Skip to Main content Skip to Navigation

Molecular mechanisms regulating B lymphocyte polarization

Abstract : In secondary lymphoid organs, B cells acquire antigens that are tethered at the surface of neighboring cells. Engagement of the B cell receptor (BCR) with such immobilized antigens leads to the formation of an immune synapse and the subsequent polarization of B cells. This includes the repositioning of the centrosome towards the immune synapse as well as the recruitment and local secretion of lysosomes required for efficient antigen extraction, processing and presentation onto class II major histocompatibility complex (MHC-II) molecules to primed CD4+ T cells. Pioneer work performed in the lab has highlighted the first molecular players involved in this process. However, the precise mechanism governing centrosome polarization remains to be fully elucidated. The work performed during this thesis aimed at identifying new regulators supporting centrosome polarization in B lymphocytes upon BCR engagement with immobilized antigens. In addition, in view of the emerging role played by the tissue microenvironment in shaping B cell activation and functions we investigated whether extracellular Galectin-8 modulates the ability of B cells to polarize, extract and present immobilized antigens. We show here that, in resting lymphocytes, centrosome-associated Arp2/3 (actin related protein-2/3) locally nucleates F-actin, which is needed for centrosome tethering to the nucleus via the LINC (linker of nucleoskeleton and cytoskeleton) complex. Upon lymphocyte activation, Arp2/3 is partially depleted from the centrosome as a result of its HS1-dependent recruitment to the immune synapse. This leads to a reduction in F-actin nucleation at the centrosome and thereby allows its detachment from the nucleus and polarization to the synapse. In addition, we show that extracellular Galectin-8 favors lysosome recruitment and secretion at the immune synapse, hence providing B cells with an enhanced capacity to extract and present immobilized antigens. Our findings highlight unexpected mechanisms that tune B cell polarity in response to antigenic stimulation and raise exciting questions concerning the coordinated regulation of these mechanisms to provide B cells with the capacity to efficiently extract, process and present surface-tethered antigens.
Document type :
Complete list of metadata

Cited literature [358 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Monday, September 18, 2017 - 12:56:06 PM
Last modification on : Wednesday, November 3, 2021 - 6:35:13 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01589225, version 1



Dorian Obino. Molecular mechanisms regulating B lymphocyte polarization. Immunology. Université Sorbonne Paris Cité, 2016. English. ⟨NNT : 2016USPCB031⟩. ⟨tel-01589225⟩



Record views


Files downloads