Vésicules extracellulaires sécrétées par les cellules souches mésenchymateuses : caractérisation, fonction et rôle dans les maladies ostéo-articulaires
Stella Cosenza

To cite this version:

HAL Id: tel-01584059
https://tel.archives-ouvertes.fr/tel-01584059
Submitted on 8 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale
Sciences Chimiques et Biologiques pour la Santé (CBS2)
Et de l’unité de recherche
Cellules souches, plasticité cellulaire, Médecine
Régénératrice et Immunothérapies INSERM U1183
Spécialité : biologie-Santé

Présentée par Stella COSENZA

Vésicules extracellulaires sécrétées par les cellules souches mésenchymateuses : caractérisation, fonction et rôle dans les maladies ostéo-articulaires

Soutenue le 28 juin 2017 devant le jury composé de

Mr Michel VIDAL, DR, CNRS, Montpellier
Mme Danièle NOEL, DR INSERM, Montpellier
Mr Alain BRisson, PU CNRS, Bordeaux
Mr Frédéric DESCHASEAUX, DR EFS, Toulouse
Mme Clotilde THERY, DR Institut Curie, Paris
Mme Claire VINATIER, MCU INSERM, Nantes
Mr Christian JORGENSEN, PU-PH INSERM, Montpellier

Président du jury
Directeur de thèse
Rapporteur
Rapporteur
Examineur
Examineur
Examineur
Extracellular vesicles derived from mesenchymal stem cells: characterization, function and role in osteoarticular diseases

Osteoarthritis and rheumatoid arthritis are ostéo-articular diseases affecting primarily cartilage and bone. They are a high public health problem because of their prevalence and absence of curative treatment. Innovating cell therapy approaches are being evaluated in the clinic for treating these diseases. They rely on the use of mesenchymal stem cells (MSCs), which display immunosuppressive and regenerative functions and could provide new hope for patients. These cells release extracellular vesicles, which are very powerful tools for intercellular communication and are classified into 3 populations: exosomes, microparticles (MPs) and apoptotic bodies. In the present study, we characterize and compare the in vitro and in vivo effects of MSC-derived exosomes and MPs. We show for the first time that exosomes and MPs exert in vitro anti-inflammatory, anti-apoptotic and chondroprotective functions. In vivo, only exosomes exert a therapeutic effect in an experimental model of inflammatory arthritis. However in a model of osteoarthritis, both exosomes and MPs protect cartilage and bone from degradation, in a similar fashion. This study provides the proof-of-concept that MSC-derived exosomes and/or MPs exert a therapeutic effect in rheumatic diseases.

Mots clés: vésicules extracellulaires, exosomes, microparticules, cellules souches mésenchymateuses, arthrose, polyarthrite rhumatoïde, immunosuppression, thérapie.

Institut de médecine Régénétratrice et Biothérapies (IRMB)
INSEER U1183 Cellules souches, plasticité cellulaire, Médecine Régénétratrice et Immunothérapies
80 avenue Augustin Fliche 34295 Montpellier
Table des matières

Liste des illustrations... 9
Liste des abréviations... 10
Avant-propos.. 12
Introduction : Revue bibliographique de la littérature............... 14

Partie 1. Les maladies ostéo-articulaires....................................... 15

1. L’articulation... 15
 1.1. Composition d’une articulation... 15
 1.1.1. L’os sous-chondral... 16
 1.1.2. Le tissu synovial (membrane et liquide synovial)........ 16
 1.1.3. Les structures péri-articulaires............................. 17
 1.1.4. Le cartilage articulaire... 17
 1.1.4.1. Caractéristiques du cartilage articulaire............ 17

2. L’arthrose.. 19
 2.1. Définition de l’arthrose.. 19
 2.2. Épidémiologie de l’arthrose.. 19
 2.3. Étiologie de l’arthrose.. 20
 2.3.1. Facteurs systémiques.. 20
 2.3.1.1. L’âge... 20
 2.3.1.2. Le genre... 20
 2.3.1.3. Les facteurs génétiques............................... 20
 2.3.1.4. L’obésité.. 21
 2.3.2. Facteurs locaux.. 21
 2.4. Mécanismes de pathogenèse de l’arthrose......................... 21
 2.4.1. Le stade initial.. 22
 2.4.2. Le stade intermédiaire... 22
2.4.3. Le stade final ... 23
2.5. Diagnostic de l’arthrose .. 23
 2.5.1. Aspects cliniques ... 23
 2.5.2. Imagerie ... 24

3. La polyarthrite rhumatoïde .. 25
 3.1. Définition de la polyarthrite rhumatoïde ... 25
 3.2. Epidemiologie de la polyarthrite rhumatoïde .. 26
 3.3. Etiologie de la polyarthrite rhumatoïde ... 26
 3.3.1. Facteurs génétiques et épigénétiques ... 26
 3.3.2. Facteurs hormonaux ... 27
 3.3.3. Facteurs environnementaux .. 27
 3.3.4. Facteurs psychologiques .. 28
 3.4. Mécanismes de pathogenèse de la polyarthrite rhumatoïde 28
 3.4.1. Etape d’initiation .. 28
 3.4.2. Etape de recrutement cellulaire et d’inflammation ... 29
 3.4.3. Destruction articulaire ... 30
 3.4.4. Réparation articulaire .. 31
 3.4.5. Atteintes systémiques ... 31
 3.5. Diagnostic de la polyarthrite rhumatoïde ... 31
 3.5.1. Aspects cliniques .. 31

4. Les thérapies contre les maladies ostéo-articulaires .. 32
 4.1. Les thérapies de l’arthrose ... 32
 4.2. Les thérapies de la polyarthrite rhumatoïde .. 33
 4.3. La thérapie cellulaire ... 33

Partie 2. Les cellules souches mésenchymateuses ... 35

1. Les cellules souches ... 35
 1.1. Un peu d’histoire .. 35
 1.2. Définition des cellules souches .. 35
1.3. Notion de niche.. 36
1.4. Cellules souches adultes .. 37

2. Les cellules souches mésenchymateuses ... 38
 2.1. Description des cellules souches mésenchymateuses ... 38
 2.1.1. Découverte des cellules souches mésenchymateuses .. 38
 2.1.2. Définition des cellules souches mésenchymateuses .. 38
 2.1.3. Localisation des cellules souches mésenchymateuses ... 39
 2.1.4. Caractérisation des cellules souches mésenchymateuses 40
 2.2. Rôle des cellules souches mésenchymateuses ... 42
 2.2.1. Rôle de cellules souches ... 43
 2.2.2. Rôle de support et de croissance des cellules progénitrices 43
 2.2.3. Fonctions trophiques .. 44
 2.2.3.1. Rôle pro-angiogénique ... 44
 2.2.3.2. Rôle anti-fibrotique ... 45
 2.2.3.3. Rôle anti-apoptotique ... 46
 2.2.4. Rôle anti-bactérien .. 46
 2.2.5. Rôle immunomodulateur .. 46
 2.2.5.1. Rôle sur les cellules T ... 48
 2.2.5.2. Rôle sur les cellules présentatrices d’antigènes ... 49
 2.2.5.2.1. Effet sur les cellules dendritiques ... 49
 2.2.5.2.2. Effet sur les macrophages .. 50
 2.2.5.3. Rôle sur les lymphocytes B ... 51
 2.2.5.4. Rôle sur les cellules « natural Killer » ... 52
 2.3. Utilisation des cellules souches mésenchymateuses pour les applications
 thérapeutiques ... 52
 Article 1 : Therapeutic application of mesenchymal stem cells in osteoarthritis 54

Partie 3. Les vésicules extracellulaires ... 64
1. Les différents types de vésicules extracellulaires .. 64
1.1. Les exosomes .. 66
 1.1.1. Définition des exosomes ... 66
 1.1.2. Biogenèse des exosomes .. 67
 1.1.2.1. Formation des vésicules intraluminales ... 67
 1.1.2.2. Implication de la machinerie ESCRT ... 69
 1.1.2.3. Rôle des tétraspansines ... 70
 1.1.2.4. Rôle des céramides ... 70
 1.1.2.5. Libération des ILVs dans l’espace extracellulaire ... 71
 1.1.2.5.1. Migration des MVB jusqu’à la membrane plasmique : rôle des protéines Rab ... 71
 1.1.2.5.2. Fusion des MVB avec la membrane plasmique : rôle des SNAREs 72
 1.1.3. Composition des exosomes .. 72
 1.1.3.1. Composition protéique des exosomes .. 72
 1.1.3.2. Composition lipidique des exosomes .. 74
 1.1.3.3. Composition en acides nucléiques des exosomes .. 74
 1.1.3.3.1. Les ARN messagers ... 74
 1.1.3.3.2. Les micro-ARNs ... 75
 1.1.3.3.3. Les longs ARN non codants .. 78
 1.1.3.3.4. Les ARNs circulaires .. 79

1.2. Les microparticules .. 79
 1.2.1. Définition des microparticules ... 79
 1.2.2. Biogenèse des microparticules .. 80
 1.2.2.1. Membrane plasmique et asymétrie ... 80
 1.2.2.2. Externalisation de la PS par modification du calcium intracellulaire 81
 1.2.2.3. Remodelage du cytosquelette et libération des microparticules 82
 1.2.2.4. Bourgeonnement de la membrane suite à une apoptose 83
 1.2.3. Composition des microparticules ... 83
 1.2.3.1. Composition protéique des microparticules .. 83
 1.2.3.2. Composition lipidique des microparticules .. 85
 1.2.3.3. Composition en acides nucléiques des microparticules 85
1.3. Les corps apoptotiques ... 86
 1.3.1. Définition des corps apoptotiques ... 86
 1.3.2. Biogenèse des corps apoptotiques 86
 1.3.3. Composition des corps apoptotiques 87

2. Isolement et caractérisation des vésicules extracellulaires 88
 2.1. Techniques d’isolement des vésicules extracellulaires 88
 2.1.1. Isolement des exosomes ... 88
 2.1.1.1. Méthodes d’isolement basées sur la taille 88
 2.1.1.1.1. L’ultracentrifugation 89
 2.1.1.1.2. Centrifugations différentielles 89
 2.1.1.1.2. Centrifugations sur gradient de densité 91
 2.1.1.2. L’ultrafiltration ... 91
 2.1.1.3. La chromatographie d’exclusion de taille 92
 2.1.1.4. La précipitation par polymères 93
 2.1.1.2. Méthodes d’isolement basées sur l’immunoaffinité 93

 2.1.2. Isolement des microparticules ... 93

 2.1.3. Isolement des corps apoptotiques 94

 2.2. Caractérisation des vésicules extracellulaires 95
 2.2.1. Méthodes de caractérisation basées sur la taille 95
 2.2.1.1. La microscopie électronique 95
 2.2.1.1.1. MET et coloration négative 96
 2.2.1.1.2. MET et coupes ultrafines 96
 2.2.1.1.3. Cryo-MET .. 97
 2.2.1.1.4. Microscopie électronique à balayage (MEB) 97
 2.2.1.2. La cytométrie en flux ... 97
 2.2.1.3. La DLS (dynamic light scattering) 98
2.2.1.4. Le NTA (nano tracking analysis) .. 98
2.2.1.5. Le TRPS (tunable resistive pulse sensing) ... 99

2.2.2. Méthodes de caractérisation basées sur les marqueurs de surface 99
 2.2.2.1. Le Western Blot ... 99
 2.2.2.2. La cytométrie en Flux ... 99

3. Mécanismes d’interaction des vésicules extracellulaires 100
 3.1. Interaction ligand-récepteur des EVs avec la cellule cible 101
 3.2. Internalisation des EVs au sein de la cellule cible ... 102
 3.3. Fusion des membranes EVs/cellule cible ... 103

4. Fonctions des vésicules extracellulaires ... 104
 4.1. Quelques exemples de fonctions d’EVs issues de divers types cellulaires 104
 4.1.1. Fonctions des EVs de cellules immunitaires ... 104
 4.1.1.1. EV dérivées de cellules dendritiques ... 105
 4.1.1.2. EV dérivées de lymphocytes B ... 106
 4.1.1.3. EV dérivées de macrophages .. 106
 4.1.1.4. EV dérivées de cellules T ... 107
 4.1.1.5. EV dérivées de cellules NK ... 107
 4.1.2. Fonctions des EVs de cellules nerveuses .. 108
 4.1.3. Implication des EVs dans les cancers ... 109
 4.1.4. Rôle des EVs de plaquettes ... 110
 4.1.5. EVs comme biomarqueurs ... 111
 4.2. Rôle des EVs dans les atteintes ostéo-articulaires .. 111

Article 2 : Pathogenic or therapeutic extracellular vesicles in rheumatic disease: role of mesenchymal stem cells-derived vesicles .. 113

4.3. Fonctions des EVs de cellules souches mésenchymateuses 129
 4.3.1. Rôle dans l’immunosuppression .. 129
 4.3.1.1. Effet sur les lymphocytes B ... 129
 4.3.1.2. Effet sur les lymphocytes T ... 130
4.3.1.3. Effet sur les macrophages ... 132
4.3.2. Rôle dans la réparation tissulaire et la régénération 132
 4.3.2.1. Rôle dans les atteintes rénales ... 132
 4.3.2.2. Rôle dans les atteintes cardiaques .. 133
 4.3.2.3. Rôle dans les atteintes cérébrales .. 134

Objectifs de la thèse .. 135

Résultats .. 138
 1. Effets immunomodulateurs des exomes et des microparticules dérivés des cellules souches mésenchymateuses in vitro et in vivo dans un modèle d’arthrite expérimentale ... 139

 Article 3 : MSCs derived exosomes are more immunosuppressive than microvesicles in inflammatory arthritis. .. 142

 2. Effets chondroprotecteurs des exomes et des microparticules dérivés des cellules souches mésenchymateuses in vitro et in vivo dans un modèle d’arthrose 165

 Article 4 : Mesenchymal stem cells derived exosomes and microvesicles protect cartilage and bone from degradation in osteoarthritis. .. 168

Discussion générale et perspectives .. 190

Références bibliographiques ... 199

Annexe .. 240

Curriculum vitae ... 241
Liste des illustrations

Figure 1 Représentation schématique d’une articulation
Figure 2 Organisation du cartilage
Figure 3 Physiopathologie de l’arthrose
Figure 4 Description du score de Kellgren-Lawrence
Figure 5 Réponses immunitaires dans l’articulation arthritique
Figure 6 Différenciation des cellules souches mésenchymateuses
Figure 7 Effets paracrines des cellules souches mésenchymateuses
Figure 8 Effets immunosuppresseurs des cellules souches mésenchymateuses
Figure 9 Exocytose des endosomes multivésiculaires contenant les exosomes
Figure 10 Différents types de vésicules extracellulaires : exosomes, microparticules et corps apoptotiques
Figure 11 Différentes voies de formation des exosomes
Figure 12 Composition protéique des exosomes
Figure 13 Mécanismes d’incorporation des microARNs au sein des exosomes
Figure 14 Formation des microparticules
Figure 15 Rôles des enzymes scramblase, flippase et floppase dans la synthèse de microparticules
Figure 16 Contenu protéique des microparticules : un pool d’effecteurs bioactifs
Figure 17 La formation des corps apoptotiques
Figure 18 Purification des exosomes par centrifugations différentielles ou sur gradient de densité
Figure 19 Isolement des exosomes par méthode de centrifugations différentielles
Figure 20 Principe de la filtration séquentielle
Figure 21 Protocoles de purification des corps apoptotiques
Figure 22 Exosomes observés en MET par coloration négative
Figure 23 Visualisation d’une vésicule par cryo-TEM
Figure 24 Mécanismes d’interaction des EVs avec les cellules cibles
Figure 25 Effets des EVs dérivées de cellules immunitaires
Figure 26 Vésicules extracellulaires dérivées de cellules neuronales
Figure 27 Modèle d’immunomodulation sur les lymphocytes T par les exosomes de CSMs

Tableau 1 Marqueurs phénotypiques des cellules souches mésenchymateuses humaines
Liste des abréviations

MEC matrice extracellulaire
GAG glycosaminoglycane
MMP métalloprotéase
OMS organisation mondiale de la santé
AFLAR association française de lutte anti-rhumatismale
TGF transforming growth factor
IGF insulin growth factor
IL interleukine
PGE2 prostaglandine 2
NO monoxyde d’azote
WOMAC western union macmaster university osteoarthritis index
PR polyarthrite rhumatoïde
ACPA auto-anticorps anti-protéines citrullinés
HLA human leucocyte antigen
CMH complexe majeur d’histocompatibilité
CPA cellule présentatrice d’antigène
LT lymphocyte T
m-CSF macrophage colony-stimulating factor
RANKL receptor activator of nuclear factor KB ligand
TIMP tissue inhibitor of metalloprotease
HAS haute autorité sanitaire
AINS anti-inflammatoire non stéroïdien
CSM cellule souche mésenchymateuse
ARMM
IPS induced pluripotent stem cells
CFU-F colony forming units-fibroblast
ISCT international society for cellular therapy
SMA smooth muscle actin
CSH cellule souche hématopoïétique
LIF leukemia inhibitory factor
SDF stromal cell derived factor
HGF hepacocyte growth factor
VCAM vascular cell adhesion molecule
bFGF basic fibroblast growth factor
VEGF vascular endothelial growth factor
PIGF placental growth factor
MCP monocyte chimioattractant protein
Th lymphocyte T helper
Treg lymphocyte T régulateur
RORyT retinoid acid receptor related orphan receptor gamma T
DC cellule dendritique
LPS lipopolysaccharide
NK cellule natural killer
EV vésicule extracellulaire
MP microparticule
CA corps apoptotique
MVB corps multivésiculaires
ILV vésicule intraluminale
PI3P phosphatidyl inositol 3 phosphate
LPBA lysobisphosphatidic acid
ESCRT endosomal sorting complex required for transport
HRS hepatocyte receptor tyrosine kinase
STAM signal transducing adaptator molecule
SNARE soluble NSF attachment protein receptor
ARN acide ribonucléique
RISC miRNA induced silencing complex
PS phosphatidylsérine
SM sphingomyéline
PEG polyéthylene glycols
Avant propos

L’arthrose et la polyarthrite rhumatoïde sont deux atteintes ostéo-articulaires qui affectent les tissus osseux et cartilagineux. Ce sont des maladies handicapantes et douloureuses dégradant considérablement la qualité de vie des personnes atteintes. Elles constituent un véritable problème de santé publique de par leur prévalence et le manque de traitements curatifs. Les traitements disponibles pour l’arthrose atténuent les symptômes (douleurs et inflammation) et améliorent provisoirement le quotidien des patients. Les traitements contre la polyarthrite rhumatoïde ont vu d’énormes avancées ces 20 dernières années avec l’avènement des biothérapies. Parmi celles-ci, les traitements anti-TNF-α montrent une réelle efficacité en stoppant la progression de la maladie sans pour autant la guérir. Depuis quelques années, les avancées dans le domaine des cellules souches positionnent la thérapie cellulaire comme une nouvelle stratégie thérapeutique pour les atteintes ostéo-articulaires. Les cellules souches sont des cellules indifférenciées, capables d’auto-renouvellement et de différenciation en lignages spécifiques. Utiliser leur potentiel de différenciation afin de remplacer les tissus lésés est un des objectifs de la thérapie cellulaire. Dans les cas des atteintes ostéo-articulaires, la cellule souche mésenchymateuse se positionne comme la cellule de choix. En effet, ces cellules sont multipotentes et capables de se différencier en os, en cartilage et en tissu adipeux. En plus de ce potentiel de différenciation intéressant, elles possèdent une large variété de fonctions incluant des actions immunosuppressives, des effets anti-apoptotiques, anti-fibrotiques, ou encore pro-angiogéniques. Ces effets sont assurés de trois manières : (1) les cellules peuvent interagir avec leurs cibles par des contacts cellulaires directs. (2) les cellules peuvent sécréter des facteurs solubles tels que des protéines qui vont agir sur les cellules cibles. (3) les cellules peuvent sécréter des vésicules extracellulaires qui peuvent interagir les cellules cibles et modifier leurs fonctions. Les vésicules extracellulaires sont décrites depuis quelques années comme un véritable moyen de communication intercellulaire. Elles sont divisées en trois groupes. On parle d’exosomes, de microparticules ou encore de corps apoptotiques. Elles sont de mieux en mieux décrites tant au niveau structural qu’au niveau fonctionnel. Ces vésicules sont capables de reproduire les effets de la cellule sécrétrice. Par conséquent, l’idée de développer une stratégie thérapeutique acellulaire basée sur l’utilisation de ces vésicules
extracellulaires au lieu de la cellule parentale est de plus en plus posée dans la communauté scientifique. Connaissant les fonctions trophiques des cellules souches mésenchymateuses, l’intérêt des vésicules dérivées des ces cellules est grandissant. Il y a 4 ans, les connaissances sur les vésicules dérivées des cellules souches mésenchymateuses étaient limitées : toutes principalement centrées sur les exosomes et un seul article faisant référence à leurs activités immunomodulatrices. Connaissant le large potentiel immunosuppresseur des cellules souches mésenchymateuses, les données sur l’immunosuppression médiane par les vésicules étaient clairement manquantes.

Ma thèse s’est ainsi inscrite dans cet objectif. L’équipe que j’ai rejointe en 2013 s’intéresse au potentiel thérapeutique des cellules souches mésenchymateuses in vitro, in vivo dans des modèles animaux d’arthrose et de polyarthrite rhumatoïde et en clinique. Avec l’intérêt grandissant sur les vésicules extracellulaires et leurs fonctions, l’équipe s’est tout naturellement tournée vers l’étude des vésicules extracellulaires. L’objectif de ma thèse a ainsi consisté à caractériser les populations de microparticules et exosomes libérés par les cellules souches mésenchymateuses puis à identifier et comprendre leurs rôles in vitro et in vivo dans les modèles de polyarthrite rhumatoïde et d’arthrose.

Dans ce manuscrit, la première partie sera consacrée à une revue de la littérature. Je décrirai les deux atteintes ostéo-articulaires qui ont été à l’origine de mes modèles d’études in vivo, l’arthrose et la polyarthrite rhumatoïde ; je parlerai ensuite de la cellule qui m’a intéressée tout au long de cette thèse, la cellule souche mésenchymateuse ; puis je terminerai cette introduction bibliographique par une description complète des vésicules extracellulaires. Je vous présenterai ensuite les résultats que j’ai obtenus au cours de ma thèse. Ces résultats s’articulent autour de deux articles. Je terminerai ce manuscrit avec une petite discussion sur le travail accompli au cours de ces 4 années passées au laboratoire.
Introduction:

Revue bibliographique de la littérature
Partie 1. Les maladies ostéo-articulaires.

Les maladies ostéo-articulaires englobent diverses atteintes polymorphes touchant les tissus osseux et cartilagineux. Les sites touchés sont variables tout comme les durées d’évolution et les mécanismes de physiopathologie. Certaines sont liées à l’usure et au vieillissement comme l’arthrose ou l’ostéoporose et d’autres sont de nature inflammatoire comme la polyarthrite rhumatoïde ou la spondylarthritis. Ce sont des atteintes fréquentes, associées à un échec thérapeutique avec une absence de traitement curatif et impactant sévèrement la qualité de vie des personnes atteintes.

Au laboratoire, nous nous intéressons à deux de ces pathologies ostéo-articulaires : l’arthrose et la polyarthrite rhumatoïde. Dans cette première partie, nous décrirons ces deux atteintes articulaires, leurs mécanismes de pathogenèse, ainsi que les stratégies thérapeutiques existantes pour lutter contre ces deux atteintes. Mais dans un premier temps, il est nécessaire de rappeler la composition et la structure d’une articulation saine.

1. L’articulation

1.1. Composition d’une articulation

L’articulation relie au moins deux os entre eux et permet le mouvement. Elle est délimitée par une capsule articulaire tapissée d’une membrane synoviale qui sécrète le liquide synovial. Chaque os est recouvert de cartilage et des structures péri-articulaires comprenant les ligaments permettent de maintenir l’ensemble (Figure 1). Chaque structure de l’articulation est détaillée ci-après.
1.1.1. L’os sous-chondral

L’os sous-chondral est l’os situé directement sous le cartilage. C’est une structure innervée et vascularisée. Son rôle principal est d’amortir les chocs articulaires et d’apporter les nutriments nécessaires au cartilage pendant la croissance. L’os sous-chondral est en perpétuel renouvellement grâce à l’action des ostéoclastes qui détruisent l’os et des ostéoblastes qui le synthétisent. L’os sous-chondral est ainsi maintenu dans un état d’équilibre.

1.1.2. Le tissu synovial (membrane et liquide synovial)

La membrane synoviale recouvre la face interne des articulations et des ligaments mais est absente du cartilage et des ménières. Elle est composée de deux couches. La première couche est superficielle et cellularisée. Elle se compose de 30% de synoviocytes A qui sont des macrophages dont la fonction est de nettoyer la cavité articulaire; et de 70% de
synoviocytes B qui sont des fibroblastes produisant l’acide hyaluronique présent dans le liquide synovial. La seconde couche interne est une couche vascularisée qui permet les échanges avec la circulation sanguine (apport de nutriments, élimination des déchets).
Le liquide synovial est un ultrafiltrat du plasma, il contient de l’acide hyaluronique et des facteurs de croissance. Il joue un rôle dans la protection et la nutrition du cartilage articulaire et il permet la lubrification de l’articulation.

1.1.3. Les structures péri-articulaires
La capsule articulaire est une enveloppe fibreuse et élastique qui délimite l’articulation. Les ligaments s’insèrent sur le périoste, ils sont constitués de fibres de collagène résistantes et élastiques. L’ensemble capsule articulaire et ligaments permet de stabiliser l’articulation.

1.1.4. Le cartilage articulaire
Le cartilage recouvre les extrémités osseuses. Sa fonction première est d’amortir et supporter les forces de compression et de cisaillement qui s’exercent sur l’articulation. La composition du cartilage sera abordée dans la section suivante.

1.1.4.1. Caractéristiques du cartilage articulaire
Le cartilage articulaire est un tissu conjonctif blanc, brillant et non innervé recouvrant les extrémités osseuses. Il est constitué d’une matrice extracellulaire (MEC) composée à 70% d’eau, de collagènes, de protéoglycanes et de protéines telles que la fibronectine, et de chondrocytes.
Le collagène, principalement de type II, permet une résistance mécanique aux tractions. Au sein de ces fibres de collagènes, on retrouve des protéoglycanes. Un protéoglycane est l’assemblage entre une protéine et un glycosaminoglycane (GAG). Les protéoglycanes assurent l’élasticité du cartilage.
Le chondrocyte serait le seul type cellulaire présent au sein du cartilage. Le chondrocyte est une cellule qui se différencie à partir d’une cellule souche mésenchymateuse, au cours de la chondrogenèse. Au sein de l’articulation, le chondrocyte participe à l’homéostasie tissulaire ; il possède une activité anabolique et une activité catabolique qui sont finement régulées et
en équilibre. L’activité anabolique permet la synthèse de l’ensemble des constituants de la MEC dont les fibres de collagènes de type II, les facteurs de croissance (BMP, TGF-β, IGF-1) et les protéoglycans, et à l’inverse l’activité catabolique se manifeste par la sécrétion d’enzymes de remodelage de la MEC, dont les métalloprotéinases (MMP), ADAMTS5 et les collagènases (Goldring et Marcu 2009).

Le cartilage est organisé en 4 couches : (Figure 2)

- une couche superficielle fine et riche en eau. Les fibres de collagène sont organisées de manière parallèle entre elles et les chondrocytes y sont nombreux et aplatis. La couche superficielle du cartilage est très résistante aux forces exercées sur l’articulation.

- Une couche moyenne moins hydratée où les chondrocytes prennent une forme sphérique, les fibres sont plus épaisses et moins organisées permettant de garder enchaînés les protéoglycans.

- Une couche profonde où les chondrocytes sont alignés de façon perpendiculaire par rapport à la surface de l’articulation et entourés des fibres.

- Une zone calcifiée sous la « tidemark » à la limite entre cartilage et os sous-chondral.

Figure 2 : Organisation du cartilage
(D’après www.mon-arthrose.com)
2. L’arthrose

2.1. Définition de l’arthrose

2.2. Epidémiologie de l’arthrose

L’arthrose est un problème de santé publique majeur et croissant. Cette maladie est la plus fréquente des atteintes rhumatismales, et la seconde cause d’invalidité après les maladies cardiovasculaires. Même si les données épidémiologiques sont peu documentées, l’OMS estime que 10% des hommes et 18% des femmes de plus de 60 ans sont atteints de la maladie, à l’échelle mondiale.

La première grande enquête sur l’arthrose menée par L’Association Française de Lutte Anti-Rhumatismale (AFLAR) dans les années 2000 a estimé sa prévalence en France à 17%, positionnant la maladie comme la plus fréquente des pathologies articulaires. Dans le pays, on estime ainsi que 10 millions de personnes en sont atteintes avec la moitié des cas étant symptomatique. La gonarthrose touche 240 personnes sur 1,000,000, la coxarthrose touche 80 personnes sur 100,000 et enfin l’arthrose digitale touche 100 personnes sur 1,000,000 (Rat et El Adssi 2013).
2.3. Étiologie de l’arthrose

Les principales causes d’arthrose semblent être liées à des contraintes mécaniques et de multiples facteurs peuvent fragiliser une articulation. Ils sont divisés en deux groupes ; on parle de facteurs systémiques ou de facteurs locaux. Ils sont détaillés ci-après (Suri, Morgenroth, et Hunter 2012).

2.3.1. Facteurs systémiques

2.3.1.1. L’âge

L’arthrose se développe spontanément avec l’âge. L’âge est le principal facteur de risque de l’arthrose. En France, avant 45 ans, seulement 3% de la population est concernée. A partir de 65 ans, 65% de la population se plaint de douleurs articulaires et souffre d’arthrose. Ce pourcentage augmente encore avec l’âge puisque 85% des plus de 70 ans sont touchés (Belo et al. 2007).

2.3.1.2. Le genre

Après la ménopause, la prévalence de l’arthrose augmente considérablement chez les femmes et les formes d’arthrose sont plus sévères. La carence en hormones sexuelles féminines et particulièrement en oestrogènes en phase post-ménopausique exerce un impact dans le développement de l’arthrose (Srikanth et al. 2005).

2.3.1.3. Les facteurs génétiques

Il est admis que les facteurs génétiques participent au développement et à la progression de la maladie. L’héritabilité est impliquée dans 39% des gonarthroses, 60% des coxarthroses et 59% des arthroses digitales. Cependant, aucun gène fortement impliqué dans l’arthrose n’a pu être identifié. Toutefois, dans une étude publiée en 2008, Valdes identifie 36 variants sur 17 gènes induisant une prédisposition à développer une arthrose, mais ces derniers sont souvent rares ou exercent un faible impact (Valdes et Spector 2008).
2.3.1.4. L’obésité

L’obésité induit une sollicitation anormale des articulations. D’importantes contraintes mécaniques sont exercées sur les articulations portantes et particulièrement les genoux et les hanches. Les personnes en surpoids ont trois fois plus de risques de développer une arthrose que celles avec un poids normal (Blagojevic et al. 2010). 29% des gonarthoses pourraient être évitées en réduisant l’indice de masse corporelle (W. Zhang 2010).

2.3.2. Facteurs locaux

Les facteurs locaux regroupent les anomalies du squelette, telles que les dysplasies et les subluxations de la hanche, les valgus et varus qui sont des défauts d’alignement des genoux ou encore l’inégalité de longueur des membres inférieurs. L’ensemble de ces déformations favorisent la survenue d’une arthrose (Harvey et al. 2010; Suri, Morgenroth, et Hunter 2012). Les activités intensives sportives ou professionnelles génèrent des microtraumatismes articulaires répétitifs qui conduisent également au développement d’une arthrose (D. J. Hunter et Eckstein 2009).

Enfin, les atteintes articulaires telles que les fractures et les entorses peuvent contribuer au développement d’une arthrose, et ce, des années après la blessure parfois (Blagojevic et al. 2010). Les atteintes des ménisques avec méniscectomie augmentent de 14 fois le risque de développer une arthrose (Roos et al. 1998).

2.4. Mécanismes de pathogenèse de l’arthrose

L’arthrose est une maladie causée par un déséquilibre entre synthèse et dégradation de la matrice cartilagineuse. Le cartilage subit une usure qui peut être décomposée en différents stades. Le stade initial correspond à un ramollissement du cartilage, ce dernier perd sont aspect lisse. Le stade intermédiaire fait référence à une fissuration superficielle du cartilage, et enfin le stade final correspond à une fissuration plus profonde du cartilage qui conduit à un amincissement et parfois même une perte totale du cartilage (Chevalier 1998).
2.4.1. Le stade initial

L’arthrose démarre par une agression du tissu. Les chondrocytes et l’os sous-chondral vont alors s’activer et tenter de réparer le cartilage lésé. Les chondrocytes sécrètent un grand nombre de facteurs de croissance, le TGF-β « transforming growth factor », l’IGF-1 « insulin growth factor » et des protéoglycanes, conduisant à une forte hydratation du cartilage et à un ramollissement. Au niveau de l’os sous-chondral, l’activité des ostéoblastes s’intensifie et on peut observer une augmentation de la densité osseuse localisée, formant une sclérose sous-chondrale ou des kystes. A la jonction entre cartilage et membrane synoviale, on note également la mise en place d’ostéophytes qui sont des excroissances osseuses. L’équilibre entre synthèse et dégradation est, à ce stade, maintenu. Toutefois, la qualité de la matrice extracellulaire nouvellement synthétisée est moins bonne, menant à une perte de la résistance du tissu et à l’apparition de fissures.

2.4.2. Le stade intermédiaire

Au cours du stade intermédiaire, on observe un déséquilibre entre activités anaboliques et cataboliques qui va progressivement mener à la dégradation du cartilage. Les chondrocytes sont totalement dérégulés : l’activité anabolique est diminuée, l’activité catabolique est à l’inverse stimulée, conduisant à une destruction autocrine de la matrice extracellulaire. Le phénotype des chondrocytes est également modifié : ils deviennent fibrotiques et sécrètent des composants inhabituels tels que les collagènes de type I et III et la fibronectine ainsi que des enzymes de dégradation de la matrice extracellulaire, des MMP et des agrécanases. La membrane synoviale devient inflammatoire et relargue dans le liquide synovial des cytokines pro-inflammatoires dont l’IL-1β, l’IL-6, l’IL-8 et d’autres enzymes protéolytiques qui vont accentuer les phénomènes de dégradation cartilagineuse. L’IL-1β va agir comme un inhibiteur de la sécrétion de collagène de type II et induire la sécrétion de médiateurs inflammatoires tels que PGE2 (prostaglandine E2) et NO (monoxyde d’azote). Tous ces changements conduisent à l’apoptose prématurée des chondrocytes. En effet, sous l’influence des médiateurs pro-inflammatoires, ils vont proliférer de manière anormale, s’hypertrophier et finir par mourir.
L’activité de l’os sous-chondral va aussi être perturbée, les ostéoblastes accélèrent la formation d’os aboutissant à la formation d’ostéophytes (Figure 3).

