat charging curves Time is discretized so a charging plan for an EV is a vector over
slots, with the magnitudes representing the charging rates. This rate takes discrete values
in [10, 14] and continuous values in [74].

Beaude, Lasaulce and Hennebel [10] slice one time period (typically one day) into several
slots (e.g., of length 30 minutes), and users choose when to start recharging their EVs at a
constant power level without interruption until reaching their target SOCs. In other words,
the charging demand is a shiftable rectangle covering several slots. For the aggregator, a
supply increase causes a cost increase, and the cost function is assumed to be continuously
differentiable and strictly convex. This cost is directly transferred through prices to users,
who are aware of this mechanism and want to choose the best charge starting slot(s) to
minimize their individual costs.

Let us illustrate the scheme through a simple example. Suppose EV A (resp., B) needs a
one-time-slot recharging at the power of c. They can choose between slot 1 and slot 2. Denote
the consumption profile for A (resp., B) in time slots 1 and 2 with the vector [x} x2] (resp.,

[xllg x%,]). For a specific time slot, the aggregated load can be 2c, ¢, or zero depending on user
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decisions, with respective costs to the aggregator Cost(2¢) > Cost(c) > Cost(0). This cost is
handed down to the users in the form of unit prices p(Cost(2c)) > p(Cost(c)) > p(Cost(0)).

The game played among users is proved to be a potential game [76], hence having pure
Nash equilibria. Not all those equilibria yield identical cost, but the authors prove that for an
infinite number of cars the equilibrium is unique and optimal.

In the same vein, Mohsenian-Rad et al. [74] use this consumption-dependent electricity
price to elicit users to voluntarily minimize the cost to the aggregator, and meanwhile reduce
the peak-to-average ratio of the load curve. The aggregator sets a unit price linearly increasing
in the consumption level, so that the price paid is quadratic in the consumption. Users have
multiple independent appliances to manage, and the constraint of non-stopping recharging
in [10] is relaxed, so higher flexility is offered: the charging rate is variable as long as the
total energy injected to one appliance meets the client’s demand. When a day starts, each
user first starts from a random hourly consumption schedule and broadcasts it to the rest
of the community. Then, sequentially, users choose their cost-minimizing schedules based
on those received from the others and their own daily needs. The authors prove that the
process converges, to a unique equilibrium where the total charging cost is minimized. A
desirable byproduct of minimizing the cost is that the peak-to-average ratio of the load curve
is also significantly reduced: although the solutions of these two problems are not identical,
data analyses suggest that they are close, since the lowest achievable peak-to-average is only
0.05% lower than that achieved by the cost-minimizing solution.

The convergence requires rounds of bi-directional communication between an EV and
the aggregator. To accelerate the procedure and achieve real-time responds, Binetti ez al. [14]
propose to schedule one EV at a time, once it connects to the grid. First the aggregator
anticipates its load curve for the following 24 hours, and lets the first arriving EV know about
this profile upon arrival; then the EV owner, after a simple computation, decides when to
start recharging its EV at a constant yet self-defined power level, without interruption. The
computation complexity is low and can be easily adapted to the circumstance where EVs
arrive in a batch. In [14] EV owners arrange their recharging with the aim of minimizing the
objective function of the aggregator, which is a linear combination of the variance and peak
of the aggregated load profile, thus users are assumed altruistic; but a more realistic approach
should cover EV owner selfishness, hence an incentive problem: how to define prices so that
selfish users behave in the best interest of the aggregator? We expect load-dependent prices
to lead to situations where the aggregator cost is (at least approximately) minimized, as is
done under other assumptions in [10, 74].
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Following an arbitrary curve Merely flattening the aggregated charging consumption
of EVs is not always desirable or sufficient, especially when EVs share the supply system
with other consumers. To flatten the overall demand curve, the EV consumption should be
adjusted according to the external un-shiftable loads. Following are examples of guiding
EVs through the electricity price, so that their aggregated load follows a predefined curve.

Ma, Callaway and Hiskens [70] model the behavior of self-interested users as a nonco-
operative game, the objective of the charging control being valley filling, i.e., shifting EV
demand to the valley hours of the non-EV load. A consumption-dependent electricity price
(a linear function of the ratio of the real-time consumption to the generation capacity) elicits
users to defer their charging processes toward the valley periods, where prices hit the bottom.
To avoid oscillations in user behavior and ensure convergence, an extra fee is added to the
electricity price as a penalty on deviation from the population average, so that users selfishly
minimizing their costs converge to a Nash equilibrium, which happens to be the socially
optimum outcome if all EVs have an identical charging deadline. By adopting a different
form of penalty, Gan, Topcu and Low [36] prove the convergence to the optimum for EVs
with different deadlines. Moreover, they extend the algorithm so that the aggregate load can
follow any given profile, hence its application goes beyond valley filling.

When real-time electricity prices can reflect the congestion status, an EV would be
contributing to valley-filling by simply following a cost-minimizing charging program.
Franco, Rider and Romero [31] seek a daily charging dispatch that achieves cost minimization
under hourly electricity prices. They consider a specific distribution network where each
node brings a constraint about the consumption it can support. The aggregator solves the
problem in a centralized manner, i.e., tries to postpone the shiftable EV loads to the time
slots with lower prices, while respecting the constraints and satisfying EV demand. Similarly,
Hu et al. [49] propose a centralized cost-minimizing control mechanism based on predicted
hourly electricity prices, where the aggregator directly controls the charging of each plugged
EV, whose daily travel plan and corresponding energy demand can be estimated day-ahead.
The aggregators sharing a distribution grid respond to hourly congestion prices set by the ISO,
by updating their previously optimized EV recharging schedules. After convergence, the
ISO re-sets the price depending on its supply capacity, until the overall energy consumption
scheduled of all the aggregators falls below this capacity. The authors recently extended this
work in [48], to the case of a tree-like distribution network where EVs are plugged on the

leaves.
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Summary of Static unidirectional recharging

Table 2.4 summarizes the static approaches, differentiating them according to the type of
economic model considered, the controller’s objective, and the main model constraints. The
first group ([34, 84, 94]) uses Stackelberg game models, with the aggregator being the leader
and EVs the followers. The leader plays with the electricity price and followers adapt their
consumption. This method can be used to achieve different objectives, such as user welfare
and social welfare, in an iterative manner. When topology-based constraints are considered
([71, 7]), EVs might not be aware of the whole topology and/or constraints of each segment,
but congestion information at each node is handed down in the form of electricity prices. This
method can achieve proportional fairness among homogeneous cooperative users [7]. For
heterogenous self-interested users, each with a private utility function, the central controller
can organize an auction and dispatch energy efficiently among bidders, respecting topology
constraints [71].

All those charging schemes consider imposing consumption-dependent electricity prices
to cost-sensitive users. While user demands are assumed elastic in schemes studying a single
time slot, they are considered fixed for those designed for several time slots, the flexibility
stemming from the repartition of consumption over time to meet demand constraints. That
fixed-demand assumption is mathematically convenient (in particular, the optimal load curve
is unique and computable), but it ignores the fact that EVs may benefit from alternative energy
sources and therefore have flexible demand for grid power. So we encourage future research
to consider demand flexibility in both time and volume. This complicates the analysis of
the aggregator’s task (to choose a load curve) and of the EV choices (among the different
sources), but we believe it is worth studying.

One inherent difficulty in distributed systems is convergence. Although it is mathemati-
cally convenient to assume arbitrarily variable charging rates between slots, batteries actually
prefer stable charging rates. This hinders the convergence to global optimum in atomic
charging games, and results in optimality being only achievable for an infinite number of
EVs [10]. Convergence can be guaranteed by modifying user choices (e.g., through penalties
as in [36]), but this must translate into economic incentives by affecting utilities, hence comes
with a cost.

2.2.2 Dynamic models
Dealing with uncertainties about future events

All the models described so far are static, in the sense that they consider a time interval
(be it one time slot or several) where all the information needed to find the optimal power
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Table 2.4 Economic approaches for static unidirectional recharging

Paper Model Aggregator objective Constraints
[34] Stackelberg game User welfare Fixed produced energy
[94] Stackelberg game Revenue Fixed produced energy
[84] Stackelberg game Revenue minus costs Quadratic production cost
[7] Cooperation Proportional fairness F%xed produc'ed energy
Fixed transmission capacity
[71] Auction User welfare F%xed P roduc.ed ‘energy )
Fixed transmission capacity
. : Fixed charging rate per EV
[10] Potential game Generation cost Non-Interruptible charging
[74] Potential game Peak-to-Average ratio  Fixed appliance consumption
[70] Non-cooperative game Energy cost Fixed non-EV demand
[36] Cooperation Vally filling Fixed non-EV demand

allocation is already available (prices, users, constraints, etc.). But this is not the case
when actors have to commit for some future slots before all relevant input information is
available. For example a user can optimize his current consumption based on the present
price (e.g., [35]), while knowing future price variations would have enabled him to get
an even better payoff; similarly, an EV owner informed of the future electricity price but
unable to precisely predict its departure time can do no better than minimizing its expected
electricity cost [75]. A robust optimization approach dealing with unknown future prices
is taken by Conejo, Morales and Baringo in [20], the objective being to minimize the daily
energy cost [11]. Other types of unknown information are brought by the clients yet to come,
e.g., the quantity and elasticity of their demands. Dynamically adapting algorithms (also
called online algorithms) anticipating and adapting to new inputs must hence be defined for
such cross-slot optimization. We now turn our attention to such approaches developed in the
literature.

A simple version of a dynamic algorithm consists in repeatedly applying static algorithms,
namely the ones in previous subsections, each time some new information is available. This
leads to allocations that are optimal if time slots are independent; but in the general case,
things are more complicated, and make specifically designed dynamic algorithms necessary.
Let us borrow an example from Gerding et al. [38] to illustrate that.

Example 1. Consider two EV clients: Carol’s EV is going to stay plugged-in for 2 time slots,
while David leaves at the end of the first time slot. Their marginal valuations of one unit of
energy are claimed to be [$10,$4] for Carol, and [$5] for David, as shown in Table 2.5. These

values stand for the maximum amount a user is willing to pay for each unit of energy: Carol
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Table 2.5 A dynamic problem setting

Carol David

Plug-in time slots Tc={1,2} Tp={1}
Marginal willingness-to-pay ve =[10,4] vp =[5]

would like to pay $10 or less to buy the first unit and $4 or less for the second, and one unit
for $5 or less is sufficient for David. Suppose we have one unit of energy available at each
time slot, and that our goal is to maximize social welfare (i.e., the total user valuation for the
allocated energy). If users only report their current willingness-to-pay but not their intended
plug-in duration, treating the problem as static leads to allocating the current unit to the
user who values it most. For our example, Carol would obtain the first time slot (having the
highest valuation), and would have no competitor for the second time slot, hence obtaining
it again, for a total user benefit of $10 + $4 = $14. But this greedy allocation per slot is
not optimal: from Table 2.5 we remark that allocating the first unit to David and the second
to Carol yields a higher total benefit of $15 = $5 + $10. To quantify the loss of value due
to limited information, a common measure is the ratio of the objective value reached with
the algorithm considered, over the optimum value that could have been reached, had all

information been available. In our example, this efficiency measure equals 14/15.

As evoked before, a possibility when facing new information is to relaunch the decision
search (in a myopic way, in the sense that there is no attempt to account for future incoming
information). Going back to Example 1, this method would achieve an efficiency of 1 if
Carol and David truthfully report their plug-in duration and willingness-to-pay, i.e., reveal
all the information in Table 2.5. But if a third user Edith, with marginal willingness-to-pay
$6, enters the system at the second time slot and leaves immediately after, that information
would trigger an allocation update, giving the first-slot unit to Carol (if there is still a chance
to do so) and the second one to Edith. This allocation will again need to be adjusted if more
information arrives, e.g., saying that there will be two units of energy for sale at the second
time slot. Such a method should yield higher welfare than repeating static algorithms per-slot
without adjusting according to newly revealed information, but still does not guarantee to
provide the best decisions from the available information (that includes, e.g., probability
distributions for the expected future events).

We will henceforth call dynamic settings, situations where decisions must be made over
time, and not all future information is available: clients dynamically enter and leave the
system, there is uncertainty about the set of feasible decisions in the future [78], etc.
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Finding efficient solutions for dynamic problems is already complicated, but things can
be worse when facing self-interested actors who may be reluctant to reveal information
or could strategically report it, as pointed out before. For the dynamic energy allocation
problem, Gerding et al. [39] design a two-sided auction mechanism in which truthful reports
(from the selling and buying parties) can be guaranteed by the mechanism in two specific
cases (where sellers are myopic, or each buyer is interested in only one time slot). Otherwise,
relaxing the requirement of truthfulness may lead to higher efficiency, by allowing the actors
to strategize [39].

Note that very different models for user preferences are considered in the aforementioned
references. We therefore believe there is a strong need to survey the current users’ economic
interests, as well as the potential users’ expectations, to build reasonable models and validate
them.

Mobility-based charging management models

Let us not forget that the primary function of EVs is transportation; this characteristic makes
mobility an unavoidable aspect to consider for charging arrangement schemes; be it by simply
considering parking periods, or by covering complex mobility plans of EV owners as is done
here. First, we take the EV owner point of view when selecting a charging station, then the
charging stations point of view through competition to attract users.

Charging reservation For EVs facing several options to get energy, guided reservation
can reduce the charging delay [82, 45], and charging cost [68, 103].

Qin and Zhang [82] design a mechanism to recommend charging stations to EVs traveling
in a transportation network, in order to minimize their overall queueing time before getting
recharged. For each on-road EV, only the stations on the shortest path connecting its current
location to its destination can be candidates, so none of them will cause any detour. Each
on-road EV periodically sends a reservation request to all reachable stations on the remaining
part of its journey; those stations estimate the waiting time for this EV, and the one with
the shortest waiting time estimation is reserved. This reservation can be adjusted (through
cancellation and re-scheduling) at the next round, to dynamically follow the optimal schedule.
The authors prove a lower-bound of the waiting time, and simulations show that the proposed
distributed algorithm achieves a performance close to that bound.

Unlike [82] where the personal information (location and destination) of each EV is
revealed to all the potential stations, Guo et al. [45] allow the users to keep these information;
even estimating the total time for charging at a specific station (the sum of driving time,
waiting time and charging time) is performed by each EV. The estimation is based on the
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situation of the EV itself and the information received from the power system control center,
the intelligent transportation system center, and each charging station.

For an EV owner who is more sensitive to the energy cost than to the time consumed,
time-dependent electricity pricing provides an opportunity to trade longer traveling and
waiting times for cost saving. Liu, Wu and Long [68] schedule the charging jointly with the
routing in that context. An algorithm is designed to find the path as well as the charging
quantity at each station on it, so that the total electricity cost of the journey is minimized.
Particularly for a taxi driver, Yang et al. [103] study the optimal charging problem for
EV taxis with time-varying service incomes and charging costs. They aim at maximizing
the long-term average profit of a driver under the constraint of the SOC (state-of-charge)
dynamics of the EV battery. It is assumed that the expected revenue from one service time
slot and the expected electricity price vary periodically. Those average values and their
variation cycles can be learnt by the taxi driver from past experience. At each idle time slot
(no passenger onboard), the taxi driver can decide whether to service or to recharge. The
authors provide an algorithm and give a closed-form proof of its viability.

Station competition Charging stations compete for customers through prices [26], and
may also try to learn the pattern of customers in order to achieve higher revenues [39].

Garzas and Granados [26] assume that all users (informed with the locations of the
stations) first send charging requests to all reachable stations, who then broadcast their
prices to the users. Finally, each user chooses the cheapest station among all accessible
ones. Competition among stations is an oligopoly game [53] on prices, where revenues are
proportional to prices and to market shares (the latter decreasing as price increases). The
cost for producing energy is assumed to follow a convex function. Simulation results show
that this pricing mechanism provides stations with higher utility than the equilibrium price of
the Bertrand oligopoly game. Users benefit from the price information, saving maximumly
11.5% with respect to choosing the nearest station. Note that the energy prepared by a station
may be below the demand from the actually arrived customers, but the authors claim that the
probability of this occurring is very low since users sent requests to many stations before
choosing where to recharge, so that stations are likely to over-provision energy. Stations can
then use the possibly extra energy to serve customers coming without reservation.

The scheme in [39] described in Section 2.2.2 performs a dispatching of clients to separate
stations, more specifically, each client is routed to a station where he is entitled with a unit
of energy at a time slot convenient to him (a <station, slot> pair), through a two-sided
auction organized by a central controller. EVs can make a reservation by reporting their
willingness-to-pay matrix over all possible <station, slot> pairs to the controller, while each
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station reports the costs of the units of energy it can provide. Upon receiving the reports from
both sides, the central controller finds a <station, slot> pair maximizing the difference (if
positive) between the user’s willingness-to-pay of this pair and its cost claimed by the station.

Admitting that predicting EV mobility is hard, historical travel surveys can give statistical
insights. Since the results on gasoline cars can be safely transplanted to EVs, data sets can
be easily found in [3, 41]. Information on user mobility helps the charging stations to better
price their energy and organize reservations. Our literature survey shows a very limited
number of analytical results for economic models for EV charging encompassing mobility
due to the complexity of the models, but the (numerical) results obtained so far suggest this

direction has the potential to yield significant improvements.

The special case of (unidirectional) regulation service and wind-balancing

Load variation, in the sense of supply-demand balancing, has an effect which is equivalent to
generation variation. So maneuverable EV charging can offer regulation, in the same way
as generation units in conventional power grids. More precisely, when oversupply (resp.,
supply shortage) occurs, regulation down (resp., up) can be realized by raising up (resp.,
reducing) the recharging power of EVs. Of course, this implies that the penetration rate of
EVs is sufficiently large for such scenarios to make sense: too few EVs would not provide
much service, since their batteries would quickly be filled and/or the demand reduction they
could offer would be insufficient. Note that with respect to the aforementioned scenarios,
the purpose is no longer to play with the tradeoff between EVs’ valuation for energy and
generators’ production costs, but to complete the task of opposing frequency deviation
and maintaining a satisfactory frequency level. In this case, the commercial reward from
providing frequency regulation (the most expensive ancillary service [60]) is potentially very
attractive for EV owners. We devote a separate subsection to unidirectional regulation here,
and address bidirectional regulation in Section 2.3.2.

