J. P. Crutchfield, W. L. Ditto, and S. Sinha, Introduction to Focus Issue: Intrinsic and Designed Computation: Information Processing in Dynamical Systems???Beyond the Digital Hegemony, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.36, issue.3, p.37101, 2010.
DOI : 10.1063/1.3491238

G. Indiveri and S. C. Liu, Memory and Information Processing in Neuromorphic Systems, Proceedings of the IEEE, vol.103, issue.8, pp.1379-1397, 2015.
DOI : 10.1109/JPROC.2015.2444094

URL : http://arxiv.org/abs/1506.03264

P. Enel, E. Procyk, R. Quilodran, and P. Dominey, Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex, PLOS Computational Biology, vol.87, issue.4, p.1004967, 2016.
DOI : 10.1371/journal.pcbi.1004967.t003

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.
DOI : 10.1007/BF02478259

A. L. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-408, 1958.
DOI : 10.1037/h0042519

M. Minsky and S. Papert, Perceptrons: An Introduction to, Computational Geometry, vol.165, 1969.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1090/pspum/028.2/0507425

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

F. J. Pineda, Generalization of back-propagation to recurrent neural networks, Physical Review Letters, vol.81, issue.19, pp.2229-2232, 1987.
DOI : 10.1073/pnas.81.10.3088

W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.2531-2560, 2002.
DOI : 10.1038/35009102

H. Jaeger, The " echo state " approach to analysing and training recurrent neural networks, German National Research Center for Information Technology GMD Technical Report, vol.148, p.34, 2001.

J. Steil, Backpropagation-decorrelation: online recurrent learning with O(N) complexity, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), pp.843-848, 2004.
DOI : 10.1109/IJCNN.2004.1380039

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Appeltant, Information processing using a single dynamical node as complex system, Nature Communications, vol.22, pp.466-468, 2011.
DOI : 10.1109/TNN.2010.2089641

URL : http://www.nature.com/articles/ncomms1476.pdf

D. J. Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Physica D: Nonlinear Phenomena, vol.4, issue.3, pp.366-393, 1982.
DOI : 10.1016/0167-2789(82)90042-2

T. Erneux, Applied Delay Differential Equations, 2009.

F. T. Arecchi, G. Giacomelli, A. Lapucci, and R. Meucci, Two-dimensional representation of a delayed dynamical system, Physical Review A, vol.23, issue.7, pp.4225-4228, 1992.
DOI : 10.1016/0167-2789(86)90149-1

G. Giacomelli, R. Meucci, A. Politi, and F. Arecchi, Defects and Spacelike Properties of Delayed Dynamical Systems, Physical Review Letters, vol.57, issue.8, pp.1099-1102, 1994.
DOI : 10.1103/RevModPhys.65.851

G. Giacomelli and A. Politi, Relationship between Delayed and Spatially Extended Dynamical Systems, Physical Review Letters, vol.31, issue.15, pp.2686-2689, 1996.
DOI : 10.1103/PhysRevA.31.3868

Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenomena in Complex Systems, vol.5, pp.380-385, 2002.

D. Abrams and S. H. Strogatz, Chimera States for Coupled Oscillators, Physical Review Letters, vol.208, issue.17, p.174102, 2004.
DOI : 10.1098/rspb.1980.0051

URL : http://arxiv.org/pdf/nlin/0407045

M. J. Panaggio and D. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, vol.28, issue.3, pp.67-87, 2015.
DOI : 10.1088/0951-7715/28/3/R67

L. Larger, J. Goedgebuer, and V. Udaltsov, Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos, Comptes Rendus Physique, vol.5, issue.6, pp.669-681, 2004.
DOI : 10.1016/j.crhy.2004.05.003

URL : https://hal.archives-ouvertes.fr/hal-00096982

L. Larger, P. Lacourt, S. Poinsot, and M. Hanna, From Flow to Map in an Experimental High-Dimensional Electro-Optic Nonlinear Delay Oscillator, Physical Review Letters, vol.82, issue.4, p.43903, 2005.
DOI : 10.1103/PhysRevLett.90.254101

