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Résumé

Les interféromètres de nouvelle génération devraient nous permettre de détecter le

fond stochastique d’ondes gravitationnelles engendré par la superposition d’un nombre

élevé de signaux gravitationnels aléatoires indépendants d’origine astrophysique ou cos-

mologique. La plupart des méthodes de détection du fond gravitationnel stochastique re-

posent sur l’hypothèse simplificatrice selon laquelle sa distribution ainsi que celle du bruit

des détecteurs sont Gaussiennes. Le sujet principal de cette thèse est la mise en place de

méthodes améliorées de détection du fond gravitationnel stochastique qui tiennent compte

explicitement du caractère non-Gaussien de ces distributions. En utilisant un développe-

ment d’Edgeworth à l’ordre 4, nous obtenons dans un premier temps une expression

analytique pour la statistique du rapport de vraisemblance en présence d’une distribu-

tion non-Gaussienne du fonds gravitationnel stochastique. Cette expression généralise

l’expression habituelle lorsque la skewness (ou coefficient de symétrie) et l’excès de kur-

tosis (ou coefficient d’aplatissement) de la distribution du fond stochastique sont non

nuls. Sur la base de simulations stochastiques pour différentes distributions symétriques

présentant des queues plus épaisses que celles de la distribution Gaussienne, nous mon-

trons par ailleurs que le 4eme cumulant peut-être estimé avec une précision acceptable

lorsque le ratio signal à bruit est supérieur à 1%, ce qui devrait permettre d’apporter des

contraintes supplémentaires intéressantes sur les valeurs de paramètres issus des modèles

astrophysiques et cosmologiques. Dans un deuxième temps, nous cherchons à analyser

l’impact sur les méthodes de détection du fond gravitationnel stochastique de dévia-

tions par rapport à la normalité dans la distribution du bruit des détecteurs. Pour des

valeurs raisonnables des paramètres, nous montrons que tenir compte explicitement de

la non-normalité de la distribution du bruit a un impact substantiel sur les méthodes

de détection, et conduit à des estimations plus élevées des probabilités de non-détection

pour des niveaux donnés de probabilités de fausse alarme.
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Summary

The new generation of interferometers should allow us to detect stochastic gravita-

tional wave backgrounds that are expected to arise from a large number of random,

independent, unresolved events of astrophysical or cosmological origin. Most detection

methods for gravitational waves are based upon the assumption of Gaussian gravita-

tional wave stochastic background signals and noise processes. Our main objective is

to improve the methods that can be used to detect gravitational backgrounds in the

presence of non-Gaussian distributions. We first maintain the assumption of Gaussian

noise distributions so as to better focus on the impact of deviations from normality of

the signal distribution in the context of the standard cross-correlation detection statistic.

Using a 4th-order Edgeworth expansion of the unknown density for the signal and noise

distributions, we first derive an explicit expression for the non-Gaussian likelihood ratio

statistic, which is obtained as a function of the variance, but also skewness and kurtosis

of the unknown signal and noise distributions. We use numerical procedures to gen-

erate maximum likelihood estimates for the gravitational wave distribution parameters

for a set of symmetric heavy-tailed distributions, and we find that the fourth cumulant

can be estimated with reasonable precision when the ratio between the signal and the

noise variances is larger than 1%, which should be useful for analyzing the constraints

on astrophysical and cosmological models. In a second step, we analyze the efficiency of

the standard cross-correlation statistic in situations that also involve non-Gaussian noise

distributions. For reasonable parameter values, we find that properly accounting for the

presence of non-Gaussian distributions as opposed to wrongly assuming that higher-order

cumulants of the noise distributions are zero has material implications in the implemen-

tation of standard detection procedures in that it generates substantially higher values

for probabilities of false dismissal corresponding to given levels of probabilities of false

alarm.
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Résumé Substantiel

Les ondes gravitationnelles (ou OGs) sont des perturbations de la métrique de l’espace-

temps se propageant à la vitesse de la lumière, engendrées par une modification brutale

et asymétrique du contenu de masse-énergie en un point de l’univers, et dont l’existence

a été prédite en 1916 par Albert Einstein [73] comme conséquence de la théorie de la

relativité générale qu’il avait introduite à l’occasion de 4 papiers publiés en Novembre

1915 ([72], [67], [71] and [66]). La première confirmation observationnelle de l’existence

des OGs fut apportée par Hulse et Taylor en 1975 par l’observation du système bi-

naire PSR1913+16 [98], et l’analyse de la perte d’énergie de ce système par Taylor et

Weisberg en 1982 [164] (voir également [165], [177], et [176] pour des analyses plus ré-

centes du système PSR1913+16). Ces travaux ont montré que la période orbitale du

système binaire PSR1913+16 constitué de deux étoiles à neutrons décroissait d’un mil-

lième de seconde par an, une mesure en accord avec la prévision théorique concernant

l’émission d’ondes gravitationnelles pour un tel système. A la suite de cette détection

indirecte, la détection directe d’un signal d’OG est devenue une question centrale en

astrophysique relativiste, et d’importantes ressources ont été consacrées à la mise au

point d’interféromètres permettant de détecter ces OGs. Le 14 Septembre 2015, la nou-

velle génération des détecteurs LIGO, situés respectivement à Hanford dans l’Etat de

Washington et à Livingston dans l’Etat de Louisiane, a permis de détecter un signal

gravitationnel [9]. L’analyse de l’amplitude des ondes et de l’évolution de leur fréquence

a révélé qu’elles avaient été produites par la coalescence d’un système binaire composé

de deux trous noirs situés à environ 410 Megaparsec de notre galaxie, respectivement de

29 et de 36 fois la masse du Soleil. Cette fusion a engendré un trou noir de 62 fois la

masse du Soleil, les 3 masses solaires manquantes ayant été dissipées sous forme d’ondes

gravitationnelles. Une deuxième détection a eu lieu le 26 Décembre 2015, qui a porté à

nouveau sur la coalescence d’un système binaire composé de deux trous noirs situés à en-

viron 440 Megaparsec de notre galaxie, respectivement de 14.2 et de 7.5 masses solaires.

Ces récentes détections, qui suggèrent que la population des binaires de trous noirs est
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peut-être plus abondante qu’initialement envisagé mais surtout que la masse de ces trous

noirs est peut-être plus élevée que prévu, ont ouvert une ère nouvelle en astronomie, celle

de l’astronomie gravitationnelle, et l’on s’attend désormais à ce qu’une troisième généra-

tion de détecteurs (projets Einstein Telescope [142], LIGO Voyager ou Cosmic Explorer

[124]) permette d’augmenter la probabilité de détecter des OGs de magnitude encore plus

faible grâce à des gains de sensibilité supplémentaires.

Au-delà des signaux gravitationnels individuels résolus commeGW150914 et GW151226,

les interféromètres de nouvelle génération devraient nous permettre de détecter le fond

stochastique d’OGs engendré par l’addition d’un nombre élevé de signaux gravitationnels

aléatoires indépendants non résolus d’origine astrophysique ou cosmologique. La stratégie

optimale de détection du fond gravitationnel stochastique consiste à prendre le produit

croisé des détections d’au moins deux détecteurs afin d’éliminer au mieux le bruit de

l’instrument [15]. Dans le cadre d’hypothèses classiques incluant la présence de distribu-

tions stationnaires et de corrélation temporelle nulle pour les signaux stochastiques et le

bruit, ainsi que la présence de détecteurs de même sensibilité, il est possible de montrer

que cette statistique de détection dite de cross-correlation (CC) est optimale au sens où

elle permet de minimiser la probabilité de rejeter à tort l’hypothèse d’une détection pour

un taux donné de fausse alarme (voir par exemple [44, 78, 15]). Les méthodes standard

de détection des OGs reposent par ailleurs sur l’hypothèse simplificatrice selon laquelle le

fond gravitationnel stochastique est distribué de façon Gaussienne. Des travaux récents

portant sur une modélisation réaliste de la population des objets astrophysiques de na-

ture à engendrer des OGs d’amplitude assez forte pour être détectées laisse cependant

supposer qu’il n’existe pas un nombre de sources superposées assez élevé pour permettre

l’application du théorème central limite, et que le fond stochastique résultant de la su-

perposition de ces signaux aléatoire peut donc faire apparaître des déviations par rapport

à l’hypothèse de normalité. Il a également été montré que le fond stochastique engendré

par des cordes cosmiques pourrait être dominé par la contribution non-Gaussienne des

sources les plus proches [55, 144].
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Le sujet principal de cette étude est la mise en place de méthodes de détection du fond

gravitationnel stochastique qui tiennent compte explicitement du caractère non-Gaussien

de sa distribution, ce qui devrait permettre d’améliorer l’efficacité de la procédure de

détection, et également de potentiellement permettre de distinguer le fond d’origine as-

trophysique du fond d’origine cosmologique. L’approche que nous proposons dans un

premier temps est basée sur le développement d’Edgeworth, qui est un développement

formel en série infinie permettant d’écrire la fonction caractéristique d’une distribution

non-Gaussienne inconnue comme une perturbation autour de la fonction caractéristique

de la distribution Gaussienne. Dans la mesure où le développement d’Edgeworth a pré-

cisément vocation à caractériser la déviation à la normalité dans le cadre d’une application

à distance finie du théorème central limite, il apparaît naturellement adapté à l’analyse du

fond gravitationnel stochastique résultant de la superposition d’un nombre fini de sources

d’origine astrophysique, sous réserve que la non-Gaussianité ainsi engendrée ne soit pas

trop forte. En utilisant un développement d’Edgeworth poussé jusqu’à l’ordre 4, nous

avons réussi à obtenir une expression analytique pour la statistique de détection dans un

cadre non-Gaussien qui fait intervenir non seulement la variance mais aussi le coefficient

d’asymétrie (skewness) et le coefficient d’aplatissement (kurtosis) de la distribution du

signal. Cette expression généralise l’expression habituelle, qui est obtenue comme cas

particulier de l’expression générale lorsque les cumulants d’ordre 3 et 4 de la distribution

du fond stochastique sont nuls, comme c’est le cas pour une distribution Gaussienne. Sur

la base de simulations stochastiques pour différentes distributions symétriques présen-

tant des queues plus épaisses que celles de la distribution Gaussienne, nous montrons par

ailleurs que le 4eme cumulant peut-être estimé avec une précision acceptable lorsque le

ratio signal à bruit est supérieur à 1%. Cette valeur de 1% est à comparer à la valeur

attendue du rapport signal à bruit pour la détection du fond gravitationnel stochastique

par la deuxième génération des détecteurs LIGO et Virgo (Advanced LIGO et Advanced

Virgo) et par Einstein Telescope, valeur qui est comprise entre 1% et 10%. Pour les cordes

cosmiques, la valeur de la densité d’energie à une fréquence de 100 Hz est attendue entre
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les valeurs 10−9 et 10−5, ce qui correspond à un rapport signal à bruit de 10−6 à 1 pour

la deuxième génération des détecteurs LIGO et Virgo et de 10−4 − 100 pour Einstein

Telescope. Pour les fusions d’objets compacts, la valeur de la densité d’energie à une

fréquence de 100 Hz est attendue entre les valeurs 10−10 et 10−7, ce qui correspond à un

rapport signal à bruit de 10−7 à 0.01 pour la deuxième génération des détecteurs LIGO

et Virgo et de 10−5 à 1 pour Einstein Telescope.

L’intérêt principal de la méthode est précisément de permettre l’estimation de paramètres

supplémentaires, à savoir les cumulants d’ordre 3 et 4 de la distribution du signal grav-

itationnel, ce qui devrait permettre d’apporter des contraintes supplémentaires intéres-

santes sur les valeurs de paramètres issus des modèles astrophysiques et cosmologiques.

Il s’avère par exemple impossible de distinguer, dans le cadre des méthodes d’estimation

traditionnelles de type cross-correlation (CC), un fond stochastique provenant de sys-

tèmes de binaires compactes (étoiles à neutron et/ou trous noirs) caractérisés par un

taux de coalescence élevé et des masses faibles, ou bien un taux de coalescence faible et

des masses élevées car ces deux situations peuvent donner un signal de même amplitude

[126]. La méthode introduite ici pourra en principe permettre de distinguer ces deux

situations très différentes sur le plan astrophysique par l’estimation du cumulant d’ordre

4, sachant que le premier cas (taux élevé et masses faibles) correspond à un signal de

type continu et une valeur faible de la kurtosis tandis que le deuxième cas (taux faible et

masses élevées) correspond au contraire a un signal de type "popcorn" avec une valeur

élevée de la kurtosis. Au final, l’un des avantages principaux de l’approche proposée est

son caractère non-paramétrique, qui permet de s’affranchir de la nécessite de faire des

hypothèses restrictives à propos de la nature exacte de la distribution non-Gaussienne

sous-jacente. Les méthodes développées dans le cadre de ces travaux pourraient a priori

être utilisées dans le cadre d’un effort de distinction du fond d’origine astrophysique et

du fond d’origine cosmologique, sous réserve que les déviations à la normalité admettent

dans ces deux cas des signatures bien distinctes.

Dans cette approche, nous avons maintenu l’hypothèse d’une distribution Gaussienne
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du bruit instrumental et environnemental de façon à mieux isoler l’impact d’une déviation

de l’hypothèse de normalité pour la distribution du signal. Il existe cependant de bonnes

raisons de penser que le bruit instrumental ou environnemental est également distribué de

manière non-Gaussienne [181], et il est alors utile de chercher à analyser l’impact sur les

méthodes de détection du fond gravitationnel stochastique de ces déviations par rapport à

la normalité dans la distribution du bruit. Par ailleurs, l’hypothèse standard selon laquelle

les détecteurs auraient la même sensibilité pourrait ne pas être strictement vérifiée lors

des étapes intermédiaires de calibration des détecteurs de deuxième génération Advanced

LIGO and Advanced Virgo, et une telle hypothèse serait encore plus discutable dans le

cas d’observations jointes impliquant des détecteurs de deuxième et troisième générations.

Dans ce contexte, nous cherchons à analyser la performance de la statistique CC standard

dans des situations impliquant des déviations des hypothèses évoquées ci-dessus, et en

particulier des situations impliquant la présence de non-normalité dans la distribution du

bruit des détecteurs.

Pour cela, nous montrons d’abord qu’il est possible d’obtenir une expression général-

isée pour la statistique du rapport de vraisemblance dans un cadre de travail impliquant

une déviation de la normalité non seulement pour le signal mais aussi pour le bruit des

détecteurs. Cette expression analytique permet d’envisager une estimation efficace des

paramètres de variance, skewness et kurtosis de la distribution du signal et du bruit des

détecteurs. En parallèle a l’identification des estimateurs du maximum de vraisemblance,

nous introduisons également des estimateurs basés sur la méthode dite des moments, qui

sont sans biais par construction. Pour des valeurs raisonnables des paramètres, nous

montrons que tenir compte explicitement de la non-normalité de la distribution du bruit

a un impact substantiel sur les méthodes de détection. Nous introduisons en particulier

une expression analytique pour l’espérance et la variance de la statistique de détection

standard dans un cadre non-Gaussien, et nous montrons pour des valeurs raisonnables

des paramètres que tenir compte explicitement de la non-normalité de la distribution du

bruit a un impact substantiel sur les méthodes de détection, et conduit à des estimations
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plus élevées des probabilités de non-détection pour des niveaux donnés de probabilités

de fausse alarme. Au-delà de leur impact sur la méthodes de détection CC standard, nos

résultats suggèrent également qu’il est possible d’obtenir une statistique de détection op-

timale dans un cadre non-Gaussien généralisé. Cette statistique de détection généralise la

statistique de détection standard, qui est recouverte pour des valeurs nulles des cumulants

d’ordre 3 et 4 des distributions du signal et du bruit.
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1

Introduction

Gravitational waves (GWs in short) are perturbations of spacetime geometry travelling at

the speed of light created by asymmetric acceleration of masses or non stationary fields,

which existence is predicted by the theory of general relativity (GR in short). While elec-

tromagnetic waves interact strongly with matter, GWs minimally interacting with the

matter they encounter, which allows us to probe astrophysical or cosmological phenom-

ena that cannot be observed by electromagnetic signals, such as the inspiral, coalescence

and merger of black holes, the collapse of a stellar core, or the dynamics of the early

Universe. The first observational validation of the existence of gravitational waves is the

PSR B1913+16 binary pulsar system discovered by Hulse and Taylor in 1975 [98], and

for which Taylor and Weisberg [164] subsequently demonstrated that the rate of decay

of the orbit exactly matches GR predictions regarding the loss of energy of the system

due to the emission of gravitational waves (see also [165], [177], and [176] for more recent

observations and related analyses). Following this first indirect evidence of the existence

of GWs, the direct detection of GWs has become a question of central importance in

relativistic astrophysics, and an increasing range of efforts has been dedicated to the

design of improved detectors. On September 14, 2015, second generation Laser Interfer-

ometer Gravitational-Wave Observatory detectors (known as Advanced LIGO detectors),

11
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located in Hanford, Washington, and Livingston, Louisiana, USA, have successfully de-

tected GWs produced during the late inspiral and merger of two black holes of masses

respectively 29 and 36 solar masses, located at approximately 410 Megaparsec from our

galaxy [9]. The black hole resulting from the merger had a total mass of 62 solar masses,

with the missing 3 solar masses having been carried away under the form of gravitational

waves. A second detection of gravitational waves generated by the coalescence of a bi-

nary system of stellar mass black holes subsequently took place on December 26, 2015 [5].

These remarkable detections have opened a new era of astronomy, and third-generation

interferometers such as Einstein Telescope [142], LIGO Voyager or Cosmic Explorer [124]

are expected to further increase the likelihood of detecting the exceedingly small effects

of gravitational waves.

In addition to resolved individual GW signals such as GW150914 and GW151226, the

new generations of interferometers should allow us to detect stochastic GW backgrounds,

which are expected to arise from a large number of random, independent, unresolved

events of astrophysical or cosmological origin. The optimal detection strategy to search for

a stochastic background is to cross correlate the output of two detectors (or of a network of

detectors) to eliminate the instrumental noise [15]. Under standard assumptions including

stationary and serially uncorrelated Gaussian gravitational wave stochastic background

signal and noise processes as well as homogenous detector sensitivities, the standard

cross-correlation (CC in short) detection statistic is known to be optimal in the sense

of minimizing the probability of a false dismissal at a fixed value of the probability of a

false alarm (see for example [44, 78, 15]). While the GW background is usually assumed

to be Gaussian invoking the central limit theorem, and thus completely characterized by

its mean and variance, recent predictions based on population modeling suggest that for

many astrophysical models, there may not be enough overlapping sources, resulting in

the formation of a non-Gaussian background. [182] show that the population of binary

black hole systems in the observable universe could produce for reasonable mass and rate

parameter values a series of non-continuous background burst signals that will most likely

12
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be of the shot noise or at most popcorn noise type (see section 3.1 for precise definitions)

in the Advanced LIGO/Virgo frequency range, while the signal will be continuous but not

necessarily Gaussian for ET type-detectors depending upon assumed parameter values.

Turning to cosmological sources of gravitational waves, it has also been shown that the

background from cosmic strings could be strongly non-Gaussian [55, 144] (see section

3.1.2 for more details).

Our work has a main focus on improving the methods that can be used to detect

non-Gaussian GW backgrounds, which would permit to possibly distinguish between as-

trophysical and cosmological GW backgrounds and gain confidence in a detection. The

approach we propose in a first step is based on Edgeworth expansion, which is a formal

asymptotic expansion of the characteristic function of the signal distribution, whose un-

known probability density function is to be approximated in terms of the characteristic

function of the Gaussian distribution. Since the Edgeworth expansion provides asymp-

totic correction terms to the Central Limit Theorem up to an order that depends on the

number of moments available, it is ideally suited for the analysis of stochastic gravita-

tional wave backgrounds generated by a finite number of astrophysical sources. It is also

well-suited for the analysis of signals from cosmological origin in case the deviations from

the Gaussian assumption are not too strong. Using a 4th-order Edgeworth expansion, we

obtain an explicit expression for the nearly optimal non-Gaussian likelihood statistic that

is obtained as a function of the variance, but also skewness and kurtosis, of the unknown

signal distribution. This expression generalizes the standard maximum likelihood detec-

tion statistic, which is recovered in the limit of vanishing third and fourth cumulants of

the empirical conditional distribution of the detector measurement. We use numerical

procedures to generate maximum likelihood estimates for the gravitational wave distrib-

ution parameters for a set of symmetric heavy-tailed distributions, and we find that the

fourth cumulant can be estimated with reasonable precision when the ratio between the

signal and the noise variances is larger than 1%. The main benefit of the procedure is

precisely that it allows us to estimate additional parameters, namely the 3rd and 4th

13
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cumulants of the gravitational wave signal distribution, which should be useful for ana-

lyzing the constraints on astrophysical and cosmological models that will be imposed by

observed gravitational wave signals, and comparing them to the constraints derived from

supernovae or galaxy clusters observations. Overall, one key advantage of the proposed

methodology, which relies on an explicit correction to the central limit theorem when the

number of sources is finite, is that can be applied without any assumption regarding the

exact nature of the departure from normality.

In this first step, we maintain the assumption of Gaussian noise distributions so as to

better focus on the impact of deviations from normality of the signal distribution in the

context of the standard cross-correlation detection statistic. This assumption is at odds,

however, with accumulated evidence of strong deviations from the Gaussian assumption

for noise distributions in gravitational waves detectors [125]. A recent paper [181] intro-

duces a new measure for characterizing the non-Gaussian noise component modelled as a

Student-t distribution and reveals stationary and transient deviations from Gaussianity

in LIGO S5 data. This is a serious concern since existing detection strategies for both

deterministic and stochastic signals are expected to deteriorate when non-Gaussian noise

is present [13, 14]. If the exact non-Gaussian nature of the detector noise is understood,

it is possible to introduce a robust detection statistic using the specific non-Gaussian

noise assumption (see for example [16] for a detection method based on an exponentially

distributed noise process, and [152] for a detection method based on a Student’s t dis-

tributed noise process). Given that the actual noise distribution is a priori unknown, it

is unclear how much improvement, if any, these methods would allow with respect to the

standard method based upon a Gaussian assumption in case of a misspecification of the

exact deviation from the Gaussian assumption. In this context, we analyze the efficiency

of the CC statistic in situations that deviate from the Gaussian assumption for both the

stochastic gravitational wave signal distribution and detector noise distributions. To do

so we first show how to obtain consistent estimates for the first four cumulants of the

signal and noise distributions using a suitable extension of the likelihood function, for
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which we derive an analytical expression. These results extend our previous results where

we have Focused on a situation involving a non-Gaussian signal distribution, but have

maintained the assumption of a Gaussian noise distribution. In addition to obtaining

parameter estimates through maximum likelihood techniques, we also introduce so-called

moment-based estimators given by analytical functions of the joint observations from the

two detectors. While the moment-based estimators for the variance of the signal and the

noise in each detector coincide with the maximum likelihood estimators in the Gaussian

case, the moment-based estimators may be different in a generalized non-Gaussian setting

but they share with maximum likelihood estimators the desirable property to be unbiased

by construction. Turning to a numerical analysis, we find that properly accounting for the

presence of non-Gaussian distributions as opposed to wrongly assuming that higher-order

cumulants of the noise distributions are zero has material implications in the implemen-

tation of standard detection procedures in that it generates higher values for probabilities

of false dismissal corresponding to given levels of probabilities of false alarm. The correc-

tion is found to be particularly substantial when detector sensitivities exhibit substantial

differences, a situation that is expected to hold in early phases of development of the

Advanced LIGO-Virgo detectors before they reach their design sensitivity. Under such

circumstances, or in joint detections from Advanced LIGO and the Einstein Telescope

project [142], failing to account for the presence of non-Gaussian detector noise distribu-

tions In addition to their implications for the performance of the standard CC detection

statistic, we also discuss the implications of our results for the derivation of an optimal

detection statistic in a non-Gaussian context.

The rest of this thesis is organized as follows. In chapter 2, we provide a broad

introduction to the theory of general relativity and its implications for the generation of

gravitational waves. In chapter 3, we propose an analysis of the stochastic gravitational

wave background and its distribution. In chapter 4, we introduce a semi-parametric

approach to the detection of non-Gaussian stochastic gravitational wave backgrounds.

In chapter 5, we analyze the efficiency of the standard cross-correlation statistic in the
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presence of non-Gaussian detector noise distributions and discuss the implications for the

derivation of an optimal detection statistic in a non-Gaussian setting. Finally, we present

in chapter 6 our conclusions and suggestions for further research. Note that we have

chosen to write the chapters so that they can be read somewhat independently, even if

this necessarily implies some redundancies.
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2

Gravitational Waves: Theory, Detec-

tion and Sources

We first provide a brief introduction to general relativity and gravitational waves, before

presenting an overview of gravitational wave detectors as well as an overview of the main

sources of gravitational waves.

2.1 Introduction to General Relativity, Cosmology

and Gravitational Waves

General relativity (or GR in short) is a theory of gravitation introduced by Albert Einstein

in 4 papers published in November 1915 ([72], [67], [71] and [66]). It has become the

commonly accepted description of gravitation in modern physics, which provides a unified

description of gravity as a geometric property of spacetime.
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2.1.1 Introduction to General Relativity

The presentation that follows is broadly inspired by [39]. In what follows we adopt the

usual notational convention for indices, namely greek letters α, β, γ... are used for 4-

dimensional spacetime indices ranging from 0 (the time coordinate) to 3 (for the three

space dimensions), while roman letters i, j, k, ... are used for 3-dimensional spatial in-

dices. Throughout the text, we also use the Einstein summation convention regarding

the repeated adjacent indices in upwards and downwards location. In other words, we

take:

uαvα ≡
3�

α=0

uαvα. (2.1)

The Special Theory of Relativity (SR): Principle of Relativity and Spacetime

Geometry with Inertial Reference Frames

The special theory of relativity published in the "annus mirabilis" 1905 ([70], [69]) by

Albert Einstein is based upon the assumption that there is no preferred inertial reference

frame, or in other words that measurements of physical quantities and expressions of

physical laws remain the same after changing from a reference frame to another reference

frame that is in constant rectilinear motion with respect to the original one. In particular,

this postulate implies that the speed of light will yield the same measure c = 299, 792, 458

ms−1 in all referential frames. The geometric structure of the spacetime used in special

relativity is the so-called Minkowski (or Poincaré-Minkowski) spacetime, a generalization

of the Euclidean space where the squared distance ds2 between the point P = (x1, x2, x3)

(we sometimes also use the notation x, y, z for the 3 spatial coordinates) and an infini-

tesimally close point Q = (x1+ dx1, x2+ dx2, x3+ dx3) is given by Pythagorean theorem

as:

ds2 = dx21 + dx
2
2 + dx

2
3. (2.2)
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Minkowski spacetime is a flat spacetime where physical events are described in terms

of spacetime coordinates (t, x1, x2, x3) and where the infinitesimal spacetime interval be-

tween nearby events is measured in terms of the line element ds2 given in Cartesian

coordinates by the following generalization of Pythagorean theorem:

ds2 = −c2dt2 + dx21 + dx22 + dx23, (2.3)

or equivalently by:

ds2 = −dx20 + dx21 + dx22 + dx23, (2.4)

in the coordinate system (x0 = ct, x1, x2, x3). Defining the Minkowski metric ηαβ by:

η00 = −1 (2.5)

ηii = 1 for i = 1, 2, 3 (2.6)

ηαβ = 0 for α �= β, (2.7)

we can write the line element ds2 in Minkowski spacetime as:

ds2 = ηαβdx
αdxβ. (2.8)

In matrix notation, the metric is simply:

η =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (2.9)

Equation 2.8 defines the geometry of Minkowski spacetime. The symmetry group of this

geometry is the group of coordinate transformations Λµν : (x0, x1, x2, x3) → (x′0, x
′
1, x

′
2, x

′
3)

that leaves the quadratic form 2.8 of the interval ds2 invariant. This group of coordi-
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nate transformations, known as the Lorentz group, is therefore defined by the following

transformations:

x′µ = Λµνx
ν + aµ, (2.10)

where the so-called Lorentz boost transformation Λµν satisfies the condition:

ηαβ = ΛαµΛ
β
νηµν (2.11)

so as to ensure the invariance of the line element 2.8. More generally, the principle

of relativity, which requires that the laws of physics have the same expression in all

inertial reference frames, implies that physical theories should be invariant under a class

of transformations known as Poincaré transformations, which includes Lorentz boost

transformations, but also translations and rotations. Physically, consider an observer in

an initial frame of reference frame with coordinates (t, x1, x2, x3) and an observer in a

different frame of reference with coordinates (t′, x′1, x
′
2, x

′
3) moving with constant velocity

v along the x1-axis. The change in coordinates that leaves the spacetime interval invariant

ds′ = ds is given by the following Lorentz-boost transformation along the x1-axis:





t′ = γ
�
t− v

c2
x1




x′1 = γ (x1 − vt)

x′2 = x2

x′3 = x3

(2.12)

where the so-called Lorentz factor is given by:

γ ≡ 1�
1− v2

c2

. (2.13)
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Note that for a particle with fixed space coordinates (dx21 = dx
2
2 = dx

2
3 = 0) the interval

of time 2.8 elapsed as time moves forward (dt > 0) is negative:

ds2 = −c2dt2 < 0. (2.14)

This leads us to the introduction of the proper time τ via

dτ2 = dt2 = −ds
2

c2
, (2.15)

or equivalently:

dτ =
1

c

√
−ds2. (2.16)

Proper time elapsed along a trajectory through spacetime parametrized a a function of

some parameter xα (λ) is thus defined as the time measured by a clock following that

line, in the reference frame where the spatial coordinates do not vary (an observer on a

different frame of reference will measure a different time). Integrating 2.16, we obtain

that the proper time interval between two events on a trajectory is:

∆τ =

�
1

c

√
−ds2 =

�
1

c

�
−ηαβdxαdxβ (2.17)

If the trajectory through spacetime is parametrized a a function of some parameter xα (λ),

then the proper time can be expressed as:

∆τ =

�
1

c

�
−ηαβ

dxα

dλ

dxβ

dλ
dλ (2.18)

21



Chapter 2 — Gravitational Radiation in General Relativity

We thus have from 2.17:

τ =

� �
dt2 − 1

c2
(dx21 + dx

2
2 + dx

2
3) (2.19)

=

� ����1− 1

c2

��
dx1
dt

�2

+

�
dx2
dt

�2
+

�
dx3
dt

�2�
dt (2.20)

=

� �
1− v

2 (t)

c2
dt =

�
dt

γ (t)
(2.21)

where we have introduced the following quantity:

γ (t) ≡ 1�
1− v2(t)

c2

, (2.22)

which generalizes the Lorentz factor 2.13 to the case of a possibly time-varying velocity.

The corresponding tangent vector

Uµ =
dxµ

dτ
(2.23)

is called the four-velocity and is is automatically normalized:

ηµνU
µU ν = −1. (2.24)

A related quantity is the momentum four-vector defined by:

pµ = mUµ, (2.25)

where m is the rest mass of the particle. We can also define the proper distance as the

distance between the two events as measured in an inertial frame of reference in which

the events are simultaneous. In the same spirit, the proper length or rest length L0 of

an object is the length of the object measured by an observer which is at rest relative to

it, by applying standard measuring rods on the object. The measurement of the object

endpoints does not have to be simultaneous, since the endpoints are constantly at rest
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at the same positions in the object rest frame, so it is independent of ∆t. However, in

relatively moving frames the object endpoints have to be measured simultaneously, since

they are constantly changing their position.1

The General Theory of Relativity (GR): Principles of Equivalence and General

Covariance and Spacetime Geometry with Accelerated Reference Frames

The principle of relativity, which is the founding principle of special relativity, has been

extended by Einstein to the principle of general covariance, which requires the invariance

of the form of physical laws under changes of reference frames that extend beyond the

inertial reference frames, and which can include accelerated reference frames. The starting

point was the recognition in 1907 [68] by Albert Einstein that the equivalence between

inertial mass and gravitational mass, which implies the universality of free fall (initially

noted by Galilée in 1638 century, and subsequently confirmed by Newton in 1687 and

von Eötvös at the end of the 19th century), can be translated as what is now known

as the weak form of the equivalence principle. Based on free-fall thought experiments,

this principle states the equivalence between gravitation and acceleration: gravity can be

canceled (free fall) or mimicked (constant acceleration) by acceleration.

Such general accelerated reference frames are mathematically represented by arbitrary

differentiable coordinate transformations. The transformation from an inertial reference

frame (x0, x1, x2, x3) to a general non inertial reference frame (x′0, x
′
1, x

′
2, x

′
3) is a non-

linear transformation defined through the 4 functions x′α (xµ) expressing the new primed

coordinates in terms of the original unprimed coordinates assumed to be expressed in

an inertial frame of reference, or equivalently through the reverse transformation xµ (x′α)

expressing the original unprimed coordinates as functions of the new primed coordinates.

The non-linearity of the transformation implies that the line element ds2 will take a more

complicated form in the accelerated frame of reference compared to the form given in

1For this reason, the distance defined in equation 2.166 is not a proper distance. Indeed, it is measured
between two free-moving test particles subject to gravitational wave oscillations A and B as c2 (t2 − t1),
where t1 is the proper time for an observer located on a reference frame attached to A who sends a light
signal in direction to B, which is reflected back to A where it arrives at the proper time t2 > t1.
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equation 2.8 in the inertial frame of reference. Under this general transformation, and

given that

dxµ =
∂xµ

∂x′α
dx′α, (2.26)

starting with the line element given by special relativity in the inertial reference frame

(x0, x1, x2, x3)

ds2 = ηαβdx
αdxβ, (2.27)

we obtain in the accelerated reference frame (x′0, x
′
1, x

′
2, x

′
3):

ds2 = gαβdx
′αdx′β, (2.28)

with

gαβ = ηµν
∂xµ

∂x′α
∂xν

∂x′β
.

Given the non-linearity of the 4 functions x′α (xµ) , the functions gαβ exhibit in general an

explicit dependence on the coordinates xµ. As a result, the local geometry of spacetime

is no longer given by the simple Minkowski metric in equation 2.8 with constant coeffi-

cients, but by the much more general quadratic metric in equation 2.28.2 In this general

spacetime endowed with the metric gµν , the invariance of the line element implies

ds2 = gµνdx
µdxν = gµν

∂xµ

∂x′α
∂xν

∂x′β
dx′αdx′β = g′αβdx

′αdx′β, (2.29)

with:

g′αβ = gµν
∂xµ

∂x′α
∂xν

∂x′β
. (2.30)

Such general metric spaces have been introduced by the mathematicians Gauss and

Riemann in the 19th century in the situation where the quadratic form is positive defi-

nite.3 More formally, letM be a n−dimensional C∞ manifold, TxM the tangent space at

2The geometry is still flat, and the departure from the Minkowski merely reflects a change of coordi-
nates.

3In special and general relativity, the quadratic form is not definite positive and the metric is known
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x ∈M and TM ≡ ∪x∈MTxM the tangent bundle of M . Hence, each element of TM has

the form (x, y), where x ∈ M and y ∈ TxM . In Riemannian geometry, the useful infor-

mation about the curvature of a manifold is contained in the metric. We first introduce a

function F , known as metric function or generator function, which measures the distance

between two points x = (x1, x2, ..., xn) and x+dx = F (x1 + dx1, x2 + dx2, ..., xn + dxn) :

ds = F
�
x1, x2, ..., xn, dx1, dx2, ..., dxn



. (2.31)

Here (x1, x2, ..., xn) are the coordinates assigned in a given coordinate system to point

x of M , and (dx1, dx2, ..., dxn) or (y1, y2, ..., yn) are coordinates of y ∈ TxM , defined

through the natural basis ei = ∂
∂xi

��
x
, with y = yiei. Natural conditions (which may not

be necessary for some/all physical applications) that should be satisfied by the function

F (x1, ..., xn, y1, ..., yn), denoted by F (x, y), are as follows.

1. Positivity: F (x, y) > 0 for any y = dx.

2. Positive homogeneity: F (x, py) = pF (x, y) for any p > 0 (F is a homogenous

function of degree 1).4

3. Symmetry: F (x,−y) = F (x, y). (we may envision relaxing this condition, espe-

cially with respect to the time dimension, so as to have a geometric representation

of the time arrow)

4. Strong convexity: the Hessian matrix ∂2

∂yµ∂yν

�
1
2
F 2



is positive-definite at every point

of the tangent bundle TM except at the origin (TM\0).

Intuitively, the value of F (x, y) is interpreted as the length of the vector y tangent at

x. More formally, the function F can be used to define the length of a curve indexed by

time:

s =

� t=b

t=a

F (x (t) , y (t)) dt where y (t) =
dx

dt
(t) . (2.32)

as a pseudo-Riemannian metric.
4If this assumption is relaxed, then the metric space if called a Lagrange space.
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If the curve is parametrized in terms of another parameter τ = τ (t), for c = τ (a) ≤ τ ≤

d = τ (b), then the length is given as:

s =

� τ=b

τ=a

F (x (τ ) , y (τ)) dτ where y (τ) =
dx

dτ
(τ ) . (2.33)

Note that the length integral is independent of the parametrization if and only if condition

2 is valid. Indeed, we have then:

s =

�
F

�
x,
dx

dt

�
dt =

�
F

�
x,
dx

dτ

dτ

dt

�
dt =

�
F

�
x,
dx

dτ

�
dτ

dt
dt =

�
F

�
x,
dx

dτ

�
dτ.

(2.34)

We now derive a fundamental proposition that satisfies the metric function.

Proposition 1 The following relationship holds between the squared value of the metric

function and the Hessian of the metric function:

F 2 (x, y) =
1

2
yµyν

∂2F 2 (x, y)

∂yµ∂yν
(2.35)

Proof. By differentiating with respect to p the relation

pF
�
x1, ..., xµ, ..., xn, y1, ..., yµ, ..., yn



= F

�
x1, ..., xµ, ..., xn, y1, ..., pyµ, ..., yn




we obtain:

F (x, y) =
∂F (x1, ..., xµ, ..., xn, y1, ..., pyµ, ..., yn)

∂p

=
∂F (x1, ..., xµ, ..., xn, y1, ..., pyµ, ..., yn)

∂yµ
∂ (pyµ)

∂p
=
∂F (x, y)

∂yµ
yµ (2.36)

which is Euler theorem for homogeneous functions of degree 1. By differentiating the

relation p2F (x, y) = F (x1, ..., xµ, ...xν, ..., xn, y1, ..., pyµ, .., pyν, ..., yn) twice with respect

to p, we also obtain:
∂2F (x, y)

∂yµ∂yν
= 0 (2.37)
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Now, taking the derivative of the squared metric function with respect to yµ, we have

that:
∂F 2 (x, y)

∂yµ
= 2F (x, y)

∂F (x, y)

∂yµ

Differentiating again with respect to yν:

∂2F 2 (x, y)

∂yµ∂yν
= 2

∂F (x, y)

∂yν
∂F (x, y)

∂yµ
+ 2F (x, y)

∂2F (x, y)

∂yµ∂yν� �� �
=0 from equation 2.37

= 2F 2 (x, y)
1

yµyν
from equation 2.36

This result allows us to define the following covariant tensor of order 2 fµν (x, y) =

1
2
yµyν × ∂2F (x,y)

∂yµ∂yν
, which will be used to calculate norms of vectors and distances on the

manifold M . Indeed, we have ds ≡ F (x, y) =
�
fµν (x, y) yµyν. As explained above,

we use in general relativity the framework of standard Riemannian geometries, where

the metric tensor only depends on coordinates on the spacetime manifold and not on

coordinates on the tangent space. In other words, the metric only depends on the position

but not on the velocity vector and we write ds =
�
gµν (x) yµyν . The general case

where ds ≡ F (x, y) =
�
fµν (x, y) yµyν defines a broader class of geometries, known as

Finslerian geometries, named after Paul Finsler, a German and Swiss mathematician who

received a PhD in 1918 at the University of Göttingen under the supervision of Constantin

Carathéodory, with a focus on extending Riemannian geometry to more general metric

specifications [12].

