L. V. Radushkevich and V. M. Lukyanovich, « O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn Fisic Chim, vol.26, issue.1, pp.88-95, 1952.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, vol.44, issue.9, pp.1621-1623, 2006.
DOI : 10.1016/j.carbon.2006.03.019

I. V. Dubonos, A. A. Grigorieva, and . Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669

M. J. O-'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano et al., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, pp.593-596, 2002.
DOI : 10.1126/science.1072631

J. Lefebvre, Y. Homma, and P. Finnie, Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes, Physical Review Letters, vol.41, issue.21, p.217401, 2003.
DOI : 10.1143/JJAP.41.L89

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, The Optical Resonances in Carbon Nanotubes Arise from Excitons, pp.838-841, 2005.
DOI : 10.1126/science.1110265

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Exciton binding energies in carbon nanotubes from two-photon photoluminescence, pp.241402-241404, 2005.
DOI : 10.1103/PhysRevB.62.4273

URL : http://arxiv.org/abs/cond-mat/0505150

E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza-filho et al., Selection rules for one- and two-photon absorption by excitons in carbon nanotubes, Physical Review B, vol.15, issue.24, pp.241406-241437, 2006.
DOI : 10.1103/PhysRevLett.93.147406

T. Ando, Effects of Valley Mixing and Exchange on Excitons in Carbon Nanotubes with Aharonov???Bohm Flux, Cité aux pages 2, pp.24707-24736, 2006.
DOI : 10.1143/JPSJ.75.024707

S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore et al., Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes, Optical Signatures of the Aharonov- Bohm Phase in Single-Walled Carbon Nanotubes, pp.1129-1131, 2004.
DOI : 10.1126/science.1096524

A. Srivastava, H. Htoon, V. I. Klimov, and J. Kono, Direct Observation of Dark Excitons in Individual Carbon Nanotubes: Inhomogeneity in the Exchange Splitting, Physical Review Letters, vol.1, issue.8, pp.87402-87444, 2008.
DOI : 10.1103/PhysRevB.42.5906

W. E. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical Review Letters, vol.48, issue.21, pp.2535-2538, 1989.
DOI : 10.1063/1.96462

M. Orrit and J. Bernard, -terphenyl crystal, Physical Review Letters, vol.89, issue.21, pp.2716-2719, 1990.
DOI : 10.1063/1.455123

URL : https://hal.archives-ouvertes.fr/jpa-00209976

F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, C. Diederichs et al., Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement, Physical Review Letters, vol.113, issue.5, pp.57402-2014
DOI : 10.1103/PhysRevB.24.714

URL : https://hal.archives-ouvertes.fr/hal-01066160

Y. Louyer, L. Biadala, P. Tamarat, and B. Lounis, Spectroscopy of neutral and charged exciton states in single CdSe/ZnS nanocrystals, Applied Physics Letters, vol.96, issue.20, p.203111, 2010.
DOI : 10.1021/nn9001177

URL : https://hal.archives-ouvertes.fr/hal-00611568

J. Lefebvre, J. M. Fraser, Y. Homma, and P. Finnie, Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes, Applied Physics A, vol.64, issue.8, pp.1107-1110, 2004.
DOI : 10.1103/PhysRevB.64.214301

K. Liu, W. Wang, M. Wu, F. Xiao, X. Hong et al., Intrinsic radial breathing oscillation in suspended single-walled carbon nanotubes, Physical Review B, vol.83, issue.11, pp.113404-2011
DOI : 10.1103/PhysRevLett.93.167401

S. Wong and . Strauf, « Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes, Nature Communications, vol.4, issue.120, pp.3-74, 2013.

Y. Xiao, M. D. Anderson, and J. M. Fraser, Photoluminescence saturation independent of excitation pathway in air-suspended single-walled carbon nanotubes, Physical Review B, vol.89, issue.23, pp.235440-2014
DOI : 10.1103/PhysRevB.80.075426

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel et al., Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature Nanotechnology, vol.483, issue.7, pp.502-505
DOI : 10.1038/nature10941

Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chemical Physics Letters, vol.387, issue.1-3, pp.198-203, 2004.
DOI : 10.1016/j.cplett.2004.01.116

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Graduate Texts in Physics, pp.11-18, 2010.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon nanotubes : basic concepts and physical properties. Weinheim ; Cambridge : Wiley-VCH, pp.12-14, 2004.

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.16, issue.9, pp.622-634, 1947.
DOI : 10.1063/1.1710273

«. Geim, The electronic properties of graphene », Reviews of Modern Physics, pp.109-162, 2009.