2.4.3. Le stade final

L’arthrose atteint son stade final lorsque le processus arthrosique gagne les couches profondes du cartilage. A ce stade, la matrice cartilagineuse est détruite et érodée, mettant à nu l’os sous-chondral.

![Figure 3 : Physiopathologie de l’arthrose (D’après Chevalier, 2008)](image)

2.5. Diagnostic de l’arthrose

2.5.1. Aspects cliniques

Quand elle devient symptomatique, les principaux signes cliniques retrouvés dans l’arthrose sont la douleur, les raideurs, les craquements articulaires, les déformations, et l’invalidité partielle ou totale qui sont la conséquence des signes cliniques précédemment évoqués et qui altèrent considérablement les activités habituelles et la qualité de vie du patient.
Les douleurs sont difficiles à évaluer et sont une donnée subjective. Il semble qu’elles soient d’autant plus intenses après un effort et peuvent se manifester la nuit, notamment en période de crise inflammatoire. Une synoviale inflammatoire se traduit d’ailleurs par une chaleur et un épanchement synovial. Les raideurs se manifestent par le besoin d’un déverrouillage pour assouplir les articulations après un moment prolongé d’inactivité. La déformation des articulations est la conséquence des ostéophytes. Elle est fréquente dans le cas d’arthrose digitale. L’ensemble de ces symptômes est responsable de l’invalidité fonctionnelle. Le patient ressent une gêne dans ses activités du quotidien.

Divers indices existent pour estimer l’intensité des symptômes de l’arthrose sur les patients. Le plus fréquemment utilisé est l’indice de WOMAC (« Western Ontario MacMAster University Osteoarthritis Index »). Le WOMAC est un questionnaire rempli par le patient lui-même. Dans ce questionnaire, le patient retrouve des questions portant sur ses douleurs, ses raideurs et sur sa qualité de vie. Le diagnostic clinique est ensuite complété par des techniques d’imagerie.

2.5.2. Imagerie

D’un point de vue imagerie, la radiographie est la technique d’imagerie de référence pour diagnostiquer les lésions arthrosiques. Ces dernières sont classées selon leur gravité, et leur profondeur. Il existe des critères d’évaluation de la maladie afin de définir son stade d’avancement, on parle de score et le plus utilisé est le score de Kellgren et Lawrence. Il fait état de cinq stades :

- Le grade 0 correspond à un cartilage sain et sans anomalies, sans signes radiographiques d’arthrose.
- Le grade 1 fait état d’un cartilage presque normal, avec toutefois des doutes dus à la présence de pincements articulaires qui peuvent être accompagnés d’ostéophytes.
- Le grade 2 correspond à une arthrose mais sans sévérité, on remarque la présence d’ostéophytes.
- Le grade 3 correspond à une arthrose modérée, les ostéophytes sont de taille moyenne, le pincement articulaire est présent mais moyen et on peut noter à ce stade une légère déformation de l’articulation.
- Le grade 4 correspond à une arthrose sévère, les ostéophytes sont de grande taille et accompagnés d’une sclérose sévère et d’une déformation du cartilage.

![Figure 4 : Description du score Kellgren-Lawrence.](https://www.adamondemand.com/clinical-management-of-osteoarthritis/)

3. La polyarthrite rhumatoïde

3.1. Définition de la polyarthrite rhumatoïde

La polyarthrite rhumatoïde (PR) est une pathologie articulaire inflammatoire et chronique évoluant par poussées. Elle se caractérise par une inflammation et une hypertrophie de la membrane synoviale appelée « pannus » qui va conduire à un épanchement de liquide synovial infiltré par divers acteurs de l’inflammation. C’est une maladie auto-immune, caractérisée par un dérèglement du système immunitaire avec production d’auto-anticorps anti-protéines citrullinées (ACPA). Enfin l’arthrite cause une dégradation du cartilage et de l’os aboutissant à des déformations. Elle touche particulièrement les articulations des mains, des pieds et des genoux mais peut être systémique et entraîner des manifestations extra-articulaires avec des atteintes cardiovasculaires, pulmonaires, psychologiques ou encore squelettiques (McInnes et Schett 2011).
3.2. Epidémiologie de la polyarthrite rhumatoïde

La PR est le plus fréquent des rhumatismes inflammatoires chroniques. Sa prévalence est très variable en fonction de l’origine géographique et des ethnies. Dans les hémisphères nord, on constate une diminution des cas du nord vers le sud, et des zones urbaines vers les zones rurales (Alamanos, Voulgarì, et Drosos 2006). Les populations consanguines sont les plus touchées. A l’échelle mondiale, on estime que 1% de la population est atteinte de la maladie. En France, sa prévalence est évaluée à 0,31% soit 200 000 personnes environ.

La maladie se déclare souvent entre 45 et 55 ans pour les femmes et 55 à 65 ans pour les hommes. Il existe également des formes juvéniles d’arthrite, touchant les jeunes enfants. De manière générale, la PR peut se déclarer à tout âge. Comme l’arthrose, l’arthrite est plus fréquente chez les femmes.

3.3. Etiologie de la polyarthrite rhumatoïde

La PR est une maladie d’étiologie inconnue multifactorielle, c’est-à-dire que de nombreux facteurs conduisent à son développement. Ces facteurs sont d’ordre environnementaux, génétiques, hormonaux ou encore psychologiques.

3.3.1. Facteurs génétiques et épigénétiques

Les facteurs génétiques jouent un rôle dans le développement, la sévérité et la progression de la PR. Environ 30% des cas impliquent un facteur génétique (Silman 1997). Une famille avec des antécédents d’arthrite augmente le risque de développer la maladie de 3 à 5 fois. Les jumeaux monozygotes partagent une arthrite dans 15 à 30% des cas (MacGregor et al. 2000; Silman et al. 1993).

Au total, près de 100 gènes ont été associés avec la pathologie et la majorité est liée à des mécanismes immunitaires (Okada 2014). Le gène codant pour le HLA (human leucocyte antigen) de classe II (HLA-DR) est particulièrement concerné, il est impliqué dans près de 40% des arthrites déclarées (Deighton et al. 1992). Le complexe HLA aussi appelé CMH (complexe majeur d’histocompatibilité) joue un rôle important dans la reconnaissance du soi et du non-soi et est associé à la présentation antigénique par les cellules présentatrices d’antigènes (CPA) aux lymphocytes T, aboutissant à la réponse immunitaire. Le gène HLA-DR est situé sur
le chromosome 6 et compte environ 200 allèles. Les allèles contenant le motif d’acides aminés QKRAA, appelé « épitope partagé », confèrent la susceptibilité à la maladie (Gregersen, Silver, et Winchester 1987). C’est le cas de l’allèle HLA-DRB1*04 (aussi appelé HLA-DR4) présent chez 70% des patients et de HLA-DRB1*01 (HLA-DR1) qui représente 30% de risque de développement d’une PR (Weyand et al. 1992). D’autres polymorphismes de gènes impliqués dans l’immunité adaptative ont été associés à la PR, citons par exemple les gènes STAT4, PTPN22, CTLA, BTLA ou encore CD28 (Yamamoto 2015; Tong et al. 2013; Ben Hamad et al. 2011).

L’épigénétique contribue aussi à la pathogénèse. Récemment, une étude a identifié 10 méthylation de l’ADN qui augmentent le risque de développer la maladie (Y. Liu et al. 2013).

3.3.2. Facteurs hormonaux

3.3.3. Facteurs environnementaux

Divers facteurs environnementaux semblent être mis en cause dans le développement de la maladie. Le tabagisme et l’exposition à certains agents infectieux sont ciblés (Silman, Newman, et MacGregor 1996; Klareskog et al. 2011). En effet, le risque de développer une PR est nettement augmenté chez les fumeurs. La quantité de cigarettes fumées et la durée

De nombreux agents infectieux ont été associés au développement d’une PR. C’est le cas des virus de l’hépatite C, de la rubéole et d’Epstein-Barr et de la bactérie Escherichia Coli (Ebringer et Wilson 2000). Ces pathogènes pourraient initier la maladie par homologie de séquence et mimétisme moléculaire avec « l’épitope partagé ».

3.3.4. Facteurs psychologiques

Aucun profil psychologique n’a, à ce jour, été associé au développement d’une PR. Toutefois, un choc émotionnel fort tel qu’un deuil, une dépression ou encore un accident peut mener au développement de la maladie. Un tel stress conduit à un terrain favorable au développement d’une PR.

3.4. Mécanismes de pathogenèse de la polyarthrite rhumatoïde

La PR est une atteinte cliniquement très hétérogène. Toutefois, on peut la décomposer en 5 étapes :
- une étape d’initiation qui correspond à une arthrite débutante
- une étape de recrutement cellulaire et d’inflammation
- une étape de destruction articulaire
- une étape de réparation.

Elle peut ensuite devenir systémique et avoir des conséquences sur d’autres tissus de l’organisme.

3.4.1. Étape d’initiation

L’étape d’initiation de la PR n’est pas encore totalement maîtrisée. Différents acteurs agiraient pendant cette phase. La PR débute avec un processus immunologique où un
antigène va être présenté par une CPA via le complexe HLA de classe II aux lymphocytes T (LT) CD4+ présents dans le tissu synovial. À la suite de cette présentation antigénique, les LT CD4+ activés vont sécréter des médiateurs pro-inflammatoires (IFN-γ, IL-2) et des molécules chimio-attractantes qui vont recruter les leucocytes circulants par des mécanismes de homing. Les autres acteurs de l’immunité, macrophages, fibroblastes et cellules B vont être activés par les molécules pro-inflammatoires et vont à leur tour secrétant des molécules contribuant à cet environnement pro-inflammatoire.

3.4.2. Étape de recrutement cellulaire et d’inflammation

Au cours de cette phase, les leucocytes, cellules de l’immunité présentes dans le sang, vont migrer vers les articulations. Les lymphocytes T, B, les monocytes et granulocytes neutrophiles sanguins vont migrer vers le tissu synovial après adhésion aux cellules endothéliales des vaisseaux. Ces cellules endothéliales vont exprimer d’avantage de molécules d’adhésion telles que les intégrines et les sélectines. De plus, des mécanismes d’angiogenèse induits localement par les cytokines se mettent en place et favorisent le recrutement des cellules dans le tissu synovial.

Une fois dans la synovie, les cellules vont s’activer et contribuer au maintien de l’inflammation par la sécrétion de nombreux médiateurs inflammatoires (Figure 4). Les cellules dendritiques vont sécréter de l’IL-6, l’IL-12, IL-15, IL-18, l’IL23 et l’IL-1β qui vont permettre la différenciation des Th17, le blocage de la différenciation des Treg et contribuer à un environnement inflammatoire. Les cellules Th17 vont secrèter de l’IL-17A, IL-17F, IL-21, IL-22 et du TNF-α. Le TNF-α en synergie avec l’IL-17A va activer les chondrocytes et les fibroblastes (Chabaud et al. 1998; Miossec, Korn, et Kuchroo 2009). Les cellules T vont activer les macrophages et les fibroblastes par des mécanismes contact-dépendants avec des interactions CD40/CD40L, CD200/CD200L ICAM-1/LFA-1. L’IL-1β va induire la production de PGE2 et de MMP, et diminuer la synthèse de collagène et donc de la matrice extracellulaire. Les cellules B participent également à la pathogenèse de l’arthrite. Elles secrètent des auto-anticorps, les ACPA, et des cytokines qui maintiennent eux aussi l’inflammation.
Figure 5 : Réponses immunitaires dans l’articulation arthritique
(D’après McInnes, 2011)

3.4.3. Destruction articulaire

Cette phase est caractérisée par des lésions articulaires avec atteintes des os et des cartilages. Les synoviocytes (de type macrophages et fibroblastes) vont s’accumuler et constituer un pannus synovial. Les fibroblastes de l’articulation atteinte sécrètent des MMP (MMP-1, 3, 8, 13, 14, 16) qui vont dégrader la MEC du cartilage. Les chondrocytes, cellules principales du cartilage, vont produire du PGE2 et des enzymes de dégradation conduisant aussi à la destruction du cartilage. Les cytokines pro-inflammatoires présentes dans le tissu
synovial et en particulier le M-CSF (« macrophage colony-stimulating factor ») et RANKL (« receptor activator of nuclear factor κ B ligand ») vont induire la différenciation ostéoclastique. L’IL-1β, 6, 17 et le TNF-α accentuent l’activation des ostéoclastes (Gravallese et al. 1998; Schett et Teitelbaum 2009). Ces cellules détruisent les tissus minéralisés et donc le cartilage et l’os sous-chondral.

3.4.4. Réparation articulaire

Malgré les dégradations décrites précédemment, l’organisme va tenter de développer des moyens de réparation articulaire. Les cellules vont secrétérer de l’IL-10, du TGF-β et des TIMPs (« tissue inhibitor of metalloprotease »). Le TGF-β va permettre de stimuler la synthèse de collagènes et protéoglycanes par les chondrocytes, et l’IL-10 et les TIMPs vont ralentir les dégradations ostéo-cartilagineuses. Toutefois, ces tentatives de réparation seront vaines.

3.4.5. Atteintes systémiques

La PR peut avoir des conséquences systémiques. Elle est associée à des désordres cardiovasculaires dont les infarctus du myocarde ou les arrêts cardiaques (Holmqvist et al. 2010). L’IL-6 et le TNF-α semblent impliqués dans ces effets, en augmentant l’activation des cellules endothéliales (Sattar et McInnes 2005). La PR est aussi associée à des désordres cérébraux avec une fatigue et des fonctions cognitives réduites, elle touche les poumons avec le développement de maladies fibrotiques ou les muscles avec des syndromes de sarcopénie.

3.5. Diagnostic de la polyarthrite rhumatoïde

3.5.1. Aspects cliniques

Il n’existe pas de critères de diagnostic précis pour la PR et les signes cliniques sont très variables. Toutefois, on retrouve de manière fréquente :

- des douleurs articulaires inflammatoires avec gonflement des articulations. Ces douleurs sont très prononcées le matin.
- Une raideur articulaire après des périodes d’inactivité, nécessitant un dérouillage progressif.
En 2007, l’HAS (haute autorité sanitaire) apporte des recommandations spécifiques pour un diagnostic d’une PR. La raideur matinale doit durer au moins 30 minutes, la PR doit cibler au moins 3 articulations dont la main au niveau des poignets ou bien des métacarpes, une douleur doit d’ailleurs être ressentie suite à des pressions exercées au niveau phalanges, l’atteinte doit être symétrique et enfin la durée d’évolution des symptômes doit être supérieure à 6 semaines. Le diagnostic est confirmé après quelques mois et l’apparition de lésions destructrices des articulations.

En 2010, une nouvelle classification des critères de diagnostic de la maladie est proposée (Aletaha et al. 2010). En première approche, une seule articulation gonflée en l’absence de maladie pouvant causer ce gonflement peut être liée à la PR. Pour un diagnostic plus sensible, des approches d’ultrasons ou d’imagerie sont nécessaires.

De plus, la présence de marqueurs sérologiques tels que la présence d’auto-anticorps, la durée des symptômes sont d’autres critères qui peuvent mettre sur la voie d’un diagnostic d’une PR.

4. Les thérapies contre les maladies ostéo-articulaires

Il n’existe à l’heure actuelle aucun traitement curatif pour soigner les deux pathologies ostéoarticulaires que nous venons de décrire. Toutes les stratégies thérapeutiques existantes visent à réduire les douleurs ressenties par les patients et rétablir les fonctions articulaires pour améliorer leur qualité de vie, et ralentir la progression de la maladie en tentant de freiner les lésions articulaires.

4.1. Les thérapies de l’arthrose

Les traitements de l’arthrose sont tous de nature palliative. Il n’existe pas de traitements curatifs, ou de traitements préventifs pour la maladie. La société internationale de l’arthrose, l’OARSI (« osteoarthritis society international ») recommande de se concentrer sur la thérapie conservatrice et de mettre l’accent sur les modifications du mode de vie avec perte de poids, mise en place d’activités physiques et de renforcement, développement de l’auto-gestion dans ce processus de maladie chronique (McAlindon et al. 2014). À l’heure actuelle, les traitements les plus utilisés sont :
- La prise orale d’antalgiques, d’anti-inflammatoires non stéroïdiens (AINS) ou de corticoïdes,
- Les traitements locaux : les infiltrations intra-articulaires cortisoniques, l’application de gel anti-inflammatoire, la viscosupplémentation (l’injection d’acide hyaluronique dans l’articulation), le lavage articulaire pour éliminer les molécules néfastes à l’articulation,
- Les traitements physiques : massages de kinésithérapie et dispositifs médicaux (orthèses, semelles orthopédiques, béquilles) destinés à améliorer la qualité de vie,
- Les traitements chirurgicaux : l’arthroplastie qui consiste à remplacer une partie de l’articulation par une prothèse.

4.2. Les thérapies de la polyarthrite rhumatoïde

En ce qui concerne la PR, les traitements les plus utilisés sont :
- La prise orale d’antalgiques, d’AINS, de corticostéroïdes, ou d’anti-rhumatismaux modificateurs de la maladie (ARMM) (méthotréxate),
- Les traitements locaux : la viscosupplémentation, l’injection de stéroïdes,
- Les biothérapies.

Depuis les années 1990, les biothérapies ont fait leur apparition. Il s’agit de nouvelles thérapies qui vont directement agir sur les cellules à l’origine du dérèglement immunitaire et de la réaction inflammatoire. Ce sont des agents biologiques : des molécules synthétiques ou des anticorps monoclonaux par exemple, qui sont dirigés contre une cible spécifique. Cette cible peut être une cytokine, ou même un type cellulaire. Les anti-TNF-α, les anti-IL-1 et les anti-IL-6 ainsi que les anti-CD20 (ciblant les lymphocytes B) et les anti-CTLA4 (ciblant les lymphocytes T) sont utilisés dans le traitement de la PR et montrent une réelle efficacité avec arrêt de la progression de la maladie tout au long de la durée de traitement.

4.3. La thérapie cellulaire

La thérapie cellulaire est à l’étude dans les maladies ostéo-articulaires et plus particulièrement pour l’arthrose. Les cellules souches pourraient être des candidats intéressants pour traiter ces atteintes se manifestant par des destructions cartilagineuses et
osseuses. Utiliser le potentiel de différenciation des cellules souches pour remplacer les tissus lésés ou bien leurs fonctions trophiques pour les réparer pourrait être une bonne approche. Les cellules souches mésenchymateuses (CSMs) sont des cellules d’intérêt pour l’arthrose. Le premier essai clinique utilisant des CSMs dans l’arthrose est daté de 2002 (Wakitani et al. 2002). Dans cet essai, les CSMs sont incorporées dans un gel de collagène et implantées au sein du cartilage lésé. Malgré l’absence d’amélioration clinique après 6 mois, l’injection des CSMs montre un meilleur score histologique et arthroscopique chez les patients traités. Depuis, elles sont à l’étude dans près de 53 essais cliniques et montrent des résultats préliminaires intéressants avec une bonne tolérance et des améliorations fonctionnelles chez les sujets atteints.
En ce qui concerne la PR, on dénombre à l’heure actuelle seulement 4 essais cliniques. (http://clinicaltrials.gov/)

Partie 2. Les cellules souches mésenchymateuses

1. Les cellules souches

1.1. Un peu d’histoire

1.2. Définition des cellules souches

De nos jours, on définit une cellule souche comme une cellule non différenciée possédant un potentiel d’auto-renouvellement ainsi que des capacités de prolifération et de différenciation. Une cellule souche est capable de proliférer durant de nombreux cycles cellulaires tout en maintenant un état indifférencié, mais une cellule souche est aussi capable d’entrer en différenciation, et selon son type, elle pourra se différencier en un ou plusieurs types cellulaires. On parle alors de cellules souches totipotentes, pluripotentes, multipotentes ou encore unipotentes. Il convient maintenant de définir les différents types de cellules souches en fonction de leur potentiel de différenciation.

- Les **cellules souches totipotentes** sont les cellules souches issues directement de l’œuf, du zygote. Ces cellules vont être capables de former l’ensemble de l’organisme. Ainsi,
elles vont pouvoir se différencier en tous types cellulaires et elles formeront également les tissus extra-embryonnaires qui correspondent au placenta.

- Les **cellules souches multipotentes** sont des cellules souches déjà engagées dans un tissu spécifique. Elles vont pouvoir se différencier en un nombre restreint de cellules spécialisées originales du même feuillet embryonnaire. Ces cellules sont soit fœtales soit adultes et servent généralement à réparer un tissu lésé ou à renouveler les tissus vieillissants. Les cellules souches hématopoïétiques sont, par exemple, des cellules souches multipotentes.

- Et pour terminer, les **cellules souches unipotentes** sont des cellules souches adultes, avec un potentiel de différenciation très limité, ne pouvant produire qu’un seul type cellulaire tout en maintenant une capacité d’auto-renouvellement. Citons par exemple les cellules souches musculaires, ou encore celles de l’épiderme.

Depuis près de 10 ans, de nouveaux types de cellules souches induites ont fait leur apparition. Il s’agit des iPS pour « Induced Pluripotent Stem Cells ». Ces cellules sont le résultat de manipulations génétiques de cellules différenciées, menées par l’équipe de Yamanaka et qui lui ont valu le prix Nobel de médecine en 2012. En effet, en introduisant dans des cellules différenciées les facteurs de transcription identifiés dans les cellules souches embryonnaires (oct3/4, Sox2, KLF4 et c-myc), cette équipe montre une dédifférenciation des cellules associée à des propriétés de pluripotence (Takahashi et Yamanaka 2006).

1.3. Notion de niche

Le microenvironnement des cellules souches, qualifié de « niche » est un élément crucial pour leur survie. La niche des cellules souches peut modifier et réguler leur devenir : différenciation, quiescence, survie ou prolifération. Elle agit sur l’ancrage et l’adhésion des cellules souches dans le tissu.
La niche se compose des cellules souches, des cellules stromales qui interagissent directement avec les cellules souches, d’une matrice extracellulaire qui structure l’ensemble, de vaisseaux sanguins qui permettent le recrutement de cellules circulantes dans la niche et également de fibres nerveuses qui assurent une communication avec d’autres cellules du microenvironnement.

1.4. Cellules souches adultes

On retrouve divers types de cellules souches aux différents stades de la vie : des cellules souches embryonnaires, des cellules souches foetales, et des cellules souches adultes, présentes dans tout l’organisme et possédant un rôle primordial. Au cours d’une vie, les organes et les tissus sont soumis à diverses contraintes qui peuvent compromettre leur intégrité, telles que les blessures, les maladies, la vieillesse. Les tissus doivent donc avoir recours à un mécanisme permettant de remplacer les cellules lésées ou les cellules vieillissantes (on estime qu’un individu perd chaque jour 20 milliards de cellules) et ainsi assurer la réparation et la régénération du tissu. C’est ici qu’interviennent les cellules souches adultes. Les organes possèdent un réservoir de cellules souches qui va assurer l’homéostasie du tissu en maintenant l’équilibre entre prolifération, différenciation et mort cellulaire. Ainsi, ils pré servent leur fonction tout au long de la vie de l’organisme.

Les cellules souches adultes ont un potentiel de différenciation limitée, ce sont des cellules multipotentes ou unipotentes retrouvées dans divers tissus de l’organisme. On citera comme exemple de cellules souches multipotentes adultes, les cellules souches hématopoïétiques. Ce sont les cellules souches à l’origine de toutes les cellules de la lignée myéloïde (érythrocytes, monocytes, macrophages, plaquettes et granulocytes) et de la lignée lymphoïde (lymphocytes T et B, cellules NK). Les cellules souches unipotentes adultes sont par exemple les cellules souches intestinales pour le renouvellement de l’épithélium intestinal, les cellules souches du follicule pileux pour le renouvellement de l’ épiderme, les cellules satellites du muscle pour reformer les fibres musculaires détruites suite à une blessure par exemple. Dans la suite de cette introduction, les cellules souches adultes sur lesquelles va se porter notre attention sont les cellules souches mésenchymateuses (CSMs).
2. Les cellules souches mésenchymateuses

2.1. Description des cellules souches mésenchymateuses

2.1.1. Découverte des cellules souches mésenchymateuses

2.1.2. Définition des cellules souches mésenchymateuses

Les CSMs sont donc des cellules souches multipotentes capables d’autorenouvellement et de différenciation en différents lignages du tissu mésodermique : en os (ostéoblastes), en cartilage (chondroblastes) et en tissu adipeux (adipocytes).

Cultivées in vitro, les CSMs sont capables de se diviser sur plusieurs générations, sans modification de leur morphologie avec cet aspect fibroblastique conservé, et sans perte de leurs capacités à se différencier. Cultivées in vivo, les CSMs exprimant le marqueur CD146 sont aptes à se diviser sur plusieurs générations (Sacchetti et al. 2007).

En 2006, la Société Internationale de Thérapie Cellulaire l’ISCT, propose que chaque cellule obtenue à partir d’un tissu/organe et présentant les caractéristiques suivantes puisse être considérée comme une CSM: (Dominici et al. 2006)

- Adhérence au plastique dans des conditions de culture standard (par opposition aux cellules hématopoïétiques)
- phénotype cellulaire caractérisé par l’expression des marqueurs de surface CD105 (endogline), CD73 (5’terminal nucléotidase), CD90 (thy-1) et l’absence des marqueurs des cellules hématopoïétiques : CD45 (leucocytes), CD34 (progéniteurs hématopoïétiques), HLA-DR, CD14 ou CD11b (monocytes/macrophages) et CD19 (lymphocytes B).
- Capacité de différenciation en chondroblastes, en ostéoblastes et en adipocytes

2.1.3. Localisation des cellules souches mésenchymateuses

Les CSMs ont d’abord été isolées à partir des tissus squelettiques vascularisés dont la moelle osseuse. Les CSMs y sont cependant rares puisqu’elles représentent une cellule sur 10 000/100 000 (Pittenger et al. 1999). Elles ont ensuite été isolées à partir de la fraction stromale vasculaire en de meilleure proportion puisqu’elles y sont 100 à 1000 fois plus présentes (Short et al. 2003). Elles sont présentes dans divers tissus et sont retrouvées dans le sang de cordon ombilical, le placenta, ou le sang de menstrue, dans la pulpe dentaire, dans le synovium, les ligaments, les tendons, ou encore au niveau de la limbe et du trabéculum qui sont des tissus ophtalmologiques (Kern et al. 2006; Davies et al. 2015; Rossignoli et al. 2013; Tay et al. 2012; Bray et al. 2014). Selon Da Silva Meireilles et al, les CSMs sont présentes dans tous les organes et tissus de l’organisme (da Silva Meirelles, Chagastelles, et Nardi 2006).

Depuis 2008, les CSMs sont décrites comme des cellules pérvasculaires, les péricytes (Crisan et al. 2008; Corselli et al. 2010). La distinction entre péricytes et CSMs est d’ailleurs mince. Les péricytes sont des cellules localisées le long des micro- vaisseaux comprenant les artérioles, les capillaires et les veines. Dans des conditions de culture, les péricytes sont semblables aux CSMs tant au niveau phénotypique avec expression des marqueurs tels que CD105, CD73, CD90 Stro-1 et absence de CD45, tant au niveau du potentiel de différenciation avec une différenciation en os, cartilage, et tissu adipeux. Cependant, tous les péricytes n’ont pas les propriétés des CSMs, et toutes les CSMs ne sont pas non plus équivalentes aux péricytes. Les péricytes sont exclusivement localisés au niveau basal des capillaires contrairement aux CSMs dont on a vu la localisation précédemment. Les péricytes expriment en plus les marqueurs α-SMA (α Smooth muscle actin), NG2, CD140b et CD146 et possèdent un panel plus large de fonctions allant de la régulation, à la stabilisation de l’intégrité des vaisseaux (Hirschi et D’Amore 1996).
2.1.4. Caractérisation des cellules souches mésenchymateuses

Outre la définition proposée par l’ISCT, la CSM exprime un panel de marqueurs de surface regroupant des récepteurs, des molécules de co-stimulation et des molécules d’adhésion qui sont résumés dans le tableau 1.

Ce panel de marqueurs est dépendant de l’espèce ou du tissu d’origine de la CSM. Par exemple, les CSMs d’origine murine expriment à leur surface le marqueur Sca-1, contrairement aux CSMs humaines. Alors que les CSMs de moelle osseuse n’expriment pas le CD34, les CSMs de tissu adipeux sont exclusivement dans la population CD34+ de la fraction stromale vasculaire.
Tableau 1 : Marqueurs phénotypiques des cellules souches mésenchymateuses humaines

En plus de leur capacité de différenciation en ostéoblastes, en chondroblastes et en adipocytes, les CSMs ont aussi montré des capacités de différenciation in vitro en myocytes, en ténoïdes, en neurones, en cellules endothéliales, en hépatocytes et en cardiomyocytes (Wakitani et al. 2002; Young et al. 1998; Sanchez-Ramos et al. 2000; Schwartz et al. 2002; Y. Jiang et al. 2002; Makino et al. 1999) (Figure 6). Toutefois, ces voies de différenciation ont
été obtenues in vitro dans des conditions de culture souvent extrêmes avec addition de molécules inductrices, et très peu d’études in vivo ont prouvé ces capacités.

Figure 6 : Différenciation des cellules souches mésenchymateuses
(Adapté de Anissa SH chan ; R&D Systems)

2.2. Rôles des cellules souches mésenchymateuses

Les CSMs exercent de nombreuses fonctions selon leur localisation et leur contexte physiologique (stimulation). Elles assurent un rôle de cellules « souches » pour les tissus squelettiques où elles sont responsables du renouvellement cellulaire, elles sont une niche et assurent un soutien des CSHs dans la moelle osseuse mais elles possèdent également un vaste éventail de fonctions paracrines, car médiées par des facteurs sécrétés, qui seront détaillées dans la suite de cette introduction. (Figure 7)
Figure 7 : Effets paracrines des cellules souches mésenchymateuses
(D’apres Meirelles, 2009)

2.2.1. Rôle de cellules souches

Comme nous l’avons vu précédemment, les CSMs sont des cellules multipotentes capables de différenciation. Les CSM assurent donc la formation, le renouvellement physiologique ainsi que la réparation de l’os, du cartilage et du tissu adipeux par leur capacité à se différencier dans les différents lignages qui constituent ces tissus.

2.2.2. Rôle de support et de croissance des cellules progénitrices

Dans la moelle osseuse se retrouvent des CSMs, mais également des CSHs, des ostéoblastes et des cellules endothéliales. L’ensemble compose la niche hématopoïétique. Les CSMs assurent un rôle de support pour l’hématopoïèse, en y participant activement. Elles communiquent avec les CSHs par des interactions directes mais également au travers de la sécrétion de facteurs solubles (Kiel et Morrison 2008; Adams et Scadden 2006). Les CSMs fournissent aux CSHs des molécules de matrice telles que la fibronectine, la laminine, le collagène et les protéoglycanes. Elles secrètent du SCF « stem cell factor », du LIF « leukemia
inhibitory factor», de l’IL-6, de l’Ang-1 (« l’angiopoïétique-1 »), du SDF-1 (« stromal cell derived factor » 1 ou CXCL12), de l’HGF (« hepatocyte growth factor »), du m-CSF (« macrophage colony-stimulating factor ») (Majumdar et al. 1998; Sugiyama et al. 2006). Tous ces médiateurs sont importants pour maintenir l’état souches des CSH et/ou assurer leur prolifération et différenciation.

Grâce à la sécrétion de ces facteurs de croissance, les CSMs sont également capables de stimuler la prolifération des diverses cellules progénitrices. HGF est par exemple, un mitogène pour de nombreux types cellules dont les hépatocytes, les cellules épithéliales et endothéliales (Rabkin et al. 2001).

2.2.3. Fonctions trophiques

Lors d’une atteinte tissulaire, les CSMs sont recrutées sur le site de l’inflammation par chimiotaxisme ou par attachement aux cellules endothéliales. Les cellules endothéliales activées dans des conditions d’attaque tissulaire expriment les molécules de surface VCAM-1 (« vascular cell adhesion molecule » 1 ou CD106) et la E-selectin (CD62E) qui sont des ligands pour l’intégrine α4/β1 (CD29) et le CD44, molécules de surface des CSMs (Rüster et al. 2006). Les CSMs, recrutées sur un site lésé, produisent un vaste éventail de molécules bioactives dont des cytokines, des facteurs de croissance ou des chimiorines qui vont exercer des effets pro-angiogéniques, anti-apoptotiques et anti-fibrotiques. L’ensemble de ces effets ont été démontrés in vivo et in vitro et sont détaillés ci après. Ils positionnent les CSMs comme une cellule d’intérêt pour la réparation tissulaire.

2.2.3.1. Rôle pro-angiogénique

Le milieu conditionné des CSMs est capable de stimuler la prolifération des cellules endothéliales (Kinnaird et al. 2004). Ces résultats suggèrent que les CSMs agissent sur les cellules endothéliales grâce à la libération de facteurs solubles. Certains ont été identifiés et sont connus pour leur propriété angiogénique. Nous pouvons citer b-FGF (“basic fibroblast growth factor”), VEGF (“vascular endothelial growth factor”), HGF, IGF-1, PI GF (“Placental growth factor”), MCP-1 (“monocyte chemoattractant protein” 1 ou CCL2), CXCL16, SDF-1, ET-1 (“endothelin-1”), IL-6, Ang-1 (“angiopoietin”-1) (Hung et al. 2007; Kinnaird et al. 2004). Les CSMs sont aussi capables d’agir grâce à des mécanismes semblables aux péryctes, en supportant et stabilisant la nouvelle vasculature. Des CSMs cultivées en condition hypoxique (2% O₂) ou anoxique (<1% O₂) expriment fortement EPO (« erythropoietin ») et VEGF qui sont les facteurs au plus fort potentiel angiogénique, et expriment α-SMA et la vimentine, qui sont caractéristiques des péryctes (Plotkin et Goligorsky 2006).