Connections and Covariant Differentiation

Intuitively, the difficulty in performing differential and integral calculus on a curved

manifold M is that the tangent vector to a curve on the manifold does not belong to

the manifold M itself, but belongs instead to its tangent bundle TM . From this arises

the need to formally define how to transport a vector along a curve in a parallel and
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consistent manner. An affine connection is introduced for transporting tangent vectors

to a manifold from one point to another along a curve. An affine connection is typically

given in the form of a covariant derivative, which defines how to operate the infinitesimal

transport of a vector field in a given direction. More formally, let us consider the impact

of a change of coordinates xµ → x′µ on a scalar field φ. From the conventional chain rule,

we have:
∂φ

∂xµ
−→ ∂φ

∂x′µ
=
∂xµ

∂x′µ
∂φ

∂xµ
, (2.38)

or equivalently:

∂µφ −→ ∂′µφ =
∂xµ

∂x′µ
∂µφ, (2.39)

where we have used the shorthand notation ∂µφ = ∂φ
∂xµ
for the partial derivative of φ with

respect to xµ and ∂′µφ = ∂φ
∂x′µ

for the partial derivative of φ with respect to x′µ. If we now

apply the change of coordinate xµ → x′µ to a vector field V ν, we obtain:

∂µV
ν −→ ∂′µV

ν′ =

�
∂xµ

∂x′µ
∂µ

��
∂x′ν

∂xν
V ν

�
(2.40)

=
∂xµ

∂x′µ
∂x′ν

∂xν
∂µV

ν +
∂xµ

∂x′µ
∂2x′ν

∂xµ∂xν
V µ

� �� �
,

non-tensorial terms

(2.41)

We would like to define a new form of derivative operator ∇µ, known as the covariant

derivative operator, which would obey the tensorial transformation law:

∇µV
ν −→ ∇µ′V

′ν =
∂xµ

∂x′µ
∂xν

∂x′ν
∇µV

ν. (2.42)

To do so, we introduce the so-called Christoffel symbols Γνµλ, or connection coefficients,

which are required ingredients in the definition of the covariant derivative as the usual

partial derivative plus a linear correction:

∇µV
ν = ∂µV

ν + ΓνµλV
λ.
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So when given a particular metric gµν , the first step consists of calculating the connection

coefficients so that we can take covariant derivatives. It can be shown that to cancel out

the non tensorial terms defined in equation (2.41), the connection coefficients Γνµλ need

to obey the following transformation law under a coordinate transformation xµ → x′µ

(from which we see that these connection coefficients Γνµλ are not tensors):

Γν
′

µ′λ′ =
∂xµ

∂x′µ
∂xλ

∂x′λ
∂x′ν

∂xν
Γνµλ −

∂xµ

∂x′µ
∂xλ

∂x′λ
∂2x′ν

∂xµ∂xλ
(2.43)

The connection coefficients are not uniquely defined, but they can be chosen to admit a

natural expression defined from the metric gµν and its derivatives:

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.44)

in which case they are known as the Christoffel symbols. The choice in equation (2.44)

implies that the covariant derivative of the metric and its inverse are always zero, a

property known as metric compatibility:

∇ρg
µν = 0. (2.45)

Parallel Transport, Geodesics and Curvature

The main insight in General Relativity is that spacetime is a curved manifold, and that

it is the mass/energy content of the universe that defines its local curvature. Intuitively,

curvature is the amount by which a manifold deviates from being a flat geometry. A key

distinction exists between an extrinsic definition of curvature, which is defined by embed-

ding the manifold within another higher-dimensional space, and an intrinsic definition

of curvature, which is measured at each point of the manifold from the properties of the

manifold itself, without the need to resort to a higher-dimensional space. In Riemannian

geometry, the intrinsic approach to the definition of curvature is related to the concept of

parallel transport of a vector. Intuitively, if a vector is left unchanged after being parallel-
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transported on a closed infinitesimal loop around a certain point of the manifold, then

the manifold is flat at this point. On the other hand, if the action of parallel transport

along the closed infinitesimal loop alters the vector, then the manifold is curved, and

the curvature can be related to the degree of alteration of the vector under the action of

parallel transport. Formally, we define parallel transport of the tensor T along the path

xµ (λ) to be the requirement that the covariant derivative of T along the path be zero:

dxσ

dλ
∇σT

µ1µ2...µk
ν1ν2...νl

= 0. (2.46)

For a vector V , the equation of parallel transport takes the form:

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0, (2.47)

from which we see that the notion of parallel transport is dependent upon the choice

of the connection. Before discussing how parallel transport can be used to propose an

intrinsic definition of curvature, we first remark that parallel transport can also allow us to

define geodesics. This is an important concept since we will see below that Einstein field

equation implies that freely falling test particles follow geodesics. Intuitively, a geodesic

is the closest approximation in a curved manifold of a straight line in a flat manifold.

Formally a geodesic is a parametrized curve xµ (λ) that minimizes the distance between

two points A and B: L =
� B
A
ds =

� B
A

�
gµν

dxµ(λ)
dλ

dxν(λ)
dλ
dλ. It turns out that this definition

is equivalent to another definition of a geodesic if (and only if) the connection used is

the Christoffel connection (see for example [39]). This second definition is expressed as

follows: a geodesic is a curve along which the tangent vector is parallel transported, which

generalizes the obvious result that a straight line in a flat space is a path that parallel-

transports its own tangent vector. Since the tangent vector to a path xµ (λ) is dx
µ(λ)
dλ

we

obtain from 2.47 that the Euler-Lagrange geodesic equation solution to the variational
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problem

Min

� B

A

�
gµν
dxµ (λ)

dλ

dxν (λ)

dλ
dλ (2.48)

can be written as:
d2xµ

dλ2
+ Γµνσ

dxν

dλ

dxσ

dλ
= 0. (2.49)

if λ is an affine parameter.

We are now ready to introduce an intrinsic definition of curvature. To do this, we

consider the parallel transport of a vector V along a closed infinitesimal loop defined in

terms of two adjacent vectors A and B. Thus the vector V is first parallel-transported in

the direction of A, then in the direction of B, and then backward along the directions of

A and B so as to return to the starting point. This allows us to introduce the Riemann

curvature tensor Rρσµν through the following relationship:

δV ρ = RρσµνV
σAµBν, (2.50)

where δV is the change in the vector V occurred from parallel-transporting the vector

along the infinitesimal closed loop defined by the two vectors A and B. Using the charac-

terization of parallel transport equation 2.47, it is possible to obtain an explicit expression

for the Riemann curvature tensor as a function of the connection coefficients:

Rσµαβ = ∂αΓ
σ
µβ − ∂βΓσµα + ΓσαλΓ

λ
µβ − ΓσβλΓ

λ
µα, (2.51)

from which we can see that Rσµαβ is antisymmetric in its two last indices

Rσµαβ = −Rσµβα.

There are two contractions of the Riemann curvature tensor that are extremely useful,

31



Chapter 2 — Gravitational Radiation in General Relativity

namely the Ricci tensor Rαβ and the Ricci scalar R:

Rαβ ≡ Rλαλβ (2.52)

R ≡ Rλλ = gµνRµν (2.53)

It can also be shown that the Riemann tensor satisfies a differential identity known as

the Bianchi identity:

∇λRµνρσ = 0 (2.54)

If we now define the Einstein tensor as:

Gµν ≡ Rµν −
1

2
Rgµν, (2.55)

then the Bianchi identity implies that:

∇µGµν = 0. (2.56)

Einstein Equation

The fundamental equation of motion in general relativity is the Einstein equation:

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (2.57)

where the constant 8πG
c4
allows one to recover the standard gravitational potential in

the Newtonian limit of slow motion and weak gravitational field, and where Tµν is the

mass/energy tensor, which describes the mass/energy content of the universe. For exam-

ple, the stress-energy tensor for a perfect fluid admits the following general form in the

rest frame of the fluid:

Tµν = (ρ+ p)UµUν + pgµν , (2.58)
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where ρ and p are the rest-frame energy and momentum densities of the fluid and Uµ is

the fluid 4-velocity defined in 2.23

Uµ =
dxµ

dτ
(2.59)

and where τ is the fluid proper time, that is the time measured by an observer in the fluid

rest frame. The Einstein equation 2.57 is a gravitational field equation. As John Wheeler

colorfully put it, "matters tells spacetime how to curve and spacetime tells matter how to

move". In this description, gravitation is no longer regarded as a force, but as a geometric

manifestation of the curvature of spacetime. Taking the trace of the Einstein equation,

we obtain:

−R =
8πG

c4
T (2.60)

so that Einstein equation can be rewritten as:

Rµν =
8πG

c4

�
Tµν −

1

2
Tgµν

�
. (2.61)

An important specific situation is the vacuum situation, where Tµν = 0 so that Einstein

equation simply becomes:

Rµν = 0. (2.62)

It has been shown by David Hilbert [94] that the Einstein gravitational field equation

2.57 can be derived through the principle of least action, which allows for an unification

of general relativity with other classical field theories such as Maxwell theory. To see

this, we define the Hilbert—Einstein action as:

S =
1

16πGc−4

�
R
√−gd4x, (2.63)

an expression which can be extended to account for the presence of a matter field.

A more general version of Einstein equation is a version involving the so-called cos-

mological constant Λ:
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Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.64)

As is well-known, the cosmological constant had originally been introduced by Albert

Einstein [74] to allow for a static solution of the gravitational field equation when applied

to the universe assumed to be filled with dust. Albert Einstein eventually called the

introduction of this term its "biggest blunder" after Edwin Hubble’s 1929 discovery [97]

that all galaxies (outside the Local Group) exhibited redshift and hence had recession

velocities, which suggests that they were moving away from the Milky Way and from

each other, implying an overall expanding universe.

In fact, the left-hand side of 2.64 is the most general local, coordinate-invariant, di-

vergenceless, symmetric, two-index tensor that can be constructed solely from the metric

and its first and second derivatives. As a result, the cosmological constant should be re-

garded as a legitimate addition to the gravitational field equations, and as a parameter to

be constrained by observation. From the physical standpoint, there is an equivalence be-

tween GR with cosmological constant and GR with vacuum energy in addition to matter

(and radiation). To see this, we split the energy-momentum tensor into a term describing

matter/energy and a term describing the vacuum:

Tµν = T
mat
µν + T vacµν . (2.65)

In order to maintain Lorentz invariance, vacuum energy should also have no preferred di-

rection. Therefore the first term in the perfect fluid energy tensor must be zero, requiring

pvac = −ρvac. As a result, we obtain from equation 2.58:

Tµν = −ρvacgµν, (2.66)

and Einstein’s equation including vacuum energy (without the cosmological constant)
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becomes:

Rµν −
1

2
Rgµν =

8πG

c4
�
Tmatterµν − ρvacgµν



. (2.67)

By comparison with equation 2.64, we confirm that the cosmological constant can be

identified with vacuum energy as long as:

ρvac = Λ
c4

8πG
, (2.68)

a quantity which is sometimes also denoted byρΛ. In the next section, we shall discus the

relevance of the introduction of the cosmological constant in cosmology, in particular for

accounting for the empirical observation that the expansion of the universe is accelerating.

2.1.2 Application of GR to Cosmology

In this section, we provide an introduction to the standard ΛCDM (lambda cold dark

matter) cosmological model, a parametrization of the Big Bang cosmological model in

which the universe contains a cosmological constant, denoted by Lambda (Λ), associated

with dark energy, and cold dark matter. This simple model provides a reasonably good

description of the main observed features of the universe, and is obtained by applying

general relativity as the assumed correct theory of gravity up to the cosmological scales.

We also review how the ΛCDMmodel can be extended by adding cosmological inflation so

as to account for a number of otherwise unexplained features of the observable universe.

This introduction to cosmology will prove useful in defining some basic quantities involved

in the analysis of gravitational wave signals (such as the Hubble constant, the critical

density needed to close the universe, etc.). It will also prove useful in our analysis of the

sources of GWs of cosmological origin (such as phase transitions, cosmic strings, etc.).

Classical references on these subjects are [174] and [135].
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Friedmann-Lemaître-Robertson-Walker Metric and Friedmann Equations

Cosmology is the analysis of the largest-scale structures and dynamics of the Universe.

Cosmology as a science originated with the Copernican principle, which is a working

assumption that can be regarded as a modified cosmological extension of Copernicus’

heliocentric universe. Under this modified Copernican principle neither the Sun nor

the Earth are in a central, specially favored position in the universe. This modified

Copernican principle can be related to two important properties that spacetime regarded

as a manifold is assumed to enjoy, namely isotropy and homogeneity. Roughly speaking,

a manifold is homogeneous if it is invariant under any translation along a coordinate, and

it is isotropic if it is invariant under any rotation of a coordinate into another coordinate.

Intuitively, isotropy is a local concept stating that a manifold is isotropic around a given

point if the geometry on the manifold is the same regardless of direction as seen from this

point (see for example [39] for a formal definition). Although the universe is clearly not

homogeneous at smaller scales, there is ample observational evidence that the universe is

highly homogeneous, and isotropic as regarded from the Earth, at a sufficiently large scale

(e.g., at a scale larger than 250 million light years). In particular, a statistical analysis of

the cosmic microwave background (CMB), the thermal radiation left over from the time

of photon decoupling in Big Bang cosmology (see more details below), suggests that this

radiation is isotropic to roughly one part in 100,000 and the root mean square variations

around the mean value of 2.72548 K are only 18×10−6 K, after subtracting out a dipole

anisotropy from the Doppler shift of the background radiation caused by the peculiar

velocity of the Earth relative to the comoving cosmic rest frame (see for example [179]).

Isotropy and homogeneity are two distinct properties, which can be related as follows.

If spacetime is isotropic everywhere, then it is homogenous. Conversely, if it is isotropic

around a certain point and also homogenous, then it must be isotropic around every

point. Because the universe appears highly isotropic from the Earth, an application

of the Copernician principle implies that the universe is assumed to be isotropic and
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therefore homogeneous. Since we are at no special place in the universe, observers in

other places of the universe should also observe isotropy.

Homogeneity will be used to model the matter content of the universe as a perfect fluid

with no shear stresses, viscosity, or heat conduction, and therefore fully characterized by

two parameters only, its mass density ρ and pressure p. The stress-energy tensor for

the perfect fluid admits the expression in equation 2.58. Note that the trace of the

stress-energy tensor is:

T = Tµµ = −ρ+ 3p. (2.69)

When taken together, the two assumptions that the universe is homogeneous and isotropic

are known as the Cosmological Principle, which is the main underlying principle used

when applying GR to the analysis of the universe as a whole. In particular, the cosmo-

logical principal can be used to provide constraints on the form of spacetime geometry.

More precisely, if we assume that the universe is spatially homogenous and isotropic

but is allowed to evolve in time, it can be shown (see [174] for formal arguments) that

spacetime geometric is captured by a family of metric functions, known as the Friedmann-

Lemaître-Robertson-Walker metric functions, which can be written as follows in spherical

coordinates (r, θ, φ):

ds2 = −c2dt2 + a2 (t)
�
f (r) dr2 + r2

�
dθ2 + sin2 θdφ2


 
, (2.70)

where

f (r) =
�
1− kr2


−1
. (2.71)

Here k is the value of curvature, assumed constant to ensure homogeneity, and r can

always be renormalized to ensure that

k ∈ {−1, 0, 1} . (2.72)

The case k = −1 corresponds to an open universe with a constant negative curvature;
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the case k = 0 correspond to a flat universe with zero curvature; and the case k = +1

corresponds to a closed universe with positive curvature. Out of 16 coefficients gµν there

are 10 independent coefficients due to symmetry. In the Robertson-Walker metric, only

4 out of the 10 coefficients are non-vanishing :

gtt = −c2 (2.73)

grr =
a2 (t)

1− kr2 (2.74)

gθθ = a2 (t) r2 (2.75)

gφφ = a2 (t) r2 sin2 θ (2.76)

From the metric, we can compute the Christoffel symbols and subsequently the compo-

nents of the Riemann tensor, from which can be obtained the Ricci tensor as well as the

Ricci scalar, which are the needed ingredients for the left-hand side of Einstein’s field

equation. Using the notation ȧ ≡ da
dt
, we obtain the following non-zero components of the

Ricci tensor:

R00 = − 3ä

ac2
(2.77)

Rii = −2k + aä
c2

+ 2ȧ2

c2

a2
gii (2.78)

and the Ricci scalar is:

R =
6

c2a2
�
aä+ ȧ2 + kc2

 
(2.79)

We may now apply the Einstein equation with the cosmological constant:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν, (2.80)

and we obtain the so-called Friedmann equation from the µν = ii components (see for

example [39]): �
ȧ

a

�2

=
8πG

3
ρ− kc

2

a2
+

Λc2

3
. (2.81)
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We also obtain for the µν = 00 component:

ä

a
= −4πG

3

�
ρ+

3p

c2

�
+

Λc2

3
, (2.82)

which is sometimes called the Friedmann acceleration equation, or the second Friedmann

equation.

It is also useful to consider the zero component of the conservation of energy equation:

∇µT
µ
0 = 0, (2.83)

which yields:

∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ = 0, (2.84)

or

ρ̇c2 + 3
ȧ

a
(ρc2 + p) = 0 ⇔ ρ̇

ρ
= −3 (1 + w)

ȧ

a
, (2.85)

where w = p/ρc2. If w is a constant, the conservation of energy equation 2.85 can be

integrated to give:

ρ ∝ a−3(1+w). (2.86)

The two Friedmann equations 2.81 and 2.82 involve three unknowns, namely a, p

and ρ. A third equation is therefore needed, which in the case of a perfect fluid can

be obtained by the equation of state 2.86 which relates p and ρ. We make a distinction

between three cases of interest for cosmology.

• The first case corresponds to a universe driven by matter, which is defined as any

set of collisionless particles for which we can assume a zero pressure p = 0. In this

matter-dominated case, the conservation of energy equation 2.86 implies that the

density matter in the universe ρM ∝ a−3 as the universe expands.

• The second case corresponds to an earlier epoch, when the universe was much hotter

and denser implying the presence of strong interactions so that pressure does not
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vanish and can be assumed to be related to the density parameter by p = 1
3
ρc2.

In this radiation-dominated case, the conservation of energy equation 2.86 implies

that the density of radiation in the universe ρR ∝ a
−4 as the universe expands.

• The third case of interest is the situation where we assume that p = −ρc2. In this

vacuum-dominated case, which corresponds to the present epoch, the conservation

of energy equation 2.86 implies that the energy density is constant (proportional to

a0) as the universe expands.

There are a number of quantities of interest for cosmology that can be defined at this

stage. We first introduce the rate of expansion of the universe, which is known as the

Hubble parameter:

H =
ȧ

a
(2.87)

The value of this parameter at the current time is known as the Hubble constant, denoted

by H0, which is estimated at 70±10 km/sec/Mpc, where a megaparsec Mpc = 3.09×1924

cm. Given the uncertainty around this parameter, it is sometimes written as:

H0 = 100h km/sec/Mpc, (2.88)

where h is taken to be 70% as a base case estimate. Related to the Hubble constant are

the Hubble time:

tH ≡ 1

H0
≃ 4.4× 1017 s, (2.89)

and the Hubble length:

lH ≡ c

H0
≃ 1.3× 1026 s. (2.90)

From an observational standpoint, the scale factor a (t) can be related to the wavelength

shift of a light signal. Let us define the redshift as:

z =
∆λ

λ
=
λnow − λthen
λthen

, (2.91)
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or

1 + z =
λnow
λthen

,

where λnow is the wavelength of an electromagnetic signal measured by an observer at

the current time and λthen is the wavelength of the same signal when it has been emitted.

Using the geodesic equation for a light wave, simple arguments show that

λnow
λthen

=
anow
athen

. (2.92)

Given that the current time is t0 with a (t0) = 1, we obtain the basic relation:

1 + z =
1

athen
. (2.93)

Thus, at the redshift z = 1, the universe had a size half as the present one. As another

example, the "photon decoupling time" when the universe became transparent to light

(see next section) is said to occur at z = 1100. The scale factor a can also be used to

define the deceleration parameter q, a dimensionless measure of the cosmic acceleration

of the expansion of space in a Friedmann-Lemaître-Robertson-Walker universe, which is

given by:

q = −aä
ȧ2
. (2.94)

The acceleration of expansion ä can be computed as follows. Let us start from the

Friedmann equation 2.81 without the cosmological constant (Λ = 0) in a flat universe

(k = 0), which can be written as:

ȧ = a

�
8πG

3
ρ. (2.95)

Taking the time derivative of this equation and replacing ρ̇ according to the energy
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conservation equation 2.85, we obtain:

ä = −
�

8πG

3

ȧ

2
√
ρ
(ρ+ 3p) . (2.96)

Note that the derivative of the Hubble parameter can be written in terms of the deceler-

ation parameter:
Ḣ

H2
= − (1 + q) . (2.97)

Another useful quantity related to the Hubble parameter is the critical density:

ρcrit ≡
3H2

8πG
, (2.98)

which is defined as the value of the density parameter required to have k = 0 . This can

be seen from the first Friedmann equation without the cosmological constant (Λ = 0),

which we can rewrite as:
kc2

ȧ2
=

8πG

3H2
ρ− 1. (2.99)

We also may define the critical density parameter as:

Ω =
ρ

ρcrit
≡ 8πG

3H2
ρ. (2.100)

The sign of k and the geometry of the universe is therefore defined as a function of the

density parameter:

ρ < ρcrit ⇔ Ω < 1 ⇔ k < 0 ⇔ open universe (2.101)

ρ = ρcrit ⇔ Ω = 1 ⇔ k = 0 ⇔ flat universe (2.102)

ρ > ρcrit ⇔ Ω > 1 ⇔ k > 0 ⇔ closed universe (2.103)

The density parameter is often divided into components so as to provide a quantitative

measure of the relative contribution of various sources of matter/energy to the energy
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content of the universe. If we introduce:

ΩM =
ρM
ρcrit
, (2.104)

ΩR =
ρR
ρcrit
, (2.105)

ΩΛ =
ρΛ
ρcrit
, (2.106)

where ρM is the density of matter, ρR is the density of radiation, and ρΛ is the density

for vaccum, the first Friedmann equation 2.81 gives:

H2

H2
0

= ΩMa
−3 +ΩRa

−4 +ΩΛ, (2.107)

which provides a useful measure of the evolution of the Hubble parameter as a function

of the evolution of the density for each type of matter/energy as the universe expands.

For ΩR it is often useful to express the quantity as a function of the frequency of the

source of radiation. Given that a logarithmic scale is typically used, we set:

ΩR =

�
ΩR (f) d ln f, (2.108)

with:

ΩR (f) ≡ 1

ρcrit

dρR
d ln f

, (2.109)

a quantity which will be used in chapter 3 in the analysis of gravitational wave signals.

The ΛCDM Cosmological Model with Cosmological Inflation

Historically, the first popular cosmological model has been the standard Hot Big Bang

model (without dark matter and dark energy), which uses the FLRW metric 2.70, the

Friedmann equations 2.81 and 2.82, as well as the cosmological equation of state 2.86 to

describe the observable universe from an origin known as the Big Bang, a hot and dense

initial state starting from which the universe has been expanding over time to present.

43



Chapter 2 — Gravitational Radiation in General Relativity

One of the key successful predictions of this cosmological model is the existence of a

cosmic microwave background (CMB), defined as the thermal radiation left over from the

time of recombination in Big Bang cosmology. As the universe expanded, both the plasma

and the radiation filling it grew cooler until a point, estimated to be at 1013 seconds (or

about 400, 000 years) after the Big Bang, known as the recombination epoch, when the

universe cooled enough for protons and electrons to start combining and forming neutral

hydrogen atoms. Since these atoms could no longer absorb the thermal radiation, the

universe became transparent as photons started to travel freely through space rather than

constantly being scattered by electrons and protons in plasma. This photon decoupling

effect is the source of the relic radiation. The photons that existed at that time have been

propagating ever since while growing fainter and less energetic given that the expansion

of space causes their wavelength to increase over time. The accidental discovery of a

cosmic microwave background with a thermal black body spectrum at a temperature of

2.72548 ± 0.00057 K in 1964 by American radio astronomers Arno Penzias and Robert

Wilson [136] came as a confirmation of this key prediction of the Big Bang cosmology,

which then became the commonly accepted cosmological model. Despite its success in

accounting for a large body of cosmological observations, the standard Big Bang model

fails, however, to explain a number of puzzles or problems. The two most important of

these problems are known as the horizon problem and the flatness problem, which we

briefly summarize below. Other problems exist, such as the magnetic monopole problem

or the entropy problem, for which cosmic inflation can also possibly provide a reasonable

explanation [41].

• The horizon problem (sometimes known as the homogeneity problem or the causal-

ity problem) is the problem of determining why the universe appears statistically

homogeneous and isotropic [128], which justifies the application of the cosmologi-

cal principle. As recalled above, the cosmic microwave background has been found

isotropic to roughly one part in 100,000 and the root mean square variations around

the mean value of 2.72548 K are only 18× 10−6 K [179]. In a standard Big Bang
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model, the whole surface of last scattering is not in causal contact and therefore

widely separated regions of the observable universe cannot have equilibrated given

that the transfer of information (or energy, heat, etc.) required to ensure homo-

geneity can occur, at most, at the speed of light.

• The flatness problem (sometime also called one of the Dicke coincidences, along

with the cosmological constant problem [60]) refers to the problem of obtaining

measures for the density of the universe that are extremely close to the critical

density needed to close the universe, which in turns requires an extreme fine tuning

of the constant Ω at earlier times. From the observation of the anisotropies, or an-

gular scale of fluctuations, of the Cosmic Microwave Background (CMB) radiation,

Ω has indeed been found to be equal to 1 ± 0.01 [162], a result which has been

independently confirmed by Type-Ia supernovae surveys and the analysis of their

redshift at different distances from Earth [127]. That Ω is so close to the critical

value of 1 today is extremely surprising when the situation is assessed at earlier

times. To see this, note that equation 2.99 implies:

k ∝ a2ρ
�
1− Ω−1



∼ a2ρ (Ω− 1) . (2.110)

Now, a2ρ is not a constant since radiation density ρR falls of as a
−4 as the universe

expands, while matter density ρM falls of as a
−3. From the time of the Big Bang

to the present time, a2ρ is therefore expected to have decreased by approximately

60 orders of magnitude in a standard FLRW cosmology. This in turn implies that

the constant k would have increased by approximately 60 orders of magnitude, and

therefore

|Ω (t = t0)− 1| ≤ 10−2 ⇒ |Ω (t = tBB)− 1| ≤ 10−62 (2.111)

where tBB is some time just after the Big Bang. This is an extreme example of a

fine tuning problem, which raises the question of how to explain that the energy

density has taken a value so extremely close to the critical value required to close
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the universe. In fact any small deviation of Ω from 1 in the early universe would

have been magnified during billions of years of expansion to create a current density

very far from the critical value.

In a seminal paper [90], Alan Guth has proposed an extension of the standard cos-

mological model as a possible solution to the horizon and flatness problems. The model,

known as cosmological inflation model or inflation model in short, proposes that within

10−29 seconds after the Big Bang occurred an exponential expansion of space with a scale

factor a increasing exponentially by at least 26 orders of magnitude. This comic infla-

tion scenario would solve the horizon problem since it implies that the entire observable

universe today would have started as a small causally connected region. It would also

solve the flatness problem since the exponential increase in the scale factor would have

led to an exponential decrease in Ω − 1. Hence, under this scenario, the density today

would be extremely close to 1 whatever was the initial density value. Since the flatness

and horizon problems can be explained by an early stage of accelerated expansion, it is

useful to analyze the physical conditions under which this early accelerated expansion

can occur. This can be done from equation 2.96, which states that the universe is in

accelerating expansion if (ρ+ 3p) < 0. We conclude that during inflation the pressure

should be negative and smaller than −ρ/3. A cosmological constant would satisfy this

property since p = −ρ. During a fully Λ-dominated stage, however, the energy density

stays constant and never decays, implying that inflation will be indefinite. The most

straightforward possibility for inflation to eventually come to an end is to consider a

scalar field (called the inflaton) slowly rolling down in a very flat valley. At all times in

this slow roll-down process the field can be regarded as a false vacuum state sharing the

key properties of the true vacuum state, including that the energy of the field is diluted

very slowly with a pressure very close to −ρ. In the inflationary stage, the potential

energy of the slow-rolling scalar field (the inflaton) starts to dominate the total energy

density in the universe, until the quantum fluctuations of the scalar field and of the met-

ric undergo a semi-classical transition. At the end of inflation, the scalar field decays
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into particles in a stage called reheating, during which the scalar field decays. After the

decay of the scalar field, the universe is dominated by the energy of relativistic parti-

cles produced during reheating and enters into the aforementioned radiation-dominated

stage. A detailed description of cosmological inflation is beyond the scope of the present

discussion (see for example [115] for a review). Here we mostly emphasize that cosmic

inflation is expected to have important implications for the generation of gravitational

waves. Indeed in its lowest energy state, the quantum inflation field has only the zero

point energy. As space expands, the field expands as well and quanta of the gravitational

field, called gravitons, are created, a process which is expected to lead to the generation

of gravitational waves of extremely low frequency (in the range of 10−18-10−12 Hz) as the

wavelength of these gravitons expands in the inflating universe. In section 3.1.2, which

is dedicated to the stochastic gravitational wave background from cosmological origin,

we revisit the question of the primordial stochastic background generated by inflation

in more details, and we also discuss the generation of gravitational waves from cosmic

strings.

In addition to the puzzles related to the origin of the universe, pure-baryonic models

also face serious challenges explaining a variety of observational features of the current

universe, such as the flatness of the galactic rotation curves and the mass discrepancy

in clusters of galaxies ([135]), which were taken as evidence of the presence of cold dark

matter in addition to baryonic matter. As a consequence, most research during the

1980s focused on CDM cosmological models involving cold dark matter with critical

density in matter around 95% CDM and 5% baryons, which have been found successful

at explaining the formation of galaxies and clusters of galaxies (see [31] for a review).

A number of problems remained, however, including the fact that the model required a

Hubble constant lower than what suggested by observations. These difficulties sharpened

with the improved estimates for the CMB anisotropy by COBE in 1992, and several

modified CDM models, including the ΛCDM model, came under active consideration

through the mid-1990s. [135] is a classic reference for an overview of the historical stages
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of development of the standard model (see also [175] for a more recent reference).

The currently accepted ΛCDMmodel is a version of the standard Big Bang cosmology

that contains the cosmological constant, as presented in equations 2.81 and 2.82. The

introduction of the cosmological constant was confirmed by the finding from two separate

teams of astronomers observing distant type 1a supernovas, one led by the American Saul

Perlmutter and the other by the Australians Nick Suntzeff and Brian Schmidt ([137] and

[147]), that the deceleration rate of expansion was in fact negative, namely that the

universe expansion was accelerating. In addition to explaining earlier observations, the

model has made a number of successful predictions including the existence of acoustic

oscillations in the density of the visible baryonic matter in the predicted location [85]

and the statistical features of weak gravitational lensing, first observed in 2000 by several

teams (see [110] for a recent review of observational results regarding cosmic shear, the

distortion of images of distant galaxies due to weak gravitational lensing by the large-scale

structure in the Universe, and their implications to cosmology). The polarization of the

CMB, discovered in 2002 by the Degree Angular Scale Interferometer (DASI) [112], is also

a success for the ΛCDM model: in the 2015 Planck data release, there are seven observed

peaks in the temperature power spectrum, six peaks in the temperature-polarization

cross spectrum, and five peaks in the polarization spectrum, and they all agree with the

predictions of the ΛCDM model [46]. Beside, the standard ΛCDM model was found to

fit the Wilkinson Microwave Anisotropy Probe (WMAP) temperature and polarization

data [162].

2.1.3 Gravitational Waves

Special relativity implies that all interactions, including gravitational interactions, can

travel at most at the speed of light and cannot propagate instantly as suggested in

Newton’s theory. General relativity re-interprets gravitation not as a force, but as a

manifestation of spacetime curvature. Taken together these theories imply the existence

of some form of "gravitational radiation", known as gravitational waves (GWs), which
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are space-time perturbations travelling at the speed of light created by time variations

of the mass quadrupole moment of the source (see equation 2.178), and which existence

has been predicted by Albert Einstein in 1916 [73].

Gravitational Waves in Weak Gravitational Fields

The starting point for the description of GWs is to consider a spacetime endowed with a

metric that is deviating very slightly from the flat Minkowski metric, and which can be

written as the Minkowski metric of special relativity ηµν (equations 2.5-2.7) plus a small

metric perturbation hαβ:

gµν = ηµν + hµν, (2.112)

with:

|hµν| ≪ 1. (2.113)

In what follows, all indices are raised and lowered with the flat Minkowski metric ηµν .

This metric is consistent with the presence of a weak gravitational field, which would be

generated by non compact objects such as non massive stars, or by a compact object

located at large distances. The inverse of the Minkowski matrix is the Minkowski matrix

itself:

η−1 × η = Id4, (2.114)

which can equivalently be written as:

ηµαηαν = δ
µ
ν . (2.115)

As a result, we have that the inverse matrix of gµν, gµν , can be written as ηµν plus a small

perturbation kµν. It can easily be shown that kµν = −hµν so that we finally have:

gµν = ηµν − hµν, (2.116)
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where:

hµν ≡ ηµαηνβhαβ. (2.117)

Linearized Form of Einstein Equation We now can start looking at the linearized

form of the Einstein equation. For this, we first consider the components of the affine

connection (the Christoffel symbols) Γρµν associated with the metric g:

Γρµν =
1

2

�
ηρλ − hρλ



(∂µhνλ + ∂νhλµ − ∂λhµν) , (2.118)

or after keeping the first-order h terms:

Γρµν =
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) . (2.119)

We then construct the Riemann curvature tensor from 2.51. To first-order in h, and

therefore neglecting the terms in Γ×Γ which are of higher order, the Riemann curvature

tensor reduces to:

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (2.120)

From 2.52, the Ricci tensor in linearized gravity is:

Rµν = R
λ
µλν =

1

2

�
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν



, (2.121)

where h is the trace of the tensor hαβ with respect to the Minkowski metric:

h ≡ ηµνhµν, (2.122)

and where we have used the D’Alambertian operator denoted by �:

� ≡ − 1

c2
∂2

∂t2
+
∂2

∂x21
+
∂2

∂x22
+
∂2

∂x23
. (2.123)
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We contract the Ricci tensor to obtain the curvature scalar R:

R = ηµνRµν = ∂µ∂νh
µν −�h. (2.124)

We finally obtain the Einstein tensor, which gives at first-order:

Gµν = Rµν −
1

2
Rηµν (2.125)

=
1

2

!
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν

−ηµν∂σ∂λhσλ − ηµν�h
"
. (2.126)

This expression can be simplified via the introduction of the trace-reversed metric hµν:

hµν ≡ hµν −
1

2
hηµν. (2.127)

Since ηµνη
µν = 4, we have that the trace of hµν is:

ηµνhµν = h− 2h = −h, (2.128)

which explains why hµν is called the trace-reversed metric perturbation. When substi-

tuting hµν = hµν + 1
2
hηµν in equation (2.126), all second-order derivatives of h cancel out

so that we are left with the following generalized expression for the linearized Einstein

equation (with no cosmological constant):

�hµν + ηµν∂
ρ∂σhρσ − ∂ρ∂νhµρ − ∂ρ∂µhνρ = −16πG

c4
Tµν. (2.129)

In fact, one can use a suitable change in coordinates to simplify this equation into a

standard wave equation 2.141. To see this, we consider a general infinitesimal coordinate

transformation, which can be written as:

x′µ = xµ + ξµ (x) . (2.130)
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Using the transformation law of the metric 2.30, we find that the transformation of hµν

to the lowest order is:

hµν → h′µν = hµν −
�
∂µξν + ∂νξµ



(2.131)

We can use the gauge freedom ξµ so as to choose a coordinate system that satisfies the

so-called Lorentz gauge condition:

∂µh
′
µν = 0, (2.132)

To prove this, let us express equation 2.131 in terms of the trace-reversed metric pertur-

bation hµν:

hµν → h
′
µν = hµν −

�
∂µξν + ∂νξµ − ηµν∂ρξρ



, (2.133)

which implies that

∂νhµν →
�
∂νhµν


′
= ∂νhµν −�ξµ. (2.134)

Starting with expressing this quantity

∂νhµν (x) = fµ (x) (2.135)

for some function fµ, we can obtain

�
∂νhµν


′
= 0 (2.136)

by choosing ξµ so that

�ξµ = fµ (x) , (2.137)

an equation that always admits a solution by virtue of the invertibility of the d’Alembertian

operator. Denoting by G (x) a Green’s function of the d’Alembertian operator so that:

�xG (x− y) = δ4 (x− y) , (2.138)
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we obtain an explicit expression for ξµ as a function of fµ:

ξµ (x) =

�
d4xG (x− y) fµ (y) (2.139)

The advantage of working with a gauge that satisfies the Lorentz gauge condition is

that it greatly simplifies the expression of the Einstein tensor, which reads

Gµν =
1

2
�hµν (2.140)

so that Einstein equation eventually becomes a simple wave equation:

�hµν = −16πG

c4
Tµν. (2.141)

Note that Lorentz gauge condition is a set of 4 separate conditions which reduces

the 10 independent components of the symmetric metric perturbation hµν to 6 indepen-

dent components. In fact we argue in the next section that there remain 4 additional

gauge degrees of freedom that can be used in a specific choice of coordinates called the

transverse-traceless gauge so as to impose 4 additional conditions on hµν so as to finally

leave only 2 independent components of the metric perturbation.

The Transerve-Traceless Gauge Equation 2.141 is the basic equation allowing one to

study gravitational waves within the context of a linearized gravitational field. To study

the propagation of GWs as well as their interactions with detectors, we are interested

in spacetime geometry outside the source (Tµν = 0). In vacuum, the linearized Einstein

equation reduces to:

�hµν = 0. (2.142)

Let us now observe that Lorentz gauge condition 2.132 allows for additional degrees

of freedom. Starting from
�
∂νhµν


′
= ∂νhµν −�ξµ (2.143)
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we can perform an additional coordinate transformation

xµ → xµ + ξµ (2.144)

by taking

�ξµ = 0 (2.145)

at the same time as we impose

∂νhµν = 0 (2.146)

since this choice would still preserve the condition

�
∂νhµν


′
= 0. (2.147)

As a result, from the 6 remaining independent components of hµν, which satisfies the

linearized Einstein equation in vacuum 2.142, we can subtract functions ξµν as long as

they satisfy

�ξµν = 0. (2.148)

We can define such functions as:

ξµν ≡ ∂µξν + ∂νξµ − ηµν∂ρξρ (2.149)

since

�ξµ = 0 ⇒ �ξµν = 0. (2.150)

The functions ξµν depend upon the 4 arbitrary independent functions ξµ, so we can always

choose the gauge transformation xµ → xµ + ξµ so as to impose 4 conditions on hµν. In

particular, we can specialize the gauge to make it purely spatial:

htt = hti = 0 (2.151)
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and traceless:

h = h
µ

µ = 0. (2.152)

In this case, the gauge condition implies that the spatial metric is transverse:

∂µhµν = 0. (2.153)

After nailing down all the remaining degrees of freedom in the choice of coordinates,

the resulting gauge is said to be traceless-transverse (TT), and denoted by h
TT

µν . Note

that since h
TT

µν is traceless, we have that h
TT

µν = hTTµν . Transverse traceless gauges make it

explicit that gravitational waves have two polarization components. Consider for example

a wave propagating in the z direction. We then have that

hTTµν = hTTµν (t− z) (2.154)

is a valid solution to the wave equation �hTTµν = 0. The Lorentz gauge condition ∂zhTTµν =

0 then implies that hTTzν (t− z) is a constant, which must be zero since hTTµν → 0 as

the distance to the source of gravitational waves becomes infinite. The only non-zero

components of hTTµν are then h
TT
xx , h

TT
xy , h

TT
yz and h

TT
yy . By symmetry and because of the

traceless condition, we finally have:

hTTxx = −hTTyy ≡ h+ (t− z) (2.155)

hTTxy = hTTyz ≡ h× (t− z) (2.156)

where the quantities h+ (t− z) and h× (t− z) are two independent waveforms known as
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the "plus" and "cross" waveforms. In summary, we have in the traceless-transverse gauge:

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0




Interactions of Gravitational Waves with Matter and Detectors

Let us again consider a plane gravitational waves moving along the z−axis. In the

transverse traceless coordinate system (xα) = (ct, x, y, z), the spacetime metric g satisfies:

gµνdx
µdxν = −c2dt2 +

�
δij + h

TT
ij



dxidxj. (2.157)

If we consider a particle Amoving freely in spacetime, with no force acting on it except for

the influence of the gravitational waves, its geodesic equation 2.49 xα = Xα
A (τ) satisfies:

d2Xα
A

dτ2
+ Γαµν

dXµ
A

dτ

dXν
A

dτ
= 0, (2.158)

where the Christoffel symbols are given in equation (2.119). For the metric perturbation

in the TT gauge we have:

Γ00α = 0 (2.159)

Γ0ij =
1

2c
∂th

TT
ij (2.160)

Γi00 = 0 (2.161)

Γi0j =
1

2c
∂th

TT
ij (2.162)

Γijk =
1

2c

�
∂jh

TT
ik + ∂kh

TT
ji − ∂ihTTjk



(2.163)
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The α = i spatial component of the geodesic equation thus becomes:

d2Xα
A

dτ 2
+

1

c
∂th

TT
ij

dX0
A

dτ

dXj
A

dτ
+ Γijk

dXj
A

dτ

dXk
A

dτ
= 0. (2.164)

The only first-order term is the first one, so we are left with:

d2Xα
A

dτ2
= 0. (2.165)

From the initial condition Xα
A (0) = 0 and given that dXi

A

dτ
= 0, we obtain that the

test particle stays at the point (x, y, z) = (0, 0, 0) in the TT gauge. That the test particle

does not move in the TT coordinate system is a remarkable property of these coordinates

(which intuitively means that they move with the waves), which does not imply that

measured physical distances are not impacted by the passage of the gravitational wave.