G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza-filho et al., The Concept of Cutting Lines in Carbon Nanotube Science, The concept of cutting lines in carbon nanotube science, pp.431-458, 2003.
DOI : 10.1166/jnn.2003.231

R. Saito, K. Sato, Y. Oyama, J. Jiang, G. G. Samsonidze et al., Cutting lines near the Fermi energy of single-wall carbon nanotubes, Physical Review B, vol.4, issue.15, pp.153413-2005
DOI : 10.1143/JPSJ.66.1066

N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.1, issue.10, pp.1579-1581, 1992.
DOI : 10.1103/PhysRevB.1.4747

A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze et al., -dependent effects in small-diameter single-wall carbon nanotubes, Physical Review B, vol.125, issue.7, p.75401, 2005.
DOI : 10.1103/PhysRevLett.90.225501

URL : https://hal.archives-ouvertes.fr/in2p3-00002095

J. Mintmire and C. White, Universal Density of States for Carbon Nanotubes, Universal Density of States for Carbon Nanotubes, pp.2506-2509, 1998.
DOI : 10.1126/science.273.5274.483

L. Van-hove, The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal, Physical Review, vol.65, issue.6, pp.1189-1193
DOI : 10.1088/0370-1298/65/10/305

M. Ouyang, J. Huang, C. L. Cheung, and C. M. Lieber, Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes, Science, vol.292, issue.5517, pp.702-705, 2001.
DOI : 10.1126/science.1058853

A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta et al., point in graphite and carbon nanotubes, Inhomogeneous optical absorption around the \textit{K} point in graphite and carbon nanotubes, p.165402, 2003.
DOI : 10.1126/science.1078727

J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, and M. S. Dresselhaus, Optical absorption matrix elements in single-wall carbon nanotubes, Carbon, vol.42, issue.15, pp.3169-3176, 2004.
DOI : 10.1016/j.carbon.2004.07.028

E. Mali?, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Analytical approach to optical absorption in carbon nanotubes, Physical Review B, vol.62, issue.19, pp.195431-2006
DOI : 10.1103/PhysRevLett.72.1878

H. Ajiki and T. Ando, Carbon Nanotubes: Optical Absorption in Aharonov-Bohm Flux, Japanese Journal of Applied Physics, vol.34, issue.S1, pp.107-1995
DOI : 10.7567/JJAPS.34S1.107

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.3, issue.7, pp.75403-75422, 2004.
DOI : 10.1021/nl034428i

S. Uryu and T. Ando, Exciton absorption of perpendicularly polarized light in carbon nanotubes, Physical Review B, vol.6, issue.1, pp.155411-2006
DOI : 10.1103/PhysRevLett.96.086805

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2555-2558, 1999.
DOI : 10.1016/S0379-6779(98)00278-1

R. B. Weisman and S. M. Bachilo, Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension:?? An Empirical Kataura Plot, Nano Letters, vol.3, issue.9, pp.1235-1238, 2003.
DOI : 10.1021/nl034428i

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley et al., Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, pp.2361-2366, 2002.
DOI : 10.1126/science.1078727

«. Brus and . Optical, Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure, Science, vol.312, pp.554-556, 2006.

A. Hagen and T. Hertel, Quantitative Analysis of Optical Spectra from Individual Single-Wall Carbon Nanotubes, Nano Letters, vol.3, issue.3, pp.383-388, 2003.
DOI : 10.1021/nl020237o

O. Gülseren, T. Yildirim, and S. Ciraci, study of curvature effects in carbon nanotubes, Physical Review B, vol.60, issue.15, pp.153405-153426, 2002.
DOI : 10.1103/PhysRevB.60.10

V. N. Popov, Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model, New Journal of Physics, vol.6, pp.17-2004
DOI : 10.1088/1367-2630/6/1/017

C. L. Kane and E. J. Mele, Ratio Problem in Single Carbon Nanotube Fluorescence Spectroscopy, Physical Review Letters, vol.66, issue.20, pp.207401-207422, 2003.
DOI : 10.1103/PhysRevB.36.4337

URL : http://arxiv.org/abs/cond-mat/0303528

G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz et al., Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes, Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes, pp.2314-2318
DOI : 10.1021/nl0518122

H. Zhao and S. Mazumdar, Excitons in semiconducting single-walled carbon nanotubes, Synthetic Metals, vol.155, issue.2, pp.250-253
DOI : 10.1016/j.synthmet.2005.01.029

H. Lin, J. Lagoute, V. Repain, C. Chacon, Y. Girard et al., Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy, Nature Materials, vol.19, issue.2010, pp.235-238
DOI : 10.1103/PhysRevLett.101.026804

E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. Souza-filho et al., Review on the symmetry-related properties of carbon nanotubes, Physics Reports, vol.431, issue.6, pp.261-302
DOI : 10.1016/j.physrep.2006.05.007

M. Damnjanovi?, I. Milo?evi?, T. Vukovi?, and R. Sredanovi?, Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Physical Review B, vol.57, issue.4, pp.2728-2739, 1999.
DOI : 10.1103/PhysRevB.57.6689

M. Damnjanovic, I. Milosevic, T. Vukovic, and R. Sredanovic, Symmetry and lattices of single-wall nanotubes, Journal of Physics A: Mathematical and General, vol.32, issue.22, pp.4097-4120, 1999.
DOI : 10.1088/0305-4470/32/22/310