Sortomme and El-Sharkawi [89] consider an aggregator using EVs to provide regulation
services while recharging their batteries. Every time slot (typically, an hour), the aggregator
chooses a preferred charging rate for each EV, the actual charging rate being subject to
fluctuations around this value due to regulation. The aggregator revenues stem from EV
owners (paying for charging their cars) and from the grid (paying for carrying out regulation
services). The aggregator’s purpose can be to maximize its profit or to reduce the average
unit electricity price of users. For both purposes, the authors highlight the need for efficient
optimization for the system to benefit both EVs and the aggregator, since simple heuristics
lead to significantly poor performance.
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Bessa et al. [13] also consider an aggregator recharging EVs while providing regulation
services, and compare the revenue of providing only downward regulation with that of pro-
viding both downward and upward regulation. The conclusion is that two-sided regulation is
economically more attractive when capacity payment (payed for keeping a certain regulation
capacity plugged, i.e., standing by for being occasionally called upon) is offered, otherwise
the uncertainty of the parameters—day-ahead wholesale prices, regulation price, vehicle
mobility—plays greater roles, hence the importance of accurate prediction.

Conceptually, regulation is just another type of allocation problem, where the commodity
is not electricity but a share of regulation. So algorithms in Section 2.2.1 should also work

by replacing energy amounts with power increment or decrement amounts. However:

1. The regulation service asks for an immediate response (within seconds) and each cycle
lasts for a short duration (a few minutes), which requires the algorithms to converge

fast enough.

2. Costs for EVs need to be better understood. EVs are supposed to be energy-centric
and price-sensitive—their main purpose is to reach a desirable SOC at minimum cost—,
but providing regulation imposes extra costs due to the negative effects that rapid
power changes have on batteries. Those effects are not directly reflected in EVs’
energy valuation functions. Therefore, to dispatch regulation in the same manner as
energy, power fluctuations need to be included into utility functions, together with the
price and resulting SOC. We did not find representative models in this category for
uni-directional regulation, which leaves room for research.

3. In practice, regulation payment is settled on an hourly basis (much larger than the
operating cycle, which is a few minutes), and it is a prerequisite for the regulation
provider to set aside a sufficiently large regulation capacity (e.g., 0.IMW) and maintain
its reliable connection to the grid for at least one hour. Hence, if EVs cannot commit
to stay plugged-in that long, their marginal contributions can not be readily obtained,
and payment sharing becomes complicated. The Shapley value [87] can be applied
in that case; we encourage further propositions based on revenue-sharing tools rather
than resource allocation for the specific context of regulation.

Due to the unpredictability of the regulation signal, the models in Section 2.2.1 cannot be
directly applied either, since they consist in partitioning a flexible load to track a given known
profile. These features of the regulation service, and its high profitability, make it a specific
allocation problem worth specific research effort.

By varying the charging rate, EVs can also help cope with the intermittency of wind
generation, as shown by Leterme et al. [65]: wind farms can declare their next-day production



2.3 Bidirectional energy trading 29

in the day-ahead market, based on predictions for generation and EV availability. Then at
every time slot (e.g., of duration 15 minutes) of the next day, it is a stochastic optimization
problem to decide the charging rate of the EVs, to minimize the current production mismatch
plus the expected mismatch for the rest of the day.

2.3 Bidirectional energy trading

Bidirectional energy trading refers to the cases where EVs can not only buy electricity from
the grid, but also sell it back thanks to the Vehicle-to-Grid (V2G) technology. This provides
the grid operator with an economical way to balance demand and supply, relying on EV
batteries as storage facilities or energy buffers. As evoked previously with unidirectional
energy flows, here too the EV penetration must be sufficient, so that the contribution of EV
batteries to the storage service be significant at the grid scale. In order to make the storage
providing option attractive to self-interested EV owners, a reasonable portion of the benefit
should be shared with them. One possibility of doing so is through bidirectional real-time
pricing, i.e., setting prices for both energy directions. If user reactions to price signals follow
some predictable patterns, then carefully designed price schemes can help leverage the great
storage capacity scattered in individual EV batteries.

This section reviews the control mechanisms for bidirectional energy trading. The first
subsection introduces models characterizing behaviors of individual users facing time-varying
bidirectional electricity prices; then we turn our attention to schemes where EVs are treated
as batteries (intermittently) available to support the grid.

2.3.1 Individual arbitrage

Bidirectional electricity pricing (i.e., one price for buying energy from the grid and another
price for selling it back) offers EVs the opportunity to arbitrage, i.e., to buy electricity when
prices are low and then wait for the grid to repurchase it back at higher prices. Note that the
energy transmission and/or AC/DC conversion losses should then be considered. In order
for an EV to get a higher arbitrage revenue, the bidirectional electricity prices play critical
roles, together with the mobility of the EV. The literature provides two ways of analysis of
this setting.

Hutson, Venayagamoorthy and Corzine [50] propose an algorithm to carry out energy
trading between an EV and the grid, based on hourly market clearing price data from
California ISO (CAISO)*. The algorithm uses Binary Particle Swarm Optimization to find

“http://www.caiso.com/Pages/default.aspx
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most profitable buying and selling times throughout a day from the EV owner point of view,
while guaranteeing a State-of-Charge (SOC) above requirements. The model assumes that
the market clearing price is known in advance, a very strong assumption.

In the same vein, Liang et al. [66] consider a household using a PHEV for daily commute;
the householder wants to minimize his energy cost by exchanging electricity with the grid
throughout the day, knowing that the electricity price is the Time Of Use (TOU) price in
Ontario’ as shown in Figure 2.4. The difficulty lies in the (hardly foreseeable) mobility of

Summer Pricing Weekends/Holidays Winter Pricing
(May 1 - October 31) {All Year) {November 1 - April 30)

MIDNIGHT MIDNIGHT MIDNIGHT

NOON

PRICES PER kWh VA Off-peak 1003 Mid-peak  [EET] On-peak
Fig. 2.4 Ontario Electricity Time-of-use Price periods.

the user. Numerical results indicate that with an estimation of the statistics of the PHEV
mobility and energy demand, the proposed scheme performs closely to a scheme with perfect
knowledge of the PHEV mobility and energy demand information (efficiency is close to 1).
This scheme can then be adjusted when congestion occurs among a group of households, e.g.,
their aggregated charging (discharging) rate exceeds the upper bound of the power system.
This high-level adjustment will cause a deviation from the PHEVs’ optimal plans, and a
cost increase, so the authors further design an adjustment policy such that the power system
constraints are satisfied and the incremental cost for PHEVs is minimized [67].

2.3.2 V2G for regulation services

Kempton and Letendre [56] proposed the first description of the key concepts of Vehicle to
Grid (V2G). Their analysis shows that the passenger (combustion) vehicle fleet has ten times
the mechanical power of all current American’s electrical generation equipment combined,
and is idle most of the time. So even with moderate penetration, EVs have the potential to
participate in the power market and it is also attractive for the grid operators to let them do
so. The authors then examine the possibility and profitability of selling EV energy to the

Shttp://www.ontarioenergyboard.ca/OEB/Consumers/Electricity/Electricity+Prices
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grid. According to their estimations, the benefit to the grid exceeds the cost to the vehicle
owners. But this is assuming EVs work as peak power plants, which is not only difficult for
them due to their on-board storage limitations [57], but also not very financially attractive
according to White and Zhang’s analysis [97] or even not profitable at all when payment
do not compensate the battery degradation [106]. So Kempton and Tomié [57] suggest
regulation services as a more profitable power market, which better exploits the strengths
of EVs: quick response time, low standby costs, and low capital cost per kW. A case study
of fleets of EVs participating in ancillary services in four US regional regulation markets
is provided in [93], suggesting that with a few exceptions when the annual market value of
regulation was low, V2G power for regulation services is profitable.

In the European market, a simulation based on real data, done by Andersson et al. in [6],
shows that the current German regulating power market would yield significantly higher
profits to the PHEVs than the Swedish market. They provide a SWOT (Strength, Weaknesses,
Opportunities and Threats) analysis of PHEVs as regulating power providers, based on
which they portray an ideal regulating power market suited for PHEVs, featured by some
key parameters. An ideal regulation market for EVs should provide high capacity payment,
allow bidding regulation up and regulation down separately, and have a relatively small bulk
bidding size (i.e., IMW).

Considering how scattered and individually owned EVs can participate in the regulation
market, Quinn, Zimmerle, and Bradley [83] stress the need for an aggregator, by comparing a
centralized architecture (direct communication between EVs and the ISO) with an aggregative
(tree-like) architecture—a 3-layer structure involving the ISO, aggregator(s) and EVs. The
first reason is the relatively low reliability of an individual EV, i.e., the probability of staying
plugged-in for a given duration: from 83.6% to 91.7% for a time duration of 1 hour, which is
incomparable with conventional regulation providers such as natural gas turbines, which have
a reliability of 98.89% [83]. Therefore an aggregator is needed to collect a fleet of EV's so
that their reliability be compatible with the current regulation services system requirements.
Beside reliability, capacity requirements also call for aggregators: the minimum contractible
capacity set by the ISO (from 0.1MW to 10MW in current electricity markets) are indeed
way too high for a single EV, due to the battery sizes and the limits of recharging/discharging
equipments. The aggregator can submit bids to the ISO in the regulation service market,
depending on the number (and state) of the EVs it manages. During regulation periods, each
aggregator then receives a request from the ISO for a certain amount of power (positive or
negative) below the contracted regulation capacity.

Admitting that aggregators are necessary for EVs to be accepted in power markets, the
questions arise of how much regulation capacity an aggregator should bid for (normally a
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bid consists of a capacity and a corresponding price, but we consider only capacity here) to
the ISO depending on the number of EVs available and their expected departure times, and
how to dispatch the allocated regulation burden among those EVs. Based on simulations,
Kamboj, Decker and Kempton [51] recommend to dispatch regulation up (down) to EVs
whose SOC are above (below) the average level of all. The suggested bidding is proportional
to the available energy capacity (up and down, in kWh), divided by the regulation duration.
A scaling parameter quantifying the aggregator degree of conservativeness, is used in the
bidding strategy to account for the tradeoff between the revenue and the penalty for not
meeting the requested power. The authors evaluate this strategy based on real price signal
from PJM (Pennsylvania-New Jersey-Maryland Interconnection), the largest transmission
operator in the world [52], and suggest to share the revenue among EVs according to the
Shapley value [87], a policy with good incentive and fairness properties but computationally
difficult to implement. The data shows that by providing regulation services for 15 hours a
day, an EV can expect to yield one hundred dollars a month of revenues, given the current
Regulation Market Clearing Prices.

Focusing on regulation dispatch among EVs, Escudero-Garzas, Garcia-Armada and
Seco-Granados [25] compare several allocation schemes, assuming that the aggregator
manages a (sufficiently large) group of EVs available for a known time period (i.e., no
mobility is considered). Their first scheme maximizes social welfare, that is the total user
payoff minus the cost (due to battery degradation), but this may result in a high dispersion
among SOCs after regulation. The mechanism is then improved by considering penalties
for SOCs approaching the boundaries of some acceptable zones. Maximizing this modified
social welfare results in maintaining the variance level among EV SOCs to the one of their
arrival time. Additionally, the authors suggest a water-filling method (originally used in
information theory to maximize the throughput over parallel channels with different channel
capacity [21]): the variance among SOCs keeps decreasing, reaching zero, but on the other
hand the variance among user payoffs is larger than that after the social welfare maximizing
scheme is applied. Another aggregator allocation scheme maximizing social welfare is
designed by Sun, Dong, and Liang [91, 92]. They adopt a general Lyapunov optimization
framework and develop a dynamic algorithm to maximize the expected user welfare over an
infinite time horizon, which is proven to be asymptotically optimal and performs substantially
better than a greedy algorithm optimizing the per-slot system performance.

But EVs are not solely regulation providers, they have individual travel plans. Specifically,
consider an EV who wants to charge itself to a target SOC before a predetermined departure
time, at minimum cost. Han, Han and Sezaki [46] suppose that this user has two choices for
each plugged-in hour: recharging, or regulating. For the latter, he will be payed a price known
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in advance for allowing the aggregator to charge or discharge his battery: the uncertainty
for the user lies in the direction and amount of the regulation service, out of his control
but affecting his outcome. The proposed solution consists in the user first making a utility-
maximizing plan for the whole plugged-in time—assuming null regulation—where utility is
the revenue from regulation service minus the charging cost and a punishment based on the
discrepancy between the actual SOC on departure and the EV owner’s desire. Then, since
the regulation causes unpredictable (bounded) fluctuations of the SOC, the user relaunches
this algorithm again based on the current SOC (hence a static solution to a dynamic problem,
as we pointed out in Subsection 2.2.2). This method is based on the empirical observation
that the time average of regulation requests is almost zero [64], hence the adjustments from
the initial plan remain small.

On the other hand, the aggregator between the ISO and EVs can be a retailer of regulation
services, who first contracts with ISO, then outsources the service to EVs, by setting prices
to sell/buy energy to/from EVs to carry out the service; EVs, based on their status and
the prices offered by the aggregator, decide whether or not to participate and how much
energy to provide or absorb. Wu, Mohsenian-Rad, and Huang model the relation between
the aggregator and EVs as Stackelberg game when providing frequency regulation [99]
and wind power compensation [98]. They design a pricing mechanism to elicit EVs to
voluntarily carry out the services. Among the limitations, let us remark that users in [99, 98]
are assumed homogenous, i.e., they have identical preferences. For heterogenous users, a
pricing design is provided by Gao et al. [37]: heterogeneity lies in a willingness-to-pay
parameter, indicating the users’ possibly negative unit value (in monetary unit per kWh)
for (re)(dis)charging the battery. This parameter, compared to the price provided by the
aggregator, determines the decision of each EV: upon receiving the regulation power request
from the ISO, the aggregator calculates the price so that just enough power from the group of
EVs is chosen, taking into account that users are self-interested and rational. The authors
prove the existence of such an optimal price when the distribution of the user parameters
follows a regular distribution [77]. If the aggregator knows this distribution, it can easily
calculate the optimal price and broadcast it to users. Simulations show that the scheme leads
to lower prices than [99], hence benefiting the aggregator. When the willingness-to-pay
parameter distribution is unknown, the aggregator can implement a learning algorithm to fix
the optimal price, using interactions with EVs.

2.3.3 V2G as storage for renewable energy

Wind farm and solar generation are vagary. This plays as a barrier for renewable energy to
be widely and efficiently used. Indeed, the day-ahead market requires reliable production,
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and mismatches between submitted bid and real-time injection are sanctioned. EVs, with
their on-board batteries, can provide storage services through V2G technology, i.e., absorb
the surplus and release it when necessary, to maintain a stable output level, or more specifi-
cally, to minimize the discrepancy between the real-time output and the day-ahead bidding.
This can greatly help the development of wind energy according to Kempton and Tomi¢’s
calculations [58], suggesting that V2G could stabilize large-scale (one-half of US electricity)
wind power with 3% of the fleet dedicated to regulation for wind, plus 8-38% of the fleet
providing operating reserves or storage for wind. In terms of expenses, Budischak ef al. [17]
estimate that the electricity system can be powered 90% to 99.9% of the time entirely on
renewable electricity, at costs comparable to today’s, if we optimize the mix of generation
and storage technologies including EV fleets.

To optimize generation and storage, one difficulty lies in providing incentives to attract
enough EVs to temperately donate their batteries, and in designing schedules to make the
best of them. Vasirani et al. [95] model a Virtual Power Plant (VPP) with EVs providing
storage services, as shown in Figure 2.5, where the reward to individual EVs is not monetary,
but consists in free electricity, proportional to the storage it provides to the VPP. The VPP

Fig. 2.5 A virtual power plant, with energy flows.

bids in the day-ahead market on how much energy it is going to inject every hour for the
next day. These amounts are based on generation predictions, and take into account the
storage system. During the next day, the VPP repeatedly searches for the optimal amount
of energy to store in (or to withdraw from) EV batteries every hour, as the prediction gets
more accurate over time. The feasibility of this approach is confirmed through a realistic
case-study, using real wind power generation data, corresponding electricity market prices
and EVs’ characteristics.

Xie et al. [101] use a similar model to minimize the impact of wind farm production
variations. They compare two settings: in the first one EVs cooperate with the wind farm
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by allowing it to use their batteries as a buffer; in the second they just use their batteries to
provide frequency regulation to the grid and make revenues, leaving the wind farm undergo
the penalties inherent to production variations. Numerical results show that the penalty
decrease imposed on the wind farm exceeds the decrease of regulation revenue received by

the EVs, leaving a negotiation margin to benefit both sides.

2.4 Communication aspects

Before summarizing the economic properties of the mechanisms proposed in the literature, we
first stress the importance of communication systems on their implementation. Information
enables decision making and optimization, this section focuses on the content of information
exchanges and their frequency.

2.4.1 Information exchanges

For models that involve two types of actors (i.e., where aggregators and stations are not dis-
tinguished and can be referred to as energy vendors), Table 2.6 presents the main information
exchanges that are necessary to implement the schemes described before.
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Note that in [26] marked with a dagger, the energy vendors are charging stations compet-
ing on price to attract EVs; all other models consider a single aggregator as energy vendor,
thus research on competition among energy sellers is not abundant. We also highlight that
some mechanisms (marked with a star) involve a convergence phase, hence the need for
repeated exchanges (with low latency to converge rapidly) before decisions can be made.
Grayed cells indicate that regulation services are provided during the charging. References
are ranked from the lightest communication burden to the heaviest one.

Some algorithms consider 3 “layers” of actors, i.e., EV-Aggregator-ISO or EV-Aggregator-
Stations (shown with a double dagger), with the information exchanged shown in Table 2.8.
The table does not include hardware-related information such as energy transfer efficiency or
battery capacity, because they are not crucial for the economic performance of the schemes
and often do not need frequent updating, hence have little impact on the communication
system. Remark also that there can be a tradeoff between communicating and storing: for
example in [92], the users’ accumulating costs can be either sent at every time slot, or
recorded with a corresponding user ID. Finally, note that not only information transmission
requires communication: so does information retrieval, such as environmental information
(wind speed, temperature) that affect energy generation and its forecasting, and user travel
record that helps predicting their mobility.
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2.4.2 Time granularity

Table 2.9 proposes a classification of the approaches presented before, according to the time
scale at which they operate. Algorithms that update every few seconds are designed for
immediate regulation allocation. Regulation requests are sent frequently thus allocations
should be computed rapidly. On the other hand, systems reacting to events occurring over
time such as supply variations or EV requests can be expected to run less frequently, say,
once every few minutes on average. Algorithms running roughly every hour are evoked by
the periodic revelation of new environment information such as renewable energy generation
or regulation bidding. Long term planning such as day-ahead schedule is made upon precise
forecast.

