S. Ambrosini, S. Beyazit, K. Haupt, . Tse-sum, and B. Bui, Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition, Chemical Communications, vol.58, issue.60, pp.49-6746, 2013.
DOI : 10.1021/j150512a005

URL : https://hal.archives-ouvertes.fr/hal-00866386

S. Beyazit, B. Tse-sum-bui, K. Haupt, and C. Gonzato, Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization, Progress in Polymer Science, vol.62, pp.1-21, 2016.
DOI : 10.1016/j.progpolymsci.2016.04.001

URL : https://hal.archives-ouvertes.fr/hal-01501923

X. Bi and Z. Liu, Facile Preparation of Glycoprotein-Imprinted 96-Well Microplates for Enzyme-Linked Immunosorbent Assay by Boronate Affinity-Based Oriented Surface Imprinting, Analytical Chemistry, vol.86, issue.1, pp.959-966, 2013.
DOI : 10.1021/ac403736y

P. Bonomi, M. D. Attieh, C. Gonzato, and K. Haupt, A New Versatile Water-Soluble Iniferter Platform for the Preparation of Molecularly Imprinted Nanoparticles by Photopolymerisation in Aqueous Media, Chemistry - A European Journal, vol.42, issue.29, pp.22-10150, 2016.
DOI : 10.1039/c3cs60198f

A. Bossi, F. Bonini, A. P. Turner, and S. A. Piletsky, Molecularly imprinted polymers for the recognition of proteins: The state of the art, Biosensors and Bioelectronics, vol.22, issue.6, pp.1131-1137, 2007.
DOI : 10.1016/j.bios.2006.06.023

C. Cáceres, F. Canfarotta, I. Chianella, E. Pereira, E. Moczko et al., Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes, The Analyst, vol.5, issue.4, pp.1405-1412, 2016.
DOI : 10.1039/c3nr00354j

A. George and W. W. Wilson, Predicting protein crystallization from a dilute solution property, Acta Crystallographica Section D Biological Crystallography, vol.50, issue.4, pp.361-365, 1994.
DOI : 10.1107/S0907444994001216

URL : http://journals.iucr.org/d/issues/1994/04/00/gr0304/gr0304.pdf

A. Guerreiro, A. Poma, K. Karim, E. Moczko, J. Takarada et al., Influence of Surface-Imprinted Nanoparticles on Trypsin Activity, Advanced Healthcare Materials, vol.33, issue.9, pp.1426-1429, 2014.
DOI : 10.1002/app.1529

K. Haupt, A. V. Linares, M. Bompart, . Tse-sum, and B. Bui, Molecularly imprinted polymers, Molecular Imprinting, pp.1-28, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737740

M. Hirota, M. Ohmuraya, and H. Baba, The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis, Journal of Gastroenterology, vol.28, issue.9, pp.41-832, 2006.
DOI : 10.1042/bj3141009

R. E. Ionescu, S. Cosnier, and R. S. Marks, Protease Amperometric Sensor, Analytical Chemistry, vol.78, issue.18, pp.78-6327, 2006.
DOI : 10.1021/ac060253w

L. Jiang, H. Bagán, T. Kamra, T. Zhou, and L. Ye, Nanohybrid polymer brushes on silica for bioseparation, J. Mater. Chem. B, vol.35, issue.19, pp.3247-3256, 2016.
DOI : 10.1016/j.progpolymsci.2009.10.008

C. A. Kandregula, G. S. Aseervatham, G. T. Bentley, and R. Kandasamy, Alpha-1 antitrypsin: Associated diseases and therapeutic uses, Clinica Chimica Acta, vol.459, pp.109-116, 2016.
DOI : 10.1016/j.cca.2016.05.028

F. Kartal and A. Denizli, Surface molecularly imprinted magnetic microspheres for the recognition of albumin, Journal of Separation Science, vol.82, issue.15, pp.2077-2086, 2014.
DOI : 10.1016/j.seppur.2011.08.011

J. Kaur, K. V. Singh, M. Raje, G. C. Varshney, and C. R. Suri, Strategies for direct attachment of hapten to a polystyrene support for applications in enzyme-linked immunosorbent assay (ELISA), Analytica Chimica Acta, vol.506, issue.2, pp.133-135, 2004.
DOI : 10.1016/j.aca.2003.11.009