2.2.3.2. Rôle anti-fibrotique

La fibrose qui survient à la suite d’une atteinte tissulaire est remarquable dans les atteintes aiguës rénales, cardiaques, hépatiques ou pulmonaires par exemple, et elle peut être influencée par les CSMs. Les CSMs sécrètent un certain nombre de molécules telles que le FGF-2, l’HGF et l’adrénoméduilline qui exercent des activités anti-fibrotiques (Usunier et al. 2014; L. Li et al. 2009). L’HGF est une molécule clé dans les fonctions anti-fibrotiques des CSMs puisque sa surexpression améliore les effets bénéfiques observés (X. Liu et al. 2011).

Prenons l’exemple des atteintes du rein. Dans de nombreuses études concernant les atteintes rénales aiguës, les CSMs induisent la surexpression par les cellules rénales de molécules dont HO-1, BMP-7, Smad7 possédant toutes des propriétés anti-fibrotiques et elles diminuent l’expression des marqueurs de fibrose, dont le collagène de type I ou la vimentine (Semedo et al. 2009; Donizetti-Oliveira et al. 2012).
2.2.3.3. Rôle anti-apoptotique

Dans les atteintes tissulaires, suite à un traumatisme ou à un stress oxydant, l’apoptose est un phénomène biologique fréquent. *In vitro* et *in vivo*, dans de nombreux modèles de lésions tissulaires, les CSMs exercent des effets anti-apoptotiques et aident à la survie cellulaire (Meirelles et al. 2009). Les CSMs sécrètent un certain nombre de molécules connues pour leur effet anti-apoptotique telles que le VEGF, l’HGF, l’IGF-1, la stanniocalcin-1, le TGF-β, le FGF-2 et le GM-CSF (Tögel et Westenfelder 2007; Block et al. 2009; Rehman et al. 2004). L’IGF-1 semble être une molécule importante car son extinction dans les CSMs par des approches de siARN annulent les effets anti-apoptotiques observés avec les CSMs contrôles (Imberti et al. 2007).

2.2.4. Rôle anti-bactérien

Les CSMs sont efficaces dans des modèles de septicémie à la suite d’infection bactérienne (Németh et al. 2009; Gonzalez-Rey et al. 2009). Nous savons que les CSMs sont capables de moduler les réponses immunes (abordées en 2.2.5) ce qui pourrait expliquer les effets observés dans ces modèles. Cependant, certains auteurs suggèrent que les CSMs exercent directement un rôle anti-bactérien par la sécrétion de peptides antimicrobiens. En effet, Krasnodemskaya montre que les CSMs sécrètent du LL-37 (human cathelicidin hCAP-18), efficace contre la bactérie *E. Coli* et capable d’inhiber sa croissance (Krasnodemskaya et al. 2010). Gupta identifie un autre facteur sécrété par les CSMs aux propriétés antimicrobiennes, le lipocalin 2 (Gupta et al. 2012). Récemment, Park et son équipe montrent quant à eux qu’à la suite d’une exposition à la bactérie *E. Coli*, les CSMs expriment plus fortement les TLR-2 et 4 (Toll-like receptor) et sécrètent BD2 (β-defensin 2) qui exerce un effet microbicide contre la bactérie (Sung et al. 2016).

2.2.5. Rôle immunomodulateur

Les CSMs exercent un large éventail de fonctions immunosuppressives. Elles sont faiblement immunogéniques et sont capables d’échapper aux principaux mécanismes de reconnaissance immunitaire, mais elles ont aussi la capacité d’inhiber les réponses immunes (Figure 8). Ces propriétés immunosuppressives sont d’autant plus importantes que les CSMs peuvent jouer
un rôle dans la maintenance de la tolérance périphérique, dans la tolérance après transplantation, dans l’auto-immunité, dans l’évasion tumorale.

Figure 8 : Effets immunosuppresseurs des cellules souches mésenchymateuses (D’après Nauta, 2007)

Cependant, l’activité immunosuppresseive des CSMs nécessite une stimulation par un environnement inflammatoire au préalable. In vitro, les CSMs peuvent être stimulées par l’IFN-γ en présence de TNF-α, d’IL-1β ou IL-1α. In vivo, c’est l’environnement pro-inflammatoire causé par une infection par un pathogène ou par une atteinte du tissu qui stimulent les CSMs (Krampera et al. 2006). Dans ces conditions, les CSMs ont montré de nombreuses activités immunosuppresseives et de nombreuses études ont montré leur effet sur les populations de lymphocytes T, les monocytes, les cellules B ou les lymphocytes NK. Ces effets, qui seront détaillés dans la suite de cette introduction, sont médiés par des mécanismes contact dépendants, mais également par la sécrétion de facteurs solubles. Les CSMs sécrètent constitutivement du TGF-β (« transforming growth factor »), de l’GHF, du PGE2 (« prostaglandin E2 »), de l’HO-1, de l’IL-6, du HLA-G5 soluble. Après stimulation à l’IFN-γ, les CSMs humaines relarguent de l’IDO (indoleamine 2,3-dioxygenase) et les CSMs murines

2.2.5.1. Rôle sur les cellules T

Les lymphocytes T (LT) sont les principales cellules effectrices de l’immunité adaptative. Après activation antigène-spécifique, une cellule T naïve se différencie et il existe plusieurs phénotypes de LT activés, caractérisés par un profil de sécrétion particulier et des propriétés différentes. On parlera de cellules T helper de type 1 (Th1), de type 2 (Th2), de type 17 (Th17), de cellules T régulatrices (Treg) pour les T CD4⁺ et de cellules T cytotoxiques pour les T CD8⁺. Il est désormais bien admis que les CSMs modulent les activités de chaque type de LT, ces effets étant bien documentés dans la littérature. Dans des modèles in vitro de tests de prolifération lymphocytaire, les CSMs inhibent la prolifération et la différenciation des Th1 et des T cytotoxiques activés par des allo-antigènes, des mitogènes ou par les anticorps CD3/CD28 (Luz-Crawford et al. 2013; Di Nicola et al. 2002; Le Blanc et al. 2003; Krampera et al. 2003). Ces effets passent par des interactions directes cellules-cellules mais surtout par la sécrétion de facteurs bioactifs par les CSMs. Les CSMs expriment également une enzyme qui a montré un rôle sur la suppression de la prolifération des lymphocytes T, IDO qui dégrade le tryptophane et produit des fragments de kynurenine toxiques pour les cellules environnantes (Meisel et al. 2004). D’autres études proposent que les CSMs agissent sur les cellules T en induisant une anergie sur ces cellules (Zappia et al. 2005). Dans des systèmes de co-culture cellules Th1 - CD8⁺ cytotoxiques /CSMs, les CSMs sont capables de générer une population de Treg CD4⁺ CD25⁺ Foxp3⁺ et de Treg sécrétrices d’IL-10 (Aggarwal et Pittenger 2005; Maccario et al. 2005).

Les CSMs agissent également sur les cellules Th17. Les CSMs sont capables d’inhiber la différenciation des Th17 par des mécanismes PD-L1 dépendants (Luz-Crawford et al. 2012). De plus, les CSMs sont capable d’orienter les Th17 vers un phénotype T régulateur. En présence de CSMs, le facteur de transcription RORyt (« retinoid-acid receptor-related orphan receptor gamma t ») spécifique des Th17 est sous-régulé et à l’inverse le facteur de transcription spécifique des Treg FOXP3 est induit (Ghannam et al. 2010). Dans une étude de 2013, Luz Crawford montre qu’en présence des CSMs, une population de Treg CD4⁺ CD25⁺ FOXP3⁺ est induite au cours de la différenciation des Th17 (Luz-Crawford et al. 2013).
2.2.5.2. Rôle sur les cellules présentatrices d’antigènes

Les CSMs agissent également sur les cellules présentatrices d’antigènes (CPA) telles que les cellules dendritiques (DCs) ou encore les macrophages. Les effets sont en partie réalisés par des facteurs solubles et la production d’IL-6, de M-CSF et de PGE2 (Spaggiari et al. 2009; Spaggiari et Moretta 2013).

2.2.5.2.1. Effet sur les cellules dendritiques

En 2005, Aggarwal et Pittenger montrent pour la première fois que les CSMs de moelle osseuse modifient le profil sécrétoire des DCs : ils diminuent la sécrétion de TNF-α par les DCs myéloïdes CD1c+ et induisent la sécrétion d’IL-10 par les DCs plasmacytoides BDCA-4+. Ces changements conduisent à un « shift » d’un environnement pro-inflammatoire vers un environnement anti-inflammatoire. De nombreuses études montrent depuis que les CSMs sont capables de bloquer la différenciation, la maturation et les fonctions des DCs (Aggarwal et Pittenger 2005).

Effet sur la différenciation des cellules dendritiques

Les CSMs inhibent fortement la différenciation des progéniteurs CD34+ et des monocytes en DCs, et ce, même en présence des facteurs de différenciation GM-CSF (« granulocyte macrophage-colony stimulating factor ») et IL-4. Les cellules n’expriment pas CD1a et CD83 mais maintiennent l’expression de CD14, marqueur monocyttaire. De plus, les CSMs n’exercent aucun effet négatif sur la viabilité des DCs.

L’inhibition de la différenciation des DCs par les CSMs est un phénomène réversible. En enlevant les CSMs et en ajoutant de nouvelles cytokines, les monocytes sont capables de se différencier de manière efficace en DCs. Ils perdent l’expression de CD14 et expriment CD1a et CD83 (Y. Jiang et al. 2002). Cela reste vrai pour les expériences sans contact direct CSMs/DCs (avec utilisation de transwell). Dans le cas de co-culture classique avec contact, l’inhibition de la différenciation est partiellement réversible (Nauta et al. 2006).

Une étude contradictoire ne montre aucun impact des CSMs sur la différenciation des monocytes en DCs (van den Berk et al. 2009). Cependant, l’origine des CSMs est à prendre en considération et pourrait expliquer les différences observées. Dans cette publication, les CSMs sont isolées de sang de cordon alors que la majorité des publications démontrant un
effet des CSMs sur les DCs sont isolées depuis la moelle osseuse ou le tissu adipeux. Ces résultats mettent en avant les différents effets que peuvent exercer les CSMs en fonction de leur origine tissulaire.

Effet sur la maturation des cellules dendritiques

Le LPS (lipopolysaccharide) induit la maturation complète des DCs, les DCs expriment alors les molécules de co-stimulation CD40, CD80 et CD86 et le CMH. Dans ces conditions, les CSMs sont capables de maintenir les DCs dans un état immature en inhibant l’expression de ces marqueurs (Nauta et al. 2006; Spaggiari et al. 2009; X.-X. Jiang et al. 2005; Wei Zhang et al. 2004). Les DCs secrètent moins d’IFN-γ, d’IL-12 et de CD40L (Németh et al. 2009).

A nouveau, des études montrent des effets inverses. Spaggiari et al montrent que les CSMs n’interfèrent pas dans la maturation des DCs en présence de LPS. Les DCs présentent un phénotype normal caractéristique (Spaggiari et al. 2009). Cependant, Aldinucci montre que les DCs stimulés par le LPS en présence de CSMs présentent effectivement un phénotype et un profil sécrétoire caractéristique d’une DC mature, mais gardent des propriétés de DCs immatures les rendant inefficaces pour une présentation antigénique aux cellules T (Aldinucci et al. 2010).

Effet sur les fonctions des cellules dendritiques

Enfin, après maturation, une DC est apte à présenter un antigène aux cellules T. En présence de CSMs, les DCs matures perdent cette fonction. Les travaux de Li et al indiquent que ces DCs acquièrent un phénotype tolérrogène capable d’inhiber la prolifération des lymphocytes T activés par production de TGF-β et de stimuler l’expansion des cellules Treg CD4+ CD25+ FoxP3+ (Y.-P. Li et al. 2008; Zhao et al. 2012).

2.2.5.2.2. Effet sur les macrophages

Les CSMs agissent également sur les macrophages. Les macrophages sont globalement classés en 2 groupes principaux : les macrophages M1 qui vont induire des réponses Th1 pro-inflammatoires et qui sécrètent des cytokines pro-inflammatoires dont l’IL-12, et les macrophages de type M2, qui induisent des réponses Th2 et qui jouent un rôle dans la résolution de l’inflammation et présentent une activité phagocytaire élevée, et qui sécrètent
de l’IL-10. Dans une étude de 2009, Kim et al. montrent que les macrophages non orientés et cultivés en présence de CSMs expriment fortement le CD206, un marqueur de macrophages M2. De plus, ces macrophages sécrètent de fortes quantités d’IL-10 et peu d’IL-12 et montrent une importante activité phagocytaire suggérant une orientation des cellules vers un phénotype anti-inflammatoire (J. Kim et Hematti 2009). D’autres études ont depuis confirmé ces résultats et montré que les CSMs sont capables d’induire un switch des macrophages déjà engagés dans la voie M1 vers un profil M2 (Maggini et al. 2010; Abumaree et al. 2013; Dayan et al. 2011; Cho et al. 2014). Ces mécanismes seraient assurés par la sécrétion de PGE2 (Manferdini et al. 2017). En bloquant le récepteur au PGE2 dans des tests de co-culture macrophages M1 et CSMs, le switch M1/M2 n’est plus observable et les macrophages sécrètent beaucoup d’IL-6, de TNF-α, peu d’IL-10 et expriment très peu les marqueurs des cellules M2, le CD163 et le CD206. L’IL-1RA serait aussi une molécule clé dans le switch M1/M2 puisque en présence de CSMs IL-1RA -/-, le switch des macrophages M1/M2 n’est pas optimal (Luz-Crawford et al. 2016).

2.2.5.3. Rôle sur les lymphocytes B

Les lymphocytes B (LB) sont indispensables à l’immunité humorale. Ils sécrètent des anticorps, présentent les antigènes, et sécrètent des cytokines dont l’IL-10. In vitro, les CSMs sont capables de moduler la prolifération, la différenciation, et la maturation des LB. Cependant dans des modèles de co-culture CSMs/ LB purifiés, les actions des CSMs sont très variables et les résultats de la littérature très controversés. Dans certains cas, les CSMs inhibent la prolifération et la différenciation en plasmablastes avec une diminution de la sécrétion des IgG et IgM (Asari et al. 2009; Corcione et al. 2006; Augello et al. 2005; Deng et al. 2005; Glenn et Whartenby 2014; H. Wang et al. 2014). Dans d’autres études, les CSMs induisent la prolifération et la différenciation des LB avec augmentation de la sécrétion des IgG (Ji et al. 2012; Che et al. 2014; Rasmusson et al. 2007). Les choses sont d’autant plus complexes dans des modèles de co-culture CSMs avec les autres cellules de l’immunité (culture avec les cellules du sang périphérique) que les LB interagissent aussi avec les LT ou avec les DCs. Les mécanismes d’action des CSMs sur les LB sont donc complexes. Ils dépendent des conditions de culture (cellules purifiées ou non, techniques de purification), du milieu de culture (molécules utilisées pour stimuler les LB), de l’origine des CSMs, de l’état

2.2.5.4. Rôle sur les cellules « natural killer »

Les CSM exercent aussi un effet suppresseur sur les cellules « natural Killer » (NK). Les NK sont des cellules de l’immunité innée. Elles s’activent et exercent des activités cytolytiques lorsqu’elles reconnaissent une cellule infectée. Lorsque les NK non activées sont cultivées en présence d’IL-12 ou d’IL-15 et de CSMs, leur prolifération et leur cytotoxicité sont inhibées, et elles sécrètent moins d’IFN-γ. En revanche, lorsque les NK sont activées et cultivées avec les CSMs, elles les reconnaissent et sont capables d’exercer leur activité cytolytique et les tuer. Ces effets sont inversement corrélés avec l’expression du HLA de classe I sur les CSMs. Les effets exercées par les CSMs sur les cellules NK passent par la sécrétion de PGE2, d’IDO et TGF-β1 (Spaggiari et al. 2008; Sotiropoulou et al. 2006; Crop et al. 2011, 2011).

2.3. Utilisation des cellules souches mésenchymateuses pour les applications thérapeutiques

De par l’étendue de leurs fonctions immunosuppressives et régénératrices, les CSMs sont utilisées dans de nombreux modèles pré-cliniques *in vivo* et dans des essais cliniques chez l’homme. Les effets trophiques et immunosupresseurs des CSMs ont été étudiés dans des modèles animaux et sont cliniquement à l’étude pour les atteintes aigües rénales, les atteintes hépatiques, les accidents vasculaires cérébraux, les réactions du greffon contre l’hôte (GVHD) ou encore les maladies auto-immunes (Parekkadan et al. 2007; Tögel et al. 2007). Les maladies ostéo-articulaires qui nous intéressent et que nous avons abordé en partie 1 de l’introduction sont également des atteintes pour lesquelles l’utilisation de CSMs est en cours d’évaluation pré-clinique et clinique. La revue de littérature qui suit résume les principales
avancées actuelles concernant les thérapies basées sur l’utilisation des CSMs dans l’arthrose principalement et la PR.

Article 1

Titre: Therapeutic applications of mesenchymal stem cells in osteoarthritis
Therapeutic application of mesenchymal stem cells in osteoarthritis

Maxime Ruiz, Stella Cosenza, Marie Maumus, Christian Jørgensen & Danièle Noël
1Inserm, U1183, Université Montpellier, CHR Saint-Eloi, Montpellier, France

Introduction: Osteoarthritis (OA) is a degenerative disease characterized by cartilage degradation and subchondral bone alterations. This disease represents a global public health problem whose prevalence is rapidly growing with the increasing aging of the population. With the discovery of mesenchymal stem cells (MSC) as possible therapeutic agents, their potential for repairing cartilage damage in OA is under investigation.

Areas covered: Characterization of MSCs and their functional properties are mentioned with an insight into their trophic function and secretory profile. We present a special focus on the types of extracellular vesicles (EVs) that are produced by MSCs and their role in the paracrine activity of MSCs. We then discuss the therapeutic approaches that have been evaluated in pre-clinical models of OA and the results coming out from the clinical trials in patients with OA.

Expert opinion: MSC-based therapy seems a promising approach for the treatment of patients with OA. Further research is still needed to demonstrate their efficacy in clinical trials using controlled, prospective studies. However, the emergence of MSC-derived EVs as possible therapeutic agents could be an alternative to cell-based therapy.

Keywords: extracellular vesicles, mesenchymal stem cells, osteoarthritis, regenerative medicine, trophic factors

1. Introduction

Diseases affecting the cartilage have an increasing prevalence as people aged or in younger athletes following sport-related injuries. This is related to the poor intrinsic capability of cartilage to regenerate because of the absence of vascularization within the tissue. As the most common form of chronic joint diseases, osteoarthritis (OA) represents a significant public health issue associated with a high economic burden. OA affects more than 20 and 39 million people in United States and Europe, respectively, but these numbers are predicted to double until 2020, notably through the increase in average life expectancy and the obesity epidemic [1]. The disease has a huge impact on the patients’ quality of life not only related to dysfunction and pain but also to sleep disorder and depression, which further increase the economic burden [2]. Conventional treatments do not cure the disease, at best slightly delay its progression and more generally reduce inflammation and pain. Total joint replacement is the end point surgical option, which is generally successful to alleviate pain and recover motility but represents a substantial risk of infection or thrombosis. Since the early 90s, cellular therapies based on autologous chondrocyte implantation (ACI) have proved some efficacy to repair lesions following cartilage injuries induced by traumas or early OA [3]. In recent years, the interest of mesenchymal stem/stromal cells (MSC) has been evaluated to circumvent the drawbacks
associated with chondrocyte recovery and expansion. Here, we provide an overview of the current knowledge on MSC characteristics and properties as well as their potential therapeutic role in preclinical models of OA and in the clinics.

2. Physiopathology and current treatments of OA

OA is a complex disease, which is associated with risk factors such as age, obesity, genetic predisposition, joint instability, or trauma. Pain is the predominant symptom with stiffness, and is associated with loss of function of the pathological joint, leading to a drastic reduction in quality of life. Although OA develops over several years, the absence of innervation within the cartilage is associated with delayed symptoms onset, leading to failure in early detection and clinical management of the disease [6]. OA primarily affects knee and hip joints, and less frequently non-weight-bearing joints, such as hands or shoulders. The disease is characterized by articular cartilage degradation and osteophyte formation but it also affects other joint tissues, leading to subchondral bone sclerosis and synovial inflammation. Actually while cartilage has long been thought to be responsible for the disease, recent evidence indicates that subchondral bone and synovial tissue are involved in the onset and progression of OA [9-8].

At the cellular level, pathological changes within the joint affect the chondrocytes, which are the cells responsible for the synthesis and repair of the cartilaginous extracellular matrix (ECM) [9]. These alterations result in a decrease in chondrocyte viability and induce a shift in the balance between anabolic and catabolic activity in favor of the synthesis of matrix metalloproteinases (MMP) and aggreganases and cartilage degradation [10]. The altered chondrocytes, which cannot properly respond to mechanical stimulation and synthesize adequate levels of ECM components, enter a vicious cycle in which ECM breakdown dominates synthesis [11].

Current treatments, which are primarily symptomatic, focus on pain relief and inflammatory modulation but do not impact the progressive degeneration of joint tissues [12]. Measures to unload damaged joints by exercise or weight reduction may have a positive effect on pain but NSAIDs or corticoids are largely used as effective treatments of inflammatory flares of OA. When these strategies fail to alleviate pain, surgery is indicated. Osteochondral grafts (mosaicplasty) and microfracture can relieve pain but do not lead to long-term efficacy while joint replacement is effective when pain is associated with disability and radiological deterioration [13]. The efficacy of biotherapies targeting TNFα, II1β, or II6 has also been evaluated, but the results are still disappointing [14,15]. Finally, tissue-engineering approaches using ACI in association or not with matrix (MACI) are routinely applied for the regenerative treatment of injured cartilage and in early OA cartilage lesions [16]. The main effect is however to delay OA but long-term studies in patients with advanced OA are missing. The development of new therapeutic strategies able to prevent the disease progression and regenerate large cartilage lesions are therefore of paramount importance and MSC-based therapies may be of high interest.

3. Characteristics and properties of MSCs

MSCs are adult stem cells that can be isolated from bone marrow (BM-MSCs), adipose tissue (ASCs), umbilical cord, Wharton’s jelly, synovium, and others [17]. The claim that all MSCs from all tissues are pericytes residing in perivascular location in postnatal organs has been recently discussed [18]. Nevertheless, BM-MSC and ASCs are the two main sources for therapeutic use, with a growing interest for umbilical cord MSCs, which are easy to isolate [17]. The definition for MSCs as proposed by the International Society for Cellular Therapy (ISCT) relies on three criteria: i) their adherence to plastic, ii) their phenotype CD105+, CD73+, CD90+ and CD45-, CD34-, CD11b- or CD11b-, IL-1RA-, and iii) their capacity to differentiate into osteoblasts, adipocytes, and chondrocytes [19]. Of interest, the concept and definition of a MSC have been recently reviewed [20].

Besides their differentiation potential, MSCs express enzymes and secrete a large number of trophic factors, including growth factors, cytokines, chemokines, which participate to the paracrine activity of these cells [21]. MSCs exert proangiogenic activity by acting as pericyte-like cells to support the new vasculature and by secreting factors, such as VEGF, platelet-derived growth factor (PDGF), fibroblast growth factor 2 (bFGF), IGF-1, hepatocyte growth factor (HGF), or placental growth factor (PIGF). These cells display antiapoptotic function. Together with VEGF, bFGF, HGF, and IGF-1, the secretion of stanniocalcin-1 or TGF-β contributes to prevent cells from apoptosis [22]. The production of HGF, bFGF, and adrenomedullin by ASCs is also involved in the modulation of fibrosis. HGF might be an important mediator in the anti-fibrotic process by acting on the balance between anti-fibrotic MMPs and tissue inhibitor of MMPs (TIMPs), which play an important role in fibrosis resolution. MSCs
are partly resistant to oxidative stress and secrete potent anti-oxidant molecules, namely heme oxygenase (HO)-1 and erythropoietin (EPO). These factors can modulate the production of anti-oxidant molecules in injured tissues, such as superoxide dismutase (SOD) or glutathione peroxidase (GSH-Px) [25].

Finally, MSCs exert anti-inflammatory activity, through the expression of indoleamine 2,3-dioxygenase (IDO), and the secretion of several molecules among which prostaglandin (PG)E2, tumor necrosis factor-inducible gene (TSG)-6, interleukin (IL)-6, and IL-1RA are the main mediators (for a review, see [34]). MSCs can impact on the proliferation, differentiation, and function of most effector cells of both innate and adaptive immunity. The extent of the immunomodulatory function of MSCs can however differ between samples according to the individual, the species, the tissue source, the culture conditions, or the activation status and requires restimulation in culture after freezing preservation procedures. Recommendations for standardization of the assays used to assess the immunoregulatory properties of MSCs have been proposed by the ISCT [25]. Consensus on guidelines was obtained for evaluating the immunosuppressive function of MSCs on purified responder cells instead of immune cell populations and interrogating the IDO response as part of an in vitro licensing assay. These recommendations applied to human MSCs. In summary, many of the paracrine functions of MSCs may be of therapeutic interest for reducing cartilage degradation in patients with OA.

4. Role of extracellular vesicles released by MSCs

In recent years, the emergence of the role of extracellular vesicles (EVs) as a new way for cell-to-cell communication has rapidly gained much attention. All types of cells release EVs that can interact with other cells in the close environment and transfer functional biomolecules on long distance. EVs are secreted structures surrounded by a phospholipid bilayer and are present in body fluids. There exist different types which can be classified according to their size, composition, and biogenesis [36]. The three major types described are exosomes, microvesicles, and apoptotic bodies. Exosomes are EVs with a size of approximately 80 – 150 nm that derive from the endosomal compartment, where membrane invaginates and forms intraluminal vesicles in multivesicular bodies (MVB). Exosomes are then constitutively secreted after fusion of MVBs with the plasma membrane and released in the extracellular space [27]. Exosomes are characterized by tetraspan proteins (CD9, CD61, CD83) and proteins of the endosomal sorting complex required for transport (ESCRT) (Alix, Tsg101). EVs that are approximately 300 – 600 nm in diameter are called microvesicles (MP) or microvesicles. They are secreted by budding of the cell membrane after cell stimulation by a stress signal, such as apoptosis, hypoxia, increase of calcium. MPs are characterized by the expression of the membrane markers specific for the cell from which they derive. Apoptotic bodies have a size superior to 1000 nm and are induced during the late stage of apoptosis as blebs of died cells. All EVs are enriched in proteins, lipids, and nucleic acids (DNA, mRNA, miRNA, tRNA) that can be delivered to recipient cells, thus contributing to intercellular communication [28]. Even though a selective enrichment of specific molecules into EVs has been described, they display functions that mirror those of their parental cell.

MSCs release EVs that are proposed to be important mediators of the paracrine action in regenerative medicine. The role of MP or exosomes secreted by MSCs is intensively investigated in various animal models and encouraging therapeutic effects have been reported, positioning EVs as a potentially novel alternative to cell-based therapies [29]. However, to our knowledge, no literature exists on the possible role of MSC-derived EVs (MSC-EVs) in OA. Only one study reports that exosomes from IL-1β-stimulated synovial fibroblasts could induce OA changes in vitro and in ex vivo models [30]. Since MSCs represent a sub-population of synovial fibroblasts, it can be hypothesized that depending on the environmental signals, the production of exosomes or more generally EVs may be modulated and play a role in the physiopathology of the disease. Nevertheless, MSC-EVs possess functional characteristics that may be of high interest in the treatment of OA.

MSC-EVs have been shown to exert an immunomodulatory effect [31]. MSC-EVs inhibit auto-reactive lymphocyte proliferation, and serve as vehicles for tolerogenic components by induction of regulatory T cells [32,33]. Another study reports that the immunosuppressive effect of MSC-EVs is not directly exerted on T lymphocytes but through the interaction of MSC-EVs with macrophages. Upon interaction, macrophages are induced toward an M2-like phenotype secreting anti-inflammatory cytokines that provide the environment for the generation of a regulatory T cell population [34]. The effect of MSC-EVs has also been investigated on B cells. An inhibitory effect both on B cell proliferation and differentiation with a reduced secretion of immunoglobulins has been described [35]. Although the reports on the immunoregulatory function of MSC-EVs are still scarce and poorly documented, they argue for MSC-EVs as potent modulators of the immune responses and inducers of peripheral tolerance.

The role of MSC-EVs has been largely investigated in many in vitro models including myocardial infarction, brain, lung, liver, and acute kidney injuries [29]. In a myocardial infarction model, MSC-EVs protect cardiac tissue from ischemic injury by blood vessel formation, resulting in a significant reduction of the infarct size [36]. In kidney injury, MSC-EVs reduce apoptosis, oxidative stress, and fibrosis and induce the recovery of renal function [37,38]. The anti-fibrotic effect of MSC-EVs was also shown on liver by the reduction of collagen I, III, and TGF-β1 expression and Smad2 phosphorylation [39]. In the hypoxia-induced pulmonary
hypertension model, MSC-EVs suppress the hypoxic pulmonary influx of macrophages and the induction of pro-inflammatory mediators. They also suppress hyperpli- ferative pathways including STAT-3 signaling induced by hypoxia [39]. Finally, in a model of stroke in rats, MSC-EVs contribute to tissue repair by the delivery of miR-133b that enhances neurite outgrowth and functional recovery [41]. Indeed, even though the role of MSC-EVs has not been addressed in osteoarthritis diseases, the pro-regenerative, anti-apoptotic, anti-fibrotic, and anti-inflammatory effects of MSC-EVs as exemplified in the preclinical models described above could justify the interest of using MSC-EVs in OA. The large body of evidence that MSC-EVs exert similar functions as the parental cells provides new perspectives for their use in the treatment of OA.

5. MSCs-based tissue engineering for OA treatment

MSCs have been largely used to develop innovative treatments of bone and cartilage disorders including OA. MSCs can either be used as chondroprogenitors to replace injured cartilage in tissue engineering approaches or as regenerative cells to stimulate cartilage repair by endogenous cells.

The ability of MSCs to differentiate into chondrocytes in response to several chondrogenic signals such as TGF-β superfamily activators and in combination with scaffolds has been reviewed elsewhere [32,48]. MSCs can differentiate in vitro into chondrocytes able to secrete the cartilage ECM with properties close to native hyaline articular cartilage. However, stability of the mature chondrocyte phenotype is difficult to achieve while cells tend to undergo hypertrophic differentiation. The source of MSCs is an important issue, as several studies indicate that synovium-derived MSCs and BM-MSCs have higher chondrogenic differentiation potential than other MSC sources [44]. Synovium-derived MSCs differentiate into chondrocytes, which exhibit enhanced expression of specific markers (SOX9, Aggrecan and Collagen 11A1) and higher capacity of proteoglycan synthesis [45]. Even among MSC samples isolated from the same tissue source, there is a vast heterogeneity in the capacity of the cell populations in their trilineage potential [46]. This heterogeneity likely reflects a decrease in the number of true stem cells in the sample. However, in terms of functionality, no change in chondrogenic potential can be related to age, environmental stresses, or disease status [47-49]. A better characterization of homogeneous chondroprogenitor populations capable of efficient chondrogenic differentiation is still lacking [50]. Much of the tissue engineering approaches rely on the use of BM-MSCs and develop combinations of cells with scaffolds and growth factors able to support chondrogenic differentiation and form fully functional hyaline articular cartilage. Such strategies are frequently tested in small animal models of surgically induced chondral or osteochondral defects and do not address large defects associated with OA. However, large animal models including sheep and horses are required for modeling the defects occurring in humans and evaluating the regenerative capacity of MSC-based therapies. The average cartilage thickness in humans is approximately 2.2 – 2.5 mm while it is 0.4 – 1.7 mm in sheep and 1.75 – 2 mm in horses [51]. In the ovine model, which is anatomically similar to humans, one study reports that implantation of autologous BM-MSCs mixed with chitosan scaffold and TGF-B3 resulted in hyalinelike cartilage filling the defects created in the internal groove of the patella [52]. Pre-differentiation of BM-MSCs in a collagen gel before implantation allowed better repair than undifferentiated BM-MSC or untreated controls and the efficacy was even enhanced when using triphasic constructs [53-54]. The horse is the large animal model with the highest similarity to humans. BM-MSCs loaded on a biphasic sponge scaffold, made of a chondroinductive acid gelatin-B-tricalcium phosphate (GT) layer and an osteoinductive basic GT underlying layer containing BMP-2, were implanted in osteochondral defects. Higher radiographic, macroscopic, and histological scores were recorded with the BM-MSCs loaded on the biphasic sponges [55]. These pre-clinical studies in large animal models do not fulfill all the requirements for evaluating MSC-based therapy for large OA lesions but still indicate improvement of both clinical and functional scores with defects filled with newly hyaline/fibrocartilage on the short or middle term [56].

In the clinics, the proof-of-concept that cell-based therapy could be efficient to restore cartilage function was given in the 90s when Britberg and collaborators used autologous chondrocytes and demonstrated the efficacy of ACI [56]. Since then, matrix-assisted ACI (MACI) based on different types of scaffolds is in routine use and thousands of patients with osteochondral lesions have been treated [56]. Long-term efficacy of the technique is reported primarily on pain relief and fibro/articular cartilage formation, which delays OA. Importantly, some investigations using chondrocytes from end-stage OA patients disclosed similar outcomes as chondrocytes from healthy subjects [57,58]. However, the issue of chondrocyte dedifferentiation during culture as well as the need for a more accessible source of cells, with higher expansion potential, has prompted the studies on MSCs. The first clinical trial on OA patients was performed in 2002 where autologous BM-MSCs within a collagen gel were implanted inside the cartilage lesions under a periosseal flap [59]. Both control and BM-MSCs-implanted groups improved functionally but hyaline cartilage was observed only after addition of BM-MSCs. The same group further reported safety and effectiveness of MSC transplantation in the long term for cartilage repair [60]. In addition when compared to ACI, MSC transplantation was equally effective to relieve pain and to improve the patient's quality of life, independently of patient’s age. Nevertheless, BM-MSC-based treatment appeared less invasive and reduced both morbidity and operative costs [61]. Similar outcomes with improvement of OA clinical scores were published in additional case reports using BM-MSCs
in platelet-rich fibrin glue or collagen [62,63]. Finally, a recent investigation comparing the implantation of matrix-induced autologous BM-MSCs versus chondrocytes in 14 patients described significantly better functional outcomes, better knee injury, and OA outcome score (KOOS) and visual analog scale score (VAS) with BM-MSCs than chondrocytes [64]. Indeed, although several studies indicate safety and efficacy of MSC-based tissue engineering approaches, no product is available for routine use. A clear demonstration of their interest in larger cohorts of OA patients would be required before they can be used in large-scale applications.