In fact the distance L between two freely falling test particles would oscillate at the

passage of the gravitational wave. To see this, let us now consider two free-moving test

particles A and B. At the proper time t1 an observer located on a reference frame attached

to A sends a light signal in direction to B, which is reflected back to A where it arrives

at the proper time t2. We define the distance between A and B as:

L =
c

2
(t2 − t1) (2.166)

We now measure the variation δL that is caused by the passage of the gravitational wave.

Assuming that A and B are infinitely close, we have that:

L2 = gµν (x
µ
B − xµA) (xνB − xνB) , (2.167)

or equivalently:

L2 = gij
�
xiB − xiA


 �
xjB − xjA



(2.168)
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since:

x0A = ct = x0B. (2.169)

Assuming that the test particle A is located at the origin (xxA, x
y
A, x

z
A) = (0, 0, 0), we

obtain:

L2 = gijx
i
Bx

j
B =

�
δij + h

TT
ij



xiBx

j
B. (2.170)

If we denote by −→n the unit space vector joining A and B for the Minkowski metric, we

have xiB = L0n
i with:

L0 = δijx
i
Bx

j
B. (2.171)

We finally obtain:

L =
�
L20

�
δij + hTTij



ninj = L0

��
1 + hTTij n

inj


. (2.172)

Keeping only the first order terms in h, we have:

L = L0

�
1 +

1

2
hTTij n

inj
�
. (2.173)

As a result, the relative change in measured length δL
L0

≡ L−L0
L0

due to the impact of the

gravitational wave is:
δL

L0
=

1

2
hTTij n

inj . (2.174)

Generation of Gravitational Waves by a Source

From equation 2.141, we have obtained the wave equation that relates the trace-reversed

field hµν = hµν − 1
2
hηµν to the stress-energy tensor:

�
1

c2
∂2

∂t2
− ∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23

�
hµν =

16πG

c4
Tµν . (2.175)

In principle one can obtain the first-order contributions to the spatial component of

the metric perturbation by solving this equation assuming that the source generates
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a sufficiently weak gravitational field for the linearized version of Einstein equation to

provide a satisfactory local approximation at least at some distance from the source. This

leads to the so-called quadrupole formula that allows one to estimate the magnitude of the

wave strain for a given source. In what follows, we present simple physical arguments,

borrowed from the discussion in [80], that can be used to obtain an estimate for this

strain. To do this, we define moments of the mass distribution for the object generating

the gravitational waves, which we assume for simplicity to have no internal motion. The

zeroth moment M0 of the mass distribution, also known as monopole moment, is simply

the mass itself:

M0 =

�
ρd3x =M, (2.176)

where ρ denotes the mass density of the object. The first moment M1 of the mass

distribution, also known as dipole vector, is given by:

M1 =

�
ρxid

3x =MLi, (2.177)

where Li is a vector with the dimension of a length that describes the displacement of

the center of mass from the origin (and as such is a frame-dependent quantity). The

second moment M2 of the mass distribution, also known as quadrupole moment tensor,

is defined as:

M2 =

�
ρxixjd

3x =MLij , (2.178)

where Lij is a tensor with the dimension of a length squared. Using simple physical

and dimensional arguments, it can be shown that M0 and M1 cannot contribute to the

generation of GWs. To see this, let us start with M0, and let us try to combine its value

M with the distance to the source, r, in such a way as to produce a dimensionless wave

strain h, which should fall off as 1/r. Since G is expressed in m3 × kg−1 × s−2, c is

expressed in m× s−1, M is expressed in kg, and r in m, we can check that the following
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quantity:

h ∼ G
c2
M

r
. (2.179)

is indeed dimensionless. Since the conservation of mass-energy implies that M is a con-

stant for an isolated source, we cannot have a radiative strain h from the monopole

moment. Consider now the second multipole moment. To obtain a dimensionless strain

we need to take one time-derivative, which requires:

h ∼ G

rc3
dM1

dt
. (2.180)

where the extra factor of c converts the dimension of the time derivative to space, so

that the whole expression is dimensionless. The time-derivative of the second monopole

moment is:
dM1

dt
=
d

dt

�
ρxid

3x =

�
ρ
dxi
dt
d3x = Pi (2.181)

which is the total momentum of the source, so we finally obtain:

h ∼ G
c3
P

r
. (2.182)

Since the conservation of momentum implies that P is a constant for an isolated

source, we cannot have a radiative strain h from the dipole moment either.5 Extending

this analysis, it can be seen that the first moment to contribute to the generation of

gravitational waves is M2, and it contributes to a strain wave given by:

h ∼ G

rc4
d2M2

dt2
, (2.183)

and there is no conservation principle that allows us to reject this term. We note that

the factor G
c4
is an extremely small quantity, which explains that only sources with very

large accelerating or decelerating time-varying quadrupole moments are expected to gen-

5Even in situations when the conservation of mass-energy and momentum does not hold, M0 andM1

do not contribute to the generation of gravitational waves which are a rank 2 tensors.
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erate gravitational waves of a measurable size. This discussion is consistent with the

fact that gravitational interactions are very weak, and in fact the weakest of all known

interactions. As a result, even extremely large energies radiated from gravitational waves

will generate an extremely small strain. For example, in the case of GW150914 [9] the

energy radiated by the merger of the two black holes was equivalent to as much as 3 solar

masses having been dissipated under the form of gravitational waves while the peak GW

strain detected was merely 10−21 m! Astrophysical objects that are natural candidates

for the generation of detectable gravitational waves are compact objects evolving at high

velocity. If we define the gravitational luminosity factor Lu as the total energy radiated

by the gravitational wave per unit of time, we have:

Lu ∼
c5

G
s2y

�
RS
R

�2 #v
c

$6
, (2.184)

where R is the spatial extension of the source, RS its Schwarzschild radius, v its velocity

and sy an asymmetry factor (sy = 0 for a symmetric source). For a compact object

(RS
R

∼ 1), with a strong deviation from spherical symmetry (sy ∼ 1), and moving at

relativistic speed (v
c
∼ 1), the quantity of energy radiated can be extremely large:

Lu ∼
c5

G
= 3.6× 1052W, (2.185)

which is 1026 greater than the luminosity radiated by the Sun in the electromagnetic

domain.

2.2 Detectors of Gravitational Waves

There are a variety of approaches that can be used to detect gravitational wave sig-

nals. Starting with Earth-based instruments, there have been historically two types of

GW detectors, namely resonant bar detectors and laser interferometers. In what follows,

we provide a brief discussion of resonant bar detectors before providing a more detailed

61



Chapter 2 — Gravitational Radiation in General Relativity

analysis of laser interferometers, which are the most sensitive instruments in operation

today. It should also be noted that pulsar timing array experiments, which consist in

analyzing a set of millisecond pulsars to search for correlated signatures in pulses emitted

by the pulsars as a function of the pulsars’ angular separations, can also be used to detect

extremely low frequency (between 1 nHz and 1 mHz) gravitational waves [118]. Finally,

let us note that at the largest spatial scales up to the scale of the observable universe,

gravitational waves can be observed by measuring the polarization of the cosmic back-

ground radiation [35] and isolating the component related to gravitational waves hidden

behind the largest polarization signals generated by cosmological density fluctuations [96].

2.2.1 Resonant Detectors

The first type of instrument used for the detection of gravitational waves was a resonant

bar, or Weber bar, a large, solid bar of metal isolated from outside vibrations. In 1966,

Joseph Weber of the University of Maryland constructed a gravitational-wave detector

that consisted of a cylinder of aluminum 2 meters long and 1 meter in diameter. The

idea was that when a gravitational wave was incident on the bar at a specific frequency,

it would excite the bar’s resonant frequency and the bar would start to ring like a bell.

This "ringing" frequency, also called the resonant frequency, was 1660 Hz for Weber’s

bars [21].

Given the low intensity of gravitational wave strains, any ringing of the bar will be too

small to hear or even to detect using normal ways of measuring vibration. Instead, crys-

tals that produce an electric voltage when stretched or compressed (called a piezoelectric

crystal) were mounted around the bar. As a result, Weber’s bar was isolated from seismic

and electromagnetic disturbances and housed in a vacuum. However, even the vibration

of the aluminum atoms in the bar due to their temperature created significant noise and

limited how small of a gravitational wave they could detect. Ultimately, they were lim-

ited to a strain δL
L
of about 10−16. By 1969 Weber thought that he may have detected

gravitational waves with his bar detectors [173]. This claim was ultimately not accepted
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for many reasons including that other groups were not able to reproduce his rate of de-

tections. Weber eventually lost the financial support of the National Science Foundation

after a disputed claim of the detection of gravitational waves from a supernova observed in

February 1987 [43]. Nonetheless, this launched the era of gravitational wave detectors, as

resonant mass detectors began operating in countries around the globe. Most of the large

baseline interferometers were constructed in the 90s. Today, there remains a network of

three detectors (Explorer, Nautilus, and Auriga) operated under the general coordina-

tion of the International Gravitational Event Collaboration [18]. Since the early days,

there have been many advancements in using resonant-mass bars to detect gravitational

waves. Most bars today are made from new aluminum alloys, are cryogenically cooled to

reduce the noise from the bar’s thermal vibrations, have mechanical means to amplify the

vibration, and piezoelectric crystals have been replaced with even more sensitive motion

sensors known as SQUIDs (for Superconducting Quantum Interference Device). Different

shapes (like spheres) have also been used to increase sensitivity to gravitational waves

coming from different directions because bars are most sensitive to gravitational wave di-

rectly above or below the bar [11]. However, resonant-mass gravitational-wave detectors

remain only sensitive to narrow ranges of gravitational wave frequencies.

2.2.2 Laser Interferometers

In what follows, we first provide an overview of existing and planned laser interferometer

gravitational wave observatories, before turning to a presentation of the technical aspects

of laser interferometry applied to gravitational wave detection.

Existing Detectors

The concept of a laser interferometer gravitational wave detector has a long and inter-

esting history for which we only provide a brief review here (we refer to [153] for more

details). The first discussion of the idea of how laser interferometers could be applied to

the detection of gravitational waves can be traced back to a pair of papers, a paper writ-
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ten in 1971 by a team at Hughes Research Lab led by Robert Forward, a former graduate

student of J. Weber, and a paper written in 1972 by Rainer Weiss from MIT [178]. In

his paper, Weiss states that he had been inspired by a 1956 paper by a Polish Physicist

F.A.E. Pirani [140] and he further states that he had realized several years before (while

teaching an undergraduate seminar) that the newly developed lasers could turn Pirani’s

thought experiment into a practical detection methodology. Weiss also notes that the idea

“has been independently discovered by Dr. Philip Chapman of the National Aeronautics

and Space Administration, Houston.” American (Australian born) Philip K. Chapman,

who had earned a doctorate in Instrumentation at MIT’s Department of Aeronautics and

Astronautics before joining NASA as a scientist-astronaut, had in fact been involved in

separate discussions with the two teams, and has been instrumental in connecting them.

Building upon this early work, Kip Thorne initiated in 1968 theoretical efforts on grav-

itational waves and their sources at Caltech, which have eventually led to launch of the

Laser Interferometer Gravitational-Wave Observatory (LIGO) project. In the context of

this project the initial LIGO observatories were conceived, built, and operated by Caltech

and MIT with a funding by the National Science Foundation (NSF). A similar project,

the Virgo project, was approved in 1993 by the French CNRS and in 1994 by the Italian

INFN, the two institutes at the origin of the experiment, and the construction of the

detector started in 1996 at the Cascina site near Pisa, Italy.

The LIGO and Virgo detectors are the main existing Earth-based interferometers.

LIGO (Laser Interferometer Gravitational-wave Observatory) consists of two operating

interferometers: one four kilometer interferometer in Livingston, Louisiana, and another

one in the LIGO facility at Hanford, Washington. The sites are separated by roughly

3,000 kilometers. The LIGO and Virgo detectors have been operated for several years

until they were stopped to allow for a sensitivity improvement. Advanced LIGO has been

operational since the summer 2015 and Advanced Virgo is scheduled to become opera-

tional by the end of 2017. Further observation runs will be halted to allow commissioning

efforts to further improve the sensitivity, with the aim to achieve design sensitivity in 2021
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Figure 2.1: Projected sensitivity at later stages of development for Advanced LIGO and
Advanced Virgo detectors.

(see Figure 2.1 for the scheduled sequence of improvements in the sensitivity of Advanced

LIGO and Advanced VIRGO detectors). As a result of these improvements, in the most

sensitive frequency region around 100 Hz, the design strain sensitivity is for Advanced

LIGO a factor of 10 better than Initial LIGO. In addition, the low frequency end of the

sensitivity band is moved from 40 Hz down to 10 Hz [3].

Other laser interferometers include GEO600, a six hundred meter interferometer con-

structed by a German-English collaboration near Hanover, Germany, as well as the

Kamioka Gravitational Wave Detector (KAGRA) in Japan. KAGRA has two sets of

3kms arm length laser interferometric gravitational wave detectors which are being built

in the tunnels of Kamioka mine and is now likely to enter operation in 2018 [113]. In the

wake of LIGO’s detection of gravitational waves, the Indian government has approved in

the Spring 2016 the construction of the third LIGO interferometer (LIGO India).

Further Expected Upgrades

In spite of their early success, fundamental limitations at low frequency of the sensitivity

of the 2nd generation detectors exist because of the presence of thermal noise of the

suspension last stage and of the test masses, as well as seismic noise and related gravity

gradient noise, also known asNewtonian noise. This Newtonian noise cannot be mitigated
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by adding additional layers of seismic isolation because it is due to the actual gravitational

attraction between the test masses and the density perturbations around the detector.

A third-generation detector at the existing LIGO sites is being planned under the name

LIGO Voyager to improve the sensitivity by an additional factor of two, and halve the

low-frequency cutoff [124]. Additionally, a design exists for a larger facility with longer

arms, which is called Cosmic Explorer. This project, with operation to commence post

2035, is an upgrade based on the LIGO Voyager technology, but expanded to a triangular

configuration with up to 40 kms arms [124].

In parallel to these US projects, a third generation GW observatory project has also

been developed in Europe to accommodate new infrastructures involving an underground

site for the detector, to limit the effect of the seismic noise, and cryogenic facilities to

cool down the mirrors to directly reduce the thermal vibration of the test masses. This

project, known as the Einstein Telescope (ET) project, has been supported as Design

Study by the European Commission under the Framework Programme 7 (FP7, Grant

Agreement 211743). The Einstein Telescope, just like Cosmic Explorer, will also consist

of three nested detectors, each composed of two interferometers with arms 10 kilometers

long. One interferometer will detect low-frequency gravitational wave signals (2 to 40

Hz), while the other will detect the high-frequency components. The configuration is

designed to allow the observatory to evolve by accommodating successive upgrades until

reaching a sensitivity expected to be 100 times more sensitive than current instruments.

Finally, in addition to Earth-based interferometers, a Laser Interferometer Space An-

tenna (LISA) has been proposed as a joint NASA-ESA project, and is now a project

led by ESA with the support of NASA. The goal is to develop and operate a space-

based gravitational wave detector sensitive at frequencies between 10−4 Hz and 10−1 Hz.

LISA is expected to detect gravitational-wave induced strains in space-time by measuring

changes of the separation between fiducial masses in three spacecraft 5 million kilome-

ters apart. As a first step, LISA Pathfinder was launched in December 2015 to test in

flight the concept of low-frequency gravitational wave detection. It put two test masses
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in a near-perfect gravitational free-fall, and controled and measured their motion with

unprecedented accuracy. To do this, it used inertial sensors, a laser metrology system,

a drag-free control system and an ultra-precise micro-propulsion system. The aims of

the LISA Pathfinder mission is to (1) demonstrate, in a space environment, drag-free

and attitude control in a spacecraft with two free proof masses, (2) test the feasibility

of laser interferometry with picometer resolution at low frequency, and (3) test the en-

durance of the different instruments and hardware in the space environment. As a result

of this experiment, it has been found that the two cubes at the heart of the spacecraft are

falling freely through space under the influence of gravity alone, unperturbed by other

external forces, to a precision substantially better than originally required. More pre-

cisely, the results demonstrate that two free-falling reference test masses, such as those

needed for a space-based gravitational wave observatory like LISA, can be put in free

fall with a relative acceleration noise with a square root of the power spectral density of

(0.54± 0.01) × 10−15g/Hz for frequencies between 0.7 and 20 mHz; this value is lower

than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25

of the requirement for the LISA mission [22].

Overall, the different approaches and instruments that can be used to achieve GW

detection should not be viewed as competing one with another. They actually target

different sections of the GW spectrum (see Figure 2.2 borrowed from [40] for some typical

amplitudes and wavelengths of gravitational waves across the GW spectrum, and the

sensitivities of several detection methods).

While the advanced versions of LIGO and Virgo are designed to operate in the fre-

quency range 10-103 Hz, it is expected that space-based detectors will cover a range

between 10−4 Hz and 10−1 Hz. Turning to even lower frequencies, it is expected that

pulsar timing arrays will also detect GWs around 10−8 Hz. Measures of the polarization

of the cosmic background radiation will in turn allow us to probe gravitational events at

frequencies around 10−16 Hz.
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Figure 2.2: This diagram illustrates some typical amplitudes and wavelengths of gravita-
tional waves across the entire spectrum, and the sensitivities of several detection methods.
Figure borrowed from [40].

Laser Interferometer GW Observatory Technology

From a technical standpoint, a laser interferometer is typically made of a pair of L-shaped

arms of a given length. To measure the relative lengths of the arms, a single laser beam

is split at the intersection of the two arms. Half of the laser light is transmitted into

one arm while the other half is reflected into the second arm. Mirrors are suspended as

pendulas at the end of each arm and near the beam splitter (see Figure 2.3, borrowed

from [156], for a diagram showing the components of the Advanced LIGO detectors). In

order to artificially increase the arm length, one can bounce the light back and forth in the

arms to increase the interaction time with the gravitational wave. With sufficiently large

mirrors, one could construct a Herriott delay line [92] with hundreds of bounces [158].

It was subsequently proposed ([64], [63]) to instead use Fabry-Perot optical resonators in

place of the delay lines. These cavities have the advantage of combining all of the many

"bounces" of the delay line onto a single spot, thus greatly reducing the size, and thereby,
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the cost, of the mirrors. Nearly all of the modern interferometers now use Fabry-Perot

cavities instead of delay lines due to issues with scattered light in the latter [155]. The

interferometer arm cavities are adjusted in length microscopically so that the fields from

each arm interfere destructively at the Michelson anti-symmetric port. This causes almost

all of the laser light to return towards the laser. By placing a partially transmitting mirror

between the laser and the Michelson beamsplitter, this return light can be made to return

towards the beamsplitter interfering constructively with the incoming laser light [10].

This so-called power recycling mirror is engineered to nearly equal the total scattering

losses from the Michelson’s optics [64] and thereby provide optimum power coupling from

the laser source into the interferometer arms [7]. The modern GW interferometers with

Fabry-Perot arm cavities have been able to increase the laser power on the beamsplitter

by a factor of 65 by using this method [10]. The GEO600 detector has achieved a power

gain of 1000 using power recycling [29].

If the lengths of both arms have remained unchanged, then the two combining light

waves should completely subtract each other (destructive interference) and there will be

no light observed at the output of the detector. However, if a gravitational wave were

to slightly stretch one arm and compress the other, the two light beams would no longer

completely subtract each other, yielding measurable light at the detector output. More

specifically, interferometers measure the phase difference caused by passing GWs which

stretch one arm as they compress the other. The gravitational wave strain amplitude

is: h = δL
L
. The advanced generation of LIGO-Virgo detectors is expected to be able to

measure strains less than h ≃ 10−21. If we consider that the freely falling particles are

located at z = 0 and separated on the x−axis by the distance L0, we obtain that the

spatial distance between the two particles along the x−axis oscillates with the fractional

change given by:
δL

L0
=

1

2
hTTxx (t, z = 0) . (2.186)

This quantity is particularly important because this is the quantity that it actually mea-

sured by interferometric gravitational wave detectors, where the change δφ in the photon
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Figure 2.3: The Advanced LIGO detectors are Michelson interferometers with 4-km long
arms. The arms contain Fabry-Perot optical cavities to amplify the signal from a gravita-
tional wave. The electromagnetic field from the laser is modulated at radio frequencies (9
and 45 MHz) to generate signals used to control the detector, and the spatial profile of the
beam is cleaned using an optical cavity (the Input Mode Cleaner). A mirror placed be-
tween the input mode cleaner and the beamsplitter (the Power Recycling Mirror) is used
to recycle the laser power that is rereflected by the arms, and another mirror (the Signal
Recycling Mirror) between the beamsplitter and the readout photodetectors is used to
alter the frequency response of the interferometer. The Output Mode Cleaner removes
excess laser light before the signal is measured by photodetectors. Picture borrowed from
[156] (Figure 1), where more details can be found.
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phase when travelling back and forth the arm of a laser interferometer in the presence

of a gravitational wave is δφ = 4πδL/λ. Here λ is the photon wavelength and L is the

distance between the mirror located at the one end of each arm and the beam splitter at

the other end of the arm. The magnitude h of the wave is often called the "wave strain".

Let us consider again for concreteness a gravitational wave propagating along the

z−axis, and choosing Cartesian coordinates so that the interferometer’s two arms lie

along the x and y axis, with the beam splitter at the origin. Given that the only two

non-zero components of the metric perturbation are:

hTTxx = −hTTyy ≡ h+ (2.187)

hTTxy = hTTyz ≡ h× (2.188)

we have that the distance between the mirror at the end of each arm and the beam

splitter varies over time according to:

δLx
L

= +
1

2
h+ (2.189)

δLy
L

= −1

2
h+ (2.190)

These are precisely the changes in distance measured by laser interferometers. The gravi-

tational wave sequentially squeezes one arm while the other one is stretched. In reality, it

will not be the case that the source of the signal is ideally located so that the gravitational

wave are generated in a direction that is exactly perpendicular to the plane formed by

the two arms, meaning that a weighted combination of the two polarizations will impact

each arm as a function of the exact location of the source in the sky.

2.3 Sources and Types of Gravitational Waves

The analysis in the previous section suggests that gravitational waves are very weak. The

coupling coefficient c4

8πG
in the Einstein equation 2.57 is a very large number, of order
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1043. This translates into the fact that if spacetime is elastic, with a geometry that is

locally impacted by its mass-energy content, it is extremely stiff, which implies that the

Newtonian law of gravitation is an excellent approximation to GR in weak gravitational

fields. This also explains why gravitational waves have a small amplitude, even when

their energy density is very high, and cannot be generated in the context of a laboratory

experiment. Only very massive astrophysical objects travelling at relativistic speeds can

be expected to generate gravitational waves sufficiently substantial to be noticeable. In

fact the extreme amplitude of the strain at the point of coalescence of two 10 solar masses

black holes is hmax ∼ 10−16 located at the galactic centre [107]. The first observational

validation of the existence of gravitational waves is the the observation by Taylor and

Weisberg in 1982 [164] that the rate of decay of the orbit of the "Hulse-Taylor" PSR

B1913+16 pulsar system, discovered by Hulse and Taylor in 1975 [98], matches GR

prediction regarding the loss of energy of the system due to the emission of gravitational

waves (see also [176] for more recent observations and related analyses). Binary pulsar

systems are not the only sources of GWs, and one can classify the expected types of GW

signals in 4 categories, with several astrophysical (or cosmological) phenomena that can

generate detectable sources of GWs in each category:

• Inspiral GW signals,

• Periodic GW signals,

• Burst GW signals,

• Stochastic GW signals.

Another important distinction exists between continuous GW signals with a charac-

teristic evolution time τ that is very long compared with the observation time T , and

burst GW signals which are fast evolving gravitational waves signals with characteristic

evolution time τ that is much smaller than the observation time T . If we choose T of the

order of magnitude of 1 year as an observation time, sources that could be considered
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continuous typically include compact binary systems in the gradual inspiral phase prior

to the final few minutes of their evolution, and deformed neutron-stars. On the other

hand, burst sources would include a core-collapse supernova, for which τ could be of order

10−3 seconds to a few minutes or late inspiral and coalescence stages of binary systems.

In what follows, we provide a brief description of the first three main types of GWs

(inspiral, periodic and burst) and related astrophysical sources of GWs, ranked in in-

creasing expected difficulty of detection [145]. We shall turn to a more detailed analysis

of the stochastic GW background in the next chapter, where we make a key distinction

between the SGWB of astrophysical origin and the SGWB of cosmological origin, and also

discuss the distributional properties of this stochastic signal as well as standard detection

methods.

2.3.1 Inspiral GW Signals

Inspiral GW signals, which are chirping signals produced by compact binary systems,

are currently the best understood sources of GWs (see Figure 2.4 for a typical example

of an inspiral gravitational wave signal). There are three main kinds of compact binary

systems for this category of gravitational wave generators in the frequency range that can

be accessible with Earth-bound detectors: Binary Neutron Star (neutron star-neutron

star) or BNS systems, Binary Black Hole (black hole-black hole) or BBH systems, and

Neutron Star-Black Hole Binary or NSBH systems.

To get a sense of the magnitude and frequency of the gravitational waves generated

by compact binary systems, let us suppose that the binary system is well-separated so

that each component can be treated as points. We let the masses be m1 and m2, and

the orbital separation be R. We define M = m1+m2 as the total mass and µ = m1m2

M
as

the reduced mass of the system. The system of two masses m1 and m2 in a bound orbit

is equivalently described by a single mass µ orbiting in an external potential determined

by the total mass of the system M . In a general case, the mass moves in an elliptic orbit

with eccentricity e and semi-major axis a. Here we assume circular orbits only so we
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Figure 2.4: An example of signal from an inspiral gravitational wave source. Image
taken from the "LIGO Science" website, available at http://www.ligo.org/science/GW-
Inspiral.php.

have e = 0.6 Using Kepler’s third law, we can obtain the period P and angular orbital

velocity Ω as a function of the total mass M and the semi-major axis a:

P 2

a3
=

4π2

GM
(2.191)

Ω2 =
4π2

P 2
=
GM

a3
(2.192)

Approximating the mass quadrupole moment by M2 ∼ µa2 and replacing ∂2

∂t2
with Ω2 in

equation 2.183, we obtain that the amplitude at a distance r >> R from this source is:

h ∼
�
G

c4

�
1

r

�
µGM

a

�
. (2.193)

Using 2.192 to get rid of a in 2.193, and using that the frequency f of GW emission is

6Lowest order approximations for the GW strain when the binary orbit is eccentric are given in [138]
and [139].

74



Chapter 2 — Gravitational Radiation in General Relativity

twice the orbital frequency Ω
2π
, that is f = Ω

π
, we finally obtain:

h =

�
32

5

(GMch)
5
3

rc4
(πf)

2
3 (2.194)

f =
Ω

π
=

1

π

�
GM

a3

� 1
2

, (2.195)

where we have defined the chirp mass Mch via M
5/3
ch = µM2/3 or

Mch =
(m1m2)

3/5

(m1 +m2)
1/5
. (2.196)

Mch is named "chirp mass" because it is the quantity that determines how fast the binary

"chirps" or "sweeps" through a frequency band. More generally, a chirp (or sweep) signal

is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with

time.

The construction of a generic model of the GW signal from coalescing black-hole

binaries through their inspiral, merger and ringdown phases is an important requirement

for GW detection. While the binary early inspiral can be modeled with analytic post-

Newtonian calculations, the late inspiral and merger require numerical solutions of the

full nonlinear Einstein equations (see [141] for pioneering work in this domain). These

numerical relativity calculations involve at least seven parameters: the mass ratio of the

binary (the total mass of the system is a scaling factor) and the components of each

black hole’s spin vector (see for example [91] for a simplified model of binary black holes

coalescence). In addition to effective one-body calculations and the tools from numerical

relativity, perturbation theory has proven to be an excellent approach for modeling the

ringdown phase of general systems, especially, but not only, in situations with very large

mass ratios [130], [56]. These methods allow us to obtain accurate templates for searching

GWs generated by compact binary coalescence. In a non-spinning case with circular

orbits, the inspiral source is described by 9 parameters, and 6 additional parameters are

required for a spinning compact binary coalescence [167].
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Figure 2.5: The gravitational-wave event GW150914 observed by the LIGO Hanford (H1,
left column panels) and Livingston (L1, right column panels) detectors (Figure 1 in [9]).

Extrapolation from these observed binaries suggests that between a few to a few hun-

dred binary neutron star mergers could be detected every year by existing GW detectors

once they reach their target sensitivity. Models for the evolution of stellar populations

also indicate that the measured rate of binaries containing black holes should also be

relatively large, even though the uncertainties of population synthesis calculations are

substantial. Our understanding of the population of binary black holes systems has been

greatly enhanced by the first two detections by the twin detectors of the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO) that took place on September 14, 2015

and December 26, 2015. The first coincident signal, referred to as GW150914, is shown

in Figure 2.5 below borrowed from [9].

The basic features of GW150914 point to it being produced by the coalescence of

two black holes, i.e., their orbital inspiral and merger, and subsequent final black hole

ringdown, as can be seen in Figure 2.6 below borrowed from [9]. The inferred initial
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Figure 2.6: Effective black hole separation for GW150914 in units of Schwarzschild radii
and the effective relative velocity given by the post-Newtonian parameter.

black hole masses are about 36.2 and 29.1 solar masses, and the resulting black hole mass

is around 62.3, suggesting that about 3 = 36.2 + 29.1 − 62.3 solar masses have been

dissipated under the form of gravitational wave energy. Inspiral gravitational waves are

generated during the end-of-life stage of binary systems where the two objects merge into

one. As the two masses rotate around each other, their orbital distances decrease and

their speeds increase, which causes the frequency of the gravitational waves to increase

until the moment of coalescence.

The second detection of gravitational waves generated by the coalescence of a binary

system of stellar mass black holes subsequently took place on December 26, 2015 ([5]).

The GW151226 signal persisted in the LIGO frequency band for approximately 1 second,

increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached

a peak gravitational strain of about 3.4 × 10−22 meters. The inferred initial black hole

masses are about 14.2 and 7.5 solar masses, and the resulting black hole mass is around

20.8. Another candidate, LVT151012, was found in the data with a low probability

of being a false alarm (false alarm probability of about 2%), but not enough to claim
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Figure 2.7: This Figure, borrowed from [45] (right panel of Figure 1), shows the time
evolution of the 3 recovered signals from when they enter the detectors’ sensitive band
at 30 Hz.

a detection. If LVT151012 was to be regarded as an actual detection, the two black

holes estimated masses would be 23 and 13 solar masses, respectively.7 In Figure 2.7,

borrowed from [45], we show the time evolution of the signals GW151226, GW150914 and

LVT151012 from when they enter the detectors’ sensitive band at 30 Hz. Finally, a third

detection took place on January 4, 2017, in the second obervation run (O2). As was the

case with the first two detections, the detected waves were generated by the coalescence

of a binary system of stellar mass black holes. The black hole formed by the merger has a

mass about 49 times that of our sun, which lies between the masses of the merged black

holes form the first detections, with solar masses of approximately 62 (first detection) and

21 (second detection). Further detections expected from the new generation LIGO/Virgo

detectors will help put tighter constraints on stellar population model parameters.

7LIGO detections are named "GW" followed by the date in YYMMDD format. LIGO/Virgo candi-
dates start with a "LVT" for "LIGO-Virgo Trigger" followed by the date.
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Figure 2.8: An example of a continuous gravitational wave source from a rotat-
ing neutron star. Image taken from the "LIGO Science" website, available at:
http://www.ligo.org/science/GW-Continuous.php.

2.3.2 Periodic GW Signals

Periodic signals are continuous signals that are expected to have a duration much greater

than the observation time and that are emitted at a nearly constant frequency. The

prototypical source of a periodic GW signal (see Figure 2.8 for a stylized example) in the

high-frequency band is a rotating non-axisymmetric neutron star. Neutron stars are com-

pact remnants of supernovae having masses similar to the mass of the Sun, radii around 10

kms, which are supported by neutron degeneracy pressure. From an observational stand-

point, the first pulsar was observed on November 28, 1967, by Jocelyn Bell Burnell and

Antony Hewish [25] and found to emit in radio wavelengths. Pulsars have subsequently

been found to emit in visible light, X-ray, and/or gamma ray wavelengths [86], and they

are also expected to emit, under certain conditions discussed below, gravitational wave

signals.

An asymmetry in a neutron star crust, caused, for example, by an oblateness that is

misaligned with the star’s spin axis (also known as a mountain), will radiate GWs with

characteristic amplitude [170]:

h =
4π2GIf 2

c4r
ε, (2.197)

79



Chapter 2 — Gravitational Radiation in General Relativity

were I is the star’s moment of inertia, f is the wave frequency, r is the distance to the

source, and ε is the dimensionless fractional distortion which characterizes the degree to

which the star is distorted:

ε = (Ixx − Iyy)/I, (2.198)

where Ixx is the moment of inertia tensor.8

This "mountain" distortion could have been frozen into the crust or core of the star

after it was born in the supernova, formed from material falling onto the star, or be

produced and maintained though extremely large internal magnetic fields (larger even

than the external fields described above). However, due to the huge gravitational field

at the star surface the material forming the "mountain" needs to be really strong to not

be flattened out. Rotational and tidal distortions can be described as a function of the

internal structure of the stars. Various mechanisms have been proposed to explain how

a neutron star can be distorted to give a value of ε that is interesting as a GW source,

including distortion by accreting material from a companion star [170]. The accreting

material comes from either the strong stellar wind in binaries with supergiant companions

or the cirscumstellar disk in Be/X-ray binaries, and estimates of neutron star structure

are consistent with a largest deformation ε ∼ 10−6 [146].

Searches for gravitational waves from a large selection of pulsars using data from the

science runs of the initial generation of LIGO and Virgo did not lead to the detection

of gravitational waves from any of 195 known pulsars for which data was collected. On

the other hand, these results have produced improved estimates for the upper limits.

For the Crab pulsar and Vela pulsar, less than about 1% and 10%, respectively, of their

spin-down energy loss is due to gravitational radiation.[1]

8Even if the neutron star is axisymmetric, it can still emit GWs if the axis of symmetry of the star
is not the same as the rotational axis [183].
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Figure 2.9: An example of signal from a burst gravitational wave source from a supernova
core collapse. Image taken from the "LIGO Science" website, based on data from [133],
available at http://www.ligo.org/science/GW-Burst.php.

2.3.3 Burst GW Signals

Gravitational waves produced in episodes that are comparatively short relative to the

observation time are referred to as gravitational wave bursts (see Figure 2.9 for an example

of a supernova core collapse gravitational wave signal would look like). According to this

definition the coalescence of compact binaries including the late inspiral phase and the

merger phase would qualify as a burst event. In practice, it is common to qualify as burst

events that are much shorter in duration, typically less than 1 second. Thus, we regard

gravitational wave (GW) bursts as transient signals with durations much shorter than

the observational time scale and identifiable by a distinct arrival time.

A typical example of an astrophysical phenomenon that can generate a GW burst is

the core collapse of a massive star such as type II supernovae. While the dynamic of

the collapse of massive stars is relatively well understood from the theoretical standpoint

[132], a number of uncertainties remain about the different core rotation parameters

as well as the progenitor lower and upper mass cutoffs and may impact the process.

As a result, the emitted wave form and available models for simulating core collapses
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are subject to a high degree of uncertainty [51] . This stands in sharp contrast to the

gravitational wave profile emanating from the coalescence of compact objects, which is,

as recalled above, extremely well modelled.

Broadly speaking, type II supernovae result from the rapid collapse and violent ex-

plosion of a massive star, with a mass that is anywhere between around 8 to around 50

solar masses. The upper and lower bounds are defined as follows. Relatively light stars,

with masses approximately lower than 8 solar masses, will turn into white dwarfs9, which

are compact stars supported by electron degeneracy pressure.10 On the other hand, very

massive stars with masses greater than about 50 solar masses are expected to collapse

directly to black holes (prompt collapse) without producing supernovae.

When the compacted mass of the inert core exceeds the Chandrasekhar limit of about

1.4 solar masses, electron degeneracy is no longer sufficient to counter the gravitational

compression and an implosion of the core takes place within seconds. Without the support

of the imploded inner core, the outer core collapses inwards under gravity and reaches a

velocity of up to about 20% of the speed of light and the sudden compression increases the

temperature of the inner core to up to 100 billion kelvin. Core collapse in massive stars

resulting in type II supernovae are expected to be an important source of GWs since they

involve large amounts of mass flowing in a compact region (hundreds to thousands of kilo-

meters) at relativistic speeds. On the other hand, a sufficiently high degree of asymmetry

in collapse is required to generate strong gravitational waves, which may be the case if

the star is rapidly rotating with a differential rotation caused by an asymmetric mass

distribution during collapse [61]. Even without strong instabilities generated by rapid

rotation, the asymmetric dynamics of core collapse is still likely to generate gravitational

9If the white dwarf is part of a binary system where there is mass transfer from the companion,
accretion-induced collapse would still occur when the white dwarf mass eventually exceeds the Chan-
drasekhar limit of about 1.4 solar masses, and a Type Ia supernova is then produced.
10Electron degeneracy pressure is a particular manifestation of the more general phenomenon of quan-

tum degeneracy pressure. The Pauli exclusion principle disallows two identical half-integer spin particles
(electrons and all other fermions) from simultaneously occupying the same quantum state. The result is
an emergent pressure against compression of matter into smaller volumes of space. Electron degeneracy
pressure results from the same underlying mechanism that defines the electron orbital structure of matter
and has been shown to explain the resistance of solid matter [65].
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waves that could be detectable if emitted within the Local Group of galaxies.

Core collapses are not the only astrophysical phenomena that can produce burst GW

signals. The ringdown phase of black hole coalescence for example can be regarded as

generating short duration burst gravitational waves. The initial GW150914 detection was

actually made by low-latency searches for generic gravitational wave transients [6] before

it was recovered by matched-filter analyses that use relativistic models of compact binary

waveforms. Of course, it may also be classified as the latest stage of a binary black hole

coalescence and as such be also sorted in the inspiral signal category. More generally, one

may expect to find burst gravitational waves from systems we never knew about before.

As a result, the search for burst gravitational waves is more difficult compared to the

search of inspiral or periodic signals since the lack of a proper understanding of the exact

origin of the GWs implies that the detection analysis cannot be restricted to the use of

a well-defined set of template waveforms.
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3

Definition and Detection of the Sto-

chastic GravitationalWave Background

In contrast to aforementioned sources that produce GW signals that are bounded either

in frequency (continuous gravitational waves) or in time (burst gravitational waves),

the superposition of a sufficient number of sources that overlap both in the time and

frequency domain results in an aggregate signal for which it is impossible to identify the

marginal contribution of each source (source confusion). Countless GW sources from

astrophysical origin, and also from fundamental cosmological processes, contribute to

the generation of what is known as a gravitational wave background. Even if underlying

signals are deterministic, the presence of uncertainty regarding the number of sources

and uncertainty in the gravitational amplitude of each source implies that this aggregate

signal is best modelled as a stochastic signal. We first discuss the possible astrophysical

or cosmological origins of this stochastic gravitational wave background (SGWB), and

then present the standard methods used in data processing and detection. We finally

analyze its distributional properties with a particular emphasis on possible deviations

from the Gaussian assumption.
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Figure 3.1: An example of stochastic gravitational wave background signal. Image
taken from the "LIGO Science" website, available at http://www.ligo.org/science/GW-
Stochastic.php.

3.1 Definition and Origins of Stochastic Gravitational

Wave Backgrounds

At the intuitive level, the total gravitational wave signal received by a detector can

be decomposed into the following components: the resolved signals and the stochastic

gravitational wave background. The stochastic gravitational wave background can itself

be decomposed into a cosmological gravitational wave background, and an astrophysical

gravitational wave background generated from the superposition of a large number of

unresolved signals, which results in a seemingly random signal (see Figure 3.1 for a

stylized example of what a stochastic gravitational wave signal might look like).

3.1.1 Stochastic Gravitational Wave Background of Astrophys-

ical Origin

As previously indicated, the astrophysical SGWB is formed by the superposition of a

sufficient number of aforementioned overlapping sources of astrophysical origin such as

inspiral signals from compact binary coalescences, periodic signals from rotating neutron
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stars or burst signals from supernovae core collapses. The concept of overlapping sources

can be formally defined in terms of a quantity known as duty cycle (DC). For a given

type of astrophysical source of gravitational waves, the duty cycle measures the average

fraction of the observation period T period for which the signal from the given type

of sources is expected to be present. For a given source a value DC = 1 implies that

a continuous signal emanating from one source is present over the whole measurement

period, while a value DC = 0.5 implies that the signal is on average present only 50% of

the time. Mathematically, the duty cycle is given by the following expression:

DC =
1

T

� zc

0

(1 + z) τR (z) dz, (3.1)

where R (z) is the event rate observed in the Earth reference frame as a function of the

redshift z (see 2.91), where the integration limit zc corresponds to the epoch when the

events of the given type first started, and where the characteristic evolution time τ is time

dilated to (1 + z)τ by cosmological expansion. Using this definition, the astrophysical

gravitational wave background can itself be decomposed into a contribution from con-

tinuous sources with a duty cycle much greater than 1 (DC >> 1) and a contribution

from transient sources with a duty cycle lower than 1 (DC < 1). The contribution from

transient sources can itself be decomposed into a "shot" transient contribution when the

duty cycle is much lower than 1 (DC << 1), and a "popcorn" transient contribution

when the duty cycle is close to 1 (DC ∼ 1) (see Figure 3.2 borrowed from [145] for an

illustration of shot and popcorn SGWB signals).