S. Li, S. Cao, M. J. Whitcombe, and S. A. Piletsky, Size matters: Challenges in imprinting macromolecules, Progress in Polymer Science, vol.39, issue.1, pp.145-163, 2014.
DOI : 10.1016/j.progpolymsci.2013.10.002

Y. Liu and J. Yu, Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review, Microchimica Acta, vol.138, issue.6, pp.1-19, 2016.
DOI : 10.1039/c2an36787d

A. Poma, A. Guerreiro, S. Caygill, E. Moczko, and S. Piletsky, Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water, RSC Adv., vol.85, issue.8, pp.4203-4206, 2014.
DOI : 10.1021/ac402102j

Y. P. Qin, D. Y. Li, X. W. He, W. Y. Li, and Y. K. Zhang, Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring, ACS Applied Materials & Interfaces, vol.8, issue.16, pp.10155-10163, 2016.
DOI : 10.1021/acsami.6b00794

H. Sunayama, T. Ooya, and T. Takeuchi, Fluorescent protein-imprinted polymers capable of signal transduction of specific binding events prepared by a site-directed two-step post-imprinting modification, Chem. Commun., vol.2, issue.11, pp.50-1347, 2014.
DOI : 10.1038/nnano.2007.99

J. Xu, S. Ambrosini, E. Tamahkar, C. Rossi, K. Haupt et al., Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins, Biomacromolecules, vol.17, issue.1, pp.345-353, 2016.
DOI : 10.1021/acs.biomac.5b01454

URL : https://hal.archives-ouvertes.fr/hal-01501876

J. Xu, P. X. Medina-rangel, K. Haupt, and B. Tse-sum-bui, Guide to the Preparation of Molecularly Imprinted Polymer Nanoparticles for Protein Recognition by Solid-Phase Synthesis, Methods in Enzymology, vol.590, 2017.
DOI : 10.1016/bs.mie.2017.02.004

C. Yang, X. Yan, H. Guo, and G. Fu, Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links, Biosensors and Bioelectronics, vol.75, pp.129-135, 2016.
DOI : 10.1016/j.bios.2015.08.033

H. H. Yang, K. H. Lu, Y. F. Lin, S. H. Tsai, S. Chakraborty et al., Depletion of albumin and immunoglobulin G from human serum using epitope-imprinted polymers as artificial antibodies, Journal of Biomedical Materials Research Part A, vol.26, issue.7, pp.1935-1942, 2013.
DOI : 10.1016/j.biomaterials.2005.02.007

H. Yang, T. Y. Guo, and D. Zhou, Surface hydrophilic modification with well-defined glycopolymer for protein imprinting matrix, International Journal of Biological Macromolecules, vol.48, issue.3, pp.432-438, 2011.
DOI : 10.1016/j.ijbiomac.2011.01.002

L. Ye, Synthetic Strategies in Molecular Imprinting, Molecularly Imprinted Polymers in Biotechnology, pp.1-24, 2015.
DOI : 10.1007/10_2015_313

H. Zhang, Abstract, Molecular Imprinting, vol.48, issue.1, pp.35-46, 2015.
DOI : 10.1016/j.chroma.2010.06.001

URL : https://hal.archives-ouvertes.fr/hal-01126336

L. Zhang and J. Du, A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate, Biosensors and Bioelectronics, vol.79, pp.347-352, 2016.
DOI : 10.1016/j.bios.2015.12.070

D. Adamko, B. H. Rowe, T. Marrie, and B. D. Sykes, Variation of metabolites in normal human urine, Metabolomics, vol.3, issue.4, pp.439-451, 2007.