Note that decision updates are driven by new information, so the table also shows the

frequency of information exchanges in those algorithms.

2.5 Classification of approaches and research challenges

We summarize in Table 2.10 the economic approaches described in Section A.2.2 and
Section A.2.3. Firstly the models are classified into two categories, namely static and
dynamic ones, defined in Subsection 2.2.2. Static models deal with an isolated time interval
in which the performance is determined by actions taken during this time, and optimal actions
can be found based on current state information. Contrarily, in a dynamic model where
system information varies over time, actions should be updated based on state perturbations
caused by such sequential revelations, leading to dynamic optimization methods [12, 81] as
illustrated in Figure 2.6. As such, the static setting could be seen as a special case where the
state is constant (but still depends on the action taken).

We then distinguish the ways decision-makers interact: optimization-based approaches
correspond to the cases where one central controller imposes his decisions about allocations
and/or prices, and is not influenced by any other actor’s actions. Ideally, such a central
controller has access to all the information needed, thus the management problem reduces to

a classical optimization problem: the room for research is therefore
« for static models, in improving the optimization methods in terms of computational
efficiency and/or approximation of the optimum;
* for dynamic models, in increasing the prediction accuracy and designing algorithms
that are robust to unpredictable residuals.

In contrast, game-theoretic approaches refer to the cases where interactions among

several rational actors are considered: even if resources are still dispatched by a central
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Fig. 2.6 Dynamic problem setting

controller, the allocations are affected by other actors’ selfish behaviors (e.g., bids sent by
EVs). Here, static problems already lead to complex models, and even for those approaches,
analytical proofs of incentive-compatibility are only valid for some very specific utility
functions. While the need seems to be for incentive compatible mechanisms in dynamic
settings, designing such schemes is still an open research question in many cases. The
difficulty often lies in the evolution of knowledge and beliefs (and thus actions) of actors over
time, since the actions taken partly reveal one’s private information; analyzing the equilibria
of such games is extremely complex.

The last main criterion is related to the implementation type of the schemes: revelation
schemes imply that actors have to exchange information (such as the willingness-to-pay), and
can choose strategically what to reveal, hence the importance of properties such as incentive
compatibility. On the opposite, tdfonnement schemes involve a convergence of allocations
(and often prices) through iterative methods.

A key aspect in several titonnement-based mechanisms is the convergence of the method:
here the limits we found are in the convergence speed (especially in dynamic settings: do
prices and allocations have time to converge before the setting changes, say, before another
EV arrives?). This is barely addressed in the literature, where in addition convergence is only
established for some specific types of utility functions, which need validation.

The classification highlights the need for game-theoretic models in dynamic settings.
While it is extremely difficult to design incentive-compatible schemes in dynamic settings,
it seems capital to us to develop game-theoretic approaches, even if based on taitonnement

schemes.



2.5 Classification of approaches and research challenges

41

Table 2.10 A classification of economic schemes for EV charging. A diamond mark indicates
papers considering PHEVs (which can use fossile fuel) rather than BEVs (which can only
use the electric energy stored in their battery).

Optimization-based
approaches

Game-theoretic approaches

Static

[35]° Heuristic demand
curtailment per slot
[13, 31][50]°[103]° Opti-

Revelation
schemes

[34]° Auction based on willingness-
to-pay, incentive compatibility as-
sumed

[71] Auction based on willingness-to-
pay, incentive compatiblility proved

mization made on predic-
tion of unknown future pa-
rameters

[25] Fair allocation of reg-
ulation per slot

Tatonnement
schemes

(36, 7, 84, 94, 74, 10, 49, 48], [70]°
Stackelberg game between aggrega-
tor and EVs, leader is not omniscient
(i.e., unaware of user utility function)
[26] Oligopoly game among charg-
ing stations

Dynamic

[66]°, [67]° EV mobility
is modeled as a Markov

Revelation
schemes

[38] Incentive compatible for dynam-
ically arriving clients.

chain

[89, 95, 101], [65]° Fore-
cast accuracies increase as
time approaching

[82, 46, 14] Dynamically
relaunch a static algorithm

Tatonnement
schemes

[45] Dynamically relaunch a static
algorithm

[39, 37] Sellers learn users’
willingness-to-pay dynamically
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2.6 Summary

EVs, in addition to the prospect of being wholly driven by renewable energy, are not only
energy-efficient but also cost-efficient [23], and emit less greenhouse gas than fossil-fuel
based transportation. The main risk they incur comes from the negative impacts they may
have on the grid, mostly caused by uncontrolled recharging superimposing on other loads,
which exacerbates the grid aging. Coordinating recharging and/or discharging not only
alleviates those negative effects, but can also help improve the grid by participating to
services such as frequency regulation and energy storage for (intermittent) renewable energy
generation. These opportunities can be realized in the Smart Grid realm, so EVs and Smart
Grid are mutually reinforcing. From the EV owner’s point of view, organized recharging and
discharging offer the possibility to reduce energy costs or even generate profits.

This chapter surveys the charging managements schemes of the literature, with a focus
on economy-driven mechanisms. The proposed models, often based on optimization and/or
game-theory tools, range from the simple sharing of a given energy amount among several
customers (a classical problem) to more complex settings covering aspects such as uncertainty
about future events, user mobility constraints, charging station positions, and new grid
services like regulation. While some interesting mechanisms have been proposed, and
perform well on simulation scenarios, we observed a quite limited amount of analytical results
due to the increasing complexity of the settings (large number of actors, specific constraints
of distribution networks and EV batteries) and the economic constraints (nonalignment of
actors’ objectives). Hence we think that further research is needed to better understand the
key principles to apply when designing charging management schemes.

The present survey highlights the potential of V2G technology to benefit both EV
owners and the grid operator, but also the difficulty of distributing those gains to EV owners
to incentivize them to cooperate with the grid operator. From the literature review, we
witness that management of EV charging processes in smart grids has attracted researchers
from diverse domains, and we envision more effort will be devoted to this topic. Several
research perspectives are promising from our point of view. Firstly, we consider the trend
is pointing at Microgrids [90], which are systems with multiple distributed generators and
consumers that can switch between Island mode and connected mode: the presence of EVs
is likely to increase the autonomy of such systems. Another research perspective regards the
charging management of fleets of EVs, from a fleet owner perspective. For example, with the
technology of driverless cars getting matured, driverless taxi fleet may emerge, offering new
possibilities for charging (and service providing) management.

EV technology is an extremely fast-developing field. Technology innovations can reform
charging management schemes, for example the roadbed infrastructure would enable charging
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in motion, which would greatly reduce the reliance on battery capacity and change the
understanding (and modeling) of “plug-in" time. Economic models for such scenarios are
still to be defined.






Chapter 3

Charging station’s behavior study while
using flexible EV recharging to perform
frequency regulation

Despite that EV recharging represents a considerable extra load on the grid, they, at the same
time, offer new opportunities in terms of consumption flexibility. In this chapter, we use the
recharging processes of EVs to provide regulation to the grid by varying the instantaneous
recharging power. We provide an economic analysis of the incentives at play, including the
EV owners point of view (longer recharging durations and impact on battery lifetime versus
cheaper energy) and the station point of view (recharging revenues tradeoff with regulation
gains).

In particular, Section 3.2 considers the scenario where a monopolistic recharging station
(an aggregator, as we name it) is maximizing its average revenue, which partly comes
from EV owners for recharging their batteries and the rest from grid operator for providing
regulation. We analyze the range of regulation rewards (defined by the grid operator) such
that offering a regulation-oriented recharging benefits both EV owners and the aggregator.
Interestingly, we observe that under current market conditions in France, such a aggregator
could offer 50% cheaper electricity to those regulation-friendly EV owners, and still be better
off than offering only conventional constant-power recharging.

Section 3.3 models a non-cooperative game between two EV charging stations. One is
a fixed-power charging station purchasing electricity from the grid at wholesale price and
reselling the energy to EV owners at a higher retail price; the other is regulation-providing
and varies the recharging power level of its clients to provide regulation services to the
grid, so its profit comes from both EV owners (who buy energy) and the grid (which pays
for regulation services). We analyze the competition among those charging providers, and
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examine the performance at the equilibrium in terms of user welfare, station revenue and
electricity prices. As expected, competing stations provide users with lower charging prices
than a monopolistic provider would. Moreover, while competition benefits users, it also
benefits the grid in that the amount of regulation services increases significantly with respect
to the monopolistic case.

3.1 The features of EV-provided frequency regulation

In this section, we are going to address the question of why we turn to EVs when regulation
is demanded, and how those recharging EVs are supposed to carry out such services.

3.1.1 The opportunity of EV providing regulation

Among the main difficulties of the penetration of EVs in the smart city is the associated
energy equation: how can the power grid accommodate the corresponding demand [2]? And
the question of economic incentives to elicit the most efficient use of resources needs also to
be considered (refer to the state-of-the-art in Chapter 2 and references therein).

A key point to tackle these problems is to not merely consider EV recharging as conflicting
with existing load and a threat to the sustainability of the power grid, but also as an enabler
in the transition of the power grid to the so-called Smart Grid. This includes the provision of
services such as: distributed energy sources, demand-response units, and regulation service
providers, which is the concern of this chapter.

Previous work addressing this issue focuses on fairness issues among users in terms of
final state-of-charge [25]; on the resulting long term user welfare [91, 92], or on incentivizing
EV owners to contribute to regulation [99, 98]. Among the limitations, let us remark that users
in [99, 98] are assumed homogenous, i.e., they have identical preferences. For heterogenous
users, a pricing design is provided by Gao, Chen, Wang and Liu [37]: heterogeneity lies in a
willingness-to-pay parameter for (re)(dis)charging the battery.

The aforementioned schemes all depend on the application of Vehicle to Grid (V2G)
technology, which allows EV batteries to discharge energy not only to the car engines but
also to all kinds of other electricity appliances. Among the concerns about this approach,
one can ask whether users will be willing to trade their surplus energy for money, since the
less energy left in the battery, the more range anxiety the driver would have. The energy
delivery efficiency and its impact on battery sustainability are also of significant importance.
A conservative means lies in offering regulation by modulating the power level during EV
recharging. More precisely, when oversupply (resp., supply shortage) occurs, regulation
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down (resp., up) can be realized by raising up (resp., reducing) the recharging power of
EVs. This principle is adopted by Sortomme and El-Sharkawi [89] for maximizing revenue
from EV owners (paying for recharging their cars) and from the grid (paying for carrying
out regulation services). In the same vein, Leterme, Ruelens, Claessens, and Belmans [65]
design an algorithm that manages a large EV fleet assisting a wind farm to maintain a stable
output.

We take the option of recharging-based rather than V2G-based regulation, but unlike [89,
65], we entitle EV owners the freedom to decide whether to take part in regulating while
recharging, after being informed of the stochasticity in the recharging power, or to recharge
at a constant power level.

This leads to EV owners’ concern over recharging time after giving their consent to
provide regulation while recharging. Fortunately, according to a national household travel
survey of the United States [61, 85], a passenger vehicle spends on average 75 minutes a day
on journey, hence is parked most of the time. We assume this to remain true for EVs, i.e.,
the time they are available for recharging largely exceeds that the recharging process would
actually take. So some EV drivers are willing to take advantage of the idle time by accepting
longer recharging durations in return for cheaper energy.

In this section, the entity who is in charge of providing recharging services to EV users is
called an aggregator, and manages both types of recharging.

3.1.2 Regulation mechanism

The aim of frequency control is to reduce the effect of frequency disturbance caused by
imbalance between load and supply. Frequency control occurs over a variety of time scales
which can be divided into three types, namely primary, secondary and tertiary control, with
time granularity ranging from seconds, minutes to more than half an hour respectively [1].
We consider discretized time, and refer to the time frame of one regulation session as A (in
hours). Typically we expect to have A within 0.1 (6 minutes) and 0.25 (15 minutes).
Periodically, the grid operator, buyer of the regulation service, sends a regulation request
(assumed independent from one slot to the next) to the aggregator specifying its demand,
which can be regulation-up, -down or -null. Upon receiving the signal, the aggregator sets
the EV recharging power to be 0 kW', P, kW, or P, kW respectively: P, is the maximum
acceptable power level allowed by the EV supply equipment in the station, and P, is the
default recharging power (0 < P, < F;) defined by the aggregator itself, when no regulation
is needed, namely regulation null. Note that this mechanism increases (decreases) the EV

'We do not allow here EVs to deliver energy to the grid (the so-called vehicle-to-grid transfer).
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consumption responding to regulation-down (-up). This counter-intuitive naming stems from
conventional regulation services, where providers are generation units whereas the task is
given to consumers here. For later convenience we will use the notation x := %, so that
x €[0,1].

Figure 3.1 compares the power profiles between recharging at full power P; and recharg-
ing while reacting to regulation requests, as well as the energy accumulated in an EV battery.
We denote by Cp the total energy requested by the EV, and by p,, (resp., p;) the probability

of occurrence of regulation up (resp., down).

— Power (no reg.) — Energy (no reg.)
Power (regul.) - Energy (regul.)

Pl

Power (kW) and Energy (kWh)

Time (hours)

Fig. 3.1 Power and cumulated energy an EV obtained with and without regulation (simulation
with Cp =50kWh, P; =20kW, P, =16kW, A =0.1hour, p, = p; =0.45)

There may be concerns that varying the recharging power for all EVs simultaneously
and drastically following this “ping-pong" policy can lead to an oversupply of regulation,
1.e., the aggregated increase or decrease in power is larger than that actually needed by the
grid operator. This is hardly possible since in the scale of a grid operator, the disposable
regulation capacity scattered in EVs is non-dominant if not negligible given the current
penetration levels. For example data from RTE (Réseau de transport d’electricité), the
biggest independent system operator in France, show that the regulation-down demand in 30
minutes? can easily go over 100 MWh, a quantity that could only be absorbed by at least

2http://clients.rte-france.com/lang/fr/visiteurs/vie/mecanisme/jour/volume.jsp
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10 thousand EVs doing level 2 recharging® (19.2kW) at the same time. Since the whole
country has an EV population of 30 thousand, sharing 8600 public recharging facilities, the
regulation oversupply problem is not of concern so far. But it can rapidly become one if
EV penetration increases; nevertheless we expect that in this case, the incentives to provide
regulation will be adjusted (regulation being rewarded less) so that market mechanisms will
reduce supply. In addition, demand for regulation is likely to increase in the next future, with
the development of renewable energy production which cannot be controlled like fossil-based
electricity plants do: the overall supply-demand balance will be more difficult to maintain,

hence a probable larger need for ancillary services such as regulation.

3.1.3 Monetary incentives

In return for providing regulation, the aggregator receives monetary recompenses, with
respect to the wholesale price ¢. Since we assume that regulation requests are i.i.d random
variables, the computation of their resulting recompenses can be simply resolved through
calculation of the average gain per regulation slot. Unless otherwise mentioned, the following
discussion is all limited to one slot, one EV.

Initially, before the regulation signal is revealed, the aggregator pays ¢tP,A to the grid
operator, in order to preempt the energy it is supposed to recharge into its client’s battery. In
the case of “up” regulation, the aggregator is payed for reducing demand to 0. The incentive
is denoted as a fraction r,, > 1 of the wholesale price: the aggregator thus receives an amount

In other words, the grid operator “re-buys” the energy at a unit price r,¢ > t. As for regulation
down, where EVs should consume more than planned, the grid operator offers a discount
ratio of r; > 0 on the normal price ¢, so that the aggregator buys the extra energy at a reduced

price (1 —r4)t, hence it only pays
1(1=rq)(Ps — Py)A.

Together with the probabilities of regulation-up (p,) and down (p,), the expected net
revenue (possibly negative) over one regulation slot is:

EAZZ(pul"uPn—pd(l—I’d)(Pd—Pn)—Pn)A. (3.1)

http://www.sae.org/smartgrid/chargingspeeds.pdf
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To estimate the net remuneration brought by recharging one EV battery through regulation,
we multiply the regulation revenue per slot, i.e., Ex in (3.1), by the average number of slots
a regulating EV remains plugged-in before its battery is fully recharged, i.e., Cg/(PA). To
facilitate the writing we further divide the product, which has a unit of €, by the EV energy
demand (Cg kWh), so that its final unit is €/kWh and has a form of

P
E, = t(purux — pa(1—rq)(1—x) —x)Ffl. (3.2)

3.1.4 User preferences

We assume that each EV owner needs Cp kWh of energy, say, per day, and can possibly get it
through

 simple recharging (S-charging): paying the aggregator at the price of 7;€/kWh with

its battery being recharged at the maximum available power of P;kW;
or through

* regulation recharging (R-charging): being imposed on a decreased unit price 7,,€/kWh,
meanwhile obliged to respond to regulation solicitations by varying its recharging

power.
In case non of the options above favors the EV owner, he/she can choose

* no recharging (no_charging): to leave the system without paying anything or obtaining
any energy.

Naturally, users are assumed to:
» prefer to recharge faster, i.e., at higher average power rate;

* and they are reluctant to uncertainty in the recharging power (and hence, in the
recharging duration) caused by regulations. Additionally, batteries can be sensitive
to power variations in the recharging process, another reason for EV owners to be
reluctant to contribute to regulation.

Following these criteria, we define the user utility (willingness-to-pay minus price paid)
for a recharging option as

U =6(P—y5(P))—TCy (3.3)

where P is the expected recharging power, and &(P) its standard deviation. 6 is user-
specific: a type-0 user has a general sensitivity to power (including its variability) equal
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to 0. We assume 6 is exponentially distributed among EV owners and denote by 6 its
mean. The parameter Y represents the reluctance toward power fluctuations, because of
the unpredictability of the recharging duration and the possible damage to the battery. We
assume 7Y is the same for all users, which rather favors the latter interpretation of y being due
to technical aspects. Interestingly, we may see an evolution of Y as the battery technology
evolves, with y getting smaller if batteries tend to be more robust to power variations.