G. Giacomelli, F. Marino, M. A. Zaks, and S. Yanchuk, Coarsening in a bistable system with long-delayed feedback, EPL (Europhysics Letters), vol.99, issue.5, p.58005, 2012.
DOI : 10.1209/0295-5075/99/58005

L. Larger, Complexity in electro-optic delay dynamics: modelling, design and applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.82, issue.19, pp.20120464-20120464, 2013.
DOI : 10.1103/PhysRevA.82.033801

URL : https://hal.archives-ouvertes.fr/hal-00878742

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, vol.197, issue.4300, pp.287-296, 1977.
DOI : 10.1126/science.267326

J. G. Milton, A. Longtin, A. Beuter, M. C. Mackey, and L. Glass, Complex dynamics and bifurcations in neurology, Journal of Theoretical Biology, vol.138, issue.2, pp.129-147, 1989.
DOI : 10.1016/S0022-5193(89)80135-3

J. Feng, S. A. Sevier, B. Huang, D. Jia, and H. Levine, Modeling delayed processes in biological systems, Physical Review E, vol.208, issue.3, pp.1-9, 2016.
DOI : 10.1103/PhysRevE.59.3970

URL : http://arxiv.org/pdf/1605.07304

Y. K. Chembo, M. Jacquot, J. Dudley, and L. Larger, Ikeda-like chaos on a dynamically filtered supercontinuum light source, Physical Review A, vol.94, issue.2, p.23847, 2016.
DOI : 10.2307/2318254

Y. Paquot, Optoelectronic Reservoir Computing, Scientific Reports, vol.8, issue.1, 2012.
DOI : 10.1109/ICASSP.1982.1171644

URL : http://www.nature.com/articles/srep00287.pdf

F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, All-optical reservoir computing, Optics Express, vol.20, issue.20, pp.22783-22795, 2012.
DOI : 10.1364/OE.20.022783

URL : http://arxiv.org/abs/1207.1619

L. Larger, Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing, Optics Express, vol.20, issue.3, pp.3241-3250, 2012.
DOI : 10.1364/OE.20.003241

URL : https://hal.archives-ouvertes.fr/hal-00664446

D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, Parallel photonic information processing at gigabyte per second data rates using transient states, Nature Communications, vol.1, pp.1364-1367, 2013.
DOI : 10.1038/ncomms1028

URL : http://www.nature.com/articles/ncomms2368.pdf

M. C. Soriano, Delay-Based Reservoir Computing: Noise Effects in a Combined Analog and Digital Implementation, IEEE Transactions on Neural Networks and Learning Systems, vol.26, issue.2, pp.388-393, 2015.
DOI : 10.1109/TNNLS.2014.2311855

URL : https://digital.csic.es/bitstream/10261/133728/1/accesoRestringido.pdf

M. Hermans, M. C. Soriano, J. Dambre, P. Bienstman, and I. Fischer, Photonic delay systems as machine learning implementations, Journal of Machine Learning Research, pp.1-22, 2015.

B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland, Topological solitons as addressable phase bits in a driven laser, Nat Commun, vol.6, 2015.
DOI : 10.1364/np.2016.nw3b.2

URL : http://arxiv.org/abs/1409.6350

B. Romeira, R. Avó, J. M. Figueiredo, S. Barland, and J. Javaloyes, Regenerative memory in time-delayed neuromorphic photonic resonators, Scientific Reports, vol.218, issue.1, p.150307781, 2016.
DOI : 10.1016/0370-1573(92)90098-K

URL : http://www.nature.com/articles/srep19510.pdf

K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Optics Communications, vol.30, issue.2, 1979.
DOI : 10.1016/0030-4018(79)90090-7

R. M. May, Simple mathematical models with very complicated dynamics, Nature, vol.29, issue.5560, pp.459-467, 1976.
DOI : 10.2307/3863

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, Journal of Statistical Physics, vol.54, issue.1, pp.25-52, 1978.
DOI : 10.1007/BF01020332

A. N. Sharkovsky, COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF, International Journal of Bifurcation and Chaos, vol.05, issue.05, pp.1263-1273, 1995.
DOI : 10.1142/S0218127495000934