S. Ambrosini, S. Beyazit, K. Haupt, and B. T. Bui, Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition, Chemical Communications, vol.58, issue.60, pp.49-6746, 2013.
DOI : 10.1021/j150512a005

URL : https://hal.archives-ouvertes.fr/hal-00866386

S. Beyazit, S. Ambrosini, N. Marchyk, E. Palo, V. Kale et al., Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources, Angewandte Chemie International Edition, issue.34, pp.53-8919, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344566

X. Bi and Z. Liu, Facile Preparation of Glycoprotein-Imprinted 96-Well Microplates for Enzyme-Linked Immunosorbent Assay by Boronate Affinity-Based Oriented Surface Imprinting, Analytical Chemistry, vol.86, issue.1, 2013.
DOI : 10.1021/ac403736y

A. Cutivet, C. Schembri, J. Kovensky, and K. Haupt, Molecularly Imprinted Microgels as Enzyme Inhibitors, Journal of the American Chemical Society, vol.131, issue.41, pp.131-14699, 2009.
DOI : 10.1021/ja901600e

URL : https://hal.archives-ouvertes.fr/hal-00429186

G. Ertürk, M. Hedström, and B. Mattiasson, A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor, Biosensors and Bioelectronics, vol.86, pp.557-565, 2016.
DOI : 10.1016/j.bios.2016.07.046

S. A. Evans, S. T. Olson, and J. D. Shore, p-Aminobenzamidine as a fluorescent probe for the active site of serine proteases, Journal of Biological Chemistry, vol.257, issue.6, pp.3014-3017, 1982.

X. Gao, G. Tang, Y. Li, and X. Su, A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots, Analytica Chimica Acta, vol.743, pp.131-136, 2012.
DOI : 10.1016/j.aca.2012.07.007

A. George and W. W. Wilson, Predicting protein crystallization from a dilute solution property, Acta Crystallographica Section D Biological Crystallography, vol.50, issue.4, pp.361-365, 1994.
DOI : 10.1107/S0907444994001216

URL : http://journals.iucr.org/d/issues/1994/04/00/gr0304/gr0304.pdf

K. Haupt and K. Mosbach, Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors, Chemical Reviews, vol.100, issue.7, pp.2495-2504, 2000.
DOI : 10.1021/cr990099w

O. Hayden, C. Haderspöck, S. Krassnig, X. Chen, and F. L. Dickert, Surface imprinting strategies for the detection of trypsin, The Analyst, vol.16, issue.9, pp.131-1044, 2006.
DOI : 10.1085/jgp.16.2.323

M. Hirota, M. Ohmuraya, and H. Baba, The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis, Journal of Gastroenterology, vol.28, issue.9, pp.41-832, 2006.
DOI : 10.1042/bj3141009

R. E. Ionescu, S. Cosnier, and R. S. Marks, Protease Amperometric Sensor, Analytical Chemistry, vol.78, issue.18, pp.78-6327, 2006.
DOI : 10.1021/ac060253w

H. Kubo, H. Nariai, and T. Takeuchi, Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine, Chemical Communications, issue.22, pp.2792-2793, 2003.
DOI : 10.1039/b309917b

M. K. Leung, C. F. Chow, and M. H. Lam, A sol?gel derived molecular imprinted luminescent PET sensing material for 2, 4-dichlorophenoxyacetic acid, Journal of Materials Chemistry, issue.12, pp.11-2985, 2001.

J. Ma, C. Hou, Y. Liang, T. Wang, Z. Liang et al., Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith, PROTEOMICS, vol.2, issue.5, pp.11-991, 2011.
DOI : 10.1038/nmeth785

J. Matsui, H. Kubo, and T. Takeuchi, Molecularly Imprinted Fluorescent-Shift Receptors Prepared with 2-(Trifluoromethyl)acrylic Acid, Analytical Chemistry, vol.72, issue.14, pp.72-3286, 2000.
DOI : 10.1021/ac000106c

W. A. See and J. L. Smith, URINARY LEVELS OF ACTIVATED TRYPSIN IN WHOLE -ORGAN PANCREAS TRANSPLANT PATIENTS WITH DUODENOCYSTOSTOMIES, Transplantation, vol.52, issue.4, pp.630-633, 1991.
DOI : 10.1097/00007890-199110000-00010

M. Soleimani and S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow, Nature Protocols, vol.12, issue.1, pp.102-106, 2009.
DOI : 10.1038/nprot.2008.221