6. Scaffold-free MSC-based therapy in OA patients

Beyond the capacity of MSCs to repair cartilage after chondrogenic differentiation and implantation in chondral lesions, a growing body of evidence indicates that MSCs can stimulate endogenous cartilage repair through their secretory function, which can modulate local articular environment. Using in vitro chondrocyte coculture models, a number of studies reported that MSCs promote chondrocyte proliferation and stimulate ECM synthesis [65-67]. Other reports described the inhibitory effect of MSCs on chondrocyte differentiation [65,69]. In our group, we showed that coculture of both BM-MSCs and ASCs with primary chondrocytes isolated from OA patients did not influence the expression of cartilage markers, such as Sox9 or Aggrecan but significantly reduced the expression of fibrotic and hypertrophic markers, which are expressed by OA cartilage [70]. The anti-fibrotic effect of ASCs was mainly associated with the secretion of HGF as demonstrated using neutralizing antibodies that reverted the therapeutic effect of ASCs. We also showed in this coculture system that ASCs can decrease the camptothecin-induced apoptotic death of chondrocytes. Apart from these properties, MSCs can affect the secretion of inflammatory mediators by chondrocytes and synovial cells that have been isolated from the joints of OA patients. Down-regulation of IL-1β, IL-6, and IL-8 was reported in both cell types and this effect was related to the secretion of PGE2 by ASCs [71]. Similar effect was observed in another study where the expression of IL-1β, MMP-1, and MMP-13 was decreased in OA synoviocytes while in cartilage, IL1-RA was enhanced upon MSC addition [72]. In addition, a number of factors identified in the secretome of MSCs, namely TGF-β1, insulin growth factor (IGF)1, thrombospondin (TSP)-2, and stromal-derived factor (SDF)-1, have been shown to favor chondrogenesis in vivo and may be of therapeutic interest for cartilage regeneration [73].

The therapeutic effectiveness of a scaffold-free injection of MSCs has now been validated in numerous pre-clinical models. The first demonstration was published in 2003 by Murphy and collaborators in a caprine model of OA induced by resection of the anterior cruciate ligament and median meniscectomy [74]. Injection of autologous BM-MSCs resulted in regeneration of the medial meniscus, and reduction in osteophyte remodeling, subchondral sclerosis, and articular cartilage degradation. Interest of MSC transplantation has been validated in other pre-clinical models of OA [75]. Notably in the murine model of collagenase-induced OA, a dramatic decrease in cartilage degradation, synovial inflammation, and osteophyte formation was noticed [76]. This impressive results were not observed in the traumatic model of destabilization of the medial meniscus (DMM) or in CIA-induced mice with low synovial inflammation [77]. These findings strongly suggest that inflammation-driven activation of ASCs is required for their protective and immunosuppressive effect in experimental OA. Of note, a beneficial effect of MSC injection was disclosed in horses with OA induced arthroscopically in the middle carpal joint. A significant improvement in PGE2 effusion in synovial fluid was recorded while other parameters did not significantly change [78]. When evaluated in these models, the survival of exogenously injected MSCs was generally short. We previously reported that intra-articular injection of human ASCs in immunocompromised mice resulted in maintenance of a small percentage of the cells for at least 6 months [79]. This survival was attributed to the fact that mice could not elicit an adaptive immune response and to the quantity of implanted ASCs, which was very high as compared to similar studies. Nevertheless, when a lower number of human ASCs was infused in immunocompetent naive mice or mice with CIA or autoimmune collagen-induced arthritis (CIA), they survived few days. Survival of cells was independent of the healthy or inflammatory environment induced by the disease status but dependent on the route of administration [80].

A number of clinical trials based on the injection of MSCs or ASCs for OA treatment have been initiated or are under way [73]. An updated list of undergoing clinical trials is available in the recent review by Pers and coauthors (Pers et al., in press). A case report has first described cartilage and meniscus growth by MRI, as well as increased range of motion and decreased VAS score after autologous BM-MSC injection in a patient with knee OA [81]. Preliminary studies on four or six patients with knee OA reported improvement in pain and function after injection of 8 - 9 × 10^6 to 20 - 24 × 10^6 autologous BM-MSCs [82,83]. In the first study, patient follow-up at 5 years indicated degradation of the clinical parameters but they were still better than at baseline [84]. Safety of BM-MSC implantation was assessed in 227 patients and the absence of tumor formation was reported [85]. In a retrospective study, where 2 × 10^5 infrapatellar fat pad-derived MSCs were injected after combination with platelet-rich plasma (PRP), significant reduction of pain as well as increase in function as compared to baseline was reported in the 25 patients with knee OA enrolled [86]. VAS improvement was significantly better in patients with OA of ICRS grade 3 than grade 4. The results were however not different from the control group, in which the patients had undergone arthroscopic debridement and PRP injection. At 26 months
of follow-up, clinical improvement was still significant [87]. Another report on 12 patients who received 4×10^6 autologous BM-MSCs disclosed improvement of cartilage morphology and quality using MRI T2 mapping suggesting a possible structural benefit of stem cell therapy [88]. In addition, in 18 patients with either ankle, hip, or knee OA, safety as well as improvement of function and pain were noticed at 12 months post-BM-MSC transplantation, which were no more observed at 30 months follow-up [89]. The effect of intra-articular injection of autologous BM-MSCs 3 weeks after high tibia osteotomy and microfracture treatment in 28 patients with knee OA was significantly better than in the control group of 28 patients, although both groups improved [90]. A Phase I three dose-escalation study on 18 patients and a Phase II study with the nine patients who received the highest dose of 10^6 autologous MSCs demonstrated safety, improvement of the WOMAC score, and regeneration of thick hyaline-like cartilage at 6 months [91]. In another Phase I dose-escalation study, we also reported improvement in pain and function in 18 patients with knee OA who received autologous ASCs. Interestingly, the best results were obtained with the lowest dose of 2×10^5 ASCs as compared to the doses of 10×10^5 and 50×10^5 injected cells (Pers et al., submitted). All these studies have demonstrated the safety and tolerability of MSC or ASC injection in patients with knee OA. However, there is an urgent need for randomized, controlled studies.

7. Expert opinion

Continually, growing knowledge on MSC in terms of management of cell isolation and expansion, molecular and functional characterization, as well as therapeutic evaluation in pre-clinical models of many different diseases has paved the way for MSC-based regenerative medicine. MSC-based therapies are relevant for chronic and degenerative disorders in aging populations, such as OA, where no curative treatments are available. In the present review, we have discussed the two major types of clinical approaches for OA based on either a tissue-engineering scaffold-based implantation of MSCs or a scaffold-free direct injection of the stem cells into the injured joint.

The data available from the clinical trials have disclosed the safety of both approaches with no sign of neoplastic proliferation or related side effects. However, to date, in contrast to MACI, matrix-induced MSC implantation is not in routine use. One possible reason for this is the inconsistent reproducibility of MSC differentiation and uncontrolled in vivo stability of the chondrocyte phenotype. Another reason is the fact that regeneration of large lesions such as those found in patients with high grade OA has not been demonstrated. It is also possible that a better identification of patients who would most benefit from these treatments is required. Profiles of patients have to be drawn based on OA subtypes classified according to the joint involved, the age and body mass index (BMI), the level of pain, the grade of the disease, the functional limitation, a history of trauma, the genetic susceptibility, and the presence of relevant biomarkers. An attempt for such classification is being discussed by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) working group [92]. Such a classification of OA subtypes would also benefit for other therapeutic approaches.

Although preliminary measures of efficacy of the direct injection of MSCs in patients with severe knee OA are encouraging, prospective and placebo-controlled studies are required to determine the effectiveness of this approach. The focus of new clinical trials should address the efficacy of MSC injection in patients with moderate OA and early radiographic stages. In the study by Koh and colleagues, the efficacy of MSC implantation was better in OA patients with grade 3 than with grade 4 [86]. It can be speculated that MSC-based therapy should be more efficient in preventing or limiting the structural progression of the disease at early stages. Another important issue to be tested is the optimal dose of cells. There are huge differences between cell doses ranging from 2×10^5 to 10^6 cells/joint and discrepancies between clinical trials. We observed the best efficacy on pain and function with 2×10^5 ASCs/knee joint (Pers et al., submitted) whereas Jo and collaborators noticed improvement of pain, function, and histology with the highest dose of 10^6 cells/joint [91]. We and others are evaluating this aspect in ongoing clinical trials [93]. Besides the cell dose, the need for repeated injections of MSCs, which should theoretically enhance or prolong the response, has not been investigated. This comes along with the possibility to use autologous MSCs that have been frozen and/or allogeneic MSCs and the requirement to evaluate the host immune response against the injected cells.

The exact mechanism by which MSCs exert their therapeutic efficacy in patients with OA is not known. Indications from the mouse models suggest that the main effector mechanism could be the modulation of inflammation that in turn reduces cartilage degradation. Although differentiation of injected cells into chondrocytes may occur, this is likely not the major mechanism. It is plausible that other mechanisms, such as inhibition of apoptosis or induction of endogenous cell proliferation, act in concert with the immunomodulatory effects of MSCs. This points to the notion that MSCs likely act via the secretion of diverse molecules whose overall effect will be difficult to reproduce by a unique molecule but rather, a combination of molecules will be needed. This is why the use of EVs isolated from MSC supernatants could be an alternative to cell-based therapies. Since EVs reproduce the functions of the cells from which they originate, they should be tested in cell-free therapeutic approaches in the many applications where MSCs have proven to be effective. Although not yet validated for osteoarticular disease models, preliminary data suggest that EVs can efficiently reduce histological scores in a murine model of OA (pers. com.). Future experiments are required before MSCs or MSC-derived EVs can be used routinely in the clinic for treating patients with OA.
Therapeutic application of mesenchymal stem cells in osteoarthritis

Acknowledgements

M. Ruiz and S. Cosenza contributed equally to this work.

Declaration of interest

Work in the laboratory Inserm U1183 was supported by the Inserm Institute and the University of Montpellier. Funding was obtained from the European Community’s Horizon 2020 program for the collaborative project "ADIP2OA: Clinical trial of autologous adipose-derived mesenchymal stromal cells in the treatment of mild to moderate osteoarthritis" (€ 643809). We are grateful to Arthritis R&D through the program "ROAD: Research on OsteoArthritis Diseases" and to the Fondation de l’Avenir (grant number AP-RMA-2015-013), Paris-France. We also thank the Agence Nationale pour la Recherche for support of the national infrastructure: "ECELFRANCE: Development of a national adult mesenchymal stem cell based therapy platform" (ANR-11-INSB-005). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Bibliography

Papers of special note have been highlighted as either of interest (*) or of considerable interest (***) to readers.

23. de Almeda DC, Doni-Bergeron M, Sechiello-Oliveira C, Barbosa-Costa P, et al. In search of

27. Lai RC, Yao RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015;60:82-8

This review gives an overview on the current knowledge on the therapeutic potential of mesenchymal stem cells (MSC)-derived extracellular vesicles in various preclinical models.

41. Xin H, Li Y, Butler B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stem cells to neural cells contributes to neurite outgrowth. Stem Cells 2012;30:1556-64

Therapeutic application of mesenchymal stem cells in osteoarthritis

Wu L, Lei, Jen JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 2011;17:1425-36

Wu L, Prins HJ, Helde MN, et al. Trophic Effects of Mesenchymal Stem Cells in Chondrocyte Co-Cultures are Independent of Culture Conditions and Cell Sources. Tissue Eng Part A 2012;18:1542-51

In this study and the following reference, the authors characterized the anti-fibrotic, anti-hypertrophic, and anti-inflammatory role of MSC on primary chondrocytes from osteoarthritis (OA) patients.

Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a captive model of osteoarthritis. Arthritis Rheum 2003;48:3646-74

This review summarizes the recent literature on the use of MSC for joint diseases in clinics.

This study demonstrates that MSCs act on cartilage protection in the marine OA model via the downregulation of inflammatory mediators.

M. Ruiz et al.

84. Davarchi F, Saleghi Abdollahi B, Mohyeddin M, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis 2015; Epub ahead of print

- The paper discusses the results of a MSC-based therapy in a dose escalation study in patients with knee OA.

Affiliation
Maxime Ravis1,2, Stella Cosa,2,3 Marie Maunus1,2, Christian Jorgensen1,2,3 & Danielle Neill1,2,3
1Author for correspondence
2Inserm, U1183; CHRU Saint-Eloi, Hôpital Saint-Eloi, 80 avenue Augustin Fliche, Montpellier, F-34295, France
Tel: +33 4 67 33 04 73;
Fax: +33 4 67 33 01 13;
E-mail: danielle.neill@inserm.fr
3Université Montpellier, UFR de Médecine, Montpellier, F-34000, France
3Hôpital Lapeyronie, Service d’Immunothérapie, Montpellier, F-34295, France
Partie 3. Les vésicules extracellulaires

1. Les différents types de vésicules extracellulaires

Historiquement, les premières descriptions de vésicules extracellulaires (EVs) sont datées des années 1960-70. Elles sont alors considérées comme de simples fragments cellulaires, ou bien comme des morceaux de membrane résultant de la mort des cellules. En 1967, Wolf et al montrent que l’activation de cellules plaquetaires s’accompagne d’une génération de fragments membranaires identifiables en microscopie électronique alors appelés « poussières de plaquettes » ou « platelet dust ». Ces fragments cellulaires sont la première mise en évidence des microparticules (MPs) ou encore microvésicules (MVs) (Wolf 1967). Elles sont ensuite identifiées pour différents types cellulaires. De nombreuses publications datées des années 90 font état de MPs dérivées de granulocytes, de monocytes, de lymphocytes, d’endothélium, de cellules tumorales (Satta et al. 1994; Hamilton et al. 1990; Montcourrier, Valemois, et Rochefort 1993).

Près de 15 ans après la découverte des MPs, en 1981, Trams décrit pour la première fois le deuxième type de vésicules bien connu, les « exosomes », comme des vésicules secrétées in vitro par diverses lignées cellulaires. Dans cette étude, les auteurs décrivent deux populations de vésicules : des vésicules de tailles comprises entre 500 et 1000nm et un ensemble de petites vésicules de taille avoisinant les 40nm. Toutes ces EVs possèdent une activité 5’-nucléasique et une composition lipidique différente de la membrane plasmique suggérant une origine plus complexe qu’un simple bourgeonnement de la membrane plasmique (Trams et al. 1981). L’origine endosomale de ces exosomes est mise en évidence en 1983 grâce aux approches de microscopie électronique qui permettent d’observer l’exocytose des vésicules suite à la fusion d’endosomes multivésiculaires avec la membrane plasmique dans des réticulocytes (Harding, Heuser, et Stahl 1983) (Figure 9).

Pendant quelques années, il est communément admis que seuls ces jeunes globules rouges, les réticulocytes, sécrètent des exosomes. Pan et Johnstone et d’autres démontrent dans leurs travaux datés des années 1980 que les exosomes sont nécessaires à la maturation des érythrocytes. Dans toutes ces publications, il est proposé que les exosomes observés dans les milieux de culture permettent aux cellules de se débarrasser des protéines et des enzymes
devenues inutiles telles que le récepteur à la transferrine (TfR) ou les protéines kinases (Pan et Johnstone 1983; Harding, Heuser, et Stahl 1983).

Figure 9 : Exocytose des endosomes multivésiculaires contenant les exosomes.
(D’après Harding, 1983)

Pour terminer, les corps apoptotiques (CA) sont décrits dans la littérature depuis les années 1980 comme des fragments de cellules libérés pendant les étapes d’apoptose (Ohyama et al. 1985).
Il faudra patienter jusqu’en 1996 et la publication des travaux de Raposo pour que l’intérêt sur les EVs se développe réellement. Considérés pendant longtemps comme « débris » cellulaires, les exosomes sont décrits pour la première fois comme entité fonctionnelle. Cette équipe découvre que les exosomes sécrétés par les lymphocytes B contiennent des molécules du CMH de type II capables de lier des antigènes, d’effectuer une présentation antigénique et d’induire une réponse des cellules T (G. Raposo et al. 1996). Pour la première fois, les exosomes apparaissent comme un moyen de communication entre les cellules et à compter de cette époque, l’étude des EVs s’est généralisée à tous les types cellulaires : les cellules cancéreuses, les cellules épithéliales, les cellules hématopoïétiques ou encore les cellules souches et notamment les CSMs dont nous parlerons ensuite.
Selon le type cellulaire à l’étude et avec les années, les publications se sont multipliées et les appellations pour désigner les vésicules ont explosé. A ce jour, les termes nanoparticules, microvésicules, microparticules, exosomes, ectosomes, corps apoptotiques, oncosomes, prostasomes sont des termes communément employés. Bien qu’un consortium international adopte le terme de « vésicules extracellulaires » pour parler de toutes les populations de vésicules sécrétées par les cellules et que des définitions ont été mises en place pour définir
chaque population, il est parfois difficile de statuer sur le type de vésicules à l’étude dans les publications scientifiques. Dans la suite de cette introduction, nous tenterons de définir le plus précisément les trois principales populations décrites et formellement reconnues dans la littérature : les exosomes, les microparticules et les corps apoptotiques (Gould et Raposo 2013) (Figure 10).

![Diagramme des exosomes, microparticules et corps apoptotiques](image)

Figure 10 : Différents types de vésicules extracellulaires : exosomes, microparticules et corps apoptotiques (Adapté de Akers, 2013)

1.1. Les exosomes

1.1.1. Définition des exosomes

Les exosomes sont à ce jour, les plus petites EVs décrites. Même si leur taille varie en fonction de la cellule d’origine, les exosomes ont un diamètre moyen compris entre 30 et 150nm. Leur densité est connue et est comprise entre 1,13 et 1,21 g/mL. Ils ont une origine endosomale et sont caractérisés par les marqueurs protéiques de ce compartiment cellulaire : Tsg101, ALIX, Hsp70 et les tétraspanines CD9, CD81 et CD63. In vitro, la plupart des cellules secrète des exosomes et cette sécrétion est constitutive. In vivo, on considère que les cellules sécrètent aussi des exosomes. On les trouve dans le sang et le plasma(Caby et al. 2005; Sabapatha, Gercel-Taylor, et Taylor 2006), le liquide céphalo-rachidien (Vella et al.
2008), le lait maternel (Charlotte Admyre et al. 2007), la salive (Ogawa et al. 2008), le fluide broncho-alvéolaire (C. Admyre et al. 2003), l’urine (Pisitkun, Shen, et Knepper 2004), le liquide synovial (Skriner et al. 2006), le liquide amniotique (Keller et al. 2007), le sperme (Poliakov et al. 2009), la bile (Masyuk et al. 2010) et le mucus nasal (Wu et al. 2015).

1.1.2. Biogenèse des exosomes.

1.1.2.1. Formation des vésicules intraluminales.

Entre les endosomes précoces et tardifs, un autre phénomène est observé : la membrane endosomal est capable de s’invaginer et d’accumuler de nombreuses petites vésicules intraluminales dans la lumière du compartiment. On parle alors de corps multivesiculaire (MVB, « multivesicular body »). Ces MVB ont une taille de 500nm environ et sont remplis de vésicules intraluminales (ILVs) de taille comprise entre 50 et 150nm. Lorsque les endosomes sont adressés aux lysosomes, les ILVs sont dégradées. Lorsqu’ils sont adressés à la membrane, les ILVs sont libérées dans l’espace extracellulaire et on parle alors d’exosomes (Stoorvogel et al. 2002).

Différencier les MVB destinés à être dégradés par les lysosomes ou adressés à la membrane est toujours une question d’actualité. Cependant, quelques travaux basés sur l’étude des lipides présents dans les membranes des MVB apportent des éléments de réponse. En effet, il existe différents types de MVB qui diffèrent de par leur composition lipidique. Les MVB
dont la composition inclut un enrichissement en lipides dont le PI(3)P (« Phosphatidyl inositol 3-phosphate »), les sphingolipides et le cholestérol, et une forte présence de domaines enrichis en tétraspanines sont résistants aux détergents et seront préférentiellement adressés à la membrane plasmique. D’autres MVB sont plutôt enrichis en LPBA (« LysoBisPhosphatidic Acid ») et pauvres en cholestérol et seront plutôt adressés au compartiment lysosomal (Piper et Katzmann 2007; Buschow et al. 2009; Graça Raposo et Stoorvogel 2013; Möbius et al. 2003).

La formation et la composition des ILVs, futurs exomes, font intervenir différents mécanismes dont la machinerie ESCRT « endosomal sorting complex required for transport », les tétraspanines et les céramides (Keller et al. 2007). Ces mécanismes sont présentés dans la figure 11 et nous allons maintenant les détailler.

Figure 11 : Différentes voies de formation des exomes.
(D’après Robbins 2014)
1.1.2.2. Implication de la machinerie ESCRT

Le complexe ESCRT-0 est constitué de HRS (« hepatocyte receptor tyrosine kinase substrate »), des protéines STAM 1 et 2 (« signal transducing adaptor molecule »). Il reconnaît l’ubiquitine des protéines à dégrader qui est exposée à la surface des endosomes. Il va alors séquestrer les protéines ubiquitinylées et se stabiliser au niveau de la membrane de l’endosome grâce à l’interaction d’un domaine de HRS avec le PIP3 membranaire. Il va ensuite permettre d’amorcer l’assemblage des autres complexes (Babst 2011; David J. Katzmann et al. 2003; Bilodeau et al. 2002).

Le complexe ESCRT-I est constitué des protéines Tsg101, de Vps28 et vps37 A,B,C,D. Il est recruté au niveau de ESCRT-0 grâce au Tsg101. Tsg101 joue ici un rôle clé car la diminution de son expression par un siRNA conduit à une diminution de 40% de la production d’exosomes produits (Falguières et al. 2008).

ESCRT-II qui est constitué de EAP30, EAP20, EAP45, SNF8, est alors recruté par liaison de EAP45 avec Vps28 de ESCRT-I. Les complexes ESCRT-I et ESCRT-II s’accumulent et induisent une courbure de la membrane qui va séquestrer le cargo au sein de la vésicule en cours de formation.

La machinerie ESCRT va aussi permettre de trier et de sélectionner les protéines qui vont être dégradées de celles qui vont être recyclées et incorporées au sein des exosomes (Williams et Urbé 2007). L’inhibition de toutes les sous-unités ESCRT n’altère pas la formation des MVB, ni la formation et la libération des exosomes suggérant que le complexe ESCRT n’est pas la seule voie possible de formation des exosomes (Stuffers et al. 2009).

1.1.2.3. Rôle des tétraspanines

1.1.2.4. Rôle des céramides

Un autre mécanisme de formation des ILVs repose sur la propriété des céramides qui peuvent induire naturellement une invagination de la membrane endosomale au niveau de microdomaines lipidiques. Dans leurs travaux publiés en 2008, Trajkovic et al montrent qu’une sphingomyélinase de type II est capable d’hydroliser la sphingomyéline en céramide. La membrane endosomale possède des rafts lipidiques qui sont enrichis en cholestérol, en ganglioside et aussi en sphingomyéline (Trajkovic et al. 2008). Une fois hydrolisées, les céramides peuvent agir au niveau des membranes et induire l’invagination de celles-ci. La scission de la vésicule dans la lumière de l’endosome se produit lorsque les deux lipides de deux cotés de l’invagination sont suffisamment proches pour se mélanguer (Subra et al. 2007).
1.1.2.5. Libération des ILVs dans l’espace extracellulaire

Après formation des ILVs au sein des MVB, les exosomes doivent être libérés dans l’espace extracellulaire. Dans un premier temps, les MVB doivent migrer dans le cytoplasme jusqu’à atteindre la membrane plasmique, puis ils doivent fusionner avec celle-ci pour libérer leur contenu dans l’espace extracellulaire.

1.1.2.5.1. Migration des MVB jusqu’à la membrane plasmique : rôle des protéines Rab

Le déplacement des MVB au sein de la cellule est possible grâce à la coordination du cytosquelette avec des moteurs cellulaires tels que les kinésines. Ce déplacement est possible grâce à de petites GTPases cytosoliques appelées les protéines Rab. Elles interagissent avec les kinésines entre autres, et permettent ainsi de gérer le trafic intracellulaire. La famille des protéines GTPases Rab regroupe une soixantaine de protéines. À l’heure actuelle, certaines de ces Rab sont décrites dans le déplacement des vésicules intracellulaires et dans l’ancrage puis la fusion de ces vésicules avec la membrane plasmique. Rab5 est impliquée dans le transport des vésicules d’endocytose jusqu’aux endosomes précoces et Rab7 permet la maturation de l’endosome précoce en endosome tardif ou MVB (Gao et al. 2012; Spang 2009).

Concernant la sécrétion même des exosomes, le groupe de Clotilde Théry a réalisé un criblage des protéines Rab potentiellement impliquées et a démontré que l’inhibition par « knock-down » de Rab2a, Rab9a Rab5a, Rab27a et b réduit fortement la sécrétion d’exosomes par des cellules tumorales (Ostrowski et al. 2010).

A ce jour, les Rab les plus décrites dans les mécanismes de sécrétion des exosomes sont Rab11, Rab27 et Rab35. Rab 11 participe à la fusion des MVB avec la membrane plasmique et à la libération des exosomes dans l’espace extracellulaire. Cette protéine est capable de favoriser la fixation du MVB à la membrane plasmique et ce de manière dépendante du calcium (Savina, Vidal, et Colombo 2002; Fader et al. 2005). Rab11 apparaît plutôt comme une GTPase impliquée dans des mécanismes de sécrétion régulée des exosomes. Rab35 est nécessaire pour le déplacement et l’ancrage des MVB à la membrane plasmique. En effet, sa surexpression dans les cellules conduit à une augmentation de la sécrétion d’exosomes et
son inhibition diminue le relarguage d’exosomes et induit une accumulation d’endosomes tardifs dans les cellules (Hsu et al. 2010). Enfin, les Rab27a et Rab27b qui n’ont pas la même localisation cellulaire ont aussi été impliquées dans les mécanismes de libération des exosomes. Rab27b participe au déplacement des MVB vers le cytosquelette d’actine, ainsi qu’à l’ancrage à la membrane plasmique et Rab27a serait capable d’inhiber la fusion des MVB avec d’autres membranes que la membrane plasmique, et ainsi préférentiellement adresser les MVB à la membrane (Bobrie et al. 2012; Ostrowski et al. 2010).

1.1.2.5.2. Fusion des MVB avec la membrane plasmique : rôle des SNAREs.

Lorsque le MVB a atteint la membrane plasmique, il doit fusionner avec celle-ci afin de libérer son contenu dans l’espace extracellulaire. Ce mécanisme fait intervenir les protéines SNAREs (« soluble NSF attachment protein receptor »). Ces protéines sont spécialisées dans la fusion des bicouches lipidiques, elles contiennent des hélices qui interagissent entre elles pour former des complexes à 4 hélices parallèles capables de resserrer les membranes l’une contre l’autre. Il existe deux types de SNARE en fonction de leur localisation. Les v-SNARE qui sont localisées à la surface des MVB et les t-SNARE qui sont présentes au niveau de la membrane plasmique (F. Li et al. 2007; Zylbersztejn et Galli 2011).

1.1.3. Composition des exosomes

1.1.3.1. Composition protéique des exosomes

Les exosomes contiennent de nombreuses protéines, dont certaines communes à tous les exosomes quelle que soit la cellule parentale. Une étude datée de 2009 et menée par le groupe de Clotilde Théry a répertorié un ensemble de protéines trouvées dans 50% des
exosomes de diverses origines, décrites dans la littérature (Théry, Ostrowski, et Segura 2009). On peut citer les protéines de la famille des tétraspanines CD9, CD63 et CD81, mais également les protéines décrites précédemment dans le complexe ESCRT : Alix et Tsg101. Ces protéines sont classiquement utilisées pour caractériser les exosomes et les différencier des autres types de vésicules. Les exosomes renferment également des protéines du cytosquelette telles que l’actine, la tubuline, la myosine, la cofiline-1, des protéines des radeaux lipidiques dont la flotiline-1, des molécules d’adhésion dont les intégrines et MFGE8, des molécules des voies de signalisation dont la synténine et 14-3-3, des protéines impliquées dans les mouvements membranaires telles que les annexines, les protéines de la famille Rab, des protéines chaperonnes dont HSP70 et HSP90. De nombreuses analyses protéomiques ont été réalisées, mais beaucoup de protéines identifiées sont spécifiques du type cellulaire d’origine. La figure 12 résume l’ensemble du contenu protéique retrouvé au sein de la majorité des exosomes.

Figure 12 : Composition protéique des exosomes (D’après Théry, 2009)
1.1.3.2. Composition lipidique des exosomes

Les exosomes sont des vésicules endosomales. Ils sont entourés d’une bicouche lipidique dont la constitution est proche de celle des endosomes. L’étude des lipides constituant les exosomes n’est pas aussi développée que l’étude des protéines, toutefois, de nombreux lipides ont été identifiés. La base de données ExoCarta liste près de 200 lipides identifiés sur les exosomes.

1.1.3.3. Composition en acides nucléiques des exosomes

La nature des acides nucléiques trouvés dans les exosomes est variée, et inclus les ARN messagers, et divers types d’ARN non codants tels que les Micro ARN (miRNA), les long ARN non codants (IncRNA) et les ARN circulaires (cicRNA) (Nolte-‘t Hoen et al. 2012). Tout comme les protéines, les ARN présents au sein des exosomes sont enrichis de manière sélective et non pas de façon aléatoire par des mécanismes encore méconnus (Valadi et al. 2007). En revanche, aucune trace d’ADN n’est retrouvée dans les exosomes. Les descriptions d’acides nucléiques au sein des exosomes sont résumées ci après.

1.1.3.3.1. Les ARN messagers

Les ARNs codants des protéines ou ARNms sont synthétisés dans le noyau sous forme de pre-mRNA. Ils subissent ensuite un épissage, maturesnt et sont exportés dans le cytosol où ils seront traduits. Les ARNms possèdent une région 5’UTR, une région codante et une région 3’UTR. Certaines analyses ont révélé la présence d’ARNms totaux dans les exosomes et d’autres études ont reporté la présence de fragments d’ARNms seulement. Dans la base de
données ExoCarta, on recense près de 1600 ARNms contenus dans les exosomes de diverses origines.

La première description d’ARNms dans les exosomes est datée de 2007, où l’équipe de Lötval met en évidence la présence ARNms dans des exosomes de mastocytes murins (Valadi et al. 2007). Dans cette étude, les auteurs identifient près de 1272 ARNms dans les exosomes. Cette étude ne s’arrête pas là car les auteurs démontrent que les ARNms des exosomes sont fonctionnels et sont traduits par d’autres mastocytes, appuyant le fait que les exosomes sont un véritable moyen de communication intercellulaire.

Un an après, une étude basée sur les exosomes de cellules de glioblastome montre qu’ils contiennent près de 27 000 transcrits ARNms, et sur ces 27000, 4700 sont exclusivement présents dans les vésicules et absents des cellules, suggérant une sélection précise des ARNms présents au sein des vésicules (Skog et al. 2008). De plus, ces exosomes sont ensuite capturés par les cellules vasculaires endothéliales qui vont exprimer les protéines codées par les ARNms transportés, soulignant le coté « fonctionnel » de ces ARNs.

D’autres études montrent la présence d’ARNms dans les exosomes issus de diverses cellules : les cellules tumorales, les cellules immunitaires, les cellules souches et d’autres. Récemment, Yokoi et al démontrent que les exosomes tumoraux contiennent l’ARNm MMP1 responsable de la mort des cellules mésothéliales, suggérant un rôle des exosomes dans la cancérogenèse (Yokoi et al. 2017). Dans un autre modèle, l’équipe de Goetzl montre que les exosomes dérivés des macrophages du système nerveux central stimulés avec le peptide β-amyloïd, contiennent un grand nombre d’ARNms codant pour des cytokines impliqués dans la pathogenèse de l’Alzheimer (Mitsuhashi et al. 2013).

1.1.3.3.2. Les microARNs

Les microARNs (miARNs) sont de petits ARN non codants de 22 nucléotides approximativement, hautement conservés et constitués d’un seul brin d’ARN. Ce sont des régulateurs de l’expression génique au niveau post-transcriptionnel et ils sont impliqués dans tous les processus physiologiques, en passant par la croissance cellulaire ou l’apoptose.

Un miARN peut réguler des centaines de cibles et de la même manière une cible peut être régulée par plusieurs miARNs (Di Leva, Garofalo, et Croce 2014). Le miARN s’apparait à une séquence complémentaire d’ARNm conduisant à sa répression transcriptionnelle ou à sa dégradation. De nombreux miARNs sont contenus dans les exosomes comme l’atteste le
nombre croissant de publications sur le sujet. Aussi, nous ferons ici une liste non exhaustive des miARNs contenus dans les EVs.

Tout comme les ARNms, le choix des miARNs incorporés au sein des exomes n’est pas aléatoire et une réelle sélection s’opère. De plus, Goldie et al montrent que la proportion de miARNs au sein des EVs est plus grande que dans la cellule même (Goldie et al. 2014). Certaines classes de miARNs sont préférentiellement incorporées au sein des exomes tels que la famille des miR-320 et miR-150 et ce, quelque soit le type cellulaire (Rana, Malinowska, et Zöller 2013; Squadrito et al. 2014; Skog et al. 2008; Taylor et Gercel-Taylor 2008).

Biogenèse des miARNs

Le miARN primaire, transcrit unique de 1 à 3 kb, est majoritairement transcrit dans le noyau par l’enzyme polymérase II, il possède une coiffe en 5’ et est polyadénylé. La ribonucléase de type III Drosha intervient et mature l’ARN par clivage de la coiffe pour obtenir un pre-miARN long de 70 à 100 nt (Han et al. 2004). Celui-ci est transporté dans le cytoplasme via l’exportine de type 5 par un mécanisme RanGTP (V. N. Kim 2004). Le miARN va maturer dans le cytoplasme, grâce à la ribonucléase de type III Dicer qui clive le pre-miARN en miARN double brin de 18 à 25nt (Hutvágner et al. 2001). Dicer interagit avec TRBP (« TAR RNA-binding protein ») qui favorise le recrutement de la protéine Ago2 pour former le complexe RISC (« miRNA induced silencing complex ») (Schwarz et al. 2003). Les deux brins du miARN vont ensuite être séparés par une hélicase et le brin mature va s’associer à Ago2 et s’incorporer dans le complexe RISC. Il pourra exercer sa fonction et interagir avec ses cibles conduisant à la répression génique (Winter et al. 2009; Gregory et al. 2005).