If a client chooses S-charging, the power is a constant thus P = P, and 8 (P) = 0; whereas
in the perspective of R-charging clients:

8(P) = \/PuP? + pu(Py—P) + pu(Py — P)?) (3.5)

For notation simplicity, we write Py := P — Y3 (P), therefore P4 depends on the regulation
signals probabilities (p,, ps), the default recharging power (F,), and the user reluctance to
variations (y). We assume P4 > 0, to rule out the extreme case where user sensitivity to
charging power variations is so high, that they will always decline the R-charging option no
matter the price, unless being payed. In other words, taking energy in this way is a burden
for the users rather than a benefit.

We assume users are rational, so they are supposed to make the choice that yields the
highest utility. A pairwise comparison indicates that a type-6 user prefers:

* “S-charging” over “no_charging” if 6 > I%CB
* “R-charging” over “no_charging” if 6 > PL/:CB
* “S-charging” over “R-charging” if 6 > l]’:j:g Cp.

Figure 3.2 displays user utility for each of the three options, depending on their sensitivity
parameter 6.

As aresult, the proportions ¢ and o, of EV owners choosing S-charging or R-charging
respectively, can be computed as functions of P;, P4 and prices.

Table 3.1 summarizes the notations used in our model.

3.1.5 Recap

This section describes how could EVs provide frequency regulation while their batteries being
recharged, and how much monetary remuneration they earn from this. Considering elastic
user satisfaction towards this option, we assume each EV owner is assigned with a specific
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Fig. 3.2 User utility for the three charging options (Cp = 50, P; = 20, Py =8, Ty = 0.15,
T, = 0.04): the best choice depends on the user sensitivity 8

Table 3.1 Model notations

t unit price of energy paid by stations (unit: €/kWh)
Tu remuneration ratio for regulation-up (no unit)
rq discount ratio for regulation-down (no unit)
pu (resp., pg) | probability of an “up” (resp., “down”) regulation signal
Cp average energy recharged per EV per day
0 user sensitivity to recharging power (including variability)
0 average value of 6 among users
Y user reluctance to power variation
P, (resp., P;) | default (resp., “regulation-down’) recharging power
N
P paPa+ (1= pu—pa)Fs
5(P) VPuP? +pa(Ps—P)> + (1 — pu— pa) (P — P)?)
PA()C),OI‘PA P—’}/S(P)(>O)
o (resp., 0s) | probability of an EV owner choosing R-charging (resp., S-charging)
T, (resp., Ty) | unit price of electricity for R-charging (resp., S-charging) clients
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power sensitivity parameter, which determines whether he prefers R-charging, S-charging,
or finds non of them appealing. The regulation mechanism, incentive composition and user
preference presented here provides the background for the following sections in this chapter.

3.2 Monopolistic aggregator scenario

In this section, we will introduce a recharging aggregator. Being aware of the regulation
mechanism and remuneration, as well as users’ reactions, it decide whether to offer both
recharging options namely R-charging together with S-charging, or merely the S-charging
one. We are interested in the pricing strategy that suites this aggregator and the condition
when R-charging worth being offered.

3.2.1 Aggregator strategic decisions

Initially, the aggregator’s freedom is limited to choosing a recharging price and a recharging
power. Since users tend to prefer higher powers, we simply assume that the aggregator offers
the highest possible power, i.e., the power that we denoted by P; and which is defined by the
physical limitations of the power supply chain. When the aggregator additionally offers the
possibility to recharge while contributing to the regulation service, it has to select separate
unit prices: Ty for S-charging and T, for R-charging. Also, the aggregator would have to
choose the default charging power P,, at which to charge the latter EVs when no regulation
signal is received.
We compare two situations, with each time a revenue-maximizing aggregator:

* in an “initial (S-charging solely)” setting, the aggregator sets a recharging price and
EVs are recharged at the maximum power;

* in a “two-options (S-charging plus R-charging)” setting, the aggregator additionally
offers EVs the choice to recharge at a lower price, in exchange for the use of the
recharging process to provide regulation to the grid, which we refer to as R-charging.

Note that in both settings, the EV owners are free to choose none of the option(s) the
aggregator offered, i.e., an alternative of no_charging is always available.

Taking the point of view of the aggregator, we are now interested in optimizing the
decision parameters to maximize its revenue. Using the classical backward induction method

from game theory [79]*, we compute revenue-maximizing parameters based on anticipations

4we indeed have a leader-follower game, with the aggregator as the leader and users as followers
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of user reactions to them. Then we investigate the viability of the two-options scenario,
together with its impact in terms of user welfare and social welfare. We give analytical
thresholds on regulation prices (r; and r,) above which strictly higher revenue is guaranteed
for the aggregator by offering both recharging options rather than only S-charging.

3.2.2 Aggregator revenue

We know that users make decisions based on the electricity prices and recharging powers, as
elaborated in Section 3.1.4. Their choices in turn determine the aggregator revenue.

* In the initial recharging scenario, EV owners make choices (to recharge or not) through
comparing their sensitivity parameter and the electricity price. From our assumption
of 0 being exponentially distributed, we have the a proportion of o users that would

like to charge at the price of 7; and the resulting average aggregator revenue Ryg:

T

O = CXP(—@CB) (36)
T

) :eXp(—%CB)(TS—Z‘)CB (3.7

* In the two-options scenario, based on different price combinations of 7, and T, we
have the following possibilities:

1. If PL/: T~‘ then ’ s < TS < P P , so a user would chose no chargmg,R charging,

or S-chargzng when hlS 6 falls into the intervals (0, ACB) ( CB, LT 5.Cp) or
(%C& +o00), respectively, the limit cases having probability zero. In th1s case:

(T:v - Tr>CB

T,Cg
a,—exp(—m)—exp(— (Pd_PA)é) (3.8)
_ (L-T)Cs
o = exp( —(Pd —PA)é ) (3.9)

2. If Ts < T’ , then P, _;’ < fo, < 17,1 A O-type user then selects S-charging if
0 > ;CB and no_charging otherwise. Note that the R-charging option is never

chosen, which means:

T,
o = exp(—@CB) (3.11)
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The average aggregator revenue can be computed by:

T,Cp (T, — T,)Cp T

o Iy
C — BT+ E, A BN T, —E,)) if -~ < 3.12
o s(exp(=5 F) T+ +exp(—p — 750 ) g < (129)
- .
exp(——=Cg)(T; —1)Cp otherwise (3.12b)
P06

Aggregator’s profit in the initial scenario as a function of S-charging electricity price T
is illustrated in Figure 3.3.
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Fig. 3.3 Aggregator revenue as a function of T; (t = 0.03, Cp = 50kWh, 6 = 0.3).

The two-options scenario adds a dimension of 7, thus the possibility of obtaining higher
aggregator revenue, as presented in Figure 3.4 and 3.5. Since o, = o when 1—.% > %‘1,
revenues from the two scenarios overlap in that region. Note that it is not always the case that
two-options yields higher revenue, in the following two subsection, we are going to deal with
the question of when does two-options proposal achieves the revenue maxima and wether it
is preferable over the initial case.

3.2.3 Maximizing the aggregator revenue

To avoid exhaustive search for the revenue-maximizing prices, we try to find analytical

solutions for them. Evidently, aggregator revenue as well as revenue-maximizing prices all



Charging station’s behavior study while using flexible EV recharging to perform frequency
56 regulation

Aggregator revenue in both-options scenario

Max of both-options revenue and initial revenue
—e— Aggregator revenue at optimized S-charging price

—— Maximum aggregator revenue
S T,/Px =T,/ Py
- Aggregator revenue in the initial scenario
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Fig. 3.4 Aggregator revenue as a function of 7; and 7 (r = 0.03, r; = 0.6, r, = 2.0, Cp =
50kWh, pg =0.48, p,, = 0.48, y=0.05, 6 = 0.3, x = 0.8).
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depend on x. Simply comparing Figure 3.5 with Figure3.4 can give us an idea on how the

effects could be.

——

——

Aggregator revenue in both-options scenario

Max of both-options revenue and initial revenue
—e— Aggregator revenue at optimized S-charging price
Maximum aggregator revenue

T,/Ps = T;/Py

1.72 |

L7
1.68 |
1.66 |

164l
0.16

Aggregator revenue (€/EV)

0.16

T5(€/kWh)

0.15
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Fig. 3.5 Aggregator revenue as a functiozl of T,and T, t =0.03,r; =0.6,r,=2.0,Cp =
S0kWh, p; =0.48, p,, = 0.48, y=0.05, 6 = 0.3, x =0.2).

We start by supposing a fixed x in the following reasoning, and then search for the optimal

x after that.

Optimal prices

To fairly compare the two settings, i.e., two-options vs. initial, we need to find for each of

them the revenue-maximizing prices.

* Retrospecting the initial case revenue Ry in (3.6), we find the first-order-condition

gives an extreme-achieving price as:

P,0
TV =1+~
N CB
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Following examination of the concavity ensures that this is the revenue-maximizing

price.

Accordingly, the optimized revenue RY 0 18

d*Ry
dT2 s

Cp tCp
-8 1-—2y<o0
= —pgP(-l—55) <
tCp
RM — 1——2p
f=ew(-1- o

(3.13)

(3.14)

* The form of the revenue in (3.12) suggests that it is differentiable when ’ i < PS , thus

provides us a pair of candidates for the optimal prices:

from g¥ 0 and 28
we have:
%R
72Ty =
S
%R
g
9’R | B
0T,0T, MM =
9%R 9%R
s r

So the Hessian matrix:

P,6
T =t+—
+CB

P46
=

oT.9T. T

Cp (T;—T,)CB

- - exp(——_

(Py—Py)6 (Pi—Py)6
Cp T.Cy
38 L
p,5 P PAG)

C T, —T,)C
_—B_exp(_ﬂ)
(Py—Py)6 (P;—Py)6

T, —T,
T o)
(P;—P4)6 (P;—Py)6
9’R
B 8Tr8TS|TSM’T'M
%R

3C3 Cg, T, T,—T,
= g (=G o)
Py(P;—Py)0 0 Px Pi—P4
2°R 9’R
oT? dT,0T,
JT,0T,  JI?

<0

<0

>0

(3.15)

(3.16)

= 0. Moreover, after checking the second order partial derivatives,

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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is symmetric and negative definite, thus the revenue achieves its maximum at M and
TM [16]. This optimized revenue is
ErCB (t + E;’)CB

M _ _ 11— NP, —
R" =exp( 1+PAé )Pa +exp(—1 (Pd—PA)é)(Pd Py) (3.22)

Although the price pair TM and TM guarantees to achieve maximum revenue for the
two-options setting, we still wonder whether the maximized revenue is strictly superior to
the revenue when R-charging is not offered in the first place, namely, the initial scenario.
To answer this question, a comparison is needed between the maximum revenue in the
two-options case RM in (3.22) and that RY in (3.14) yielded by the initial scenario:

] E.C EC —tC
(PAexp( _B)—i-(Pd—PA)eXp(—(t+—)€)—Pdexp( t_B)) (3.23)

RM —Ry=—
e PAG (Pd —PA)G PdG

where e is the base of the natural logarithm. But the form of (3.23) is not explicit enough to
tell straight forwardly whether it is positive. So we write its derivative with respect to E,:

IR —Ry) _ 1, EGC (t+E)Cs
T Gl pa) t e _PA)é>) >0 (3.24)

as well as its boundary value

Fa

RM —Ry| g =0. (3.25)

M M
Since % < % ~— E, > —%1, E, > —% is the sufficient and necessary condition for the
two-option scenario to yield strictly higher revenue at 7Y and TV, than that of the initial
case at TM, thus the sufficient condition for the aggregator to offer R-charging.

Optimal default power P,

To select the optimal power P, at which to charge R-charging EVs in the absence of regulation
signal (or equivalently, the optimal ratio x), we turn to numerical observations because of
analytical intractability.

After repeated trials with different combinations of r; and r,, we have systematically
observed that with the corresponding optimal prices, the revenue seems to be convex in x.
A few sample curves are shown in Figure 3.6. We therefore conjecture that the optimal
default recharging power is either O or the maximum possible power Py (i.e., that the optimal
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x is either O or 1). Although we still cannot tell which one performs better, comparing the
revenues yielded by both values can be easily done numerically.
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Fig. 3.6 Aggregator Revenue with multiple combinations of r; and 7,

3.2.4 When will the aggregator offer an “R-charging” option?

In Section 3.2.3 we concluded that the sufficient condition for the aggregator to offer R-
charging is E, > —%. If the independent variables of our model (¢, pg, Pu, ¥4, 7w, Y) do not
lead to solutions satisfying this inequality, then there is no room for revenue increment for
the aggregator. In other words, even if some users are willing to participate to regulation
for a discount in their recharging price, the aggregator will not offer that option because the
rewards are too low.

We now consider in particular the regulation rewards r; and r,, in order to investigate
whether EV-based regulation will occur or not in some markets. We focus on those values
since, being prices, they are easily changeable (from market conditions or from regulation),
and the observed values can dramatically differ from one market to another, and also vary
significantly over time. Expanding the condition E, > —% gives:

Purux — pa(1—ra)(1—x) —x > —P,2P(P — y8(P)). (3.26)
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From previous conjectures on the optimal value for x being 1 or 0, we further reduce (3.26)
and get two inequalities respectively: r, > 2 — p, +vp, *>(1 —p,)'> and ry > 1 — p, +
Y1/ Pa — pg. Each of them provides a sufficient condition for the aggregator to achieve higher
profit from regulation. We define the thresholds of r,, and r, as:

= 2= p (1 =) (3.27)

pipin’” =1—pa+7\/Pa—P7 (3.28)

If rewards from both up and down regulation are below those thresholds, (3.26) does not hold
at either x = 0 or x = 1-although it may hold somewhere in between, our observations tell
that the chance is very small-then no R-charging option will be offered by the aggregator.
When r, (resp., ry) is above the threshold while r; (resp., r,) is not, choosing P, = P,

(resp., P, = 0) earns the aggregator more than the initial case; when both of them are above
their thresholds, we cannot tell which one gives higher profit so both P, = P; and P, = 0 need
to be substituted so that the one yielding the largest revenue can be chosen. This procedure is
described in the following algorithm.
Require: Py, pu, Pa ¥, 1, Tus Ta

1. T,=TM

2 if rg < /™" and r, < /™" then

3:  R-charging not proposed

4: else
s: T,=TM
6: ifry < rgﬁnM and r, > r,‘}‘i“M then
7 P, =P,
8: else
9: ifry > rglinM and r, < r,‘}linM then
10: P,=0
11: else
12: if R"(x=0) > R*(x=1) then
13: P,=0
14: else
15: P, =P
16: end if
17: end if
18:  end if

19: end if
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20: return T, T, P,

Figure 3.7 plots the average user utility. Note that we set 8 to 0.3 because this yields a
S-charging price (TM) of 0.15 €/kWh, which is the electricity price applied in France.

It is guaranteed that our proposal of allowing R-charging can never decrease user welfare,
since R-charging just provides users with one more option without increasing the price of
S-charging.

The increase of average user utility is due to the lower electricity price of R-charging.
More attractive prices firstly win back some users who would have quit the system, and
secondly, convert some clients that would have recharged thought S-charging at a high price.

For a quite wide rewards region (r, € [1.5,2.1] and r,4 € [0.5,0.8]), the R-charging price
(TM) is typically from 38% (T = 0.057 €/kWh, TM = 0.15 €/kWh) to 48% (TM = 0.072
€/kWh, TM = 0.15 €/kWh) of the S-charging price. Finally, comparing Figure 3.7 with 3.6
we observe that the x that maximizes the aggregator revenue also maximizes user welfare,
hence social welfare will also be maximized at the same time.

1.78 [ ‘
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Fig. 3.7 User welfare with multiple combinations of r; and r,

3.2.5 Application in a real world market

The form of the thresholds in (3.27) confirms that a reduced user reluctance () to power

variance reduces the thresholds, thus enlarges the region for rewards {r;, r,} leading to
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R-charging being offered in existing regulation markets. We use empirical regulation up and
down probabilities® (p, = ps = 0.48) to calculate the thresholds rfjan and rumi“M, illustrated
by the two lines plotted in Figure 3.8, one for y = 0.5 and the other for y = 0.05. This restates
that if batteries become more robust to power variations, the chance for both aggregators and
user to benefit from R-charging will increase.

To compare the thresholds with the prices actually settled in a real world market, we plot

6 over corresponding wholesale electricity prices’ on the day

the ratios of regulation prices
of July 20, 2015 as well as daily average prices of that week (from July 20, 2015 to July
26, 2015). Despite the variations of regulation prices within a day, their daily averages can
still be above our thresholds, hence some room for the aggregator to contract with the grid
operator to assure constant and viable regulation prices throughout the day. To illustrate how
the aggregator should set the default power P,, we also show the region where B, = 0 or

P, = P; is the optimal default charging power for R-charging.

3.2.6 Recap

This section models a monopolistic recharging agent—an aggregator, who sells energy to
EV owners meanwhile sells regulation service to a grid operator. Depending on the level of
remuneration offered by the grid operator, the aggregator can decide whether or not to carry
out regulation. Our numerical results indicate that for at least half of a day, taking this extra
option is profitable for the aggregator. We also deduced the forms of the optimal prices where
maximal revenue is achieved. In the next section, we break the monopoly be splitting this
single aggregator into two separate stations: a R-charging station and a S-charging one. Their
competition is modelled as a game, whose outcomes at possible equilibria are of interest.

3.3 Competition Between Regulation-Providing and Fixed-

Power Charging Stations for EVs

In this section we apply to the leader-follower game framework, with charging stations
the leaders and users the followers. This enables us to solve the problem through the
backward induction method. Different from the previous section, where both S-charging and
R-charging are offered by an aggregator, which is a revenue maximizing monopoly, we now

separate the two services and assign them to two competing stations.

Shttp://clients.rte-france.com/lang/fr/visiteurs/vie/mecanisme/jour/volume.jsp
®http://clients.rte-france.com/lang/fr/visiteurs/vie/mecanisme/jour/volume.jsp
"https://www.epexspot.com/en/market-data/elix
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Fig. 3.8 Observed regulation prices, and thresholds for R-charging to be beneficial for the
aggregator
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We model the interactions among both stations (or sets of stations, each set controlled
by a separate entity) as a noncooperative game since they compete over prices to attract
EV owners. User preferences between price and charging power variations are assumed
heterogeneous, so each station seeks the best tradeoff between market shares and per-client
profit in order to maximize its expected revenue. We define the non-cooperative strategic
game derived from the stations’ pricing behaviors, before examining their best-response
prices, and finally we analyze the Nash equilibria of the game.