T. Vukovi?, I. Milo?evi?, and M. Damnjanovi?, Carbon nanotubes band assignation, topology, Bloch states, and selection rules, Physical Review B, vol.57, issue.4, pp.45418-45441, 2002.
DOI : 10.1103/PhysRevB.62.4273

M. Damnjanovic and T. , Modified group projectors: tight-binding method, Journal of Physics A: Mathematical and General, vol.33, issue.37, pp.6561-6585, 2000.
DOI : 10.1088/0305-4470/33/37/308

URL : http://arxiv.org/pdf/cond-mat/0004344

Y. Kosmann-schwarzbach, The Noether Theorems. Sources and Studies in the History of Mathematics and Physical Sciences, pp.2011-2035
DOI : 10.1007/978-0-387-87868-3

URL : https://hal.archives-ouvertes.fr/hal-00838739

K. Sundermeyer, Symmetries in Fundamental Physics
DOI : 10.1007/978-94-007-7642-5

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry Advanced Texts in Physics, p.26, 2004.

T. Ando and . Excitons, Excitons in Carbon Nanotubes, Journal of the Physics Society Japan, vol.66, issue.4, pp.1066-1073, 1997.
DOI : 10.1143/JPSJ.66.1066

J. Jiang, R. Saito, G. G. Samsonidze, A. Jorio, S. G. Chou et al., Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model, Physical Review B, vol.74, issue.3, pp.35407-35436, 2007.
DOI : 10.1103/PhysRevB.61.2981

K. Cho, Excitons, vol. 14in Topics in Current Physics, 1979.

G. H. Wannier, The Structure of Electronic Excitation Levels in Insulating Crystals, The Structure of Electronic Excitation Levels in Insulating Crystals, pp.191-197, 1937.
DOI : 10.1103/RevModPhys.8.294

C. F. Klingshirn, Semiconductor Optics. Graduate Texts in Physics, pp.2012-2041

L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel et al., Size and mobility of excitons in (6, 5) carbon??nanotubes, Nature Physics, vol.78, issue.1, pp.54-58
DOI : 10.1103/PhysRevB.74.121401

D. T. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J. S. Lauret et al., Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, pp.127401-2011
DOI : 10.1103/PhysRevB.40.6442

URL : https://hal.archives-ouvertes.fr/hal-00623859

J. Lefebvre, D. G. Austing, J. Bond, and P. Finnie, Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes, Nano Letters, vol.6, issue.8, pp.1603-1608, 2006.
DOI : 10.1021/nl060530e

J. Lefebvre and P. Finnie, Polarized Photoluminescence Excitation Spectroscopy of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.34, issue.1, p.167406, 2007.
DOI : 10.1103/PhysRevB.74.121401

J. Lefebvre and P. Finnie, Excited Excitonic States in Single-Walled Carbon Nanotubes, Excited Excitonic States in Single-Walled Carbon Nanotubes, pp.1890-1895, 2008.
DOI : 10.1021/nl080518h

H. Ajiki, Exciton states and optical properties of carbon nanotubes, Journal of Physics: Condensed Matter, vol.24, issue.48, pp.483001-483031
DOI : 10.1088/0953-8984/24/48/483001

C. L. Kane and E. J. Mele, Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes, Physical Review Letters, vol.66, issue.19, p.31, 2004.
DOI : 10.1103/PhysRevB.29.1685

K. Sato, R. Saito, J. Jiang, G. Dresselhaus, and M. S. Dresselhaus, Chirality dependence of many body effects of single wall carbon nanotubes, Vibrational Spectroscopy, vol.45, issue.2, pp.89-94
DOI : 10.1016/j.vibspec.2007.05.001

T. Ando, Excitons in Carbon Nanotubes Revisited: Dependence on Diameter, Aharonov???Bohm Flux, and Strain, Excitons in Carbon Nanotubes Revisited : Dependence on Diameter , Aharonov?Bohm Flux, and Strain, pp.3351-3363, 2004.
DOI : 10.1143/JPSJ.73.3351

URL : http://journals.jps.jp/doi/pdf/10.1143/JPSJ.73.3351

C. D. Spataru, S. Ismail-beigi, L. X. Benedict, and S. G. Louie, Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.68, issue.7, pp.77402-77433, 2004.
DOI : 10.1103/PhysRevLett.90.207401

E. Chang, G. Bussi, A. Ruini, and E. Molinari, « Excitons in Carbon Nanotubes : An \textit{Ab Initio} Symmetry-Based Approach, Physical Review Letters, vol.92, issue.19, p.31, 2004.