In a nutshell, the discussion above can be summarized in terms of the following de-
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Figure 3.2: Time series corresponding to shot, popcorn and gaussian regimes - Figure
borrowed from ([145]).
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compositions:

S����
Aggregate signal

= RS����
Resolved signal

+ SGWV� �� �
Stochastic background

SGWV� �� �
Stochastic background

= CGB� �� �
Background of cosmological origin

+ AGB� �� �
Background of astrophysical origin

AGB� �� �
Background of astrophysical origin

= CAGB� �� �
Contribution from continuous sources

+ BAGB� �� �
Contribution from transient sources

BAGB� �� �
Contribution from transient sources

= SBAGB� �� �
Contribution from "shot" transient sources

+ PBAGB� �� �
Contribution from "popcorn" transient sources

Note that the resolved signals correspond to non-overlapping burst sources that fall

above the detection threshold. In other words, if we could have access to perfect detec-

tors with an idealized infinite sensitivity, then there would not be any non-overlapping

burst contribution to the stochastic gravitational wave background, but the stochastic

gravitational wave background would still have (in addition to a contribution from cos-

mological origin) a component from an astrophysical origin, which would be generated

by the superposition of continuous or burst signals that would be overlapping in the time

and/or frequency domains.

Interestingly, the recent detections by LIGO have led the community to revise their

expectations regarding the SGWB from binary black-holes. In particular, the detection

GW150914 of inspiral and merger of two black holes with masses around 30 solar masses

suggests a population of binary black holes with masses higher than originally expected,

and therefore a contribution to the SGWB also higher than previously expected. In

the most sensitive part of the Advanced LIGO/Virgo band for stochastic backgrounds

around 25 Hz, and using the properties of GW150914, the energy density ΩGW(f =

25Hz) is predicted to take on a value equal to 1.1+2.7−0.9×10−9 with 90% confidence [8].

This predicted value potentially allows for a measurement by the Advanced LIGO/Virgo

detectors operating at their projected final sensitivity levels.
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3.1.2 Stochastic Gravitational Wave Background of Cosmolog-

ical Origin

In addition to the GWs of astrophysical origin, we also expect a stochastic background

of gravitational waves to have been generated during the early evolution of the universe.

Several cosmological scenarios imply the production of such primordial GWs. In what

follows, we propose a brief overview of these cosmological sources of GWs and we refer

to [27] as well as the references therein for more details.

The first scenario, consistent with the standard cosmological model, involves the am-

plification of quantum fluctuations of the inflation field in slowly rolling models of infla-

tion [87], [163], [88]. Amplifications of vacuum fluctuations at the transition between the

de Sitter, radiation dominated (RD) and matter dominated (MD) eras are expected to

produce a GW background with characteristics that depend strongly on the fluctuation

power spectrum developed during the early inflationary period [89]. In the most realistic

scenario of “slow roll down” inflation, the inflaton field rolls toward the minimum of its

potential, producing an acceleration of the expansion, while GWs are produced by fluc-

tuations that go out the Hubble radius during inflation, and re-enter at the radiation era.

The resulting spectrum has a fnT dependency, where nT is a negative number with a

small absolute value, perhaps of the order of 10−3 [120], which translates into GWs that

may be out of the detection range given realistic estimates for expected improvements of

detector sensitivities.

The second scenario, also consistent with the standard cosmological model [33], [117],

involves first order phase transition in the early stages of the universe evolution [37], [36],

[38]. In the early stages of its evolution, the Universe may have undergone several episodes

of phase transitions, in which the symmetry of particle-physics fundamental interactions

spontaneously broke. This may occur for instance at the quantum chromodynamics

(QCD) scale (150 Mev) and electroweak scale (100 GeV) or even earlier, at the grand

unified scale (see [120] and references therein). The standard model predicts a smooth

89



Chapter 3 — Definition and Detection of the Stochastic Gravitational Wave Background

crossover, but in its supersymmetric extensions, the transition from a metastable phase

(the false vacuum) to the state of broken symmetry (the true vacuum) may have generated

a large amount of GWs that could be produced when bubbles of the new phase are

nucleated, grow and collide at very high velocities as they become more numerous.

The third scenario, which has received a lot of attention in the literature, involves the

presence of primordial GWs emitted by cosmic strings, which are one-dimensional line-

like topological defects formed during symmetry breaking phase transitions in the very

early universe [109] as well as in later stages of the universe evolution. In addition to

cosmic strings which existence is predicted by a number of field theories, so called "super

strings" may have been produced in string theory inspired inflation scenarios [34], [106]

in M-theory models. The main differences between cosmic strings and super strings are

that (1) the latter reconnect when they meet with probabilities p that can be less than

1 (the values suggested for p are in the range [10−3; 1][100]), and that (2) more than one

kind of string can form.1 The effect of a small reconnection probability is to increase the

time it takes for the network to reach equilibrium, and to increase the density of strings at

equilibrium [159]. Although the analysis of cosmic microwave background data has led to

rule out cosmic strings as the likely primary source of density perturbations2, they are still

believed to be at the origin of a number of interesting phenomena, including precisely

the generation of primordial gravitational waves [172]. Cosmic strings originating in

the symmetry breaking of a Grand Unified Theory possess an enormous mass per unit

length µ (Gµ ≃ 10−6, where G is Newton’s constant). After formation the network

of strings quickly evolves towards an attractor solution called the "scaling regime" (see

[172] as well as references therein) where the energy density in long strings (also known

as infinite strings) remains a constant fraction of the total background energy density.

This is achieved by intercommutations and self-intersections of the strings leading to

the production of small loops, which then decay by emitting gravitational radiation. In

1Cosmic superstrings may form also Y-junctions where 3 different strings meet.
2While most inflationary models produce Gaussian random phase initial conditions, defect models

produce non-Gaussian perturbations particularly on small scales [23].
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this way, some of the energy input into the string network coming from the stretching

of the strings due to the expansion of the universe is transferred to the background.

Despite this superimposed small-scale structure due to intercommutations, long strings

are almost straight over distances of the order of the horizon, so that the scaling solution

can be pictured as having a fixed number of long strings per Hubble volume at any given

time [129]. From the observational standpoint, the presence of very large mass-per-unit-

length strings is not supported by CMB observations [105], but it is still conceivable that

strings of lower energy scale may contribute to the generation of GWs. Until recently,

it appeared that the gravitational effects of strings were too weak to be observable.

However, it has been shown in [57] and [58] that GW bursts emitted from cusps of

oscillating loops could be detectable by ground-based interferometers as a popcorn-like

contribution. These strong bursts of gravitational radiation can potentially be detected

individually and subtracted from the stochastic background [26], [58]. It has also been

shown that LISA could detect a background from strings as light as Gµ/c2 = 10−16 [59].

Note that most of the literature has Focused on gravitational waves generated from two

processes: cusps (whereby a segment of the string momentarily moves at the speed of

light) and kinks (formed after two cosmic strings collide and reconnect). Gravitational

waves can also be produced by cosmic superstring reconnections, but recent estimates of

the burst amplitude imply that neither bursts nor the stochastic background would be

detectable by Advanced LIGO, even for the most optimistic values of the reconnection

probability and loop sizes [101].

3.2 Standard DetectionMethods for Stochastic Grav-

itational Wave Backgrounds

Statistical inference method for GW data analysis can be used to answer two types of

related questions, the detection question and the estimation question. The detection

question is: "Is a gravitational-wave signal present in the data?". The estimation ques-
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tion (assuming a positive answer to the detection question) is: "What are the physical

characteristics, typically represented by a finite set of parameters, of the source?".

Gravitational-wave data analysis methods are typically divided into three main cate-

gories: (i) well-modeled deterministic signals, such as those from compact binary inspirals,

for which we have waveform templates that are analyzed using a matched-filter statis-

tic (see for example section 3.4 in [103]); (ii) poorly-modeled deterministic signals, such

as those from core-collapse supernovae, which are analyzed in terms of an excess power

statistic (see section 7.4 in [53]); and (iii) stochastic signals, such as those generated by

cosmic strings, which are analyzed using a cross-correlation statistic between pairs of

detectors.

A discussion of the methods used in the first 2 categories is beyond the scope of this

thesis, which has a main focus on the stochastic gravitational wave background, and we

refer the reader to the aforementioned references for more details. Broadly speaking, the

optimal detection strategy to search for a stochastic background is to cross correlate the

output of two detectors (or of a network of detectors) to eliminate the instrumental noise.

In what follows, we focus on (iii) and propose a detailed overview of the standard cross-

correlation approach used for detection of stochastic gravitational wave backgrounds.

These methods can be classified into two main categories which are respectively known

as the frequentist approach and the Bayesian approach. In this section, we discuss the

application of these two approaches to data analysis (detection and estimation) for SGWB

signals, and we also provide some elements of comparison of the two within the context

of a unified framework [48].

3.2.1 Frequentist Approach to SGWB Data Analysis

A stochastic background of gravitational waves will generate a signal that is expected to

be a weak random addition to the detector noise, and as such extremely difficult to isolate

from the detector noise if a single detector is used. Fortunately, the extraction of the

SGWB is made possible by the use of two, or more, independent detectors. Intuitively,
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the presence of a SGWB will effectively introduce a correlated source of noise in the

detection, which can be distinguished from the sources of detector noise if these are

assumed to be sufficiently uncorrelated across the detectors. This is achieved by cross-

correlating the measurement outputs from the various detectors, as will be discussed

below. We first present the methodology in the simple case of two colocated and coaligned

detectors with a cross-correlation analysis presented in the time-domain. An equivalent

frequency-domain analysis can be obtained, which is related to the time-analysis by a

simple Fourier transform, and which is a perspective that we favor when we discuss

the overlap reduction function that is needed to handle the general situation where the

detectors are not colocated and/or coaligned.

Case of Colocated and Coaligned Detectors

Consider for simplicity two gravitational wave detectors. The output of each detector is

a collection of dimensionless strain measurements. Suppose that N such measurements

are made with each detector at regular time intervals. Denote these measurements by a

T × 2 matrix h with components hit, where i = 1, 2 labels the detector, and t = 1, 2, ..., N

is the discrete time of the measurement. We first decompose the measurement output for

detector i in terms of noise versus signal, which gives when written in terms of random

variables:

Hi= N i+S, (3.2)

where Ni denotes the noise detected by the detector i and S denotes the signal detected

by both detectors i (since we assume that the detectors are coincident and coaligned, i.,e.,

that they have identical location and arm orientations, the detectors receive the exact

same signal so we drop the subscript i), and Hi is the total measurement for the detector

i. We also assume that the detectors are identical, which implies that the noise for both

detectors is drawn from the same distribution. We will generally assume that the noise

has zero mean for both detectors, but the variance can be different across detectors (see

chapter 5 for a detailed analysis of the implications of heterogenous detector sensitivities),
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so we maintain the subscript i when needed.

In terms of the realization of such random variables for either one of the two detectors:

hit = nit + st. (3.3)

So far, we have assumed that the gravitational wave signal is purely stochastic, with

no contributions from resolved sources, either because such sources do not exist, or be-

cause they have been detected and subtracted from the total measurement output. One

could extend this analysis to account for the presence of individual resolved sources of

gravitational waves by using the following more general decomposition:

hit = nit + st +
�

k≤K
bkt , (3.4)

where bkt denotes the k
th signal generated by a resolved source of astrophysical origin,

and K denotes the stochastic total number of bursts detected at a given point in time

t. Since the focus in this section is purely on unresolved stochastic background, we take

K = 0 for the moment, with the convention b0t ≡ 0.

We denote by fn and fs, respectively, the density function for the noise and the signal

distributions. (Here the subscript n or s is not an index - it stands for noise and signal,

respectively). In other words, we have that :

Pr (N ∈ [n, n+ dn]) = fn (n) dn (3.5)

Pr (S ∈ [s, s+ ds]) = fs (s) ds (3.6)

Assuming that both the noise and signal are normally distributed, assuming a zero

mean for all distributions, and denoting by σ1 and σ2, respectively, the standard devia-

tions of the noise distributions, and by α the standard deviation of the signal distribution,
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we obtain:

fni (nit) =
1√
2πσi

e
− n2it
2σ2
i for i = 1, 2 (3.7)

fs (st) =
1√
2πα
e−

s2t
2α2 , (3.8)

where we also assume that both the noise and signal are weakly stationary processes so

that their moments are constant through time. We further assume the noise in detector

one and two are uncorrelated. Under these assumptions, we have:

fn (n1t, n2t) =
1

2πσ1σ2
e
− n21t
2σ21

− n22t
2σ22 , (3.9)

and finally, assuming zero serial correlation:

fn ≡ fn (n1t, n2t)t=1,...,T =
T%

t=1

1

2πσ1σ2
e
− n21t
2σ21

− n22t
2σ22 (3.10)

fs ≡ fs (st)t=1,...,T =
T%

t=1

1√
2πα
e−

s2t
2α2 . (3.11)

In the Gaussian case, the only unknown parameters are therefore α, σ1 and σ2. The

standard Bayesian approach for signal detection consists in finding the value for the

unknown parameters so as to minimize the false dismissal probability at a fixed value

of the false alarm probability (see equations 4.85 and 4.86 for formal definitions). This

decision rule is defined in terms of the so-called likelihood ratio Λ given by:

Λ =
ph|H1

ph|H0

, (3.12)

where ph|H1
(respectively, ph|H0

) is the conditional density for the measurement output

if a signal is present (respectively, absent). Here we have for a measurement data point

i that phi|H1
= fn (hi − si) fs (si) and phi |H0

= fn (hi). In other words, the noise model

defines the likelihood function since we demand that the residuals (hi − si when a signal
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is present, and hi otherwise) are consistent with the probability distribution of the noise.

This criterion, known as the Neyman-Pearson criterion, is the standard frequentist ap-

proach to hypothesis testing. The key difference between the frequentist approach and

the Bayesian approach for hypothesis testing (see next sub-section) is that in the latter

approach a known prior probability for the relevant parameters, models and/or hypothe-

ses is required. In any situation when the Bayesian framework cannot be applied because

of the difficulty to assign probabilities to priors, the Neyman-Pearson criterion provides

a convenient and optimal decision rule [131] that only depends on sample data.

As demonstrated in [62] (see page 8, discussion before equation (2.19)), one can ap-

proximate the likelihood ratio by the maximum likelihood detection statistic defined by:

ΛML =
max
α,σ1,σ2

�
fs (s) fn (h− s) ds
max
σ1,σ2
fn (h)

(3.13)

where the maximum for the numerator is taken over all values for the unknown signal and

noise standard deviation parameters α, σ1 and σ2, while it is taken for the denominator

over all possible values for the unknown noise standard deviation parameters σ1 and σ2.3

Hence the denominator of equation (3.13) is given by:

max
σ1,σ2
fn (h) = max

σ1,σ2

T%

t=1

1

2πσ1σ2
e
− h21t
2σ21

− h22t
2σ22 = max

σ1,σ2

1

(2πσ1σ2)
T
exp

�
−

T�

t=1

h21t
2σ21

−
T�

t=1

h22t
2σ22

�
.

(3.14)

Introducing for i = 1, 2:

σ2i =
1

T

T�

t=1

h2it, (3.15)

we finally have that:

max
σ1,σ2
fn = max

σ1,σ2

1

(2πσ1σ2)
T
exp

&
−T

2

�
σ21
σ21

+
σ22
σ22

�'
. (3.16)

3It should be noted that the values for σ1 and σ2 that maximize the numerator of ΛML (given in
equation 3.40) are a priori different from the values that maximize the denominator (given in equation
3.15).
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It is straightforward to see that the maximum for equation (3.16) is reached for σ2i = σ
2
i ,

and that this maximum is given by:

max
σ1,σ2
fn =

1

(2πσ1σ2)
T
exp

&
−T

2
(1 + 1)

'
=

1

(2πσ1σ2)
T
exp (−T ) . (3.17)

Note that σi defined above is not equal to the standard unbiased sample estimator for

the variance of the measurement made by detector i, which instead is given by:

(σ2i =
1

T − 1

T�

t=1

h2it. (3.18)

Of course the difference is negligible for large T values. Finally, we obtain the following

expression:

ΛGML =
max
α,σ1,σ2

�
fs (s) fn (h− s) ds
max
σ1,σ2
fn

(3.19)

= (2πσ1σ2)
T exp (T )

× max
α,σ1,σ2

T%

t=1

+∞�

−∞

fs (s)
1

2πσ1σ2
exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22

�
ds (3.20)

= max
α,σ1,σ2

T%

t=1

σ1σ2
σ1σ2

+∞�

−∞

fs (st) exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22
+ 1

�
dst (3.21)

where we use the subscript G in ΛGML to emphasize that we are here in the Gaussian case.

Maintaining this assumption of a Gaussian signal with a zero mean value, we obtain:

fs ≡ fs (st)t=1,...,T =
T%

t=1

1√
2πα
e−

s2t
2α2 (3.22)
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and we thus have:

ΛGML = max
α,σ1,σ2

T%

t=1

σ1σ2√
2πασ1σ2

×
+∞�

−∞

exp

�
− s

2
t

2α2
− (h1t − st)2

2σ21
− (h2t − st)2

2σ22
+ 1

�
dst (3.23)

= max
α,σ1,σ2

)
T%

t=1

1√
2πα

σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

'

×
+∞�

−∞

exp

&
− s

2
t

2α2
− s2t

2σ21
− s2t

2σ22
+
sth1t
σ21

+
sth2t
σ22

'
dst



 . (3.24)

We define:

A (st) ≡ exp

&
− s

2
t

2α2
− s2t

2σ21
− s2t

2σ22
+
sth1t
σ21

+
sth2t
σ22

'
(3.25)

= exp

&
− s

2
t

2σ2
+ st

�
h1t
σ21

+
h2t
σ22

�'
(3.26)

with σ2 such that:
1

σ2
=

1

α2
+

1

σ21
+

1

σ22
(3.27)

Then:

A (st) = exp

&
− 1

2σ2

�
s2t − 2st

�
h1t
σ21

+
h2t
σ22

�
σ2

�'
(3.28)

= exp

�
− 1

2σ2

-�
st −

�
h1t
σ21

+
h2t
σ22

�
σ2

�2

−
�
h1t
σ21

+
h2t
σ22

�2

σ4

.�
(3.29)

= exp

�
− 1

2σ2

�
st −

�
h1t
σ21

+
h2t
σ22

�
σ2

�2

+
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2�
. (3.30)
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Finally:

+∞�

−∞

A (st) dst = exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2
�
σ
√
2π

× 1

σ
√
2π

+∞�

−∞

exp

�
− 1

2σ2

�
st −

�
h1t
σ21

+
h2t
σ22

�
σ2

�2�
dst

� �� �
=1

. (3.31)

Since the integral of the Gaussian density with mean µt ≡
#
h1t
σ21

+ h2t
σ22

$
σ2 and variance

σ2 is equal to 1, we obtain:

+∞�

−∞

A (st) dst = exp

�
σ2

2

�
h1t
σ21

+
h2t
σ22

�2�
σ
√
2π. (3.32)

Therefore:

ΛGML = max
α,σ1,σ2

T%

t=1

σ
√
2π√

2πα

σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

'
exp

�
σ2

2

�
h1t
σ21

+
h2t
σ22

�2
�

(3.33)

= max
α,σ1,σ2

T%

t=1

σ1σ2�
σ21σ

2
2 + σ

2
1α

2 + σ22α
2

× exp


− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1 +

#
h1t
σ21

+ h2t
σ22

$2

2
#
1
α2

+ 1
σ21

+ 1
σ22

$


 (3.34)

= max
α,σ1,σ2





-
σ1σ2�

σ21σ
2
2 + σ

2
1α

2 + σ22α
2

.T

× exp


−

T�

t=1

�
h21t
2σ21

+
h22t
2σ22

�
+ T +

1

2
#
1
α2

+ 1
σ21

+ 1
σ22

$
T�

t=1

�
h1t
σ21

+
h2t
σ22

�2




 .(3.35)
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We finally have:

ΛGML = max
α,σ1,σ2





-
σ1σ2�

σ21σ
2
2 + σ

2
1α

2 + σ22α
2

.T

× exp


−Tσ

2
1

2σ21
− Tσ

2
2

2σ21
+ T +

T

2
#
1
α2

+ 1
σ21

+ 1
σ22

$
�
σ21
σ41

+
σ22
σ42

+
2α2

σ21σ
2
2

�



(3.36)

where:

α2 =
1

T

T�

t=1

h1th2t. (3.37)

In the end, we obtain:

ΛGML = max
α,σ1,σ2≥0





σ1σ2�
σ21σ

2
2 + σ

2
1α

2 + σ22α
2
exp




σ21
σ41

+
σ22
σ42

+ 2α2

σ21σ
2
2

2
#
1
σ21

+ 1
σ22

+ 1
α2

$ − σ21
2σ21

− σ22
2σ22

+ 1







T

,

(3.38)

which is equation (3.9) in [62]. One can show that the maximum is reached for:

α2 = (α2 ≡
�
α2


+
(3.39)

σ2i = (σ2i ≡
�
σ2i − (α2


+
(3.40)

where (x)+ = x if x > 0 and (x)+ = 0 otherwise. This positivity restriction arises because

of the positivity constraints on α, σ1 and σ2 in the maximization procedure. Maximum-

likelihood estimators are unbiased but have no optimum properties for finite samples,

in the sense that (when evaluated on finite samples) other estimators may have greater

concentration around the true parameter value. However, ML estimators do possess a

number of attractive limiting properties [114]: As the sample size increases to infinity,

sequences of maximum likelihood estimators are known to be (1) consistent, meaning that

the sequence of ML estimators converges in probability to the true unknown population

value being estimated and (2) asymptotically normal, meaning that as the sample size

increases the distribution of the ML estimator tends to the Gaussian distribution with a
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mean equal to the true population value and a covariance matrix equal to the inverse of

the Fisher information matrix:

Iij ≡ −E
&
∂2 log ΛML
∂θi∂θj

'
, (3.41)

where θ = (θi)i=1,...,N is the vector of unknown parameters of size N . In the Gaussian

case, θ = (α, σ1, σ2) and N = 3. Beside, the ML estimators are asymptotically efficient,

meaning that no consistent estimator has lower asymptotic mean squared error than the

ML estimator, an asymptotic mean squared error given by the Cramér-Rao lower bound

Var
#
(θMLi

$
≥ I−1ii , (3.42)

where I−1 where is the reciprocal of the norm of the Fisher information matrix. Shift-

ing from the estimation problem to the detection problem, the corresponding detection

statistic is:

ΛGML =

�
1− (α4
σ21σ

2
2

�−T/2
. (3.43)

This detection statistic is shown to be optimal in the sense that it yields the smallest

probability of mistakenly concluding a signal is absent (probability of a false dismissal, or

pfd) after choosing the threshold that fixes the probability for mistakenly concluding a

signal is present (probability of a false alarm, or pfa). Concretely, to determine whether

or not the data h contains some desired signal, one then compares the value of this

detection statistic to some threshold value Λ. If ΛGML is greater than the threshold value

Λ, one concludes that a signal is present and otherwise one concludes that no signal is

present. The so-called cross-correlation statistic ΛGcc can then be obtained from the ML

statistic via a monotonic transformation chosen so as to remove the time-dependency

[62]:

ΛGcc =

�
1− (ΛGML)

−2/T
=

(α2
σ1σ2

. (3.44)

We may also characterize the “strength” of a stochastic background in terms of the
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signal-to-noise ratio S
N
of the cross-correlation statistic ΛGcc, which is simply given by [62]:

S

N
=
α2

√
T

σ1σ2
. (3.45)

Note that the signal-to-noise ratio grows with the squared-root of time so allowing for

longer observations naturally implies the possibility to detect fainter signals.

Extending the Analysis to Detectors that are not Colocated and/or Coaligned

While the analysis discussed so far has been based upon the explicit assumption that the

two detectors were colocated and coaligned, it can be extended to the general case of

detectors that are not located in the same place and/or have different arm orientations.

For this extension, it is more convenient to switch from the time-series domain to the

frequency domain. A purely stochastic background of GWs is expected to be isotropic,

stationary and unpolarized. Its main properties are thus best described in terms of

frequency spectrum, which can be expressed in a number of equivalent forms: (1) in

the form of a (dimensionless) energy density per unit logarithmic interval of frequency

ΩGW (f), (2) in the form of the spectral density of the average of the Fourier component

of the metric Ss (f) = s2s (f), where s
2
s (f) has dimension Hz

− 1
2 , or (3) in the form of

a (dimensionless) characteristic amplitude of the stochastic background Ss,c (f). This

latter quantity is typically compared to the detector sensitivity curve Sn,c (f), also a

dimensionless quantity. In what follows we present a number of relationships relating

these variables, and also discuss their use in SGWB signal detection. This discussion is

largely inspired by [53], as well as additional references that are specified below.

Characterization of SGWB Signals in the Frequency Domain We first express

the frequency spectrum of the stochastic background in terms of the GW energy den-

sity spectrum ΩGW (f), defined as the fractional contribution of the energy density in

gravitational waves to the total energy density needed to close the universe, which, from
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equation 2.109, can be defined as:

ΩGW (f) =
1

ρcrit

dρGW (f)

d ln f
, (3.46)

where ρcrit =
3c2H2

0

8πG
is the critical density required to close the universe (see equation

2.98), and where dρGW (f) is the energy density between frequencies f and f + df .

SGWB signals can also be characterized in terms of their power spectral density Ss

(here the subscript s stands for signal), which is defined as:

Ss (f) = 5s∗ (f) 5s (f) , (3.47)

where 5s∗ is the complex conjugate of 5s and where 5s (f) is the Fourier transform of the

signal:

5s (f) =
� +∞

−∞
e−2πiftstdt. (3.48)

The power spectral density enters the definition of the average squared fluctuations, or

variance, in the signal strain intensity through:

Var (S) = α2 =

� ∞

0

Ss (f) df, (3.49)

Note that the power spectral density is defined in 3.49 with a one-sided convention (when

the power spectral density is defined with a two-sided convention, the above integral is

taken from −∞ to +∞). Similar quantities can also be defined for the noise distribution

and also for the measurement output h, and we may in particular introduce the noise

power spectral density Sn:

Sn (f) = 5n∗ (f) 5n (f) , (3.50)

where 5n (f) is the Fourier transform of the noise distribution:

5n (f) =
� +∞

−∞
e−2πiftntdt. (3.51)
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Figure 3.3: The strain sensitivity for the LIGO Livingston detector (L1) and the LIGO
Hanford detector (H1) during O1. Also shown is the noise level for the Advanced LIGO
design (gray curve) and the sensitivity during the final data collection run (S6) of the
initial detectors. This picture is borrowed from [123], where it appears as Figure 2.

Other important quantities are the signal amplitude spectral density defined as ss (f) =
�
Ss (f)which has dimension Hz−

1
2 and the so-called characteristic strain, a dimensionless

quantity denoted by Ss,c (f) and defined as:

Ss,c (f) =
�
fSs (f). (3.52)

Intuitively, the characteristic strain represents the root mean squared signal in a fre-

quency interval of width ∆f = f centered at frequency f . The characteristic strain

of a signal as a function of the frequency is then compared to the detector sensitivity

curve Sn,c (f) =
�
fSn (f), which is shown in Figure 3.3 for the Advanced LIGO detector

(picture borrowed from [123]).

We assume that the random metric perturbations associated with the stochastic back-

ground generated from the aggregation of unresolved sources of astrophysical or cosmo-

logical origins have no preferred directions so the background can be assumed to be

unpolarized and isotropic. As a result, it can be decomposed into gravitational plane

waves coming from every direction and polarization. In this situation with unpolarized

104



Chapter 3 — Definition and Detection of the Stochastic Gravitational Wave Background

and isotropic SGWBs, the gravitational-wave power spectral density can be related to the

energy density spectrum via the following relationship, using again a one-sided convention

for the power sectral density ([169]):

ΩGW (f) =
4π2

3H2
0

f 3Ss (f) . (3.53)

In terms of the characteristic strain Ss,c (f) =
�
fSs (f), we obtain:

ΩGW (f) =
4π2

3H2
0

f 2S2s,c (f) . (3.54)

We sometimes assume a power-law frequency dependency for the spectral density of the

signal. For a background arising from binary coalescence, we have for example ([169]):

ΩGW (f) ∝ f
2
3 . (3.55)

GWSB Signal Processing with Detectors that are not Colocated and Coaligned

For a pair of detectors, the SGWB signals are identical if the detectors are colocated and

coaligned, which implies identical cross-spectral densities. When the two detectors are

not colocated and/or not coaligned they will have a different response to the SGWB

signal, and we expect a reduction in sensitivity due to the violation of the co-location

and co-alignment assumptions. The violation of co-alignment manifests itself in a non-

parallel alignment of the detector arms. The violation of co-location, on the other hand,

manifests itself in a time delay between the observation of the same signal by the two

detectors. For example, the inter-site propagation time between the two LIGO detectors

located respectively in Hanford, Washington and in Livingston, Louisiana, has been 7 ms

for GW150914. This reduction of sensitivity effect is captured by an overlap reduction

function, which will enter the expression for the first moment of the cross-correlation

statistic, as will be seen in equation 3.65.

We first consider the general expression for a cross-correlation of the output of two
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detectors operating for a time T (e.g., one year):

Y =

� T/2

−T/2
dt

� T/2

−T/2
dt′h1 (t)h2 (t

′)Q (t, t′) , (3.56)

where Q (t− t′) is a general (real) filter function. When both the SGWB signal and

the detector noise are assumed to be stationary, the optimal filter function Q can only

depend upon the time-interval t′ − t so we can restrict the search of a filter function to

the functions of the form Q (t, t′) = Q (t− t′). Switching to the frequency domain, we

write the cross-correlation product [17]:

Y =

� T/2

−T/2
df

� T/2

−T/2
df ′δT (f − f ′)5h∗1 (f)5h∗2 (f ′) 5Q (f ′) , (3.57)

where 5h∗i (f) is the Fourier transform of the measurement output hi (t) = ni (t) + s (t) of

detector i (here i = 1, 2). The function δT (f − f ′) is the finite time approximation of

the Dirac delta function, which converges to the ordinary delta function in the limit of a

large T :

δT (f) =

� +T/2

−T/2
dfe−i2πft →

T→∞
δ (f) , (3.58)

with δT (0) = T . Finally 5Q (f) is the Fourier transform of the suitably chosen filter

function, which we discuss now.

The optimal choice of a filter function depends on the optimization objective. In the

context of a GWSB detection, the natural approach, as recalled in our discussion of the

time-series analysis, is to minimize the probability of mistakenly concluding a signal is

absent (probability of a false dismissal, or pfd) after choosing the threshold that fixes the

probability for mistakenly concluding a signal is present (probability of a false alarm, or

pfa). If we assume that both the signal and the noise are Gaussian, one can show [17]

that the optimization criterion min pfd subject to a fixed pfa is equivalent to maximizing

the signal to noise ratio:
S

N
=

E (Y )�
Var (Y )

. (3.59)
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Note that the situation is different in a non-Gaussian context, where the maximization

of a signal to noise ratio involving the first two moments of the cross-correlation statistic

will a priori not be equivalent to minimizing the probability of a false alarm for a given

probability of a false dismissal. We shall revisit this question of optimal detection statistic

in the presence of a deviation from the Gaussian assumption in chapter 5, section 5.3.3.

Maintaining for the moment a sole focus on the first two moments of the cross-

correlation statistic, and assuming independent noise distributions with a zero mean,

we have:

E (Y ) =

� ∞

−∞
df

� ∞

−∞
df ′δT (f − f ′)E [5s∗1 (f) 5s∗2 (f ′)] 5Q (f ′) . (3.60)

Using a plane wave expansion of the SGWB signal and taking the ensemble average, it

can be shown [17] that:

E [5s∗1 (f) 5s∗2 (f ′)] =
3H2

0

20π2
|f |−3ΩGW (|f |) γ (|f |) , (3.61)

where γ (f) is a dimensionless function of the frequency known as the overlap reduction

function [79] that captures the impact of deviations from the ideal situation with co-

located and co-aligned detectors:

γ (f) =
5

8π

�

S2
d(Ωei2πf �Ω.∆−→x /cF+1

#
(Ω
$
F+2

#
(Ω
$

+
5

8π

�

S2
d(Ωei2πf �Ω.∆−→x /cF×1

#
(Ω
$
F×2

#
(Ω
$
, (3.62)

where (Ω is a unit vector specifying the direction on the two-sphere, −→x = −→x 1−−→x 2 is the

separation vector between the central stations of the two detectors, and where

F+i

#
(Ω
$

= e+ab

#
(Ω
$
dabi (3.63)

F×i

#
(Ω
$

= e×ab

#
(Ω
$
dabi (3.64)

are the responses of the ith (i = 1, 2) detector to the + and × polarizations [17]. Here
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dabi is a symmetric tracefree tensor that specifies the orientation of the two arms of the

ith (i = 1, 2) detector. Given the normalization constant 5
8π
, we have γ (f) = 1 for all f

for co-located and co-aligned detectors, and γ (f) < 1 when the detectors are separated

and/or not aligned.

Plugging 3.61 into 3.60, we obtain:

E (Y ) =
3H2

0

20π2
T

� ∞

−∞
df |f |−3ΩGW (|f |) γ (|f |) 5Q (f) . (3.65)

It can also be shown [17] that when the noise is much larger than the signal, the variance

of the cross-correlation statistic can be approximated by:

Var (Y ) ≈ T
4

� ∞

−∞
dfSn1 (|f |)Sn2 (|f |)

��� 5Q (f)
���
2

, (3.66)

where
��� 5Q (f)

���
2

= 5Q∗ (f) 5Q (f) , (3.67)

and where Sn1 (f) and Sn2 (f) are the power spectral densities of the noise in the two

detectors.4 If we now define the (positive definite) scalar product of two arbitrary complex

functions:

(A,B) ≡
� ∞

−∞
dfA∗ (f)B (f)Sn1 (|f |)Sn2 (|f |) , (3.68)

the expressions for the mean 3.65 and variance 3.66 of the cross-correlation statistic can

be rewritten as:

E (Y ) =
3H2

0

20π2
T

-
5Q, |f |

−3ΩGW (|f |) γ (|f |)
Sn1 (|f |)Sn2 (|f |)

.
, (3.69)

Var (Y ) ≈ T

4

#
5Q, 5Q

$
. (3.70)

Going back to the optimal choice of the filter function so as to maximize the signal to

4Note that Sni (|f |) = 2Sni (f) is the one-sided power spectrum of noise on detector i.
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noise ratio S
N
we obtain:

�
S

N

�2

=
[E (Y )]2

Var (Y )
≈

�
3H2

0

20π2

�2
4T

#
5Q, |f |

−3ΩGW (|f |)γ(|f |)
Sn1 (|f |)Sn2 (|f |)

$2
#
5Q, 5Q

$ . (3.71)

We now need to find the filter function 5Q that maximizes
�
S
N


2
, a quantity that can be

written as (
�Q,A)

2

( �Q, �Q)
with

A =
|f |−3ΩGW (|f |) γ (|f |)
Sn1 (|f |)Sn2 (|f |)

. (3.72)

This ratio is proportional to the squared cosine of the angle between the vectors 5Q and

A, and is therefore maximized by taking 5Q pointing in the same direction as A, that is

by taking:

5Q (f) = λ
γ (|f |) ΩGW (|f |)

|f |3 Sn1 (|f |)Sn2 (|f |)
(3.73)

for some normalization constant λ. Note that the optimal filter function 3.73 depends on

the SGWB frequency spectrum ΩGW (f), which is not known a priori. In practice, and

as mentioned before, the standard approach consists in assuming a power-law frequency

dependency for the spectral density of the signal:

ΩGW (f) = Ωαf
α, (3.74)

where Ωα is a constant. Note that α = 0 corresponds to the case of a power spectrum

that would be a constant ΩGW (f) = Ωα. A set of optimal filter functions indexed by α

are then constructed

5Qα (f) = λα
γ (|f |) |f |α

|f |3 Sn1 (|f |)Sn2 (|f |)
, (3.75)

where the normalizing constant λα is chosen so that E (Y ) = ΩαT . With this normal-

ization choice, the optimal filter function only depends on the exponent α, the overlap

reduction function and the power spectrum for the noise on each one of the two detectors.
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Finally, the signal-to-noise ratio with the optimal filter is given by [53]:

S

N
=

E (Y )�
Var (Y )

= λ
3H2

0

10π2

√
T

6
2

� ∞

0

γ2 (f)

Sn1 (f)Sn2 (f)

Ω2GW (f)

f 6
df. (3.76)

We note again that the signal-to-noise ratio grows with the squared-root of time, so longer

observation times allow for the detection of fainter signals. We may also compute the

minimum detectable amplitude by a pair of detectors [17]:

Ωmin =
4π2

3H2
0

√
T

�
erfc−1 (2α)− erfc−1 (2 (1− β))

 
6� ∞

0

γ2 (f)

f 6Sn1 (f)Sn2 (f)
df, (3.77)

where for α = pfa is the probability of a false alarm, β = pfd is the probability of a false

dismissal, and erfc is the complementary error function:

erfc (x) =
2√
π

� ∞

x

e−t
2

dt. (3.78)

The minimum detectable amplitude is a very useful quantity which is often used as a

measure of detector sensitivity.

3.2.2 Bayesian Approach to SGWB Data Analysis

The key difference between the frequentist and Bayesian approaches to statistics can be

summarized as follows. In frequentist statistics, probabilities are fundamentally related

to frequencies of events and the only input to draw statistical conclusions from is the

sampled data. In Bayesian statistics, probabilities are fundamentally related to some

prior knowledge, if any, about a particular hypothesis or paramter value, and the inputs

to draw statistical conclusions from includes not only the sampled data, but also some

prior subjective view formed by the statistician before even looking at the sample data. In

Bayesian statistics, Bayes’ law (equation 3.79) is used to update the prior for a hypothesis

(about the presence of a GW signal for the detection question, or about its parameter

values for the estimation question) as a function of the sampled data, so as to turn the
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prior into a qualified posterior view (about the presence of a signal or about its parameter

values). Let us for example consider the estimation question, where the problem is

summarized in terms of the need to estimate some possibly multi-dimensional parameter

Θ given some data set containing the measurement output H. According to Bayes law,

the posterior probability distribution that the parameter Θ takes on a given value θ given

the data H is given by:5

Pr (Θ = θ|H)� �� �
posterior probability

=

Pr (H| θ)� �� �
likelihood

× Pr (θ)� �� �
prior probability

Pr (H)� �� �
marginalized likelihood

, (3.79)

where the marginalized likelihood Pr (H) is given by:

Pr (H) =

�
Pr (H| θ) Pr (θ) dθ, (3.80)

and where Pr (H| θ) can be interpreted as the probability of observing the data for a given

value of the parameter. Extending the analysis for all possible values of the parameter,

we obtain:

Pr (Θ|H)� �� �
posterior probability distribution

=

Pr (H|Θ)� �� �
likelihood

× Pr (Θ)� �� �
prior probability distribution

Pr (H)� �� �
marginalized likelihood

. (3.81)

Given a posterior distribution, a Bayesian confidence interval (often called a credible

interval given the Bayesian interpretation of probability as state of knowledge about

an event) can be defined similarly to confidence intervals in the frequentist approach.

One can also use the Bayesian framework to generate a point estimate for the unknown

parameter. To do so, let us assign a cost function C (Θ′,Θ) of estimating the true value

of Θ as Θ′. We then associate with an estimator (Θ the cost function for the estimator
5Note that we use the notation H to denote an hyothesis, and the notation H to denote measurement

output.
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averaged over all realizations of the data in the sample for each value θ of the parameter

Θ [102]:

Rθ

#
(Θ
$
≡ Eθ

7
C

#
(Θ, θ

$8
=

�

H
C

#
(Θ(h) , θ

$
Pr (h,Θ = θ) dh. (3.82)

We then introduce the Bayes estimator as the estimator that minimizes the average risk

defined as the average of the cost function over all parameter values θ:

r
#
(Θ
$
≡ E

7
Rθ

#
(Θ
$8

=

�

Θ

�

H
C

#
(Θ(h) , θ

$
Pr (h, θ) Pr (θ) dhdθ. (3.83)

It is easy to show that for a commonly used cost function:

C (Θ′,Θ) = �Θ′ −Θ�2 , (3.84)

the Bayesian estimator is simply the mean of the posterior density, i.e., the conditional

mean of the parameter Θ given data H:

(ΘBayesian = E [Θ|H] =

�

Θ

θPr (Θ = θ|H) dθ, (3.85)

a quantity which depends of course upon the assumed prior distribution Pr (Θ).