3.3.1 Game definition
Regulation mechanism

Due to separated operation of S-charging and R-charging, the work of a monopolistic
aggregator is now carried out by two charging stations, namely an S-charging station and
an R-charging station, and the task of setting regulation parameters (P,, 7,) goes to the
R-charging station. Apart from that, the regulation procedure follows that described in
Section A.3.1.

User preferences

The probability o, (resp., ) that a user chooses the R-charging (resp., S-charging) station
can then be expressed as

Cp(T,—T; .
l—exp(—%) if7, <0
o = { exp(— L) —exp(—%) if0< T, < BT, (3.29)
0 otherwise
L e HTSET 530
’ exp(— %‘zgs__;’ )) ) otherwise. .

Note that we allow negative charging prices with the R-charging station: indeed, since
that station can make money from the grid thanks to EV owners, the corresponding rewards
could be so large that the station would be willing to attract a large number of EVs, even by
paying them. This case is for completeness of the model, we think it is not very likely to
occur but we cover it in this proposal.

First we assume P, (or equivalently x) fixed and analyze the pricing game. The outcome is

dependent on x so the R-charging station can maximize its profit by playing an x in addition to
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the price 7,.. We examine the pricing game analytically whereas the chosen of x numerically
due to complexity.

A game has at least two self-interested participants, whose actions result in different
consequences, which in return motivate the players to adjust their actions. Now we give the
formal definition of the pricing game:

Definition 3.3.1. The pricing game between the S-charging station and the R-charging
station can by specified by: (N, 7 ,(R;)), where the player set N consists of the two
stations, the price profile 7 is a vector (Ty,T;) on the semi-plane R>o x R, and the payoff

function R; : 7 — R gives each station’s expected revenue obtained from one EV.

3.3.2 Best-response prices
S-charging station revenue and best-response price 7.”"

For the S-charging station owner, its average income R depends on the market share o, and
the unit price Ty it offers:

T, P
Cp(T; —t)exp(—C:B %) T, < 2T, (3.31a)
Ry = Cp(T, = O%q b
= Coll =)0 = Cp(T,—T,) P
Cp(T; —f)eXP(—m) I, > ETI’ (3.31b)

The price T that maximizes R; is called the best-response price to its opponent’s strategy 7.,

Proposition 3.3.2. The S-charging station has a unique best-response price as follows:

) _
0 6 P,
t+(Pj—Py)— T, P, —P 3.32
+ (Py A)CB T <(t+(Ps A)CB)Pd (3.32a)
0 P
T (T) = t+Py— if Tp > (t + Py— 0 ) A (3.32b)
CB CB
T,& otherwise (3.32¢)
\ Py

Proof. The function (3.31) is continuous in 7;, and is differentiable over the intervals
(—oo, % T,) and (% T;,+oo), with partial derivatives

aRs (1+(n_t)(_é_))CBeXp( CBT) T < %Tr
Ty Ch(Ty-1,) P, (3.33)
s (1+(Ts_t)(_é(Pd P)>)C36Xp( m) TS‘>ETI‘
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We observe from (3.31) that the revenue is negative if 7 < t and positive for Ty > ¢, hence
we can restrict our attention to 7y > ¢. In that region, each derivative is first strictly positive,
then null at one point, then strictly negative, hence:

e ifr > %Tr only the interval [t,+) needs to be considered, and there is a unique

revenue-maximizing price 7 + (Py — Py) C% given by the first-order condition (note that
it is an interior solution in the interval).

e ifr < i 7, Ir» the revenue has a unique maximum on each of the intervals [t T;] and
P,
[T + ):

— on the interval [z, %Tr], the optimal price is ¢ + Pdc% if 1+ Pdc% < %Tr (interior
solution), and iTr otherwise (corner solution);

— on the interval [ i Ty, +oo], the optimal price is  + (P — PA) o ift+ (P — PA)Ci >
P—iT - (interior solutlon), and I—JjT, otherwise (corner solution).

O
Figure 3.9 illustrates the S-charging station revenue as a function of 7;, and the best-
response T (T;.).
R-charging station revenue and best-response price 77" (7y)

Let us now consider the R-charging station owner, having to decide its price 7.
The average R-charging station revenue R, consists of remuneration from providing
regulation and income from charging EVs:

Cp(T;—Ty) .
CB( )[1—exp( ﬁ)] lfTr<O
Ry = { Co(T, +Ey)exp(—42) —exp(— L)) 0<if T < BT, (3.34)
0 otherwise

The following result summarizes the optimal R-charging station reaction to its competitor.

Proposition 3.3.3. The R-charging station has a unique best-response price as follows:
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— Revenue at best-response price 7" (T;)
== Best-response price 7.7 (7;)

il
mwh
i
.

W

i

S

o ‘

g1 .

: L

g L. e

: T 8

= Al i

g 12 I/,/////I/,///ﬂ,/ ! e )
£ i Yoo
A

0.1 4  T(EKWH
T,(€/KWh)

Fig. 3.9 S-charging station revenue as a function of 7, and 7T (r = 0.03, 0 =0.3, Cp = 50kWh,

x = 0.8). The red, yellow and blue areas are separated by 7, = (1 + (P; — PA)C%)% and
T, = (t —i—PdC%)%, referring to (3.32).
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(P _ P
né- #ns—aéf (3.352)
0 lfT; : Er,l(Ts) <E < Er,Z(:Z}) (335b)
TP (Ty) = < IR
T,eR: =— =0 3.35
OP P
C (min{0, —Er},max{O,min{C—A —E,, P—ATS}}) otherwise  (3.35d)
L B d
where
6(Py— Py) (1 —exp(— <L)
d— 74 p 0(Py;—Py)
Ent(Ty) = — 7 — i (3.36)
5(3 — 1+ exp(5, )
Py CpT;
Er(T)=E(T)(1+(=— —1D)exp(=———)). 3.37
Table 3.2 Solution of % — 0 in different circumstances
oR, IR b
Conditions on E, T = 0_3 TrTr —oF Solution of 77 =0 1"
E<E E.| <E, >0 <0 None 0
OP, r rn2 ;
E, < A E.<E.,| >0 >0 | e[omin{%—E, 2T}) {Tr;§_§5:0}
E»<E, <0 <0 € (—E;,0] {T,: 5 =0}
op, E, E, <E;> >0 <0 None a0
Cs = E., <E, <0 <0 € (-E,,0] {T,: 53 = 0}
Proof. In the first place, it is non-trivial to verify that (3.35) defines a function, i.e.,
Fy
AT, € Rog : Ty < —E, - and By () < E; < Exa(Ty). (3.38)
A

This is true because VT € R>g, we have 0 < E,.1(Ty) < E2(Ty).

From (3.34) we know that the R-charging station has non-negative revenue if and only if:

P
—E <T,<-2T, (3.39)
Py

so the following is a prerequisite:

(3.40)
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When this condition is not met, the R-charging station would rather leave the market by
setting a price sufficiently high, i.e., T > %Ts such that no client would come.
IfE. > —P—ATS, and —FE, <T, < QTS, we further examine the partial derivative of the
Py Fy

revenue function (3.34):

,CB (1- exp[——(gz;?__}ir)) 1+ —%B(g’jg)) ) if 7, <0 (3.41a)

5 = %{exp(—céif)[l - —CB(E’; 22 (3.41b)
We begin with putting the boundaries of 7 into (3.41):

gl;:h:_E, >0 if E. #0 (3.42)

g—l;:h:o— >0; g—l;:h:m >0 if E,=0 (3.43)

%'nzgn <0 (3.44)

Then within those bounds, we claim that (3.41) is strictly decreasing on
(min{0, —E, }, max{0, mm{% —E,, PzTS}}) because:

* when 7, <0, (3.41a) is strictly decreasing;

PA

* when 7, > 0, noticing that (3.41b) is positive iff 7, < 6 — E, and is strictly decreasing
IR, -

when positive, meanwhile (3.41c¢) is strictly decreasmg and negative, 97, 18 strictly
decreasing for 7, € (0, max{0, min{ -z QPA E,,%TS}});

e when 7, =0, ?91; |Tr=0’ > ?9_%|Tr=0+'

IR,
9T,

or none. Table 3.2 summarizes the conditions for each of them to occur, together w1th the

% _ g

From the monotony of we know that there is either a unique solution of
intervals wherein lie those possible solutions.

Jointly considering the first order optimality condition of aR’ = 0 and the boundary values
in (3.42) (3.43) and (3.44), we conclude that R, achieves the maximum either at the unique
solution of ‘31;: = 0 (if it exists) or at 7, = 0, as stated in the last column of Table 3.2, thus

the optimality of the best-response price in (3.35) is proved.
]
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Figure 3.10 shows the R-charging station revenue as well as the best-response price
TP (Ty), as a function of 7j.

--- Best-response price T (T;)

— Revenue at best-response price T (T;)

S-charging station revenue (€/EV)

1 B
102 T(€/Wh) 00 T,(€/KWh)

Fig. 3.10 R-charging Station revenue as a function of T, and Ty (t =0.03, r; = 0.7, r, = 2.1,
Cp =50kWh, p; =0.48, p, =0.48, y=0.05, 0 = 0.3, x = 0.8). The red region corresponds

to non-negative revenues, i.e., P <P

3.3.3 Nash equilibrium

Now we combine Proposition 3.3.2 and 3.3.3 to establish the existence of Nash equilibria.
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Proposition 3.3.4. The pricing game defined in A.3.1 has either a unique Nash equilibrium
or a unique Pareto-dominant one when there exist an infinite number of Nash equilibria. The

equilibrium prices in different circumstances are:

( P
T,=—E: Ty = —FjEr
P 0
ifE < =2t + (Py—Pa) ~] (3.452)
Py Cp
. 6P P 6

T, € (O,mln{c—: —E, an)}; T,=t+(Py —PA)C—B

L Py 0 0

if —=[t+(Pj—Py)— ] <E <Epi(t+(Pg—Py)=) (3.45Db)

' é
T.=0; T =Z‘+(Pd—PA)—
Cg
if Er1(t+ (P —PA)i) <E <Ep(t+(Pi— PA)E) (3.45¢)
) CB — — ) CB
0
1, € (—Er,O); T,=t+ (Pd —PA)—
Cs
6
if Era(t+ (Py —PA)C—) <E, (3.45d)
\ B

Proof. We prove the existence and uniqueness of the Nash equilibrium through exhaustively
combining (3.32a) (3.32b) (3.32¢) and (3.35a) (3.35b) (3.35d), in order to find possible
intersections between the two best-response prices.

First of all, (3.32b) can be easily excluded since according to Proposition 3.3.3, Trbr (Ty) <
TS%, conflicts with the condition in (3.32b).

Then we check whether (3.32a) intersects with (3.35). Putting 7y =1+ (P; — PA)C%
into (3.35) gives:

6.P 0 P,

t+(P;—P ft+(Pp—Py)— < —-E,— 3.46a

- = (t+ (P4 A)CB)Pd (Py A)C P, (3.46a)
' 0. Py

t+(P;—P therwise. 3.46b

< ( +(P;— A)CB)Pd otherwise ( )

Note that (3.46a) corresponds to the first case in (3.35) while (3.46b) covers the other cases.
Comparing the values in (3.46a) with the condition in (3.32a), we can further rule out
the (3.32a)(3.35a) pair.

As aresult, if —%[t + (P — PA) ] < E,, (3.32a) has an intersection with (3.35), which
provides a Nash equilibrium. Dependlng on the value of E,, the price profile of this equilib-
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rium falls into different segments, as expressed in (3.45b), (3.45¢c) and (3.45d). Otherwise,
when E, < — [t (Py PA)C ], we end up with infinite intersections between (3.32c)
and (3.35a) Among all the possible equilibria (7; < —E, Ifd T, = T,% A) the specific pair
T, = —E L Py T, = T Pareto dominates the rest because the R-charging station is indifferent
towards the choices of T, glven T, =T, % Py’ whereas the S-charging station strictly prefers

T, = —E over T, < —E, B gince we have:

rP9

dR,(T, = T,%4)

de _
dT:g |]}Sl+(Pd—PA)% >0 (347)

The conditions for each equilibrium to occur are exclusive and cover all possible circum-
stances. O

Note that N¥(3.45a) which occurs when E, < —% [t+ (P — PA)C%] is not profitable for
the R-charging stations since zero revenue is obtained, and that the condition for a positive
R-charging station revenue is —% [t+ (Py— PA) ~| < E,. We will refer to this condition in
Section 3.4.2.

Figure 3.11 and 3.12 illustrate the best-response prices and resulting Nash equilibria in
four different circumstances.

1072
45| |
4+ i
3.5 |
=
Z 3 |
)
g 25 , |
i ////// NE (3.45a);
2+ i ruzl,rd:O N
151 _ _ |
—T"(6=0.1)—T'(6=0.1)
L TP (6 =02)----T(6 =0.2) )
| | | | | | | | |
4.-1073-1076-10°7-10°8-1079-10"2 0.1 0.11 0.12

T; in €/kWh

Fig. 3.11 Nash equilibria in case of small r; and r,
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Fig. 3.12 Nash equilibria in case of large r; and r,

Note that equilibria (3.45¢) and (3.45d) that result in free R-charging or even nega-
tively priced R-charging can only be reached when regulation remunerations are extremely

attractive, which seldom happens.

Optimization of P,

The pricing game defined in A.3.1 is played given a fixed P,, set by the R-charging station,
who can afterwards modify its value to pursue a higher equilibrium revenue. Due to the
complexity of the equilibrium price profile we resort to numerical search for the optimal F,.

3.3.4 Recap

In this section, a leader-follower game is introduced to model the interaction between the
R-charging station and the S-charging one. We define a pricing game between them and find
possible equilibria after examination of their best response prices. In the next section, we will
retrieve the result of section 3.2— the revenue maximizing electricity prices offered by the the
monopolistic aggregator, and compare the outcome of monopoly with that of competition.
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3.4 Comparison between the Nash equilibrium and the Mo-

nopolistic case

After elaboration of the two proposed regulation-recharging models: the monopolistic one in
Section 3.2 v.s. the competition one in Section 3.3, we can now compare their outcomes in
terms of user utility and applicability in real world market.

3.4.1 Average user utility

The following formula of average user utility applies to both the monopolistic and competition
case.

PP 1 0 toeo 1 0
U= [, ™ (0P~ T,Ca) g exp(— 5)d6+ /TS_WB (6P, ~T.Ch)zexp(~5)d0  (348)
Py Fa—Fa
=0, 0Py + o, 0P, (3.49)

Figure 3.13 shows a significant increase of average user utility (UM for monopoly and U
for equilibrium) after breaking a monopolistic station into two competing ones. Although
the total station revenue decreases, the social welfare which is the user utility plus station
revenue has a net increase of over 20%. Figure 3.14 illustrates an increase of EVs being
served, thanks to a decrease of energy prices depicted in Figure 3.15.

8 8 \
61— RM P

Revenue/Utility (€/EV)
N
|
Revenue/Utility (€/EV)
N
T
|

0.1 02 03 04 05 0.1 02 03 04 05
6 6

Fig. 3.13 Comparison between Monopoly (left-hand side) and Nash equilibrium (right-
hand side), in terms of station revenue and user utility, with r = 0.03, 6 = 0.3, Cp = 50,
Pa =Py =048, y=0.05,r; =0.4, r, = 1.6 (ry and r, are the daily average of 20/07/2015).
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Fig. 3.14 Comparison between Monopoly (left-hand side) and Nash equilibrium (right-hand
side), in terms of user participation, with t = 0.03, 6 = 0.3, Cp = 50, p; = p, = 0.48,
Y=0.05,r; =04, r, = 1.6 (r; and r, are the daily average of 20/07/2015).

0.2

Unit price (€/kWh)

Fig. 3.15 Comparison between Monopoly (left-hand side) and Nash equilibrium (right-hand
side), in terms of electricity prices, witht = 0.03, 6 = 0.3, Cg = 50, pg = p, = 0.48, y=0.05,
rq =0.4, r, = 1.6 (ry and r, are the daily average of 20/07/2015).
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3.4.2 Application in a real world market

Figure 3.16 compares the regions for rewards {ry,r,} where offering R-charging is profitable.
At equilibria (figures on the right-hand side), the black zones where R-charging is not
preferred are remarkably smaller than those in the monopolistic case (left-hand side). This
is because in a monopoly, the feasible region for rewards {r;,r,} is composed of those
that make the following equation of x solvable in the interval of [0, 1] (referring to (3.26) in
Section 3.2.4):

purux — Pa(1 = rg)(1—x) —x+P(x)Px(x)P; > > 0, (3.50)

whereas in competition, (3.45a) and (3.45b) give the condition:

_ 1 0
t(purux—pd(l — rd)(l —X) —X+PPAPd_2) + ;PPAPd_Z[Pd —PA]CT >0 (3.51)
B

Obviously the solution set of (3.50) is a proper subset of that of (3.51), so introducing
competition enlarges the feasible region of {ry,r,}. To quantify this enlargement, we
reduce (3.51) by replacing x by 0 and 1. Similarly with (3.27) in Section 3.2.4, we have two
thresholds for r; and r, respectively:

i 6
pinin® r=2—pu+7p;°'5(1—pu)”—ﬁ(pu(l—pu)(l—f)ﬂ(l—m pu(1—ps) (352
=" = agapn P =P (1=7) +7(1=20)Vpu(1 = pu) (3.53)
i P,0
i 1:1—Pd+7\/Pd—P5—t2CdTm(Pd(1—Pd)(l—yz)JrY(l—2pd) pa(1—pa)) (3.54)
- P60
= = o (Pall =) (1= 7)1 =200)Vpa(T = p2). (3.55)

The blue and red areas in Figure 3.16 are referring to the optimal default recharging
power P, in these regions, i.e., the optimal x after exhaustive search. In most combinations of
{rq,ru}, this optimal x is either O or 1, except for a few {r4,r,} observed in the gap between
the blue region and the red, in the figures on the right hand side, especially when the average
user preference on power is small: = 0.1 and user sensitivity to variation is great: Y= 0.5.
We also plot the actual {r4,r,} offered by a French operator RTE on these figures. The blue
circles correspond to the 48 {r;,r,} pairs on the day of 20/07/2015 and the red rectangles
are showing the daily averages during the week from 20/07/2015 to 26/07/2015.
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Fig. 3.16 Comparison of feasible regions on r4 X r,, plane and the optimal x, = 0.03, Cp = 50,
Pa = pu=0.48, 6 = 0.3, y = 0.05 for the first row, 8 = 0.1,y = 0.05 for the second, and
6 = 0.1,y = 0.5 for the third.