R. S. Knox, Theory of excitons, pp.330436-330467, 1963.

R. Loudon and . One, One-Dimensional Hydrogen Atom, Dimensional Hydrogen Atom, pp.649-655
DOI : 10.1119/1.1934950

R. Matsunaga, K. Matsuda, and Y. Kanemitsu, -momentum dark excitons and triplet dark excitons, Physical Review B, vol.81, issue.3, pp.33401-33434, 2010.
DOI : 10.1103/PhysRevLett.103.026804

URL : https://hal.archives-ouvertes.fr/hal-01500053

K. Nagatsu, S. Chiashi, S. Konabe, and Y. Homma, Brightening of Triplet Dark Excitons by Atomic Hydrogen Adsorption in Single-Walled Carbon Nanotubes Observed by Photoluminescence Spectroscopy, Physical Review Letters, vol.105, issue.15, pp.157403-2010
DOI : 10.1103/PhysRevB.80.081410

D. Stich, F. Späth, H. Kraus, A. Sperlich, V. Dyakonov et al., Triplet???triplet exciton dynamics in single-walled carbon nanotubes, Nature Photonics, vol.40, issue.2, pp.139-144
DOI : 10.1246/cl.2011.239

M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group theory : application to the physics of condensed matter, pp.233973122-233973155, 2007.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes, pp.162571937-162571970, 1996.

V. Perebeinos, J. Tersoff, and P. Avouris, Radiative Lifetime of Excitons in Carbon Nanotubes, Radiative Lifetime of Excitons in Carbon Nanotubes, pp.2495-2499, 2005.
DOI : 10.1021/nl051828s

C. D. Spataru, S. Ismail-beigi, R. B. Capaz, and S. G. Louie, Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes, Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes, pp.247402-247435, 2005.
DOI : 10.1103/PhysRevB.65.045418

R. B. Capaz, C. D. Spataru, S. Ismail-beigi, and S. G. Louie, Diameter and chirality dependence of exciton properties in carbon nanotubes, Diameter and chirality dependence of exciton properties in carbon nanotubes, pp.121401-2006
DOI : 10.1103/PhysRevLett.94.036801

J. Shaver and J. Kono, Temperature-dependent magneto-photoluminescence spectroscopy of carbon nanotubes: evidence for dark excitons, Laser & Photonics Review, vol.316, issue.3, pp.260-274, 2007.
DOI : 10.1002/lpor.200710018

V. Perebeinos and J. Tersoff, Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes, Physical Review Letters, vol.20, issue.2, pp.27402-27436, 2005.
DOI : 10.1016/0022-3697(64)90162-3

O. N. Torrens, M. Zheng, and J. M. Kikkawa, -Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy, Physical Review Letters, vol.101, issue.15, pp.157401-157435, 2008.
DOI : 10.1103/PhysRevLett.92.257402

URL : https://hal.archives-ouvertes.fr/jpa-00215288

Y. Murakami, B. Lu, S. Kazaoui, N. Minami, T. Okubo et al., Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels, Physical Review B, vol.79, issue.19, p.34, 2009.
DOI : 10.1103/PhysRevB.73.241406

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes, Scientific Reports, pp.34-71, 2014.
DOI : 10.1016/j.physe.2009.11.131

Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Significance of Electromagnetic Potentials in the Quantum Theory, pp.485-491, 1959.
DOI : 10.1103/PhysRev.36.444

R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman lectures on physics III : Quantum mechanics, p.35, 1965.
DOI : 10.1063/1.3047826

C. Davisson and L. H. Germer, Diffraction of Electrons by a Crystal of Nickel, Diffraction of Electrons by a Crystal of Nickel, pp.705-740, 1927.
DOI : 10.1073/pnas.13.7.518

R. Bach, D. Pope, S. Liou, and H. Batelaan, Controlled double-slit electron diffraction, New Journal of Physics, vol.15, issue.3, pp.33018-33053, 2013.
DOI : 10.1088/1367-2630/15/3/033018

URL : http://doi.org/10.1088/1367-2630/15/3/033018

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Photons et atomes Introduction à l'électrodynamique quantique, p.36, 1987.

R. G. Chambers, Shift of an Electron Interference Pattern by Enclosed Magnetic Flux, Physical Review Letters, vol.29, issue.1, pp.3-5, 1960.
DOI : 10.1063/1.1723181

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Aharonov-Bohm Oscillations in Normal-Metal Rings, Physical Review Letters, vol.18, issue.25, pp.2696-2699, 1985.
DOI : 10.1088/0022-3719/18/16/005

URL : http://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1093&context=phys_facpub

A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo et al., Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave, Physical Review Letters, vol.54, issue.8, pp.792-795, 1986.
DOI : 10.1103/PhysRevLett.54.60

H. Ajiki and T. Ando, Electronic States of Carbon Nanotubes, Electronic States of Carbon Nanotubes, pp.1255-1266
DOI : 10.1143/JPSJ.62.1255

H. Ajiki and T. Ando, Aharonov-Bohm effect in carbon nanotubes, Aharonov-Bohm effect in carbon nanotubes, pp.349-352, 1994.
DOI : 10.1016/0921-4526(94)91112-6