Turning now to the detection question, and denoting by H1 the null hypothesis that

a signal is present in the data H, and by H0 the alternative hypothesis that the signal is

absent, we have:

Pr (H1|H)� �� �
posterior probability

=

Pr (H|H1)� �� �
likelihood

× Pr (H1)� �� �
prior probability

Pr (H)� �� �
marginalized likelihood

, (3.86)

where the normalizing factor, known as the marginalized likelihood Pr (H), is given by:

Pr (H) = Pr (H|H1) Pr (H1) + Pr (H|H0) Pr (H0) . (3.87)

Thus, an optimal detection statistic is uniquely determined in the Bayesian framework as
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a threshold on the posterior probability distribution; however, that statistic does depend

on choices of prior probability distributions.

The Bayesian approach can also be used to compare two modelsMi andMj, where

the notion of a "model" refers to a set of parametric assumptions for the assumed distrib-

ution of the measurement output H. To do so, we first compute the posterior probability

for each model:

Pr (Mi|H)� �� �
posterior probability

=

Pr (H|Mi)� �� �
likelihood

×Pr (Mi)� �� �
prior probability

Pr (H)� �� �
marginalized likelihood

. (3.88)

To compare two models, we then take the ratio of the posterior probabilities for these

two models:
Pr (Mi| H)

Pr (Mj|H)
=

Pr (H|Mi)

Pr (H|Mj)
× Pr (Mi)

Pr (Mj)
, (3.89)

where the common term Pr (H) has cancelled out. Here Pr(Mi|H)
Pr(Mj |H) is known as the posterior

odd ratio, which is shown to be given by the product of the Bayes factor Pr(H|Mi)
Pr(H|Mj)

and

the prior odd ratio Pr(Mi)
Pr(Mj)

. In the common case when there is no a priori reason to favor

a particular model (in Bayesian statistics this case is sometimes referred to as the non

informative prior case), we take Pr (Mi) = Pr (Mj), and we obtain in this case that the

posterior odd ratio is simply the Bayes factor:

Pr (Mi|H)

Pr (Mj|H)
=

Pr (H|Mi)

Pr (H|Mj)
. (3.90)

If we take one of the models, denoted by M0, to be a benchmark model, then we can

compute the Bayes factors, and therefore the posterior odd ratios, of all the other models

relative toM0. Taking the M0 model to refer to a situation where the signal is absent

and some assumption (say Gaussian) is made for the noise distribution, we can form a

detection statistic by an analysis of the posterior odd ratio with respect to some assumed

model versus the noise-only model.

One might wonder if a Bayesian approach with a non informative prior can be related
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to the frequentist approach, where no prior are used as inputs. A formal answer to this

question has been given in a recent paper [49], where it is shown that the Bayes factor is

proportional to the frequentist maximum-likelihood ratio, with a proportionality constant

given by the Occam’s factor (see 3.94 below), which penalizes a model if its parameter

space volume is larger than necessary to fit the data.6 More precisely, let us remark

that the detection statistic used in the frequentist analysis is obtained by maximizing the

likelihood ratio for a signal+noise modelM1 to the noise-only modelM0. For example

if a Gaussian assumption is maintained for both the signal and noise distributions, the

likelihood ratio 3.13 is given by:

ΛML (H) =
max
α,σ1,σ2

Pr (H|α, σ1, σ2,M1)

max
σ1,σ2

Pr (H|σ1, σ2,M0)
(3.91)

=
max
α,σ1,σ2

�
Pr (H|α, σ1, σ2,M1) Pr (S −H|α, σ1, σ2,M1)

max
σ1,σ2

Pr (H|σ1, σ2,M0)
(3.92)

where M1 represents a model with Gaussian signal and Gaussian noise distributions,

while M0 represents a noise-only model with Gaussian noise distributions. The Bayes

factor calculation also involves a ratio of two quantities, but instead of maximizing over

the parameters, wemarginalize over the parameters by computing the posterior odd ratio:

Pr (M1|H)

Pr (M0|H)
=

� � �
Pr (H|α, σ1, σ2,M1) Pr (α, σ1, σ2, |M1) dαdσ1dσ2� �

Pr (H|σ′1, σ′2,M0) Pr (σ′1, σ
′
2, |M0) dσ′1dσ

′
2

(3.93)

These two expressions can be related to one another as follows [49]:

Pr (M1|H)

Pr (M0|H)
≃ ΛML (H, (α, (σ1, (σ2)

∆V1/V1
∆V0/V0

(3.94)

where ΛML (H, (α, (σ1, (σ2) is the value of the likelihood function for the parameters (α, (σ1,

(σ2 given in 3.39 and 3.40 for which this function reaches its maximum value. Here ∆Vi
6See also [28] for a discussion about the use of the ratio of the likelihood of observed data to contain

a signal to the likelihood of it being a noise fluctuation to provide optimal ranking for the candidate
signal events found in an experiment under both the Bayesian and frequentist statistical approaches.
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for i = 0, 1 is the characteristic width of the likelihood function around its maximum and

Vi is the total parameter space volume for the model parameters. The ratio ∆Vi/Vi can

be thought of as an Occam’s factor, which penalizes a model Mi if its parameter space

volume is larger than needed to fit the data H. For example, in the model M1 based

on a Gaussian assumption for the signal distribution with a standard deviation α in a

range of amplitude [0, αmax], and also a Gaussian assumption for the noise distributions,

assuming a common standard deviation σ, we have that V1 = αmax and ∆V1 =
σ√
T
(see

appendix A.1 in [49]).

From a practical standpoint, the frequentist approach is convenient since the likeli-

hood function can be computed analytically, at least under the Gaussian assumption. It

is in fact one important contribution of our work (see chapters 4 and 5) to show that

it is possible to maintain analytical tractability even in the non-Gaussian case by using

a parsimonious approximation for an unknown non-Gaussian density function in terms

of a polynomial correction with respect to the Gaussian density function. The Bayesian

inference approach is also very simple in principle: one applies Bayes’ rule to calculate

posterior probability distributions given a likelihood function (which specifies the proba-

bility of the data given the model and the value of any parameters associated with it) and

a prior probability distribution for the model and its parameters. This approach requires,

however, a numerical calculation of the marginalized densities in 3.93, which in practice

can be computationally extremely intensive, especially for models having a large number

of parameters. Fortunately, the recent development of efficient sampling algorithms [76]

makes the use of this approach possible, if not easily tractable, and Bayesian analysis has

now been integrated in standard methods for GW signal detection and parameter esti-

mation. From the conceptual standpoint, the Bayesian approach is attractive since it can

provide a unified treatment of the three types of search methods used for different types

of signals (matched filtering for well-modelled deterministic signals such as those from

the coalescence from compact binary inspirals, excess power analysis for poorly-modeled

deterministic signals, such as those from core-collapse supernovae and cross-correlation
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analysis for stochastic signals). For example, one can consider a waveform template used

to describe the gravitational wave signal as an informative prior [48], [149].

3.3 Analysis of Non-Gaussian SGWB Distributions

It is typically assumed that the stochastic background of gravitational waves creates

metric perturbations that are stationary, isotropic and unpolarized random processes.

The GW background is also usually assumed to be Gaussian invoking the central limit

theorem, and thus completely characterized by its mean and variance. The key component

of the astrophysical SGWB distribution is the number of sources that simultaneously

contribute to the total background, which in turn depends upon the duration of each

single event that produce an emission of GWs and the interval between two, or more, of

these events. Intuitively, if the number of sources is large enough for the time interval

between events to be small compared to the duration of a single event, then the waveforms

of each single source overlap to create a continuous background which can be assumed

to be well approximated by a Gaussian distribution given the Central Limit Theorem

(CLT). On the other hand, recent predictions based on population modeling suggest that

for many astrophysical models, there may not be enough overlapping sources, resulting

in the formation of a non-Gaussian background. In case of short duration burst GW

sources in particular, it is possible that their number is sufficiently small for the time

interval between events to be long compared to the duration of a single event, in which

case the CLT may not strictly apply. In addition to the non-Gaussianity to be expected

in the background from astrophysical origin, it has also been shown that the background

from cosmic strings could be dominated by a non-Gaussian contribution arising from

the closest sources [55, 144]. In what follows, we first present a number of arguments

suggesting that deviations from the Gaussian assumption are to be expected for the

SGWB of astrophysical origin because of a number of overlapping sources too small for

the Central Limit Theorem to apply. We then introduce the Edgeworth expansion, a
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formal approximation of a non-Gaussian random variable given by the sum of a finite

number of independent and identically distributed sources.

3.3.1 Stylized Analysis of the Distribution of the GW Signal

Given by the Superposition of a RandomNumber of Sources

We now turn to a stylized analysis of the distribution of the sum of a random number of

random sources. Our goal is not to provide a formal statistical model of the SGWB, but

instead to illustrate in a simplistic setting that noticeable deviations from normality are

to be expected given a realistically large number of GW sources of astrophysical origin.

Introducing a Poisson Process Model for the Number of Sources

In this context, we postulate that the occurrence of individual gravitational wave signals

take place as a Poisson process, which is a standard model for describing the arrival of

events at random times. Denoting the intensity of the Poisson process by λ, the number

of signals in [0, t] is a Poisson random variable N (t) with parameter λt:

Pr (N (t) = k) = e−λt
(λt)k

k!
, (3.95)

so that we have for example:

Pr (N (t) = 0) = e−λt. (3.96)

It can easily be shown that:

E (N (t)) = Var (N (t)) = λt. (3.97)

The important afore-mentioned distinction between continuous and burst signals can

be captured in this setting by formally relating the intensity process λ to the duty cycle

DC. If we consider for example K types of astrophysical events with each type k =
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1, ...,K having a duty cycle DCk, we may assume that the number of signals of type k in

the interval [0, t], denoted by Nk (t), follows a Poisson process with intensity λk = DCk.

Let us now further assume that individual GW signals are independent and identically-

distributed random variable Si for i = 1, 2, ..., which is a legitimate assumption if we

restrict our analysis to a given type of astrophysical events, such as compact binary

coalescences or core supernova collapses, for example. We next consider the random sum

representing the aggregate signal of astrophysical origin in the period [0, t]:

SN (t) =

N(t)�

i=1

Si. (3.98)

When N (t) has a Poisson distribution, the process SN (t) is known as a compound Pois-

son process, the first two moments of which can be easily computed. Using conditional

expectations and the law of total variance, we have:

E (SN (t)) = E



N(t)�

i=1

Si


 = E (N (t))E (S) (3.99)

Var (SN (t)) = Var(

N(t)�

i=1

Si) (3.100)

= E (N (t))Var (S) + Var (N (t)) (E (S))2 (3.101)

= E (N (t))E
�
S2



(3.102)

If we denote by µ1 and µ2, respectively, the first and second non-central moments µ1 =

E (S) and µ2 = E (S2) of the signal S, then the aggregate signal process has the following

mean and variance:

E



N(t)�

i=1

Si


 = λtµ1 (3.103)

Var(

N(t)�

i=1

Si) = λtµ2 (3.104)
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In physical applications to GW signals, µ1 is zero and µ2 is the variance of the grav-

itational wave signal. In the limit of t going to infinity, the Central Limit Theorem

implies that the aggregate signal SN (t) will have a Gaussian distribution. For a finite

detection time t, on the other hand, one expects to have deviations from the Gaussian

distribution (unless each signal is normally distributed), and the resulting non-Gaussian

distribution can be approximated by a suitable correction to the Gaussian distribution

via the Edgeworth expansion (see next sub-section for more details about the Edgeworth

expansion).

Estimating Realistic Values for the Intensity Parameter

So as to assess the expected deviation from the Gaussian distribution for the SGWB

of astrophysical origin, we can estimate the realistic values for the intensity parameter

λ that can be expected for massive binary systems, which are expected to be the most

significant contributors to the SGWB. In particular, one can obtain estimates for the

number of binaries generating gravitational-wave signals in a 1 Hz bin as observed by

a detector on Earth, taking into account uncertainties in the star formation rate and in

the delay time between the formation and coalescence of the binary [180].7 This quantity

is plotted in Figure 1 [180], which is reproduced below as Figure 3.4, for three different

types of binaries and for different values of Zsup, a quantity defined as the upper limit on

the integrated flux (per unit frequency), which is shown to depend on both the emission

frequency range and on the maximum redshift considered for the star formation history

calculation. From this Figure, it is found that in any 0.1 second-long time-segment

corresponding to the lowest observable frequency of 10 Hz there will be on average 10

binary neutron star systems emitting in the Advanced LIGO 10-200 Hz band. It should

7A similar analysis is performed in [151], who provides an estimate of the part of the total background
of rotating neutron stars that is unresolvable because such signals cannot be distinguished from each
other or subtracted from the data of a gravitational wave detector. The resolvability of the background is
quantified by the overlap function, N(f,∆f, z), a generalization of the duty cycle introduced in [150] that
gives the expected number of signals, with redshifts smaller than z, that are observed within a frequency
bin [f, f +∆f ], where ∆f is the frequency resolution allowed by the detector and the data analysis
method. Depending on assumed parameter values, a number N(f,∆f, z) ≥ 1 is expected, corresponding
to one or more overlapping signals.
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Figure 3.4: This Figure is borrowed from [180]. Note that the notation λ is used in that
paper to denote the mass fraction converted into progenitors.

be noted that the duty cycle is somewhat lower for the BBH and BHNS cases.

On the other hand, if we focus on the 100 Hz frequency, we expect a duty cycle

around 10−3 for binary black holes systems, which would result in strong deviations from

the Gaussian situation from the SGWB (see Figures 3.7 and 3.8 below). In fact, we are

likely to fall in this case in a non-overlapping regime, with an average number of non-

overlapping sources much lower than 1. For the BBH case, the analysis was performed

using the assumption of black holes with masses equal to 10 solar masses. In Figure 3.5,

we repeat the same analysis for higher mass values consistent with the recent detections.

More precisely, we plot Λ (f), which is the average number of sources that overlap in a

typical frequency band of width f around the frequency f , at a given time. The blue,

red and green areas correspond to the subpopulations of BH-BH binary systems with

masses similar to the three events GW150914 [9] (m1 = 36.2, m2 = 29.1), LVT151012

[4] (m1 = 23,m2 = 13), and GW151226 [5] (m1 = 14.2,m2 = 7.5), including the errors

on the event rates. The black curve is for NS-NS binary systems assuming the LIGO
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Figure 3.5: This figure shows Λ (f), the average number of sources that overlap at a
given time in a frequency band given by the frequency resolution, as a function of the
frequency f . The blue, red and green areas correspond to the subpopulations of BH-
BHs with masses similar to the three events GW150914 [9] (m1 = 36.2, m2 = 29.1),
LVT151012 [4] (m1 = 23,m2 = 13) and GW151226 [5] (m1 = 14.2,m2 = 7.5), including
the errors on the event rates. The black curve is for NS-NS binary systems assuming the
rate of 1 Mpc−3 Myr−1. The horizontal bar corresponds to Λ = 1, the threshold above
which we obtain a continuous GW background with a signal always present.

realistic rate of 1 Mpc−3 Myr−1. The plot is extended down to f = 10−4 in order to

include the LISA band.8

As explained below, we know that the compound Poisson process will converge towards

a Gaussian distribution as the intensity process goes to infinity. We now want to provide

a quantitative assessment of the actual deviation from normality to be expected for

realistic gravitational wave backgrounds so as to be in a situation to analyze what is the

fraction of the frequency range that can be assumed to correspond to a Gaussian versus

non-Gaussian SGWB signal.

Measuring the Degree of Non Normality as a Function of the Intensity Process

To fix ideas, let us first assume that the stochastic background is defined as the sum of

a random number of signals where each signal follows a Delta distribution, meaning that

8Since the calculation is stopped at the last stable orbit, we obtain that the end frequency is smaller
for larger masses.
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the strain intensity is a deterministic fixed quantity, which is normalized to be equal to 1.

It is well-known that the Poisson random variable quickly converges towards a Gaussian

distribution as the intensity λ increases for a fixed t, or as t increases for a fixed λ (see

Figure 3.6, where we take t ≡ 1). To prove the convergence, consider the random variable:

Yλ (t) =
N (t)− λt√

λt
. (3.105)

Then its characteristic function is:

φYλ(t) = exp
#
−
√
λtit+ λt

#
e

it√
λt − 1

$$
. (3.106)

For large λt, we have:

e
it√
λt − 1 =

it√
λt

− t2

2λt
+ o

�
(λt)−1



, (3.107)

or in the limit:

lim
λt→∞

φYλ(t) = exp

�
−t

2

2

�
, (3.108)

which is the characteristic function of the standardized Gaussian, implying that N (t)

converges in distribution to a Gaussian variable with mean and variance given by λt. In

practice, when λt is sufficiently large (say λt > 1000), the Gaussian distribution is an

excellent approximation for the Poisson distribution. A visual inspection of Figure 3.6

suggests (for t normalized at 1) that when λ = 10, the distribution is already relatively

close to a Gaussian distribution.

After considering the case of a Delta distribution for the GW signal, let us now

assume that individual GW signals are independent and identically distributed Uniform

distributions taking on values in the normalized [0, 1] interval, and we denote by S the

generic random variable that has the same distribution as each one of the Si variables.

We consider again the random sum representing the aggregate signal of astrophysical
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Figure 3.6: Poisson distribution as a function of the intensity parameter λ for t = 1. Note
that Pr (N = 0) = e−λ and Pr (N = 1) = e−λλ.

origin in the period [0, t]:

SN (t) =

N(t)�

i=1

Si. (3.109)

When N is fixed, the sum of N independent and identically distributed random vari-

ables with (continuous) uniform distribution on [0,1] has a distribution called the Irwin-

Hall distribution [99], whose density function is given by:

fIH (x) =
1

2 (n− 1)!

N�

k=0

(−1)k



N

k


 (x− k)N−1 sgn (x− k) . (3.110)

For the uniform distribution, we have µ1 = 1
2
and µ2 = 1

3
. It can be shown that the

compound Poisson distribution converges to a Gaussian distribution with mean λt
2
and

variance λt
3
as the intensity λ increases for a fixed t, or as t increases for a fixed λ.

The speed of convergence can be estimated numerically. To do so, we calculate and

plot in Figures 3.7 and 3.8, respectively, the skewness and kurtosis as a function of the

intensity parameter λ (taken over a large but limited range extending from 0 to 100)

when each signal S follows respectively a delta distribution taking on a value normalized

at 1, and the case when each signal follows a uniform distribution taking on value in

the interval [0, 1]. These quantities can be computed numerically, or calculated using
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Figure 3.7: Skewness of the compound Poisson process as a function of the intensity λ
when the underlying distribution is a Delta or a Uniform distribution.

the analytical expressions below for the skewness Sk and kurtosis Kr of the compound

Poisson distribution are [134]:

Sk ≡
E





N(t)�

i=1

Si



3



E





N(t)�

i=1

Si



2




3
2

=
8λ3t3µ31 + 6λ2t2µ1µ2 + λtµ3�

4λ2t2µ21 + λtµ2

 3
2

(3.111)

Kr ≡
E





N(t)�

i=1

Si



4



E





N(t)�

i=1

Si



2



2 − 3 =

8λ2t2µ1µ3 − 32λ4t4µ41 + λtµ4�
4λ2t2µ21 + λtµ2


2 , (3.112)

where µ1, µ2, µ3 and µ4 are, respectively, the first, second, third and fourth moment of

the signal distribution S.

From Figures 3.7 and 3.8, we can analyze the convergence to the Gaussian case as the

number of underlying sources increases. In the case of a delta distribution, the skewness

and kurtosis values are extremely high when the average number of sources λ is lower

than 1. For example, when the average number of sources λ is equal to 0.1, the skewness
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Figure 3.8: Kurtosis of the compound Poisson process as a function of the intensity λ
when the underlying distribution is a Delta or a Uniform distribution.

and kurtosis are 3.163 and 13.007 respectively. When the average number of sources

λ is equal to 1, the skewness and kurtosis are 1 and 4.003 respectively, while they are

0.316 and 3.099 when λ = 10 and 0.1 and 3.01 when λ = 100. The case of a uniform

distribution shows a similar pattern, with slightly higher values. For example, when

the average number of sources λ is equal to 0.1, the skewness and kurtosis are 4.11 and

21.012 respectively. When the average number of sources λ is equal to 1, the skewness and

kurtosis are 1.298 and 4.796 respectively, while they are 0.41 and 3.179 when λ = 10 and

0.131 and 3.018 when λ = 100. From this analysis we may arbitrarily set at λ = 10 the

number of overlapping sources required to generate a SGWB signal that can be regarded

as "sufficiently" non-Gaussian. From Figure 3.5, we find that with the masses consistent

with the recent detections, there will be on average less than 1 binary black hole system

emitting in the Advanced LIGO 10-200 Hz band. The number of binary neutron star

systems is substantially higher, around 10 in the lowest range of the frequency band. On

the other hand, for f = 10−4 the number of overlapping sources is extremely large and

well within the Gaussian range. We should also keep in mind that Figures 3.7 and 3.8

are based on the assumption of a finite number of i.i.d. sources, while actual sources

will have different probability distributions, thus a priori suggesting a higher degree of
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non-normality.

Let us finally note that various formal statistical tests can be applied to assess

the degree of non-normality of a given SGWB distribution, including the Cramér-von

Mises criterion [52], the Kolmogorov-Smirnov test [161], the Shapiro—Wilk test [161], the

Anderson-Darling test [20], the Pearson’s chi-squared test [42], the Lilliefors test [116], the

D’Agostino’s K-squared test [54], and the Jarque-Bera test [104]. The Jarque-Bera (JB)

test is particularly well-suited for our analysis, since it is explicitly derived from sample

skewness and kurtosis estimates, which will be the focus of our attention in chapters 4

and 5. The JB test statistic is defined as [104]:

JB =
n

6

�
Sk2 +

1

4
9Kr2

�
, (3.113)

where n is the number of observations, Sk is the skewness and 9Kr the excess kurtosis

of the signal distribution. The statistic JB has an asymptotic χ2 (chi-square) distribu-

tion with two degrees of freedom (which is the distribution followed by the sum of two

i.i.d. squared standardized Gaussian random variables) and can be used to test the null

hypothesis that the data are from a normal distribution. The null hypothesis is a joint

hypothesis of the skewness being zero and the excess kurtosis being 0, so that any de-

viation from this increases the JB statistic. When applying the formal JB test to the

compound Poisson process with an underlying distribution that is either delta or uniform,

we find that the Gaussian assumption is strongly rejected given the skewness and kurtosis

parameters displayed in Figures 3.7 and 3.8, and this for all tested values of the intensity

process λ in the range [10−4, 100].

3.3.2 Non-Gaussian SGWB Distributions and the Edgeworth

Expansion

As discussed above, there are strong reasons to believe that the GW background from

astrophysical sources will fall in the non-Gaussian regime, which raises the question of
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a suitable extension of the detection methodologies to account for the presence of these

deviations from the Gaussian assumption. Broadly speaking, there are 3 main approaches

to statistical problems involving non-Gaussian distributions. The first approach is the

parametric approach, which consists of assuming a given non-Gaussian signal distribu-

tion (Student, inverse Gaussian, Pareto-Levy, etc.), and using the assumed density to

derive, subject to analytical tractability, an expression for the log likelihood, which can

subsequently be used to perform parameter estimation. The main limitation with the

parametric approach is specification risk, namely the fact that the assumed non-Gaussian

distribution may not be a good fit for the unknown signal distribution. Besides, it is in

general impossible to obtain the likelihood function (frequentist approach) or the mar-

ginalized likelihood function (Bayesian approach) in analytical form for non-Gaussian

densities. For example, a Student’s t-distribution model is considered in [49] as an ex-

ample of a non-Gaussian parameterized SGWB signal prior, but the authors do not use

this model in their analysis because of a lack of tractability in their Bayesian approach,as

can be seen from the following quote: "Also, as we shall discuss further in Sec. V, we do

not consider a signal+noise model with a non-standardized Student’s t-distribution for

the non-Gaussian stochastic gravitational-wave component. This is because of the com-

putational costs associated with the marginalized likelihood evaluations (see Eq. (18)),

which are needed for the Bayesian model selection calculations." The authors also make

the following statement when analyzing the marginalized likelihood function: "Unfortu-

nately, we do not know how to analytically evaluate such an integral. (...) Thus, if we

want to use this distribution as one of our non-Gaussian signal models, we would need

to evaluate the above integrals numerically."

To alleviate the concern over specification risk (i.e., the risk that the true unknown

distribution differs from the assumed distribution), one may instead prefer a non para-

metric approach, where no assumption is made about the unknown distribution, and

where sample information is used to perform parameter estimation. Two main shortcom-

ings of this approach are the fact that it does not allow for likelihood maximization, and
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also the lack of robustness due to the sole reliance on sample-based information. Finally,

one interesting alternative to these two extreme approaches exists, which is known as

a semi-parametric approach, where the focus is on approximating the unknown signal

distribution as a transformation of a reference function (typically the Gaussian density).

This can be done formally through the Edgeworth expansion, which is the most straight-

forward approximation of a non-Gaussian distribution, and which provide an explicit

expression of the rate of convergence of the central limit theorem. We subsequently con-

sider how it can be applied to the detection of non-Gaussian SGWBs in the course of

next chapter. We will actually show in chapter 4 then that the use of the Edgeworth

expansion not only addresses the concern over specification risk, but also the concern over

lack of tractability. This is because the Edgeworth expansion involves an approximate

density than can be written as the product of a polynomial and the Gaussian density,

and standard results on Gaussian integrals can be used to calculated the log-likelihood

in closed-form (see for example equation 4.51).9

More precisely, the Edgeworth expansion represents an approximation to the density

of a normalized sum of i.i.d. copies of X the distribution of which satisfies some regularity

conditions involving existence of moments and an integrability condition of the charac-

teristic function (chf) of X. The integrability of the chf guarantees uniform convergence

of the approximating density to the limit density while the existence of higher-order mo-

ments guarantees a faster rate of convergence to the limit density. Here we provide a

result regarding the convergence rate of the Edgeworth expansion. This is a standard

result, for which we provide a proof adapted from [75]. The reminder of this section

can be regarded as a pure mathematical development that contains no original result.

This material merely serves the purpose of providing the reader with a formal proof of

9This approach, which we introduce for the first time in the analysis of SGWB signals in [121], was
also considered in [49]: "It is possible to consider an Edgeworth expansion of the Student t-distribution
in terms of its non-zero cumulants, c2, c4, etc. But then truncating the expansion after a nite number
of terms would produce a different non-Gaussian distribution, that would behave differently in model
comparison tests from the full Student’s t-distribution." Since there is no a priori justification for the use
of the Student’s t-distribution, we argue that an approximative version of that distribution classically
involving cumulants up to the order 4 would be a natural tractable alternative.
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the Edgeworth expansion, which is heavily used in chapters 4 and 5 for the analysis of

SGWB signals.

We first introduce some notation. Let X1, . . . ,Xn denote i.i.d. copies of X and denote

by fn(x) the density of Sn = (X1 + . . .+Xn)/
√
n in which E (X2) = 1. Without loss of

generality, we have also assumed E (X) = 0. Further on, denote by µr = E (Xr) the r-th

moment of X, by ϕ(t) = E
�
eitX



the chf of X, and by φ(x) = e−x

2/2/
√
2π the density of

the centered standard normal distribution.

Proposition 2 Suppose that the moments µ3, . . . , µr exist and that |ϕ|ν is integrable for

some ν ≥ 1. Then, fn(x) exists for n ≥ ν and as n→ ∞:

fn(x) = φ(x) + φ(x)
r�

k=3

Pk−2(x)

nk/2−1
+O(n−r/2+1). (3.114)

Here Pk(x) is a real polynomial depending only on µ3, . . . , µk but not on n or r.

Proof. We provide a sketch of the proof in which the particular form of the polynomials

is derived. Denote by c0 = c1 = 0, c2 = 1, c3, . . . , cr the cumulants of the X. The

logarithm of the chf of X can be expanded:

ψ(t) = logϕ(t) =
r�

j=0

cj(it)
j

j!
+O(|t|r)

= −t
2

2!
+
c3(it)

3

3!
+ . . .+

cr(it)
r

r!
+O(|t|r)

(3.115)

in a neighborhood of t = 0. The chf of the normalised sum can be represented through

the chf of the summands which are independent copies of X:

ϕn(t) = E exp

-
it

1√
n

n�

i=1

Xi

.
= ϕn

�
t√
n

�
.

It is more convenient to work with the logarithm where we can plug in the Taylor expan-

129



Chapter 3 — Definition and Detection of the Stochastic Gravitational Wave Background

sion in (3.115):

ψn(t) = logϕn(t) = nψ

�
t√
n

�

= −t
2

2
+
c3(it)

3

3!n3/2−1
+ . . .+

cr(it)
r

r!nr/2−1
+O(|t|r)

= −t
2

2
+ ψn,r(it) +O(|t|r).

where

ψn,r(x) =
c3x

3

3!n3/2−1
+ . . .+

crx
r

r!nr/2−1
. (3.116)

As a result, for the chf of the normalised sum Sn we get:

ϕn(t) = expψn(t) = exp

�
−t

2

2

�
exp(ψn,r(t) +O(|t|r))

= exp

�
−t

2

2

�
exp(ψn,r(it)) +O(|t|r).

(3.117)

At this stage, the chf of the normalised sum has a Gaussian component multiplied by a

term which is an exponent of a polynomial of it. The goal now is to write an expansion

for the factor. Since we have assumed existence of moments up to the order of r, then the

chf of the sum can be expanded in a manner similar to (3.115) and the Taylor expansion

would be of the r-th order. In (3.117), however, the Gaussian component is of the second

order, i.e. exp(−t2) ≈ 1− t2 in a neighborhood of t = 0, and therefore the factor will be

of order r − 2. We use the power series expansion of the exponent to arrive at:

ϕn(t) = exp

�
−t

2

2

�-
r−2�

j=0

(ψn,r(it))
j

j!

.
+O(|t|r). (3.118)

The next step is to raise the polynomials to the corresponding powers in the expansion

and to order the terms according to the power of n. Note that the polynomials ψn,r(x)

defined in (3.116) are of order r. Raising them to a power in (3.118) will produce terms

of higher order which we can safely ignore because the order of the approximation is r.
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Thus, the goal now is to write down explicitly the terms Qj(x) in the representation:

ϕn(t) = exp

�
−t

2

2

� r−2�

j=0

Qj(it)

nj/2
+O(|t|r). (3.119)

which, as explained above, are polynomials. We proceed on a term by term basis. Q0(x) =

1 which is obvious. Q1(x) collects the terms that contain n1/2 in the denominator. There

is only one such term which is the first term of ψn,r(x) where the order is as given in

(3.116), i.e. Q1(x) = c3x3

3!
. Next, Q2(x) collects all terms that have n in the denominator.

There are two such terms — the second one in ψn,r(x) and the first one in (ψn,r(x))
2, i.e.

Q2(x) =
c4x4

4!
+ (c3)2x6

2!(3!)2
. We can proceed in this way with the higher order terms. The first

few expressions are summarised below:

Q0(x) = 1

Q1(x) =
c3x

3

3!

Q2(x) =
c4x

4

4!
+

(c3)
2x6

2!(3!)2

Q3(x) =
c5x

5

5!
+
c3c4x

7

3!4!
+

(c3)
3x9

(3!)3
.

(3.120)

So far, we have managed to derive an approximation of the chf of the normalised sum.

Denote the approximation by:

5ϕn(t) = exp

�
−t

2

2

� r−2�

j=0

Qj(it)

nj/2
. (3.121)

The next step is to translate it into a density approximation of the normalised sum. To

this end, we employ the inversion formula:

5fn(t) =
1

2π

�

R

e−itx5ϕn(t)dt.
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The rationale for this is the inequality:

|fn(x)− 5fn(x)| ≤
1

2π

�

R

|e−itx||ϕn(t)− 5ϕn(t)|dt =
1

2π

�

R

|ϕn(t)− 5ϕn(t)|dt.

The right hand-side converges to zero because of the assumed integrability of the chf for

n ≥ ν. Further on, since it does not depend on x, the convergence in terms of densities is

uniform. The rate of convergence is derived from the Fourier norm but we are not going

to do it here.

From the inversion formula, we get:

5fn(t) =
1

2π

�

R

e−itx

-
e−

t2

2

r−2�

j=0

Qj(it)

nj/2

.
dt

=
r−2�

j=0

1

nj/22π

�

R

e−itx
#
e−

t2

2 Qj(it)
$
dt.

(3.122)

Since Qj(x) is a polynomial, the generic form of the terms involving the integral is

1

2π

�

R

e−itx
#
e−

t2

2 (it)j
$
dt =

1

2π

�

R

e−
t2

2

�
e−itx(it)j



dt.

The term in the parentheses can be represented through the derivatives of e−itx with

respect to x. Indeed, it can be easily verified that (−1)j d
j

dxj
e−itx = e−itx(it)j. As a

consequence, for the generic term we get:

1

2π

�

R

e−itx
#
e−

t2

2 (it)j
$
dt =

(−1)j

2π

�

R

e−
t2

2

�
dj

dxj
e−itx

�
dt

=
(−1)j

2π

dj

dxj

�

R

e−
t2

2 e−itxdt

= (−1)j
dj

dxj
φ(x).

where the last equality follows by recognizing the Gaussian chf in the e−
t2

2 factor and

132



Chapter 3 — Definition and Detection of the Stochastic Gravitational Wave Background

applying the inversion formula to it. The expression can be further simplified:

1

2π

�

R

e−itx
#
e−

t2

2 (it)j
$
dt = φ(x)Hj(x), (3.123)

where Hj(x) denotes the polynomial remaining after differentiating the Gaussian density.

These polynomials are known as Hermite polynomials.

The Hermite polynomials are a classical orthogonal polynomial sequence, which are

used in a variety of context in mathematics and physics, which have been introduced by

Laplace in 1820.

We are ready to derive an expression for the density. Denote by Qj(x) =
:

k bjkx
k

and take advantage of the derived expression for the generic term in (3.123). Then, the

expression in (3.122) becomes:

5fn(t) =
r−2�

j=0

1

nj/2

�

k

bjk
1

2π

�

R

e−itx
#
e−

t2

2 (it)k
$
dt

=
r−2�

j=0

1

nj/2
φ(x)

�

k

bjkHk(x)dt

= φ(x)
r−2�

j=0

Pj(x)

nj/2
dt.

(3.124)

in which the polynomial Pj(x) is obtained from Qj(x) by simply replacing the term xk

with Hk(x). Noticing that P0(x) = 1 and that the index k in the theorem is related to j

according to k = j + 2 completes the proof.

Using the derived expressions for the polynomial Qj(x) in (3.120), the first few terms

of Pk(x) expressed in terms of the cumulants are given by [75]:

P3(x) =
c3H3(x)

3!
(3.125)

P4(x) =
c4H4(x)

4!
+

(c3)
2H6(x)

2!(3!)2
(3.126)

P5(x) =
c5H5(x)

5!
+
c3c4H7(x)

3!4!
+

(c3)
3H9(x)

(3!)3
(3.127)
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where Hk(x) stands for the Hermite polynomial defined by:

dk

dxk
φ(x) = (−1)kHk(x)φ(x) (3.128)

The first few Hermite polynomials used in the expressions above are given by:

H3(x) = x3 − 3 (3.129)

H4(x) = x4 − 6x2 + 3 (3.130)

H5(x) = x5 − 10x3 + 15x (3.131)

H6(x) = x6 − 15x4 + 45x2 − 15 (3.132)

H7(x) = x7 − 21x5 + 105x3 − 105x (3.133)

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x (3.134)

Using the link between cumulants and moments, the expressions for P3, P4and P5 can be

re-stated in terms of the moments of X. It should also be noted that if we assume that

X has a bounded continuous density, then ν = 1. The converse statement also holds.

In other words, the existence of continuous density of X guarantees integrability of the

chf of X. The derivation relies on the assumed zero mean and unit variance of X. The

case of non-nonrmalized X can be handled directly through the normalized case. First,

suppose that E (X) = µ. Then, the sum Sn = (X1 + . . .+Xn)/
√
n diverges because it is

not properly normalized. Indeed, with some abuse of notation:

Sn =
(X1 + . . .+Xn)

n

√
n→ µ√n→ ∞, (3.135)

where the limit is in almost sure sense (meaning that it holds with probability 1) and

the first part is due to the strong law of large numbers. The convergence in distribution

would follow if the sum is centered by subtracting the mean of the sum. Thus, as far
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as the Edgeworth approximation goes, we can either assume that E (X) = 0 and derive

the approximation of the density of the sum Sn = (X1 + . . . +Xn)/
√
n or if we assume

E (X) = µ, then we should consider S∗n = (X1 + . . . + Xn − nµ)/√n which means

that, again, the sum has a zero mean after centering. Second, assume that E (Y ) = 0

and E (Y 2) = σ2. The sum Sn = (Y1 + . . . + Yn)/
√
n has a zero mean and a variance

E (S2n) = σ
2. Set Y = σX, where E (X2) = 1. The logarithms of the chfs of Y and X are

related through a simple formula:

ψY (t) = ψX(σt), (3.136)

which implies that the cumulants of X and Y are related through cX,j = cY,j/σj, j ≥ 1.

The density of Sn = (Y1+ . . .+Yn)/
√
n can be approximated using (3.114). The following

corollary holds.

Corollary 3 Suppose that the random variable Y is such that E (Y ) = 0, E (Y 2) = σ2

and E (|Y |r) < ∞ for r ≥ 2. Denote the cumulants of Y by cY,j for 3 ≤ j ≤ r. The

Edgeworth approximation of the density of Sn = (Y1 + . . .+ Yn)/
√
n equals:

5fn(x) =
1

σ
φ
#x
σ

$-
1 +

r�

k=3

Pk(x/σ)

nk/2−1

.
, (3.137)

where the cumulants corresponding to Pk(x) are equal to cj = cY,j/σ
j for 3 ≤ j ≤ r.

Proof. There are two equivalent ways to arrive at the result in (3.137). The analytic

approach would be to repeat the arguments in the proof of Theorem 2 noting that

5ϕn(t) = exp

�
−σ

2t2

2

�
exp

�
cY,3(it)

3

3!n3/2−1
+ . . .+

cY,r(it)
r

r!nr/2−1

�
,

= exp

�
−σ

2t2

2

� r−2�

j=0

Qj(it)

nj/2
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where Qj(x) is as in (3.120) with cj = cY,j. Further on, it can be checked directly that

1

2π

�

R

e−itx
#
e−

t2

2 (it)j
$
dt =

(−1)j

σ

dj

dxj
φ(x/σ) =

1

σ

1

σj
φ(x/σ)Hj(x/σ)

and plugging everything into (3.124) we get

5fn(t) =
1

σ
φ(x/σ)

r−2�

j=0

P ∗j (x/σ)

nj/2
dt.

where the polynomial P ∗j (x) is obtained from Qj(x) by replacing the term x
k with

Hk(x)/σ
k. Note that the term σk can be absorbed by the cumulants of Y . Thus, P ∗j (x)

turns out to be the same as Pj(x) in which cj = cY,j/σj.

A probabilistic proof would be more straightforward. Denote by S∗n = (Y1 + . . . +

Yn)/σ
√
n = Sn/σ. The sum S∗n is now normalised and according to Theorem 2 its

Edgeworth approximation reads

5f ∗n(x) = φ(x)
-
1 +

r�

k=3

Pk(x)

nk/2−1

.

where the cumulants in the polynomials Pk(x) are those of X = Y/σ. We can now write

down the density of the random variable Sn = σS∗n

5fn(x) = 5f∗n(x/σ)/σ

and we arrive at (3.137).

We now present a number of concluding comments about the Edgeworth expansion.

Let us first denote the right-hand side of (3.114) it by 5fn,r(x):

5fn,r(x) = φ(x) + φ(x)
r�

k=3

Pk(x)

nk/2−1
. (3.138)

The expression implies that a correction factor is applied to the Gaussian density. The
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function 5fn,r(x), however, is not necessarily a density function itself; it can take negative

values, a problem which we revisit in the next chapter, where we argue that the problem

does not arise for the examples that we analyze (see Figures 4.3, 4.4, 4.5 and 4.6), and

where we also suggest to take the squared value of the correction term should the problem

arise in practice (equation 4.44). On the other hand, the function 5fn,r(x) does integrate

to 1. To see this, note that the approximation of the chf in the derivation is constructed

such that 5ϕn(0) = 1 for any n. From the transform 5ϕn(t) =
�
R
eitx 5fn(x)dx, it follows

that:

1 = 5ϕn(0) =
�

R

5fn(x)dx. (3.139)

Using Corollary 3, the expansion for the special case of a symmetricX such that E (X2) =

σ2 and assuming finite moments up to the fourth order is given by:

5fn,4(x) = φ(x/σ)/σ + φ(x/σ)
µ4/σ

4 − 3

24nσ
((x/σ)4 − 6(x/σ)2 + 3). (3.140)

The expression in the numerator, µ4/σ
4 − 3, is the kurtosis of X. The convergence rate

in (3.114) can be made more precise.