3.5 Summary 79

3.5 Summary

This chapter proposes firstly a control mechanism for an aggregator in charge of several
charging stations for EVs. We allow the aggregator to provide frequency regulation by
decreasing (increasing) the recharging power of EVsd, pursuing for regulation incentives.
Following the pricing policy we optimized, not only does the aggregator increase its revenue
but also cheaper energy is offered to the EV owners. We highlight that even if EVs appear as
a valuable asset for regulation because of their tolerance to changes in the consumed power,
the revenue-oriented behavior of aggregators can dramatically affect the extent of regulation
effectively provided by EVs. Under reasonable assumptions, the aggregator may even just
not offer the possibility to participate in regulation, hence annihilating one of the leverages
brought by the advent of EVs. Therefore, the incentives to participate in regulation should be
carefully studied, so that the grid actually benefits from the considerable (and distributed)
demand flexibility offered by EVs.

We move on by separating the traditional-fix-power recharging service and regulation-
providing-variable-power recharging service and assign them to two competing self-interested
charging stations. At the Nash equilibrium of this non-cooperative game, both stations tends
to offered lower prices to EV owners than a monopolistic controller would do, thus more

clients are attracted and greater regulation services is provided to the grid operator.






Chapter 4

Reducing grid dependency in transit
areas

The soaring electricity demand due to EVs increases the urgency of the evolution from the
power grid to the so-called smart grid, to manage demand peaks with minimal infrastructure
Ccosts.

In this chapter, we propose an approach close to Vehicle-to-Grid, where EVs can give
back some energy from their batteries during peak times. But we also use EVs as energy
transporters, by taking their energy where it is consumed. A typical example is a shopping
mall with energy needs, benefiting from customers coming and going to alleviate its grid-
based consumption, while EV owners make profits by reselling energy bought at off-peak
periods.

Based on a simple model for EV mobility, energy storage, and electricity pricing, we
quantify the reduction in energy costs for the EV-supported system, and investigate the

conditions for this scenario to be viable.

4.1 Related work

EVs create a network of mobile energy containers; hence several propositions to use this
energy during peak periods—the so-called Vehicle-to-Grid (V2G)-have been issued and
studied [64, 80]. V2G can be implemented in residential areas to reduce the load of trans-
formers [66, 67], to provide ancillary services for the grid [92] or to enhance its capability
to face the penetration of renewable energy [18]. Research is quite abundant concerning
these possibilities whereas their implementation requires broader cooperation between the

grid operator and EV owners. Here, we consider an energy consumer which cannot avoid
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usage during the peak hours, but fortunately is situated in a transit area where EV's stop by
frequently.

On the other hand, the literature about managing aggregated EVs is quite abundant, but
the majority of them [47, 42, 4, 9] emphasizes on charging EVs only, rather than discharging
as we suggest here. In [47], the charging power of the EVs parked is locally optimized,
considering their sojourn time. This requires EV owners to inform the controller of their
predicted departure time, an assumption also made in [4]. Here we do not rely on such
knowledge, since the departure time may be hard to predict by EV owners, who may also
be reluctant to disclose it and/or willing to strategically declare it to maximize their benefit.
We therefore stick to the simplest case where the facility does not know when EV's will be
leaving; that knowledge could nevertheless yield further improvements, which can be studied
in future work. Among the approaches that do not require users reporting their departure
time, queueing theory can be used to model the dynamics of clients [9], whereas the goal is
to serve the most EVs with limited energy for a network of fast charging stations. [42] also
applies queueing theory to estimate the waiting time of EVs in a parking lot, and highlight
the importance of the number of chargers in the parking lot. Interestingly, measurements
shown in that paper illustrate a very good match between the power needs of the facility
(a shopping center in the paper) and the arrivals of EVs, motivating further our approach
of using EVs—some of which would be willing to sell energy—to reduce the grid-based
consumption of the facility.

In this chapter, we consider that EV owners sell part of their stored energy directly
to an entity with power needs. This has the advantage of avoiding benefit losses due to
intermediaries, but also of avoiding energy losses due to transportation. Finally, this comes
at no cost in terms of grid management. An illustrative use case is that of a shopping center
with energy needs during the day, a time when electricity prices peak but also customers
come and go, and we intend to benefit from EVs in the parking lot by installing dischargers
for those willing to sell their energy to the shopping center, as illustrated in Figure A.2, where
the first and second EV are discharging while the third one is not, due to the exhaustion of its
surplus energy. When the power discharged from those EVs does not cover its needs, the
facility can buy the rest from the power grid. Although our proposition seems opposite to
the current practice of putting charging (not discharging) stations in parking lots, we rather
think that our approach is complementary; the EV charging stations can either be seen as
part of the consumption of the center, or as a separate (since managed from the grid) system.
In this chapter we consider constant power needs of the center, fitting more with the latter
interpretation, but future work can also consider demand variations due to EV charging. More
generally, we are interested in a facility where EVs come and go during the day, and with
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Fig. 4.1 System implementation: EVs can sell their surplus energy (bought off-peak) to make
profit and reduce the facility grid dependency during peaks.

some electricity needs during that period (e.g., a shopping center, a bank, an administrative
center... but also a factory that would be located near a shopping center). The facility can buy
energy from the grid, at the (relatively high) on-peak price, or from the EVs that are present.

In this chapter, we take into account the costs involved with setting such a system, and
perform a quantitative analysis of its economic interest. The main exogenous variables are the
on-peak and off-peak electricity prices, the mobility of EV owners (arrival rate and sojourn
time), the facility needs, and the energy EVs can sell; the decision variables include the
number of discharging slots to install and the management of slots occupied by an EV with
no more energy to sell. We propose two management schemes to discharge available EVs.
For both we carry out an analytical study and show numerical results. Both schemes reduce
energy costs for the facility (from 5% to 15%); the difference lies in the tradeoff between
less management required and less discharging stations needed.

4.2 Model description

This subsection describes the assumptions we make regarding grid electricity prices, electric-
ity needs for the consuming facility (hereafter simply called the facility), and EVs mobility
and supply, in order to compute the overall electricity cost for the facility.

4.2.1 Time-of-use electricity pricing

We assume in this chapter that the grid charges for electricity usage depending on the time
of consumption. More specifically, our model considers only two electricity prices: a low
price during off-peak periods (typically, at night) and a high price during on-peak periods
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(during the day). There may be several other prices (e.g., during the day), in which case our
model also applies, by just ignoring the other day-time prices: what matters is just the current
electricity price, and the price paid by EV owners to recharge. However, to optimally decide
the number of discharging slots and the management, we would need a specific model of
price variations over time, hence the simple choice here of a single day-time price.

Let us denote by g (in monetary units per kWh) the on-peak and by v < g the off-peak
prices respectively. Note that the latter is the price at which EVs can charge their batteries.

4.2.2 Electricity demand of the facility

We consider a simple model where the facility needs a constant power, denoted by Py (in
kW), during its activity periods. Without loss of generality we assume that those periods are
included within peak-price periods, since during off-peak periods the facility can simply buy
energy from the grid.

4.2.3 Potential supply from EVs

It is unrealistic to assume that EV owners perfectly predict the energy needs of their EVs
for the next day, and charge their batteries accordingly. Instead, we think it is reasonable
to consider that most EVs carry some surplus energy; when the owners realize during the
day that they will not use all of the stored energy, they may choose to sell it to the facility.
Because of the variety of battery models and of users distance left to cover within the day,
the amount of energy that EVs can provide should be modeled as a random variable. To keep
the analysis tractable we consider an exponential distribution, and denote its parameter by 60,
so the average surplus energy per EV is % kWh.

4.2.4 EV mobility

We assume that EVs arrive to the parking lot according to a Poisson process with parameter
A. This process assumption is reasonable, as the result of the uncoordinated behavior of
many potential users. We also model the parking duration of each EV as independent random
variables, exponentially distributed with mean 1/p.

4.2.5 Costs faced by the facility

The facility undergoes several different costs related to its energy consumption, we list them
below.
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* Grid electricity price. As evoked previously, the facility can buy energy from the grid
at a (high) on-peak price g (per kWh)

» EV electricity price. The price paid to EVs should at least compensate the owners’
expenses to charge (at the night price v). Moreover, we assume that the facility provides
10% of the expense as an incentive to attract EV owners to joint the discharging
program, i.e., they are payed 110% of the recharging cost, thus a relative benefit
B = 110%. According to [22] the battery recharging efficiency is over 88%, so
conservatively we set 11 = 88%. Discharging efficiency varies between 80% and 95%
according to [15]. We model this loss through a Joule heating loss proportional to the
square of the discharging power, hence equaling SP(% for some loss factor €. So only
the power P = Py(1 — €Py) is retrieved by the facility if the transfer power is . In
order to fit our setting to the loss values, we set € so that at low discharging power
(Py =5kW), 1 —ePy=0.95. Thus € = 0.01 in our model. We consider that pgy

vp _ W
n(l—ek) 1—&Py

PEV := 4.1)

dlm

is the actual unit price seen by the facility (the EV actually sees vg), where vy = ~

* Discharging slots costs. Each discharging slot (discharger) is assumed to cost the
facility an amount A; per time unit, hence a trade-off with installing slots to retrieve
more energy from EVs.

* Management costs. In addition to those costs, there may be some extra costs in some
management solutions, namely, a cost for replacing an EV having sold all of its surplus
energy with another one as described thereafter.

4.2.6 Management options

The main idea of our proposition is to reduce the electricity costs by discharging EVs through
k dischargers. We will distinguish two possibilities:

* scheme I refers to the “no unplugging” option, no action is carried out when an EV
has sold all its energy surplus—that EV occupies the discharger until its departure from
the parking lot—;

* scheme 2 refers to the “unplugging” one. The facility can free a discharger manually or
automatically, at a fixed cost U, when a new EV enters the system while all dischargers
are occupied and at least one by an EV with no more energy to sell.
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In the following section, for both management options we calculate the optimal number
of dischargers to install to minimize the facility costs, and we compare those costs to the case
without the EV discharging option.

Table A.1 summarizes the notations of the model, and specifies the values we consider
for the numerical analysis.

Table 4.1 Model variables

Input Value Meaning and unit
Py 200 Facility power needs (kW)
A 10 to 30 EV arrival rate (hour™')
1/u 1 Average parking duration (hour)
n 88% Battery recharging efficiency
1/6 4 to 20 Average surplus energy per EV (kWh)
£ 0.01 Discharging inefficiency (kW)
g 0.25 On-peak grid electricity price (€/kWh)
v 0.1 Off-peak grid electricity price (€/kWh)
Ag 0.2 Cost per discharger (€/hour)
U 0.1 EV unplugging cost in Scheme 2 (€)
B 110% EV owner relative benefit
Objectives
min. Cy Total cost of the facility, Scheme 1 (€/kWh)
min. C; Total cost of the facility, Scheme 2 (€/kWh)
Output Parameters
ki (resp., k2) Number of dischargers in Scheme 1 (resp., 2)
Py (resp., Poy) Discharge power per EV in Scheme 1 (resp., 2)

4.3 Analysis—Small k

In this subsection, we consider the decision variables of the facility with regard to the
discharging system—namely, the discharging power to use and the number of dischargers to
install-and analyze their optimal (i.e., cost-minimizing) values for both management schemes.
We start by assuming the number of dischargers is sufficiently small such that even when all
of them are conveying electricity to the facility, the energy flood won’t exceed the amount
needed. This can be expressed as ky * P; < Py for Scheme 1 and k; x P, < Py for Scheme 2,
where P; (resp., P») is the power actually obtained by the facility while discharging EVs at
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the power of Py; (resp., Py2).
Pl = P01(1 — SP()l) (4.2)
P, = Pyp(l —¢€Py) (4.3)

We stick to the small k situation here in this section because in this way we do not need
to curtail the discharging power in order to avoid cramming more energy into the facility
than its actual demand. A stable discharging power is preferred due to the fact the constantly
varying power level has a negatively effect on battery degradation.

4.3.1 Stochastic analysis

From the EV mobility model described in Subsection 4.2, the number of EVs parked and
plugged to a discharger (which we denote by m;) is a continuous-time Markov chain, whose
evolution is that of an M/M/k/k queue, with steady-state distribution

Py /m!

- 4.4)
Y P/t

]P)lsteady—state (my =m) =

where pg := A /1. Note that loss occurs when a newly arrived EV happens to find none of the
k dischargers available. Since in Scheme 1, no effort is devoted to unplugging an EV from
the discharger it is occupying, the chance of loss is simply P1gcady-state (7 = k), denoted by
Bj (k1) and has the form of an Erlang B formula:

Py k1!

Bl(kl) = Plsteady-state(mt = kl) =k i
Zgo P(l)/l!

4.5)

Due to the fact that the sellable surplus energy of each EV is limited, one may not keep
discharging before it departs. Therefore not all the m, parked EVs are discharging: only n,
(n; < my) of them are, then the process (n;,m;) is a continuous-time Markov chain whose
transition diagram is depicted in Figure 4.2.

Thanks to the unplugging process in Scheme 2, higher throughput of EVs is enabled
since those with a depleted battery are removed in case that they stand in the way of a newly
arrived one. Adding this procedure gives a Markov chain as in Figure 4.3 and decreases the
blocking probability to:

k k!
By (ky) = Pkt

= — 4.6)
Y ops/it

- A
where P2 = TER:T
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u 2u cu (c+1)u ki

Fig. 4.2 Continuous-Time Markov Chains describing the evolution of the number of plugged
EVs m; (top) and of (n,,m;)=(nb_dischargingEVs,nb_plugged_EVs) (bottom). Bothe are
for Scheme 1



4.3 Analysis—Small k 89

mm

w+ 6P 2(U+6P) c(u+06PR) (c+1)(u+6PR) k(u+06PR)

Fig. 4.3 Transition diagram for the number of discharging EVs in the unplugging scheme
(Scheme 2)

In searching for the cost-minimizing discharging power, we are interested in the electricity
output of the EV fleet in an average sense, so we compute the average number of discharging
EVs through Little’s Law:

ky
N (kl) = Z IP)lsteady—state(nr = n)n = Pp1 (1 — B (k)) 4.7)
n=0
— k2
NZ(kZ) = Z IP)ZSte.aldy-st:slte(nt = n)n = p2<1 _BZ(k)> 4.8)
n=0
A
where p; := TESTovE

4.3.2 Cost function of the facility

As we elaborated in Section 4.2.5, the cost imposed on the facility mainly consists of two
parts: electricity bill and management cost. The former comes from the electricity utility who
sells energy at a relatively high on peak price (g $/kWh), as well as from the EV owners (pgy
$/kWh) who discharge their surplus electricity to feed the facility; the latter is composed of
equipping and maintaining costs (A, $/h) of those dischargers, and possibly plus the cost (U
$/event) of deploying a system to unplug the depleted EVs (in Scheme 2).

When there are n; € {0, 1,2,...k;( or k3) } EVs discharging simultaneously, the electricity
cost of the facility is

Cis(n:) = niPovo + (Pr — n\f/’_/)g (4.9)
=Py(1—€Ry)

no matter which scheme it is currently applying.

The two management schemes however, differ by resulting different steady-state-distributions
on the numbers of EVs simultaneously discharging. We note them as Pycady-state (7 = 1)
and Poggeady-state (r = 11). The average electricity cost is the instantaneous cost for each state,
in (4.9), times the probability of occurring that state. And note that the discharging EV
number can by replaced by its average value (), since the other coefficients are independent
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of it. .
Ci(k1) = Zlbcins(klan)]Plsteady-state(nt =n) (4.10)
n—=
= Prg—NiPoi1(g(1—&Py1) —vo) 4.11)
Ci(ko) = kzzocins(k%n)]P)Zsteady—state(nt =n) 4.12)
n—=
= Prg — NaPoo(g(1 — €Pya) — vo) (4.13)

Scheme 1 does not involve any intervention regarding those depleted EVs, so the final
cost is simply that of the electricity plus a constant discharger cost per hour kKA.

Scheme 2 introduces an extra cost, caused by unplugging the dischargers from an EV not
any more contributing. This part is of cause dependent on how many times this happens in
an hour, i.e., the workload, which equals the throughput increment it yields:

W (kz) = A (Bi(k2) — Ba(k2)) (4.14)

To summarize, the average costs that we aim to minimize are:

C (Pm,kl) = Pfg—Nlpol (g(l — 8P()1) — V()) + kA, (4.15)
C2(Poz, k2) = Prg — N2Poa(g(1 — €Pyz) — vo) + kAy + W (ko)U (4.16)

4.3.3 Optimal discharging power

To get better insight of the cost function in (4.15) we expand N; and rewrite it as:

Py
Pro—A(1—B —(2(1 —€Py1) — kA 4.17
kg — A( 1)(,u+6P01(g( ePy1) —vo) ) +kA, (4.17)
Part-1 ~~
Part-2

Part-1 is how many EVs can be allowed into the system, which is independent of Fy; because
a car can only be removed by its owner after ﬁ hours, i.e., depleting its battery won’t quicken

its departure so as to welcome a new arrived one. Part-2 is the average cost decrease an

Poi
U+6Py;

g(1—€Py;) — vg is how much monetary saving one kWh of electricity contributed by EV's

EV can produce, where

is the average amount of energy discharged per EV, and

can bring. So the problem of minimizing C; through adjusting Py; comes down to the

maximization problem:

Por
max ———(g(1 —€Py) — v 4.18
ey (g( 01) — Vo) (4.18)
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Fig. 4.4 Cost variation with different discharging powers (0 = 0.1, A =20, k; =k, = 7).