S. Takeyama, H. Suzuki, H. Yokoi, Y. Murakami, S. Maruyama et al., Aharonov-Bohm exciton splitting in the optical absorption of chiral-specific single-walled carbon nanotubes in magnetic fields up to 78 T, Physical Review B, vol.83, issue.23, pp.235405-235447, 2011.
DOI : 10.1103/PhysRevB.74.121401

R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Evidence for Dark Excitons in a Single Carbon Nanotube due to the Aharonov-Bohm Effect, Physical Review Letters, vol.101, issue.14, pp.147404-147446, 2008.
DOI : 10.1103/PhysRevB.77.193405

K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara et al., Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method, Chemical Physics Letters, vol.303, issue.1-2, pp.117-124, 1999.
DOI : 10.1016/S0009-2614(99)00202-X

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, « Lowtemperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters, vol.360, pp.3-4, 2002.

R. H. Webb, Confocal optical microscopy, Confocal optical microscopy, pp.427-476, 1996.
DOI : 10.1088/0034-4885/59/3/003

A. D. Semenov, G. N. Gol-'tsman, and A. A. Korneev, Quantum detection by current carrying superconducting film, Physica C : Superconductivity, pp.349-356, 2001.
DOI : 10.1016/S0921-4534(00)01637-3

G. Gol-'tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova et al., Middle-Infrared to Visible-Light Ultrafast Superconducting Single-Photon Detectors, Middle-Infrared to Visible-Light Ultrafast Superconducting Single-Photon Detectors, pp.246-251, 2007.
DOI : 10.1109/TASC.2007.898252

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy et al., Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications, Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications, pp.2201204-2201204
DOI : 10.1109/TASC.2013.2251054

J. Gol-'tsman and . Demsar, « Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy, Physical Review Letters, vol.107, pp.177007-2011

Q. Zhao and J. Zhang, Characterizing the Chiral Index of a Single-Walled Carbon Nanotube, Small, vol.75, issue.22, pp.4586-4605
DOI : 10.1016/j.carbon.2014.04.006

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes, Advances in Physics, pp.413-550
DOI : 10.1126/science.1184289

G. D. Mahan, Oscillations of a thin hollow cylinder:??????Carbon nanotubes, Physical Review B, vol.275, issue.23, pp.235402-67, 2002.
DOI : 10.1126/science.275.5297.187

P. T. Araujo, I. O. Maciel, P. B. Pesce, M. A. Pimenta, S. K. Doorn et al., Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes, Physical Review B, vol.77, issue.24, pp.241403-67, 2008.
DOI : 10.1088/0957-4484/18/43/435705

M. Ouyang, J. Huang, C. L. Cheung, and C. M. Lieber, Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions, Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions, pp.97-100
DOI : 10.1126/science.291.5501.97

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1010&context=chemistrycheung

J. H. Warner, N. P. Young, A. I. Kirkland, and G. A. Briggs, Resolving strain in carbon nanotubes at the atomic level, Resolving strain in carbon nanotubes at the atomic level, pp.958-962
DOI : 10.1098/rsta.2007.0017

Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki et al., Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials, Chemical Physics Letters, vol.442, issue.4-6, pp.4-6, 2007.
DOI : 10.1016/j.cplett.2007.06.018

J. G. Duque, C. E. Hamilton, G. Gupta, S. A. Crooker, J. J. Crochet et al., Fluorescent Single-Walled Carbon Nanotube Aerogels in Surfactant-free Environments, ACS Nano, vol.5, issue.8, pp.6686-6694
DOI : 10.1021/nn202225k

S. Cambré, S. M. Santos, W. Wenseleers, A. R. Nugraha, R. Saito et al., Luminescence Properties of Individual Empty and Water-Filled Single-Walled Carbon Nanotubes, ACS Nano, vol.6, issue.3, pp.2649-2655
DOI : 10.1021/nn300035y

J. Shaver, S. A. Crooker, J. A. Fagan, E. K. Hobbie, N. Ubrig et al., Magneto-optical spectroscopy of highly aligned carbon nanotubes: Identifying the role of threading magnetic flux, Physical Review B, vol.201, issue.8, pp.81402-71, 2008.
DOI : 10.1103/PhysRevLett.81.2506

URL : https://hal.archives-ouvertes.fr/hal-00356231

A. Nish, R. J. Nicholas, C. Faugeras, Z. Bao, and M. Potemski, High-field magnetooptical behavior of polymer-embedded single-walled carbon nanotubes, Physical Review B, vol.6, issue.24, pp.245413-71, 2008.
DOI : 10.1143/JPSJ.69.1757

URL : https://hal.archives-ouvertes.fr/hal-00413960

R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Direct observation of dark exciton states in single carbon nanotubes, Journal of Luminescence, vol.129, issue.12, pp.1702-1705, 2009.
DOI : 10.1016/j.jlumin.2009.01.028