Incorporation des miARNs au sein des exomes

Zhang propose 4 voies possibles d’incorporation des miARNs dans les exomes. Elles sont détaillées ci-dessous et représentées dans la figure 13.
Figure 13 : Mécanismes d’incorporation des miRNA au sein des exosomes (D’après Zhang, 2015)

- **la voie dépendante de la sphingomyelinase 2**

La sphingomyelinase 2 (Smase2) a été décrite comme impliquée dans la sécrétion des miARNs au sein des exosomes par Kosaka (Kosaka et al. 2010). Dans cette publication, une hausse de la molécule augmente le nombre de miARNs contenus au sein des exosomes et l’inverse est aussi vrai.

- **la voie dépendante des hnRNPs**

Les protéines hnRNPs (« heterogenous nuclear ribonuleoproteins ») ont été mises en évidence dans plusieurs publications pour les mécanismes d’encapsidation des miARNs. Ainsi Villarroya-Beltri montre que le hnRNPA2B1 reconnaît le motif GGAG situé dans la région 3’ des miARNs et induit un adressage spécifique aux exosomes (Villarroya-Beltri et al. 2013).

- **la voie dépendante du motif situé en 3’ des miARNs.**
Koppers-Lalic propose que les miARNs dont le motif 3’ est uridylaté sont présents dans les exosomes alors que ceux qui sont adénylatés sont présents uniquement dans les cellules (Koppers-Lalic et al. 2014).

- **Les voies dépendantes du complexe RISC.**

Un miARN mature interagit avec le complexe RISC grâce à la protéine Ago2. Cette protéine a été retrouvée au sein des exosomes. De plus, dans des études récentes, Guduric-Fuchs montre qu’un « knock-down » de Ago2 diminue le nombre de certains miARNs dont miR-150 et miR-451 présents dans les exosomes (Guduric-Fuchs et al. 2012).

Identification de miARNs au sein des exosomes

Tout comme pour les ARNm, la première description de miARNs dans les exosomes est datée de 2007 et est réalisée par la même équipe. L’équipe de Lötval identifie 121 miARNs dans les exosomes de mastocytes (Valadi et al. 2007).

1.1.3.3.3. Les longs ARN non codants

Cette classe d’ARN regroupe les ARN non codants de taille supérieure à 200 nucléotides. Des analyses génomiques à grande échelle ont mis en évidence l’existence d’une multitude de longs ARN non codants (IncARNs) au sein des cellules. Bien que la fonction de la majorité de ces IncARNs reste à l’heure actuelle assez inexplorée, plusieurs de ces transcrits semblent jouer un rôle important dans la régulation de l’expression génique, et dans divers mécanismes de pathogenèse incluant ceux des cancers.

Quelques études décrivent la présence de IncARNs dans les exosomes dérivés de cellules tumorales principalement (Conigliaro et al. 2015; Shihua Wang et al. 2016). En 2014 et grâce à des analyses de RT-qPCR, Gezer et al découvrent la présence de IncARNs dans des exosomes dérivés de carcinome humain (cellules HeLa et MCF-7) (Gezer et al. 2014). De plus, les auteurs démontrent que l’expression n’est pas la même entre les cellules et les exosomes ; certains IncARNs étant enrichis dans les vésicules et inversement. Ces IncARNs
ont aussi été détectés dans des exosomes de cellules de cancer gastrique. Le Inc152 pourrait même être utilisé comme bio-marqueur pour le cancer gastrique car il est spécifique de la tumeur et détecté dans les exosomes retrouvés dans le sang (Q. Li et al. 2015).

1.1.3.3.4. Les ARNs circulaires

Les ARN circulaires (circARNs) sont des ARN non codants formés après regroupement des extrémités 3' et 5' des ARN. Ce sont des ARN stables car résistants à la majorité des enzymes de dégradation. Ils sont donc difficiles à éliminer et Lasda suggère dans une étude de 2016 que les cellules se débarrassent de ces ARN par incorporation au sein d’exosomes mais aussi de microparticules. De plus, une étude récente a révélé la présence de ces circRNA dans les exosomes de cellules cancéreuses où ils pourraient servir de bio-marqueurs. En effet, ils sont détectables dans les exosomes du sang, et certains sont spécifiquement présents dans les patients atteints de cancer du colon et absents de personnes saines (Y. Li et al. 2015).

1.2. Les microparticules

1.2.1. Définition des microparticules

Les microparticules (MPs) sont des vésicules sécrétées par bourgeonnement de la membrane plasmique de tous les types cellulaires, bien qu’elles ne soient pas encore bien étudiées pour toutes les cellules. Les MPs les mieux décrites sont celles des plaquettes, des cellules tumorales et des cellules endothéliales. Leur taille est supérieure à celle des exosomes et est très hétérogène. Elle est comprise entre 100 et 1000nm en fonction du type cellulaire. On les définit grâce aux marqueurs membranaires de la cellule d’origine et elles renferment une partie du cytoplasme de la cellule ; elles expriment généralement la phosphatidylsérine (PS). Enfin, ces vésicules sont sécrétées en réponse à une activation cellulaire ou un stress ; leur sécrétion est induite (Nieuwland et al. 1997; Heijnen et al. 1999; Beyer et Pisetsky 2010). Comme les exosomes, les MPs sont retrouvées dans les fluides biologiques : l’urine, la salive, le liquide céphalo-rachidien, le liquide synovial et d’autres(H. Lin et al. 2015; Castellana, Kunzelmann, et Freyssinet 2009; Moulin et al. 2010).
1.2.2. Biogenèse des microparticules

![Figure 14 : Formation des microparticules (D’après Turturici, 2014)](image)

1.2.2.1. Membrane plasmique et asymétrie

Les phospholipides de la membrane plasmique sont répartis de façon asymétrique. Les phospholipides chargés négativement telle que la phosphatidylsérine (PS) et le phosphatidylethanolamine (PE) se situent sur le feuillet interne de la membrane et les phospholipides chargés positivement tels que la sphingomyéline (SM) et la
phosphatidylcholine (PC) sont situés du coté du feuillet externe (Zachowski 1993). La membrane étant dynamique, les phospholipides ont tendance à la traverser spontanément pour équilibrer les charges. Cependant, l’asymétrie de la membrane est conservée grâce à des activités enzymatiques transmembranaires particulières.
Une translocase ATP-dépendante, la flippase, permet le transport actif de la PS du feuillet externe vers le feuillet interne. Cependant, cette activité est inhibée quand les concentrations de calcium intracellulaire sont trop importantes. La flippase permet le transport des phospholipides non spécifiques du feuillet interne vers le feuillet externe de la membrane. La scrambase permet un transport non spécifique des phospholipides dans les deux directions. Toutes ces enzymes participent au maintien de l’asymétrie de la bicouche lipidique (Connor et al. 1992; Daleke 2003; Q. Zhou et al. 1997).

1.2.2.2. Externalisation de la phosphatidylsérine par modification du calcium intracellulaire

Lors d’une activation cellulaire ou un signal apoptotique, le calcium intracellulaire est augmenté. Cette augmentation va conduire à un réarrangement des phospholipides de la membrane suite à une inhibition de la flippase et une activation de deux autres enzymes: les scramblases et les floppases. Les floppases vont avoir l’effet inverse des flippases et induire la translocation des phospholipides chargés négativement, dont la phosphatidylsérine du feuillet interne vers le feuillet externe de la membrane et elles vont mettre à l’équilibre les charges des phospholipides des deux feuillets de la membrane plasmique (Daleke 2003)(Figure 15).
Figure 15 : Rôles des enzymes scramblase, flippase, floppase dans la synthèse des microparticules (D’après Zwaal et Schroit, 1997)

Un défaut de l’activité scramblase est d’ailleurs dramatique comme le montrent les patients atteints du syndrome de Scott. C’est une maladie autosomale rare dans laquelle la scramblase ne fonctionne pas. Par conséquent, l’externalisation de la PS ne se produit pas et l’asymétrie de la membrane est conservée. Dans cette pathologie, on remarque une baisse considérable de MPs pro-coagulantes, résultant sur des épisodes hémorragiques sévères (Weiss 1994; Zwaal, Comfurius, et Bevers 2004).

1.2.2.3. Remodelage du cytosquelette et libération des microparticules

Cette modification de l’asymétrie membranaire induit une courbure naturelle de la membrane. La hausse de calcium active les enzymes calpâines et gelsolines. Les calpâines sont des cystéines protéases qui dégradent les constituants du cytosquelette dont la filamine, la myosine ou encore la taline. Les gelsolines dégradent les protéines chaperonnes des filaments d’actine, permettant ainsi son remodelage. Ces deux enzymes déstabilisent les molécules du cytosquelette et ce dernier perd l’adhésion à la membrane plasmique (Fox et

1.2.2.4. Bourgeonnement de la membrane suite à une apoptose

Dans les étapes précoces d’apoptose, les membranes cellulaires vont subir un réarrangement des phospholipides qui conduiront également à la formation de MPs. Mais dans ce cas, la formation des MPs apoptotiques dépendra fortement de la kinase ROCK1. ROCK1 est activée suite à son clivage par les caspases. La forme tronquée de ROCK1 induit une phosphorylation des chaînes légères de myosine et un découplage des filaments d’actine et de myosine à la membrane plasmique. Par conséquent, le cytosquelette est réarrangé et il y a bourgeonnement de MPs apoptotiques (Coleman et al. 2001).

1.2.3. Composition des microparticules

Les MPs sont des vésicules formées par le bourgeonnement des membranes et renferment donc du cytoplasme. Elles sont le reflet de la cellule d’origine et contiennent des lipides, des protéines et aussi des acides nucléiques contenus par la cellule. Ainsi, le contenu varie en fonction de la cellule d’origine et il est difficile de définir les constituents spécifiques à toutes les MPs. De plus, les MPs ne représentent pas seulement une version miniature de la cellule, car certains composants sont sélectivement enrichis dans les MPs. Enfin, des MPs issues de la même cellule mais qui a été stimulée différemment peuvent avoir des contenus différents selon le stimulus reçu. C’est par exemple le cas des MPs de cellules endothéliales. Dans une étude publiée en 2003, Jimenez et al montrent que le contenu protéique des MPs produites suite à une apoptose en absence de sérum est différent de celui des MPs produites suite à une activation au TNF-α. En effet, les MPs produites suite à l’apoptose de la cellule expriment préférentiellement le CD31 (PECAM-1) et le CD62 (E-selectine) alors que les MPs produites après activation au TNF-α expriment plutôt le CD51 (intégrine α5) et le CD54 (ICAM-1) (Jimenez et al. 2003). D’autres analyses protéomiques confirment que la composition des MPs est dépendante de la nature du stimulus de la cellule (Miguet et al. 2006).

1.2.3.1. Composition protéique des microparticules

83
Les MPs contiennent un large spectre de substances bioactives directement dépendant du type et du stimulus cellulaire, incluant des récepteurs, des molécules d’adhésion (PECAM-1, VCAM-1, ICAM-1 la E-selectine, CD146) et de fusion. De plus, car elles englobent une partie du cytosol cellulaire, elles sont riches en cytokines, chimioxines, facteurs de croissance, protéines du cytosquelette, enzymes métaboliques et protéines de signalisation (Figure 16).

Figure 16 : Contenu protéique des microparticules : un pool d’effecteurs bioactifs (D’après Hugel, 2005)

De nombreuses analyses de protéomique ont permis de mieux définir leur contenu protéique en fonction de la cellule parentale (cellules plaquetaires, cellules endothéliales, cellules lymphocytaires, globules rouges). Les plus représentées dans la littérature sont les données de protéomique des MPs plaquetaires (Garcia et al. 2005; Pagel et al. 2017; Kasprzyk, Stepien, et Piekoszewski 2017; Xu et al. 2016; Pienimaeki-Roemer et al. 2015). Dans une étude publiée en 2005, l’équipe de Hunt a par exemple étudié le protéome des MPs dérivées de plaquettes par des analyses de spectrométrie de masse. Ils ont détecté de nombreuses protéines caractéristiques des plaquettes telles que les protéines membranaires GPIIla, GPIIb et la P-selectine ainsi que les chimioxines CXCL4, CXCL7 et CCL5. Dans une étude récente, Kasprzyk et al ont identifié par des analyses de spectrométrie MALDI-TOF-MS/MS
446 protéines dans les MPs de plaquettes, dont 123 spécifiques des vésicules. Ils montrent également que les MPs contiennent d’avantage de protéines de région extracellulaire que les cellules.
Le contenu protéique des MPs dérivées de cellules cancéreuses a aussi été déterminé. Ces MPs contiennent un grand nombre de protéines impliquées dans la tumorigénèse, dans la migration et l’invasion des cellules cancéreuses, dans leur croissance et dans leur échappement au système immunitaire (D.-S. Choi et al. 2007).

1.2.3.2. Composition lipidique des microparticules

1.2.3.3. Composition en acides nucléiques des microparticules

Comme les exosomes, les MPs contiennent des ARNs et notamment des ARNms et des miARNs (Ratajczak et al. 2006; M. P. Hunter et al. 2008; Deregibus et al. 2007).
Dans une étude publiée en 2006, Ratajczak analyse les MP de cellules souches embryonnaires et montre qu’elles contiennent de nombreux ARNms fonctionnels, car traduits pas la suite en protéines, codant pour des facteurs de transcription de pluripotence. D’autres publications ont décrit la présence d’ARNm dans les MPs pour divers types cellulaires, les cellules endothéliales (Deregibus et al. 2007) ou les cellules tumorales par exemple (Reich et Pisetsky 2009).
En 2008, Hunter détecte dans les MPs isolées depuis le plasma, 71 miARNs co-exprimés entre les vésicules et les cellules sanguines, dont 33 miARNs spécifiquement exprimés par les MPs (M. P. Hunter et al. 2008). D’autres études indiquent la présence de miARNs au sein des MPs. Les MPs contiennent par ailleurs les ARN 18s et 28s, ARNr impliqués dans la traduction des ARNMs (Reich et Pisetsky 2009).
1.3. Les corps apoptotiques

1.3.1. Définition des corps apoptotiques

Les corps apoptotiques (CAs) sont de larges vésicules de forme irrégulière d’un diamètre généralement supérieur à 500nm et inférieur à 4000nm. Ces vésicules sont produites durant les étapes tardives d’apoptose, par fragmentation de la cellule. Leur densité est supérieure à 1,23g/mL. Les CAs sont caractérisés par la présence de phosphatidylsérines, bien que celles-ci soient aussi présentes sur les membranes des MPs. Les CAs contiennent de l’ADN et des résidus de matériel nucléaire comme des histones, issus de la fragmentation du noyau.

1.3.2. Biogenèse des corps apoptotiques

L’apoptose est un processus de mort cellulaire programmée. Il est à distinguer de la nécrose. C’est un processus naturel qui intervient suite à une agression de la cellule, mais qui est également impliqué dans le développement, dans l’homéostasie et dans les phénomènes de différenciation. Les premières modifications qui interviennent au cours de l’apoptose sont nucléaires. La chromatine se condense et la membrane nucléaire commence à se fragmenter. Au niveau moléculaire, l’apoptose fait intervenir des protéases : les caspases. Les caspases s’activent en cascade et entraînent la destruction de composants cellulaires ; elles activent les endonucléases qui fragmentent l’ADN ; elles clivent les lamines ainsi que l’actine qui est impliquée dans l’intégrité cellulaire.

Au niveau membranaire, on observe une perte de l’asymétrie et une translocation de la PS sur le feuillet externe de la membrane plasmique. Le contenu cellulaire commence à vacuoliser et se repartit au sein de petites vésicules que l’on appelle les corps apoptotiques (Kerr, Wyllie, et Currie 1972; Ihara et al. 1998; Elmore 2007) (Figure 17).
Classiquement, durant le développement normal, les CAs sont phagocytés par les macrophages. Ils expriment la PS à leur surface membranaire qui est reconnue par les cellules phagocytaires grâce à des liaisons à l’annexeine V (M. C. Martínez et Freyssinet 2001). De plus, les molécules de surface des CAs sont oxydées, ce qui crée des sites de liaisons pour les protéines du complément C3b ou la thrombosphondine. Ces 2 protéines sont reconnues par les récepteurs de cellules phagocytaires et servent en plus de marqueurs pour cette population d’EVs (van Engeland et al. 1998; Mevorach et al. 1998; Savill 1997).

1.3.3. Composition des corps apoptotiques

Les CAs qui sont issus de la fragmentation des cellules renferment du cytoplasme et contiennent donc des éléments intracytoplasmiques, des organelles, ainsi que de l’ADN et des résidus de matériel nucléaire dont les histones. Le cargo des CAs dépend du matériel cellulaire présent au moment de la création de la protusio. Ainsi, certains CAs ne contiennent que du matériel génétique tandis que d’autres ne contiennent que des composants cytoplasmiques. Les CAs sont capables de transporter des oncogènes et de les transférer au sein d’autres cellules receveuses. De plus, ces oncogènes sont fonctionnels puisqu’ils induisent le développement d’un phénotype tumorigénique dans la cellule receveuse (Bergsmedh et al. 2001).

Quelques publications suggèrent que certains miARNs puissent être transportés par les CAs. Dans une étude publiée en 2009, Zernecke et al montrent que les CAs contiennent le miR-126 fonctionnel car capable d’induire une protection vasculaire dans les cellules qui l’ont incorporé (Zernecke et al. 2009). Enfin, une autre étude récente publiée en 2017 montre que les CAs dérivés de macrophages sont capables de transporter le miR-221/222 et que ce dernier induit une forte prolifération des cellules receveuses (Z. Zhu et al. 2017).
2. Isolement et caractérisation des EVs

Les EVs sont présentes dans les fluides biologiques ou les surnageants de culture cellulaire. Quelques soient les fluides concernés, ils contiennent tous d’autres composés biologiques, incluant des débris cellulaires ou des protéines. Pour étudier les EVs, il est donc important de les isoler du fluide dans lequel elles baignent et pour cela une multitude de protocoles existe. En fonction du volume du fluide et de sa composition, en fonction de la population de vésicules à isoler, les équipes utilisent préférentiellement les méthodes d’ultracentrifugation, d’ultrafiltration, d’exclusion par immunoaffinité, ou d’autres... Cette large variété des protocoles rend complexe la standardisation tant recherchée dans le domaine des EVs. De plus, les protocoles les plus décrits et utilisés sont ceux concernant les exomes, les protocoles concernant la purification des MPs sont peu nombreux et ceux concernant les CAs sont presque absents de la littérature.

Après purification, il est indispensable de caractériser les vésicules obtenues afin de confirmer la nature de la population. Tout comme les techniques d’isolement, il existe une large variété de protocoles de caractérisation des EVs basés sur la taille des particules ou sur l’expression de marqueurs spécifiques d’une population.

Dans ce chapitre, nous ferons le point sur les techniques de purification et de caractérisation d’EVs les plus utilisées à ce jour concernant les différents types d’EVs.

2.1. Techniques d’isolement des vésicules extracellulaires

2.1.1. Isolement des exomes

Les exomes sont les vésicules les mieux décrites et caractérisées à ce jour. Les avancées concernant cette population de vésicules sont grandes et par conséquent les moyens d’isolement et de caractérisation se sont largement développés et sont expliqués dans diverses publications (Zeringer et al. 2015; P. Li et al. 2017). Les exomes peuvent être isolés selon des méthodes basées sur leur taille ou selon l’expression de marqueurs spécifiques.

2.1.1.1. Méthodes d’isolement basées sur la taille
2.1.1.1.1. L’ultracentrifugation

Les méthodes de centrifugation sont utilisées pour sédimerter des constituants en suspension dans un milieu au contenu hétérogène en fonction d’une force centrifuge ainsi que de la densité, de la taille et des propriétés physiques de ces constituants et du solvant dans lequel ils baignent (Beams, Weed, et Pickels 1933). Ainsi, par des méthodes de centrifugation à haute vitesse, il est possible d’isoler de petites bio-particules telles que des virus, des bactéries, des organelles mais également des exosomes.

L’ultracentrifugation pour l’isolement des exosomes est un bon standard et la technique de référence pour cette population. Elle est également utilisée pour purifier les MPs et les CAs. 56% des équipes travaillant sur les exosomes utilisent l’ultracentrifugation comme moyen d’isolement de la population (Zarovni et al. 2015). Les techniques d’ultracentrifugation sont faciles à mettre en place, elles ne nécessitent que peu d’expertise mais juste du matériel à savoir une ultracentrifugeuse et un rotor adapté à l’application.

Il y a deux types de centrifugation pour purifier les exosomes : les centrifugations différentielles et les centrifugations sur gradient de densité (Figure 18).

![Figure 18 : La purification d’exosomes par centrifugation différentielle et sur gradient de densité (D’apres Li)](image)

2.1.1.1.1. Centrifugations différentielles

Les centrifugations différentielles consistent en une succession de cycles de centrifugation à différentes forces centrifuges et différentes durées. Dans une publication de 2006, Théry et
al proposent le protocole présenté en figure 19 pour l’isolement des exosomes, protocole largement repris et adapté dans les équipes (Théry et al. 2006).

Figure 19 : isolement d’exosomes par méthode de centrifugations différentielles
(D’après Théry, 2006)

Des étapes préalables sont nécessaires à l’obtention des exosomes. Le surnageant de culture ou le fluide biologique contenant les exosomes est centrifugé à 300xg puis à 2,000xg afin d’éliminer les cellules mortes et les débris cellulaires. Le surnageant est ensuite centrifugé à 10,000xg afin d’éliminer les vésicules de plus grosses tailles incluant les MPs. Le surnageant est alors centrifugé à 100,000xg pendant au moins 1h pour isoler les exosomes. Toutes ces étapes de centrifugation sont réalisées à 4°C.

Ce protocole a été repris et adapté par certains, les durées de centrifugations et les vitesses sont variables, entre 1 et 2h à des vitesses comprises entre 100,000 et 120,000xg.

Cependant, les étapes d’ultracentrifugations différentielles ne permettent pas de séparer les EVs d’autres complexes moléculaires aux caractéristiques similaires, tels que les complexes protéiques qui peuvent co-précipités avec les EVs (van der Pol et al. 2012; Erdbrügger et al. 2014). Une étape de rinçage est préconisée afin d’éliminer une partie de ces éventuels agrégats protéiques qui auraient été précipités avec les exosomes. Les exosomes sont
généralement rincés dans une solution de PBS par nouvelle centrifugation à 100,000xg. Les exosomes sont ensuite resuspendus dans un petit volume de PBS et conservés à -80°C.

2.1.1.1.2. Centrifugations sur gradient de densité

Les centrifugations sur gradient de densité sont des méthodes qui permettent de purifier les exosomes en se basant sur la taille, la masse et la densité des vésicules. Les vésicules sont ultracentrifugées à haute vitesse (au moins 100,000g) dans un tube contenant un gradient de concentration d’une molécule, généralement un gradient de sucrose ou iodixanol (Optiprep). De cette manière, les exosomes ne vont pas sédimentar dans le fond du tube, mais dans une zone unique dépendant de leur densité comprise entre 1,13 et 1,21g/mL. La fraction sera alors facile à récupérer. Il est ensuite nécessaire de laver les exosomes par nouvelle ultracentrifugation de rinçage pour éliminer la molécule du gradient.

Cette méthode améliore les rendements des exosomes obtenus et permet de séparer les exosomes des agrégats protéiques et des MPs possédant des propriétés physiques différentes (Graça Raposo et Stoorvogel 2013). Elle est préférable aux techniques de centrifugations différentielles, où les MPs de petite taille peuvent co-précipiter avec les exosomes.

2.1.1.2. L’ultrafiltration

Il est possible d’isoler les exosomes depuis leur fluide biologique en fonction de leur taille ou leur poids moléculaire en utilisant des membranes semi-perméables par ultrafiltration (Cheruvanky et al. 2007). L’ultrafiltration est plus rapide que les méthodes d’ultracentrifugation et ne requiert aucun équipement spécial. Cependant, elle peut entraîner une déformation des vésicules lors de leur passage dans le filtre (György et al. 2011).

Les systèmes de filtration basés sur le poids moléculaire utilisent des nano-membranes de concentration qui doivent être couplées à de petits cycles de centrifugation.

Un kit commercial basé sur l’ultrafiltration, l’exoMir, a été développé par Bioo Scientific. Il s’agit d’une seringue équipée de filtres qui capturent les EVs. Deux membranes sont configurées de sorte à ce que lorsque le fluide passe à travers, la membrane du haut capture les CAs et les MPs et la membrane du bas capture les exosomes.
Enfin la filtration séquentielle présentée en figure 20 permet d’isoler les exosomes des protéines, des débris et des autres types d’EVs. Dans un premier temps, le milieu est filtré de manière standard sur un filtre 100nm, afin d’éliminer débris et cellules mortes. Une deuxième étape permet d’éliminer les protéines avec une membrane cutt-off (MWCO) de 500kDa. Pour terminer, la solution est de nouveau passée sur filtre 100nm pour être sûr d’avoir éliminé toutes les grosses vésicules. Dans les essais cliniques, cette méthode de filtration séquentielle est utilisée puis les exosomes sont centrifugés sur gradient de densité (Escudier et al. 2005).

![Diagram](image)

Figure 20 : Principe de la filtration séquentielle

(D’après Li, 2016)

L’ultrafiltration, en comparaison aux méthodes de centrifugation, permet d’obtenir un plus grand rendement en terme d’ARNs présents au sein des EVs.

2.1.1.1.3. La chromatographie d’exclusion de taille

La chromatographie d’exclusion de taille permet de séparer les EVs du fluide biologique en fonction de leur diamètre hydrodynamique (Lages, Scrutton, et Holmsen 1975). C’est une technique simple et peu onéreuse. Dans un premier temps, l’échantillon est centrifugé à 300xg et 2000xg afin d’éliminer les cellules mortes et débris susceptibles de boucher la colonne. Le milieu est ensuite passé dans une colonne, possédant des pores, et les composants possédant un petit diamètre hydrodynamique vont pouvoir passer à travers ces
pores. À l’inverse, les composants avec un grand diamètre hydrodynamique, dont les exosomes, vont être exclus.

Cette méthode est très efficace pour isoler les exosomes du plasma, de la salive et de l’urine, milieu pour lesquels elle donne des rendements plus importants que les méthodes de centrifugation classique (Ogawa et al. 2008; Böing et al. 2014).

2.1.1.1.4. La précipitation par polymères

Les kits commerciaux incluant l’Exoquick par exemple sont basés sur la précipitation des EVs grâce à des polymères hydrophiles tels que les PEGs (polyethylene glycols). Suite à la liaison des polymères et des molécules d’eau, les éléments les moins solubles dont les EVs vont précipiter. On récupère ensuite les vésicules par des centrifugations à basse vitesse. Ces kits sont très faciles à utiliser et ils sont directement prêts à l’emploi. Cependant, cette méthode n’exclut pas les contaminations des exosomes avec les molécules de polymères ni avec les protéines du milieu dont proviennent les exosomes.

2.1.1.2. Méthodes d’isolement basées sur l’immunoaffinité

De par l’expression de protéines et récepteurs membranaires spécifiques par les exosomes, il est possible de les isoler de leur milieu par des méthodes d’immunoaffinité. Ces méthodes de purification utilisent un antécors spécifique d’un antigène de surface des EVs. Les anticorps sont généralement couplés à des particules magnétiques qui vont permettre de capturer les EVs par extraction magnétique (Lässer, Eldh, et Lötvall 2012). Les principaux anticorps utilisés sont les anti-CD63, CD9 et CD81, qui vont cibler les tétraspansines présentes sur les membranes des exosomes (Arakelyan et al. 2015; Kowal et al. 2016; Tauro et al. 2012). L’avantage de cette technique est sa spécificité, cependant c’est une méthode couteuse et particulièrement difficile à mettre en œuvre sur les grands volumes, comme les surnageants de culture.

2.1.2. Isolement des microparticules

Les protocoles pour la purification des MP sont peu disponibles et tous basés sur l’ultracentrifugation différentielle (Lacroix et al. 2010).

Comme pour les exosomes, les premières étapes consistent en 2 cycles de centrifugations
pour éliminer les cellules et les débris cellulaires : 300xg pendant 10 minutes et 2,500xg pendant 20 minutes. Parfois les milieux sont filtrés sur membrane 800nm pour éliminer les larges composants présents dans les milieux, cependant cette méthode réduit considérablement les rendements de MPs obtenues.
Les MPs sont ensuite purifiées par centrifugation à des vitesses comprises entre 10,000 et 20,000xg pendant 30 à 60 minutes. Tout comme les exosomes, les MPs sont rincées par nouvelle centrifugation dans du PBS, puis elles sont conservées par congélation à -80°C.

2.1.3. Isolement des corps apoptotiques

Jusqu’à récemment, il n’existait pas de protocoles précis pour l’isolement des CAs. Après centrifugation des fluides ou surnageants de culture à 300xg pour éliminer les cellules, ces derniers sont isolés par centrifugation à des vitesses comprises entre 1,000 et 4,000xg pendant 20 minutes mais co-précipitent avec d’autres éléments présents dans les milieux. De plus les CAs de grande taille sont perdus pendant les étapes de centrifugation à 300xg (Berda-Haddad et al. 2011; Crescitelli et al. 2013). Pour contrecarrer ce problème, des travaux datés de 2015 proposent de purifier les CAs en se basant sur des méthodes de centrifugation à basse vitesse. Ainsi, il est possible de purifier les CAs avec 83% de pureté (Figure 20).

Récemment, deux équipes ont proposé de nouvelles méthodes de purification plus spécifiques pour isoler cette population vésiculaire. Hauser propose une technique de purification spécifique des CAs et plus particulièrement ceux contenant du matériel génétique par ligation in situ. Cette méthode détecte et sélectionne les vésicules contenant des extrémités 5’ phosphorylées caractéristiques des clivages de l’ADN et retrouvées dans les CAs seulement (Hauser, Wang, et Didenko 2017). Une autre équipe propose une méthode de purification des CAs utilisant le FACS et basée sur les caractéristiques connues des CAs, à savoir leur taille, leur granulosité et l’exposition à leur surface de la phosphatidylyserine (Atkin-Smith et al. 2017). Ces protocoles sont détaillés dans la figure 21.
2.2. Caractérisation des vésicules extracellulaires

Tout comme les méthodes d’isolement des EVs, les moyens d’analyse et de caractérisation sont nombreux. La société internationale des vésicules extracellulaires (ISEV) recommande l’usage d’au moins deux techniques différentes pour caractériser les vésicules. Les EVs peuvent être caractérisées selon leur taille et selon l’expression de marqueurs de surface spécifique (Witwer et al. 2013).

2.2.1. Méthodes de caractérisation basées sur la taille

Les EVs (exosomes, MPs et CAs) diffèrent les unes des autres notamment par leur taille. Les exosomes sont les plus petites vésicules et mesurent entre 30 et 150nm, les MPs ont une taille généralement comprise entre 100 et 1000nm et enfin les CAs mesurent généralement plus de 500nm. Ainsi, il est possible de caractériser les populations de vésicules en se focalisant sur la taille.

2.2.1.1. La microscopie électronique

Grâce à La microscopie électronique que ce soit électronique ou à balayage, il est désormais possible de visualiser et mesurer la taille des EVs.

La microscopie électronique est basée sur l’utilisation d’un faisceau d’électrons accélérés qui va être focalisé sur un mince échantillon à l’aide de lentilles électromagnétiques. Les électrons vont alors être transmis ou diffusés, puis collectés ce qui va permettre de reconstruire une image. La matière étant transparente aux électrons, une étape de contraste
des échantillons aux métaux lourds opaques aux électrons sera nécessaire et la méthode la plus répandue est le contraste par coloration négative (Böing et al. 2014; Heijnen et al. 1999).

2.2.1.1. MET et Coloration négative

La coloration négative rend visible l’échantillon par un contraste qui va mettre en évidence son contour. Pour se faire, l’échantillon est déposé sur une grille recouverte d’un film de carbone et fixé à l’aide de paraformalhédyde. Il est ensuite contrasté grâce à un contraste enrichi en sel d’atomes lourds tels que l’uranyle d’acétate ou le tétroxyc d’osmium. Ces sels vont venir se déposer autour des objets, générant alors un contraste. La coloration négative des échantillons est une méthode rapide, la préparation se faisant en moins de 30 minutes. Cependant, avec cette technique, les EVs sont déshydratées et leur taille ainsi que leur morphologie peuvent être affectées. La figure 22 présente des images obtenues en microscopie électronique à transmission par coloration négative.

![Figure 22: Exosomes observés en microscopie électronique à transmission par coloration négative (Adapté de Van der Pol, 2010)](image)

2.2.1.1.2. MET et coupes ultrafines

Il est possible de réaliser des coupes ultrafines sur culot de vésicules. Cette technique est difficile à mettre en œuvre car le culot doit être suffisamment important pour pouvoir être visualisé, inclus et coupé par la suite (György et al. 2012). Le culot est fixé, contrasté et inclus dans une résine, puis coupé à l’ultramicrotome. Après coloration, les EV sont observés par MET. Cependant, cette méthode affecte également la taille et la forme des échantillons.
2.2.1.3. Cryo-MET

La cryo-MET permet de visualiser les EVs dans leur état naturel et hydraté, sans altération de leur morphologie et de leur taille (Dubochet et al. 1988). Elle consiste en une congélation très rapide des échantillons dans de l’éthane liquide avant visualisation par MET. Elle ne nécessite ni fixation, ni coloration, ni coupe ce qui a l’avantage de réduire considérablement les artefacts liés à la préparation des échantillons. Cette méthode est par ailleurs de plus en plus utilisée (Arraud et al. 2014; Milasan et al. 2016).

De plus, elle apporte des informations supplémentaires car elle permet la visualisation des 2 feuillets lipidiques caractéristiques et constituants les membranes des vésicules (Figure 23).

![Figure 23 : Visualisation d’une vésicule par cryo-TEM](Adapté de Milasan, 2016)

2.2.1.4. Microscopie électronique à balayage (MEB)

 Certaines équipes utilisent la MEB afin de visualiser la forme et la surface des EVs. Les échantillons sont balayés par le faisceau d’électrons qui permet d’obtenir une image de la surface des EVS en 3D. Elle a été utilisée pour visualiser des EVs présentes dans le sang mais également des EVs présentes au sein de milieux de culture cellulaire (Suštar et al. 2011).