T. Takeuchi, T. Mukawa, and H. Shinmori, Signaling molecularly imprinted polymers: molecular recognition-based sensing materials, The Chemical Record, vol.78, issue.5, pp.263-275, 2005.
DOI : 10.1080/00032719608001461

X. A. Ton, V. Acha, P. Bonomi, B. Tse-sum-bui, and K. Haupt, A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe, Biosensors and Bioelectronics, vol.64, pp.359-366, 2015.
DOI : 10.1016/j.bios.2014.09.017

X. A. Ton, B. Tse-sum-bui, M. Resmini, P. Bonomi, I. Dika et al., A Versatile Fiber ? Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ, Angewandte Chemie International Edition, issue.32, pp.52-8317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866486

S. Tsuji and H. Kawaguchi, Effect of Graft Chain Length and Structure Design on Temperature-Sensitive Hairy Particles, Macromolecules, vol.39, issue.13, pp.39-4338, 2006.
DOI : 10.1021/ma052343t

J. Wackerlig and P. A. Lieberzeit, Molecularly imprinted polymer nanoparticles in chemical sensing ??? Synthesis, characterisation and application, Sensors and Actuators B: Chemical, vol.207, pp.144-157, 2015.
DOI : 10.1016/j.snb.2014.09.094

J. Xu, S. Ambrosini, E. Tamahkar, C. Rossi, K. Haupt et al., Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins, Biomacromolecules, vol.17, issue.1, pp.345-353, 2016.
DOI : 10.1021/acs.biomac.5b01454

URL : https://hal.archives-ouvertes.fr/hal-01501876

L. Zhang and J. Du, A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate, Biosensors and Bioelectronics, vol.79, pp.347-352, 2016.
DOI : 10.1016/j.bios.2015.12.070

M. Zvarik, D. Martinicky, L. Hunakova, I. Lajdova, and L. Sikurova, Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients, Neoplasma, vol.60, issue.05, pp.178-60, 2013.
DOI : 10.4149/neo_2013_069

L. Cenci, G. Guella, E. Andreetto, E. Ambrosi, A. Anesi et al., Guided folding takes a start from the molecular imprinting of structured epitopes, Nanoscale, vol.102, issue.34, pp.15665-15670, 2016.
DOI : 10.1021/cr980039a

A. Mujahid, N. Iqbal, and A. Afzal, Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond, Biotechnology Advances, vol.31, issue.8, pp.31-1435, 2013.
DOI : 10.1016/j.biotechadv.2013.06.008

Y. P. Qin, D. Y. Li, X. W. He, W. Y. Li, and Y. K. Zhang, Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring, ACS Applied Materials & Interfaces, vol.8, issue.16, pp.10155-10163, 2016.
DOI : 10.1021/acsami.6b00794

Y. Zhang, C. Deng, S. Liu, J. Wu, Z. Chen et al., Active targeting of tumors through conformational epitope imprinting, Angewandte Chemie International Edition, issue.17, pp.54-5157, 2015.
DOI : 10.1002/ange.201412114

S. Albrecht, A. Defoin, and C. Tarnus, Simple Preparation of O-Substituted Hydroxylamines from Alcohols., ChemInform, vol.37, issue.36, pp.1635-1638, 2006.
DOI : 10.1002/chin.200636057

S. Ambrosini, S. Beyazit, K. Haupt, . Tse-sum, and B. Bui, Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition, Chemical -205- Communications, pp.49-6746, 2013.
DOI : 10.1021/j150512a005

URL : https://hal.archives-ouvertes.fr/hal-00866386

J. Bai, W. C. Mak, X. Y. Chang, and D. Trau, Organic Phase Coating of Polymers onto Agarose Microcapsules for Encapsulation of Biomolecules with High Efficiency, 13th International Conference on Biomedical Engineering, pp.821-824, 2009.
DOI : 10.1007/978-3-540-92841-6_202

L. Cenci, G. Guella, E. Andreetto, E. Ambrosi, A. Anesi et al., Guided folding takes a start from the molecular imprinting of structured epitopes, Nanoscale, vol.102, issue.34, pp.15665-15670, 2016.
DOI : 10.1021/cr980039a

