D. Selkoe, Alzheimer's Disease, Cold Spring Harbor Perspectives in Biology, vol.3, issue.7, pp.741-66, 2001.
DOI : 10.1101/cshperspect.a004457

J. Hardy and D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in pharmacological sciences, pp.383-391, 1991.

J. Lee and P. Han, An Update of Animal Models of Alzheimer Disease with a Reevaluation of Plaque Depositions, Experimental Neurobiology, vol.22, issue.2, pp.84-95, 2013.
DOI : 10.5607/en.2013.22.2.84

S. Oddo, A. Caccamo, J. Shepherd, M. Murphy, T. Golde et al., Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles, Neuron, vol.39, issue.3, pp.409-430, 2003.
DOI : 10.1016/S0896-6273(03)00434-3

T. Jonsson, J. Atwal, S. Steinberg, J. Snaedal, P. Jonsson et al., A mutation in APP protects against Alzheimer???s disease and age-related cognitive decline, Nature, vol.43, issue.7409, pp.96-910, 1038.
DOI : 10.1038/ng.781

M. Hick, U. Herrmann, S. Weyer, J. Mallm, J. Tschape et al., Acute function of secreted amyloid precursor protein fragment APPsalpha in synaptic plasticity, Acta neuropathologica, vol.129, issue.1, 2015.

E. Doyle, M. Bruce, K. Breen, D. Smith, B. Anderton et al., Intraventricular infusions of antibodies to amyloid-??-protein precursor impair the acquisition of a passive avoidance response in the rat, Neuroscience Letters, vol.115, issue.1, pp.97-102, 1990.
DOI : 10.1016/0304-3940(90)90524-D

G. Huber, J. Martin, J. Loffler, and J. Moreau, Involvement of amyloid precursor protein in memory formation in the rat: an indirect antibody approach, Brain Research, vol.603, issue.2, pp.348-52, 1993.
DOI : 10.1016/0006-8993(93)91261-P

S. Weyer, M. Zagrebelsky, U. Herrmann, M. Hick, L. Ganss et al., Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPs?? expression, Acta Neuropathologica Communications, vol.460, issue.1, pp.36-46, 2014.
DOI : 10.1016/j.neulet.2009.05.040

K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya et al., Correlative Memory Deficits, A?? Elevation, and Amyloid Plaques in Transgenic Mice, Science, vol.2, issue.8, pp.99-102, 1996.
DOI : 10.1038/nm0896-864

P. Moran, L. Higgins, B. Cordell, and P. Moser, Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein., Proceedings of the National Academy of Sciences, vol.92, issue.12, pp.5341-5346, 1995.
DOI : 10.1073/pnas.92.12.5341

T. Saito, Y. Matsuba, N. Mihira, J. Takano, P. Nilsson et al., Single App knock-in mouse models of Alzheimer's disease, Nature Neuroscience, vol.97, issue.5, pp.661-664, 2014.
DOI : 10.1073/pnas.97.26.14731

E. Karran, M. Mercken, D. Strooper, and B. , The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics, Nature Reviews Drug Discovery, vol.16, issue.9, pp.698-712, 2011.
DOI : 10.1111/j.1750-3639.2006.tb00559.x

D. Quon, Y. Wang, R. Catalano, J. Scardina, K. Murakami et al., Formation of ??-amyloid protein deposits in brains of transgenic mice, Nature, vol.352, issue.6332, pp.239-4110, 1038.
DOI : 10.1038/352239a0

L. Higgins, R. Catalano, D. Quon, and C. B. , Transgenic Mice Expressing Human ??-APP751, But Not Mice Expressing ??-APP695, Display Early Alzheimer's Disease-like Histopathologya, Annals of the New York Academy of Sciences, vol.352, issue.1, pp.224-231, 1993.
DOI : 10.1038/352239a0

S. Sinha and I. Lieberburg, Cellular mechanisms of beta -amyloid production and secretion, Proceedings of the National Academy of Sciences, vol.23, issue.2, pp.11049-53, 1999.
DOI : 10.1016/S0169-328X(97)00091-0

S. Sudoh, Y. Kawamura, S. Sato, R. Wang, T. Saido et al., Presenilin 1 Mutations Linked to Familial Alzheimer's Disease Increase the Intracellular Levels of Amyloid ??-Protein 1-42 and Its N-Terminally Truncated Variant(s) Which Are Generated at Distinct Sites, Journal of Neurochemistry, vol.71, issue.4, pp.1535-1578, 1998.
DOI : 10.1046/j.1471-4159.1998.71041535.x

D. Jabaudon, K. Shimamoto, Y. Yasuda-kamatani, M. Scanziani, B. Gahwiler et al., Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin, Proceedings of the National Academy of Sciences, vol.450, issue.1, pp.8733-8741, 1999.
DOI : 10.1113/jphysiol.1992.sp019148

L. Meur, K. Galante, M. Angulo, M. Audinat, and E. , Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. The Journal of physiology, pp.373-83, 2007.

R. Czajkowski, B. Jayaprakash, B. Wiltgen, T. Rogerson, M. Guzman-karlsson et al., Encoding and storage of spatial information in the retrosplenial cortex, Proceedings of the National Academy of Sciences, vol.16, issue.5, pp.8661-8667, 2014.
DOI : 10.1038/nn.3311

K. Radwanska, G. Schenatto-pereira, M. Ziolkowska, K. Lukasiewicz, and K. Giese, Mapping fear memory consolidation and extinction-specific expression of JunB. Neurobiology of learning and memory, 2015.
DOI : 10.1016/j.nlm.2015.08.007

C. Dejean, J. Courtin, R. Rozeske, M. Bonnet, V. Dousset et al., Neuronal Circuits for Fear Expression and Recovery: Recent Advances and Potential Therapeutic Strategies, Biological Psychiatry, vol.78, issue.5, pp.298-306, 2015.
DOI : 10.1016/j.biopsych.2015.03.017

C. Tackenberg, S. Grinschgl, A. Trutzel, A. Santuccione, M. Frey et al., NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss, Cell Death and Disease, vol.18, issue.4, 2013.
DOI : 10.1242/jcs.048090

URL : http://doi.org/10.1038/cddis.2013.129

T. Tokutake, K. Kasuga, R. Yajima, Y. Sekine, T. Tezuka et al., Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. The Journal of biological chemistry, pp.35222-35255, 2012.

J. Augustinack, A. Schneider, E. Mandelkow, and B. Hyman, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease, Acta Neuropathologica, vol.103, issue.1, pp.26-3510, 2001.
DOI : 10.1007/s004010100423

J. Caldwell, M. Klevanski, M. Saar, and U. Muller, Roles of the amyloid precursor protein family in the peripheral nervous system. Mechanisms of development, pp.6-8433, 2013.

D. Kogel, T. Deller, and C. Behl, Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging, Experimental Brain Research, vol.81, issue.3-4, pp.3-4471, 2012.
DOI : 10.1016/0092-8674(95)90073-X

A. Volianskis, R. Kostner, M. Molgaard, S. Hass, and M. Jensen, Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1??E9-deleted transgenic mice model of ??-amyloidosis, Neurobiology of Aging, vol.31, issue.7
DOI : 10.1016/j.neurobiolaging.2008.08.005

A. Berger, S. Lorain, J. C. Desrosiers, M. Peccate, C. Voit et al., Repair of Rhodopsin mRNA by Spliceosome-Mediated RNA Trans-Splicing: A New Approach for Autosomal Dominant Retinitis Pigmentosa. Molecular therapy : the journal of the American Society of Gene Therapy

W. Anderson and G. Collingridge, The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events, Journal of Neuroscience Methods, vol.108, issue.1, pp.71-83, 2001.
DOI : 10.1016/S0165-0270(01)00374-0

N. Cartier, Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy, Science, vol.116, issue.11, pp.818-82310, 2009.
DOI : 10.1172/JCI28873

N. Deglon and P. Hantraye, Viral vectors as tools to model and treat neurodegenerative disorders. The journal of gene medicine, pp.530-53910, 2005.

L. Devi and M. Ohno, Phospho-eIF2alpha level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice, PloS one, vol.5, 2010.

E. S. Drummond, Pathology Associated with AAV Mediated Expression of Beta Amyloid or C100 in Adult Mouse Hippocampus and Cerebellum, PLoS ONE, vol.24, issue.3, 2013.
DOI : 10.1371/journal.pone.0059166.t002

T. Jaworski, AAV-Tau Mediates Pyramidal Neurodegeneration by Cell-Cycle Re-Entry without Neurofibrillary Tangle Formation in Wild-Type Mice, PLoS ONE, vol.48, issue.10, 2009.
DOI : 10.1371/journal.pone.0007280.s010

R. Kayed, Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-48910, 2003.
DOI : 10.1126/science.1079469

T. K. Kim, Analysis of differential plaque depositions in the brains of Tg2576 and

. Appswe, PS1dE9 transgenic mouse models of Alzheimer's disease. Experimental & molecular medicine 44, pp.492-502, 2012.