2.2.1.2. La cytométrie en flux

La cytométrie est le moyen de référence pour caractériser la taille, la concentration et l’origine des MP, les exosomes étant trop petits pour être détectés par cette technologie. Elle

2.2.1.3. La DLS (dynamic light scattering)

La « dynamic light scattering » (DLS) est une technologie qui permet de déterminer la taille des particules présentes au sein d’un échantillon. Les vésicules en suspension sont soumises à un mouvement thermique aléatoire que l’on appelle le mouvement brownien. Les petites particules bougent plus rapidement que les grosses particules et ce mouvement est modélisé par la relation de Stokes-Einstein. Un faisceau lumineux est envoyé sur la suspension, et les vésicules diffusent la lumière en fonction de leur mouvement brownien. Les signaux lumineux sont collectés sur un détecteur et le logiciel de l’instrument va calculer la taille moyenne des particules présentes dans l’échantillon. La principale limite de cette technique est qu’elle n’est pas efficace pour les échantillons contenant des vésicules aux tailles polydisperses, le signal des petites vésicules étant masqué par le signal des grosses vésicules.

2.2.1.4. Le NTA (nano tracking analysis)

Depuis quelque temps, une nouvelle technologie basée aussi sur la diffusion de la lumière et le mouvement brownien des particules s’est largement répandue ; il s’agit du NTA, « nano tracking analysis ». Tout comme la DLS, le NTA est basé sur la diffusion de lumière et le mouvement brownien des vésicules en suspension, à l’exception que cette technique permet un suivi individuel de toutes les nanoparticles présentes dans le milieu. Elle donne des indications sur la distribution de tailles entre 50 et 1000nm des vésicules présentes au sein de l’échantillon (Gardiner et al. 2013). De plus, elle fournit des informations quantitatives car il est possible de connaître la concentration, c’est-à-dire le nombre de particules par millilitre présentes dans la population étudiée. L’utilisation du NTA s’est largement répandue, de par la précision de ses résultats et sa simplicité d’utilisation (Gercel-Taylor et al. 2012; Maas et al. 2015).
2.2.1.5. Le TRPS (tunable Resistive pulse sensing)

La société IZON a récemment commercialisé une nouvelle technologie pour mesurer la taille des particules dans un échantillon par une qNano technique. C’est une alternative au NTA qui permet de déterminer la concentration des EVs. Avec cette technologie, les EVs vont passer une par une à travers une membrane élastique ne contenant qu’un seul pore. Une pression va permettre aux EVs de passer à travers le pore. La vitesse de passage des EVs à travers le pore ainsi que la résistance vont être mesurées et le logiciel va pouvoir estimer la taille des EVs qui ont traversé la membrane (Garza-Licudine et al. 2010).

2.2.2. Méthodes de caractérisation basées sur les marqueurs de surface

Les EVs possèdent toutes une origine différente. Les exosomes sont originaires du compartiment endosomal et les MPs et CAs proviennent de la membrane plasmique. Ainsi, la constitution de la membrane entourant les vésicules peut être différente. La membrane exosomale a une composition proche de celle des endosomes et exprime un certain nombre de protéines issues de ce compartiment, telles que les tétraspanines ou les protéines ESCRT. À l’inverse, MP et CAs expriment d’avantage les protéines présentes à la surface des membranes plasmiques des cellules dont elles proviennent. En se basant sur l’expression de ces marqueurs de surface, il est alors possible de discriminer les différentes populations d’EVs.

2.2.2.1. Le western blot

C’est une méthode biochimique qui permet de détecter des protéines contenues dans un échantillon biologique. Après électrophorèse sur gel, séparant les protéines en fonction de leur poids moléculaire, les protéines sont transférées sur une membrane de nitrocellulose et un immunomarquage permet de valider la présence ou non de protéines spécifiques (Burnette 1981; Hnasko et Hnasko 2015).

2.2.2.2. La cytométrie en flux

Il est possible de détecter la présence de protéines de surface grâce à des marquages en cytométrie en flux. Les anticorps sont couplés à des fluorochromes qui vont être excités par
un laser et émettre une fluorescence de longueur d’onde différente.
Les exosomes étant trop petits pour être reconnus par le cytomètre, il est possible de les coupler à des billes de plus gros diamètre, généralement des billes de latex/aldhéhyde de 4µm sur lesquelles les vésicules peuvent adhérer. Il sera alors ensuite possible d’effectuer un marquage et de détecter la présence des protéines étudiées.

3. Mécanismes d’interaction des vésicules extracellulaires

Quelque soit le type de vésicules, elles sont un moyen de communication intercellulaire et doivent donc, après sécrétion, interagir et libérer leur contenu dans une cellule cible. Même si elles sont encore largement méconnues, des évidences directes et indirectes suggèrent l’existence de voies d’internalisation des EVs au sein de cellules cibles. En effet, les vésicules sont capables de transférer des ARNms et des miARNs fonctionnels au sein de cellules réceptrices ; ou encore les vésicules transportant des siARNs sont capables d’éteindre l’expression de gènes spécifiques de ces siARNs dans des cellules cibles. Différentes voies d’interaction EV/cellules cibles sont ainsi décrites dans la littérature et nous allons les développer dans cette partie.

Les vésicules peuvent interagir avec une cellule cible selon un des trois mécanismes ci-dessous (figure 24):
- une interaction spécifique avec un récepteur suivie de l’induction d’une voie de signalisation particulière.
- la fusion de la vésicule avec la membrane plasmique de la cellule cible.
- l’endocytose de la vésicule puis la fusion avec le compartiment endosomal de la cellule.
La fusion et l’endocytose des EVs par les cellules conduiront à une libération du matériel vésiculaire au sein de la cellule.
Figure 24 : Mécanismes d’interaction des EVs avec les cellules cibles (D’après Turturici, 2014)

3.1. Interaction ligand-récepteur des EVs avec la cellule cible

Nous avons vu précédemment que les exosomes et les MPs présentent à leur surface un certain nombre de molécules d’adhésion. Ces molécules d’adhésion pourraient permettre à la vésicule d’interagir avec une cellule cible spécifique grâce à des interactions protéiques ou lipidiques de type ligand/récepteur.

De nombreuses publications montrent que les protéines de surface des vésicules sont effectivement capables d’interagir avec des récepteurs membranaires (Rana et Zöller 2011; Record et al. 2014).

Ainsi, les exosomes dérivés des lymphocytes B expriment les intégrines β1 et β2 et ces molécules sont capables de lier la fibronectine et le collagène (Clayton et al. 2004). Les CAs et MPs expriment la PS et ce lipide est le ligand des récepteurs TIM présents à la surface des cellules T. Les cellules dendritiques sécrètent des exosomes qui expriment LFA-1 et cette protéine permet de lier les lymphocytes T (Buschow et al. 2009; Kharaziha et al. 2012).
De nombreuses publications soulignent des interactions de surface vésicules-cellules. Une fois la relation ligand-récepteur entre la vésicule et la cellule effectuée, une transduction du signal suivie d’une activation de voie de signalisation spécifique peut avoir lieu.

3.2. Internalisation des EVs au sein de la cellule cible

L’internalisation des EVs au sein de cellules cibles est un moyen d’interaction admis et validé grâce aux deux observations suivantes :

- Une incubation de vésicules avec des cellules réalisée à 4°C diminue de manière dramatique l’internalisation des EV suggérant que des processus d’internalisation énergie-dépendants plutôt que passifs (Escrevente et al. 2011; Tian et al. 2010). De plus, l’internalisation par des cellules fixées dans la paraformaldehyde n’est pas permise, ce qui appuie encore l’hypothèse d’un mécanisme actif sous-jacent (Fitzner et al. 2011).

- Le traitement des cellules par un inhibiteur des voies d’endocytose telle que la cytochalasine D ne permet plus d’internaliser les EVs de manière efficace (Obregon et al. 2009; Atay, Gercel-Taylor, et Taylor 2011).

Les EVs sont donc capturées par des mécanismes d’endocytose nécessitant de l’énergie et un cytosquelette fonctionnel.

Il existe diverses voies d’endocytose : l’endocytose clathrine-dépendante, l’endocytose cavéoline-dépendante, l’endocytose par rafts lipidiques, la macropinocytose ou encore la phagocytose. Lorsque les vésicules sont endocytées, elles transinent au sein de vésicules d’endocytose jusqu’au compartiment endosomal, où elles libèrent leur contenu.

Ceci a été montré en 2004, où le cheminement d’exosomes endocytés marqués à la PKH67 est suivi par microscopie confocale. Les exosomes marqués transitent par les endosomes précoces, puis par les endosomes tardifs (Morelli et al. 2004). L’endocytose est un processus extrêmement rapide puisque les vésicules sont retrouvées au sein des endosomes tardifs moins de 20 minutes après co-incubation (Feng et al. 2010).

Seules les cellules plagocytaires (macrophages et monocites) sont capables d’effectuer la phagocytose, elles phagocytent les vésicules après reconnaissance de la PS exposées à la surface des EVs (Feng et al. 2010). Les voies d’endocytose font intervenir des interactions ligand-récepteur, et ceci est démontré par traitement des EVs à la protéinase K qui diminue

Diverses revues de la littérature suggèrent que les intégrines et les immunoglobulines pourraient jouer un rôle dans la capture des EVs. Des anticorps dirigés contre le site de liaison CD11a ou son ligand ICAM-1 réduit l’endocytose des EV par les cellules dendritiques (Morelli et al. 2004). CD11a est une sous unité de LFA-1 (« lymphocyte function – associated antigen » 1) qui interagit avec ICAM-1 et qui régule les réponses immunes. Une sur-expression de LFA-1 sur des cellules T naives induit une nette augmentation de l’internalisation des EVs, et ce, de manière dose dépendante (Nolte-t Hoen et al. 2009). L’inverse est également vrai puisque le blocage de LFA-1 induit une baisse de l’internalisation des EVs.

3.3. Fusion des membranes EVs/cellule cible

Les mécanismes de fusion des membranes des vésicules avec celles des cellules sont une autre possibilité d’internalisation des EVs et ils ont été surtout observés pour les cellules cancéreuses (Parolini et al. 2009).

La fusion des bicouches lipidiques dans un environnement aqueux est un procédé au cours duquel les membranes se rompent et les feuillets externes de deux membranes différentes rentrent en contact direct. De nombreuses protéines sont impliquées dans ces mécanismes dont les SNARES, les Rab et les SM-protéines (Sec1/munc-18 related proteins) (Jahn et Südhof 1999). Les tétraspanines CD9 et CD81 semblent également être impliquées dans ce mécanisme (Montecalvo et al. 2012).
La fusion directe des membranes permet de libérer directement et rapidement le contenu exosomal dans le cytoplasme de la cellule cible.

4. Fonctions des vésicules extracellulaires

Il est désormais admis que les EVs sont un moyen de communication intercellulaire et qu’elles sont capables de transférer du matériel biologique au sein de cellules cibles. Le contenu et par conséquent la fonction des EVs sont directement dépendants du type cellulaire d’origine et de son stimulus. Les vésicules sont impliquées dans de nombreux processus biologiques tels que les réponses immunitaires, la réparation tissulaire, la coagulation mais elles sont également retrouvées dans les processus pathologiques où elles peuvent aggraver la maladie tels que dans les cancers, les troubles inflammatoires ou même neurodégénératifs. Nous allons, dans ce chapitre, passer en revue quelques unes des fonctions physiologiques et pathologiques des EVs en fonction du type cellulaire parental. Les EVs dérivées des CSMs, sujet qui nous intéressera particulièrement, feront l’objet de la prochaine section.

4.1. Quelques exemples de fonctions d’EVs issues de divers types cellulaires

Dans la littérature, les descriptions fonctionnelles des EVs sont de plus en plus nombreuses et concernent tous les types cellulaires. Dans cette section, nous détaillerons les fonctions des EVs des cellules immunitaires, des cellules cancéreuses, des plaquettes et des cellules nerveuses. J’ai choisi de parler de ces types cellulaires précis, car ce sont des cellules pour lesquelles la recherche basée sur les EVs est bien avancée.

4.1.1. Fonctions des EVs de cellules immunitaires

Toutes les cellules du système immunitaire inné ou adaptatif incluant lymphocytes T, lymphocytes B, macrophages, cellules dendritiques, cellules NK sécrètent des exosomes et des MPs et de manière générale, les publications montrent que les EVs de cellules immunitaires sont capable de mimer l’effet de la cellule parentale et de reproduire les mêmes fonctions. La figure 25 résume les effets des vésicules en fonction de la cellule
immunitaire parentale. La suite de ce paragraphe indique de manière non exhaustive les effets des EVs pour chaque population de cellules immunitaires connues.

![Diagramma](https://via.placeholder.com/150)

Figure 25 : Effets des EV dérivées de cellules immunitaires
(Adapté de Théry, 2009)

4.1.1.1. EVs dérivées de cellules dendritiques

Les DC sont des CPAs. Ce sont des cellules sentinelles qui capturent les antigènes et qui sont capables de les présenter aux lymphocytes T. Elles expriment les molécules du CMH de classe I et II ainsi que les molécules d’adhésion et de co-stimulation CD80, CD40 et CD86 nécessaires pour une présentation antigénique efficace aux cellules T CD4⁺ et CD8⁺. Les exosomes dérivés des DC expriment également à leur surface les molécules du CMH de type I ou II mais aussi les molécules d’adhésion et de co-stimulation. Ils sont efficaces et aptes à la présentation antigénique directe. Ils induisent une réponse T CD4⁺ ou CD8⁺ spécifique. Les exosomes de DC sont efficaces dans la présentation antigénique indirecte, c’est-à-dire qu’ils sont capturés par d’autres DC immatures, ils transfèrent à ces cellules les antigènes qu’ils

4.1.1.2. EVs dérivées de lymphocytes B

Les lymphocytes B sont les cellules sécrétrices des immunoglobulines (Ig) et sont aussi capables de présentation antigénique aux lymphocytes T par leur expression des molécules de CMH de classe II. Raposo et al démontrent en 1996 que les cellules B sécrètent des vésicules qui expriment les mêmes molécules et qui sont par conséquent aptes à présenter les antigènes aux cellules T CD4⁺ et à induire une réponse (G. Raposo et al. 1996).

4.1.1.3. EVs dérivées de macrophages

Les macrophages sont des cellules phagocytaires. Lorsqu’ils sont infectés par un pathogène, ils sécrètent des exosomes portant des antigènes de ce pathogène. Ces exosomes sont capables d’être capturés par les cellules dendritiques et de transmettre les antigènes, conduisant à la maturation de la cellule dendritique et à une présentation antigénique effective aux lymphocytes T (Giri et Schorey 2008; Nguyen et al. 2003).
4.1.1.4. EVs dérivées de cellules T

Les lymphocytes T sécrètent des exosomes qui portent les sous-unités des récepteurs des cellules T, ainsi que les kinases Src-like tyrosine et les molécules d’adhésion (Blanchard et al. 2002). De manière générale, les vésicules sécrétées par les cellules T auront la même fonction que la cellule parentale. Une vésicule issue d’une cellule T inflammatoire exercera une activité inflammatoire tandis qu’une vésicule de cellule T régulatrice sera plutôt immunosuppressive. Certains auteurs montrent ainsi que les exosomes issues de cellules T CD3⁺ en synergie avec l’IL-2 sont capables d’induire la prolifération de cellules T autologues naïves (Wahlgren et al. 2012). Les exosomes dérivées de cellules T activées expriment Fas-Ligand et participent à la mort cellulaire pendant les phases de clairance immunitaire (Martínez-Lorenzo et al. 1999). Cai et al. démontrent dans une publication de 2012 que l’expression de Fas-L par les exosomes est aussi un moyen de favoriser l’invasion tumorale (Cai et al. 2012). Les EVs dérivées de cellules T activées activent les monocytes et induisent une sécrétion de TNF-α et d’IL-1β (Scanu et al. 2008).

A l’inverse, les exosomes sécrétés par les cellules T régulatrices CD8⁺ CD45⁺ sont capables d’inhiber les réponses cytotoxiques CD8⁺ et l’activité anti-tumorale (H. Zhang et al. 2011; Bryniarski et al. 2013) et les exosomes sécrétés par cellules T régulatrices CD4⁺ CD25⁺ inhibent la prolifération des lymphocytes T et allongent le temps de survie des transplantés de rein (Yu et al. 2013, 25).

Les exosomes participent aussi à la pathogenèse de certaines maladies. C’est le cas de l’infection par le VIH. La protéine Nef, protéine virale abondante, participe activement à la pathogenèse du virus. Il a été montré que cette protéine peut être incorporée au sein des exosomes et libérée au sein de cellules cibles. Nef exerce des effets délétères puisqu’elle induit l’apoptose sur les lymphocytes T. (Campbell et al. 2008; Lenassi et al. 2010).

4.1.1.5. EVs dérivées de cellules NK

Les cellules NK sécrètent aussi des exosomes. Lugini précise que les exosomes dérivés des cellules NK expriment les marqueurs protéiques des cellules NK et Fas ligand, et transportent des protéines impliquées dans la mort cellulaire dont des perforines et granzymes. Ces exosomes possèdent, tout comme les cellules NK, des activités cytotoxiques et anti-tumorales (Lugini et al. 2012).
4.1.2. Fonctions des EVs de cellules nerveuses

Dans le système nerveux central, on trouve également des EVs. Ces EVs sont dérivées des neurones, des oligodendrocytes, de la microglie et des astrocytes et elles sont impliquées dans le développement physiologique mais participent aussi aux désordres neurodégénératifs (Frühbeis et al. 2013) (Figure 26).

Figure 26: Vésicules extracellulaires dérivées de cellules nerveuses
(Adapté de Schiera, 2015)

Les neurones et les astrocytes relarguent des vésicules dans le milieu extracellulaire et ces vésicules contiennent du VEGF et du FGF-2, facteurs de croissance essentiels à la vascularisation dans un cerveau en cours de développement (Schiera, Di Liegro, et Di Liegro 2015; Proia et al. 2008). De plus, les vésicules sécrétées par les astrocytes transportent la
synapsine-1, et des métalloprotéinases qui sont impliquées dans le remodelage de la matrice extracellulaire (Shiwei Wang et al. 2011; Sbai et al. 2010).
Les oligodendrocytes, qui sont les cellules gliales produisant la gaine de myéline recouvrant les axones et apportant des substrats énergétiques aux neurones relarguent aussi des EVs. Ces EVs contiennent les protéines nécessaires à la constitution de la gaine de myéline et semblent être impliquées dans le crosstalk entre axones et oligodendrocytes (Krämer-Albers et al. 2007). De plus, une hausse en Ca$^{2+}$ cytosolique dans les oligodendrocytes induit le relargage des EVs, et ces EVs adressent aux neurones des métabolites, des enzymes et des acides nucléiques (ARNm, miARN) (Frühbeis et al. 2013; Fröhlich et al. 2014).
Enfin, les vésicules jouent un rôle dans le développement de maladies neurodégénératives. Les EVs transportent des protéines toxiques. Dans le cas de la maladie de Parkinson, des études montrent que les exosomes de cellules neuronales transportent l’a-synucléine, impliquée dans le développement de la pathologie (Danzer et al. 2012). Dans une autre étude concernant les maladies à prions, Fevrier et al montrent que les exosomes sécrétés par les neurones contiennent la forme pathologique de la protéine PrPsc impliquée dans le développement de la maladie (Fevrier et al. 2004).

4.1.3. Implication des EVs dans les cancers
Les cellules tumorales sécrètent un très grand nombre d’EVs in vitro et in vivo, qui communiquent avec le micro-environnement local et participent à la progression cancéreuse (Andre et al. 2002; Ginestra et al. 1998).
Le remodelage de la matrice extracellulaire est un phénomène indispensable pour l’expansion tumorale et les vésicules tumorales sont impliquées dans ce mécanisme. Elles
transportent des métalloprotéinases telles que MMP9 et MMP2 qui dégradent la matrice extracellulaire (Clancy et al. 2015).

L’angiogenèse est le deuxième mécanisme nécessaire à la croissance tumorale. Les cellules cancéréuses sont alimentées en oxygène et nutriments grâce à formation de nouveaux vaisseaux. Ici encore, les vésicules tumorales interviennent en interagissant avec les monocytes ou les cellules endothéliales à qui elles délivrent des facteurs pro-angiogéniques tel l’ARNm codant pour le VEGF. Ainsi, les monocytes produisent des facteurs pro-angiogéniques, et les cellules endothéliales prolifèrent, ce qui induit l’angiogenèse et la progression tumorale (Baj-Krzyworzeka et al. 2002, 2006).

La formation de métastases est le troisième mécanisme impliqué dans la progression tumorale. Sans surprise, les EVs de cellules tumorales transportent et délivrent des oncogènes et leur phénotype transformant associé. Nedawi montre par exemple que les cellules de gliome expriment et sécrètent au sein des vésicules le variant III de l’EGFR (« epidermal growth factor receptor ») et que ces vésicules sont capables de transférer ce variant à des cellules cancéréuses qui ne l’exprimaient pas encore. Ce variant active la kinase MAPK (« mitogen activated proteine kinase ») et les voies de signalisation de la kinase B (PKB/Akt), ce qui accélère la croissance tumorale (Al-Nedawi, Meehan, et Rak 2009).

4.1.4. Rôle des EVs de plaquettes

La majorité des EVs circulant dans le plasma sont dérivées des plaquettes activées par différents agonistes physiologiques tels que le collagène, la thrombine, les molécules du complément, les complexes immuns et d’autres (Sims et al. 1988). L’apoptose et le stress sont aussi des facteurs générant le bourgeonnement et la libération de MPs de plaquettes (Reininger et al. 2006). On dénombre près de 5.10^4 MPs de plaquettes/μL dans le sang d’un individu sans maladie connue (Arraud et al. 2014). Il est facile de détecter les MPs plaquettaires car elles expriment les marqueurs plaquettaires CD41*, CD42*, CD61* et CD62*
ainsi que la PS. Les MPs plaquettaires sont connues pour leur fonction pro-coagulante. Les MPs plaquettaires sont aussi associées à diverses pathologies. Les maladies cardiovasculaires, le diabète de type II et les maladies auto-immunes sont associées à une hausse de MPs plaquettaires circulantes, où leur fort potentiel thrombogénique contribue à la pathogenèse (Jy et al. 1992). À l’inverse, les syndromes de Scott ou le syndrome de dysvésiculation sont des syndromes hémorragiques liés à des défauts de génération de MPs (Toti et al. 1996).

4.1.5. EVs comme biomarqueurs

Parce que les EVs sont présentes dans les fluides biologiques incluant le sang, elles sont facilement accessibles et sont des biomarqueurs pour de nombreuses maladies dont les atteintes métaboliques telles que le diabète de type II (Müller 2012). Les personnes atteintes de diabète de type II ont un nombre de vésicules dérivées de plaquettes et de monocytes considérablement augmenté.

Les vésicules pourraient également être utilisées comme biomarqueurs dans les cancers car leur nombre est aussi considérablement augmenté dans les fluides des patients atteints et elles contiennent des protéines spécifiques de la tumeur. Par exemple, les EVs exprimant la mucine sont un marqueur potentiel des adénocarcinomes (van Doormaal et al. 2009). Même constat pour les atteintes de mélanome où les patients présentent des exosomes exprimant CD63 et la cavéoline-1 dans le plasma, ou encore pour les glioblastomes avec des exosomes enrichis en EGFRvIII (Logozzi et al. 2009; Skog et al. 2008). En plus des protéines, les EVs circulantes de tumeurs contiennent des ARNms tumoraux spécifiques dans les glioblastomes, dans les cancers du sein et dans les carcinomes gastriques (Baran et al. 2010; Friel et al. 2010). Les EVs présentes dans les urines sont également un très bon bio-marqueur pour les cancers de la prostate, avec des EVs exprimant un ARNm spécifique codant la PC3 (Nilsson et al. 2009).

4.2. Rôle des EVs dans les atteintes ostéo-articulaires.

Nous avons abordé dans la première partie les maladies ostéo-articulaires que sont l’arthrite et l’arthrose. Dans ces contextes pathologiques particuliers, les cellules de la niche ostéo-articulaire sécrètent un large nombre d’EVs qui vont pouvoir participer ou à l’inverse freiner
le développement de la maladie. La revue suivante fait état de toutes les vésicules retrouvées au sein de l’articulation ainsi que de leur rôle en fonction de leur type cellulaire d’origine. De plus, cette revue évoque l’intérêt de l’utilisation de vésicules dérivées par les CSMs et décrit les connaissances actuelles concernant leurs fonctions trophiques et immunomodulatrices, fonctions que nous détaillerons dans la section suivante de cette introduction.

Article n°2
Titre: Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles

Auteurs: **Stella Cosenza**, Maxime Ruiz, Marie Maumus, Christian Jorgensen, Danièle Noël

Publié dans *International Journal of Molecular Sciences*
Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles

Stella Cosenza 1, Maxime Ruiz 1, Marie Maumus 1, Christian Jorgensen 1, 2 and Danièle Noël 1, 2,*

1 Institute of Regenerative Medicine and Biotherapies, INSERM, University of Montpellier, 34090 Montpellier, France; stella.cosenza@inserm.fr (S.C.); maxime.ruiz@inserm.fr (M.R.); marie.maumus@inserm.fr (M.M.); christian.jorgensen@inserm.fr (C.J.)
2 Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Hôpital Lapeyronie, 34090 Montpellier, France
* Correspondence: danielle.noel@inserm.fr; Tel: +33-4-6733-0473; Fax: +33-4-6733-0113

Academic Editors: Thomas Ritter, Matthew Griffin and Aideen Ryan
Received: 31 March 2017; Accepted: 20 April 2017; Published: 22 April 2017

Abstract: Extracellular vesicles (EVs) are important mediators of cell-to-cell communication pathways via the transport of proteins, mRNA, miRNA and lipids. There are three main types of EVs, exosomes, microparticles and apoptotic bodies, which are classified according to their size and biogenesis. EVs are secreted by all cell types and their function reproduces that of the parental cell. They are involved in many biological processes that regulate tissue homeostasis and physiopathology of diseases. In rheumatic diseases, namely osteoarthritis (OA) and rheumatoid arthritis (RA), EVs have been isolated from synovial fluid and shown to play pathogenic roles contributing to progression of both diseases. By contrast, EVs may have therapeutic effect via the delivery of molecules that may stop disease evolution. In particular, EVs derived from mesenchymal stem cells (MSCs) reproduce the main functions of the parental cells and therefore represent the ideal type of EVs for modulating the course of either disease. The aim of this review is to discuss the role of EVs in OA and RA focusing on their potential pathogenic effect and possible therapeutic options. Special attention is given to MSCs and MSC-derived EVs for modulating OA and RA progression with the perspective of developing innovative therapeutic strategies.

Keywords: osteoarthritis; rheumatoid arthritis; extracellular vesicle; exosome; microparticle; mesenchymal stem cell; cell therapy

1. Introduction on Extracellular Vesicles

Extracellular vesicles (EVs) are heterogeneous small vesicles surrounded by a phospholipid bilayer. They are secreted by virtually all cell types and are found in various biological fluids (blood, urina, saliva, cerebrospinal fluid, breastmilk and others). Recently, EVs are described as a main mechanism involved in cell-to-cell communication. Upon release in the extracellular space, they can reach the circulation and act at distant sites where they discharge their cargo into recipient cells and reproduce the effect of the parental cells.

There exist several types of EVs but vesicles commonly described are exosomes, microparticles (or microvesicles) and apoptotic bodies. These different types of EVs can be classified according to their size, their composition and also their origin [1]. Exosomes are small vesicles with a size between 80 to
150 nm. They are constitutively secreted by all cell types and derive from the endosomal compartment. In the late endosome, they arise from endosomal membrane invagination that forms intraluminal vesicles inside of the endosomal compartment. This structure is called multivesicular body (MVB).

During invagination of the membrane, diverse proteins, lipids and nucleic acids are selectively encapsulated into intraluminal vesicles. Then, the MVB fuses with the plasma membrane and liberates exosomes directly in the extracellular space. Because of this endosomal origin, exosomes are characterized by the expression of endosomal markers: tetraspanin proteins (CD9, CD63, and CD81) but also proteins (such as TSG101 and ALIX) from the endosomal sorting complex required for transport (ESCRT).

Microparticles (MP), also called microvesicles, are vesicles induced after cell stimulation or a stress such as apoptosis or hypoxia. They shed directly from the plasma membrane after loss of asymmetric phospholipid distribution and cytoskeleton reorganization. They have a size between 150 and 600 nm in diameter and express membrane markers from the parental cells. Similar to exosomes, MPs also contain proteins, lipids and nucleic acids. Apoptotic bodies (AB) are the third main type of EVs. They are more than 1000 nm in diameter and are induced during the late stage of apoptosis as blebs of dead cells. We will only focus on exosomes and microvesicles in the present review.

EVs can interact with recipient cells via different mechanisms. EVs can fuse with the plasma membrane of target cells or be internalized by endocytosis or can interact with cell surface receptors and induce intracellular signaling pathways. When internalized, EVs can release proteins, lipids and also nucleic acids such as miRNA and mRNA that are functionally active inside cells. EVs exert several functions depending on the cell they originate. Indeed in a pathological context, EVs may have a pathogenic effect and promote disease progression but, conversely, EVs may be protective and prevent the development of the disease.

2. Extracellular Vesicles in Rheumatic Diseases

2.1. Pathological Role of Extracellular Vesicles in Osteoarthritis

Osteoarthritis (OA) is a disease characterized by articular cartilage degradation, alteration of bone structure, synovial inflammation and pain. All types of cells in the joint secrete EVs that could participate in the progression of the disease, by increasing inflammation and/or acting as pathological signal. As early as 1969, EVs containing hydroxyapatite crystals were identified in cartilage [2]. EVs from OA articular cartilage had a size between 50 to 250 nm and were mainly detected in the tidemark area, associated with increased alkaline phosphatase activity [3]. They not only contained pathological calcium crystals but also a decreased content in proteoglycans and modified amounts of various proteins. Since then, a recent study showed that EVs derived from interleukin (IL)-1β stimulated chondrocytes increased the production of matrix metalloproteinase (MMP)-13 by synovial-like fibroblasts [4]. Moreover, production of IL-1β, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 by synoviocytes was markedly enhanced indicating a role of EVs in the inflammatory process during OA.

The other main source of EVs in the joint is the synovial lining cells comprising synovial fibroblasts and macrophages. Only one publication reports the role of EVs secreted by synovial fibroblasts in OA. Kato et al. showed that exosomes from IL-1β stimulated synovial fibroblasts significantly up-regulated MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 expression in articular chondrocytes and down-regulated type II collagen (COL2) and aggrecan (ACAN) compared with untreated synoviocytes [5]. In addition, IL-1β stimulated fibroblasts-derived exosomes contained higher amounts of IL-6, MMP-3 and vascular endothelial growth factor (VEGF). These exosomes were also shown to induce angiogenesis in human umbilical vein endothelial cells (HUVECs) with higher migration and tube formation activity.
Indeed, synovial fluid (SF) from OA patients contains EVs released both by synoviocytes and chondrocytes. However neither the concentration nor the size of EVs differed in OA and non-OA individuals [4]. EVs from OA SF were readily endocyotised by chondrocytes and analysis of EV cargo indicated that miR-200c was increased in OA SF-derived EVs. Interestingly, miR-200c was shown to enhance type II collagen expression and to mitigate IL-6 dependent inflammation. MiR-200c-containing EVs might therefore play a role in maintaining cartilage homeostasis by reducing inflammation and increasing anabolic activity in chondrocytes. A better understanding of EV mechanisms would contribute to decipher how EVs participate to joint homeostasis and OA pathology.

2.2. Therapeutic Role of Extracellular Vesicles in Osteoarthritis

To date, there are only two reports on therapeutic approaches using EVs to slow down OA. Both rely on the use of mesenchymal stem cell (MSC)-derived exosomes and are discussed later in Section 4.3.

2.3. Pathological Role of Extracellular Vesicles in Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation that leads to progressive destruction of articular cartilage. In RA, SF contains a large amount of EVs including MPs and exosomes, whose number is directly correlated with disease progression. MPs from SF originated from monocytes, granulocytes and to a smaller extent from lymphocytes (few originated from platelets and erythrocytes). MPs support thrombin generation likely contributing to local hypercoagulation in inflamed joints of RA patients [6,7]. Presence of citrullinated proteins, which are known to be autoantigens in RA, was detected in SF-derived exosomes in association with IgM and IgG, suggesting they may contribute to RA induction [8]. In addition, MPs in SF from patients with RA were shown to be potent inducers of B lymphocyte survival and release of a number of mediators such as B cell-activating factor (BAFF) or thymic stromal lymphopoietin (TSLP) by RA fibroblast-like synoviocytes [9].

MPs derived from platelets are found in low proportion in SF, but are highly detected in plasma from RA patients. However, platelet-derived MPs were in comparable number in plasma from RA patients or healthy controls [6]. Another report found opposite results with higher counts of platelet-derived MPs in RA plasma, which were directly associated with disease activity [10]. Different studies suspected a role of platelet cells in RA progression. Proof of pathophysiological importance of platelets was demonstrated in the K/BxN serum transfer model of inflammatory arthritis where marked reduction of arthritis severity was observed when platelets were depleted using a platelet-depleting antibody regimen [11]. In this report, platelet-derived MPs, as evaluated by expression of the platelet specific marker CD41, were found in RA SF (rheumatoid arthritis synovial fluid) but were undetectable in OA SF. Platelet-derived MPs were shown to induce release of cytokines, including IL-6 and IL-8, by fibroblast-like synoviocytes. Synovial activation occurred through the expression of MP membrane-associated IL-1α and IL-1β activity. This study clearly demonstrated the importance of platelets and platelet-derived MPs in RA by contributing to joint inflammation. More recently, platelet-derived MPs were detected inside neutrophils isolated from joints of RA patients and in a murine model of inflammatory arthritis [12]. MPs internalization was promoted via 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a lipid mediator generated from membrane arachidonic acid by concerted activity of 12-lipoxygenase (12-LO) present in MPs and secreted phospholipase A2 II A present in inflammatory fluids, and this mechanism contributed to inflammation.