J. A. Yorke and T. Li, Period three implies chaos, The American Mathematical Monthly, vol.82, pp.985-992, 1975.

J. B. Hoagg, S. L. Lacy, V. Babuska, and D. S. Bernstein, Sequential multisine excitation signals for system identification of large space structures, 2006 American Control Conference, p.pp.? (, 2006.
DOI : 10.1109/ACC.2006.1655392

R. Lavrov, M. Jacquot, and L. Larger, Nonlocal Nonlinear Electro-Optic Phase Dynamics Demonstrating 10 Gb/s Chaos Communications, IEEE Journal of Quantum Electronics, vol.46, issue.10, pp.1430-1435, 2010.
DOI : 10.1109/JQE.2010.2049987

URL : https://hal.archives-ouvertes.fr/hal-00580943

R. J. Douglas and K. A. Martin, Recurrent neuronal circuits in the neurocortex, Current Biology, vol.27, pp.496-500, 2004.

E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics, pp.14-17, 2015.
DOI : 10.1017/CBO9781107447615

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol.4, issue.2, pp.251-257, 1991.
DOI : 10.1016/0893-6080(91)90009-T

K. Funahashi and Y. Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks, vol.6, issue.6, pp.801-806, 1993.
DOI : 10.1016/S0893-6080(05)80125-X

J. Kilian and H. Siegelmann, The Dynamic Universality of Sigmoidal Neural Networks, Information and Computation, vol.128, issue.1, pp.48-56, 1996.
DOI : 10.1006/inco.1996.0062

H. Jaeger, A tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the "echo state network" approach, GMD Report German National Research Center for Information Technology, vol.159, pp.1-46, 2002.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

O. Russakovsky, ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/978-3-642-15555-0_11

URL : http://arxiv.org/abs/1409.0575

D. Silver, Mastering the game of Go with deep neural networks and tree search, Nature, vol.34, issue.7587, pp.484-489, 2016.
DOI : 10.3233/ICG-2011-34302

V. Mnih, Human-level control through deep reinforcement learning, Nature, vol.101, issue.7540, pp.529-533, 2015.
DOI : 10.1016/S0004-3702(98)00023-X

A. Esteva, Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.9, issue.10, pp.115-118, 2017.
DOI : 10.1109/TKDE.2009.191

R. Athale and D. Psaltis, Optical computing, past & future. Optics and Photonics News, pp.32-39, 2016.
DOI : 10.1364/opn.27.6.000032

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, vol.10, issue.8, pp.821-824, 1990.
DOI : 10.1103/RevModPhys.57.617

V. S. Udaltsov, Bandpass chaotic dynamics of electronic oscillator operating with delayed nonlinear feedback, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.49, issue.7, pp.1006-1009, 2002.
DOI : 10.1109/TCSI.2002.800835

URL : https://hal.archives-ouvertes.fr/hal-00093947

Y. K. Chembo, Dynamic instabilities of microwaves generated with optoelectronic oscillators, Optics Letters, vol.32, issue.17, pp.2571-2573, 2007.
DOI : 10.1364/OL.32.002571

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, pp.1102-0183, 2012.
DOI : 10.1162/neco.2009.10-08-881

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1701-1708, 2014.
DOI : 10.1109/CVPR.2014.220

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

Y. Paquot, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, Reservoir computing: a photonic neural network for information processing, Nonlinear Optics and Applications IV, pp.77280-77280, 2010.
DOI : 10.1117/12.854050

URL : https://biblio.ugent.be/publication/1070018/file/1070086.pdf

D. Barkley and L. S. Tuckerman, Computational Study of Turbulent Laminar Patterns in Couette Flow, Physical Review Letters, vol.164, issue.1, pp.1-4, 2005.
DOI : 10.1006/jcph.1995.1208

URL : https://hal.archives-ouvertes.fr/hal-00012994

D. Barkley, Modeling the transition to turbulence in shear flows, Journal of Physics: Conference Series, vol.318, issue.3, pp.32001-1107, 2011.
DOI : 10.1088/1742-6596/318/3/032001