D. Kirik, Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, pp.2780-279120026246, 2002.

P. A. Lawlor, Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels, Molecular neurodegeneration, vol.2, issue.11, pp.10-1186, 2007.
DOI : 10.1186/1750-1326-2-11

URL : http://doi.org/10.1186/1750-1326-2-11

J. E. Lee and P. L. Han, An Update of Animal Models of Alzheimer Disease with a Reevaluation of Plaque Depositions, Experimental Neurobiology, vol.22, issue.2, pp.84-95, 2013.
DOI : 10.5607/en.2013.22.2.84

K. W. Lee, Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein, Neurobiology of Disease, vol.22, issue.1, pp.10-24011, 2006.
DOI : 10.1016/j.nbd.2005.09.011

J. Lewis, Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP, Science, vol.293, issue.5534, pp.1487-149110, 2001.
DOI : 10.1126/science.1058189

L. Bianco, C. Ridet, J. L. Schneider, B. L. Deglon, N. Aebischer et al., ??-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease, Proceedings of the National Academy of Sciences, vol.95, issue.1, pp.10813-1081810, 2002.
DOI : 10.1016/S0092-8674(00)81782-1

J. Nalbantoglu, Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein, Nature, vol.387, issue.6632, pp.500-50510, 1997.
DOI : 10.1038/387500a0

E. Mcgowan, A??42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice, Neuron, vol.47, issue.2, pp.191-199030, 2005.
DOI : 10.1016/j.neuron.2005.06.030

S. Oddo, A. Caccamo, M. Kitazawa, B. P. Tseng, and F. M. Laferla, Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease, Neurobiology of Aging, vol.24, issue.8, pp.1063-1070, 2003.
DOI : 10.1016/j.neurobiolaging.2003.08.012

J. J. Palop, Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits, Proceedings of the National Academy of Sciences, vol.26, issue.2, pp.9572-957710, 2003.
DOI : 10.1016/S0893-133X(01)00332-3

K. Schindowski, Alzheimer's Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits, The American Journal of Pathology, vol.169, issue.2, pp.599-616060002, 2006.
DOI : 10.2353/ajpath.2006.060002

D. J. Selkoe, Presenilin, Notch, and the genesis and treatment of Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.48, issue.4, pp.11039-11041211352598, 2001.
DOI : 10.1002/1531-8249(200010)48:4<567::AID-ANA3>3.0.CO;2-W

K. Tanemura, Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, pp.133-141, 2002.

C. Weiss, Impaired Eyeblink Conditioning and Decreased Hippocampal Volume in PDAPP V717F Mice, Neurobiology of Disease, vol.11, issue.3, pp.425-433, 2002.
DOI : 10.1006/nbdi.2002.0555

M. A. Westerman, The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, pp.1858-1867, 2002.

S. A. Wolf, Cognitive and Physical Activity Differently Modulate Disease Progression in the Amyloid Precursor Protein (APP)-23 Model of Alzheimer???s Disease, Biological Psychiatry, vol.60, issue.12, pp.1314-1323, 2006.
DOI : 10.1016/j.biopsych.2006.04.004

J. L. Cummings, T. Morstorf, and K. Zhong, Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimer's research & therapy 6, p.37, 2014.
DOI : 10.1186/alzrt269

URL : http://alzres.biomedcentral.com/track/pdf/10.1186/alzrt269?site=alzres.biomedcentral.com

Y. Wu, L. Fratiglioni, F. E. Matthews, A. Lobo, M. M. Breteler et al., Dementia in western Europe: epidemiological evidence and implications for policy making, The Lancet Neurology, vol.15, issue.1, pp.116-124, 2016.
DOI : 10.1016/S1474-4422(15)00092-7

A. Alzheimer, Über einen eigenartigen schweren Erkrankung-sproze? der Hirnrinde, Neurologisches Centralblatt, vol.23, pp.1129-1136, 1906.

A. Alzheimer, R. A. Stelzmann, H. N. Schnitzlein, and F. R. Murtagh, An English translation of Alzheimer's 1907 paper, Uber eine eigenartige Erkankung der Hirnrinde, pp.429-431, 1995.

K. Maurer, S. Volk, and H. Gerbaldo, Auguste D and Alzheimer's disease, The Lancet, vol.349, issue.9064, pp.1546-1549, 1997.
DOI : 10.1016/S0140-6736(96)10203-8

G. Perusini, Uber klinisch und histologisch eigenartige psychische Erkrankungen des späteren Lebensalters, Histologische und Histopathologische Arbeiten, pp.297-351, 1909.

A. Alzheimer, Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die gesamte neurologie und psychiatrie 4, pp.356-385, 1911.
DOI : 10.1177/0957154x9100200506

H. H. Klünemann, W. Fronhöfer, H. Wurster, W. Fischer, B. Ibach et al., Alzheimer's second patient: Johann F. and his family, Annals of Neurology, vol.5, issue.suppl 3, pp.520-523, 2002.
DOI : 10.1093/hmg/5.7.985

P. Divry and M. Florkin, Sur les proprietes optiques de l'amyloide, C R Soc Biol, vol.97, pp.1808-1810, 1927.

M. Kidd, Paired Helical Filaments in Electron Microscopy of Alzheimer's Disease, Nature, vol.86, issue.4863, pp.192-193, 1963.
DOI : 10.1113/jphysiol.1961.sp006744

G. G. Glenner and C. W. Wong, Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochemical and Biophysical Research Communications, vol.120, issue.3, pp.885-890, 1984.
DOI : 10.1016/S0006-291X(84)80190-4

G. G. Glenner, C. W. Wong, V. Quaranta, and E. D. Eanes, The Nature and Pathogenesis of the Amyloid Deposits in Alzheimer???s Disease, Appl Pathol, vol.2, pp.357-369, 1984.
DOI : 10.1007/978-94-009-4309-4_24

N. Nukina and Y. Ihara, One of the Antigenic Determinants of Paired Helical Filaments Is Related to Tau Protein1, The Journal of Biochemistry, vol.99, issue.5, pp.1541-1544, 1986.
DOI : 10.1093/oxfordjournals.jbchem.a135625

I. Grundke-iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi et al., Microtubuleassociated protein tau. A component of Alzheimer paired helical filaments, The Journal of biological chemistry, vol.261, pp.6084-6089, 1986.

N. K. Robakis, N. Ramakrishna, G. Wolfe, and H. M. Wisniewski, Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides., Proceedings of the National Academy of Sciences, vol.84, issue.12, pp.4190-4194, 1987.
DOI : 10.1073/pnas.84.12.4190

J. Murrell, M. Farlow, B. Ghetti, and M. D. Benson, A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease, Science, vol.254, issue.5028, pp.97-99, 1991.
DOI : 10.1126/science.1925564

A. Goate, M. C. Chartier-harlin, M. Mullan, J. Brown, F. Crawford et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease, Nature, vol.349, issue.6311, pp.704-706, 1991.
DOI : 10.1038/349704a0

M. C. Chartier-harlin, F. Crawford, H. Houlden, A. Warren, D. Hughes et al., Early-onset Alzheimer's disease caused by mutations at codon 717 of the ??-amyloid precursor protein gene, Nature, vol.353, issue.6347, pp.844-846, 1991.
DOI : 10.1038/353844a0

M. Mullan, H. Houlden, M. Windelspecht, L. Fidani, C. Lombardi et al., A locus for familial early???onset Alzhelmer's disease on the long arm of chromosome 14, proximal to the ??1???antichymotrypsin gene, Nature Genetics, vol.47, issue.4, pp.340-342, 1992.
DOI : 10.1016/0022-3956(75)90026-6

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, issue.5054, pp.184-185, 1992.
DOI : 10.1126/science.1566067

H. Reznik-wolf, T. A. Treves, M. Davidson, J. Aharon-peretz, P. H. St-george-hyslop et al., A novel mutation of presenilin 1 in familial Alzheimer's disease in Israel detected by denaturing gradient gel electrophoresis, Human Genetics, vol.98, issue.6, pp.700-702, 1996.
DOI : 10.1007/s004390050288

C. A. Lemere, F. Lopera, K. S. Kosik, C. L. Lendon, J. Ossa et al., The E280A presenilin 1 Alzheimer mutation produces increased A??42 deposition and severe cerebellar pathology, Nature Medicine, vol.1, issue.10, pp.1146-1150, 1996.
DOI : 10.1038/360672a0