Proposition 4 Let X1, X2, . . . , Xn be i.i.d. copies of X with E (X) = 0 and E (X2) = 1

and E (|X|r) <∞ for some integer r ≥ 2. Suppose that |ϕ|ν is integrable for some ν. Let
5fn,r(x) denote the Edgeworth approximation in (3.114), then:

sup
x
(1 + |x|r)|fn(x)− 5fn,r(x)| = O(n−r/2+1). (3.141)

Let us emphasize that the idea behind Edgeworth expansion can be applied directly

to a given random variable X, not necessarily in the context of sums of i.i.d. copies of

X, which then leads to the so-called Gram-Charlier approximation. In the setting of

CLT, the value of the Edgeworth expansion is that it provides a convergence rate with

respect to n. Outside of the context of the CLT, it is just an approximation problem — it

approximates the density of X through a Gaussian density and a correction term. This
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will be the case in our analysis of a non-Gaussian noise distribution in chapter 5. In fact,

the arguments behind the proof of Theorem 2 can be repeated without modification and

this is what we do next. Suppose that X has a zero mean and unit variance and that

E (|X|r) <∞ for some r > 2. Then, for the chf of X we can write down:

ϕX(t) = exp

�
−t

2

2

�
exp

�
cX,3(it)

3

3!
+ . . .+

cX,r(it)
r

r!

�
+O(|t|r) (3.142)

= exp

�
−t

2

2

�
exp (ψr(it)) +O(|t|r) (3.143)

= exp

�
−t

2

2

�-
r�

j=0

(ψr(it))
j

j!

.
+O(|t|r) (3.144)

= exp

�
−t

2

2

� r−2�

j=0

αj,r(it)
j +O(|t|r) (3.145)

where αj,r collect the terms multiplying the corresponding power of (it). Applying the

Fourier inversion formula, we end up with the Gram-Chalier decomposition (see next

chapter for more details):

5fX(t) =
1

2π

�

R

e−itx5ϕX(t)dt (3.146)

=
1

2π

�

R

e−itxe−t
2/2

r−2�

j=0

αj,r(it)
jdt (3.147)

=
r−2�

j=0

αj,r
1

2π

�

R

e−itxe−t
2/2(it)jdt (3.148)

= φ(x)
r−2�

j=0

αj,rHj(x) (3.149)

The main focus of the next chapter is to use the 4th-order Edgeworth expansion of the

unknown density for the signal and noise distributions to obtain an explicit expression

for the nearly optimal likelihood statistic in the non-Gaussian case, and explore the im-

plications in terms of detection of non-Gaussian SGWB and estimation of the parameters

of the SGWB distribution.
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A Semi-Parametric Approach to the

Detection of Non-Gaussian Stochas-

tic Gravitational Wave Backgrounds

This chapter is an expanded version of the following paper [121]: "Semiparametric approach to

the detection of non-Gaussian gravitational wave stochastic backgrounds", L. Martellini and T.

Regimbau, 2014, Physical Review D, 89, 12, 124009.

As recalled in the previous chapter, the optimal detection strategy to search for a

stochastic background is to cross correlate the output of two detectors (or of a network

of detectors) to eliminate the instrumental noise [15]. The GW background is usually

assumed to be Gaussian invoking the central limit theorem, and thus completely char-

acterized by its mean and variance. However recent predictions based on population

modeling suggest that for many astrophysical models, there may not be enough overlap-

ping sources, resulting in the formation of a non-Gaussian background. As also recalled

in the previous chapter, it has also been shown that the background from cosmic strings

could be dominated by a non-Gaussian contribution arising from some of the closest

sources [55, 144] that would generate GW signals that would not be strong enough to be
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individually detectable. The identification of a non-Gaussian signature would not only

permit one to distinguish between astrophysical and cosmological GW backgrounds and

gain confidence in a detection, but the measurement of extra information should also help

impose additional constraints on parameters of underlying astrophysical and cosmological

models.

In the past decade a few methods have been proposed to search for a non-Gaussian

stochastic background, including the probability horizon concept developed by [50] based

on the temporal evolution of the loudest detected event on a single detector, the maximum

likelihood statistic of [62] which extends the standard cross correlation statistic in the time

domain in the case of short astrophysical bursts separated by long periods of silence, the

fourth-order correlation method [157] which uses fourth-order correlation between four

detectors to measure the third and the fourth moments of the distribution of the GW

signal, or the recent extension of the standard cross-correlation statistic by [168].

In this chapter, we start from the general formalism presented in [62] to analyze small

deviations from the Gaussian distribution. In this case the cross-correlation statistic is

almost optimal and allows for the estimation of the variance of the signal distribution, but

it cannot be used to estimate higher order moments. The approach we propose is based

on the Edgeworth expansion, which is a formal asymptotic expansion of the characteristic

function of the signal distribution, whose unknown probability density function is to be

approximated in terms of the characteristic function of the Gaussian distribution.

The Edgeworth expansion has been used in many applications in engineering, eco-

nomics and finance, and it has also been successfully used in astrophysics, in particular

in the analysis of the microwave background anisotropies ([154], [111], [108], [129], [77],

[83], [19]) and in the analysis of the velocity distributions and structure of elliptical galax-

ies ([148], [171], [84], [93], [30]). To the best of our knowledge, however, the paper [121]

from which this chapter is drawn is the first attempt to use the Edgeworth expansion in

the context of analysis and detection of stochastic gravitational wave backgrounds. Since

the Edgeworth expansion provides asymptotic correction terms to the Central Limit The-
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orem up to an order that depends on the number of moments available, it is ideally suited

for the analysis of stochastic gravitational wave backgrounds generated by a finite number

of astrophysical sources. It is also well-suited for the analysis of signals from cosmological

origin in case the deviations from the Gaussian assumption are not too strong. Using a

4th-order Edgeworth expansion, we obtain an explicit expression for the nearly optimal

non-Gaussian likelihood statistic, which is shown to involve standard Gaussian integrals.

This expression generalizes the standard maximum likelihood detection statistic, which

is recovered in the limit of vanishing third and fourth cumulants of the empirical condi-

tional distribution of the detector measurement. We use numerical procedures to generate

maximum likelihood estimates for the gravitational wave distribution parameters for a

set of heavy-tailed distributions and find that the fourth cumulant can be estimated with

reasonable precision when the ratio between the signal and the noise variances is larger

than 0.01. The use of the non-Gaussian detection statistic comes with no loss of sensi-

tivity when the signal variance is small compared to the noise variance, and involves an

efficiency gain when the noise and the signal are of comparable magnitudes. The rest of

the chapter is organized as follows. In section 4.1, we introduce a detection statistic for

a non-Gaussian stochastic background distribution. In section 4.2, we present a number

of numerical simulations. In section 4.3, we discuss how the approach can be extended to

analyze signals in the popcorn regime.

4.1 Detection Methods for Non-Gaussian Gravita-

tional Wave Backgrounds

Following [62], we consider two gravitational wave detectors, assumed to be identical,

which implies that the noise for both detectors is drawn from the same distribution, as

well as coincident and coaligned, which also implies that the signal measured by both

detectors is identical. Using the same notation as in the previous chapter, we decompose

the measurement output hit for detector i = 1, 2 at time t in terms of noise nit (specific
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to each detector) versus signal st (common to both detectors): hit = nit + st. Here we

assume that the noise in detector 1 and 2 follow uncorrelated Gaussian distributions N1

and N2 with zero mean and standard deviations denoted by σ1 and σ2, respectively. We

analyze the case of non-Gaussian noise distributions in chapter 5. We denote by c2 ≡ α2

the variance of the signal distribution S, and by c3 and c4, respectively, the third- and

fourth-order cumulants of the signal distribution (see formal definitions below). When

the signal is Gaussian, we have that c3 = c4 = 0. Note that we use capital letters for the

random variables, e.g., S for the signal, and small letters for their realizations given a

given random outcome ω. In other words, we write St(ω) = st, where St for t = 1, ..., T

are identical copies of the stationary random variable S, and where T is the number of

data points.1

4.1.1 Gram-Charlier and Edgeworth Expansions

Our ambition is to propose a semi-parametric approach that allows one to approximate

the unknown density as a transformation of a reference function (typically the Gaussian

density), involving higher-order moments/cumulants of the unknown distribution. This

approach, formally introduced in the previous chapter, has been heavily used in statistical

problems involving a mild departure from the Gaussian distribution; it is generally more

robust than the non-parametric approach, since the sample information is only used to

generate estimates for the 3rd and 4th cumulants of the unknown distribution function,

and it does not suffer from the specification risk inherent to the parametric approach. In

what follows, we show that a semi-parametric expansion of the unknown signal density

function can be used to obtain an analytical derivation of the nearly optimal maximum

likelihood detection statistic for non-Gaussian gravitational wave stochastic backgrounds.

To see this, let us denote by f be the density function of the unknown distribution of

the stochastic background signal S which we want to approximate as a function of the

1Here T is not the observation time but the number of data points, which is the observation time
multiplied by the sampling rate
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Gaussian density function φ. We first recall the definition for G, the moment generating

function of S:

Gs (t) = E
�
etS

 
=

� ∞

−∞
etxfs (x) dx, (4.1)

which is related to the characteristic distribution ψ, i.e., the Fourier transform of the

function fs, by ψs (t) = Gs (it).

Using the Taylor expansion of the exponential function around 0, ex =
∞:
j=0

xj

j!
, we

obtain the following expression for the characteristic function:

ψs (t) = E
�
eitS

 
=

∞�

j=0

(it)j

j!
E

�
Sj



≡

∞�

j=0

(it)j

j!
µj , (4.2)

where µj denotes the j
th (non central) moment of the distribution of S. From this, we

see that jth (non central) moment of the distribution is given by the jth derivative of

the moment-generating function Gs taken at t = 0 (hence the name moment generating

function): µj = G
(j)
s (0) = (−i)j ψ(j)s (0).

We also recall the definition of the cumulant generating function gs as the logarithm

of the characteristic function:

gs (t) = logGs (t) = log
∞�

j=1

tj

j!
µj. (4.3)

A Taylor expansion of the cumulant generating function gs can be written under the

following form:

gs (t) = gs (0) +
∞�

j=1

tj

j!
g(j)s (0) , (4.4)

and we define cj = g
(j)
s (0) as the jth cumulant of the random variable S.

A moments-to-cumulants relationship can be obtained by expanding the exponential

and equating coefficients of tj in:

Gs (t) = exp [gs (t)] ⇐⇒
∞�

j=0

tj

j!
µj = exp

� ∞�

j=1

tj

j!
cj

�
. (4.5)
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Conversely, a cumulants-to-moments relationship is obtained by expanding the loga-

rithmic and equating coefficients of tj in gs (t) = logGs (t). Hence we have:

c1 = g′s (0) = µ1 = µ (4.6)

c2 = g′′s (0) = µ2 − µ21 = α2 (4.7)

c3 = g(3)s (0) = µ3 − 3µ2µ1 + 2µ31 (4.8)

c4 = g(4)s (0) = µ4 − 4µ3µ1 − 3µ22 + 12µ2µ
2
1 − 6µ41 (4.9)

We note in particular that the first cumulant is equal to the first moment (the mean),

and the second cumulant is equal to the second-centered moment (the variance). Cumu-

lants are often simpler than moments. For example, the first 6 moments of a Gaussian

distribution with mean µ and standard deviation α are:

µ1 = µ (4.10)

µ2 = µ2 + α2 (4.11)

µ3 = µ3 + 3µα2 (4.12)

µ4 = µ4 + 6µ2α2 + 3α4 (4.13)

µ5 = µ5 + 10µ3α2 + 15µα4 (4.14)

µ6 = µ6 + 15µ4α2 + 45µ2α4 + 15α6 (4.15)

µ7 = µ7 + 21µ5α2 + 105µ3α4 + 105µα6 (4.16)

µ8 = µ8 + 28µ6α2 + 210µ4α4 + 420µ2α6 + 105α8 (4.17)

while the cumulants of a Gaussian distribution, denoted by γj, are:

γ1 = µ (4.18)

γ2 = α2 (4.19)

γi = 0 for i ≥ 3 (4.20)
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We may now expand the unknown non-Gaussian signal distribution fs in terms of a

known distribution with probability density function φ, characteristic function Φ, and

standardized cumulants γj. The density φ is generally chosen to be that of the normal

distribution. Using the expression of the characteristic functions for the Gaussian and

non-Gaussian distributions in terms of their cumulants, we have:

ψs (t) = exp

� ∞�

j=1

(it)j

j!
cj

�
= exp

� ∞�

j=1

(it)j

j!

�
cj − γj



�
Φ (t) . (4.21)

Given that γj = cj for j = 1, 2, and γj = 0 for j > 2, we finally have:

ψs (t) = exp

� ∞�

j=3

(it)j

j!
cj

�
Φ (t) . (4.22)

By the properties of the Fourier transform, (it)j Φ (t) is the Fourier transform of (−1)jDjφ(x),

where D is the differential operator with respect to x. From this, we obtain

fs (x) = exp

� ∞�

j=3

cj
(−D)j
j!

�
φ (x) . (4.23)

Introducing the Hermite polynomials Hj(
x−µ
α

) = (−1)j αj φ
(j)(x)
φ(x)

, expanding the expo-

nential and collecting terms according to the order of the derivatives, we obtain the

Gram-Charlier A series, which is a second-order approximation for a distribution with

mean zero and standard deviation denoted by α:

fs (x) ≃
1√
2πα

exp

&
− x

2

2α2

' 7
1 +

c3
6α3
H3

#x
α

$
+
c4

24α4
H4

#x
α

$8
, (4.24)

where the 3rd and 4th Hermite polynomials are respectively given by H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3. One problem with the Gram-Charlier A series is that it is not

possible to estimate the error of the expansion. For this reason, the Edgeworth expansion,

formally introduced in the previous chapter, is generally preferred over the Gram-Charlier

expansion. The Edgeworth expansion is based on the assumption that the unknown
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signal distribution is the sum of normalized i.i.d. (non necessarily Gaussian) variables,

and provides asymptotic correction terms to the Central Limit Theorem up to an order

that depends on the number of moments available. When taken at the fourth-order level,

we recall that the Edgeworth expansion reads as follows (see section 3.3.2):

fs (x) ≃ φ (x)
&
1 +

c3
6α3
H3

#x
α

$
+
c4

24α4
H4

#x
α

$
+
c23

72α6
H6

#x
α

$'
, (4.25)

where φ (x) = 1√
2πα

exp
7
− x2

2α2

8
is the density function of the Gaussian distribution, and

where the 6th Hermite polynomial is defined as H6 (x) = x6 − 15x4 + 45x2 − 15. We

finally have fs (x) ≃ φ (x) g (x) with:

g (x) =

�
1 +

c4
8α4

− 5c23
24α6

�
− c3

2α4
x+

�
15c23
24α8

− c4
4α6

�
x2

+
c3
6α6
x3 +

�
c4

24α8
− 5c23

24α10

�
x4 +

c23
72α12

x6 (4.26)

≡ b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b6x

6. (4.27)

We see that the Edgeworth expansion involves one more Hermite polynomial with

respect to the Gram-Charlier expansion while keeping the number of parameters constant.

For symmetric distributions, we have c3 = 0, and the two 4th-order expansion coincide.

In general they differ by the presence of the additional term c23
72α6
H6

�
x
α



in the Edgeworth

expansion.

One of the problems with both of these expansions is that while the resulting approx-

imate density does integrate to 1 (equation 3.139), it may in principal take on negative

values. To see this, consider equation 4.26 in the case of a symmetric distribution (c3 = 0)

and a normalized variance α2 = 1. In this case we have:

g (x) = b0 + b2x
2 + b4x

4 (4.28)
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with:

b0 = 1 +
c4
8

(4.29)

b2 = −c4
4

(4.30)

b4 =
c4
24
. (4.31)

Using the change of variable y = x2, we obtain the quadratic polynomial b0 + b2y + b4y2.

In case the discriminant

∆ = b22 − 4b0b4 =
c24
16

− c4
6

#
1 +
c4
8

$
=
c24
24

− c4
6

=
c4
6

#c4
4
− 1

$
(4.32)

is strictly positive, i.e., when c4 > 4, the equation

b0 + b2y + b4y
2 = 0 (4.33)

admits two real roots

y1 =
−b2 −

√
∆

2b4
= 3− 12

√
∆

c4
(4.34)

y2 =
−b2 +

√
∆

2b4
= 3 +

12
√
∆

c4
(4.35)

and we have

b0 + b2y + b4y
2 = b4 (y − y1) (y − y2) . (4.36)

From this, it can be seen that the sign of the polynomial is the same as the sign of b4, which

is positive, if the discriminant ∆ is strictly positive, that is if c4 is strictly greater than 4,

and if y lies outside the range [y1, y2]. In case the discriminant ∆ is negative or zero, the

polynomial is the same as the sign of b4, and therefore also positive. In summary, in a

case with α2 = 1 and c3 = 0, the quantity g (x) may take on negative values only if c4 > 4

and these negative values will be obtained for x such that x2 ∈
7
3− 12

√
∆

c4
, 3 + 12

√
∆

c4

8
,
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which translate into x ∈
&�

3− 12
√
∆

c4
,
�

3 + 12
√
∆

c4

'
or x ∈

&
−
�

3 + 12
√
∆

c4
,−

�
3− 12

√
∆

c4

'
.

For all tested cases in Section 4.2.1 below, we check that the chosen parameter values

are such that the Edgeworth expansion always remains positive. Indeed in all cases that

we test, we have c4 < 4 and therefore a negative value for the discriminant ∆ (given the

chosen parameter values, we have c4 = 3 for both the Laplace and NIG distributions,

c4 = 3 for the Hypersecant distribution, and c4 = 1.2 for the Logistic distribution).

In general, if the parameter values are such that the discriminant ∆ in equation 4.32

is positive, we can proceed by taking the square of the polynomial function g to ensure

positivity of the expansion, as suggested in [81] and [82]. For example, if we want to

apply the procedure to the Gram-Charlier expansion 4.24, we have:

fs (x) ≃ φ (x) gGC (x) (4.37)

where φ (x) is the density of a Gaussian variable with mean µ = 0 and standard deviation

α and where

gGC (x) = 1 +
c3
6α3
H3

#x
α

$
+
c4

24α4
H4

#x
α

$
(4.38)

= 1 +
c4
8α4

− c3
x

2α4
− c4

x2

4α6
+ c3

x3

6α6
+ c4

x4

24α8
(4.39)

≡ a0 + a1x+ a2x
2 + a3x

3 + a4x
4. (4.40)

Therefore:

g2CG (x) = a20 + a
2
1x
2 + a22x

4 + a23x
6 + a24x

8 + 2a0a1x+ 2a0a2x
2 + 2a0a3x

3 + 2a0a4x
4

+2a1a2x
3 + 2a1a3x

4 + 2a1a4x
5 + 2a2a3x

5 + 2a2a4x
6 + 2a3a4x

7 (4.41)

= a20 + 2a0a1x+ (a21 + 2a0a2)x
2 + (2a0a3 + 2a1a2)x

3 +
�
a22 + 2a0a4 + 2a1a3



x4

+(2a1a4 + 2a2a3) x
5 +

�
a23 + 2a2a4



x6 + 2a3a4x

7 + a24x
8 (4.42)

≡ c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 + c7x

7 + c8x
8. (4.43)
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Note that a normalizing constant K needs to be introduced to ensure that the corre-

sponding density integrates to 1:

+∞�

−∞

φ (x) h (x) dx = 1, (4.44)

where h (x) = Kg2GC (x). We have:

+∞�

−∞

φ (x) h (x) dx = K

+∞�

−∞

φ (x) h (x) dx = c0K + c1K

+∞�

−∞

xφ (x) dx

� �� �
=µ=0

+c2K

+∞�

−∞

x2φ (x) dx

� �� �
=µ2+α2=α2

+ c3K

+∞�

−∞

x3φ (x) dx

� �� �
=µ3+3µα2=0

+c4K

+∞�

−∞

x4φ (x) dx

� �� �
=µ4+6µ2α2+3α4=3α4

+ c5K

+∞�

−∞

x5φ (x) dx

� �� �
=µ5+10µ3α2+15µα4=0

+c6K

+∞�

−∞

x6φ (x) dx

� �� �
=µ6+15µ4α2+45µ2α4+15α6=15α6

+c7K

+∞�

−∞

x7φ (x) dx

� �� �
=µ7+21µ5α2+105µ3α4+105µα6=0

+c8K

+∞�

−∞

x8φ (x) dx

� �� �
=µ8+28µ6α2+210µ4α4+420µ2α6+105α8=105α8

(4.45)

So finally, the constant K is given by:

K =
�
c0 + c2α

2 + 3c4α
4 + 15c6α

6 + 105c8α
8

−1
. (4.46)
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4.1.2 Maximum Likelihood Estimators for the Cumulants of the

SGWB Signal

We consider here a stochastic background gravitational wave signal having an unknown

distribution with mean zero, variance denoted by α2 or equivalently c2 and third- and

fourth-order cumulants denoted by c3 and c4, respectively. As before, the estimation

procedure is based upon the following approximation for the likelihood ratio:

ΛNGML =
max

α,σ1,σ2,c3,c4

�
fs|X=1 (s) fn|X=1 (h− s) ds
max
σ1,σ2

fn|X=0 (h)
. (4.47)

Here we use the subscript NG in ΛNGML to emphasize that the signal distribution is a priori

non-Gaussian. Maintaining on the other hand the Gaussian assumption for the noise

distribution, we obtain after straightforward manipulations the following expression for

the likelihood ratio for the non-Gaussian signal distribution:

ΛNGML = max
α,σ1,σ2,c3,c4

T%

t=1

Gt

� +∞

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
g (st) dst, (4.48)

with:

Gt ≡
σ

α

σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2
�
, (4.49)

and:

σ ≡
�

1

α2
+

1

σ21
+

1

σ22

�− 1
2

(4.50a)

σi ≡

���� 1

T

T�

t=1

h2it (4.50b)

µt ≡
�
h1t
σ21

+
h2t
σ22

�
σ2 (4.50c)
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Finally, we have:

ΛML = max
α,σ1,σ2,c3,c4

T%

t=1

Gt (I0 + I1t + I2t + I3t + I4t + I6t) , (4.51)

with I0, I1t, I2t, I3t, I4t, and I6t given by the following Gaussian integrals:

I0 ≡ b0

� +∞

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
dst, (4.52a)

I1t ≡ b1

� +∞

−∞

1

σ
√
2π
st exp

&
− 1

2σ2
(st − µt)2

'
dst, (4.52b)

I2t ≡ b2

� +∞

−∞

1

σ
√
2π
s2t exp

&
− 1

2σ2
(st − µt)2

'
dst, (4.52c)

I3t ≡ b3

� +∞

−∞

1

σ
√
2π
s3t exp

&
− 1

2σ2
(st − µt)2

'
dst, (4.52d)

I4t ≡ b4

� +∞

−∞

1

σ
√
2π
s4t exp

&
− 1

2σ2
(st − µ)2

'
dst, (4.52e)

I6t ≡ b6

� +∞

−∞

1

σ
√
2π
s6t exp

&
− 1

2σ2
(st − µt)2

'
dst. (4.52f)

These integrals can be obtained from the first moments of the Gaussian distribution with

mean µt and variance σ
2, with the following results:

I0 = b0

� +∞

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
dst = b0, (4.53a)

I1t = b1

� +∞

−∞

1

σ
√
2π
st exp

&
− 1

2σ2
(st − µt)2

'
dst = b1µt, (4.53b)

I2t = b2

� +∞

−∞

1

σ
√
2π
s2t exp

&
− 1

2σ2
(st − µt)2

'
dst = b2

�
µ2t + σ

2


, (4.53c)

I3t = b3

� +∞

−∞

1

σ
√
2π
s3t exp

&
− 1

2σ2
(st − µt)2

'
dst = b3

�
µ3t + 3µtσ

2


, (4.53d)

I4t = b4

� +∞

−∞

1

σ
√
2π
s4t exp

&
− 1

2σ2
(st − µ)2

'
dst = b4

�
µ4t + 6µ2tσ

2 + 3σ4


,(4.53e)

I6t = b6

� +∞

−∞

1

σ
√
2π
s6t exp

&
− 1

2σ2
(st − µt)2

'
dst,

= b6
�
µ6t + 15µ4tσ

2 + 45µ2tσ
4 + 15σ6



. (4.53f)
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We note that when c3 = c4 = 0, then we have I0 = 1, I1 = I2 = I4 = I6 = 0, and we

recover the standard maximum likelihood statistic (see [62] ):

ΛGML = max
α,σ1,σ2

T%

t=1

σ

α

σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2�
. (4.54)

As recalled in the previous chapter, the likelihood ratio can be shown in the Gaussian

case to admit the following simple analytical expression (equation 3.13 in [62]): ΛGML =
#
1− α4

σ21σ
2
2

$−T
2
, with α =

6
1
T

T:
t=1

h1th2t. From a monotonic transformation, this detection

statistic is equivalent to the standard cross-correlation statistic: ΛCC =

�
1− (ΛGML)

− 2
T =

α2

σ1σ2
. In general, the presence of the additional terms related to higher-order cumulants

implies a correction with respect to the Gaussian case. This correction makes it impossible

to obtain the maximum likelihood estimate in closed-form, but straightforward numerical

procedures can be used to maximize the log-likelihood function (see next section for a

numerical application).

The maximum likelihood estimator is attractive since it is well-known to enjoy a

number of desirable properties, including notably consistency and asymptotic efficiency.

On the other hand, we now show that one can also use a moment-based method for an

analytical estimation of the higher-order cumulants, thus alleviating the need to perform

numerical log-likelihood maximization. The moment-based estimate for the variance of

the signal coincides with the maximum likelihood estimator, but this correspondence does

not extend to higher-order moments and the analytical moment-based estimators for c3

and c4 do not coincide in general with the maximum likelihood estimators. In numerical

examples below, we find that the estimated values are relatively close, but with a lower

variance for the maximum likelihood method, thus confirming for large sample sizes the

superiority (asymptotic efficiency) of the maximum likelihood estimator.
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To derive the moment-based estimators, we first write:

E (H1H2) = E [(N1+S) (N2+S)] (4.55)

= E [N1N2] + E [N1S] + E [N2S] + E
�
S2

 
(4.56)

= E [N1]E [N2] + E [N1]E [S] + E [S]E [N2] + E
�
S2

 
by independence(4.57)

= E
�
S2

 
= α2 since noise and signal distributions have zero mean.(4.58)

From this analysis, we obtain that the empirical counterpart for E (H1H2), namely

1
T

T:
t=1

h1th2t, is a natural estimator for the quantity α2, an estimator we may call (α2. It

turns out that this estimator coincides with the Gaussian maximum likelihood estimator

([62]). We also have:

E
�
H1H2

2



= E

�
(N1+S) (N2+S)2

 
(4.59)

= E
�
(N1+S)

�
N 2
2+S2 + 2N2S


 
(4.60)

= E
�
N1N 2

2

 
+ E

�
N1S2

 
+ 2E [N1N2S]

+E
�
SN 2

2

 
+ E

�
S3

 
+ 2E

�
S2N2

 
(4.61)

= E
�
S3

 
= µ3 since all other terms are zero. (4.62)

We thus obtain that the empirical counterpart for E (H1H2
2), namely

1
T

T:
t=1

h1th
2
2t is a

natural estimator for the quantity µ3, an estimator we may call (µ3. Of course, we would

also have that E (H2
1H2) = E [S3] = µ3, so that we propose the following estimator for

µ3:

(µ3 =
1

2

�
1

T

T�

t=1

h1th
2
2t +

1

T

T�

t=1

h21th2t

�
. (4.63)
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Finally, we have that:

E
�
H2
1H2

2



= E

�
(N1+S)2 (N2+S)2

 
(4.64)

= E
��
N 2
1+S2 + 2N1S


 �
N 2
2+S2 + 2N2S


 
(4.65)

= E
�
S4

 
+ E

�
N 2
1

 
E
�
S2

 
+ E

�
N 2
2

 
E
�
S2

 

+E
�
N 2
1

 
E
�
N 2
1

 
all other terms being zero (4.66)

= µ4 + α
2
�
σ21 + σ

2
2



+ σ21σ

2
2. (4.67)

If we assume that σ1 and σ2 are known, then we obtain the following natural estimator

for µ4:

(µ4 =
1

T

T�

t=1

h21th
2
2t −

�
σ21 + σ

2
2



-

1

T

T�

t=1

h1th2t

.
− σ21σ22. (4.68)

In general, the parameters σ1 and σ2 are not known. The relationship

E
�
H2
i

 
=E

�
(Ni+S)2

 
= E

�
N 2
i

 
+ E

�
S2

 
(4.69)

suggests that they can be estimated as follows:

(σ2i = σ2i − (α2, (4.70)

where we recall that:

σ2i =
1

T

T�

t=1

h2it. (4.71)

If we are instead interested in estimates for the first 4 cumulants, we have that (keeping

in mind that the mean of the signal and noise distributions is zero):

(α2 =
1

T

T�

t=1

h1th2t (4.72)

(c3 = (µ3 (4.73)

(c4 = (µ4 − 3(µ2 = (µ4 − 3(α4 (4.74)
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In the limit of vanishing noise, that is when σ1 = σ2 = 0, it is straightforward to note

that:

(α −→
T→∞

α (4.75)

(c3 −→
T→∞

c3 (4.76)

(c4 −→
T→∞

c4 (4.77)

4.1.3 Implications for SGWB Signal Detection

For a Gaussian signal, the cross-correlation detection statistic, which can be obtained as

a monotonic transformation of the likelihood ratio, is optimal in the sense of minimiz-

ing the false dismissal probability at a fixed value of the false alarm probability under

restrictive assumptions ([62]). In the general non-Gaussian case, the cross-correlation

detection statistic may not be optimal, and one would like to derive an optimal detec-

tion statistic when the higher order cumulants c3 and c4 are not zero. We address this

question in chapter 5 in a more general setting involving non-Gaussian signal but also

noise distributions. In what follows, we show that the application of the standard, a

priori sub-optimal, cross-correlation detection statistic allows for a better estimate of the

probability of a false dismissal for a given detection threshold value, or equivalently for a

given probability of a false alarm, when the deviation from the Gaussian approximation is

explicitly accounted for compared to a situation where the signal distribution is supposed

to be Gaussian. This improvement, for which we first provide an intuitive argument be-

fore turning to a more formal analysis, is small when the signal is strongly dominated by

the noise, but it is substantial when the signal and the noise are of similar magnitudes, a

situation that is unlikely to be encountered in searches for stochastic gravitational wave

backgrounds. Since the non-Gaussian detection methodology nests the Gaussian method-

ology as a specific case when the third and fourth cumulants of the signal distribution

are zero, it should be noted, however, that the use of this approach can be recommended

even when there is uncertainty regarding whether the signal distribution is Gaussian or
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Figure 4.1: 1%-Percentile of a Generic SGWB Signal Distribution. This Figure is not
meant to describe any real signal and is for illustration purposes only.

not.

An Intuitive Argument

First denote by Px the x−percentile of a generic SGWB signal distribution, namely the

threshold value that is such that there is only x% chances to find a value below than the

threshold for the signal: Pr (S ≤ Px) = x% (see figure 4.1).
When the signal distribution is known, and when the distribution is tabulated, then

one can easily access all required information regarding the percentiles. For example, if the

signal distribution is Gaussian with standard deviation α and mean value µ (here µ = 0),

the x−percentile denoted for the Gaussian distribution by PGx is given by PGx = µ+ zxα,

where zx denotes the x-percentile of the standardized normal density function (for ex-

ample z1% = 2.33). When the signal distribution is unknown, one can use an inversion

of the Edgeworth expansion to obtain an approximation for quantile evaluation. This

approximation, known as the Cornish-Fisher expansion [47], is used in various contexts

to approximate the quantiles of a random variable based only on its first few cumulants.

When the distribution of the signal is assumed to show a mild deviation from the Gaussian

distribution, then the 4th-order Cornish-Fisher-transformation is a suitable approxima-

tion of the true density. Accordingly, the modified normalized x-percentile (z̃x) is defined
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as:

z̃x = zx +
1

6
(z2x − 1)Sk +

1

24
(z3x − 3zx)Kr −

1

36
(2z3x − 5zx)Sk, (4.78)

where Sk = c3

c
3/2
2

= c3
α3
denotes the skewness of the distribution, and Kr = c4

c22
= µ4

α4
−3 the

excess kurtosis of the signal distribution. As a result, we obtain the modified Cornish-

Fisher estimation for the non-Gaussian percentile as PNGx = µ+ z̃xα. Using the Gaussian

approximation, which is recovered for Sk = Kr = 0, typically leads to a substantial

estimation error in extreme percentiles. We now consider a non-Gaussian distribution,

and assume that its x−percentile is exactly given by the Cornish-Fisher expansion PNGx =

µ+ z̃xα.2 Then we consider a standard approach where a Gaussian approximation is used,

with the constraint that the predicted Gaussian x−percentile should match the observed

percentile of the signal distribution. To achieve this, a modified value 5αx (which is a

function of the percentile x) for the standard deviation is used, so that the Gaussian

percentile coincides with the actual non-Gaussian percentile. In other words, 5αx is the

solution to µ+ zx5αx = µ+ z̃xα, from which we obtain:

5αx = α
z̃x
zx

= α+
1

6
(zx −

1

zx
)
c3
α2

+
1

24
(z2x − 3)

c4
α3

− 1

36
(2z2x − 5)

c3
α2
. (4.79)

For a non-Gaussian distribution with tails fatter than the Gaussian tails, we have z̃x > zx,

for sufficiently small x values, which implies 5αx > α. In a nutshell, the intuition is that one

should use an augmented variance when trying to generate with a Gaussian distribution

the same percentiles as with a non-Gaussian distribution with fatter tails. Intuitively this

analysis translates into an improved detection threshold minimizing the false dismissal

rate for a fixed false alarm rate:

ρTNG =
5α2
√
N

σ1σ2
, (4.80)

2This is equivalent to assuming that cumulants of order strictly higher than 4 are all zero for the
distribution under consideration.
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which compares to the Gaussian threshold :

ρTG =
α2

√
N

σ1σ2
(4.81)

where we have ρTNG < ρG, with a difference disappearing for c3 = c4 = 0.

A Formal Argument

We now turn to a more formal argument based on the analysis of the asymptotic dis-

tribution of the detection statistic in the Gaussian versus non-Gaussian case. We first

consider the detection statistic DS given by:

DS =

T�

t=1

H1tH2t, (4.82)

where Hit = Nit + St, and where Nit and St, for 1 ≤ t ≤ T, are T independent copies of

the random variables Ni and S, respectively. In chapter 5, we note that this detection

statistic is different from the optimal detection statistic for normally-distributed signal

and noise distributions, which displays a correction involving estimates for the variance

of the detector noise distributions (see equation 5.7 in the general case or equation 5.10

when detector sensitivities are known). The developments below can be regarded as a

preliminary analysis of problem, which contains explicit results regarding the distribution

of the cross-correlation product of the measurement outputs
T:
t=1

H1tH2t that will be used

in chapter 5.

We have:

DS =
T�

t=1

N1tN2t +
T�

t=1

N1tSt +
T�

t=1

N2tSt +
T�

t=1

S2t (4.83)

A signal is presumed to be detected when the detection statistic DS exceeds a given

detection threshold DT :

DS > DT (4.84)

We typically select the detection threshold DT such that pfa = x%, where pfa is the
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probability of a false alarm given by:

pfa = Pr (DS > DT |Hit = Nit) , (4.85)

and where x% is a given confidence level. Obviously, we have that pfa is independent of

the signal distribution, so we turn to the more interesting term, which is the probability

of a false dismissal pfd given by :

pfd = Pr (DS < DT |Hit = Nit + St) . (4.86)

By the strong law of large number, we have that (where a.s. stands for almost surely,

taken to mean that the result holds true with probability 1):

T�

t=1

N1tN2t
a.s.−→
T→∞

E (N1N2) = E (N1)E (N2) = 0 (4.87)

T�

t=1

N1tS a.s.−→
T→∞

E (N1S) = E (N1)E (S) = 0 (4.88)

T�

t=1

N2tS a.s.−→
T→∞

E (N2S) = E (N2)E (S) = 0 (4.89)

For finite observation times, the contribution of these three terms to the variance of

the detection statistic will not vanish, and the variance of the exact detection statistic
T:
t=1

N1tN2t+
T:
t=1

N1tSt+
T:
t=1

N2tSt+
T:
t=1

S2t will contain contributions from the 4 terms. In

what follows, we first assume that the noise is small and focus on the following approxi-

mation when the signal is present:

DS =
T�

t=1

H1tH2t ≃
T�

t=1

S2t . (4.90)

159



Chapter 4 — Detection of Non-Gaussian Gravitational Wave Stochastic Backgrounds

In this context, we have:

pfd = Pr (DS < DT |Hit = Nit + St) (4.91)

≃ Pr

-
T�

t=1

S2t < DT
.
. (4.92)

When the signal is Gaussian,
T:
t=1

S2t follows, by definition, a chi-squared distribution

with T degrees of freedom.3 On the other hand, when the signal is not Gaussian, it is not

obvious to see what the distribution of the approximate detection statistic
T:
t=1

S2t is for

a finite T , except for very particular choices of non-Gaussian distributions. In principle,

one could use an Edgeworth expansion in order to approximate the distribution of the

detection statistic for each given non-Gaussian signal distribution. Fortunately, a central

limit theorem exists for the sample variance, which allows us to obtain the asymptotic

distribution of the detection statistic as T grows to infinity for any underlying non-

Gaussian signal distribution.

Formally, let S1, S2, ..., ST be T i.i.d. copies of the SBGW signal, each of them with

mean 0, variance c2 ≡ α2, and third and fourth-order cumulants c3 and c4. Then, it can

be shown that:

Pr

-
√
T

-
1

T

T�

t=1

S2t − α2
.
< x

.
−→
T→∞

Pr (U < x) , (4.93)

where U is a Gaussian distribution with mean zero and variance σ2U = c4+2α4. The proof

for this result is straightforward and follows from applying the central limit theorem to

squared signal distributions S2.

In other words, we obtain that the detection statistic asymptotically converges to

a Gaussian distribution, with a variance given by a function of the second and fourth

cumulants. More precisely, we have
T:
t=1

S2t = T (VT ∼
T→∞

N (Tα2, T (c4 + 2α4)). Note that

3When T → ∞, we know that the chi-squared distribution with T degrees of freedom converges
towards a Gaussian distribution. For practical purposes, for T > 50, the distribution is sufficiently close
to a normal distribution for the difference to be ignored [32].
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the approximate detection statistic
T:
t=1

S2t is closely related to the sample variance of the

signal distribution, which is denoted by (VT = 1
T

T:
t=1

S2t . (VT admits the following asymp-

totic distribution (VT ∼
T→∞

N
�
α2, 1

T
(c4 + 2α4)



, which shows that it is an asymptotically

unbiased estimator for the signal variance α2. The advantage of using (VT , as opposed to
T:
t=1

S2t , as a detection statistic is that the expectation of the former random variable does

not depend on T .

When the signal is normally distributed, we have that c4 = 0, and therefore σ2U,G =

2α4, which is a standard result regarding the asymptotic distribution of the sample vari-

ance in the Gaussian case. We find that the variance of the asymptotic distribution of the

signal detection statistic for non-Gaussian signal distribution σ2U,NG = c4 + 2α4 is always

greater than the variance of the Gaussian detection σ2U,G = 2α4. In practice, the detection

threshold DT is chosen with sufficiently low value to correspond to high confidence levels

(that is, pfa and pfd probabilities of 5% or 10%). In this context, because of the fatter

tails of the distribution of the detection statistic in the non-Gaussian case, the detection

threshold corresponding to a given pfd will be lower in the non-Gaussian case (see Figure

4.2). One implication of these findings is that if an observer wrongly uses the assumption

that the signal is Gaussian (c4 = 0) while the signal is truly non-Gaussian (c4 > 0), then

for a given confidence level, the observer using a non-Gaussian methodology will be using

a lower detection threshold, which in turn will allow for the detection of fainter signals.

In chapter 5, we apply this analysis to the optimal detection statistic in a setting with

with known detector sensitivities.