Differentiating the objective function in (4.18), we obtain the discharging power of

f LM 9w,
Pm._6<\/1+8u(1 g) 1>, (4.19)

for which the differential is null, and the convexity at that point equals

02 P

( 2u(6(g —vo) +g€M)
IFP, 1L+ 6Py

. <0, (420
(u+6r;)°

(g(1—&Po1) —vo))lpy=py, = —

which enssures that Fy; is the cost-minimizing discharging power for Scheme 1, from which

the facility actually extracts

per discharging EV. Expression (4.19) indicates that the discharging power per EV is in-
dependent of the power demand of the facility, which is a desirable property: that optimal
discharging power would not change even if the facility demand varies over time, as long as
n< P—*f.
—

For Scheme 2, unfortunately the expression of gT%z 1s too complex to lead to a closed
form solution. So we let Py, = Fy; although being aware of the fact that this is not always the
cost-minimizing choice. Figure A.3 illustrate how does the discharging power affects the

electricity plus managing cost for the facility.
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4.4 Extension to larger k&

Recall that the optimal discharging power calculated in Section 4.3.3 is only valid under the
assumption that k; < IPT-;i. Otherwise, it is possible that n < k; EVs are discharging whereas
nPy > Py, hence an over-supply if we maintain the discharging power to Fy;. On the other
hand, larger k; is perhaps preferred since it lets more EVs in, and possibly reduces costs

further. In this case, the discharging power needs to be adjusted.

4.4.1 Setting the discharging power

For simplicity, we intuitively curtail the discharging power according to n, rather than
searching for an optimal power for each possible value of it. The rule is: we apply power Fy;
when less than % cars are discharging. When more than % EVs are available for discharging,
we reduce evenly the power out of each EV, so that their sum equals the whole demand Py.
Formally, the discharging power when there are n discharging EVs is then

Py=4(/1+20-2)—1) ifn<

_ 8
Por(n) = 1—\/1-4¢P;/n ! (4.22)

5 otherwise.

and at the same time, from the facility point of view, the energy extracted from each

P
min <P1* , —f) ,
n
with P given in (4.21).

Similarly, for the discharging power in Scheme 2, we set Py, = Fj; when no more than

discharging EV is

P . . . .
P—; cars are discharging, and gradually decrease it as 7 in creases.

4.4.2 Optimal number of dischargers to install

With discharging powers chosen, the cost-minimizing number of dischargers can be easily
found by exhaustive search. Since k| and k, are integers and the cost functions are not
time-consuming to compute, we find it quite doable not trying to optimize it analytically.
Figure 4.5 shows the resulting costs from different discharger numbers.

The following reasoning gives an upper-bound of the value of k, beyond which searching
is pointless. Consider a sufficiently large number of dischargers ko > %, we argue that
installing more than ko dischargers is helpless with regard to cost saving. Suppose we index

all the ko dischargers and use them orderly: a newly arrived EV is always assigned to the
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Fig. 4.5 Cost variation with different number of dischargers.

first discharger if it is unoccupied, otherwise, try the second, and so on. In this way the ky-th
discharger would be the one used with least likelihood (strictly less than 1), and once so, it
1—/1—4€P; kg

———— So the

always discharge its client’s battery at the power level of Py (ko) =
electricity bill it manages to save is strictly less than

Po1 (ko)

0By (k) 8 —EPu (ko)) —vo) (4.23)

Noticing that each discharger has a fixed hourly cost of A4, the sufficient condition for a

discharger to be useless is when its net contribution is negative:

Po1 (ko)

1+ 0B (ko) (s(1—ePyi(ko)) —vo) —Ag <0 (4.24)

This is the case when the discharging power is sufficiently low:

g—vo—Ay0

e V(= v0—A48)> —4Aue 4.25)

Poi (ko) <
Besides, Py; (k) is a decreasing function of k. So the smallest kg that fulfills (4.25) provides a
bound where the searching process for the optimal number of k£ should terminate. With the
parameter values listed in Table A.1, we find the bound goes from 196 for 6 = 0.25 to 227
when 6 = 0.05.
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4.5 Numerical results

This section shows the performance of our proposed schemes in terms of the cost they

save for the facility, namely 1 — %P‘f’kl) for the no-unplugging scheme (Scheme 1) and

1— %Pi’kz) for the scheme with unplugging (Scheme 2). Note that this relative saving is
always nonnegative, since the number of dischargers is optimized to minimize the cost; hence
in the worst case no dischargers are installer and savings are null. Free unplugging, as a
special case of Scheme 2, is plotted to give an idea of the impact of the unplugging cost. The
parameter values used for this numerical analysis are those in Table A.1. For the value of the
off-peak price we use the night price, and for that of the on-peak price we take the peak price

for enterprise users, both offered by the French utility company EDF. .

4.5.1 Optimal number of dischargers
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Fig. 4.6 Optimal number of dischargers according to EV arrival rate A

Figures 4.6 and 4.7 show the optimal number of discharging stations to install for each
scheme: interestingly, Scheme 2 needs much fewer dischargers than Scheme 1. And as the
“free unplugging” benchmark shows, the unplugging cost has a direct effect on the optimal
number of dischargers, conform to intuition (the higher the cost, the more dischargers to avoid
unplugging situations). These optimal numbers of dischargers are applied in the following
two subsections, which compare the performance of the two schemes.
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4.5.2 The difference between rush hour and vacant hour

It is not surprising to find that the more EVs come in a unit time (i.e., the larger A is),
the more saving they bring to the facility, as illustrated in Figure 4.8. The average surplus
on-board energy 1/6 is fixed at 10kWh, and the average time interval between two EVs’
coming decreases from 6min to 1.5min. The gap between “Scheme 1" and “Scheme 2"
increases since higher arrival rate results in more dischargers occupied by depleted EV's upon
new arrivals, which is also causing the increase of the gap between curve “Scheme 2" and
that of “Free unplugging".

4.5.3 Effect of the surplus energy in EVs
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Fig. 4.9 Variation of saving versus average EV surplus energy 1/6

Another key parameter is the available energy onboard parked EVs, whose average is
denoted by 1/6 in our model. According to a survey [62], more than 90% of daily travel is
less than 100 miles, which consumes 34kWh of energy for a Tesla Model S whose battery
capacity is 85 kWh, or 15kWh for a compact car whose battery capacity is typically 21kWh.
So we range the average surplus energy from 4kWh to 20kWh, hence the probability of
having an EV with more than S0kWh of sellable energy is between 0.0018% and 0.13%,
which is very rare. So our system doesn’t require unrealistically large battery size, even less
than 10kWh of average surplus energy per EV can significantly reduce the facility electricity
bill for the parameters we consider.

2http://entreprises.edf.com/fichiers/fckeditor/Commun/Entreprises/pdf/2014/BAREME _
TARIF_VERT_01_11_2014.pdf
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4.6 Summary

This chapter proposes to use the surplus energy in EVs gathered in a parking lot to support
the energy needs of a facility: the mobility of EVs during the day brings energy on a quite
regular basis, to an extent that possibly largely exceeds what could be stored in a unique (even
large) battery that would be controlled by the facility. Leveraging the storage capabilities of
EV batteries, our scheme benefits both

* EV owners, who can sell during peak times some energy bought during off-peak period
and make some profit;

* and the facility, which can benefit from energy at lower-than-peak price, without
installing large storage solutions.

We propose and evaluate two management schemes to discharge those EVs, namely without
and with the possibility of removing depleted ones. Our numerical results suggest that we
can save around 10% on the energy bill, and we don’t need large amounts of surplus energy
in each EV to realize that. Hence this approach is viable in our opinion, and could help
reduce demand peaks that are observed in nowadays grids.






Chapter 5
Conclusion and future work

The background of the thesis is an ambitious blueprint of a modern electricity delivery
network named Smart Grid. Motived by the innovations in the domain of renewable energy
harvesting and a growing penetration of Information and Communication Technologies
(ICT), meanwhile urged by an increasing concern over energy independency together with a
request for lower-carbon footprint of every single person, Smart Grid is drawing more and
more attention and provides in itself an indispensable jigsaw piece of a bigger vision called
the Smart City.

In fact, we consider the Smart Grid as an ever evolving process rather than a destination.
The stakeholders in a power network have never being as diverse as nowadays: generators post
their estimated production volumes online, waiting for reliable industrial clients to purchase;
residential communities preempt nearby renewable energy at a low price; electricity vehicle
manufacturers get a good bargain from the utilities so that their clients can get free recharges;
householders equipped with solar panels and smart appliances keep an eye on real time
electricity prices to seek for the best chance to sell their surplus or to cover their deficits.

When we scale up the picture to discover the opportunities for EVs in the crowd, we
are at the intersection between the Smart Grid and economy. By all means, managing EV
recharging or discharging behaviors is trying to solve an economic problem in a Smart Grid
context. This is the case because energy is the product, price is a core concern, and other
devices such as recharging facilities, smart meters and ICT services are all enablers for
wise decisions, but in the center stand the EV owners, who are naturally assumed to be
self-interested, i.e., profit-driven or cost-sensitive. The flexibility of EV charging means that
they can be consumers in some instances and producers in others. In this thesis, we allow
them to play both roles, in some specific contexts.
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5.1 Summary of the thesis

The contribution of the thesis consists of the following three parts.

* We give a comprehensive survey of the state-of-the-art research on the economics of
EV charging. We emphasize on the models that share a similar point of view with us,
i.e., combining the charging management with the users’ economic interests. We try to
see how and how much EVs could benefit their owners and partners before clustering
and comparing the mechanism proposals with respect to the scenarios they consider
and the tools they adopt. Due to user anxieties over privacy and cyber-security, we
further examine how information-demanding they are. The purpose of the survey is to
help potential researchers to figure out the current trend and more importantly, to spot
the promising areas that are worth their endeavor.

* We propose a recharging model for EVs. This proposal is trying to make the best of
the demand-elasticity among EV owners, i.e., some of them have an imminent journey
to cover so cannot afford to charge at low power, whereas some others don’t need their
car so urgently thus a longer recharging time with cheaper energy is a good option.
Energy providers—the charging stations—are incentivized to offer the second type of
users such a choice because the grid operator would remunerate them for doing so.
A use case of this model is the frequency regulation market, from where we obtain
the values needed by our model parameters to give some numerical results. First we
assume a monopolistic station offering both high-power recharging to urgent users
and low-and-variable power to patient ones, then we split this monopolist into two
competing entities, with each of them offering one service. The comparison highlights

the price reductions and efficiency gains due to competition.

* We propose a model considering discharging parked EVs to supply an adjacent con-
sumer. In this proposal the EVs switch roles from consumers to suppliers. Noticing
the electricity price fluctuations during a day, EV owners with cheap energy sources
can take advantages of that by delivering electricity to a consumer in an area where,
or at a time when, the price is high. Deliberately doing this may involve detours thus
would be time and energy consuming for EV owners, so we’d rather assume that the
procedure does not affect the convenience while they participating other activities, e.g.
go to the supermarket or gymnasium. This brings uncertainties due to EV mobility.
Using a Markov mobility model, we take the consumer’s perspective, to see how much
power it should take from those available EVs, and how many discharging slots it
should maintain, to minimize the overall electricity bill.
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5.2 Perspectives and work plan
For both our proposals, there are some directions to continue the work.

* We think the recharging model can be extended in several ways including: modeling
in more actors such as charging stations with exclusive renewable energy sources;
considering the actor of a “Grid" who can play with the wholesale electricity price
imposed on both R-charging and S-charging station; or differentiating two charging
stations by their locations, which affect users’ preferences among them. Another
interesting direction is to assume that the potential EV-based regulation supply exceeds
the grid needs, leading to dispatching problems for the regulation capacities and
revenues. This could be the case in an isolated grid or micro-grid with small regulation
demand.

* For the discharging proposal, possible extensions include considering an elastic EV
supply, by relating the proportion of users who agree to discharge their batteries to the
relative benefits provided by the facility, and then searching for the optimal incentives.
Also, selecting upon arrivals EVs with sufficient sellable energy could significantly
reduce the unplugging workload.

Out of the scope of the current work, we find the following topics of particular interest.

* How to control a feet of EVs owned by a company and shared by its employees.
The recharging and discharging process should be jointly optimized with the reserva-
tion assignment. This provides either a multi-objective optimization problem if the
reservations are elastic, otherwise a constraint optimization problem. This is relevant
because autonomous cars have already hit the road, although experts predict that the
mass production is still 1 or 2 decades ahead of us, pilot projects are running in a few
areas including Ontario, Canada and Wuhu, China. Widely spread autonomous cars
would promote car sharing, thus make it possible for their owner to control them in a
centralized manner.

* Another opportunity lies in wireless charging, or more specifically, on-road charging.
Once the charging facilities are embedded in roads, not only the range anxiety is cured,
but also electricity exchange can be realized almost all thought the day. Business
models are still to be built and analyzed.
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Appendix A

Gestion du systeme des véhicules
¢lectriques avec des acteurs rationnels

A.1 Introduction

La diminution de I’offre de pétrole et I’augmentation des préoccupations environnementales
motivent fortement les efforts de recherche vers I’électrification des transports, et les progres
technologiques ont favorisé 1’arrivée des véhicules électriques (VEs) sur le marché. Cepen-
dant, la charge des VEs a un impact immense sur les parties prenantes dans les domaines
de I’électricité, comme les producteurs, les opérateurs de réseaux électriques, les détaillants
et les consommateurs [23]. De plus, une pénétration élevée avec une charge non controlée
menace la durabilité des réseaux de distribution [43]. Ces travaux de recherche aboutissent
a un consensus sur le fait que la recharge des VEs devrait étre controlée pour éviter la
congestion. En méme temps, grace au fait que leurs demandes sont relativement souples et
que leurs batteries peuvent étre temporairement utilisées pour supporter le réseau électrique,
les VEs peuvent €tre collaborateurs actifs au lieu de consommateurs passifs.

Dans cette these, nous supposons que les VEs appartiennent a des clients ayant leur
préférences spécifiques, qui ne renonceraient pas au contrdle du processus de recharge sans
étre compensés suffisamment. Ces incitations peuvent prendre plusieurs formes, comme une
récompense fixe, ou un prix variant selon le temps. Nous pensons donc que la recharge des
VEs doit étre gérée a 1’aide de mécanismes de marché, ol les participants seront supposés
avoir des objectifs différents. De ce fait, un cadre approprié pour la gestion VE est celui de
I’économie, et en particulier de la théorie des jeux.
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A.2 Charger des véhicules électriques dans la ville intelli-

gente: état de I’art

Nous présentons et classifions les schémas de charge proposés dans la littérature pour
exploiter les avantages et éviter les effets indésirables sur le réseau des VEs entrant dans
I’écosysteme. Cet état de I’art couvre a la fois la charge unidirectionnelle (I’énergie passe
seulement du réseau vers la batterie du VE) ainsi que le commerce d’énergie bidirectionnel
(le réseau peut également prendre de 1’énergie a partir des batteries embarquées des VEs).

A.2.1 Environnement techno-économique des VEs

Dans un marché de I’électricité, les utilisateurs finaux ont des contrats avec un opérateur
du réseau d’électricité qui achete 1'électricité produite par des producteurs. Pour faire
correspondre instantanément 1’ offre a la demande d’électricité, I’ opérateur du réseau exploite
des marchés de services auxiliaires, ou il achete des services auxiliaires aupres de producteurs
et/ou de consommateurs capables de modifier leur production ou leur consommation. Un
service auxiliaire typique qui maintient une fréquence/puissance de transmission stable est
nommé la régulation. Nous rappelons les acteurs pertinents et définissons le vocabulaire

comme suit.
* Véhicule Electrique (VE) : Un véhicule électrique physique ou son propriétaire.

* La station de recharge VE : Le propriétaire et/ou I’opérateur d’une ou de plusieurs
installations de charge a proximité physique, qui autorise la recharge et/ou la décharge

VE dans le but de maximiser les revenus.

* Opérateur du réseau (ou simplement réseau) : Une entité qui maintient le systeme de
transmission dans une zone donnée. Il fixe une contrainte pour la charge VE agrégée
en fonction de la capacité du transformateur. Il achete aussi la régulation lorsque cela
est nécessaire afin de maintenir 1’équilibre offre-demande.

A.2.2 Mécanismes de charge unidirectionnels

Cette section passe en revue les principales approches économiques pour gérer la charge
(unidirectionnelle) des VEs. Nous décrivons d’abord les approches statiques pour le partage
de I’énergie (ou I’objectif et les décisions sont basés sur un instantané du systeéme indépen-
damment des impacts possibles sur le futur), puis nous étendons le probleme de partage aux
scénarios dynamiques (ou I’incertitude des événements futurs est prise en compte).
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Recharge statique unidirectionnelle

Les modeles statiques traitent le probleme d’allocation d’énergie dans un intervalle de temps
indivisible, c’est-a-dire que seules les demandes actuelles sont considérées et qu’il n’y a
aucune incertitude quant aux événements futurs (variations de 1’offre et/ou de la demande).
Dans ce cadre, pour les modeles sans topologie réseau [34], la consommation des VEs
est limitée par leurs installations de charge, les batteries et en méme temps freinée par
I’équipement d’alimentation. Alors que lorsqu’une topologie du réseau de distribution
spécifique est considérée [71], les choix réalisables sont encore plus étroits, en raison des
débits des transformateurs aux nceuds.

Nous pouvons également considérer la dimension temporelle lors de la planification VE
charge. Une période de temps est divisé en plusieurs intervalles de temps. La variable de
décision est non seulement la quantité d’électricité a allouer parmi les VE, mais aussi son
expansion dans le temps, c’est-a-dire un vecteur, afin d’exploiter la flexibilité temporelle de
I’allocation de la demande. Par conséquent, le probleme est de remodeler la charge agrégée
(courbe de charge) sous contraintes sur 1’énergie totale transférée. Il existe des modeles
visant a former une courbe de charge constante [10], d’autres visant a former une courbe de
charge arbitraire [70].

Modéeles dynamiques

Dans certains modeles, les acteurs doivent s’engager pour des créneaux horaires avant que
toutes les informations pertinentes soient disponibles. Par exemple, un utilisateur peut
optimiser sa consommation actuelle en fonction du prix actuel [35], tout en sachant que les
variations de prix futures lui auraient permis d’obtenir un gain encore meilleur ; de méme,
un propriétaire de VE informé du prix de 1’€lectricité a venir, mais incapable de prévoir
précisément son heure de départ, ne peut rien faire de mieux que de minimiser son cofit de
I’électricité en espérance [75]. D’autres types d’informations inconnues sont apportés par
les clients a venir, comme la quantité et I’élasticité de leurs demandes. Des algorithmes
d’adaptation dynamique (également appelés algorithmes en ligne) anticipant et s’adaptant a
ces nouvelles informations doivent donc €tre définis pour une telle optimisation au cours du
temps.