R. Vassar, B. D. Bennett, S. Babu-khan, S. Kahn, E. A. Mendiaz et al., Beta-Secretase Cleavage of Alzheimer's Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE, Science, vol.286, issue.5440, pp.735-741, 1999.
DOI : 10.1126/science.286.5440.735

A. M. Fjell, L. Mcevoy, D. Holland, A. M. Dale, and K. B. Walhovd, Brain Changes in Older Adults at Very Low Risk for Alzheimer's Disease, Journal of Neuroscience, vol.33, issue.19, pp.8237-8242, 2013.
DOI : 10.1523/JNEUROSCI.5506-12.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050197

D. Erten-lyons, H. H. Dodge, R. Woltjer, L. C. Silbert, D. B. Howieson et al., Neuropathologic Basis of Age-Associated Brain Atrophy, JAMA Neurology, vol.70, issue.5, pp.616-622, 2013.
DOI : 10.1001/jamaneurol.2013.1957

D. R. Thal, U. Rüb, M. Orantes, and H. Braak, Phases of A??-deposition in the human brain and its relevance for the development of AD, Neurology, vol.58, issue.12, pp.1791-1800, 2002.
DOI : 10.1212/WNL.58.12.1791

B. Darocha-souto, T. C. Scotton, M. Coma, A. Serrano-pozo, T. Hashimoto et al., Brain Oligomeric ??-Amyloid but Not Total Amyloid Plaque Burden Correlates With Neuronal Loss and Astrocyte Inflammatory Response in Amyloid Precursor Protein/Tau Transgenic Mice, Journal of Neuropathology & Experimental Neurology, vol.70, issue.5, pp.360-376, 2011.
DOI : 10.1097/NEN.0b013e318217a118

I. H. Cheng, K. Scearce-levie, J. Legleiter, J. J. Palop, H. Gerstein et al., Accelerating Amyloid-?? Fibrillization Reduces Oligomer Levels and Functional Deficits in Alzheimer Disease Mouse Models, Journal of Biological Chemistry, vol.157, issue.33, pp.23818-23828, 2007.
DOI : 10.1016/S0896-6273(03)00850-X

T. Tomiyama, T. Nagata, H. Shimada, R. Teraoka, A. Fukushima et al., A new amyloid ?? variant favoring oligomerization in Alzheimer's-type dementia, Annals of Neurology, vol.61, issue.3, pp.377-387, 2008.
DOI : 10.1002/ana.21321

M. Storandt, M. A. Mintun, D. Head, and J. C. Morris, Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition, Archives of neurology, vol.66, pp.1476-1481, 2009.

J. C. Morris, C. M. Roe, E. A. Grant, D. Head, M. Storandt et al., Pittsburgh Compound B Imaging and Prediction of Progression From Cognitive Normality to Symptomatic Alzheimer Disease, Archives of Neurology, vol.66, issue.12, pp.1469-1475, 2009.
DOI : 10.1001/archneurol.2009.269

P. H. Gibson, FORM AND DISTRIBUTION OF SENILE PLAQUES SEEN IN SILVER IMPREGNATED SECTIONS IN THE BRAINS OF INTELLECTUALLY NORMAL ELDERLY PEOPLE AND PEOPLE WITH ALZHEIMER-TYPE DEMENTIA, Neuropathology and Applied Neurobiology, vol.3, issue.5, pp.379-389, 1983.
DOI : 10.1016/0022-510X(82)90155-1

I. R. Mackenzie, R. S. Mclachlan, C. S. Kubu, and L. A. Miller, Prospective neuropsychological assessment of nondemented patients with biopsy proven senile plaques, Neurology, vol.46, issue.2, pp.425-429, 1996.
DOI : 10.1212/WNL.46.2.425

P. V. Arriagada, J. H. Growdon, E. T. Hedley-whyte, and B. Hyman, Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease, Neurology, vol.42, issue.3, pp.631-639, 1992.
DOI : 10.1212/WNL.42.3.631

P. Giannakopoulos, F. R. Herrmann, T. Bussière, C. Bouras, E. Kövari et al., Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease, Neurology, vol.60, issue.9, pp.1495-1500, 2003.
DOI : 10.1212/01.WNL.0000063311.58879.01

M. Kidd, . Alzheimer-'s-disease--an, . Electron, and . Study, ALZHEIMER???S DISEASE ???AN ELECTRON MICROSCOPICAL STUDY, Brain, vol.87, issue.2, pp.307-320, 1964.
DOI : 10.1093/brain/87.2.307

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology., Proceedings of the National Academy of Sciences, vol.83, issue.13, pp.4913-4917, 1986.
DOI : 10.1073/pnas.83.13.4913

J. C. Augustinack, A. Schneider, E. Mandelkow, and B. Hyman, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease, Acta Neuropathologica, vol.103, issue.1, pp.26-35, 2002.
DOI : 10.1007/s004010100423

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/978-3-642-70644-8_2

K. I. Taylor and A. Probst, Anatomic localization of the transentorhinal region of the perirhinal cortex, Neurobiology of Aging, vol.29, issue.10, pp.1591-1596, 2008.
DOI : 10.1016/j.neurobiolaging.2007.03.024

J. L. Price, P. B. Davis, J. C. Morris, and D. L. White, The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease, Neurobiology of Aging, vol.12, issue.4, pp.295-312, 1991.
DOI : 10.1016/0197-4580(91)90006-6

Y. Grignon, C. Duyckaerts, M. Bennecib, and J. J. Hauw, Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer's disease, Acta Neuropathologica, vol.95, issue.4, pp.395-406, 1998.
DOI : 10.1007/s004010050816

J. C. Troncoso, R. R. Sukhov, C. H. Kawas, and V. E. Koliatsos, In Situ Labeling of Dying Cortical Neurons in Normal Aging and in Alzheimer's Disease: Correlations with Senile Plaques and Disease Progression, Journal of Neuropathology & Experimental Neurology, vol.55, issue.11, pp.1134-1142, 1996.
DOI : 10.1097/00005072-199611000-00004

L. A. Selznick, D. M. Holtzman, B. H. Han, M. Gökden, A. N. Srinivasan et al., In Situ Immunodetection of Neuronal Caspase-3 Activation in Alzheimer Disease, Journal of Neuropathology & Experimental Neurology, vol.58, issue.9, pp.1020-1026, 1999.
DOI : 10.1097/00005072-199909000-00012

S. W. Scheff, S. T. Dekosky, and D. A. Price, Quantitative assessment of cortical synaptic density in Alzheimer's disease, Neurobiology of Aging, vol.11, issue.1, pp.29-37, 1990.
DOI : 10.1016/0197-4580(90)90059-9

S. W. Scheff and D. A. Price, Synapse loss in the temporal lobe in Alzheimer's disease, Annals of Neurology, vol.192, issue.2, pp.190-199, 1993.
DOI : 10.1212/WNL.42.3.631

D. J. Selkoe, Alzheimer's Disease Is a Synaptic Failure, Science, vol.298, issue.5594, pp.789-791, 2002.
DOI : 10.1126/science.1074069

R. Sherrington, E. I. Rogaev, Y. Liang, E. A. Rogaeva, G. Levesque et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease, Nature, vol.375, issue.6534, pp.754-760, 1995.
DOI : 10.1038/375754a0

E. I. Rogaev, R. Sherrington, E. A. Rogaeva, G. Levesque, M. Ikeda et al., Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene, Nature, vol.376, issue.6543, pp.775-778, 1995.
DOI : 10.1038/376775a0

U. Finckh, A. Alberici, M. Antoniazzi, L. Benussi, V. Fedi et al., Variable expression of familial Alzheimer disease associated with presenilin 2 mutation M239I, Neurology, vol.54, issue.10, pp.2006-2008, 2000.
DOI : 10.1212/WNL.54.10.2006

M. Cruts, C. M. Van-duijn, H. Backhovens, M. Van-den-broeck, A. Wehnert et al., Estimation of the Genetic Contribution of Presenilin-1 and -2 Mutations in a Population-Based Study of Presenile Alzheimer Disease, Human Molecular Genetics, vol.7, issue.1, pp.43-51, 1998.
DOI : 10.1093/hmg/7.1.43

R. E. Tanzi, J. F. Gusella, P. C. Watkins, G. A. Bruns, P. St-george-hyslop et al., Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science, vol.235, issue.4791, pp.880-884, 1987.
DOI : 10.1126/science.2949367

J. Kang, H. G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters et al., The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor, Nature, vol.325, issue.6106, pp.733-736, 1987.
DOI : 10.1038/325733a0

D. Goldgaber, M. I. Lerman, O. W. Mcbride, U. Saffiotti, and D. C. Gajdusek, Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease, Science, vol.235, issue.4791, pp.877-880, 1987.
DOI : 10.1126/science.3810169

X. D. Cai, T. E. Golde, and S. G. Younkin, Release of excess amyloid beta protein from a mutant amyloid beta protein precursor, Science, vol.259, issue.5094, pp.514-516, 1993.
DOI : 10.1126/science.8424174

M. Citron, T. Oltersdorf, C. Haass, L. Mcconlogue, A. Y. Hung et al., Mutation of the ??-amyloid precursor protein in familial Alzheimer's disease increases ??-protein production, Nature, vol.360, issue.6405, pp.672-674, 1992.
DOI : 10.1038/360672a0

C. Haass, A. Y. Hung, D. J. Selkoe, and D. B. Teplow, Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor, The Journal of biological chemistry, vol.269, pp.17741-17748, 1994.