R. Matsunaga, Y. Miyauchi, K. Matsuda, and Y. Kanemitsu, Symmetry-induced nonequilibrium distributions of bright and dark exciton states in single carbon nanotubes, Physical Review B, vol.80, issue.11, pp.115436-71, 2009.
DOI : 10.1103/PhysRevLett.72.924

W. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura et al., Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields, Physical Review B, vol.87, issue.24, pp.241406-71, 2013.
DOI : 10.1143/JPSJ.74.777

J. A. Alexander-webber, C. Faugeras, P. Kossacki, M. Potemski, X. Wang et al., Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields, Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields, pp.5194-5200
DOI : 10.1021/nl502016q

D. Nakamura, T. Sasaki, W. Zhou, H. Liu, H. Kataura et al., Exciton splitting in semiconducting carbon nanotubes in ultrahigh magnetic fields above 300 T, Physical Review B, vol.91, issue.23, pp.235427-71, 2015.
DOI : 10.1126/science.1086534

A. Meixner and . Hartschuh, Exponential Decay Lifetimes of Excitons in Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.95, p.74, 2005.

S. Berger, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol et al., Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes, Nano Letters, vol.7, issue.2, pp.398-402, 2007.
DOI : 10.1021/nl062609p

URL : https://hal.archives-ouvertes.fr/hal-00123080

D. Karaiskaj, A. Mascarenhas, J. H. Choi, R. Graff, and M. S. Strano, Temperature behavior of the photoluminescence decay of semiconducting carbon nanotubes: The effective lifetime, Physical Review B, vol.75, issue.11, pp.113409-2007
DOI : 10.1103/PhysRevB.74.121401

M. Jones, W. K. Metzger, T. J. Mcdonald, C. Engtrakul, R. J. Ellingson et al., Extrinsic and Intrinsic Effects on the Excited-State Kinetics of Single-Walled Carbon Nanotubes, Extrinsic and Intrinsic Effects on the Excited-State Kinetics of Single-Walled Carbon Nanotubes, pp.300-306, 2007.
DOI : 10.1021/nl0622808

G. Scholes, M. J. Rumbles, and . Heben, Temperature-Dependent Excitonic Decay and Multiple States in Single-Wall Carbon Nanotubes, The Journal of Physical Chemistry C, vol.111, pp.3601-3606, 2007.

T. Gokus, L. Cognet, J. G. Duque, M. Pasquali, and A. , Mono- and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, issue.33, pp.14025-14028, 2010.
DOI : 10.1021/jp1049217

URL : https://hal.archives-ouvertes.fr/hal-00671137

L. Biadala, Y. Louyer, and P. Tamarat, Nanocrystals in External Magnetic Fields, Physical Review Letters, vol.105, issue.15, pp.157402-2010
DOI : 10.1016/j.cplett.2008.09.020

URL : https://hal.archives-ouvertes.fr/hal-00611555

M. J. Fernée, P. Tamarat, and B. Lounis, Spectroscopy of single nanocrystals, Spectroscopy of single nanocrystals, pp.1311-1337
DOI : 10.1021/nl300642k

C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani et al., Intersubband Exciton Relaxation Dynamics in Single-Walled Carbon Nanotubes, Intersubband Exciton Relaxation Dynamics in Single-Walled Carbon Nanotubes, pp.207401-75, 2005.
DOI : 10.1088/0953-8984/11/15/012

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Physical Review B, vol.126, issue.24, pp.241403-75, 2004.
DOI : 10.1103/PhysRevLett.92.257402

L. Huang, T. D. Krauss, and . Quantized, Quantized Bimolecular Auger Recombination of Excitons in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.285, issue.5, pp.57407-75, 2006.
DOI : 10.1103/PhysRevLett.94.157402

T. Koyama, Y. Miyata, H. Kishida, H. Shinohara, and A. Nakamura, Photophysics in Single-Walled Carbon Nanotubes with (6,4) Chirality at High Excitation Densities: Bimolecular Auger Recombination and Phase-Space Filling of Excitons, The Journal of Physical Chemistry C, vol.117, issue.4, pp.1974-1981
DOI : 10.1021/jp312798h

L. Weisman, M. Cognet, M. Gallart, B. Ziegler, B. Hönerlage et al., single carrier, and trion generation dynamics in singlewalled carbon nanotubes, Physical Review B, vol.87, issue.76, pp.205412-75, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00909442

S. Berciaud and L. , Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, pp.77402-77, 2008.
DOI : 10.1021/ja071553d

URL : https://hal.archives-ouvertes.fr/hal-00719454

C. Cohen-tannoudji, J. Dupont-roc, and G. Grynberg, Processus d'interaction entre photons et atomes, Les Ulis [France] CNRS Éditions, p.78, 2001.