Un scénario typique de cadre dynamique est I’arrangement de charge en tenant compte
de la mobilité. Nous pouvons effectuer une analyse économique, en incluant le point de vue
des propriétaire de VE [82], ou celui des agrégateurs/stations de recharge. [26].
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A.2.3 Commerce d’énergie bidirectionnel

Grace a la technologie V2G (Vehicle-to-Grid) les VEs ne peuvent pas seulement acheter de
I’électricité a partir du réseau, mais aussi le vendre.

Le prix de I’électricité bidirectionnelle (c¢’est-a-dire un prix pour I’achat d’énergie a partir
du réseau et un autre prix pour le revendre) offre aux VEs la possibilité d’arbitrer, c’est-a-dire
d’acheter de 1’électricité lorsque les prix sont bas et d’attendre que le réseau la rachete lors
des pics de consommation. Noter que les pertes de conversion d’énergie et/ou de conversion
AC/DC devraient étre considérées. Pour qu’un VE puisse obtenir un revenu d’arbitrage plus
élevé, les prix de 1’électricité bidirectionnelle jouent un réle essentiel, ainsi que la mobilité
du VE. La littérature fournit deux fagcons d’analyser ce parametre [50].

Kempton et Tomi¢ [57] suggerent que la régulation fait partie des services que les VEs
peuvent rendre au réseau électrique, car il exploite au mieux les forces des VEs: temps de
réponse rapide, faibles cofits de réserve et faible colit d’investissement par kW. Une étude [93]
suggere qu’a quelques exceptions pres, lorsque la valeur marchande annuelle de la régulation
est faible, le service de régulation est rentable pour les VE. Les schémas de répartition de la
régulation et les modeles d’allocation des recettes peuvent étre trouvés dans [25].

La production du parc éolien et la génération solaire sont inconstants et seulement
partiellement prévisibles, ce qui constitue un obstacle a I’utilisation large et efficace de
I’énergie renouvelable. Les VEs, avec leurs batteries embarquées, peuvent fournir des
services de stockage grace a la technologie V2G, c’est-a-dire absorber le surplus et le libérer
si nécessaire, pour maintenir un niveau de sortie stable et compenser ces limites de I’€olien
et du solaire.

A.3 Recharge VE et régulation : étude du comportement

des stations

Dans cette section, nous faisons une premiere proposition, consistant a utiliser le processus
de recharge des VEs pour fournir un service de régulation au réseau électrique, en adaptant
la puissance instantanée de charge. Nous conduisons une analyse économique des incitations
en jeu, en incluant le point de vue des VEs et celui des stations de recharge.

A.3.1 Mécanisme de régulation

La régulation se produit sur une variété d’échelles de temps [1]. Ici, nous nous attendons a

une période de temps de régulation entre 6min et 15min.
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La figure A.1 compare deux modes de charge, montrant les profils de puissance et
I’énergie accumulée : 1’un (no reg.) est une recharge a pleine puissance P; kW et I’autre
(regul.) est une recharge s’adaptant aux besoins de régulation. On désigne par Cp I’énergie
totale demandée par un VE, par A I’échelle de temps de régulation et par p, (resp., pg) la
probabilité de convocation de la régulation a la hausse (resp. a la baisse). P, représente la
puissance de recharge par défaut si la régulation n’est pas exigée, c’est-a-dire avec probabilité

1 —py—pa.

— Power (no reg.) — Energy (no reg.)
Power (regul.) - Energy (regul.)

Cp|

Power (kW) and Energy (kWh)

0o 1 2 3 4 5 6
Time (hours)

Fig. A.1 Puissance et énergie accumulée un EV obtenu avec et sans ajustement (simulation
avecCp =50kWh, P; =20kW, P, =16kW, A =0.1hour, p,, = p; =0.45)

En contrepartie de la régulation, la station recoit une rétribution monétaire (pour plus
de détails sur sa composition, veillez voir la these) dont le montant est proportionnel a la
quantité de régulation fournie. D’autre part, les propriétaires de VEs ne recoivent pas de
rémunération directement de 1I’opérateur du réseau, mais ils sont encouragés par la baisse des
prix de I’électricité offerte par la station (la recharge avec régulation est moins coiiteuse).

Nous supposons que chaque VE peut obtenir sa demande quotidienne d’électricité par

* Recharge simple (S-charging): au prix de T;€/kWh avec sa batterie rechargée a la
puissance maximale disponible de P; kW;

ou par

* Recharge-régulation (R-charging): au prix T,/kWh, avec la puissance de recharge
qui s’adapte aux sollicitations de régulation.

Dans le cas ol aucune des options ci-dessus ne convient au propriétaire du VE, il peut

également n’en choisir aucune (no_charging).
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Considérant les préférences de 1’utilisateur vis-a-vis de ces options, nous supposons qu’a
chaque propriétaire de VE correspond un parametre de sensibilité spécifique, qui détermine
s’il préfere R-charging, S-charging ou no_charging, en fonction des prix.

A.3.2 Agent de recharge en monopole

Cette étude est initialement conduite dans le cas d’un monopole, avec un agent (agrégateur),
qui peut offrir une S-charging ou une R-charging, comme indiqué dans la Figure A.2, coté

N

\j

gauche.

<— S-charging <— Energy flows

<— R-charging ELECTRIC EV supported <4— — No energy flow
| Energy from S-charging ¥ consuming entity | Reserved Energy
| Energy from R-charging e T A A [l Surplus Energy
’_, J r Teneeees . ! Energy sold
s & Pl A A
L1 T

Gy Gy Gy || Gy Gy G

Subgraph for section 3 Subgraph for section 4

Fig. A.2 Illustrations des modele des sections A.3 et A.4

Conscient du mécanisme de de régulation, du niveau de rémunération que 1’opérateur du
réseau offre et de I’anticipation des réactions des VEs, I’agrégateur peut décider d’effectuer
ou non une régulation, en fonction du calcul du revenu de régulation attendu. Nous analysons
les valeurs des incitations a la régulation qui sont suffisantes pour qu’une offre de R-charging
soit bénéfique a la fois pour I’agrégateur et 1’opérateur du réseau.

A.3.3 Compétition entre R-charging station et S-charging station

Nous regardons ensuite I’impact de la compétition. Pour cela, nous étudions a 1’aide de
la théorie des jeux, la compétition entre une station n’offrant que R-charging, et une autre
n’offrant que S-charging. Nous appliquons au cadre de jeu leader-suiveur, avec les stations de
recharge ayant le role de leader (fixant les prix en premier), les utilisateurs étant les suiveurs
(choisissant leur option de recharge). Les deux stations rivalisent sur les prix pour attirer
les propriétaires de VEs. Cela nous permet de résoudre le probleme grace a la méthode
backward induction issue de la théorie des jeux.
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Comme dans le cas du monopole, les préférences des utilisateurs entre les variations
de prix et de puissance de recharge sont supposées hétérogenes. Chaque station cherche le
meilleur compromis entre les parts de marché et le profit par client afin de maximiser ses

revenus escomptés. Nous avons donc un jeu non-coopérative, formulé comme suit.

Definition A.3.1. Le jeu de prix entre la station de S-charging et la station de R-charging est
spécifié par: (N, 7 ,(R))), oit ’ensemble de joueurs N se compose des deux stations, le
profil de prix 7 est un vecteur sur le demi-plan R>o X R, et la fonction R; : 7 — R donne

le revenu espéré de chaque station obtenue par VE.
L’analyse du jeu nous donne le résultat suivant.

Proposition A.3.2. Le jeu de prix défini dans A.3.1 possede soit un équilibre de Nash unique,

soit un unique Pareto-dominant quand il existe un nombre infini d’équilibres de Nash.

A.3.4 Comparaison entre I’équilibre de Nash et le modeéle monopolis-
tique

La compétition semble préférable pour les utilisateurs et pour la société, puisque les prix
sont alors plus bas qu’avec le monopole, et que la participation aux services de régulation est

bien plus élevée.

A.4 Réduire la dépendance du réseau dans les zones de

transit

Nous proposons d’utiliser une autre propriété des VEs, a savoir leur capacité de stockage
d’énergie. En effet, les VEs peuvent se charger pendant les heures de faible demande, donc
a des prix réduits, et éventuellement revendre une partie de 1I’énergie accumulée pendant
les pics de demande. Nous définissons un scénario ou un établissement utilise méme la
mobilité des VEs, en consommant 1’énergie apportée par des VEs, par exemple dans un
centre commercial ou certains clients revendent une partie de leur électricité pendant leur
durée de visite, comme illustrée en figure A.2, c6té droit.

Basé sur un modele simple pour la mobilité des VEs, le stockage de 1’énergie et la
tarification de 1’électricité, nous quantifions la réduction des coiits pour I’établissement grace
a la décharge des VEs et étudions les conditions pour que ce scénario soit viable.
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A.4.1 Description du modele

Nous décrivons ici les hypotheses que nous faisons.

* Nous supposons que le réseau impose le prix d’électricité en fonction de I’heure
de consommation. Plus précisément, notre modele ne consideére que deux prix de
I’électricité : un prix élevé pendant les périodes de pointe (pendant la journée) et un
prix bas pendant les périodes creuses (généralement pendant la nuit).

* Nous considérons un modele simple ou 1’établissement a besoin d’une puissance

constante au cours de ses périodes d’activité pendant les périodes de pointe.

* En raison de la variété des modeles de batteries et de la distance a couvrir apres la
décharge, la quantité d’énergie que les VE peuvent fournir étre modélisée comme une
variable aléatoire avec une distribution exponentielle.

* Nous supposons que les VE arrivent au parking selon un processus de Poisson. Nous
modélisons également la durée de parking de chaque VE en tant que variable aléatoire
indépendante distribuée de facon exponentielle.

» [’établissement supporte plusieurs cofits différents li€s a sa consommation d’énergie:

— Prix de Iélectricité de réseau. Comme évoqué précédemment, le prix de pointe.

— Prix de l’électricité de VE. Le prix payé aux VEs dépend du prix hors pointe, de
I’avantage relatif offert aux VE propriétaires pour les encourager a revendre, et

particulicrement de la puissance de décharge.

— Le coiit d’équipement de décharge. Chaque borne de décharge cofite a 1’établissement
un montant par unité de temps (e.g. une heure).

— Frais de gestion. Dans certaines solutions de gestion (comme décrit ci-apres), il y
aun colit pour le basculement d’un VE ayant vendu toute son énergie excédentaire
vers un autre (re-branchement).

Nous distinguerons deux possibilités de gestion:

* Le schéma 1 (scheme 1) fait référence a I’option “sans déconnexion" (no unplugging),
aucune action n’est effectuée lorsqu’un VE a vendu tout son excédent d’énergie —le
VE occupe la borne jusqu’a son départ—;

* Le schéma 2 (scheme 2) se réfere a1’ option avec “déconnexion” (unplugging). L’ établissement

peut libérer une borne manuellement ou automatiquement, lorsqu’un nouveau VE entre
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Fig. A.3 Variation de coit avec différentes puissances de décharge (ligne pleine) et nombre
variable de bornes de décharge (ligne en pointillés) lorsque 6 = 0.1, A = 20.

dans le systeme alors que tous les bornes sont occupées dont au moins une par un VE

sans plus d’énergie a vendre.

Table A.1 Variables du modele

Objectif
min. C; (resp. ) Cofit global pour I’établissement, Schéma 1 (Schéma 2)(€/kWh)

Variable controlée

ki (resp., k2) Nombre de bornes de décharge pour Schéma 1 (resp., Schéma 2)
Py (resp., Po2) Puissance de décharge par VE pour Schéma 1 (resp., Schéma 2)

A.4.2 Analyse

La table A.1 résume les variables du modele. L’idée principale de notre modele est de réduire
les colits de I’établissement C,.. Des compromis apparaissent dans le choix Fy., des puissances
de décharge (pertes versus décharge insuffisante si le temps de séjour des véhicules est court),
et dans le choix du nombre k, de bornes de décharge a installer (probabilité de blocage versus
colits de maintenance), comme illustré dans la figure A.3.

A partir de valeurs réalistes des marchés de I’électricité, nous déterminons numériquement
les conditions pour qu’un tel scénario soit viable, et quantifions les économies qu’il peut

apporter. En conclusion, notre proposition bénéficie a la fois



122 Gestion du systeme des véhicules électriques avec des acteurs rationnels

* aux propriétaires de VEs, qui peuvent faire des profits en vendant de 1’énergie pendant
les heures de pointe, achetée pendant les périodes creuses;

* et al’établissement, dont la dépendance aux réseau d’énergie est allégée par 1’achat
d’énergie aux propriétaires VE a des prix inférieurs au tarif de pointe.

Nos résultats numériques suggerent que nous pouvons économiser environ 10% de la facture,

et cela peut étre réalisé sans la nécessité d’une grande quantité d’excédent d’énergie.

A.5 Récap

La contribution de la theése se compose des trois parties: une étude de la littérature axée
sur I’économie de la charge des VEs, deux modeles de recharge pour les VEs et un modele
envisageant de décharger des VEs pour fournir un consommateur tiers.



Résumé

L'arrivée des véhicules électriques (VEs) a un impact non négligeable sur
le réseau électrique, & cause de la grande quantité d'énergie demandée.
La stabilité du réseau est susceptible d'étre menacée. Cependant, dans
I'optique de la transition du réseau électrique vers le Smart Grid, les VEs
peuvent aussi étre vus comme offrant de nouvelles opporfunités. Grace a la
flexibilité des VE demande, leur présence ouvre la voie a des optimisations
via le processus de recharge ou méme par l'ufilisation de cette nouvelle
capacité de stockage d'énergie distribuée. Dans cette thése, nous nous
intéressons aux aspects économiques liés a la VE recharge, en prenant en
compte le fait que I'écosystéme associé aux VEs implique un grand nombre
d'acteurs divers, aux objectifs rarement alignés et chague acteur peut
prendre des décisions stratégiques.

Je présente d'abord un état de I'art structuré des modeles de la littérature
introduits pour ces problémes. Nous décrivons et comparons les principales
approches, en mettant en évidence les besoins en communication des
mécanismes correspondants, ef les principales propriétés économiques
afin de souligner les résultats les plus significatifs ainsi que les éventuels
manques.

Nous faisons ensuite une proposition consistant a ufiliser le processus
de VE recharge pour fournir un service de régulation au réseau électrique,
en adaptant la puissance instantanée de charge. Nous conduisons une
analyse économique des incitations en jeu. En particulier, nous analysons
les valeurs des incitations a la régulation qui sont suffisantes pour qu'une
offre de recharge-régulation soit hénéfique a la fois pour I'agrégateur et le
réseau. Cette étude étant initialement conduite dans le cas d'un monopole
qui peut offrir une recharge normale ou une recharge-régulation. Nous
regardons ensuite |'impact de la compétition, enfre un agrégateur n'offrant
que des recharges a puissance fixe, et un aufre n'offrant que de la recharge-
régulation. La compétition semble préférable pour les ufilisateurs et pour
la société, puisque les prix sont alors plus bas qu'avec le monopole, et que
la participation aux services de régulafion est hien plus élevée.

Enfin, nous proposons d'utiliser une autre propriété des VEs, a savoir leur
capacité de stockage d'énergie. En effet, les VEs peuvent se charger pendant
les heures de faible demande, donc a des prix réduits, et éventuellement
revendre une partie pendant les pics de demande. Nous menons une étude
économique des gains et colits d'une telle approche. A partir de valeurs
réalistes des marchés de I'électricité, nous déterminons numériquement les
conditions pour qu'un tel scénario soif viable, et quantifions les économies
qu'il peuf apporter.

Cette dissertation se conclut par une prise de recul sur les contributions et
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Abstract

Electric Vehicles [EVs), as their penetration increases, are nof only
challenging the sustainability of the power grid, but also stimulating
and promoting its upgrading. Indeed, EVs can actively reinforce the
development of the Smart Grid if their charging processes are properly
coordinated through two-way communications, possibly benefifing all
types of actors. Because grid systems involve a large number of actors with
nonaligned objectives, we focus on the economic and incenfive aspects,
where each actor behaves in its own interest. We indeed believe that the
market structure will directly impact the actors’ hehaviors, and as a result
the total benefits that the presence of EVs can earn the society, hence the
need for a careful design.

The thesis first provides an overview of economic models considering
unidirectional energy flows, but also bidirectional energy flows, i.e., with
EVs temporarily providing energy fo the grid. We describe and compare
the main approaches, summarize the requirements on the supporting
communication systems, and propose a classification to highlight the most
important results and lacks.

We propose to use the recharging processes of EVs fo provide regulation
to the grid by varying the instantaneous recharging power. We provide an
economic analysis of the incentives at play, including the EV owners point
of view (longer recharging durations and impact on hattery lifetime versus
cheaper energy) and the aggregator point of view (revenues from recharging
versus regulation gains). In particular, we analyze the range of regulation
rewards such that offering a regulation-oriented recharging benefits
both EV owners and the aggregator. Affer that, we split the monopolistic
aggregator into fwo competing entities. We model a non-cooperative
game between them and examine the outcomes at the Nash equilibrium, in
terms of user welfare, station revenue and electricity prices. As expected,
competing stafions offer users with lower prices than the monopolistic
revenue-maximizing aggregator do. Furthermore, the amount of regulation
service increases significantly than that in the monopolistic case.
Considering the possibility of discharging, we propose an approach close to
Vehicle-to-Grid, where EVs can give back some energy from their hatteries
during peak times. But we also use EVs as energy transporters, hy taking
their energy where it is consumed. A typical example is a shopping mall with
energy needs, benefiting from customers coming and going to alleviate its
grid-hased consumption, while EV owners make profits by reselling energy
bought at off-peak periods. Based on a simple model for EV mobility,
energy storage, and electricity pricing, we quantify the reduction in energy
costs for the EV-supported system, and investigate the conditions for this
scenario fo be viahle.

Keywords : Smart Grid; Electric Vehicle, Electricity Pricing; Non-cooperative
games

Technopdle Brest-Iroise - (5 83818 - 29238 Brest Cedex 3
Tél:+33(0) 29 00 11 11 - Fax : + 33(0) 29 00 10 00