J. Hardy and D. J. Selkoe, The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics, Science, vol.297, issue.5580, pp.353-356, 2002.
DOI : 10.1126/science.1072994

D. Xia, H. Watanabe, B. Wu, S. H. Lee, Y. Li et al., Presenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer???s Disease, Neuron, vol.85, issue.5, pp.967-981, 2015.
DOI : 10.1016/j.neuron.2015.02.010

E. L. Koedam, V. Lauffer, A. E. Van-der-vlies, W. M. Van-der-flier, P. Scheltens et al., Early-Versus Late-Onset Alzheimer's Disease: More than Age Alone, Journal of Alzheimer's Disease, vol.19, issue.4, pp.1401-1408, 2010.
DOI : 10.3233/JAD-2010-1337

E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families, Science, vol.261, issue.5123, pp.921-923, 1993.
DOI : 10.1126/science.8346443

A. Ueki, M. Kawano, Y. Namba, M. Kawakami, and K. Ikeda, A high frequency of apolipoprotein E4 isoprotein in Japanese patients with late-onset nonfamilial Alzheimer's disease, Neuroscience Letters, vol.163, issue.2, pp.166-168, 1993.
DOI : 10.1016/0304-3940(93)90373-S

S. Noguchi, K. Murakami, and N. Yamada, Apolipoprotein E genotype and Alzheimer's disease, The Lancet, vol.342, issue.8873, p.737, 1993.
DOI : 10.1016/0140-6736(93)91728-5

J. Poirier, J. Davignon, D. Bouthillier, S. Kogan, P. Bertrand et al., Apolipoprotein E polymorphism and Alzheimer's disease, The Lancet, vol.342, issue.8873, pp.697-699, 1993.
DOI : 10.1016/0140-6736(93)91705-Q

G. W. Rebeck, J. S. Reiter, D. K. Strickland, and B. Hyman, Apolipoprotein E in sporadic Alzheimer's disease: Allelic variation and receptor interactions, Neuron, vol.11, issue.4, pp.575-580, 1993.
DOI : 10.1016/0896-6273(93)90070-8

R. B. Demattos, J. R. Cirrito, M. Parsadanian, P. C. May, M. A. Dell et al., ApoE and Clusterin Cooperatively Suppress A?? Levels and Deposition, Neuron, vol.41, issue.2, pp.193-202, 2004.
DOI : 10.1016/S0896-6273(03)00850-X

W. Xu, L. Tan, and J. Yu, The Role of PICALM in Alzheimer???s Disease, Molecular Neurobiology, vol.7, issue.8, pp.399-413, 2015.
DOI : 10.1371/journal.pone.0044252

J. Rogers, R. Li, D. Mastroeni, A. Grover, B. Leonard et al., Peripheral clearance of amyloid ?? peptide by complement C3-dependent adherence to erythrocytes, Neurobiology of Aging, vol.27, issue.12, pp.1733-1739, 2006.
DOI : 10.1016/j.neurobiolaging.2005.09.043

H. Crehan, P. Holton, S. Wray, J. Pocock, R. Guerreiro et al., Complement receptor 1 (CR1) and Alzheimer's disease, Immunobiology, vol.217, issue.2, pp.244-250, 2012.
DOI : 10.1016/j.imbio.2011.07.017

H. Neumann and M. J. Daly, as Risk Factor for Alzheimer's Disease, New England Journal of Medicine, vol.368, issue.2, pp.182-184, 2013.
DOI : 10.1056/NEJMe1213157

R. Guerreiro, A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva et al., Alzheimer Genetic Analysis Group, pp.117-127, 2013.

L. Bertram, M. B. Mcqueen, K. Mullin, D. Blacker, and R. E. Tanzi, Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database, Nature Genetics, vol.14, issue.1, pp.17-23, 2007.
DOI : 10.1136/bmj.315.7109.629

D. B. Dubal and P. M. Wise, Estrogen and neuroprotection: from clinical observations to molecular mechanisms, Dialogues Clin Neurosci, vol.4, pp.149-161, 2002.

M. F. Folstein, S. E. Folstein, and P. R. Mchugh, ???Mini-mental state???, Journal of Psychiatric Research, vol.12, issue.3, pp.189-198, 1975.
DOI : 10.1016/0022-3956(75)90026-6

A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris et al., Cerebrospinal Fluid tau/??-Amyloid42 Ratio as a Prediction of Cognitive Decline in Nondemented Older Adults, Archives of Neurology, vol.64, issue.3, pp.343-349, 2007.
DOI : 10.1001/archneur.64.3.noc60123

A. M. Fagan, D. Head, A. R. Shah, D. Marcus, M. Mintun et al., correlates with brain atrophy in cognitively normal elderly, Annals of Neurology, vol.5, issue.spec no 2, pp.176-183, 2009.
DOI : 10.1212/01.WNL.0000115115.98960.37

T. Sunderland, G. Linker, N. Mirza, K. T. Putnam, D. L. Friedman et al., Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease, JAMA, vol.289, pp.2094-2103, 2003.

N. Mattsson, H. Zetterberg, O. Hansson, N. Andreasen, L. Parnetti et al., CSF Biomarkers and Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment, CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment, pp.385-393, 2009.
DOI : 10.1001/jama.2009.1064

C. A. Mathis, B. J. Lopresti, and W. Klunk, Impact of amyloid imaging on drug development in Alzheimer's disease, Nuclear Medicine and Biology, vol.34, issue.7, pp.809-822, 2007.
DOI : 10.1016/j.nucmedbio.2007.06.015

J. P. Kesslak, O. Nalcioglu, and C. W. Cotman, Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer's disease, Neurology, vol.41, issue.1, pp.51-54, 1991.
DOI : 10.1212/WNL.41.1.51

B. Dubois, H. H. Feldman, C. Jacova, S. T. Dekosky, P. Barberger-gateau et al., Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS???ADRDA criteria, The Lancet Neurology, vol.6, issue.8, pp.734-746, 2007.
DOI : 10.1016/S1474-4422(07)70178-3

B. Dubois, H. H. Feldman, C. Jacova, H. Hampel, J. L. Molinuevo et al., Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria, The Lancet Neurology, vol.13, issue.6, pp.614-629, 2014.
DOI : 10.1016/S1474-4422(14)70090-0

D. A. Drachman and J. Leavitt, Human memory and the cholinergic system. A relationship to aging? Archives of neurology 30, pp.113-121, 1974.

P. Davies and A. J. Maloney, SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE, The Lancet, vol.308, issue.8000, p.1403, 1976.
DOI : 10.1016/S0140-6736(76)91936-X

S. Filser, S. V. Ovsepian, M. Masana, L. Blazquez-llorca, A. Brandt-elvang et al., Pharmacological Inhibition of BACE1 Impairs Synaptic Plasticity and Cognitive Functions, Biological Psychiatry, vol.77, issue.8, pp.729-739, 2015.
DOI : 10.1016/j.biopsych.2014.10.013

R. S. Doody, R. G. Thomas, M. Farlow, T. Iwatsubo, B. Vellas et al., Alzheimer's Disease Cooperative Study Steering CommitteeSolanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease, pp.311-321, 2014.