G. Brethouwer, Y. Duguet, and P. Schlatter, Turbulent???laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces, Journal of Fluid Mechanics, vol.96, pp.137-172, 2012.
DOI : 10.1063/1.870068

Y. Duguet and P. Schlatter, Oblique Laminar-Turbulent Interfaces in Plane Shear Flows, Physical Review Letters, vol.110, issue.3, p.34502, 2013.
DOI : 10.1017/S0022112082002006

A. M. Hagerstrom, Experimental observation of chimeras in coupled-map lattices, Nature Physics, vol.5, issue.9, pp.658-661, 2012.
DOI : 10.1016/S0370-1573(02)00137-0

N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Residori, Spatiotemporal Chaotic Localized State in Liquid Crystal Light Valve Experiments with Optical Feedback, Physical Review Letters, vol.110, issue.10, pp.1-5, 2013.
DOI : 10.1016/0375-9601(87)90581-0

M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nature Physics, vol.5, issue.9, pp.662-665, 2012.
DOI : 10.1103/PhysRevLett.94.014502

E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.10563-10570, 2013.
DOI : 10.1103/PhysRevLett.107.043603

URL : http://www.pnas.org/content/110/26/10563.full.pdf

T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y. Maistrenko, Imperfect chimera states for coupled pendula, Scientific Reports, vol.41, issue.1, p.6379, 2014.
DOI : 10.1088/0022-3727/41/1/015503

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376200

D. Viennot and L. Aubourg, Quantum chimera states Physics Letters, Section A: General, Atomic and Solid State Physics, pp.678-683, 2016.

L. Larger, B. Penkovsky, and Y. Maistrenko, Virtual Chimera States for Delayed-Feedback Systems, Physical Review Letters, vol.5, issue.5, p.54103, 2013.
DOI : 10.1103/PhysRevE.84.015201

URL : https://hal.archives-ouvertes.fr/hal-00878675

L. Larger, B. Penkovsky, and Y. Maistrenko, Laser chimeras as a paradigm for multistable patterns in complex systems, Nature Communications, vol.20, p.7752, 2015.
DOI : 10.1364/OE.20.003241

V. Semenov, A. Zakharova, Y. Maistrenko, and E. Schöll, Delayed-feedback chimera states: Forced multiclusters and stochastic resonance, EPL (Europhysics Letters), vol.115, issue.1, pp.10005-1511, 2016.
DOI : 10.1209/0295-5075/115/10005

URL : http://iopscience.iop.org/article/10.1209/0295-5075/115/10005/pdf

G. Giacomelli, F. Marino, M. A. Zaks, and S. Yanchuk, Nucleation in bistable dynamical systems with long delay, Physical Review E, vol.88, issue.6, p.62920, 2013.
DOI : 10.1103/PhysRevLett.111.054103

L. Weicker, Strongly asymmetric square waves in a time-delayed system, Physical Review E, vol.16, issue.5, p.55201, 2012.
DOI : 10.1209/0295-5075/96/34001

URL : https://hal.archives-ouvertes.fr/hal-00932485

Y. K. Chembo, P. Colet, L. Larger, and N. Gastaud, Chaotic Breathers in Delayed Electro-Optical Systems, Physical Review Letters, vol.95, issue.20, p.203903, 2005.
DOI : 10.1142/S0218127400000840

T. R. Chay and J. Rinzel, Bursting, beating, and chaos in an excitable membrane model, Biophysical Journal, vol.47, issue.3, pp.357-366, 1985.
DOI : 10.1016/S0006-3495(85)83926-6

URL : http://doi.org/10.1016/s0006-3495(85)83926-6

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

L. Kari and G. Rozenberg, The many facets of natural computing, Communications of the ACM, vol.51, issue.10, p.72, 2008.
DOI : 10.1145/1400181.1400200

S. Stepney, S. Abramsky, A. Adamatzky, C. G. Johnson, and J. Timmis, Grand challenge 7: Journeys in non-classical computation, Visions of Computer Science, pp.407-421, 2008.
DOI : 10.1007/978-3-540-45192-1_20

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Gelenbe, Natural Computation, The Computer Journal, vol.55, issue.7, pp.848-851, 2012.
DOI : 10.1093/comjnl/bxs077