Among EVs-producing cells in SF, monocytes and granulocytes produced MPs that were shown to modulate the cytokine secretory profile of synovial fibroblasts through increased release of monocyte chemotactrant protein (MCP)-1, IL-6, IL-8, RANTES (or Chemokine (C-C motif) ligand 5, CCL5), intercellular adhesion molecule (ICAM)-1 and vascular endothelial growth factor (VEGF); all contributing to inflammation [7]. In addition, T lymphocyte- and monocyte-derived MPs were demonstrated to induce secretion of MMP-1, -3, -9, and -13 and up-regulate IL-6, IL-8, MCP-1,
and MCP-2 by fibroblast like-synoviocytes [13]. Moreover, monocyte-derived MPs from RA patients up-regulated the production of prostaglandin E2 (PGE2) and microsomal prostaglandin E synthase 1 (mPGES-1) in synovial fibroblasts [14]. MPs were able to activate c-Jun N-terminal kinases (JNK
activator protein (AP)-1, p38 and nuclear factor-κB (NF-κB) signaling pathways in synovial fibroblasts and transport arachidonic acid to fibroblasts for its conversion to PGE2.

Synovial fibroblasts-derived EVs have also been investigated in RA and shown to induce inflammatory changes in chondrocytes. Exosomes produced by synovial fibroblasts from RA patients contained a membrane bound form of tumor necrosis factor (TNF)-α that was absent on exosomes from OA patients [15]. This membrane form of TNF-α stimulated collagenase-1 expression and NF-KB pathway in synovial fibroblasts, rendering them resistant to apoptosis. Interestingly, MPs derived from RA synovial fibroblasts contained high levels of ADAMTS-5 that may promote aggrecan destruction and contribute to the invading capacity of synovial fibroblasts through aggrecan-rich extracellular matrices [16]. Similarly, hexosaminidase D activities (N-acetyl-β-D-glucosaminidase and N-acetyl-β-D-galactosaminidase) were also detected in synovial fibroblasts-derived EVs from RA patients [17]. These glycosaminoglycans degrading glycosidases may contribute to cartilage degradation in joint diseases in collaboration with proteases [18]. These overall observations demonstrated presence of pathogenic EVs in SF from RA patients that can contribute to disease propagation/progression. More investigation into the role of EVs in RA is needed to determine the interest of using EVs as disease markers or therapeutic targets for RA.

2.4. Therapeutic Role of Extracellular Vesicles in Rheumatoid Arthritis

EVs from different cell sources have been described to exert therapeutic effects in murine models of RA. First studies were done using dendritic cells (DC)-derived exosomes in 2005 [19]. In this study using the collagen-induced arthritis (CIA) murine model, IL-10-treated DC-derived exosomes were able to suppress the onset of arthritis and reduce the severity of established arthritis. In a similar approach, the same group showed that exosomes derived from Fas ligand (FasL)-expressing DCs exerted an anti-inflammatory effect in established CIA in an antigen specific and MHC class II-dependent manner [20]. They also produced exosomes derived from DCs expressing IL-4 and again demonstrated effectiveness to treat established CIA through the modulation of antigen-presenting cells and T cell activity based on a MHC class II and FasL/Fas-dependent mechanism [21]. Finally, they used exosomes derived from DCs over-expressing the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) and showed an anti-inflammatory effect of the treatment in CIA [22].

The effect of artificial vesicles, namely synovium-specific targeting liposomes loaded with specific cargo glucocorticoids, has been investigated. In vivo delivered immunosuppressive liposomes specifically targeted fibroblast synoviocytes and a dramatic reduction in inflammation was reported in a rat model of adjuvant-induced arthritis [23].

More recently, another group demonstrated that neutrophil-derived EVs were highly recovered from RA SF as compared to that of healthy controls [24]. These EVs were shown to express large amounts of the anti-inflammatory protein annexin A1 (AnxA1). In vitro, they demonstrated that AnxA1+ EVs activated expression of anabolic genes in chondrocytes. In vivo in inflammatory arthritis, intra-articularly injected EVs localized within the cartilage matrix and protected cartilage from loss of sulfated glycosaminoglycans (sGAGs). Cartilage protection was induced upon AnxA1-expressing EVs interaction with its receptor N-formyl peptide receptor 2 (FPR2) and tumor growth factor (TGF)-β pathway activation. Indeed, the interest of using EVs isolated from neutrophils or DCs to reduce inflammatory arthritis has been demonstrated. However, even though therapeutic efficacy of mesenchymal stem cells (MSC) has been demonstrated in arthritis [25], no reports exist on the role of MSC-derived EVs in inflammatory arthritis.

3. Mesenchymal Stem Cells and Rheumatic Diseases

3.1. Characteristics of Mesenchymal Stem Cells

Multipotent mesenchymal stem or stromal cells (MSCs) are adult stem cells isolated from a variety of tissues including bone marrow, adipose tissue, dental pulp, umbilical cord (UC) and others,
but the two main sources for therapeutic utilization are bone marrow (BM-MSC) and adipose tissue (ASC) [26]. MSCs are defined by the International Society for Cellular Therapy (ISCT) by three criteria: they are adherent to plastic; they express CD73, CD90, and CD105 and are negative for CD14, CD11b, CD34, CD45, CD79a, and human leukocyte antigen (HLA)-DR; and they can differentiate into osteoblasts, adipocytes and chondrocytes [27]. In addition to their differentiation potential, MSCs also exert anti-inflammatory, proliferative, anti-apoptotic, anti-fibrotic, angiogenic functions that are mediated via the secretion of a large variety of trophic factors, including growth factors, cytokines, chemokines [28].

3.2. Differentiation and Trophic Potential of Mesenchymal Stem Cells

Chondrogenic differentiation potential and paracrine functions of MSCs make these cells relevant for cell therapy and tissue engineering approaches for cartilage repair in osteochondral defects and osteoarticular diseases, including RA and OA. In vitro, MSCs differentiate into chondrocytes under specific culture conditions, and generate differentiated cells able to secrete a cartilaginous extracellular matrix (ECM) with properties close to naïve hyaline articular cartilage, even though some hypertrophic features are also found. To obtain more functional mature chondrocytes, several approaches have been developed to combine MSCs with biomimetic scaffolds and growth factors in order to support chondrogenic differentiation and generate fully functional hyaline articular cartilage in pre-clinical animal models [29].

Trophic functions of MSCs have been extensively investigated. MSCs were demonstrated to promote cell survival and protect against apoptosis induced by trauma, oxidative stress or chemical injury by the secretion of insulin growth factor (IGF)-1, TGF-β1, stanniocalcin-1 and IL-6 [30]. The anti-fibrotic effect of MSCs has been largely documented and shown to be mediated in part by production of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF) and adrenomedullin [31]. HGF acts on the balance between anti-fibrotic MMPs and tissue inhibitor of MMPs (TIMPs), which play important roles in fibrosis resolution. MSCs were described for their resistance to oxidative stress through secretion of anti-oxidative molecules such as heme oxygenase (HO)-1 and erythropoietin (EPO) that modulate production of anti-oxidant molecules, including superoxide dismutase (SOD) or glutathione peroxidase (GSH-Px), in injured tissues [32]. The most described function of MSCs is likely their anti-inflammatory role. After exposure to an inflammatory environment, MSCs acquire immunosuppressive properties and modulate cells from both innate and adaptive immune system. MSCs are activated upon exposure to interferon (IFN)-γ in presence of TNF-α, IL-1β or IL-1α [33]. These cells inhibit proliferation and differentiation of CD4+ and CD8+ T lymphocytes and induce CD4+ CD25+ Foxp3+ and IL-10-expressing T regulatory cells. They reduce activation, proliferation and differentiation of B lymphocytes into antibody-secreting plasma cells [34]. They inhibit activation and maturation of dendritic cells (DC) by impairing the toll-like receptor (TLR) activation and induce a tolerogenic profile with production of IL-10 [35]. MSCs induce a switch from pro-inflammatory M1-like to M2-like macrophage subsets and inhibit natural killer (NK) cell activation [36,37]. These immunosuppressive functions are mediated by contact-dependent mechanisms but primarily through the release of regulatory mediators such as kynurenine produced by indoleamine 2-3-dioxygenase (IDO), nitric oxide (NO), IL-6, PGE2, TNF-inducible gene (TSG)-6, HLA-G5, IL1 receptor antagonist (IL1RA) [38]. Indeed, thanks to the plethora of mediators they secrete and paracrine functions they exert, MSCs are obvious candidates for therapeutic application in rheumatic diseases, in particular for patients with OA and RA.

3.3. Therapeutic Efficacy of Mesenchymal Stem Cells in Preclinical Models of Rheumatic Diseases

Therapeutic potential of intra-articular injection of a suspension of MSCs has been intensively investigated in experimental models of osteo-articular diseases. In OA, the first study reported the effect of a single and local injection of BM-MSCs after complete excision of the medial meniscus and resection of the anterior cruciate ligament in a caprine model [39]. Direct evidence of regeneration
of the medial meniscus was obtained and injected cells were detected in the newly formed tissue. Treated animals exhibited reduction of articular cartilage degeneration, osteophytic remodeling and subchondral sclerosis [39]. This study demonstrated the proof-of-concept that single suspension of MSCs without any scaffold could prevent degradation of articular cartilage in OA. In a rat model of massive meniscal defects, Horie et al. showed that intra-articular injection of synovial-MSCs promoted meniscal regeneration [40]. Later on in the same model, the authors showed that intra-articular injection of human MSCs contributed to meniscal regeneration via Hedgehog signaling, which was essential in enhancing the expression of type II collagen [41]. In the collagenase-induced murine model of OA (CIOA), a single intra-articular injection of ASCs at early-stage inhibited synovial thickening and cartilage destruction likely by inhibiting synovial macrophage activation [42]. Since then, several studies confirmed benefit of local injection of MSCs in different models, including rabbit, dog and goats [43–45]. Interestingly, addition of platelet-rich-plasma (PRP) enhanced the therapeutic efficacy of co-injected MSCs [46,47].

In RA, a first study described that a single injection of primary murine MSCs prevented the onset of CIA, which was associated with a decrease in serum pro-inflammatory cytokines and an increase in Treg cells [48]. Immunomodulatory role of murine BM-MSCs was reported to be dependent on the expression of IL-6-dependent PGE2, IL1-RA and glucocorticoid-induced leucine zipper (GILZ) while inducible nitric oxide synthase (iNOS) expression was dispensable [49–51]. However, some studies failed to demonstrate any improvement with MSC treatment, probably related to mouse strain genetic background, or use of immortalized murine MSCs [52–54]. Subsequently, confirmation of therapeutic benefit of MSCs has been reported in many reports using MSCs from different sources (umbilical cord, adipose tissue, gingiva, BM) or origin (human, rat, mouse) [55–59]. Nowadays, there is no doubt that MSCs can exert an anti-inflammatory role in inflammatory arthritis.

3.4. Therapeutic Efficacy of Mesenchymal Stem Cells in Clinics

Based on the large amount of published results in a variety of autoimmune and degenerative diseases, MSCs might also become novel cell therapy options for the treatment of rheumatic diseases. In RA, four MSC-based clinical trials were registered on the National Institute of Health (NIH) clinical trial database (http://clinicaltrials.gov/). Only one of them is completed while two are not recruiting. No published data are available at the moment. In OA patients, most of past and current clinical trials have evaluated safety of MSC injection in phase I/II trials with some encouraging results. In February 2017, fifty-three MSC-based clinical trials were registered for OA treatment on the NIH clinical trial database. Most of them were in phase I or II. A publication from our group has recently reviewed the literature on completed clinical trials in OA [45]. More recent publications in 2016 reported the results of the ADIPOA phase I trial evaluating the safety of an escalating dose of autologous ASCs and a phase I/II trial comparing two doses of BM-MSCs to active control in patients with knee OA [60,61]. Both studies reported safety and tolerability of single MSC injection with improvement of Western Ontario & McMaster universities Arthritis index (WOMAC) and Visual Analog Scale (VAS) scores and some evidence of functional improvement. However, efficacy in double blind randomized phase IIb/III trials is still lacking.

4. Extracellular Vesicles Derived from Mesenchymal Stem Cells: Interest in Rheumatic Diseases

In recent years, the emergence of EVs as a new way to cell-cell communication has gained much attention. Similar to other cell types, MSCs secrete EVs that can mirror the effect of parental cells by interacting with other cells through transfer of information. MSC-EVs have been shown to exert immunosuppressive, pro-angiogenic, anti-apoptotic and anti-fibrotic effects supporting their use in various pathologies, including rheumatic diseases. In the following sections, EVs will refer to all types of vesicles, without specifying whether exosomes, microparticles or total EVs were used.
4.1. Immunosuppressive Function of Extracellular Vesicles Derived from Mesenchymal Stem Cells

As discussed before, immunosuppressive functions of MSCs are of high interest in the case of inflammatory diseases such as RA. While therapeutic effect of MSC-EVs in preclinical models of RA is not yet documented, some studies have investigated the immunomodulatory effects of MSC-EVs in vitro. First report on the immunosuppressive role of MSC-EVs showed reduction of T lymphocyte proliferation, increased secretion of IL-10 and TGF-β1 and increased number of apoptotic lymphocytes in splenocytes isolated from experimental autoimmune encephalomyelitis (EAE) [62]. MSC-EVs also promoted generation of CD4+ CD25+ Foxp3+ regulatory T cells. These MSC-EVs expressed Galectin-1, programmed death-ligand 1 (PD-L1) and membrane-bound TGF-β1 that are key molecules involved in immunological tolerance. Some other publications also demonstrated immunoregulatory effects of MSC-EVs on T cell populations. Inhibition of activated T cell proliferation and generation of tolerogenic Treg cells were reported when activated splenocytes were cultured with EVs isolated from human ES-derived MSCs [63]. Blasquez et al. demonstrated inhibition of activation and differentiation of T cells cultured with MSC-EVs, which was associated with decreased IFN-γ release by CD4+ T cells [64]. One study reported that MSC-EVs exerted an immunosuppressive effect that was inferior to MSCs [65]. Recently, a dose-dependent reduction of T cell proliferation by EVs from UC-MSCs was also reported [66]. However, some discrepancies were reported in the literature. In 2015, Andrade et al. showed that MSC-EVs failed to suppress lymphocyte proliferation [67]. Other studies reported that MSC-EVs had no effect on proliferation and IFN-γ production by in vitro-stimulated primary T cells or sorted activated T cells [68,69]. Of interest, opposite effects of MSC-EVs and MSCs were reported. MSC-EVs did not affect proliferation of CD3+ T cells, but induced apoptosis of CD3+ and CD4+ T cells, and increased proliferation and apoptosis of Treg cells [70]. This was the first study discussing that both MSCs and MSC-EVs could exert immunomodulatory effects but with likely different underlying mechanisms.

Immunomodulatory effect of MSC-EVs has also been investigated on B lymphocytes. Inhibition of B cell proliferation and differentiation with a reduced secretion of immunoglobulins has been described [71]. A comparable approach reported that MSCs and MSC-EVs exhibited similar inhibitory activity on synthetic CpG-containing oligonucleotides (CpG)-induced B cell proliferation but MSCs were more effective than EVs to inhibit plasmacell differentiation and antibody secretion [65]. More recently, another group demonstrated that MSC-EVs inhibited B cell proliferation and also inhibited NK cells proliferation [69].

Finally, suppressive function of MSC-EVs on monocytes and macrophages was described. In 2017, Monguio-Tortajada et al. explored the effect of MSC-EVs on monocyte polarization using different stimuli. Cultured monocytes with MSC-EVs retained a non-activated state with no change in the expression of CD80, CD163, CD206 and IL-10 [66]. Indeed opposite to MSCs, MSC-EVs did not induce polarization towards M2 macrophages. By contrast, Lo Sicco et al. showed that exosomes were internalized by macrophages and elicited a switch from M1 to M2 phenotype [72]. Altogether, the results suggested that immunosuppressive properties of MSCs were at least in part mediated by release of EVs that conveyed regulatory molecules. Understanding the underlying mechanisms of MSC-EV functions will need however further investigation since MSC-EVs do not fully reproduce effects of parental MSCs.

4.2. Regenerative Properties of Extracellular Vesicles Derived from Mesenchymal Stem Cells

Regenerative activity, encompassing pro-angiogenic, anti-apoptotic, anti-fibrotic, proliferative activities of MSC-EVs have been largely investigated in several animal models including myocardial infarction, brain, lung, liver, and acute kidney injury [73]. Regarding pro-angiogenic activity of MSC-EVs, a recent study demonstrated protection against ischemic/reperfusion injury-induced kidney injury through pro-angiogenic effects [74]. Delivery of pro-angiogenesis related VEGF and RNAs were shown to be involved in this process. A proteomic analysis based on high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry revealed that MSC-EVs contained
growth factors such as epithelial growth factor (EGF), FGF, platelet-derived growth factor (PDGF), and notably NFκB signaling pathway which have all been shown to contribute to pro-angiogenic activity [75]. Pro-angiogenic factors in EVs were released not only as soluble cytokines, but also as mRNA. Combination of proteic factor interacting with target endothelial cell membrane and delayed mRNA transferred via fusion inside the cells resulted in blood vessel induction with development of capillary-like structures [76].

Proliferative effects of MSC-EVs have been investigated in diverse models, notably in skin repair. In cutaneous wound healing, MSC-EVs could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis [77–79]. Carbon tetrachloride (CCL4)-induced liver injury was attenuated by treatment with MSC-EVs, which induced increase in hepatocyte proliferation, as demonstrated with proliferating cell nuclear antigen (PCNA) elevation [80]. In a model of acute myocardial infarction in rats, cardiac function was improved in the animals treated with MSC-EVs [81]. This was attributed to accelerated endothelial cell proliferation and migration, tube-like structure formation in vitro, and blood vessel formation in vivo. In many cases, proliferative and anti-apoptotic activities of MSC-EVs were reported.

Anti-apoptotic effects of MSC-EVs have been evaluated in different models. For example, osteosarcoma cells were significantly resistant to apoptosis when exposed to MSC-EVs, which transported metastasis-associated genes, including monocarboxylate transporters, bone morphogenetic protein (BMP)-2, FGF-7, MMP-1, and focal adhesion kinase (FAK)-1 [82]. In another in vitro model of cisplatin-induced apoptosis of human renal tubular epithelial cells, analysis of MSC-EVs cargo revealed that anti-apoptotic genes, such as B-cell lymphoma extra-large (BCL-xL), BCL2 and Baculoviral IAP Repeat Containing 8 (BIRC8) were up-regulated and genes that have a central role in cell apoptosis such as caspase-1, caspase-8 and 1ymphotoxin alpha (LTA) were down-regulated [83]. In colitis, MSC-EVs suppressed apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in rats [84]. In renal injury of unilateral ureteral obstruction, MSC-EVs played an important anti-apoptotic role through modulation of miRNA profiles including miR-299, miR-499, miR-302, and miRNA-200 [85]. MSC-EVs were found to exert a pro-survival effect on renal cells in vitro and in vivo, by down-regulating apoptotic signals.

Finally, anti-fibrotic effect of MSC-EVs has been evaluated in a number of studies. Implantation of MSC-EVs reduced surface fibrous capsules, alleviated hepatic inflammation and collagen deposition in CCL4-induced fibrotic liver [86]. MSC-EVs reduced expression of type I and III collagens and TGF-β1 and reduced Smad2 phosphorylation in liver. Similarly, in glycerol- or cisplatin-induced kidney injury, MSC-EVs reduced fibrosis and allowed recovery of renal function [87,88]. In these models, MSC-EVs ameliorated oxidative stress and reduced apoptosis resulting in kidney cell proliferation.

4.3. Therapeutic Role of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Rheumatic Diseases

The large body of evidence that MSC-EVs exert similar pro-regenerative, anti-apoptotic, anti-fibrotic and anti-inflammatory effects as the parental cells provides new perspectives for their use in the treatment of OA and RA. To date, the role of MSC-EVs has not been documented in RA disease. Our recent data, however, indicated that MSC-EVs, namely exosomes and microparticles, can reduce arthritis signs in the CIA model. Therapeutic effect was related to the decrease in plasmablast population and increase in Breg cells secreting IL-10 [89].

In a model of osteochondral defect in immunocompetent rats, Zhang et al. demonstrated that MSC-EVs promoted cartilage regeneration [90]. In this study, injection of EVs accelerated neotissue filling and enhanced matrix synthesis of type II collagen and sulphated glycosaminoglycan (s-GAG). By 12 weeks, treated rats displayed complete restoration of cartilage and subchondral bone. Although this study did not report data in a model of OA, it demonstrated the efficacy of MSC-EVs in promoting cartilage repair in vivo.

In OA, two recent papers showed a therapeutic role of MSC-EVs. A beneficial effect of engineered MSC-EVs was reported in a rat model of knee OA [91]. In vitro, MSC-EVs promoted chondrocyte
proliferation and migration but inhibited the secretion of ECM components. However, EVs from MSCs overexpressing miR-140-5p induced proliferation and migration of chondrocytes without decreasing ECM production. In vivo, increase of cartilage regeneration and prevention against the development of OA was demonstrated in rats treated with miR-140-5p-transporting MSC-EVs. In the second study, EVs isolated from synovium- or induced pluripotent stem cells (iPS)-derived MSCs were efficient to attenuate OA score in the CIOA model [92]. Our unpublished results demonstrated in vitro the capacity of MSC-EVs to reduce the expression of catabolic and inflammatory markers in IL1β-induced OA murine chondrocytes. In this model, we nicely demonstrated protection against cartilage and bone degradation using histomorphometric analysis of bone parameters by micro-computed tomography (μCT) and of cartilage parameters by confocal laser scanning microscopy analysis [93]. Therapeutic efficacy of MSC-EVs still needs to be demonstrated in larger animal models but first results in small animals are very encouraging.

5. Conclusions

Crosstalk between cells of the joint compartment through EVs is likely an important communication pathway. Understanding the messenger role of EVs in these communication pathways in tissue homeostasis and pathophysiological conditions is still at its beginning. In addition, exact contribution of different types of EVs, namely exosomes or microparticles, is far from being known and factors acting on their synthesis and release are not yet identified. However, there is no doubt that EVs are important mediators in the physiopathology of rheumatic diseases and the possibility of using them as biomarkers of these diseases is under investigation. This will require an improved classification system and a better standardization of the techniques used for purification and characterization. In parallel, usefulness of EVs isolated from different cells for therapeutic purposes is being evaluated in a variety of preclinical models. Much evidence of efficacy of EVs derived from MSCs has been reported in many animal models but is still poor for the treatment of rheumatic diseases. Future work on MSC-EVs is needed to decipher the mechanisms responsible for their therapeutic effect but the growing body of research on MSC-EVs will likely contribute to better define therapeutic options. This approach might represent one of the most promising and innovative strategies for RA and OA therapies.

Acknowledgments: This work was supported by Inserm and Montpellier University. This project has received funding from the European Union’s Horizon 2020 Programme (project ADIPOA2, grant agreement no: 643809). The materials presented and views expressed here are the responsibility of the author(s) only. The EU Commission takes no responsibility for any use made of the information set out. Study was also supported by the Arthritis R&D through the program “ROAD: Research on OsteoArthritis Diseases” and Fondation de l’Avenir (AP-RMA-2015-013). We thank the Agence Nationale pour la Recherche for support of the national infrastructure: “ECELLFRANCE: Development of a national adult mesenchymal stem cell based therapy platform” (ANR-11-INSB-005).

Conflicts of Interest: The authors declare no conflict of interest.

References

34. Glenn, J.D.; Whartenby, K.A. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells 2014, 6, 526–539. [CrossRef] [PubMed]

41. Horie, M.; Choi, H.; Lee, R.H.; Reger, R.L.; Ylostalo, J.; Muneta, T.; Sekiya, I.; Prockop, D.J. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartil. 2012, 20, 1197–1207. [CrossRef] [PubMed]

53. Sullivan, C.; Murphy, J.M.; Griffin, M.D.; Porter, R.M.; Evans, C.H.; O’Flatharta, C.; Shaw, G.; Barry, F. Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis. Arthritis Res. Ther. 2012, 14, R167. [CrossRef] [PubMed]

65. Conforti, A.; Scarsella, M.; Starec, N.; Giorda, E.; Biagini, S.; Proia, A.; Carsetti, R.; Locatelli, F.; Bernardo, M.E. Microvesicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem Cells Dev. 2014, 23, 2591–2599. [CrossRef] [PubMed]

85. Wang, Y.; Lu, X.; He, J.; Zhao, W. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res. Ther. 2015, 6, 100. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
4.3. Fonctions des EVs de cellules souches mésenchymateuses

Nous avons décrit précédemment l’ensemble des fonctions médiées par les CSMs. Comme nous l’avons vu dans la section précédente, les EVs ont tendance à mimer les effets de leur cellule parentale. Par conséquent, l’étendue des fonctions des EVs dérivées des CSMs s’annonce conséquente et nous allons passer en revue les données de la littérature abordant les rôles fonctionnels des vésicules dérivées des CSMs.

4.3.1. Rôle dans l’immunosuppression

Les CSMs possèdent de larges fonctions immunosuppressives. Depuis quelques années, quelques publications mettent en avant les activités immunosuppressives des EVs dérivées des MSC (EVs-MSCs) principalement humaines et murines, de la moelle osseuse ou du tissu adipeux.

4.3.1.1. Effet sur les lymphocytes B

Les EVs-CSMs sont capables d’inhiber la prolifération ainsi que la différenciation en plasmablastes, cellules sécrétrices des immunoglobulines, des lymphocytes B. En 2012, l’équipe de Muraca décrit pour la première fois un rôle immunosupresseur des EVs-CSMs sur ces cellules B. Dans ce travail, les EVs-CSMs sont capables d’inhiber la prolifération et la différenciation des cellules B stimulées au CpG et ce, de manière dose dépendante. La production des IgM, des IgA et des IgG est fortement inhibée après traitement avec les vésicules. En revanche, les EVs-CSMs n’induisent pas d’apoptose sur ces cellules (H. R. Martínez et al. 2012). Dans une publication de 2014, Conforti et al montrent également un effet inhibiteur des EVs-CSMs sur la prolifération et la différenciation des cellules B (Conforti et al. 2014). Une troisième et dernière publication de l’équipe de Krampera & Adamo datée de 2016 aborde entre autres, l’effet des EVs-CSMs sur les lymphocytes B (Di Trapani et al. 2016). Les résultats concordent avec les précédents puisqu’encore une fois, les auteurs observent une inhibition de la prolifération des lymphocytes B en présence des EVs-CSMs.
4.3.1.2. Effet sur les lymphocytes T

La première publication décrivant un rôle immunomodulateur des EVs-CSMs sur les populations lymphocytaires T est datée de 2012 (Mokarizadeh et al. 2012). Mokarizadeh et al montrent dans un modèle murin d’encéphalomyélite auto-immune, que les EVs-CSMs inhibent l’activation et la prolifération des cellules T. De plus, elles induisent la sécrétion d’IL-10 et de TGF-β. En analysant le phénotype des lymphocytes T, les auteurs soulignent la génération d’une population de cellules T régulatrices CD4+ CD25+ Foxp3+. Pour terminer, dans cette publication, les EVs-CSMs sont capables d’induire l’apoptose sur les cellules T activées. Afin de définir les mécanismes sous-jacents aux effets suppresseurs sur les cellules T, les auteurs analysent le contenu protéique des EVs et trouvent que ces dernières contiennent la galectine-1, le PD-L1 et le TGF-β1, molécules clés dans la tolérance immunologique. Depuis, d’autres publications ont démontré un rôle immunosuppresseur des EVs-CSMs sur les populations lymphocytaires T. C’est le cas de Blazquez et al qui montrent dans leurs travaux de 2014 que les EVs-CSMs sont également capables d’inhiber la réponse des sous-populations CD4+ et CD8+ et ce, de manière dose dépendante, tout en réduisant la sécrétion d’IFN-γ CD4+ (Blazquez et al. 2014). La même année, l’équipe de Sai Kiang Lim montre que les EVs-CSMs inhibent la prolifération des lymphocytes T stimulés à la concanavaline A ou au LPS et induisent une population de Treg CD4+ CD25+ FOXP3+. Les auteurs proposent d’ailleurs un effet indirect médifié par les monocytes (Figure 27). Les exosomes agiraient sur les monocytes et induiraient un switch des macrophages d’un phénotype pro-inflammatoire M1 vers un phénotype anti-inflammatoire M2 et ces derniers induiraient ensuite l’expansion de la population de cellules Treg (B. Zhang et al. 2014).
Figure 27 : Modèle d'immunomodulation sur les lymphocytes T par les exosomes de CSMs (D’après Zhang, 2014)

Cependant, d’autres études montrent des résultats contraires sur les effets des EVs-CSMs sur les cellules T. C’est le cas de la publication de Del Fattore en 2015 dans laquelle les EVs-CSMs interagissent avec les cellules T activées mais n’exercent aucun effet sur leur prolifération. En revanche, les EVs sont ici capables d’induire une apoptose des cellules T CD3⁺ et CD4⁺ ainsi que des Treg (Del Fattore et al. 2015). Ce n’est pas la seule publication puisque De Andrade, Matula, et également Di Trapani montrent à leur tour que les EVs-CSMs ne sont pas capables d’inhiber la prolifération des cellules T activées malgré de fortes concentrations d’EVs testées (Gouveia de Andrade et al. 2015; Di Trapani et al. 2016; Matula et al. 2016).

Les effets opposés des EVs-CSMs observés sur les populations lymphocytaires T sont surprenants. Cependant, de nombreux paramètres peuvent influer sur ces résultats et apporter des éléments de réponse à de telles variations. Dans un premier temps, les cellules utilisées ne sont pas les mêmes, murines ou principalement humaines et les origines tissulaires sont différentes : moelle osseuse, tissu adipeux, cordon ombilical. Les
cellules ne sont ni cultivées de la même manière, ni stimulées par les mêmes molécules et ces facteurs peuvent influer sur le contenu vésiculaire et sur la fonction des vésicules sécrétées. Enfin, les protocoles d’isolement des EVs utilisés sont variés et parfois très différents, et il paraît important de réellement définir ce que signifie le terme « EV ». En effet, certains font référence aux exosomes seuls, d’autres parlent plutôt d’un mix hétérogène de vésicules contenant les exosomes mais aussi les MP. Enfin, pour terminer les quantités d’EVs produites et les quantités testées dans les expériences fonctionnelles sont très variables allant du nanogramme au microgramme. Toutes ces raisons pourraient expliquer les résultats contradictoires retrouvés dans la littérature et elles soulignent encore une fois le réel besoin de standardisation dans la recherche basée sur les EVs.

4.3.1.3. Effet sur les macrophages

Les effets des EVs-CSMs ont aussi été étudiés sur les macrophages. En 2017, Tortajada et al montrent dans un modèle de co-culture EV/monocytes que les monocytes sont maintenus dans un état non activé non polarisé (Monguió-Tortajada et al. 2017). La même année, Lo cicco et al démontrent que les EVs-CSMs sont internalisées par les macrophages et induisent un switch de phénotype pro-inflammatoire M1 vers phénotype anti-inflammatoire M2 (Lo Sicco et al. 2017).

4.3.2. Rôle dans la réparation tissulaire et la régénération

Nous allons voir dans cette partie que les EVs-CSMs ont la faculté de rester les fonctions des tissus lésés dans divers modèles en permettant de maintenir/restaurer l’homéostasie tissulaire, et ce, par délivrance de molécules biologiquement actives. Cette fonction des EVs-CSMs est assez bien étudiée notamment dans les modèles décrits ci-dessous.

4.3.2.1. Rôles dans les atteintes rénales

Il est admis que les CSMs exercent un effet thérapeutique dans les atteintes rénales et contribuent à recoloniser les néphrons touchés. Les CSMs libèrent des facteurs qui d’une part, inhibent l’apoptose et d’autre part, augmentent la prolifération des cellules tubulaires rénales endogènes (Humphreys et Bonventre 2008). Bruno et al, en 2009, démontrent
dans un modèle de lésions rénales aiguës induites au glycérol, que les EVs-CSMs protègent le rein en modifiant le phénotype des cellules épithéliales tubulaires rénales en phénotype de cellules souches. Ainsi, les cellules prolifèrent davantage, et sont résistantes à l’apoptose (S. Bruno et al. 2009).

Ces résultats sont aussi confirmés dans d’autres modèles de lésions rénales létales induites par la cisplatine, par le glycérol ou par ischémie reperfusion (Cantaluppi et al. 2012). De plus, les EVs-CSMs injectées directement après l’atteinte protègent contre le développement de la maladie (Stefania Bruno et al. 2012). Dans cette étude, les auteurs soulignent un transfert de régulateurs transcriptionnels qui peuvent moduler l’expression de gènes notamment une sur-expression de BCL2L1 (Bcx-xl), BC2, BIRC8, des gènes anti-apoptotiques, et une sous-expression de casp-1 (caspase1), casp-8 (caspase 8) et LTA (« lymphotoxin alpha »), gènes qui sont à l’inverse impliqués dans les phases d’apoptose.

De plus, les EV-CSMs transportent un certain nombre d’ARNms et de miARNs dont ceux impliqués dans le contrôle des facteurs de transcription, dans la prolifération et dans l’immunoregulation.

4.3.2.2. Rôles dans les atteintes cardiaques

L’atteinte aiguë du myocarde par ischémie/reperfusion est une atteinte causée par la restauration du flux sanguin et de l’oxygène dans les tissus cardiaques ischémiques. L’étendue des dommages dans le tissu est directement corrélée à la durée de l’ischémie. Dans cette atteinte, la production d’ATP dans le tissu cardiaque est réduite à cause du manque d’oxygène. Dans des modèles d’atteintes aigues du myocarde, l’injection de CSMs diminue la taille de l’infarct, augmente la densité capillaire et la perfusion myocardiale, sans pour autant se greffer et se différencier en cardiomyocytes dans le tissu (Ranganath et al. 2012; Wollert et Drexler 2010). En effet, les cellules injectées restent dans les poumons suggérant un mécanisme d’action paracrine.

Le groupe de Lim, en accord avec cette hypothèse, démontre dans un modèle porcin d’atteintes cardiaques par ischémie/reperfusion que le traitement des animaux avec le milieu conditionné de CSMs contenant les facteurs sécrétés des cellules réduit la taille de l’infarct (Timmers et al. 2011, 2008). Ils montrent par ailleurs que la fraction de milieu
conditionné efficace dans le modèle contient des particules de taille comprise entre 50 et 200 nm, identifiées comme les EVs-CSMs.