S. Gandy and M. Sano, Alzheimer disease: Solanezumab???prospects for meaningful interventions in AD?, Nature Reviews Neurology, vol.6, issue.12, pp.669-670, 2015.
DOI : 10.1126/scitranslmed.3007941

R. B. Demattos, J. Lu, Y. Tang, M. M. Racke, C. A. Delong et al., A Plaque-Specific Antibody Clears Existing ??-amyloid Plaques in Alzheimer's Disease Mice, Neuron, vol.76, issue.5, pp.908-920, 2012.
DOI : 10.1016/j.neuron.2012.10.029

S. A. Tsai, M. J. Pokrass, N. R. Klauer, H. Nohara, and T. Su, Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid, Proceedings of the National Academy of Sciences, vol.23, issue.33, pp.6742-6747, 2015.
DOI : 10.1074/jbc.M110.150565

J. Hardy and D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer's disease, Trends in Pharmacological Sciences, vol.12, pp.383-388, 1991.
DOI : 10.1016/0165-6147(91)90609-V

E. Kojro and F. Fahrenholz, The Non-Amyloidogenic Pathway: Structure and Function of ??-Secretases, Subcell. Biochem, vol.38, pp.105-127, 2005.
DOI : 10.1007/0-387-23226-5_5

R. Fol, J. Braudeau, S. Ludewig, T. Abel, S. W. Weyer et al., Viral gene transfer of APPs?? rescues synaptic failure in an Alzheimer???s disease mouse model, Acta Neuropathologica, vol.29, issue.2, 2015.
DOI : 10.1523/JNEUROSCI.4104-09.2009

F. M. Laferla, K. N. Green, and S. Oddo, Intracellular amyloid-?? in Alzheimer's disease, Nature Reviews Neuroscience, vol.66, issue.7, pp.499-509, 2007.
DOI : 10.1016/S0002-9440(10)63388-3

Y. Luo, B. Bolon, M. A. Damore, D. Fitzpatrick, H. Liu et al., BACE1 (??-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time, Neurobiology of Disease, vol.14, issue.1, pp.81-88, 2003.
DOI : 10.1016/S0969-9961(03)00104-9

M. Tabaton, X. Zhu, G. Perry, M. A. Smith, and L. Giliberto, Signaling effect of amyloid-??42 on the processing of A??PP, Experimental Neurology, vol.221, issue.1, pp.18-25, 2010.
DOI : 10.1016/j.expneurol.2009.09.002

Z. Yao and V. Papadopoulos, Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity, FASEB J, vol.16, pp.1677-1679, 2002.

J. A. Bailey, B. Maloney, Y. Ge, and D. K. Lahiri, Functional activity of the novel Alzheimer's amyloid ??-peptide interacting domain (A??ID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis, Gene, vol.488, issue.1-2, pp.13-22, 2011.
DOI : 10.1016/j.gene.2011.06.017

S. J. Soscia, J. E. Kirby, K. J. Washicosky, S. M. Tucker, M. Ingelsson et al., The Alzheimer's Disease-Associated Amyloid ??-Protein Is an Antimicrobial Peptide, PLoS ONE, vol.5, issue.3, p.9505, 2010.
DOI : 10.1371/journal.pone.0009505.s002

R. D. Terry, E. Masliah, D. P. Salmon, N. Butters, R. Deteresa et al., Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment, Annals of Neurology, vol.3, issue.4, pp.572-580, 1991.
DOI : 10.1007/978-1-4757-5876-4_29

D. W. Dickson, H. A. Crystal, C. Bevona, W. Honer, I. Vincent et al., Correlations of synaptic and pathological markers with cognition of the elderly, Neurobiology of Aging, vol.16, issue.3, pp.285-98, 1995.
DOI : 10.1016/0197-4580(95)00013-5

C. A. Mclean, R. A. Cherny, F. W. Fraser, S. J. Fuller, M. J. Smith et al., Soluble pool of A? amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Annals of Neurology, vol.155, issue.6, pp.860-866, 1999.
DOI : 10.1016/S0002-9440(10)65184-X

L. F. Lue, Y. M. Kuo, A. E. Roher, L. Brachova, Y. Shen et al., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. The American journal of pathology 155, pp.853-862, 1999.

D. J. Selkoe, Soluble oligomers of the amyloid ??-protein impair synaptic plasticity and behavior, Behavioural Brain Research, vol.192, issue.1, pp.106-113, 2008.
DOI : 10.1016/j.bbr.2008.02.016

K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya et al., Correlative Memory Deficits, A?? Elevation, and Amyloid Plaques in Transgenic Mice, Science, vol.2, issue.8, pp.99-102, 1996.
DOI : 10.1038/nm0896-864

S. Oddo, A. Caccamo, J. D. Shepherd, M. P. Murphy, T. E. Golde et al., Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles, Neuron, vol.39, issue.3, pp.409-421, 2003.
DOI : 10.1016/S0896-6273(03)00434-3

L. M. Billings, S. Oddo, K. N. Green, J. L. Mcgaugh, and F. M. Laferla, Intraneuronal A?? Causes the Onset of Early Alzheimer???s Disease-Related Cognitive Deficits in Transgenic Mice, Neuron, vol.45, issue.5, pp.675-688, 2005.
DOI : 10.1016/j.neuron.2005.01.040

G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-munoz, N. E. Shepardson et al., Amyloid-?? protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory, Nature Medicine, vol.28, issue.8, pp.837-842, 2008.
DOI : 10.1111/j.1471-4159.1986.tb08501.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772133

H. Hsieh, J. Boehm, C. Sato, T. Iwatsubo, T. Tomita et al., AMPAR Removal Underlies A??-Induced Synaptic Depression and Dendritic Spine Loss, Neuron, vol.52, issue.5, pp.831-843, 2006.
DOI : 10.1016/j.neuron.2006.10.035

S. Li, S. Hong, N. E. Shepardson, D. M. Walsh, G. M. Shankar et al., Soluble Oligomers of Amyloid ?? Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake, Neuron, vol.62, issue.6, pp.788-801, 2009.
DOI : 10.1016/j.neuron.2009.05.012

E. Pham, L. Crews, K. Ubhi, L. Hansen, A. Adame et al., Progressive accumulation of amyloid-?? oligomers in Alzheimer???s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins, FEBS Journal, vol.116, issue.Pt 11, pp.3051-3067, 2010.
DOI : 10.1172/JCI25410

F. Roselli, M. Tirard, J. Lu, P. Hutzler, P. Lamberti et al., Soluble ??-Amyloid1-40 Induces NMDA-Dependent Degradation of Postsynaptic Density-95 at Glutamatergic Synapses, Journal of Neuroscience, vol.25, issue.48, pp.11061-11070, 2005.
DOI : 10.1523/JNEUROSCI.3034-05.2005

S. Li, M. Jin, T. Koeglsperger, N. E. Shepardson, G. M. Shankar et al., Soluble A?? Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors, Journal of Neuroscience, vol.31, issue.18, pp.6627-6638, 2011.
DOI : 10.1523/JNEUROSCI.0203-11.2011

C. P. Jacob, E. Koutsilieri, J. Bartl, E. Neuen-jacob, T. Arzberger et al., Alterations in Expression of Glutamatergic Transporters and Receptors in Sporadic Alzheimer's Disease, Journal of Alzheimer's Disease, vol.11, issue.1, pp.97-116, 2007.
DOI : 10.3233/JAD-2007-11113

J. Wang, Y. Xia, I. Grundke-iqbal, and K. Iqbal, Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration, Journal of Alzheimer's disease : JAD, vol.33, pp.123-162, 2013.

F. Liu, I. Grundke-iqbal, K. Iqbal, and C. Gong, Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation, European Journal of Neuroscience, vol.436, issue.8, pp.1942-1950, 2005.
DOI : 10.1093/jnen/63.4.287

C. W. Wittmann, M. F. Wszolek, J. M. Shulman, P. M. Salvaterra, J. Lewis et al., Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles, Science, vol.293, issue.5530, pp.711-714, 2001.
DOI : 10.1126/science.1062382

J. Götz, L. M. Ittner, M. Fändrich, and N. Schonrock, Is tau aggregation toxic or protective: a sensible question in the absence of sensitive methods? Journal of Alzheimer's disease, pp.423-429, 2008.

K. Herrup, The case for rejecting the amyloid cascade hypothesis, Nature Neuroscience, vol.9, issue.6, pp.794-799, 2015.
DOI : 10.1016/j.cmet.2013.03.016

L. S. Schneider, F. Mangialasche, N. Andreasen, H. Feldman, E. Giacobini et al., Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014, Journal of Internal Medicine, vol.69, issue.1, pp.251-283, 2014.
DOI : 10.1001/archneurol.2011.233

D. Games, D. Adams, R. Alessandrini, R. Barbour, P. Berthelette et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F ??-amyloid precursor protein, Nature, vol.373, issue.6514, pp.523-527, 1995.
DOI : 10.1038/373523a0

D. Quon, Y. Wang, R. Catalano, J. M. Scardina, K. Murakami et al., Formation of ??-amyloid protein deposits in brains of transgenic mice, Nature, vol.352, issue.6332, pp.239-241, 1991.
DOI : 10.1038/352239a0

B. T. Lamb, S. S. Sisodia, A. M. Lawler, H. H. Slunt, C. A. Kitt et al., Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice, Nature Genetics, vol.10, issue.1, pp.22-30, 1993.
DOI : 10.1016/0378-1119(91)90093-Q

B. E. Pearson and T. K. Choi, Expression of the human beta-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice., Proceedings of the National Academy of Sciences, vol.90, issue.22, pp.10578-10582, 1993.
DOI : 10.1073/pnas.90.22.10578

J. C. Dodart, H. Meziane, C. Mathis, K. R. Bales, S. M. Paul et al., Behavioral disturbances in transgenic mice overexpressing the V717F ??-amyloid precursor protein., Behavioral Neuroscience, vol.113, issue.5, pp.982-990, 1999.
DOI : 10.1037/0735-7044.113.5.982

J. Larson, G. Lynch, D. Games, and P. Seubert, Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice, Brain Research, vol.840, issue.1-2, pp.23-35, 1999.
DOI : 10.1016/S0006-8993(99)01698-4

T. Kawarabayashi, L. H. Younkin, T. C. Saido, M. Shoji, K. H. Ashe et al., Agedependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.21, pp.372-381, 2001.