In the realistic case when the noise is present and the signal is small compared to

the noise, we have to account for the (dominating) contribution of the noise to the

variance of the detection statistic. In this case, it can be shown that the detection

statistic (VT is asymptotically normally distributed, with mean α2 and variance given by
1
T
(σ21σ

2
2 + σ

2
1α

2 + σ22α
2 + 2α4 + c4). We therefore find that the variance of the detection

statistic when the non-Gaussianity of the signal is taken into account (c4 > 0) is always
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Figure 4.2: Histogram of the estimator for c2 over 105 realizations for the Laplace dis-
tribution and for a number of data point T = 104. We assume here that the variance of
the signal is 1 and the fourth cumulant is 3. The continuous line shows the non-Gaussian
statistic density (a Gaussian centered around 2 with variance σ2U,NG = c4 + 2α4 and
the dashed line the Gaussian statistic density (a Gaussian centered in 2 with variance
σ2U,G = 2c4).

strictly greater than when the signal is assumed to be Gaussian (c4 = 0). While this

correction leads in principle to a sensitivity gain as explained before, the magnitude of

the gain is expected to be small if the noise is several orders of magnitude larger than the

signal, that is when 1
T
(σ21σ

2
2 + σ

2
1α

2 + σ22α
2 + 2α4 + c4) ≃ σ21σ

2
2

T
. In chapter 5 we revisit

this question in a more general context involving non-Gaussian distributions not only at

the level of the SGWB signal but also at the detector noise level.

4.2 Numerical Illustrations

We now present a series of numerical illustrations showing how the methodology intro-

duced in this chapter can be applied to estimate not only the variance but also the fourth

cumulant of the signal distribution.
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PDF name Probability density Cumulants of order j

Laplace a
2
exp (−a |x|) c2j =

2(2j−1)!
a2j

Hypersecant 1
2a

sech
�
π
2a
x



c2j = (−1)j+1 (22j − 1) 22j−1a2j B2j
j

Logistic
exp(−x

a)
a(1+exp(−x

a))
2 c2j = (−1)j−1 (2aπ)

2j

2j
B2j

NIG δa exp(δa)

π
√
δ2+x2

K1

#
a
�
δ2 + x2

$
c2 =

δ
a
; c4 = 3δ

a3

Table 4.1: Test distributions used in this paper, their probability density and cumulants.
Note that the Bj are the so-called Bernoulli numbers (B0=1, B1=1/2, B2=1/6, B3=0,
B4=-1/30). The K1 function is the Bessel function of the first kind.

4.2.1 Edgeworth Expansions of Usual Distributions

We first consider a list of 5 standard distributions, including the Gaussian distribution

as well as 4 non-Gaussian distributions, namely the Laplace, Hypersecant, Logistic and

Normal Inverse Gaussian distributions. These distributions are characterized in para-

metric form by their densities, and they have been chosen because their cumulants can

conveniently be expressed as an explicit function of the parameters of the density (see

Table 4.1). It should be noted that all distributions we analyze are symmetric, which

implies that the parameter c3 = 0. Beside, we choose the parameter values so that all

distributions have a unit variance except for the Laplace distribution where we choose .

More specifically, we make the following parametric choices.

1. Laplace distribution, we take the parameter a =
√
2, so that we have c2 = 1,

c3 = 0, c4 = 3; in Table 4.2 and Figure 4.7, we also test a = 2, which gives c2 = 2,

c3 = 0, c4 = 12, so as to confirm that the methodology generates accurate estimates

for higher values of the cumulants.

2. Hypersecant distribution, we have that c2 = a2, c3 = 0 and c4 = 2a4; taking

a = 1, we have that c2 = 1, c3 = 0 and c4 = 2.

3. Logistic distribution, we have that c2 = a2π2

3
, c3 = 0 and c4 = 2a4π4

15
; taking

a =
√
3
π
, we have that c2 = 1, c3 = 0 and c4 = 18/15 = 1.2.
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Figure 4.3: Edgeworth and Gram-Charlier approximations for the Laplace distribution.

4. Normal Inverse Gaussian distribution, we can take a = δ = 1, so that we have

c2 = 1, c3 = 0, c4 = 3.

For each non-Gaussian distribution in the table, we plot (see Figures 4.3, 4.4, 4.5 and

4.6) on the same graph for the chosen parameter values the exact density function of the

signal fs (x) as well as the approximate density function, where the approximation is given

by either the Gram-Charlier or the Edgeworth expansion fEs (x). Here the Gram-Charlier

expansion exactly coincides with the Edgeworth expansion since we are only looking at

symmetric distributions, so we simply focus on the latter in the following discussion. In

addition to the quality of fit that can be visually assessed from the analysis of the graph,

we also compute a quantitative measure of the approximation error AE as the quadratic

distance between the exact and approximate density using the Edgeworth expansion:

AEE =

�� +∞

−∞

�
fEs (x)− fs (x)


2
dx

�1/2
. (4.94)

For comparison purposes, we also report the approximation error with the Gaussian

approximation, denoted by AEG.

The Edgeworth expansions appear to better fit the non-Gaussian density compared to

the Gaussian approximation for all distributions that we consider, as can be seen from a

simple visual inspection, and also more formally from the fact that approximation errors
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Figure 4.4: Edgeworth and Gram-Charlier approximations for the Hypersecant distribu-
tion.

Figure 4.5: Edgeworth and Gram-Charlier approximations for the Logistic distribution.

Figure 4.6: Edgeworth and Gram-Charlier approximations for the NIG distribution.
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AE are between 2 and 4 times lower with the non-parametric expansions compared to

what is obtained with the Gaussian approximation. The improvement stemming from

using the Edgeworth expansion as opposed to the Gaussian fit ranges from 76% for the

Laplace distribution ( AE
G

AEEd
= 0.1492

0.0848
≃ 1.76, as shown in Figure 4.6) to 260% for the

Logistic distribution ( AE
G

AEEd
= 0.0557

0.0155
≃ 3.6, as shown in Figure 4.3).

4.2.2 Monte Carlo Simulations and Predictions

In order to test our new likelihood statistic, we generate fictitious data sets h1(t) and

h2(t) as the output of two co-incident detectors, containing the GW signal s(t), with

an outcome randomly selected from the distributions presented above, and independent

Gaussian noises n1(t) and n2(t). We then use the simulated data to obtain analytically

the moment-based estimates for c2 and c4 and also to obtain numerically the maximum

likelihood estimates for these parameters. The results for c4 averaged over 104 trials for

a number of point T = 106 and for the 4 distributions are presented in Table 4.2 and

Figure 4.7. The number of points in a sample containing 1 year of data sampled at about

100 Hz will be rather of the order of 109 but this would have required prohibitive amount

of computational resources. In order to get a realistic estimate of the performance,

one should therefore divide by
√
103 the standard deviations quoted in the table. The

number of trials has an effect on the average estimated value, especially when the standard

deviation is large. In the limit, we expect that using an increasing number of trials would

generate an estimate that would converge to the injected value in all cases. For this

reason we only considered values of the ratio α2/σ2n larger than 0.03 (here we assume for

simplicity that the variance of the noise is the same for both detectors, and we denote it

by σ1 = σ2 = σn). With α2/σ2n = 0.01, the uncertainty obtained with 106 points is too

large and we would need to average over more than 104 trials to get a reasonably reliable

estimate for c4. The results we obtain are very similar for the Logistic, Hypersecant

and NIG distributions. The cumulant c2 estimated with our new statistic, which we do

not report here, is exactly the same as the one derived analytically or obtained with the
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Distribution α2σ−2n = 0.03 α2σ−2n = 0.05 α2σ−2n = 0.1
Laplace anal 12.1 (9.6) 12.0 (3.7) 12.0 (1.1)

ML 12.1 (6.1) 11.8 (2.4) 11.3 (0.7)
Hypersecant anal 2.0 (2.0) 2.0 (0.9) 2.0 (0.3)

ML 2.0 (1.4) 2.0 (0.6) 2.0 (0.2)
Logistic anal 1.2 (2.4) 1.2 (0.9) 1.2 (0.3)

ML 1.4 (1.3) 1.2 (0.6) 1.2 (0.2)
NIG anal 3.0 (2.4) 3.0 (0.9) 3.0 (0.3)

ML 3.0 (1.5) 3.0 (0.6) 2.9 (0.2)

Table 4.2: Average value over 104 trials of c4 estimated analytically and by likelihood
maximization, for all the distributions considered in this paper, with standard deviation
presented in parenthesis. The number of points in each trial is 106. To obtain the
estimation error for 109 points, which corresponds to a sample of 1 year of data, one
should divide the standard deviation by

�
(103).

standard cross-correlation statistic, and is also in very good agreement (better than 1%

for 1 year) with the injected value. While increasing the dimensionality of the problem by

adding more parameters to estimate in principle leads to increasing the dispersion of the

distribution of the estimators for the base case parameters, this result suggests that our

methodology allows us to estimate c4 accurately without any noticeable negative impact

on how well estimated is the c2 parameter, at least for the set of parameter values that

we consider. Note that the ratio α2/σ2n = 0.01 − 0.1 is in the range of predicted values

for cosmological and astrophysical stochastic backgrounds for both Advanced LIGO and

VIRGO detectors and Einstein Telescope [145]. For cosmic strings, the typical value

of the energy density parameter at 100 Hz is expected to be Ωgw ∈ [10−9, 10−5] which

corresponds to α2/σ2n ∈ [10−6, 1] for Advanced detectors and α2/σ2n ∈ [10−4, 100] for

Einstein Telescope; on the other hand, for compact binary mergers, Ωgw ∈ [10−10, 10−7]

which corresponds to α2/σ2n ∈ [10−7, 0.01] for Advanced detectors and α2/σ2n ∈ [10−5, 1]

for Einstein Telescope [145].

We find that the fourth cumulant parameter is estimated with reasonably good pre-

cision for the cases under investigation. We also find that the maximum likelihood es-

timator generates an estimation error lower than that of the moment-based estimator,

which is consistent with the general statement that the maximum likelihood estimator is
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Figure 4.7: Histogram of c4 injected (black), estimated analytically (grey) and estimated
numerically by maximizing the likelihood function (white), for the distribution of Laplace
(top left), Logistic (top right), hypersecant (bottom left) and NIG (bottom right). Each
plot is the result of 10,000 realizations, each having 106 points and with α2/σ2n = 0.1.
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asymptotically efficient.

4.3 Extending the Approach to the Detection of Sig-

nals in the Popcorn Regime

A gravitational wave stochastic background is produced by a collection of independent

gravitational wave events. In some cases, the ratio of the average time between events to

the average duration of an event is small and a large number of events are taking place

simultaneously. In other cases, the ratio is large and the signal received has a popcorn

signature. In what has been discussed so far in this chapter, we have analyzed the first

type of situations, and implicitly considered that GW events were too numerous to be

individually distinguished, and yet not numerous enough for central limit theorem to

give a strictly Gaussian distribution, with a deviation explicitly characterized in terms of

the Edgeworth expansion. We now turn to an analysis of the second type of situations,

following and generalizing an approach introduced by [62], who have focused on a model

where the deviation from the Gaussian distributional assumption was understood as ema-

nating from the presence of a resolved Gaussian signal being measured with a probability

0 < ξ ≤ 1 (the Gaussian case is recovered for ξ = 1). In [62], the observed distribution

was assumed to be of the following form:

fs (st) = ξφ (st) + (1− ξ) δ (st) = ξ
1√
2πα
e−

s2t
2α2 + (1− ξ) δ (st) , (4.95)

where the parameter 0 < ξ ≤ 1 and δ (.) is the density of the Dirac distribution. This

model captures a situation with a non-Gaussian signal composed of long stretches of

silence which separate short bursts whose amplitudes are normally distributed, and whose

durations are smaller than the detector resolution time. The parameter ξ is called in [62]

the Gaussianity parameter of the stochastic background; it is the probability that, at any

randomly chosen time, a burst is present in the detector. It can also be regarded as the
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duty cycle of the background. The parameter α is the root mean square amplitude of

the bursts. Since by assumption the burst events that are measured are supposed to be

in small numbers, the Gaussian assumption is hard to justify and should be relaxed. We

generalize this model by considering:

fs (st) = ξfNG (st) + (1− ξ) δ (st) , (4.96)

and we further assume that the unknown non-Gaussian density fNG can be approximated

by a 4th order Edgeworth expansion:

fs (st) = ξφ (st) g (st) + (1− ξ) δ (st) (4.97)

= ξ
1√
2πα
e−

s2t
2α2

&
1 +

c3
6α3
H3

#x
α

$
+
c4

24α4
H4

#x
α

$
+
c23

72α6
H6

#x
α

$'

+(1− ξ) δ (st) . (4.98)

Using this expression for the signal density, we obtain the following generalized form for

the likelihood ratio:

ΛML =
max

α,c3,c4,σ1,σ2,ξ

�
fs (s) fn (h− s) ds
max
σ1,σ2
fn

(4.99)

= max
α,c3,c4,σ1,σ2,ξ

T%

t=1

σ1σ2
σ1σ2

� +∞

−∞
fs (st) exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22
+ 1

�
dst(4.100)

= max
α,c3,c4,σ1,σ2,ξ

T%

t=1

σ1σ2
σ1σ2

� +∞

−∞
[ξfG (st) g (st) + (1− ξ) δ (st)]

× exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22
+ 1

�
dst. (4.101)

After calculations similar to what has been done before for the case with ξ = 1 , we
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obtain:

ΛML = max
α,c3,c4,σ1,σ2,ξ

T%

t=1

)
ξ
σ

α

σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2
�

× (I0 + I1t + I2t + I3t + I4t + I6t) + (1− ξ) σ1σ2
σ1σ2

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22
+ 1

';
.(4.102)

The values of 1 − ξ, α, c3, c4, σ1, σ2, that achieve the maximum value for the likeli-

hood function are, respectively, estimators for the probability of the presence of a (non-

Gaussian) signal, the 2nd, 3rd and 4th cumulant of the signal distributions, and the

variance of the noise in the two detectors. Note that if we evaluate this function at ξ = 1,

c3 = c4 = 0, rather than maximizing over ξ, c3, c4, we recover the Gaussian detection

statistic.

To get a sense for how strongly non-Gaussian the signal distribution can be, we

have reproduced the Monte-Carlo approach described in [143] to simulate the GW signal

generated by an extra-galactic population of binary black holes (BBHs). In Figure 4.8,

we report the histogram obtained for the signal distribution over a time period of T = 106

seconds for an average waiting time ∆t between two consecutive events taken to be equal

to 1,000 seconds. As a result, we obtain an average of 1,000 simulated sources over

the time interval T = 106. Assuming that there is no overlap between the sources,

which is a safe assumption for an average waiting time within the range [100; 2000]

discussed in [143], the fraction of the data that contains a signal is roughly 60/∆t, which

in this case is equal to 6 × 10−3 = .6%. Hence the simulated data contains a large

number of zeros, and the distribution in Figure 4.8 is the conditional distribution over

the dates when a signal is present. We obtain for this conditional distribution a mean

value of −1.2173× 10−26 and a variance of 1.0902× 10−45. When looking at higher-order

moments/cumulants to formally check for a non-Gaussian behavior, we find a skewness

of −0.0425, signalling a quasi-symmetric distribution, but a kurtosis of 16.1461, or an

excess kurtosis of 16.1461 − 3 = 13.1461, which confirms that the data shows a strong

departure from the Gaussian assumption. Overall, we obtain about 4.90×105 data points
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Figure 4.8: Conditional distribution of the simulated stochastic GW signal from a popu-
lation of extragalactic BBHs based on a Monte-Carlo approach with simulated data for a
sample of 106 seconds with an average waiting time observable between two consecutive
BBH coalescence events of 1,000 seconds.
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with a non-zero signal for a total of 2048 × 2 × 24 × 3600 = 2.54 × 10−29 observations,

which corresponds to a percentage of ξ = .6%. Obviously, the unconditional distribution

distribution that would include the long stretches of data with no signal would be even

more strongly non-Gaussian. The expectation and variance decompositions formulas

can be used to obtain the mean and variance of the compound distribution fs (st) =

ξfNG (st) + (1− ξ) δ (st) as follows, where X = 1 indicates that a signal is present and

X = 0 indicates that no signal is present:

E (S) = ξE (S|X=1) + (1− ξ)E (S|X=0) (4.103)

= .6%×
�
−1.2173× 10−26



= −7.3038× 10−29 (4.104)

Var (S) = E [Var (S|X)] + Var [E (S|X)] (4.105)

= .6%× 1.0902× 10−45 + .6%×
�
−1.2173× 10−29 − E (S)


2

+(1− .6%)× (0− E (S))2 (4.106)

= 6.5412× 10−48 (4.107)

Similar calculation could in principle be applied to infer the skewness and the kurtosis

of the compound unconditional distribution fs from the parameter of the conditional

distribution fNG. However, as argued in the discussion above, we would suggest applying

the Edgeworth expansion to approximate the non-Gaussian conditional distribution when

the signal if present fNG, as opposed to using it to approximate the full unconditional

distribution fs, which would not lend itself to an approximation given by the product of

the Gaussian density and a polynomial.
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5

Efficiency of the Cross-Correlation Sta-

tistic for GravitationalWave Stochas-

tic Backgrounds with Non-Gaussian

Noise and Heterogeneous Detector Sen-

sitivities

This chapter is a substantially modified version of the following paper [122]: "Efficiency of

the cross-correlation statistic for gravitational wave stochastic background signals with non-

Gaussian noise and heterogeneous detector sensitivities", L. Martellini and T. Regimbau, 2015,

Physical Review D, 92, 10, 104025. The results presented in this paper have been found to be

based on an incorrect expression for the standard detection statistic, which does not include

the correction to the cross-correlation term that is required when the detectors sensitivities are

assumed to be known (see for example equation 3.15 in [62] or equation 5.10 in this chapter).

I am extremely grateful to Joe Romano for pointing out the problem and providing helpful

feedback on the revised version of the material.
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Most of the papers on SGWB detection in non-Gaussian regimes (see in particular

[50], [62], [121], [157], or [168]) maintain the assumption of Gaussian noise distributions

so as to better focus on the impact of deviations from normality of the signal distribution.

That relatively little is known about the impact of the presence of such non-Gaussian

noise distributions on the efficiency of standard methods used for the detection of SGWB

signals is perhaps surprising given that there is ample evidence of strong deviations from

the Gaussian assumption for noise distributions in gravitational wave detectors [13, 14],

and also given that such deviations are expected to matter even more than deviations from

the Gaussian assumption impacting the signal distribution since the signal is expected

to be small compared to the noise in realistic detection situations. If the exact non-

Gaussian nature of the detector noise is understood, it is in principle possible to repeat the

construction of the optimal detection statistic using the non-Gaussian noise distribution

to obtain a robust detection, and several papers have proposed a number of methodologies

to deal with non-Gaussian noise for GW observations based on some specific non-Gaussian

distributions such as the exponential distribution [13] or the Student’s t-distribution for

example [152]. Given that the actual noise distribution is a priori unknown, it would be

desirable to use a nonparametric approach that would be robust to specification errors

in the exact shape and nature of the deviation from the Gaussian assumption.

The main focus of this chapter is precisely to analyze the efficiency (expressed in

terms of probability of a false dismissal for a given probability of a false alarm) of the

standard cross-correlation (CC) statistic in situations that involve unknown forms of de-

viations from the Gaussian assumption. To do so we first analyze the performance of

the standard cross-correlation statistic in the presence of non-Gaussian signal and noise

distributions, and we derive closed-form expressions for the mean and variance of this

statistic as a function of the first four cumulants of the signal and noise distributions.

We find that explicitly accounting for deviations from the Gaussian assumption when

applying the standard detection statistic in a specific situation with known detector sen-

sitivities allows for a more accurate estimation of probabilities of a false dismissal for
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a given probability of a false alarm with respect to a situation where the signal and

noise distributions are wrongly assumed to be Gaussian. We also show how to obtain

consistent estimates for the skewness and kurtosis parameters of the noise and signal

distributions using a suitable extension of the likelihood function, for which we obtain

an analytical expression. These results extend our results from chapter 4, where we have

focused on a situation involving a non-Gaussian signal distribution, but have maintained

the assumption of a Gaussian noise distribution. In addition to obtaining parameter

estimates through maximum likelihood techniques, we also introduce so-called moment-

based unbiased estimators given by analytical functions of the joint observations from the

two detectors. Turning to a numerical analysis, we find that properly accounting for the

presence of non-Gaussian distributions as opposed to wrongly assuming that higher-order

cumulants of the noise distributions are zero has material implications in the implemen-

tation of standard detection procedures in that it generates substantially higher values

for probabilities of false dismissal corresponding to given levels of probabilities of false

alarm. The correction is found to be particularly large when detector sensitivities exhibit

substantial differences, a situation that is expected to hold in early phases of develop-

ment of the Advanced LIGO-Virgo detectors before they reach their design sensitivity

or in joint detections from Advanced LIGO and the Einstein Telescope project [142]. In

addition to outlining their implications for the performance of the standard CC detection

statistic, we also discuss the implications of our results for the derivation of an optimal

detection statistic in a non-Gaussian context.

The rest of this chapter is organized as follows. In section 5.1, we analyze the perfor-

mance of the standard cross correlation statistic in the presence of non-Gaussian noise

and signal distributions, and provide numerical estimates for the correction implied by

the deviation from the Gaussian assumption. In section 5.2, we extend maximum likeli-

hood estimation techniques to a situation involving potentially non-Gaussian signal and

non-Gaussian noise distributions so as to obtain consistent estimators not only for the

variance, but also for the skewness and kurtosis of the signal and noise distributions, which
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are needed for correctly estimating pfa-pfd curves when using the CC detection statistic.

We also discuss the derivation of an optimal detection statistic in a general setting with

non-Gaussian signal and noise distributions and unknown detector sensitivities.

5.1 Performance of the Standard Cross-Correlation

Statistic in the Presence of Non-Gaussian Noise

(and Signal) Distributions

The standard cross-correlation detection statistic is the optimal detection statistic in the

Gaussian case, but it is not necessarily optimal in the presence of non-Gaussian signal

or noise distributions. Abstracting away for a moment from the problem of deriving

an optimal detection statistic in a general non-Gaussian setting (see next section for a

discussion of this problem), we analyze in this section how the presence of deviations from

the Gaussian assumption impacts the performance of the standard detection statistic.

5.1.1 Assumptions and Notation

As in previous chapters, we consider two gravitational wave detectors. The output of

each detector is a collection of dimensionless strain measurements. Suppose that N such

measurements are made with each detector at regular time intervals. Denote these mea-

surements by a T×2 matrix h with components hkt , where i = 1, 2 labels the detector, and

t = 1, 2, ..., T is the discrete date of measurement. We first decompose the measurement

output for detector i in terms of noise versus signal, which gives when written in terms

of random variables:

Hi= N i+S i, (5.1)

where Ni denotes the noise detected by the detector i and Si denotes the signal detected

by the detector i so that Hi is the total measurement for the detector i. Assuming again

that the detectors are coincident and coaligned, we obtain that the signal received by
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both detectors is identical:

S1 = S2 ≡ S. (5.2)

In terms of the realization of such random variables for either one of the two detectors,

we note:

hit = nit + st. (5.3)

Given that both signal and noise distributions can potentially be non-Gaussian, we denote

by cj, j = 1, 2, 3, 4, the first four cumulants of the signal distribution, and by ci,j, j =

1, 2, 3, 4, the first four cumulants of the noise distribution for detector i, with i = 1

or 2. For the Gaussian distribution with mean µ and variance σ2, we have c1 = µ,

c2 = σ
2, and ck = 0 for k > 2. This allows us to identify deviations from the Gaussian

assumption through the presence of non-zero 3rd- and 4th-order cumulants, c3 and c4,

which are sometimes normalized so as to transform into skewness and kurtosis parameters,

respectively defined as: skw = c3

c
3/2
2

and kurt = c4
c22
. In our application, it should finally

be noted that signal and noise distributions are centered and therefore we have c1 =

c1,1 = c2,1 = 0. We also use the notation c2 = α2, c1,2 = σ21, and c2,2 = σ22, where α,

σ1, and σ2 denote the standard deviations for the signal, detector 1 and detector 2 noise

distributions, respectively.

5.1.2 Evidence of non-Normality in LIGO Data

In an attempt to get a sense for how non-Gaussian the distribution of the detector noise

can be, we have analyzed a small stretch of data from the first observing run (O1) collected

by LIGO detector located in Livingston (Louisiana) between Oct. 25, 2015 05:28:03 UTC

(GPS time 1129786100) and Oct. 25, 2015 06:01:23 UTC (GPS time 1129788100). The

data is sampled at a frequency of 16 kHz, and re-sampled down by a factor of 1,024 so

as to get 32,461 data points, which are displayed in Figure 5.1.

Figure 5.1 shows the presence of relatively frequent spikes of relatively large ampli-

tude, suggesting a non-Gaussian behavior. We obtain for this sample a mean value of -
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Figure 5.1: Small strech of data from the first observing run (O1) collected by LIGO
detector located in Livingston (Louisiana) between Oct 25, 2015 05:28:03 UTC (GPS
time 1129786100) and Oct 25, 2015 06:01:23 UTC (GPS time 1129788100).

1.09133×10−18 and a standard deviation of 3.46205×10−19. When looking at higher-order

moments/cumulants to formally check for a non-Gaussian behavior, we find a skewness

of −0.00398, suggesting the presence of a quasi-symmetric distribution, but a kurtosis

of 5.23, or an excess kurtosis of 5.23 − 3 = 2.23, which confirms that the data shows a

strong departure from the Gaussian assumption. Overall, this empirical check suggests

that the noise distribution cannot be assumed to be Gaussian, which provides further

motivation for analyzing the impact of a given deviation from the Gaussian assumption

on the performance of the standard detection statistic.

5.1.3 Distribution of the Cross-Correlation Detection Statistic

To determine whether or not the data h = (h1t, h2t)t≥0 contains some desired signal, one

usually compares the value of some detection statistic DS (h) to a given threshold value

DT . If DS (h) is greater than the threshold value DT , one concludes that a signal is

present and otherwise one concludes that no signal is present. A detection statistic DS

is said to be optimal if it yields the smallest probability of mistakenly concluding a signal
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is absent (probability of a false dismissal, or pfd) after choosing a threshold that fixes the

probability for mistakenly concluding a signal is present (probability of a false alarm, or

pfa).

We first recall that the standard cross correlation detection statistic DScc is given by

(see for example [62]):

DScc =
α2

σ1σ2
(5.4)

Using:

α2 =
1

T

T�

t=1

H1tH2t (5.5)

σ2i =
1

T

T�

t=1

H2
it. (5.6)

where Hit = Nit+St, for i = 1, 2, and where Nit and St, for 1 ≤ t ≤ T, are T independent

copies of the random variables Ni and S, respectively, the cross correlation detection

statistic DScc can also be rewritten as:

DScc =

T:
t=1

H1tH2t

6
T:
t=1

H2
1t

6
T:
t=1

H2
2t

, (5.7)

This statistic can be shown to be obtained from a monotonic transformation of the

Gaussian likelihood ratio ([62]), and as such is optimal (in the sense that it yields the

lowest pfd for a given pfa) by the Neyman-Pearson theorem for Gaussian signal and noise

distributions. Let us now specialize the analysis to a situation where detector sensitivities

σ1 and σ2 are assumed to be known or at least sufficiently well-estimated, that is with

with a precision that exceeds the size of the signal. In this case with known detector

sensitivities (or kds in brief), the optimal detection statistic is not :

DScc =
α2

σ1σ2
=

T:
t=1

H1tH2t

σ1σ2
, (5.8)
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but it is instead the following statistic, denoted by DSkds, where kds stands for known

detector sensitivities (see equation 3.15 in [62]):1

DSkds = α2 +
1

2

&
σ22
σ21

�
σ21 − σ21



+
σ21
σ22

�
σ22 − σ22


'
(5.9)

= α2 +
1

2

&
σ22
σ21
σ21 − σ22 +

σ21
σ22
σ22 − σ21

'
. (5.10)

Using again equations 5.5 and 5.6, we obtain:

DSkds =
1

T

T�

t=1

H1tH2t +
1

2
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σ22
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-
1

T
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or:

DSkds = −1
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. (5.13)

1Note that we could normalize this detection statistic by multiplying by .5 and dividing by σ1σ2, in
which case the expected value of the statistic can be shown to be given by the standard SNR = α

2

σ1σ2
in

case σ1 = σ2 (see equation 5.18 below).
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5.1.4 Distribution of the Cross-Correlation Detection Statistic

A signal is presumed to be detected when the detection statistic DSkds exceeds a given

detection threshold DT :

DSkds > DT. (5.14)

We typically select the detection threshold DT such that pfa = x%, where x% is a given

confidence level (say 5% or 10%), and where the probability of a false alarm is given by

the probability to exceed the threshold in a situation where there is no signal:

pfa = Pr (DSkds > DT |Hit = Nit) . (5.15)

Obviously, we have that pfa is independent of the signal distribution. What depends on

the signal distribution is the probability of a false dismissal pfd given by the probability

that the detection statistic remains below the threshold even if there is a signal:

pfd = Pr (DSkds < DT |Hit = Nit + St) . (5.16)

By the central limit theorem applied to S2t and N 2
it it can be shown that the detection

statistic DScc is asymptotically normally distributed whether or not the signal and noise

distributions are Gaussian (see chapter 4 for more details in the case of a non-Gaussian

signal). In this situation, the distribution of the CC detection statistic is fully character-

ized by its mean and variance, which can be explicitly obtained as explained below. Let

us first consider the first moment of the detection statistic:

E [DSkds] = µkds = −1

2

�
σ21 + σ

2
2



+ α2

�
1 +

1

2

σ22
σ21

+
1

2

σ21
σ22
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= α2
�
1 +

1

2

σ22
σ21

+
1

2

σ21
σ22

�
. (5.18)

We note that when detector sensitivities are identical (σ
2
2

σ21
= 1) the expression simplifies
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to yield µkds = 2α2. We also note that the expected value of the detection statistic is

identical whether or not the non-Gaussian nature of the signal and noise distributions

is accounted for since it only depends on the second moments of these distributions.

Turning to the variance of the detection statistic, we obtain:

Var [DSkds] = σ2kds =
1
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When detector sensitivities are identical (σ
2
2

σ21
= 1) the expression simplifies as follows:

σ2kds =
4

T

�
c4 + α

2
�
σ21 + σ

2
2



+ 2α4



+

1

T
σ21σ

2
2 +

1

4T

�
c1,4 + c2,4 + 2σ41 + 2σ42



. (5.21)

5.1.5 Implications for the SGWB Signal Detection with the

Standard CC Statistic

We argue that explicitly accounting for the non-Gaussian nature of the signal and noise

distributions when applying the standard, a priori sub-optimal in the non-Gaussian case,

cross-correlation detection statistic allows for more accurate estimates of the probability

of a false dismissal for a given detection threshold value, or equivalently for a given

probability of a false alarm. The difference between these estimates based on properly

accounting for deviations from the Gaussian assumptions as opposed to wrongly assuming

Gaussian distributions is expected to be small if the signal is not Gaussian while the noise

distributions are Gaussian and if the signal is strongly dominated by the noise, but it may
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be substantial when the noise distributions are also non-Gaussian, a situation that is likely

to be encountered in searches for stochastic gravitational wave backgrounds. Since the

non-Gaussian detection methodology nests the Gaussian methodology as a specific case

when the third and fourth cumulants of the signal distribution are zero, in principle this

approach can be used even when there is uncertainty regarding whether the distributions

are Gaussian or not. In practice, using a less parsimonious model implies a loss of

robustness in estimation procedures so the extended approach should be recommended

only in cases when deviations from the Gaussian assumption are expected.

To see this, let us first observe that an application of the central limit theorem implies

that the detection statistic asymptotically converges to a Gaussian distribution, with a

mean µkds and a variance σ
2
kds. When the signal and noise are normally distributed, we

have that c4 = 0, c1,4 = 0, c2,4 = 0. We find that the variance of the asymptotic distrib-

ution of the signal detection statistic for non-Gaussian signal and/or noise distributions

(c4 > 0, c1,4 > 0, c2,4 > 0) is different (greater) when the deviations from the Gaussian

assumption are accounted for compared to a situation where they are not accounted for,

implying that pfd probabilities corresponding to given pfa values will be different (higher)

when deviations from the Gaussian assumption are correctly accounted for with respect

to the standard procedure that does not take into account higher-order cumulants. To

compare the performance of the standard detection statistic when deviations are and are

not taken into account, we use the following procedure.

• Step 1: We select a set of parameter values for the signal and noise distributions,

and we obtain corresponding values for the mean and variance of the detection

statistic in the presence of the signal, denoted respectively by µkds,NG and σ
2
kds,NG

to emphasize the fact that we explicitly account for the presence of non-Gaussian
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(NG) distributions:

µkds,NG = α2
�
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as well as the corresponding values for the mean and variance of the detection

statistic in the absence of the signal (using α = c4 = 0), denoted respectively by

µnskds,NG and σ
2,ns
kds,NG (ns stands for no signal):

µnskds,NG = 0 (5.24)
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1
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. (5.25)

• Step 2: We repeat the analysis for an observer who wrongly assumes that the

distributions are Gaussian (c4 = c1,4 = c2,4 = 0) to obtain corresponding values

for the mean and variance of the detection statistic in the presence of the signal,

denoted respectively by µkds,G and σ
2
kds,G:

µkds,G = α2
�
1 +

1

2

σ22
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+
1

2
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�
= µkds,NG (5.26)
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as well as the corresponding values for the mean and variance of the detection

statistic in the absence of the signal (using α = 0), denoted respectively by µnskds,G
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and σ2,nskds,G:

µnskds,G = 0 (5.28)

σ2,nskds,G =
1

T
σ21σ

2
2 +

1

2T

�
σ41 + σ

4
2



(5.29)

• Step 3: For a given pfa value, we obtain the corresponding thresholds (which are

functions of the selected pfa value) for the standard detection statistic when the

deviations from the Gaussian assumption are properly taken into account versus not

taken into account, denoted respectively by DTNG and DTG, using the following

equations:

pfa = Pr (DSkds > DTNG (pfa)|Hit = Nit) , (5.30)

= Pr (DSkds > DTG (pfa)|Hit = Nit) , (5.31)

as well as the following Gaussian distributions for the detection statistic in case the

signal is absent: DSkds ∼
T→∞

N
�
µnskds,NG, σ

2,ns
kds,NG



(equations 5.24 and 5.25) when

the deviations from the Gaussian assumption are accounted for, and DSkds ∼
T→∞

N
�
µnskds,G, σ

2,ns
kds,G



(equations 5.28 and 5.29) when the noise distributions are im-

properly assumed to be Gaussian (c1,4 = c2,4 = 0). In the base case we take

T = 105.

• Step 4: For all possible pfa values, we compute the probability of a false dismissal

corresponding to the standard cross-correlation statistic using:

pfdNG = Pr (DSkds < DTNG (pfa)|Hit = Nit + St) (5.32)

pfdG = Pr (DSkds < DTG (pfa)|Hit = Nit + St) (5.33)

and the following Gaussian distributions for the detection statistic in case the sig-

nal is present DSkds ∼
T→∞

N
�
µkds,NG, σ

2
kds,NG



(equations 5.22 and 5.23) when
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the deviations from the Gaussian assumption are accounted for and DSkds ∼
T→∞

N
�
µkds,G, σ

2
kds,G



(equations 5.26 and 5.27) when the noise and signal distributions

are improperly assumed to be Gaussian.

• Step 5: We then plot on the same graphs (see Figure 5.2) pfd versus pfa curves for

the cross-correlation statistic when the non-Gaussian nature of the noise distribu-

tions is properly accounted for (pfdNG) and when it is not accounted for (pfdG).

In Figure 5.2, we display probabilities of a false dismissal (pfd) as a function of prob-

abilities of a false alarm (pfa) when deviations from normality are properly taken into

account for (blue, red and green dotted lines corresponding to a variance of the noise

distributions assumed to be identical for both detectors (c1,4 = c2,4) and taking on the

values 2, 4 and 6, respectively, as well as when they are not taken into account (blue

solid line).2 Note that the signal distribution is assumed to be Gaussian (c4 = 0) in this

analysis. In unreported results, we have analyzed the relative efficiency of the standard

statistic in situations involving a non-Gaussian signal, and have found only very small

differences with respect to the Gaussian signal case. Indeed, the signal is assumed to be

small compared to the noise in realistic situations, and therefore the impact of deviations

from the Gaussian assumption at the signal level will be dwarfed by the impact of de-

viations from the Gaussian assumption at the noise level. We also assume so far that

detector sensitivities are identical so that ratio r12 ≡
σ21
σ22

= 1. Note finally that the 3rd

moment of the detector and noise distributions have no impact on the performance of

the standard detection and we take them equal to 0 in our analysis.

These results suggest that properly taking into account the non-Gaussian nature of

2This figure has been obtained using analytical expressions for the mean and the variance of the
detection statistics when the variance of the noise is assumed to be known for both detectors. Alter-
natively, the figure could be obtained with numerical simulations maintaining the assumption that the
detector noise variances are known a priori. In principle, the figure could be slightly different since the
simulated draws would on a finite sample have a variance that could slightly differ from the assumed
known true population for the variance. The discrepancy is likely to be small, however. Indeed, it the
variance of the estimator for the variance is given by Var

�
σ2
i



= 2(T−1)

T2
σ2
i
. If we normalize the detector

noise variance at the value 1, we see that the precision of the estimator is of the order of 2
T
. Therefore

the numerical simulation will be in extremely close agreement with the analytically-derived figure if the
number of observations T is taken at a realistically large value.
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detector noise distributions leads to a more accurate estimation of the probabilities of a

false dismissal as a function of the probability of a false alarm. More precisely we find

that neglecting to account for the non-Gaussian nature of the noise distribution leads

to optimistic estimates for the probabilities of a false dismissal. The required correction

is extremely substantial when the deviation from normality as measured by the 4th-

order cumulant of the detector noise distribution reaches a level of 2 or beyond. When

c1,4 = c2,4 = 2, 4 and 6, the probabilities of a false dismissal for a pfa = 5% are for

example ≃ 25.5%, 36.21% and 44.30%, respectively, when the non-Gaussian nature of

the noise distribution is accounted for, while this probability takes on a much lower

value at 8.95% when it is not accounted for. For a pfa = 10%, probabilities of a false

dismissal when the non-Gaussian nature of the noise distribution is accounted for are

≃ 15.40%, 23.76% and 30.29% for c1,4 = c2,4 = 2, 4 and 6, respectively, while this

probability is merely 3.95% for the chosen parameter values when it is not accounted

for. Focusing on c1,4 = c2,4 = 2, we find that for a pfa = 5% (respectively 10%) the

corresponding pfd is underestimated by a factor of 25.5%/8.95% ≃ 2.85 (respectively a

factor of 15.4%/3.95% ≃ 3.90) when the non-normality of the detector noise distribution

is not properly accounted for.

While these results have been obtained in a simplified setting with known detector

noise variances, it is expected that similar resulte will hold in the general case with

unknown detector sensitivities. Obviously, the standard statistic is not expected to be

optimal in the presence of non-Gaussian noise distribution, and lower pfd values would

be obtained with an improved detection statistic that does explicitly accounts for the

presence of these deviations from normality. We provide a discussion of this question in

the next Section.

In addition to testing the impact of the 4th cumulant of the detector noise distributions

on the performance of the standard detection statistic, we also let the ratio of the detector

noise variance vary to see how the presence of detector with heterogeneous sensitivities

might impact the performance of the standard statistic in the non-Gaussian setting. We
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Figure 5.2: Impact of the 4th-order cumulant of detector noise distributions on the per-
formance of the standard cross-correlation statistic. We take T = 105 and we display the
probability of a false dismissal (pfd) as a function of the probability of a false alarm (pfa).
We assume here that the signal is Gaussian (c4 = 0) and that the 4th-order cumulant of
the noise on the two detectors are identical (c1,4 = c2,4). The three blue, red and green
dotted lines correspond to estimated pfd when deviations from normality are properly
taken into account for c1,4 = c2,4 taking on the values 2, 4 and 6, respectively. The blue
solid line corresponds to the pfd estimated by an observer who neglects to account for
the presence of non-Gaussian noise distributions and assumes a Gaussian distribution

instead. In all cases the ratio r12 ≡
σ21
σ22

= 1 and the parameter α is chosen so that the

signal to noise ratio SNR =
√
T
α2

σ2σ2
= 2.
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expect that differences in detector sensitivities will have an impact on the performance of

the standard detection statistic in non-Gaussian settings since the difference in variance of

the standard detection statistic when accounting and not accounting for the non-Gaussian

nature of the signal and noise distributions is increasing in the ratio σ21
σ22
as can be seen

from the following expression:

σ2kds,NG − σ2kds,G =
1

T

�
1 +

1

2

σ22
σ21

+
1

2

σ21
σ22

�2
c4 +

1

4T

σ42
σ41
c1,4 +

1

4T

σ41
σ42
c2,4. (5.34)

On the other hand, we have µkds,NG − µkds,G = 0 since the expected value of the de-

tection statistic does not depend on the higher-order cumulants of the noise distribution.