V. Perebeinos and P. , Phonon and Electronic Nonradiative Decay Mechanisms of Excitons in Carbon Nanotubes, Physical Review Letters, vol.70, issue.5, pp.57401-92, 2008.
DOI : 10.1103/PhysRevLett.68.631

L. Cognet, D. A. Tsyboulski, J. R. Rocha, C. D. Doyle, J. M. Tour et al., Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions, Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions, pp.1465-1468, 2007.
DOI : 10.1021/ja046450z

URL : https://hal.archives-ouvertes.fr/hal-00164617

C. Georgi, M. Böhmler, H. Qian, L. Novotny, and A. Hartschuh, Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy, physica status solidi (b), pp.11-12, 2009.
DOI : 10.1021/nl051829k

«. Doorn and . Disorder, Limited Exciton Transport in Colloidal Single-Wall Carbon Nanotubes, Nano Letters, vol.12, issue.94, pp.5091-5096
URL : https://hal.archives-ouvertes.fr/hal-00735016

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu et al., Brightening of excitons in carbon nanotubes on dimensionality modification, Brightening of excitons in carbon nanotubes on dimensionality modification, pp.715-719
DOI : 10.1038/nphoton.2012.75

K. Yoshikawa, R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Mechanism of exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy, Applied Physics Letters, vol.94, issue.9, pp.93109-92, 2009.
DOI : 10.1103/PhysRevB.65.235412

L. Luo, I. Chatzakis, A. Patz, and J. Wang, Ultrafast Terahertz Probes of Interacting Dark Excitons in Chirality-Specific Semiconducting Single-Walled Carbon Nanotubes, Physical Review Letters, vol.111, issue.10, pp.107402-93, 2015.
DOI : 10.1103/PhysRevLett.108.167401

T. Nishihara, Y. Yamada, M. Okano, and Y. Kanemitsu, Dynamics of the Lowest-Energy Excitons in Single-Walled Carbon Nanotubes under Resonant and Nonresonant Optical Excitation, The Journal of Physical Chemistry C, vol.119, issue.51, pp.28654-28659
DOI : 10.1021/acs.jpcc.5b09485

I. B. Mortimer and R. J. Nicholas, Role of Bright and Dark Excitons in the Temperature-Dependent Photoluminescence of Carbon Nanotubes, Physical Review Letters, vol.98, issue.2, pp.27404-101, 2007.
DOI : 10.1142/S0217979204026913

L. Chico, M. P. López-sancho, and M. C. Muñoz, Curvature-induced anisotropic spin-orbit splitting in carbon nanotubes, Physical Review B, vol.79, issue.23, pp.235423-105, 2009.
DOI : 10.1143/JPSJ.74.777

W. Izumida, K. Sato, and R. Saito, Spin???Orbit Interaction in Single Wall Carbon Nanotubes: Symmetry Adapted Tight-Binding Calculation and Effective Model Analysis, Journal of the Physical Society of Japan, vol.78, issue.7, pp.74707-105, 2009.
DOI : 10.1143/JPSJ.78.074707

H. Liu, D. Heinze, H. T. Duc, S. Schumacher, and T. Meier, Curvature effects in the band structure of carbon nanotubes including spin???orbit coupling, Journal of Physics: Condensed Matter, vol.27, issue.44, pp.445501-2015
DOI : 10.1088/0953-8984/27/44/445501

X. Zhang, F. Yang, D. Zhao, L. Cai, P. Luan et al., Temperature dependent Raman spectra of isolated suspended single-walled carbon nanotubes, Nanoscale, vol.126, issue.8, pp.3949-3953
DOI : 10.1115/1.1752925

O. Kiowski, K. Arnold, S. Lebedkin, F. Hennrich, and M. M. Kappes, Direct Observation of Deep Excitonic States in the Photoluminescence Spectra of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.99, issue.23, pp.237402-106, 2007.
DOI : 10.1103/PhysRevB.74.035415

S. Lebedkin, F. Hennrich, O. Kiowski, and M. Kappes, Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways, Physical Review B, vol.77, issue.16, pp.165429-106, 2008.
DOI : 10.1021/nl071561s

H. Harutyunyan, T. Gokus, A. A. Green, M. C. Hersam, M. Allegrini et al., Defect-Induced Photoluminescence from Dark Excitonic States in Individual Single-Walled Carbon Nanotubes, Defect-Induced Photoluminescence from Dark Excitonic States in Individual Single-Walled Carbon Nanotubes, pp.2010-2014, 2009.
DOI : 10.1021/nl9002798

URL : http://arxiv.org/abs/0812.1040

M. Yoshida, A. Popert, and Y. K. Kato, Gate-voltage induced trions in suspended carbon nanotubes, Physical Review B, vol.93, issue.4, pp.41402-108, 2016.
DOI : 10.1103/PhysRevLett.92.257402

URL : http://doi.org/10.1103/physrevb.93.041402

S. M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart et al., All-Optical Trion Generation in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.107, issue.18, pp.187401-2011
DOI : 10.1103/PhysRevLett.101.157404