M. A. Westerman, D. Cooper-blacketer, A. Mariash, L. Kotilinek, T. Kawarabayashi et al., The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, pp.1858-1867, 2002.

J. S. Jacobsen, C. Wu, J. M. Redwine, T. A. Comery, R. Arias et al., Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease, Proceedings of the National Academy of Sciences of the United States of America, pp.5161-5166, 2006.
DOI : 10.1523/JNEUROSCI.2693-05.2005

C. Sturchler-pierrat, D. Abramowski, M. Duke, K. H. Wiederhold, C. Mistl et al., Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology, Proceedings of the National Academy of Sciences of the United States of America 94, pp.13287-13292, 1997.
DOI : 10.1074/jbc.271.51.32789

C. Sturchler-pierrat and M. Staufenbiel, Pathogenic Mechanisms of Alzheimer's Disease Analyzed in the APP23 Transgenic Mouse Model, Annals of the New York Academy of Sciences, vol.395, issue.1, pp.134-139, 2000.
DOI : 10.1016/S0002-9440(10)65423-5

R. Hellweg, P. Lohmann, R. Huber, A. Kühl, and M. W. Riepe, Spatial navigation in complex and radial mazes in APP23 animals and neurotrophin signaling as a biological marker of early impairment, Learning & Memory, vol.13, issue.1, pp.63-71, 2006.
DOI : 10.1101/lm.2606

L. F. Maia, S. A. Kaeser, J. Reichwald, M. Hruscha, P. Martus et al., Changes in Amyloid-?? and Tau in the Cerebrospinal Fluid of Transgenic Mice Overexpressing Amyloid Precursor Protein, Science Translational Medicine, vol.22, issue.2, pp.194-196, 2013.
DOI : 10.1126/science.1194516

L. Mucke, E. Masliah, G. Q. Yu, M. Mallory, E. M. Rockenstein et al., High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.20, pp.4050-4058, 2000.

M. A. Chishti, D. S. Yang, C. Janus, A. L. Phinney, P. Horne et al., Early-onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing a Double Mutant Form of Amyloid Precursor Protein 695, Journal of Biological Chemistry, vol.20, issue.24, pp.21562-21570, 2001.
DOI : 10.1046/j.1471-4159.1997.69062432.x

S. Dudal, P. Krzywkowski, J. Paquette, C. Morissette, D. Lacombe et al., Inflammation occurs early during the A?? deposition process in TgCRND8 mice, Neurobiology of Aging, vol.25, issue.7, pp.861-871, 2004.
DOI : 10.1016/j.neurobiolaging.2003.08.008

T. Saito, Y. Matsuba, N. Mihira, J. Takano, P. Nilsson et al., Single App knock-in mouse models of Alzheimer's disease, Nature Neuroscience, vol.97, issue.5, pp.661-663, 2014.
DOI : 10.1073/pnas.97.26.14731

K. Duff, C. Eckman, C. Zehr, X. Yu, C. M. Prada et al., Increased amyloid-??42(43) in brains of mice expressing mutant presenilin 1, Nature, vol.383, issue.6602, pp.710-713, 1996.
DOI : 10.1038/383710a0

P. A. Barrow, R. M. Empson, S. J. Gladwell, C. M. Anderson, R. Killick et al., Functional Phenotype in Transgenic Mice Expressing Mutant Human Presenilin-1, Neurobiology of Disease, vol.7, issue.2, pp.119-126, 2000.
DOI : 10.1006/nbdi.1999.0276

J. Shen, R. T. Bronson, D. F. Chen, W. Xia, D. J. Selkoe et al., Skeletal and CNS Defects in Presenilin-1-Deficient Mice, Cell, vol.89, issue.4, pp.629-639, 1997.
DOI : 10.1016/S0092-8674(00)80244-5

H. Yu, C. A. Saura, S. Y. Choi, L. D. Sun, X. Yang et al., APP Processing and Synaptic Plasticity in Presenilin-1 Conditional Knockout Mice, Neuron, vol.31, issue.5, pp.713-726, 2001.
DOI : 10.1016/S0896-6273(01)00417-2

A. Auffret, V. Gautheron, M. P. Mattson, J. Mariani, and C. Rovira, Progressive Age-Related Impairment of the Late Long-Term Potentiation in Alzheimer's Disease Presenilin-1 Mutant Knock-in Mice, Journal of Alzheimer's Disease, vol.19, issue.3, pp.1021-1033, 2010.
DOI : 10.3233/JAD-2010-1302

J. L. Jankowsky, H. H. Slunt, T. Ratovitski, N. A. Jenkins, N. G. Copeland et al., Co-expression of multiple transgenes in mouse CNS: a comparison of strategies, Biomolecular Engineering, vol.17, issue.6, pp.157-165, 2001.
DOI : 10.1016/S1389-0344(01)00067-3

J. L. Jankowsky, G. Xu, D. Fromholt, V. Gonzales, and D. R. Borchelt, Environmental Enrichment Exacerbates Amyloid Plaque Formation in a Transgenic Mouse Model of Alzheimer Disease, Journal of Neuropathology & Experimental Neurology, vol.62, issue.12, pp.1220-1227, 2003.
DOI : 10.1093/jnen/62.12.1220

A. Savonenko, G. M. Xu, T. Melnikova, J. L. Morton, V. Gonzales et al., Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: Relationships to ??-amyloid deposition and neurotransmitter abnormalities, Neurobiology of Disease, vol.18, issue.3, pp.602-617, 2005.
DOI : 10.1016/j.nbd.2004.10.022

H. Oakley, S. L. Cole, S. Logan, E. Maus, P. Shao et al., Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation, Journal of Neuroscience, vol.26, issue.40, pp.10129-10140, 2006.
DOI : 10.1523/JNEUROSCI.1202-06.2006

R. Kimura and M. Ohno, Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model, Neurobiology of Disease, vol.33, issue.2, pp.229-235, 2009.
DOI : 10.1016/j.nbd.2008.10.006

C. Casas, N. Sergeant, J. Itier, V. Blanchard, O. Wirths et al., Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated A??42 Accumulation in a Novel Alzheimer Transgenic Model, Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model, pp.1289-1300, 2004.
DOI : 10.1016/S0002-9440(10)63388-3

H. Breyhan, O. Wirths, K. Duan, A. Marcello, J. Rettig et al., APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy, Acta Neuropathologica, vol.306, issue.6, pp.677-685, 2009.
DOI : 10.1016/S0002-9440(10)64463-X

URL : https://link.springer.com/content/pdf/10.1007%2Fs00401-009-0539-7.pdf

J. Lewis, E. Mcgowan, J. Rockwood, H. Melrose, P. Nacharaju et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nat. Genet, vol.25, pp.402-405, 2000.

K. Tanemura, M. Murayama, T. Akagi, T. Hashikawa, T. Tominaga et al., Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, pp.133-141, 2002.