We note of course that σ2kds,NG− σ2kds,G = 0 in case the signal and noise distributions are

actually Gaussian (c4 = 0, c1,4 = 0, c2,4 = 0), as it should. When this ratio is equal to one

(case of homogenous detectors), the expression for this difference simplifies into:

σ2kds,NG − σ2kds,G =
4c4
T

+
1

4T
(c1,4 + c2,4) . (5.35)

As a result, we expect, and confirm below, that the impact of properly accounting for

given deviations from normality is even more important when detectors have largely

different sensitivities.

In Figure 5.3, we plot the probability of a false dismissal (pfd) as a function of the

probability of a false alarm (pfa) for different values of the ratio r12 =
σ21
σ22
equal to 1,

2, 4, 10, 50 and 100 while maintaining the product σ1σ2 constant equal to 1(with no

loss of generality, detectors 1 and 2 are chosen so that r12 > 1). We assume here that

the signal is Gaussian (c4 = 0) and that the 4th-order cumulant of the noise on the two

detectors are identical and equal to 2 (c1,4 = c2,4 = 2). The parameter α is chosen so that

the signal to noise ratio SNR =
√
T
α2

σ1σ2
= 2. We find that the probability of a false

dismissal is increasing in the ratio r12. For example, focusing again on pfa = 5%, we find

that pfdNG ≃ 25.5% when r12 = 1, 30.75% when r12 = 2, 41.09% when r12 = 4, 51.14%

when r12 = 10, 57.47% when r12 = 50, and 58.29% when r12 = 100. When pfa = 10%,
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Figure 5.3: Impact of differences in detector sensitivities on the performance of the stan-
dard cross-correlation statistic in the presence of non-Gaussian noise distributions. We
take T = 105 and we plot the probability of a false dismissal (pfd) as a function of the
probability of a false alarm (pfa) for different values of the ratio r12 =

σ21
σ22
equal to 1, 2, 4,

10, 50 and 100 while maintaining the product σ1σ2 constant equal to 1. We assume here
that the signal is Gaussian (c4 = 0) and that the 4th-order cumulant of the noise on the
two detectors are identical and equal to 2 (c1,4 = c2,4 = 2). The parameter α is chosen so

that the signal to noise ratio SNR =
√
T
α2

σ1σ2
= 2.

we have pfdNG ≃ 15.4% when r12 = 1, 19.38% when r12 = 2, 27.86% when r12 = 4,

36.93% when r12 = 10, 43.07% when r12 = 50, and 43.89% when r12 = 100. In results

that are not reported in Figure 5.3, we have also tested r12 = 25, 75, 200 and 500 and

have obtained pfdNG ≃ 55.85%, 58.02%, 58.70% and 58.95% respectively for pfa = 5%,

and pfdNG ≃ 41.46%, 43.62%, 44.31% and 44.56% respectively for pfa = 10%.

In a situation with heterogeneous detector sensitivities (r12 =
σ21
σ22
> 1) we therefore

confirm that the impact of the non-Gaussian nature of the noise distributions is even more

substantial than in a situation with detectors with the same sensitivities (r12 =
σ21
σ22

= 1).

As the ratio r12 grows grows unboundedly large, the difference σ2kds,NG − σ2kds,G goes to
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Pair σ21 σ22 r12
AdV — aLIGO 3.6× 10−44 1.7× 10−42 48
early— middle (6 months) 3.8× 10−41 1.0× 10−43 371
middle — late (9 months) 1.5× 10−41 3.6× 10−44 402
late — design (12 months) 3.2× 10−42 3.6× 10−44 88
LIGO Red — ET-D 6.0× 10−47 1.9× 10−45 31

Table 5.1: Noise variance levels σ1 and σ2, and ratio r12 =
σ21
σ22
, calculated as σ2n =

� fmax
fmin

dfSn(f), where fmin = 10 Hz and fmax = 250 Hz is the typical frequency band used
for the cross-correlation analysis, for Advanced LIGO with Advanced Virgo (aLIGO and
AdV) at design sensitivities and during the early phases of development of the detectors
(early, middle and late), and for Einstein Telescope (ET-D sensitivity) with LIGO Red
[24], a possible Advanced LIGO sensitivity upgrade.

infinity (see equation 5.34), and the impact of the deviation from the Gaussian assumption

expressed in terms of increase in pfd for a given pfa eventually reaches a fixed limit as

can be seen in Figure 5.3.

This result is important because large differences in detector sensitivities are expected

in practice. Realistic values for the cross-correlation between Advanced LIGO and Ad-

vanced Virgo at their nominal sensitivity can be estimated at r12 = 48, and at r12 = 30

between Einstein Telescope and LIGO Red, a possible Advanced LIGO sensitivity up-

grade ([24]). We may in fact have a value r12 = 400 corresponding to the maximum ex-

pected cross-correlation between Advanced LIGO and Advanced Virgo during the early

phases of the development of the detectors [2]. The projected nominal and early sensitiv-

ities, expressed in term of the square root of the power spectral density Sn, are plotted

on Figure 5.4 for Advanced LIGO and Advanced Virgo [119], [166], along with the LIGO

Red noise curve [24] and the proposed Einstein Telescope sensitivity ET-D [95].

The corresponding noise variances, calculated as σ2n =
� fmax
fmin

dfSn(f), where fmin = 10

Hz and fmax = 250 Hz define the typical frequency band used for the cross-correlation

analysis [126], are reported in Table 5.1.5.

The green solid line in Figure 5.4 corresponding to r12 = 100 suggests that for the

tested parameter values the pfd would be severely underestimated when the non-normality
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Figure 5.4: Expected sensitivity of Advanced LIGO and Advanced Virgo (blue and black
continuous lines), LIGORed (dashed red line) and ET-D (green continuous line). The
evolution of the sensitivity during the Advanced LIGO and Virgo early, middle and late
phases are also shown in dashed blue and black lines.
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of the detector noise distribution is not properly taken into account when differences in

detector sensitivities reach exceedingly high levels. In realistic situations with weaker de-

viations from the Gaussian assumption, which would be characterized by 4th cumulant

values lower than 2, our analysis suggests that ignoring the possible non-Gaussian nature

of the detector noise distributions may still lead to substantially under-estimating prob-

abilities of false dismissals in the presence of detectors with sensitivities of realistically

different magnitudes.

5.2 Estimation and DetectionMethods for Non-Gaussian

Signal and Non-Gaussian Noise Distributions

The analysis in the previous section suggests that standard detection methodologies

should be suitably corrected to account for the presence of non-Gaussian signal and

noise distributions, especially when the kurtosis of the detector noise distributions take

on sufficiently large values and when detector sensitivities exhibit substantial differences.

It should be noted, however, that such corrections require the use of robust estimates

not only for the variance, but also the skewness and kurtosis, of the signal and noise

distributions. In what follows, we show how to perform maximum likelihood estimation

to situations involving possibly non-Gaussian signal and noise distributions. As such,

these results extend the results from the chapter 4, where we have focused on a situa-

tion involving a non-Gaussian signal distribution while maintaining the assumption of a

Gaussian noise distribution.

We denote again by fn ≡ fn (n1t, n2t)t=1,...,T the joint probability distribution for the

noise in the two detectors. The standard Bayesian approach for signal detection consists

in finding the value for the unknown parameters so as to minimize the false dismissal

probability at a fixed value of the false alarm probability. This criterion, known as the

Neyman-Pearson criterion, is uniquely defined in terms of the so-called likelihood ratio
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Λ given by:

Λ =
ph|X=1
ph|X=0

, (5.36)

where ph|X=1 (respectively, ph|X=0) is the conditional density for the measurement output

if a signal is present (respectively, absent). A natural approximation of the likelihood ratio

is the maximum likelihood detection statistic defined by [62]:

ΛML =
max
α,σ1,σ2

�
fs|X=1 (s) fn|X=1 (h− s) ds
max
σ1,σ2

fn|X=0 (h)
=
N

D
, (5.37)

and the maximum likelihood estimators for the unknown signal and noise standard de-

viation parameters α, σ1 and σ2 are given as the corresponding likelihood maximizing

quantities.

5.2.1 Full Gaussian Case

If signal and noise distributions are assumed to be Gaussian, we have:

fn ≡ fn (n1t, n2t)t=1,...,T =
T%

t=1

1

2πσ1σ2
e
− n21t
2σ21

− n22t
2σ22 (5.38)

fs ≡ fs (st)t=1,...,T =
T%

t=1

1√
2πα
e−

(st−β)
2

2α2 , (5.39)

from which we obtain:

ΛML = (2πσ1σ2)
T exp (T )

× max
α,σ1,σ2

T%

t=1

+∞�

−∞

fs (st)
1

2πσ1σ2
exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22

�
dst (5.40)

= max
α,σ1,σ2

T%

t=1

σ1σ2
σ1σ2

+∞�

−∞

fs (st) exp

�
−(h1t − st)2

2σ21
− (h2t − st)2

2σ22
+ 1

�
dst. (5.41)

195



Chapter 5 — Efficiency of the Cross-Correlation Statistic

Using:

fs ≡ fs (st)t=1,...,T =
T%

t=1

1√
2πα
e−

s2t
2α2 , (5.42)

we thus have:

ΛML = max
α,σ1,σ2
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or (see chapter 3):

ΛML = max
α,σ1,σ2≥0
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5.2.2 Gaussian Signal and Non-Gaussian Noise

In chapter 4, the Gaussian assumption was maintained for the detector noise distribution,

but relaxed for the signal distribution. In what follows, we consider the opposite situation,

namely a normally distributed signal, and a potentially non-Gaussian noise distribution.

In other words, we assume:

fs (st) =
1√
2πα
e−

s2t
2α2 (5.45)

fni (nit) �= 1√
2πσi

e
− n2it
2σ2
i for i = 1, 2. (5.46)

We propose again to use a semi-parametric approach which allows one to approximate

the unknown density as a transformation of a reference function (typically the Gaussian

density), involving higher-order moments/cumulants of the unknown distribution. In

what follows, we show that a non-parametric expansion of the unknown signal density

function allows us to obtain an analytical derivation of the nearly optimal maximum

likelihood detection statistic for non-Gaussian detector noise. More precisely, we want

to approximate fni, the density function of the unknown distribution of the noise dis-
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tribution Ni, as a function of the Gaussian density function φni (x) and a multiplicative

deviation from the Gaussian density function gni (x). To achieve this end, we use again

the Edgeworth expansion:

fni (x) ≃ φni (x)
&
1 +

ci,3
6σ3i
H3

�
x

σi

�
+
ci,4
24σ4i

H4

�
x

σi

�
+
c2i,3
72σ6i

H6

�
x

σi

�'
, (5.47)

where the 6th Hermite polynomial is defined as H6 (x) = x6 − 15x4 + 45x2 − 15. Here

the Edgeworth expansion is applied directly to the noise distribution to approximate

its density through a Gaussian density and a correction term. This is different from

the application of the Edgeworth expansion to the stochastic background signal from

astrophysical origin, which can be regarded as the sum of overlapping signals and where

the Edgeworth expansion provides a convergence rate with respect to the number of such

overlapping signals. We finally have fni (x) ≃ φni (x) gni (x) with:

φni (x) ≡ 1√
2πσi

exp

&
− x

2

2σ2i

'
, (5.48)

gni (x) ≡
�
1 +

ci,4
8σ4i

− 5c2i,3
24σ6i

�

� �� �
bi,0

− ci,3
2σ4i� �� �
bi,1

x+

�
15c2i,3
24σ8i

− ci,4
4σ6i

�

� �� �
bi,2

x2 +
ci,3
6σ6i����
bi,3

x3

+

�
ci,4
24σ8i

− 5c2i,3
24σ10i

�

� �� �
bi,4

x4 +
c2i,3
72σ6i� �� �
bi,6

x6. (5.49)

In this context, the likelihood detection statistic becomes:

ΛML =

max
α,σ1,σ2,c1,3,c1,4,c2,3,c2,4

�
fs (s) fn (h− s) ds

max
σ1,σ2,c1,3,c1,4,c2,3,c2,4

fn (h)
=
N

D
(5.50)
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The numerator N of this expression is given by:

N = max
α,σ1,σ2,c1,3,c1,4,c2,3,c2,4

T%

t=1

+∞�

−∞

1√
2πα2πσ1σ2

exp

�
− s

2
t

2α2
− (h1t − st)2

2σ21
− (h2t − st)2

2σ22

�

×gn1 (st) gn2 (st) dst (5.51)

= max
α,σ1,σ2,c1,3,c1,4,c2,3,c2,4

1

(2πσ1σ2)
T

T%

t=1

exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2�

×
+∞�

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
gn1 (st) gn2 (st) dst. (5.52)

with:

σ =

�
1

α2
+

1

σ21
+

1

σ22

�− 1
2

(5.53)

µt =

�
h1t
σ21

+
h2t
σ22

�
σ2 (5.54)

Focusing for simplicity on symmetric noise distribution functions (therefore such that

ci,3 = 0), we have:

gn1 (x) gn2 (x) =
�
b1,0 + b1,2x

2 + b1,4x
4

 �
b2,0 + b2,2x

2 + b2,4x
4



(5.55)

= β0 + β2x
2 + β4x

4 + β6x
6 + β8x

8, (5.56)

with:

β0 = b1,0b2,0 (5.57)

β2 = b1,0b2,2 + b1,2b2,0 (5.58)

β4 = b1,0b2,4 + b1,2b2,2 + b2,0b1,4 (5.59)

β6 = b1,4b2,2 + b1,2b2,4 (5.60)

β8 = b1,4b2,4. (5.61)

So we need to compute the following integrals, which can be obtained from the first
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moments of the Gaussian distribution:

I0 = β0

+∞�

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
dst = β0 (5.62)

I2t = β2

+∞�

−∞

1

σ
√
2π
s2t exp

&
− 1

2σ2
(st − µt)2

'
dst = β2

�
µ2t + σ

2



(5.63)

= β2

-�
h1t
σ21

+
h2t
σ22

�2
σ4 + σ2

.
(5.64)

I4t = β4

+∞�

−∞

1

σ
√
2π
s4t exp

&
− 1

2σ2
(st − µ)2

'
dst = β4

�
µ4t + 6µ2tσ

2 + 3σ4


(5.65)

I6t = β6

+∞�

−∞

1

σ
√
2π
s6t exp

&
− 1

2σ2
(st − µt)2

'
dst (5.66)

= β6
�
µ6t + 15µ4tσ

2 + 45µ2tσ
4 + 15σ6



(5.67)

I8t = β8

+∞�

−∞

1

σ
√
2π
s8t exp

&
− 1

2σ2
(st − µt)2

'
dst (5.68)

= β8
�
µ8t + 28µ6tσ

2 + 210µ4tσ
4 + 420µ2tσ

6 + 105σ8



(5.69)

Finally, we have that:

N = max
α,σ1,σ2,c1,4,c2,4

1

(2πσ1σ2)
T

)
T%

t=1

σ

α
exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2
�

× (I0 + I1t + I2t + I3t + I4t + I6t + I8t)} . (5.70)

We note that when c1,4 = c2,4 = 0, that is when the third and fourth-order cumulants

vanish, as is the case for a Gaussian distribution, then we have I0 = 1, I1 = I2 = I4 =

I6 = I8t = 0, and we recover the expression of the numerator for the Gaussian case:

N = max
α,σ1,σ2

1

(2πσ1σ2)
T

T%

t=1

σ

α
exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2
�
. (5.71)

Similar (and simpler) expressions can be obtained for the denominatorD, which relates to

the situation when there is no signal. In the Gaussian case, one could obtain the following
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explicit expressions for the variables involved in the maximization of the numerator N of

the likelihood detection statistic [62]:

α2 = (α2 ≡
�
α2


+
(5.72)

σ2i = (σ2i ≡
�
σ2i − (α2


+
(5.73)

and for the variables involved in the maximization of the denominator D of the likelihood

detection statistic:

σ2i = σ
2
i (5.74)

Here, the expression for the numerator of the likelihood detection statistic is more

involved and it is not clear whether any explicit solutions can be obtained for the values

for α, σ1, σ2, c1,4, c2,4 that would lead to the maximum. In this context, one needs to resort

to numerical optimization procedures for maximizing independently the numerator and

the denominator of the likelihood statistic.

5.2.3 Non-Gaussian Signal and Noise Distributions

The methodology can also be extended to account for the presence of deviations from the

Gaussian assumption for both the signal and noise distributions. To do so, we use again

the Edgeworth expansion to approximate the unknown signal and noise distributions as
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fs (x) ≃ φs (x) gs (x) and fni (x) ≃ φni (x) gni (x) with:

φs (x) ≡ 1√
2πα

exp

&
− x

2

2α2

'
(5.75)

gs (x) ≡
�
1 +

c4
8α4

− 5c23
24α6

�

� �� �
b0

− c3
2α4� �� �
b1

x+

�
15c23
24α8

− c4
4α6

�
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b2
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6α6����
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�
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− 5c23

24α10
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b4

x4 +
c23

72α6� �� �
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x6 (5.76)

φni (x) ≡ 1√
2πσi

exp

&
− x

2

2σ2i

'
(5.77)

gni (x) ≡
�
1 +

ci,4
8σ4i

− 5c2i,3
24σ6i

�

� �� �
bi,0

− ci,3
2σ4i� �� �
bi,1

x+

�
15c2i,3
24σ8i

− ci,4
4σ6i

�
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bi,2

x2 +
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6σ6i����
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x3

+

�
ci,4
24σ8i

− 5c2i,3
24σ10i

�

� �� �
bi,4

x4 +
c2i,3
72σ6i� �� �
bi,6

x6 (5.78)

In this context, the numerator N of the likelihood function becomes:

N = max

α, σ1, σ2, c3, c4,

c1,3, c1,4, c2,3, c2,4

1

(2πσ1σ2)
T

T%

t=1

+∞�

−∞
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�
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2
t

2α2
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= max

α, σ1, σ2, c3, c4,
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exp

&
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'
gs (st) gn1 (st) gn2 (st) dst. (5.80)
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with:

σ =

�
1

α2
+

1

σ21
+

1

σ22

�− 1
2

, (5.81)

µt =

�
h1t
σ21

+
h2t
σ22

�
σ2. (5.82)

Focusing for simplicity on symmetric noise distribution functions, for which we have

c3, c1,3, c2,3 = 0, we obtain:

gs (x) gn1 (x) gn2 (x) =
�
b0 + b2x

2 + b4x
4

 �
b1,0 + b1,2x

2 + b1,4x
4

 �
b2,0 + b2,2x

2 + b2,4x
4



(5.83)

= γ0 + γ2x
2 + γ4x

4 + γ6x
6 + γ8x

8 + γ8x
10 + γ8x

12, (5.84)

with straightforward expressions for the γi as a function of the b1,i, b2,i and bi coefficients.

We therefore need to compute the following integrals, which can be obtained from the

first moments of the Gaussian distribution:

I0 = γ0

+∞�

−∞

1

σ
√
2π

exp

&
− 1

2σ2
(st − µt)2

'
dst (5.85)

I2t = γ2

+∞�

−∞

1

σ
√
2π
s2t exp

&
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2σ2
(st − µt)2

'
dst (5.86)

I4t = γ4

+∞�

−∞

1

σ
√
2π
s4t exp

&
− 1

2σ2
(st − µ)2

'
dst (5.87)

I6t = γ6

+∞�

−∞

1

σ
√
2π
s6t exp

&
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2σ2
(st − µt)2

'
dst (5.88)

I8t = γ8

+∞�
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1

σ
√
2π
s8t exp

&
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2σ2
(st − µt)2

'
dst (5.89)

I10t = γ10

+∞�
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1

σ
√
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s10t exp

&
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2σ2
(st − µt)2

'
dst (5.90)

I12t = γ12

+∞�
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1

σ
√
2π
s8t exp

&
− 1

2σ2
(st − µt)2

'
dst (5.91)
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Again, we need to compute higher-order moments of the Gaussian distribution, which is

given by the following formula for a normally distributed variable X with mean µt and

variance σ2:

E (Xn) =

+∞�

−∞

1

σ
√
2π
xn exp

&
− 1

2σ2
(x− µt)2

'
dx =

[n2 ]�

j=0

�
n

2j

�
(2j − 1)!!σ2jµn−2j, (5.92)

where n!! denotes the double factorial operator n!! =
k%

i=0

(n − 2i) = n (n− 2) (n− 4) ...

with k =
�
n
2

 
. For example, we have that:

I10t = γ10
�
µ10t + 45µ8tσ

2 + 630µ6tσ
4 + 3150µ4tσ

6 + 4725µ2tσ
8 + 945σ10



. (5.93)

Finally, we obtain for the numerator N of the detection statistic ΛML (again similar

expressions can be obtained for the denominator D which relates to the simpler situation

when there is no signal):

N = max

α, σ1, σ2, c3, c4,

c1,3, c1,4, c2,3, c2,4

1

(2πσ1σ2)
T

T%

t=1

σ

α
exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2�

× (I0 + I1t + I2t + I3t + I4t + I6t + I8t + I10t + I12t) . (5.94)

We note that when ci,3 = ci,4 = 0, that is when the third and fourth-order cumulants

vanish for the noise distribution, we then recover the expression from the previous chapter.
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5.2.4 Derivation of the Optimal Cross-Correlation Statistic in

the Presence of Non-Gaussian Noise and SGWB Distrib-

utions

In what follows, we discuss the implications of the results obtained thus far for the

derivation of an optimal detection statistic. Developing a full-fledged numerical analysis

of the sensitivity gains involved in the use of this optimal non-Gaussian detection statistic

versus the standard cross-correlation statistic is beyond the scope of this chapter, and is

left for further research.

The Case of Co-Aligned and Co-Located Detectors

In chapter 3 (see equation 3.38), we recall that the likelihood ratio in the Gaussian case

is given by:

ΛML = max
α,σ1,σ2≥0





σ1σ2�
σ21σ

2
2 + σ

2
1α

2 + σ22α
2
exp


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σ41
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σ22
σ42

+ 2α2

σ21σ
2
2

2
#
1
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+ 1
σ22

+ 1
α2

$ − σ21
2σ21

− σ22
2σ22

+ 1







T

.

(5.95)

When plugging the maximum likelihood estimators (α, (σ1 and (σ2 in this equation we

obtain the corresponding detection statistic:

ΛGML =


 σ1σ2�

(σ21(σ22 + (σ21(α2 + (σ22(α2



T

expT




σ21
�σ41

+
σ22
�σ42

+ 2α2

�σ21�σ
2
2

2
#
1
�σ21

+ 1
�σ22

+ 1
�α2

$ − σ21
2(σ21

− σ22
2(σ22

+ 1


 ,

(5.96)

which simplifies into:

ΛGML =

�
1− (α4
σ21σ

2
2

�−T/2
. (5.97)

This expression can be regarded as the optimal detection statistic by Neyman-Pearson

theorem. In practice, we instead use the following transformation, known as the cross-
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correlation detection statistic:

DScc =
√
T
α2

σ1σ2
(5.98)

This methodology can be extended to account for the presence of deviations from the

Gaussian assumption for both the signal and noise distributions since we have ΛML = N
D
,

where:

N = max

α, σ1, σ2, c3, c4,

c1,3, c1,4, c2,3, c2,4

1

(2πσ1σ2)
T

T%

t=1

σ

α
exp

&
− h

2
1t

2σ21
− h

2
2t

2σ22

'
exp

�
1

2
σ2

�
h1t
σ21

+
h2t
σ22

�2�

× (I0 + I1t + I2t + I3t + I4t + I6t + I8t + I10t + I12t) . (5.99)

Let us denote It ≡ I0+ I1t+ I2t + I3t + I4t+ I6t + I8t + I10t + I12t. Through the γ1, ..., γ10
coefficients It is a function of the parameters c3, c4, c1,3, c1,4, c2,3, c2,4:

It = f (c3, c4, c1,3, c1,4, c2,3, c2,4) .

We note again that when c3 = c4 = c1,3 = c1,4 = c2,3 = c2,4 = 0, that is when

the third and fourth-order cumulants vanish for the signal and noise distributions, we

then recover the standard maximum likelihood statistic. In the general case however the

optimal non-Gaussian detection statistic is given by:

ΛNGML =
N ((α,(c3,(c4, (σ1, (σ2,(c1,3,(c1,4,(c2,3,(c2,4)
D (σ1, σ2, c1,3, c1,4, c2,3, c2,4)

(5.100)

where (α,(c3,(c4, (σ1, (σ2,(c1,3,(c1,4,(c2,3,(c2,4 are the values of the corresponding parameters that

maximize the numerator of the likelihood function, while σ1, σ2, c1,3, c1,4, c2,3, c2,4 are the

values of the corresponding parameters that maximize the denominator of the likelihood

function. It is important to emphasize that in this general non-Gaussian setting, the

optimal detection statistic given in 5.100 is a priori different from the signal-to-noise

ratio.
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A key difference with the Gaussian case, however, is that these estimators are not

available in analytical form in the general non-Gaussian setting. From the analysis pre-

sented in chapter 4, it turns out that we may in fact derive analytical expressions for com-

peting estimators called moment-based estimators. The benefit of using moment-based

estimators is that the optimal detection statistic can then be obtained in closed-form and

numerical estimates for the sensitivity gain can be performed for realistic parameter val-

ues. To derive these moment-based estimators, we write (focusing here on even moments

of the noise and signal distributions):

E (H1H2) = E [(N1+S) (N2+S)] = E
�
S2

 
= α2 (5.101)

E
�
H2
1H2

2



= E

�
(N1+S)2 (N2+S)2

 
= c4 + 3α2 + α2

�
σ21 + σ

2
2



+ σ21σ

2
2 (5.102)

E
�
H4
1



= E

�
(N1+S)4

 
= c4 + 3α2 + 6α2σ21 + c1,4 + 3σ21 (5.103)

E
�
H4
2



= E

�
(N2+S)4

 
= c4 + 3α2 + 6α2σ22 + c2,4 + 3σ22 (5.104)

From this analysis, we obtain the corresponding moment-based estimators to be used

in the numerator N of the detection statistic:

(α2 =
1

T

T�

t=1

H1tH2t (5.105)

(σ21 =
1

T

T�

t=1

H2
1t − (α2 (5.106)

(σ22 =
1

T

T�

t=1

H2
2t − (α2 (5.107)

(c4 =
1

T

T�

t=1

H2
1tH2

2t − 3(α2 − (α2
�
(σ21 + (σ22



− (σ21(σ22 (5.108)

(c1,4 =
1

T

T�

t=1

H4
1t − (c4 − 3(α2 − 6(α2(σ21 − 3(σ21 (5.109)

(c2,4 =
1

T

T�

t=1

H4
2t − (c4 − 3(α2 − 6(α2(σ22 − 3(σ22 (5.110)

To obtain the corresponding expressions σ1, σ2, c1,4, c2,4 to be used in the denominator
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D of the detection statistic, one simply takes (α2 = 0 and (c4 = 0 in the equations 5.105,

5.106, 5.109, and 5.110 giving the estimators for σ21, σ
2
2, c1,4 and c2,4.

In the Gaussian case, the moment-based estimators in equations 5.105, 5.106 and

5.107 for the variance of the signal and the noise in each detector coincide with the

maximum likelihood estimators. In the general non-Gaussian case the moment-based

estimators may not coincide with the maximum likelihood estimators but at least they

enjoy the key desirable property to be unbiased by construction. The analysis conducted

in chapter 4 (see Table 4.2 and Figure 4.7) for a situation with a non-Gaussian signal and

Gaussian noise actually suggests that the moment-based estimators are only marginally

less efficient as the maximum-likelihood estimators (meaning they have a slightly higher

variance), which justifies their use in the derivation of the optimal detection statistic.

Plugging these expressions back in equation 5.100, we can thus obtain the expression

for the optimal detection statistic in the non-Gaussian case as a function of the joint

observations h = (h1t, h2t)0≤t≤T . We note that when the signal and noise distributions

are Gaussian, that is when (c4,(c1,4,(c2,4 = 0 then It = 1 for all t and the optimal detection

statistic ΛNGML coincides with the standard Gaussian detection statistic that it nests as

a special case. Based on realistic parameter values, one can in principle numerically

measure the sensitivity gain involved in using in the non-Gaussian case the optimal non-

Gaussian statistic as opposed to using the standard cross-correlation statistic, which is

only optimal when signal and noise distributions are Gaussian.

Extending the Results to the Case of Separated Detectors

As indicated before, the cross-correlation detection statistic may not be optimal in the

general non-Gaussian case, and one would like to derive an optimal detection statistic

when the higher order cumulants are not zero for possibly both the signal and noise

distributions. As recalled in chapter 3, the optimal choice of a filter function depends

on the optimization objective. In what follows, we extend the analysis to the case of

separated detectors through a filtering approach that focuses on maximizing the signal
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to noise ratio:
S

N
=

E (Y )�
Var (Y )

. (5.111)

Under aforementioned standard assumptions, one can show [17] that the optimization

criterion defined by minimization of the probability of a false alarm (pfa) subject to

a fixed probability of a false dismissal (pfd) is equivalent to maximizing the signal to

noise ratio of the cross-correlation detection statistic. In a general context, however, the

maximization of a signal to noise ratio involving the first two moments of the cross-

correlation statistic will not be a priori equivalent to minimizing the probability of a false

alarm for a given probability of a false dismissal. For tractability, we nonetheless maintain

here the focus on maximizing the signal to noise ratio, and we show in what follows that

the use of the Edgeworth expansion allows us to maintain an analytical expression for the

optimal filter function in this case. More precisely, we first write the general expression

for the cross-correlation product Y for an isotropic, unpolarized and stationary SGWB

in the case of co-aligned and co-located detectors, while we discuss the situation with

separated detectors below. We have:

Y =

� +∞

−∞
5s∗1 (f) 5Q (f) 5s2 (f) df, (5.112)

where the optimal filtering function 5Q is defined as the quantity that maximizes the signal

to noise ratio. One can easily check that the derivation of this quantity in 3.73 does not

depend upon the assumption that the signal or noise distributions were Gaussian, and

the following standard expression for the optimal filter remains valid:

5Q (f) =
λΩGW (f)

f 3Sn1 (f)Sn2 (f)
, (5.113)

with Sn1 (f) and Sn2 (f) being the power spectral noise densities of the two detectors,
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where λ is a normalization constant and where (equation 3.53):

ΩGW (f) =
4π2

3H2
0

f 3Ss (f) . (5.114)

We finally have:

5Q (f) =
4π2

3H2
0

Ss (f)

Sn1 (f)Sn2 (f)
(5.115)

The only difference between the Gaussian and non-Gaussian case relates to a different

expression for the Fourier transform of the spectral density Ss (f) of the signal distri-

bution and the spectral density Sn1 (f) and Sn2 (f) of the noise distributions. These

expressions are in turn related to the Fourier transforms of the signal and noise distrib-

utions, and we show below that these Fourier transforms can be obtained in closed-form

when the unknown signal and noise distribution functions are approximated by means

on the Edgeworth expansion. Indeed, the Fourier transform of the approximate den-

sity can be obtained as the Fourier transform of the product fs (x) = φs (x) gs (x) and

fni (x) = φni (x) gni (x) for the signal and noise distributions, where gs (x) and gni (x) are

polynomial functions. Focusing for example on the polynomial correction to the signal

probability density, we have in the case of a symmetric distribution (c3 = 0):

gs (x) = 1 +
c4
8α4

− c4
4α6
x2 +

c4
24α8

x4 (5.116)

≡ a0,s + a2,sx
2 + a4,sx

4. (5.117)

Introducing the elementary polynomial Pn (x) = xn, we obtain fs (x) ≃
�

n=0,2,4

an,sPn (x)φs (x).

Since the Fourier transform of the sum of functions anPn (x)φs (x) is the sum of the

Fourier transforms of the functions anPn (x)φs (x), we are therefore left with the com-

putation of the Fourier transform of the product φs (x)Pn (x). This Fourier transform is
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well-known to be given by the convolution of the Fourier transforms of φs (x) and Pn (x):

�(φs × Pn) (f) = 5φs (f) ∗ 9Pn (f) ≡
� +∞

−∞
5φs (q)9Pn (f − q) dq. (5.118)

We therefore have:

5fs (f) =
�

n=0,2,4

an,s �(φs × Pn) (f) =
�

n=0,2,4

an,s

7
5φs (f) ∗ 9Pn (f)

8
. (5.119)

It is well-known that the Fourier transform of a Gaussian is also a Gaussian and given

by:

φs (x) =
1√
2πα
e−

x2

2α2 ⇒ 5φs (f) =
� +∞

−∞
e−2πiftφs (x) dx =

α√
2π
e−

f2α2

2 . (5.120)

We also have:

Pn (x) = x
n ⇒ 9Pn (f) =

� +∞

−∞
e−2πiftPn (x) dx = i

n
√
2πδ(n) (f) , (5.121)

where δ(n) is the nth distribution derivative of the Dirac delta function. From fundamental

properties of the Fourier transform and of the Dirac distributions, we know that

(δ′) ∗ f = −δ ∗ f ′ = −f ′. (5.122)

Similarly,

δ(n) ∗ f = (−1)n δ ∗ f (n) = (−1)n f (n), (5.123)

so we finally obtain:

�(φs × Pn) (f) = (−1)n α2n 5φs (f) . (5.124)

210



Chapter 5 — Efficiency of the Cross-Correlation Statistic

This relationship can be extended to the polynomial gs (x) =
�
anx

n so as to give

5fs (f) = �(φs × gs) (f) =
�

n=0,2,4

(−1)n an,sα
2n 5φs (f) . (5.125)

From these results, we can obtain analytical expression for the signal spectral density

Ss (f) = 5fs
∗
(f) 5fs (f), which is one of the required inputs in the expression for the

optimal filter 5.115. Similar expressions can be obtained for the Fourier transforms of the

noise density functions fni (x), and therefore for the corresponding noise spectral density

functions Sn1 (f) and Sn2 (f).

We have considered so far colocated and coincident detectors, an assumption which

would hold in the case of Einstein Telescope. On the other hand, our framework should

be extended to apply to a network of separated detectors such as in the early phases

of development of Advanced LIGO-Virgo detectors, or joint observations by Advanced

LIGO and Einstein Telescope. This extension is important because these are precisely

the types of situations where differences in sensitivities are expected to be substantial.

As recalled in chapter 3, when the two detectors are not colocated and/or not coaligned,

we expect a reduction in sensitivity implying that the expression for 5Q (f) is transformed

as follows (equation 3.73):

5Q (f) =
γ (|f |) ΩGW (|f |)

|f |3 Sn1 (|f |)Sn2 (|f |)
, (5.126)

where γ (f) is the (normalized) overlap reduction function. Because the Edgeworth ex-

pansion allows one to write the approximate density of the non-Gaussian distribution

for the signal and/or detector noise as the product of a polynomial of degree 4 (case

of a symmetric distribution) or 6 (case of a non-symmetric distribution), one can again

easily extend the standard analysis performed in the Gaussian situation by taking the

Fourier transform of the approximate non-Gaussian densities as explained above, obtain

analytical expression for the signal and noise spectral densities, and use them as inputs

in 5.126 for the extended optimal detection statistic for non-Gaussian signal and/or noise
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distributions with detectors that are not colocated and coaligned.
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Conclusions and Perspectives

This thesis proposes a formal analysis of detection and estimation methods for gravita-

tional wave stochastic backgrounds in non-Gaussian regimes. In a first step, we use the

Edgeworth expansion, which is a formal expansion of the characteristic function of the

signal distribution whose unknown probability density function is to be approximated

in terms of the characteristic function of the Gaussian distribution. The non-Gaussian

estimation procedure we obtain generalizes the standard cross-correlation statistic, which

is recovered in the limit of vanishing third and fourth cumulants of the empirical condi-

tional distribution of the detector measurement. Our research complements related work

[62], where the authors have focused on a very specific model where the deviation from

the Gaussian distributional assumption was understood as emanating from the presence

of a resolved Gaussian signal being measured. We provide a methodology that can be

applied without any assumption regarding the exact origin of the departure from nor-

mality, and which relies on an explicit semi-parametric approximation of the unknown

density function. The main benefit of the procedure is that it allows us to estimate addi-

tional parameters when the signal is not too small compared to the noise (signal to noise

ratio of the order of 1%), namely the 3rd and 4th cumulant of the gravitational wave

signal distribution. In a second step, we analyze the efficiency of the cross-correlation
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statistic in situations that deviate from the Gaussian assumption for both the stochastic

gravitational wave signal distribution and detector noise distributions. To do so we show

how to obtain consistent estimates for the first four cumulants of the signal and noise

distributions using a suitable extension of the likelihood function, for which we derive an

analytical expression. In a numerical analysis, we find that properly accounting for the

presence of non-Gaussian distributions as opposed to wrongly assuming that higher-order

cumulants of the noise distributions are zero has material implications in the implementa-

tion of standard detection procedures in that it generates higher values for probabilities of

false dismissal corresponding to given levels of probabilities of false alarm. The required

correction is found to be particularly large when detector sensitivities exhibit substan-

tial differences, a situation that is expected to hold in early phases of development of

the Advanced LIGO-Virgo detectors before they reach their design sensitivity or in joint

detections from Advanced LIGO and the Einstein Telescope project [142]. These results

are obtained in a specialized setting where detector sensitivities are assumed to be known

or at least sufficiently well-estimated, and they would not be valid in realistic situations

when the uncertainty in the estimated values for the detector noise is larger than the

size of the stochastic signal to be detected. In addition to outlining their implications for

the performance of the standard CC detection statistic, we also discuss the implications

of these results for the derivation of an optimal detection statistic in a non-Gaussian

context.

In summary, our work has potential practical implications for both the detection of

SGWB signals and the estimation of related parameters. In terms of parameter esti-

mation, our methods based on generalized expressions for standard maximum likelihood

estimators can prove useful because they precisely allow for the efficient estimation of

additional parameters, namely the higher-order cumulants of the signal and/or noise dis-

tributions, which should have a number of useful astrophysical implications. Generating

estimates for additional parameters should allow us in particular to obtain additional

constraints on astrophysical and cosmological models that will be imposed by observed
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gravitation wave signals, and comparing them to the constraints derived from supernovae

or galaxy clusters observations. For instance, using an isotropic search conducted on mock

data for compact binary mergers as a function of the simulated average strength of the sig-

nal over the observational period, [126] find that a high coalescence rate of events and low

average chirp mass or a low rate of events and high average mass generate the same signal

amplitude and spectral index for the frequency range under analysis. Our non-Gaussian

estimation methodologies can in principle be used to help differentiate these two types

of signals, a continuous signal resulting in a low kurtosis in the first high rate/low mass

case, and a popcorn-like signal resulting in a high kurtosis in the second low rate/high

mass situations. Turning to the detection problem, we introduce a framework for deriv-

ing an optimal detection statistic in a generalized non-Gaussian setting, which nests the

standard CC detection statistic as a specific case when the third and fourth cumulants of

the signal and noise distributions are zero. Developing a full-fledged numerical analysis

of the sensitivity gains involved in the use of the optimal non-Gaussian detection statistic

versus the standard cross-correlation statistic would be a natural extension of the work

presented in this thesis.

The results presented here can be extended in a number of additional useful directions.

One possible extension of our work would consist in trying to provide a characterization

of the non-Gaussian signature of the SGWB that could help distinguish between its

astrophysical versus cosmological GW origin. For example, one may try and obtain a

theoretical estimation for the cumulant parameters of a distribution sourced by cosmic

string events with a focus on LIGO-Virgo frequencies. As recalled above, Damour and

Vilenkin [58] made the observation that the stochastic ensemble of GWs generated by

a network of cosmic strings includes large infrequent bursts, and that the computation

of ΩGW (f) should not be biased by including these large rare events. When loops are

small, all loops at a certain redshift are the same size and produce the same amplitude

events. Hence, a cutoff can be placed in the integral over redshifts to remove large events

for which the rate is smaller than the relevant time-scale of the experiment (see equation
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(6.17) of [58]). When loops are large, there can be loops of any size at any given redshift.

One can deal with this problem by evaluating the rate from cusps in redshift interval

dz and with strain in the interval dh [160] to remove large amplitude events, defined

as events characterized by a strain amplitude that exceeds a given threshold which is a

function of the detector sensitivity, that occur at a rate smaller than f . This procedure

has been used in [160] to find the areas of parameter space of cosmic string models that

make a detection possible with Advanced LIGO, LISA and pulsar timing experiments.

In principle, we could use a similar approach to analyze the Gaussian or non-Gaussian

nature of the SGWB signal distribution. As we let the finite detector sensitivity increase

within reasonable bounds, the number of resolved detected GW signals is expected to

increase, and the distribution of the residual background is expected to become more

non-Gaussian, as can be characterized with a numerical estimate for the 3rd and 4th

moment of its distribution. We could then potentially contrast this estimation with

an estimation of cumulants that would be obtained from realistic deviations from the

Central Limit Theorem for astrophysical sources of GW stochastic background. If the

cosmological and astrophysical backgrounds were to produce somewhat different types of

non-normality, this would lead to empirically testable predictions that could be validated

using our approach.
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