Etude expérimentale et simulation numérique de propagation de fissures dans un acier inoxydable martensitique durci par précipitation sous conditions représentatives en termes de température, spectre de chargement et vieillissement

Abstract : Connecting the turbofan engine to the wing of the aircraft, the engine pylon is a true « masterpiece » of the aircraft. Indeed, it transmits all the aircraft engine efforts. It is subject to temperature variations from -40°C in cruise to 290°C-400°C during take off and landing. In addition, the engine pylon is a prey to very high vibratory stresses, which should be properly taken into account during damage tolerances analysis to avoid the loss of the aircraft. Between 290°C and 400°C, the martensite of components in precipitation-hardenable stainless steel (15-5 PH) of engine pylon undergoes microstructural transformation (« ageing »). This ageing has a significant impact on the mechanical properties, characterized by an increase in yield strength and tensile stress and drastic reduction in toughness and ductility. To complete the characterization of the effects of ageing on the mechanical properties while considering that these structures are designed according to a principle of damage tolerance, the aim of this work is to study the fatigue crack growth behavior (FCGB) of this material according to the ageing conditions and the test temperature. The approach is based on knowledge of monotonous and cyclic behavior to analyze the fatigue crack mechanisms. The cyclic behavior tests have been carried out at room temperature and 300°C at different strains imposed levels, on the 15-5PH steel in its as-received and then to the ageing conditions realized, between 300°C and 400°C and exposure times of up to 10 000h. The results highlight the lack of influence of ageing on the cyclic hardening of 15-5 PH steel, both at room temperature to 300°C. For the range of ΔK values tested, the FCGB of the 15-5PH steel under constant load amplitude is not affected by ageing. However, the extent of the stable propagation domain is itself reduced according to the degree of aging at room temperature. This reduction is due to the fall of fracture toughness due to ageing. The fracture surfaces are mainly transgranular for all conditions examined. However, the areas close to the final rupture ofsome ageing statements present islands indicative of a static failure mode at room temperature. These islands are absent to 300°C.Under the effect of repeated loads, a delayed effect on the crack velocity has been demonstrated. This delay is a function of the overload rate, overload period, the number of overloads and the baseline load ratio, but insensitive to ageing. Furthermore, are duction in the extent of the area stable propagation is also noticed at room temperature. Fatigue crack growth simulations undervariable amplitude loading were made through the incremental model for damage tolerance analysis developed by LMT-Cachan. The model results were then subject to a comparison with the PREFFAS model used at AIRBUS. The incremental model is well aware ofsome of the effects of repeated overloads. It also proves less conservative than the model PREFFAS. For taking account the effects of ageing in the incremental model, simply report the hardening observed on old material, the cyclic hardening parameters are notaffected. A methodology based on time/temperature equivalence provided by Hollomon-Jaffe - and taking into account the effects of ageing in the incremental model is finally proposed.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01592546
Contributor : Abes Star <>
Submitted on : Monday, September 25, 2017 - 9:56:07 AM
Last modification on : Tuesday, June 4, 2019 - 6:21:44 PM
Long-term archiving on : Tuesday, December 26, 2017 - 12:36:40 PM

File

2017ESMA0013_dimithe_aboumou.p...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01592546, version 1

Collections

Citation

Loïc Dimithe Aboumou. Etude expérimentale et simulation numérique de propagation de fissures dans un acier inoxydable martensitique durci par précipitation sous conditions représentatives en termes de température, spectre de chargement et vieillissement. Autre. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2017. Français. ⟨NNT : 2017ESMA0013⟩. ⟨tel-01592546⟩

Share

Metrics

Record views

380

Files downloads

258