B. Lekitsch, Blueprint for a microwave trapped ion quantum computer, Science Advances, vol.47, issue.2, p.1601540, 2017.
DOI : 10.1016/j.microrel.2006.05.017

URL : http://advances.sciencemag.org/content/advances/3/2/e1601540.full.pdf

C. Fernando and S. Sojakka, Pattern Recognition in a Bucket, Proceedings of the 7th European Conference on Artificial Life, pp.588-597, 2003.
DOI : 10.1007/978-3-540-39432-7_63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Larger, High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification, Physical Review X, vol.7, issue.1, p.11015, 2017.
DOI : 10.1038/ncomms8752

URL : http://doi.org/10.1103/physrevx.7.011015

A. Adamatzky and B. De-lacy-costello, Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond, Physical Review E, vol.104, issue.4, pp.1-6, 2002.
DOI : 10.1021/jp992456c

M. Luko?evi?ius and H. Jaeger, Reservoir computing approaches to recurrent neural network training, Computer Science Review, vol.3, issue.3, pp.127-149, 2009.
DOI : 10.1016/j.cosrev.2009.03.005

S. Scardapane and D. Wang, Randomness in neural networks: an overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.15, issue.365, p.1200, 2017.
DOI : 10.1109/MCI.2015.2471235

Y. Lin, Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses, Scientific Reports, vol.42, issue.1, p.31932, 2016.
DOI : 10.1021/ic020420k

URL : https://hal.archives-ouvertes.fr/cea-01361933

L. Keuninckx, Electronic systems as an experimental testbed to study nonlinear delay dynamics, 2016.

R. Martinenghi, Démonstration opto-électronique du concept de calculateur neuromorphique par reservoir computing, 2013.

D. Brunner, M. C. Soriano, and I. Fischer, High-Speed Optical Vector and Matrix Operations Using a Semiconductor Laser, IEEE Photonics Technology Letters, vol.25, issue.17, pp.1680-1683, 2013.
DOI : 10.1109/LPT.2013.2273373

M. C. Soriano, Optoelectronic reservoir computing: tackling noise-induced performance degradation, Optics Express, vol.21, issue.1, pp.12-20, 2013.
DOI : 10.1364/OE.21.000012

URL : https://hal.archives-ouvertes.fr/hal-00945440

Q. Vinckier, High-performance photonic reservoir computer based on a coherently driven passive cavity, Optica, vol.2, issue.5, pp.438-446, 2015.
DOI : 10.1364/OPTICA.2.000438

URL : http://arxiv.org/pdf/1501.03024

A. Rodan and P. Tino, Minimum Complexity Echo State Network, IEEE Transactions on Neural Networks, vol.22, issue.1, pp.131-144, 2011.
DOI : 10.1109/TNN.2010.2089641

A. Thompson, An evolved circuit, intrinsic in silicon, entwined with physics Evolvable Systems: From Biology to Hardware 1259, pp.390-405, 1996.

J. D. Farmer and J. J. Sidorowich, Predicting chaotic time series, Physical Review Letters, vol.25, issue.8, pp.845-848, 1987.
DOI : 10.1103/PhysRevA.35.2207

M. Slaney, Lyon's cochlear model, Apple Technical Report, pp.1-79, 1988.

R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger, Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics, Physical Review Letters, vol.108, issue.24, pp.1-4, 2012.
DOI : 10.1038/nphys2283

URL : https://hal.archives-ouvertes.fr/hal-00932456

B. Schrauwen, M. D-'haene, D. Verstraeten, and J. Campenhout, Compact hardware liquid state machines on FPGA for real-time speech recognition, Neural Networks, vol.21, issue.2-3, pp.511-523, 2008.
DOI : 10.1016/j.neunet.2007.12.009

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=

K. Vandoorne, Experimental demonstration of reservoir computing on a silicon photonics chip, Nature Communications, vol.27, p.3541, 2014.
DOI : 10.1109/JLT.2009.2022282

C. G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, Physica D: Nonlinear Phenomena, vol.42, issue.1-3, pp.12-37, 1990.
DOI : 10.1016/0167-2789(90)90064-V

F. Schurmann, K. Meier, and J. Schemmel, Edge of chaos computation in mixed-mode vlsi -a hard liquid, Advances in Neural Information Processing Systems, pp.1201-1208, 2004.