URL : https://hal.archives-ouvertes.fr/hal-00617981

L. Colombier, J. Selles, E. Rousseau, J. S. Lauret, F. Vialla et al., Detection of a Biexciton in Semiconducting Carbon Nanotubes Using Nonlinear Optical Spectroscopy, Physical Review Letters, vol.109, issue.19, pp.197402-2012
DOI : 10.1103/PhysRevLett.104.017401

URL : https://hal.archives-ouvertes.fr/hal-00750969

J. Mu, Y. Ma, H. Yin, C. Liu, and M. Rohlfing, Photoluminescence of Single-Walled Carbon Nanotubes: The Role of Stokes Shift and Impurity Levels, Physical Review Letters, vol.111, issue.13, pp.137401-2013
DOI : 10.1103/PhysRevB.83.045407

S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. B. Weisman, Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent Single-Walled Carbon Nanotubes, Science, vol.123, issue.39, pp.1656-1659
DOI : 10.1021/ja016267v

M. Iwamura, N. Akizuki, Y. Miyauchi, S. Mouri, J. Shaver et al., Nonlinear Photoluminescence Spectroscopy of Carbon Nanotubes with Localized Exciton States, Nonlinear Photoluminescence Spectroscopy of Carbon Nanotubes with Localized Exciton States, pp.11254-11260
DOI : 10.1021/nn503803b

URL : https://hal.archives-ouvertes.fr/hal-01080745

X. Ma, N. F. Hartmann, J. K. Baldwin, S. K. Doorn, and H. Htoon, « Roomtemperature single-photon generation from solitary dopants of carbon nanotubes, Nature Nanotechnology, pp.2015-110

N. F. Hartmann, S. E. Yalcin, L. Adamska, E. H. Hároz, X. Ma et al., Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes, Nanoscale, vol.9, issue.48, pp.20521-20530
DOI : 10.1021/acsnano.5b01997

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al., Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nature Chemistry, vol.413, issue.10, pp.840-845
DOI : 10.1016/j.chemphys.2012.10.010

N. F. Hartmann, K. A. Velizhanin, E. H. Haroz, M. Kim, X. Ma et al., Defect States in Single-Walled Carbon Nanotubes, Photoluminescence Dynamics of Aryl sp3 Defect States in Single-Walled Carbon Nanotubes, pp.8355-8365
DOI : 10.1021/acsnano.6b02986

T. Inoue, K. Matsuda, Y. Murakami, S. Maruyama, and Y. Kanemitsu, Diameter dependence of exciton-phonon interaction in individual single-walled carbon nanotubes studied by microphotoluminescence spectroscopy, Physical Review B, vol.73, issue.23, pp.233401-110, 2006.
DOI : 10.1103/PhysRevB.70.045419

K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, and Y. Kanemitsu, Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Physical Review B, vol.77, issue.3, pp.33406-110, 2008.
DOI : 10.1103/PhysRevB.74.165332

J. S. Honem, G. Dresselhaus, P. Dresselhaus, and . Avouris, Phonons and Thermal Properties of Carbon Nanotubes, Carbon Nanotubes, pp.273-286, 2001.

G. Pennington and N. Goldsman, Low-field semiclassical carrier transport in semiconducting carbon nanotubes, Physical Review B, vol.7312, issue.20, p.113, 2005.
DOI : 10.1103/PhysRev.112.698

H. W. Zhang, Z. Yao, J. B. Wang, and W. X. Zhong, Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method, International Journal of Solids and Structures, vol.44, issue.20, pp.6428-6449
DOI : 10.1016/j.ijsolstr.2007.02.033

D. Karaiskaj and A. Mascarenhas, Role of electron-phonon interactions and external strain on the electronic properties of semiconducting carbon nanotubes, Physical Review B, vol.75, issue.11, pp.115426-2007
DOI : 10.1007/s003390051006

Y. Ma, M. W. Graham, G. R. Fleming, A. A. Green, and M. C. Hersam, Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes, Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes, pp.217402-2008
DOI : 10.1103/PhysRevLett.97.257401

D. T. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J. S. Lauret et al., Phonon-induced dephasing in single-wall carbon nanotubes, Phonon-induced dephasing in single-wall carbon nanotubes, pp.115463-2011
DOI : 10.1103/PhysRevB.72.235408

URL : https://hal.archives-ouvertes.fr/hal-00627579

H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes, Physical Review B, vol.42, issue.23, pp.235412-118, 2002.
DOI : 10.1143/JPSJ.70.2401

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.511.4096

V. N. Popov and P. Lambin, Intraband electron-phonon scattering in single-walled carbon nanotubes, Physical Review B, vol.74, issue.7, pp.75415-118, 2006.
DOI : 10.1103/PhysRevB.19.6130

M. S. Hofmann, J. Noé, A. Kneer, J. J. Crochet, and A. Högele, Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes, Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes, pp.2958-2962
DOI : 10.1021/acs.nanolett.5b04901