I. Chianella, A. Guerreiro, E. Moczko, J. S. Caygill, E. V. Piletska et al., Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA???Development of a Novel Assay for Vancomycin, Analytical Chemistry, vol.85, issue.17, pp.85-8462, 2013.
DOI : 10.1021/ac402102j

H. Fausther-bovendo, V. Vieillard, S. Sagan, G. Bismuth, and P. Debré, HIV gp41 Engages gC1qR on CD4+ T Cells to Induce the Expression of an NK Ligand through the PIP3/H2O2 Pathway, PLoS Pathogens, vol.76, issue.7, p.1000975, 2010.
DOI : 10.1371/journal.ppat.1000975.s003

URL : https://hal.archives-ouvertes.fr/hal-00626988

K. Haupt, A. V. Linares, M. Bompart, . Tse-sum, and B. Bui, Molecularly imprinted polymers, Molecular Imprinting, pp.1-28, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737740

I. N. Heppner, M. R. Islam, and M. J. Serpe, -isopropylacrylamide)-Based Microgels, Macromolecular Rapid Communications, vol.132, issue.21, pp.34-1708, 2013.
DOI : 10.1063/1.3381177

URL : https://hal.archives-ouvertes.fr/hal-00577462

Y. Hoshino, T. Kodama, Y. Okahata, and K. J. Shea, Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody, Journal of the American Chemical Society, vol.130, issue.46, pp.130-15242, 2008.
DOI : 10.1021/ja8062875

S. Huber and R. Jordan, Modulation of the lower critical solution temperature of 2-Alkyl-2-oxazoline copolymers, Colloid and Polymer Science, vol.28, issue.4, pp.395-402, 2008.
DOI : 10.1002/masy.19930730111

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

J. Matsui, H. Kubo, and T. Takeuchi, Molecularly Imprinted Fluorescent-Shift Receptors Prepared with 2-(Trifluoromethyl)acrylic Acid, Analytical Chemistry, vol.72, issue.14, pp.72-3286, 2000.
DOI : 10.1021/ac000106c

S. Medel, M. García, J. Garrido, L. Quijada?garrido, I. París et al., Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces, Journal of Polymer Science Part A: Polymer Chemistry, vol.32, issue.3, pp.49-690, 2011.
DOI : 10.1016/j.progpolymsci.2007.04.002

Q. J. Sattentau and J. P. Moore, Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding, Journal of Experimental Medicine, vol.174, issue.2, pp.407-415, 1991.
DOI : 10.1084/jem.174.2.407

D. M. Shendage, R. Fröhlich, and G. Haufe, Highly Efficient Stereoconservative Amidation and Deamidation of ??-Amino Acids, Organic Letters, vol.6, issue.21, pp.3675-3678, 2004.
DOI : 10.1021/ol048771l

V. Vieillard, L. Grand, R. Dausset, J. Debré, and P. , A vaccine strategy against AIDS, 2008.

V. Vieillard, J. L. Strominger, and P. Debré, NK cytotoxicity against CD4+ T cells during HIV-1 infection: A gp41 peptide induces the expression of an NKp44 ligand, Proceedings of the National Academy of Sciences of the United States of America, pp.10981-10986, 2005.
DOI : 10.1038/387426a0

Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture, Part A: Fluorescent Analogs, Labeling Cells and Basic Microscopy, vol.29, 1989.

A. Weisman, Y. A. Chen, Y. Hoshino, H. Zhang, and K. Shea, Engineering Nanoparticle Antitoxins Utilizing Aromatic Interactions, Biomacromolecules, vol.15, issue.9, pp.3290-3295, 2014.
DOI : 10.1021/bm500666j

J. Xu, S. Ambrosini, E. Tamahkar, C. Rossi, K. Haupt et al., Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins, Biomacromolecules, vol.17, issue.1, pp.345-353, 2016.
DOI : 10.1021/acs.biomac.5b01454

URL : https://hal.archives-ouvertes.fr/hal-01501876

Y. Zhang, C. Deng, S. Liu, J. Wu, Z. Chen et al., Active targeting of tumors through conformational epitope imprinting, Angewandte Chemie International Edition, issue.17, pp.54-5157, 2015.