N. Bertschinger and T. Natschläger, Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks, Neural Computation, vol.7, issue.7, pp.1413-1449, 2004.
DOI : 10.1126/science.274.5293.1724

. Wikipedia, Fpga cell example. URL http://upload.wikimedia.org/wikipedia

X. Power, URL https

N. Yousfi-steiner, P. Moçotéguy, D. Candusso, and D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, vol.194, issue.1, pp.130-145, 2009.
DOI : 10.1016/j.jpowsour.2009.03.060

M. Gerard, J. P. Poirot-crouvezier, D. Hissel, and M. C. Pera, Oxygen starvation analysis during air feeding faults in PEMFC, International Journal of Hydrogen Energy, vol.35, issue.22, pp.12295-12307, 2010.
DOI : 10.1016/j.ijhydene.2010.08.028

Y. Steiner, N. Hissel, D. Moçotéguy, P. Candusso, and D. , Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling, International Journal of Hydrogen Energy, vol.36, issue.4, pp.3067-3075, 2011.
DOI : 10.1016/j.ijhydene.2010.10.077

URL : https://hal.archives-ouvertes.fr/hal-00880498

M. Jouin, R. Gouriveau, D. Hissel, M. Péra, and N. Zerhouni, Prognostics and Health Management of PEMFC ??? State of the art and remaining challenges, International Journal of Hydrogen Energy, vol.38, issue.35, pp.15307-15317, 2013.
DOI : 10.1016/j.ijhydene.2013.09.051

URL : https://hal.archives-ouvertes.fr/hal-00872866

M. Jouin, R. Gouriveau, D. Hissel, M. C. Péra, and N. Zerhouni, Prognostics of PEM fuel cell in a particle filtering framework, International Journal of Hydrogen Energy, vol.39, issue.1, pp.481-494, 2014.
DOI : 10.1016/j.ijhydene.2013.10.054

URL : https://hal.archives-ouvertes.fr/hal-00903643

M. L. Alomar, Digital Implementation of a Single Dynamical Node Reservoir Computer, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.62, issue.10, pp.977-981, 2015.
DOI : 10.1109/TCSII.2015.2458071

S. Makridakis, Time series prediction: Forecasting the future and understanding the past, International Journal of Forecasting, vol.10, issue.3, pp.463-466, 1994.
DOI : 10.1016/0169-2070(94)90077-9

A. Jalalvand, Connected digit recognition by means of reservoir computing, INTER- SPEECH 2011, 2011.
DOI : 10.1016/j.csl.2014.09.006

M. Luko?evi?ius, Reservoir Computing and Self-Organized Neural Hierarchies, 2011.

H. Jaeger, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication, Science, vol.304, issue.5667, pp.78-80, 2004.
DOI : 10.1126/science.1091277

I. Gyori and F. Hartung, Stability analysis of a single neuron model with delay, Journal of Computational and Applied Mathematics, vol.157, issue.1, pp.73-92, 2003.
DOI : 10.1016/S0377-0427(03)00376-5

S. Maisnam and R. K. Singh, Generalization of neuron network model with delay feedback 1, pp.1-12, 2015.

C. Li, G. Chen, X. Liao, and J. Yu, Hopf bifurcation and chaos in a single inertial neuron model with time delay, The European Physical Journal B, vol.7, issue.3, pp.337-343, 2004.
DOI : 10.1140/epjb/e2004-00327-2

A. Jalalvand, G. V. Wallendael, and R. V. Walle, Real-Time Reservoir Computing Network-Based Systems for Detection Tasks on Visual Contents, 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks, pp.146-151, 2015.
DOI : 10.1109/CICSyN.2015.35

L. Keuninckx, J. Danckaert, and G. Van-der-sande, Real-time Audio Processing with a Cascade of Discrete-Time Delay Line-Based Reservoir Computers, Cognitive Computation, vol.26, issue.2, 2017.
DOI : 10.1109/ICME.2001.1237829