F. M. Laferla, B. T. Tinkle, C. J. Bieberich, C. C. Haudenschild, and G. Jay, The Alzheimer's A?? peptide induces neurodegeneration and apoptotic cell death in transgenic mice, Nature Genetics, vol.9, issue.1, pp.21-30, 1995.
DOI : 10.1083/jcb.108.2.579

E. Mcgowan, F. Pickford, J. Kim, L. Onstead, J. Eriksen et al., A??42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice, Neuron, vol.47, issue.2, pp.191-199, 2005.
DOI : 10.1016/j.neuron.2005.06.030

D. H. Malin, M. K. Crothers, J. R. Lake, P. Goyarzu, R. E. Plotner et al., Hippocampal Injections of Amyloid ??-Peptide 1-40 Impair Subsequent One-Trial/Day Reward Learning, Neurobiology of Learning and Memory, vol.76, issue.2, pp.125-137, 2001.
DOI : 10.1006/nlme.2000.3991

A. Stéphan, S. Laroche, and S. Davis, Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.21, pp.5703-5714, 2001.

L. Lecanu, J. Greeson, and V. Papadopoulos, Beta-Amyloid and Oxidative Stress Jointly Induce Neuronal Death, Amyloid Deposits, Gliosis, and Memory Impairment in the Rat Brain, Pharmacology, vol.76, issue.1, pp.19-33, 2006.
DOI : 10.1159/000088929

S. Nakamura, N. Murayama, T. Noshita, H. Annoura, and T. Ohno, Progressive brain dysfunction following intracerebroventricular infusion of beta1???42-amyloid peptide, Brain Research, vol.912, issue.2, pp.128-136, 2001.
DOI : 10.1016/S0006-8993(01)02704-4

M. Arif, T. Chikuma, M. M. Ahmed, M. Nakazato, M. A. Smith et al., Effects of memantine on soluble ????25-35-induced changes in peptidergic and glial cells in Alzheimer's disease model rat brain regions, Neuroscience, vol.164, issue.3, pp.1199-1209, 2009.
DOI : 10.1016/j.neuroscience.2009.08.063

D. Carmo, S. Cuello, and A. C. , Modeling Alzheimer???s disease in transgenic rats, Molecular Neurodegeneration, vol.8, issue.1, p.37, 2013.
DOI : 10.1523/JNEUROSCI.4218-08.2008

V. Echeverria, A. Ducatenzeiler, L. Alhonen, J. Janne, S. M. Grant et al., Rat transgenic models with a phenotype of intracellular A?? accumulation in hippocampus and cortex, Journal of Alzheimer's Disease, vol.6, issue.3, pp.209-219, 2004.
DOI : 10.3233/JAD-2004-6301

N. Ruiz-opazo, K. S. Kosik, L. V. Lopez, P. Bagamasbad, L. R. Ponce et al., Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats, Molecular medicine, vol.10, pp.36-44, 2004.

R. Folkesson, K. Malkiewicz, E. Kloskowska, T. Nilsson, E. Popova et al., A transgenic rat expressing human APP with the Swedish Alzheimer???s disease mutation, Biochemical and Biophysical Research Communications, vol.358, issue.3, pp.777-782, 2007.
DOI : 10.1016/j.bbrc.2007.04.195

E. Kloskowska, T. M. Pham, T. Nilsson, S. Zhu, J. Oberg et al., Cognitive impairment in the Tg6590 transgenic rat model of Alzheimer???s disease, Journal of Cellular and Molecular Medicine, vol.444, issue.6b, pp.1816-1823, 2010.
DOI : 10.1007/978-1-59259-469-6_1

D. G. Flood, Y. Lin, D. M. Lang, S. P. Trusko, J. D. Hirsch et al., A transgenic rat model of Alzheimer's disease with extracellular A?? deposition, Neurobiology of Aging, vol.30, issue.7, pp.1078-1090, 2009.
DOI : 10.1016/j.neurobiolaging.2007.10.006

L. Liu, I. J. Orozco, E. Planel, Y. Wen, A. Bretteville et al., A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment, Neurobiology of Disease, vol.31, issue.1, pp.46-57, 2008.
DOI : 10.1016/j.nbd.2008.03.005

W. C. Leon, F. Canneva, V. Partridge, S. Allard, M. T. Ferretti et al., A Novel Transgenic Rat Model with a Full Alzheimer's-Like Amyloid Pathology Displays Pre-Plaque Intracellular Amyloid-??-Associated Cognitive Impairment, Journal of Alzheimer's Disease, vol.20, issue.1, pp.113-126, 2010.
DOI : 10.3233/JAD-2010-1349

L. H. Nilsen, T. M. Melø, O. Saether, M. P. Witter, and U. Sonnewald, H MRS study, Journal of Neurochemistry, vol.54, issue.4, pp.532-541, 2012.
DOI : 10.1016/j.neuint.2009.02.004

S. Languille, S. Blanc, O. Blin, C. I. Canale, A. Dal-pan et al., The grey mouse lemur: A non-human primate model for ageing studies, Ageing Research Reviews, vol.11, issue.1, pp.150-162, 2012.
DOI : 10.1016/j.arr.2011.07.001

URL : https://hal.archives-ouvertes.fr/hal-00650159

M. Roy, C. Cardoso, O. Dorieux, C. Malgorn, S. Epelbaum et al., Age-associated evolution of plasmatic amyloid in mouse lemur primates: relationship with intracellular amyloid deposition, Neurobiology of Aging, vol.36, issue.1, pp.149-156, 2015.
DOI : 10.1016/j.neurobiolaging.2014.07.017

N. Mestre-francés, E. Keller, A. Calenda, H. Barelli, F. Checler et al., Immunohistochemical Analysis of Cerebral Cortical and Vascular Lesions in the Primate Microcebus murinus Reveal Distinct Amyloid ??1???42 and ??1???40 Immunoreactivity Profiles, Neurobiology of Disease, vol.7, issue.1, pp.1-8, 2000.
DOI : 10.1006/nbdi.1999.0270

A. O. Ardiles, C. C. Tapia-rojas, M. Mandal, F. Alexandre, A. Kirkwood et al., Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.54, issue.2, pp.13835-13840, 2012.
DOI : 10.1016/0197-4580(87)90033-9

N. C. Inestrosa, J. A. Ríos, P. Cisternas, C. Tapia-rojas, D. S. Rivera et al., , a Natural Model of Alzheimer's Disease, Brain Pathology, vol.8, issue.Suppl. 1, pp.679-691, 2015.
DOI : 10.1371/journal.pone.0064019

W. M. Hassan, V. Dostal, B. N. Huemann, J. E. Yerg, and C. D. Link, Identifying A??-specific pathogenic mechanisms using a nematode model of Alzheimer's disease, Neurobiology of Aging, vol.36, issue.2, pp.857-866, 2015.
DOI : 10.1016/j.neurobiolaging.2014.10.016

K. V. Sashidhara, R. K. Modukuri, P. Jadiya, R. P. Dodda, M. Kumar et al., ChemInform Abstract: Benzofuran-Chalcone Hybrids as Potential Multifunctional Agents Against Alzheimer???s Disease: Synthesis and in vivo Studies with Transgenic Caenorhabditis elegans., ChemInform, vol.9, issue.18, pp.2671-2684, 2014.
DOI : 10.1002/cmdc.201402291

D. C. Zamberlan, L. P. Arantes, M. L. Machado, R. Golombieski, and F. A. Soares, Diphenyl-diselenide suppresses amyloid-?? peptide in Caenorhabditis elegans model of Alzheimer???s disease, Neuroscience, vol.278, pp.40-50, 2014.
DOI : 10.1016/j.neuroscience.2014.07.068

Y. Kong, J. Wu, D. Zhang, C. Wan, and L. Yuan, The Role of miR-124 in Drosophila Alzheimer&#39;s Disease Model by Targeting Delta in Notch Signaling Pathway, Current Molecular Medicine, vol.15, issue.10, pp.980-989, 2015.
DOI : 10.2174/1566524016666151123114608

P. Fernandez-funez, L. De-mena, and D. E. Rincon-limas, Modeling the complex pathology of Alzheimer's disease in Drosophila, Experimental Neurology, vol.274, pp.58-71, 2015.
DOI : 10.1016/j.expneurol.2015.05.013

Y. Ping, E. Hahm, G. Waro, Q. Song, D. Vo-ba et al., Linking A??42-Induced Hyperexcitability to Neurodegeneration, Learning and Motor Deficits, and a Shorter Lifespan in an Alzheimer???s Model, PLOS Genetics, vol.37, issue.3, p.1005025, 2015.
DOI : 10.1371/journal.pgen.1005025.s003

F. Trinchese, S. Liu, I. Ninan, D. Puzzo, J. P. Jacob et al., Cell Cultures From Animal Models of Alzheimer's Disease as a Tool for Faster Screening and Testing of Drug Efficacy, Journal of Molecular Neuroscience, vol.24, issue.1, pp.15-21, 2004.
DOI : 10.1385/JMN:24:1:015

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

J. G. Hunsberger, M. Rao, J. Kurtzberg, J. W. Bulte, A. Atala et al., Accelerating stem cell trials for Alzheimer's disease, The Lancet Neurology, vol.15, issue.2, pp.10-1016, 2015.
DOI : 10.1016/S1474-4422(15)00332-4

S. H. Choi, Y. H. Kim, M. Hebisch, C. Sliwinski, S. Lee et al., A three-dimensional human neural cell culture model of Alzheimer???s disease, Nature, vol.5, issue.7526, pp.274-278, 2014.
DOI : 10.1371/journal.pone.0013947

S. Daya and K. I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors, Clinical Microbiology Reviews, vol.21, issue.4, pp.583-593, 2008.
DOI : 10.1128/CMR.00008-08

URL : http://cmr.asm.org/content/21/4/583.full.pdf

M. G. Kaplitt, P. Leone, R. J. Samulski, X. Xiao, D. W. Pfaff et al., Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain, Nature Genetics, vol.36, issue.2, pp.148-154, 1994.
DOI : 10.1016/0014-4886(92)90053-S

M. Bourdenx, N. Dutheil, E. Bezard, and B. Dehay, Systemic gene delivery to the central nervous system using Adeno-associated virus, Frontiers in Molecular Neuroscience, vol.16, issue.52, p.50, 2014.
DOI : 10.1038/mt.2008.76

URL : https://hal.archives-ouvertes.fr/hal-01217255

R. J. Samulski, K. I. Berns, M. Tan, and N. Muzyczka, Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells., Proceedings of the National Academy of Sciences, vol.79, issue.6, pp.2077-2081, 1982.
DOI : 10.1073/pnas.79.6.2077

E. Hudry, D. Van-dam, W. Kulik, P. P. De-deyn, F. S. Stet et al., Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease, Molecular therapy : the journal of the American Society of Gene Therapy, pp.44-53, 2010.
DOI : 10.1038/mt.2009.175

F. Djelti, J. Braudeau, E. Hudry, M. Dhenain, J. Varin et al., CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer???s disease, Brain, vol.138, issue.8, pp.2383-2398, 2015.
DOI : 10.1093/brain/awv166

P. A. Lawlor, R. J. Bland, P. Das, R. W. Price, V. Holloway et al., Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal A?? levels, Molecular Neurodegeneration, vol.2, issue.1, p.11, 2007.
DOI : 10.1186/1750-1326-2-11

URL : http://doi.org/10.1186/1750-1326-2-11

T. Jaworski, I. Dewachter, B. Lechat, S. Croes, A. Termont et al., AAV-Tau Mediates Pyramidal Neurodegeneration by Cell-Cycle Re-Entry without Neurofibrillary Tangle Formation in Wild-Type Mice, PLoS ONE, vol.48, issue.10, p.7280, 2009.
DOI : 10.1371/journal.pone.0007280.s010

URL : http://doi.org/10.1371/journal.pone.0007280

E. S. Drummond, J. Muhling, R. N. Martins, L. K. Wijaya, E. M. Ehlert et al., Pathology Associated with AAV Mediated Expression of Beta Amyloid or C100 in Adult Mouse Hippocampus and Cerebellum, PLoS ONE, vol.24, issue.3, p.59166, 2013.
DOI : 10.1371/journal.pone.0059166.t002

L. S. Higgins, R. Catalano, D. Quon, and B. Cordell, Transgenic Mice Expressing Human ??-APP751, But Not Mice Expressing ??-APP695, Display Early Alzheimer's Disease-like Histopathologya, Annals of the New York Academy of Sciences, vol.352, issue.1, pp.224-227, 1993.
DOI : 10.1038/352239a0

J. Kim, P. Chakrabarty, A. Hanna, A. March, D. W. Dickson et al., Normal cognition in transgenic BRI2-A?? mice, Molecular Neurodegeneration, vol.8, issue.1, p.15, 2013.
DOI : 10.1111/j.1468-2958.2002.tb00828.x

URL : http://doi.org/10.1186/1750-1326-8-15

A. Jan, O. Gokce, R. Luthi-carter, and H. A. Lashuel, The Ratio of Monomeric to Aggregated Forms of A??40 and A??42 Is an Important Determinant of Amyloid-?? Aggregation, Fibrillogenesis, and Toxicity, Journal of Biological Chemistry, vol.418, issue.42, pp.28176-28189, 2008.
DOI : 10.1073/pnas.91.25.12243

Y. Yan and C. Wang, A??40 Protects Non-toxic A??42 Monomer from Aggregation, Journal of Molecular Biology, vol.369, issue.4, pp.909-916, 2007.
DOI : 10.1016/j.jmb.2007.04.014

M. Willem, S. Tahirovic, M. A. Busche, S. V. Ovsepian, M. Chafai et al., ??-Secretase processing of APP inhibits neuronal activity in the hippocampus, Secretase processing of APP inhibits neuronal activity in the hippocampus, pp.443-447, 2015.
DOI : 10.1073/pnas.1232232100

G. E. Hardingham and H. Bading, Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders, Nature Reviews Neuroscience, vol.39, issue.10, pp.682-696, 2010.
DOI : 10.1016/S1570-9639(02)00455-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948541

M. Kervern, A. Angeli, O. Nicole, F. Léveillé, B. Parent et al., Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-? peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors, Journal of Alzheimer, vol.32, pp.183-196, 2012.

M. P. Parsons and L. A. Raymond, Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders, Neuron, vol.82, issue.2, pp.279-293, 2014.
DOI : 10.1016/j.neuron.2014.03.030

URL : http://doi.org/10.1016/j.neuron.2014.03.030

B. Potier, J. Billard, S. Rivière, P. Sinet, I. Denis et al., Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats, Aging Cell, vol.12, issue.5, pp.722-735, 2010.
DOI : 10.1113/jphysiol.1990.sp018240

P. Xia, H. V. Chen, D. Zhang, and S. A. Lipton, Memantine Preferentially Blocks Extrasynaptic over Synaptic NMDA Receptor Currents in Hippocampal Autapses, Journal of Neuroscience, vol.30, issue.33, pp.11246-11250, 2010.
DOI : 10.1523/JNEUROSCI.2488-10.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932667

M. Talantova, S. Sanz-blasco, X. Zhang, P. Xia, M. W. Akhtar et al., A? induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss, Proceedings of the National Academy of Sciences of the United States of America, pp.2518-2545, 2013.
DOI : 10.1073/pnas.1306832110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704025

K. Bordji, J. Becerril-ortega, O. Nicole, and A. Buisson, Activation of Extrasynaptic, But Not Synaptic, NMDA Receptors Modifies Amyloid Precursor Protein Expression Pattern and Increases Amyloid-?? Production, Journal of Neuroscience, vol.30, issue.47, pp.15927-15942, 2010.
DOI : 10.1523/JNEUROSCI.3021-10.2010

J. Burré, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton et al., ??-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro, Science, vol.295, issue.5556, pp.1663-1667, 2010.
DOI : 10.1126/science.1067389

M. Sharma, J. Burré, P. Bronk, Y. Zhang, W. Xu et al., CSP? knockout causes neurodegeneration by impairing SNAP-25 function. The EMBO journal 31, pp.829-841, 2012.
DOI : 10.1038/emboj.2011.467

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280561

M. Sharma, J. Burré, and T. C. Südhof, Proteasome Inhibition Alleviates SNARE-Dependent Neurodegeneration, Science Translational Medicine, vol.375, issue.6531, pp.147-113, 2012.
DOI : 10.1038/375488a0

J. L. Jankowsky, D. J. Fadale, J. Anderson, G. M. Xu, V. Gonzales et al., Mutant presenilins specifically elevate the levels of the 42 residue ??-amyloid peptide in vivo: evidence for augmentation of a 42-specific ?? secretase, Human Molecular Genetics, vol.13, issue.2, pp.159-170, 2004.
DOI : 10.1093/hmg/ddh019

S. George, A. Rönnbäck, G. K. Gouras, G. H. Petit, F. Grueninger et al., Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer???s disease, Acta Neuropathologica Communications, vol.164, issue.1, p.17, 2014.
DOI : 10.1016/j.neuroscience.2009.09.024

A. Hochard, N. Oumata, K. Bettayeb, O. Gloulou, X. Fant et al., Aftins increase amyloid-?42, lower amyloid-?38, and do not alter amyloid-?40 extracellular production in vitro: toward a chemical model of Alzheimer's disease? Journal of Alzheimer's disease, pp.107-120, 2013.

M. D. Kane, W. J. Lipinski, M. J. Callahan, F. Bian, R. A. Durham et al., Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.20, pp.3606-3611, 2000.

J. Epelbaum, J. Guillou, F. Gastambide, D. Hoyer, E. Duron et al., Alzheimer's disease and cognition: an old story coming of age? Progress in neurobiology 89, pp.153-161, 2009.

G. Martel, A. Simon, S. Nocera, S. Kalainathan, L. Pidoux et al., Aging, but not tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice, Neurobiology of Aging, vol.36, issue.2, pp.1013-1028, 2015.
DOI : 10.1016/j.neurobiolaging.2014.10.033