4.3.2.3. Rôles dans les atteintes cérébrales

Dans les modèles d’accident vasculaire cérébral chez le rat, les CSMs exercent des effets bénéfiques par la sécrétion de neurotrophines et de facteurs de croissance angiogéniques (Honmou et al. 2012). En plus de ces facteurs trophiques, Xin et al ont montré que les EVs-CSMs protègent contre l’accident vasculaire cérébral et ce, grâce à la délivrance du miR-133b au sein des cellules neuronales et astrocytaires. Ce miARN est capable d’induire une croissance neurale (Xin et al. 2012).

D’autres études portent sur la maladie d’Alzheimer. Dans cette pathologie, le peptide aβ (β-amyloïde) s’accumule à cause d’une dérégulation entre production et clairance du peptide. Son accumulation conduit à la pathologie. Katsuda et al ont montré que les CSMs de tissu adipeux, contrairement à celles originaires de la moelle osseuse contribuent à la clairance des peptides, et que ces effets sont aussi reproduits par les exosomes dérivés des mêmes cellules (Katsuda et al. 2013).
Objectifs de la thèse
Au travers de ces différents modèles pré-cliniques, nous avons vu que les EVs-CSMs exercent des effets bénéfiques : elles sont capables de restaurer les fonctions des tissus lésés, elles exercent des activités immunosuppresseives, anti-apoptotiques, anti-fibrotiques et pro-angiogéniques. L’ensemble de ces effets souligne l’intérêt de développer une thérapie acellulaire basée sur l’injection d’EVs sans utilisation directe de cellules. Celui-ci est multiple : moins de risques liés au devenir et aux conséquences de l’injection de cellules vivantes potentiellement capables de se multiplier ; possibilité de produire des lots d’EVs caractérisés et standardisés, coût potentiellement moindre.

Cependant, l’utilisation des EVs n’est pas si simple. À l’heure actuelle, les connaissances sur le type précis de vésicules ainsi que les fonctions associées sont encore imprécises. Il est fréquent de trouver dans la littérature des articles aux résultats complètement opposés traitant pourtant d’EVs isolées depuis les mêmes types cellulaires. Concernant les populations de vésicules étudiées, certains articles parlent d’exosomes mais les protocoles d’isolement décrits dans les matériels et méthodes sont des protocoles d’isolement de vésicules totales, c’est-à-dire un ensemble de vésicules hétérogènes contenant des MPs et des exosomes. Finalement, il n’existe que très peu d’études différenciant les populations de vésicules.

Bien que des essais cliniques basés sur l’injection d’EVs soient déjà en cours, il est indispensable d’affiner les recherches dans le domaine, de mieux définir les populations d’EVs existantes en fonction des différents types cellulaires, de mieux connaître leur fonction, et enfin de comprendre les mécanismes d’action mis en jeu.

Dans cet objectif, ma thèse s’articule autour de 3 questions :

1) **Quels types d’EVs sécrètent les CSMs?**

Au commencement de ce travail, les données de la littérature sur les EVs dérivées des CSMs étaient éparses. Selon les protocoles utilisés, on peut affirmer que l’ensemble des publications concernaient soit les exosomes, soit les vésicules totales. Pourtant, comme nous l’avons vu au cours de cette introduction, exosomes et microparticules sont deux
types de vésicules bien distincts, tant au niveau de leur origine, que de leur composition. Nous avons donc jugé important de séparer ces deux populations d’EVs. Isoler et caractériser les exosomes et les MPs des CSMs a été le premier objectif de ma thèse.

2) Exosomes et MPs dérivés des CSMs exercent-ils les mêmes effets immunosuppresseurs et trophiques que les cellules ?
Connaissant les fonctions immunosuppresseives et trophiques des CSMs et en l’absence de données de la littérature sur le sujet, nous avons voulu savoir si :
- Les EVs sont capables d’exercer des activités immunosuppresseives et/ou chondroprotectives
- L’activation préalable des CSMs est nécessaire pour un effet immunosuppresseur des EVs,
- Les exosomes et les MPs exercent les mêmes fonctions.

3) Exosomes et MPs dérivés des CSMs exercent-ils un effet bénéfique in vivo dans les modèles d’atteintes ostéo-articulaires ?
A mon arrivée au laboratoire, plusieurs publications rapportaient l’utilisation des EVs-CSMs dans des modèles pré-cliniques d’atteintes cérébrales, cardiaques, rénales, mais aucune publication n’avait testé l’effet des EVs-CSMs dans des modèles pré-cliniques de maladies ostéo-articulaires. Connaissant les effets des CSMs dans les modèles d’arthrose et de PR, nous avons voulu savoir si les exosomes et les MPs isolés de ces cellules exercent les mêmes effets bénéfiques que la cellule parentale, et si ces deux types de vésicules exercent des fonctions similaires dans ces deux modèles d’atteintes ostéo-articulaires.
Résultats
1. Effets immunomodulateurs des exomes et des microparticules dérivés des cellules souches mésenchymateuses *in vitro* et *in vivo* dans un modèle d’arthrite expérimentale (article 3)

Introduction

Les CSMs sont connues pour leurs fonctions immunosuppresseuses. Stimulées par un environnement pro-inflammatoire, les CSMs sont capables d’inhiber la prolifération, la différenciation et les fonctions des cellules de l’immunité. Les CSMs agissent par la sécrétion de facteurs solubles et par la libération d’EVs. Les exomes produits par les CSMs sont assez bien décrits et exercent tout comme les cellules des effets immunosuppresseurs. Bien que les données de la littérature soient controversées, les exomes inhibent la prolifération et l’activation des lymphocytes T, des lymphocytes B, et des macrophages. En revanche, les données sur les MP dérivées des CSMs sont absentes. De plus, aucune publication n’évoque leur rôle dans la polyarthrite rhumatoïde.

Dans cette étude, nous proposons pour la première fois de comparer les effets respectifs des exomes et des MP produits par les CSMs sur les cellules immunitaires et dans un modèle d’arthrite expérimentale.

Résultats

1. *Isolement et caractérisation des EVs-CSMs*

Exomes et MP sont produits par centrifugations différentielles. Les MP sont isolées après centrifugation à 18.000 g pendant 1h et les exomes sont isolés après centrifugation à 100.000 g pendant 2h. Les exomes sont caractérisés par une taille d’environ 120 nm et expriment les marqueurs caractéristiques du compartiment endosomal CD9 et CD81 et sont négatifs pour les marqueurs membranaires des CSMs. Les MP mesurent entre 150 et 570 nm ; elles n’expriment pas les marqueurs CD9 et CD81 et sont positifs pour les marqueurs membranaires des CSMs : Sca1, CD44 et CD29. Ces résultats confirment l’existence de deux populations vésiculaires distinctes produites par les CSMs et la
possibilité de les isoler, ou au moins de les enrichir très fortement dans les fractions 18.000 et 100.000g.

2. Potentiel immunosuppresseur des exosomes et des MPs dérivés de CSMs in vitro

Dans un premier temps, nous avons étudié les effets des EVs sur les populations lymphocytaires T. L’incubation des exosomes et des MPs dérivées de CSMs stimulées par l’IFN-γ (afin d’activer les fonctions immunosuppressives) avec des splénocytes activés inhibent la prolifération des lymphocytes T inflammatoires CD4⁺IFN-γ⁺ et CD8⁺IFN-γ⁺. Ces effets sont dose-dépendants. De manière intéressante, les exosomes et les MPs dérivées de CSMs non stimulées exercent des effets similaires suggérant que l’activation des CSMs n’est pas nécessaire. De plus, les exosomes des CSMs augmentent de manière significative le pourcentage des cellules régulatrices : des Tr1 sécrétrices d’IL-10 et des Treg CD4⁺CD25⁺Foxp3⁺, indépendamment de leur activation. En revanche, exosomes et MPs n’exercent aucun effet sur les cellules T CD4⁺ et CD8⁺ purifiés suggérant des mécanismes d’action indirects exercés sur les cellules T.

Dans un second temps, nous avons étudié les effets des EVs sur les lymphocytes B. L’incubation des exosomes et des MPs stimulés ou non avec des lymphocytes B inhibent leur différenciation en plasmablastes, cellules sécrétrices d’immunoglobulines. Ces résultats sont confirmés par une diminution d’IgG produites dans les surnageants.

3. Effets des exosomes et des MPs dans des modèles animaux d’atteintes inflammatoires.

Les résultats que nous avons obtenus in vitro ont été confirmés in vivo dans deux modèles d’atteintes inflammatoires : le modèle DTH (« delayed-type hypersensitivity ») et le modèle CIA (« collagen-induced arthritis »). Dans le modèle DTH, exosomes et MPs exercent un effet anti-inflammatoire dose dépendant, comme le montre la diminution de l’épaisseur des pattes des animaux. Ce modèle a permis de fixer la dose de 250ng comme dose efficace qui sera testée dans le modèle CIA. Dans le modèle CIA, seuls les exosomes exercent un effet bénéfique avec une diminution significative du score clinique. Cependant, nos résultats sur une arthrite moins inflammatoire suggèrent en effet immunosuppresseur des MPs moindre que celui des exosomes. L’analyse des populations
cellulaires immunitaires isolées de la rate ou des ganglions lymphatiques des souris traitées révèle que les exomes agissent sur les cellules B en diminuant le pourcentage de plasmablastes et en augmentant le pourcentage des cellules B régulatrices exprimant l’IL-10.

Conclusions

Article 3: Mesenchymal stem cells derived exosomes are more immunosuppressive than microvesicles in inflammatory arthritis

Auteurs: S Cosenza, K Toupet, P Luz-Crawford, C Bony, O Blanc-Brude, C Jorgensen, D Noël

Soumis à Annals of Rheumatic Diseases.
Mesenchymal stem cells derived exosomes are more immunosuppressive than microvesicles in inflammatory arthritis

Stella Cosenzaa,b, Karine Toupeta,b, Patricia Luz-Crawfordc, Olivier Blanc-Bruded, Christian Jorgensena,b,e,*, Danièle Noëla,b,e,*

aInserm, U1183, Saint-Eloi Hospital, Montpellier, France; bMontpellier University, UFR de Médecine, Montpellier, France; cLaboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile, dInserm, UMRs-970, Centre de Recherche Cardiovasculaire de Paris, PRES Sorbonne-Paris-Cité, Université Paris-Descartes, France; eClinical immunology and osteoarticular diseases Therapeutic Unit, Hôpital Lapeyronie, Montpellier, France

*: equally contributing authors

\textit{Corresponding author:}

D. Noël, Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier cedex 5, France

Tel: +33 4 67 33 04 73 – Fax: +33 4 67 33 01 13 – E-mail: daniele.noel@inserm.fr

142
ABSTRACT

Objectives Mesenchymal stem cell (MSC) released extracellular vesicles that exert therapeutic effect in inflammatory disease models but have never been reported in rheumatoid arthritis. MSCs prevent arthritis and this prompted us to compare the function of exosomes (Exo) and microparticles (MP) isolated from MSCs and investigate their immunomodulatory function in arthritis.

Methods MSC-derived Exo and MP were isolated by differential ultracentrifugation. Immunosuppressive effect of MP or Exo was investigated on T and B lymphocytes in vitro and in the Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis (CIA) models.

Results Exo and MP from MSCs inhibited T lymphocyte proliferation in a dose-dependent manner and decreased the percentage of CD4⁺ and CD8⁺ T cell subsets. Interestingly, Exo were found to increase CD4⁺CD25⁺Foxp3⁺ Treg cells while parental MSCs did not. Conversely, plasmablast differentiation was reduced to a similar extent by MSCs, Exo or MP. IFN-γ priming of MSCs before vesicles isolation did not influence the immunomodulatory function of EVs. In DTH, we observed a dose-dependent anti-inflammatory effect of MP and Exo while in the CIA model, Exo were more efficient to decrease clinical signs of inflammation. The beneficial effect of Exo was associated with fewer plasmablasts and more Breg-like cells in lymph nodes.

Conclusions Both MSC-derived MP and Exo exerted an anti-inflammatory role on T and B lymphocytes in vitro, independently of MSC priming. However, Exo were more efficient to suppress inflammation in vivo. Our work is the first demonstration of the therapeutic potential of MSC-derived extracellular vesicles in inflammatory arthritis. Beside the direct interactions of MSC on immune cells through cytokine or IDO activity, EV might explain part of the immune functions of the cells in vivo.

Keywords: mesenchymal stem cells, extracellular vesicles, trophic factors, cell therapy, rheumatoid arthritis
INTRODUCTION

Mesenchymal stem or stromal cells (MSCs) are multipotent progenitor cells, which can be isolated from many tissues, such as bone marrow, adipose tissue, synovium or Wharton’s jelly. MSCs are characterized by a multilineage differentiation potential and paracrine function through the release of multiple growth factors, chemokines and cytokines. One major role of MSCs is to suppress proliferation and function of cells of both innate and adaptive immunity. Thanks to this property, they are largely investigated for their therapeutic properties in a variety of inflammatory and autoimmune diseases, among which type 2 diabetes, experimental autoimmune encephalomyelitis or rheumatoid arthritis (RA). A number of molecules secreted by MSCs have been shown to mediate this immunoregulatory function, including indoleamine-2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), TNF stimulated gene (TSG)-6, human leukocyte antigen (HLA)-G. Indeed, MSCs that were deficient for IL6, IL1 receptor antagonist (IL1RA) or glucocorticoid-induced leucine zipper (GILZ) had partly lost their immunosuppressive capacity in the murine collagen-induced arthritis (CIA) model. In addition to being released in the extracellular milieu, a number of factors are proposed to be packaged into extracellular vesicles (EVs) and migrate throughout the body via the bloodstream.

EVs are small vesicles produced by virtually all cell types, characterized by a phospholipid bilayer and containing a large variety of proteins, DNA, mRNAs, and miRNAs. Two main types of EVs are exosomes or small vesicles (diameter below 150 nm) and microvesicles or microparticles (ranging from 150 to 1000 nm in diameter). In addition to size, the International Society of Extracellular Vesicles recently proposed minimal criteria to define EVs, including morphology, mechanism of cellular release and biochemical parameters. Therapeutic efficacy of MSC-derived EVs (MSC-EVs) has been reported in different disease models, such as myocardial infarction and reperfusion injury, liver and kidney injury, hind limb ischemia and inflammatory diseases (for review, see). While much interest in MSC-EVs for the treatment of many diseases has been shown, little is known on their exact function. In inflammatory conditions, an inhibitory function of MSC-EVs on immune cell activation has been claimed in some studies while others reported absence of
immunomodulatory effect \(^{10}\). Such discrepancies between studies might be due to differences in isolation protocols, but also to the activation state of MSCs during EV production. Moreover, the respective roles of different subtypes of EVs are poorly investigated. Indeed, the first objective of the study was to compare the immunosuppressive function of small vesicles/exosomes (Exo) versus larger microparticles (MP), both in vitro and in vivo in a model of inflammatory arthritis. The second objective was to determine whether pre-activation of MSCs during preparation of conditioned media might impact the immunomodulatory effect of EVs.

MATERIALS AND METHODS

Mesenchymal stem cell culture
MSCs were characterized by phenotyping and trilineage differentiation potential \(^{11}\). They were maintained in proliferative medium consisting in DMEM, 100 µg/mL penicillin/streptomycin, 2 mmol/mL glutamine and supplemented with 10% foetal calf serum (FCS).

Mesenchymal stem cell-derived extracellular vesicle production and characterization
MSCs were seeded at 6x10^4 cells/cm² in proliferative medium for 24 h and then with production medium for 48 h. Production medium consisted of proliferative medium supplemented with 3% EV-free FCS, obtained by overnight ultracentrifugation of DMEM plus 20% FCS at 100,000 g. When indicated, MSCs were activated with 20 ng/mL IFN-γ. MSC-conditioned medium (CM) was centrifuged at 300 g for 10 min and 2,500 g for 25 min to remove detached cells and debris/apoptotic bodies, respectively. For total EV, CM was centrifuged at 100,000 g for 2 h in polyallomer tubes. Total EV pellets were rinsed in phosphate-buffered saline (PBS), centrifuged at 100,000 g for 2 h and suspended in 100 µL of PBS. For MP, CM was centrifuged at 18,000 g for 1 h and pellet suspended in PBS. For Exo, supernatant from MP fraction was filtered on 0.22µm porous membrane and centrifuged at 100,000g for 2h. Pellet was suspended in PBS. Both MP and Exo pellets were further centrifuged at 100,000 g for 2 h and suspended in 100 µL of PBS. EV preparations were normalized to total protein content as quantified by BCA assay.
Size distribution of EVs was determined by Nanoparticle Tracking Analysis (NTA) in a NanoSight LM10-12 instrument as advised by manufacturer (Malvern). Visualization of EVs was assessed by transmission electron microscopy. EV suspensions were loaded on Formvar-coated grids and negatively stained with uranyl acetate for 15 min. Grids were observed using a Tecnai F20 FEI 200KV microscope.

Flow cytometry analysis
For EV, 1 μg equivalent proteins were incubated with 4 μm aldehyde/sulfate latex beads at 4°C overnight and free reactive sites on beads were filled by adding 100 mM glycine. EV-coated beads were washed 3 times in PBS and stained using 1 μL of specific antibodies for CD9, CD29, CD44, CD81, SCA-1 for 30 min. For cell analysis, total splenocytes or isolated cell subsets were incubated in PBS containing 0.2% bovine serum albumin (BSA) and antibodies specific for CD4, CD8, CD19, CD25, CD138, B220 or respective isotype controls at 4 °C for 20 min. For intracellular staining, antibodies specific for IL10, IL17 IFN-γ or FOXP3 was performed for 30 min in the dark.

T lymphocyte proliferative assay and immune cell subset isolation and differentiation
Murine splenocytes were isolated as described 5. CD4+ or CD8+ T lymphocytes were isolated from spleen using the Dynabeads Untouched Mouse CD4 or CD8 cells kit (ThermoFisher Scientific). After magnetic separation, supernatants containing untouched CD4+ or CD8+ T cells were recovered. Proliferative assay was performed with 2x10^5 immune cells stimulated with 5 μg/mL of concanavalin A (ConA) and CM from MSCs (100 μL) or MSCs or EV were added for 3 days. Cell proliferation was measured using CellTiter-Glo® Assay (Promega).
B lymphocytes were isolated from spleen using the CD43 Microbeads kit (Miltenyi Biotec) and plated (10^5 cells/well) for activation as described 5. When indicated, MSCs (ratio 1MSC/Scells) or different MP or Exo amounts were added for 3 days.

ELISA assays
Cytokines were quantified in culture supernatants or sera by ELISA. For cytokine production, 2x10^6 splenocytes were stimulated with 25 μg/mL of chicken collagen II (cII)
and supernatants collected after 48 h. Total Ig from B lymphocyte supernatants or mice sera were quantified as described ⁵.

Delayed-T Hypersensitivity model
Experiments were conducted in accordance with the Ethical Committee for animal experimentation of the Languedoc-Roussillon (Approval CEEA-LR-2016050918509993). BALB/c mice were immunized with chick ovalbumin (cOVA) and recalled with 30 μg cOVA in 30 μL saline solution or 30 μL of increasing quantities of EV in fat pad as described ¹².

Collagen-induced arthritis model
Arthritis was induced in 9 weeks old DBA/1 mice in accordance with the Ethical Committee for animal experimentation of the Languedoc-Roussillon (Approval CEEA-LR-1042). Briefly, cCII (2 mg/mL) was emulsified in Freund’s complete adjuvant as described ⁵. EV were injected intravenously at day 18 and 24. Clinical signs of arthritis were scored as reported ¹³. At euthanasia, blood, draining lymph nodes and spleens were collected.

Bone parameter analyses
After fixation of hind limbs in 4% formaldehyde, paws were scanned in a μCT scanner SkyScan 1176 using following parameters: 50 kV, 500 μA, 0.5 mm aluminium filter, 180°. Scans were reconstructed using NRecon software and bone parameters were quantified with CTAn software on the cuneiform bone of ankles.

Statistical analyses
Statistical analysis was performed with GraphPad 6 Prism Software. Data were compared using the Mann-Whitney’s test for nonparametric values. A p value < 0.05 was considered significant.

RESULTS

Cryopreserved EV lose their immunosuppressive function
We aimed at investigating the immunosuppressive function of total EV recovered after serial ultracentrifugation (Fig. 1A). We first tested the CM of naïve or IFN-γ-primed MSCs
before and after centrifugation in a proliferative assay. Like MSCs, pre-centrifugation supernatants exerted an immunosuppressive function on splenocytes. Supernatants from primed MSCs were significantly more suppressive (Fig. 1B). Post-centrifugation supernatants lost their immunomodulatory effects. This indicated that the immunosuppressive components were retained in the EV-containing pellets. EV incubated on activated splenocytes displayed a dose-dependent immunosuppressive effects that were higher when EV were isolated from primed MSCs (Fig. 1C). Importantly, the immunomodulatory activity of EV was lost after freeze-thawing (Fig. 1D). All subsequent analyses were therefore performed using freshly prepared EV kept at 4°C less than 24h.

Characterization of exosomes and microparticles

To better characterize MSCs-derived EV, we used serial ultracentrifugation steps as described \(^4\). We recovered MP and small size EV (Exo) at 18.000 g and 100.000 g, respectively (Fig. 2A). EV preparations were normalized to the quantity of total proteins: 0.7±0.2 μg and 1.08±0.1 μg proteins/10⁶ MSCs in Exo and MP fractions respectively, with no difference between EV from naïve and primed MSCs (Fig. 2B). TEM analysis of MP and Exo confirmed the presence of round shaped vesicles surrounded by a bilayer membrane with heterogeneous sizes in MP (Fig. 2C). By NTA analysis, we observed heterogeneity of MP ranging from 152±1.5 to 572±40 nm and from 163±5.9 to 524±20 nm in diameter for naïve and primed MSCs, respectively (Fig. 2D; F). EV concentration was around 1-2x10⁹ EV/μg of proteins for MP and Exo (Fig. 2E). No difference in size was noticed between naïve and primed MSCs. Importantly, small size EV (fractions A/B in Fig. 2D, right) accounted for 75% of MP (Fig. 1G). In Exo, a homogeneous population of EV measuring 121±2 nm (naïve MSCs) and 111±4.5 nm (primed MSCs) was detected. Flow cytometry analysis detected expression of CD9 and CD81 in Exo while expression of MSC-derived membrane markers Sca-1, CD44, CD29 was detected in MP, independently of priming (Fig. 2H). Using Western blotting analysis, preferential expression of the exosome-associated proteins Hsp70, Tsg101 and Alix was detected in Exo (not shown). The enrichment of Exo and MP preparations was illustrated by the presence of the vast majority of Exo (around 120 nm) in the 100.000 g fraction while MP (above 150 nm) were in the 18.000 g fraction.

Exo and MP exhibited similar immunosuppressive effect on T lymphocytes
We next investigated the immunosuppressive properties of MP and Exo in a proliferative assay. Both fractions decreased the proliferation of ConA-activated splenocytes to a similar extend and in a dose-dependent manner, independently of MSC priming (Fig. 3A). Among affected lymphocyte subpopulations, MSC, MP and Exo significantly reduced the percentage of CD8⁺IFN-γ⁺ and CD4⁺IFN-γ⁺ T lymphocytes (Fig. 3B). Increase of CD4⁺IL10⁺ Tr1 regulatory cell population was observed with MSCs and Exo but not significantly for MP. Interestingly, the CD4⁺CD25⁺Foxp3⁺ Treg population was significantly enhanced only when Exo were added. We isolated CD4⁺ or CD8⁺ T cells and measured their proliferation rate in presence of EV. Both MP and Exo were unable to reduce the proliferation of CD8⁺ or CD4⁺ T lymphocytes (Fig. 3C). This indicated that MP and Exo exerted an indirect inhibitory effect on T lymphocyte proliferation through Tr1 and Treg induction, respectively.

Exo and MP exhibited similar immunosuppressive effect on B lymphocytes

We investigated the role of EV on B lymphocyte differentiation as in ⁵. Plasmablast generation was significantly inhibited in presence of MSCs, MP and Exo (Fig. 4A). Inhibition of plasmablast differentiation was confirmed by lower levels of total IgG produced in coculture supernatants (Fig. 4B). However, addition of Exo and MP on differentiating plasmablasts did not change cytokine production.

We next looked for presence within EV of factors known to be involved in the immunosuppressive effect of MSCs. While Exo or MP did not convey IL-6, both contained TGF-β1 and PGE2 with no difference between naïve and primed MSCs (Fig. 4C). IL1RA was the most abundant factor in both types of EV and mostly detected in MP.

Prevention of CIA and DTH by Exo and MP

To evaluate in vivo the anti-inflammatory effects of EV, we used the DTH model. As with MSCs administration, infusion of MP reduced inflammation in a dose-dependent fashion while the dose of 250 ng Exo significantly reduced paw swelling (Fig. 5A). The dose of 250 ng was defined as our standard condition. In the CIA model, we compared the effects of total EV, MP and Exo injected IV at day 18 and 24 after immunization. We have previously demonstrated efficacy of MSC injection in the model at these time points ³⁶ ¹⁵. Complete protection from arthritis was observed with total EV and Exo as shown by incidence and clinical score (Fig. 5B-C). In contrast, MP did not significantly reduce arthritis symptoms but
still tended to decrease both score and incidence. Analysis by μCT imaging revealed less bone degradation as indicated by lower bone surface erosion (area/volume) and higher bone thickness in mice treated with Exo or MP (Fig. 5D-F). These findings with DTH and CIA studies supported an anti-inflammatory role of Exo and MP.

Exo were more efficient than MP to prevent mice from developing CIA

We performed a second study injecting 250 ng of Exo and 600 ng of MP were injected. Exo infusion significantly reduced paw swelling and global clinical score, compared to CIA control or MP (Fig. 6A). Although MP decreased the fore paw swelling score, they did not significantly protect from arthritis as shown by the global arthritis clinical score. Looking at immune cell populations in lymph nodes, we observed no difference in the percentages of Th1, Th17, CD4+Foxp3+ Treg cell subsets. However, a significant decrease in CD4^+IL-10^-Tr1 cells was noticed in mice receiving Exo or MP (Fig. 6B). Interestingly, we detected a significant decrease in plasmablast percentage and increase in CD19^+IL-10+Breg like populations. We also measured cytokines in culture supernatants of lymph node cells. Upon ConA activation, levels of IL-6 and IL-1β were significantly down-regulated in lymph nodes from Exo-treated mice but only IL-1β after MP infusion (Fig. 6C). Of interest, IL-10 did not change when lymph node cells were stimulated with ConA whereas IL-10 was significantly up-regulated when cells from Exo-treated mice were stimulated with type II collagen. Finally, we did not detect IL-6 in mouse sera but type II collagen-specific IgG2a/IgG1 antibodies ratios were significantly decreased at all time points in Exo-treated mice (Fig. 6D). These results indicated that in vivo, MSC-derived Exo exerted an antigen-specific anti-inflammatory effect on arthritic mice, which was likely due to decreased plasmablast differentiation and generation of Breg cells.

DISCUSSION

This study provides the first evidence that MSC-derived EV exert an immunomodulatory effect in an inflammatory arthritis model. Moreover, this is one of the few studies reporting a differential functional role in vivo for MP and Exo isolated from the same MSC-conditioned medium.
Here we showed for the first time that in vitro, MSC-derived MP and Exo exert similar immunosuppressive functions by decreasing T and B lymphocyte proliferation and inducing Treg cell populations. However Exo were more efficient than MP to induce Treg cell subsets. These results were obtained with EV isolated from murine MSCs while a number of studies previously reported immunosuppressive effects for EV isolated from human MSCs16-19. Most studies used either total EV or Exo. One only compared MP and Exo using murine and human MSC-derived EV in allogeneic or xenogeneic settings but it failed to show any anti-inflammatory effect20. Other studies reported no or low functional effects of EV on T cell proliferation but reported an indirect inhibition of B and NK cell proliferation16 18 21. These discrepancies may be attributed to isolation protocols, MSC sources, culture conditions during MSC expansion and/or the use of freeze-thawed EV. Of importance, we clearly demonstrated here that freeze-thawing of EV at -80°C was detrimental for their functional role although other authors reported no alteration of immunomodulatory effects of fresh MSCs-derived MP or Exo20. This suggested that other parameters influence the functionality of EV.

Priming human MSCs before EV isolation has been shown to increase the immunomodulatory functions of EV18 while another report indicated that MSC priming did not enhance the immunomodulatory effects of MSC-derived EV19. Our results are in line with the latter study. We did not observe any increased function of MP or Exo from primed murine MSCs although CM from primed MSCs exerted a slightly but significantly higher anti-inflammatory effect on T cell proliferation.

Both types of EV behaved differently from parental MSCs, even though they exerted a similar role on immune cells. Exo and MP were less efficient to suppress Th1 cell proliferation but we found intriguingly that they were more potent to induce CD4+CD25+Foxp3+ Treg and CD4+IL-10+ Tr1 cell populations in vitro. The reason for this differential activity is not known but preliminary analyses detected TGF-\textbeta\textsubscript{1} within EV cargo. Presence of TGF-\textbeta\textsubscript{1} as mRNA and protein in MSC-derived EV has already been reported22. In this study, depletion of EV from culture supernatants reduced the number of TGF-\textbeta transcripts in co-incubated peripheral blood mononuclear cells and TGF-\textbeta\textsubscript{1} mRNA transfer was proposed to be responsible of Treg cell generation. Also detected in MP and Exo were PGE2 and IL1RA, which have been shown to be important mediators in the in vitro anti-inflammatory effects of MSCs and in inflammatory arthritis3 5. Further analysis of EV cargo
is needed to help answer whether these factors or others mediate the therapeutic efficacy of EV.

The second key finding is the immunomodulatory functions of MSC-derived EV in inflammatory arthritis. We confirmed in vivo that Exo were more efficient than MP in decreasing signs of arthritis, depending on the inflammatory status of the mice. Importantly, the main role of Exo was to inhibit plasmablast differentiation while inducing IL-10-expressing Breg cells. This result is supported by previous reports that EV bind preferentially to B lymphocytes and less effectively to other immune cells in vitro18, 23. Although our results are the first demonstration of the therapeutic efficacy of MSC-derived Exo in experimental arthritis, a recent report has shown that MSC-derived Exo can decrease osteoarthritic symptoms in an inflammatory model of osteoarthritis24. Indeed, EV isolated from dendritic cells, neutrophils or artificial vesicles have shown therapeutic potential in osteoarthritis or RA7, 25, 26, the present study uncovers new therapeutic opportunities for MSC-derived EV in the treatment of rheumatic diseases.
Acknowledgements We thank Géraldine Pénarier (SANOFI, Montpellier) for providing access and useful advice for Nano Tracking Analysis of EVs and Marc Piechaczyck for providing access to the ultracentrifuge from IGMM (Montpellier, France). Thanks to the “Réseau des Animaleries de Montpellier” animal facility and the “Réseau d’Histologie Expérimentale de Montpellier” histology facility for processing our animal tissues.

Contributors DN, CJ designed the experiments. Experimental work was performed by SC, KT with contributions from PLC, OBB. SC, KT, DN analyzed the data and prepared the manuscript. SC, KT, PLC, OBB, CJ, DN contributing to writing of the manuscript and final approval.

Funding Work in the laboratory Inserm U1183 was supported by the Inserm Institute and the University of Montpellier. This project has received funding from the European Union’s Horizon 2020 Programme (project ADIPOA2, grant agreement no: 643809). The materials presented and views expressed here are the responsibility of the authors only. The EU Commission takes no responsibility for any use made of the information set out. Study was also supported by the Fondation de l’Avenir, Paris, France (AP-RMA-2015-013). We thank the Agence Nationale pour la Recherche for support of the national infrastructure: "ECELLFRANCE: Development of a national adult mesenchymal stem cell based therapy platform" (ANR-11-INSB-005).

Competing interest statement The authors have no financial or personal conflict of interest to disclose.
References

Figure legends

Figure 1 Freshly isolated extracellular vesicles from murine MSCs exert immunosuppressive function. (A) Experimental protocol for isolation of total extracellular vesicles (EV) using differential ultracentrifugation. (B) Proliferation of Concanavalin A-activated murine splenocytes cultured alone for 3 days (Ctrl) or incubated with MSCs or MSC-conditioned medium pre (Pr)- or post (Po)-centrifugation according to (A). MSCs were naïve or primed with 20 ng/mL IFN-γ (n=3). (C) Proliferation of Concanavalin A-activated murine splenocytes cultured alone for 3 days (Ctrl) or incubated with increasing amounts of EV (n=4). (D) Proliferation of Concanavalin A-activated murine splenocytes cultured alone for 3 days (Ctrl) or incubated with 50 ng of freshly isolated or freeze-thawed EV (n=4). *: p<0.05 compared to Ctrl; #: p<0.05 compared to EV from naïve MSCs; $: p<0.05 compared to indicated group.

Figure 2 Isolation and characterization of exosomes and microparticles isolated from murine MSCs. (A) Experimental protocol for isolation of microparticles (MP) and exosomes (Exo) from MSC-conditioned medium using differential ultracentrifugation. (B) Quantification of EV produced by 10^6 MSCs and expressed as equivalent proteins. MSCs were naïve or primed with 20 ng/mL IFN-γ (n=5). (C) Representative pictures of MP and Exo by transmission electron microscopy. Bars represent 200 nm in large pictures and inserts for MP and for Exo, bars are 200 nm for large pictures and 100 nm for inserts. (D) Number and size of Exo (left) and MP (right) detected in 1 mL (corresponding to 1 μg EV equivalent proteins) by Nano Tracking Analysis. Letters (A to E) indicate various population peaks (n=3). (E) Quantification of EV related to the quantity of proteins (n=3). (F) Mean size of Exo (left) and MP (right) in the fractions represented in (D) (n=3). (G) Percentage of MP in each fraction (A to E) related to total MP (n=3). (H) Expression of MSC membrane markers (Sca-1, CD44, CD29) and of exosomal markers (CD9, CD81) on Exo (top) and MP (bottom) isolated from naïve MSCs analyzed by flow cytometry.

Figure 3 MP and Exo exert immunosuppressive function on T lymphocyte subsets. (A) Proliferation of Concanavalin A-activated murine splenocytes cultured alone for 3 days
(Ctrl) or incubated with increasing amounts (ng) of Exo (left) or MP (right) from naïve or IFN-γ primed MSCs (n=5). (B) Percentage of CD8⁺IFN-γ⁺ cytotoxic T cells, CD4⁺IFN-γ⁺ Th1 cells, CD4⁺IL-10⁺ Tr1 cells and CD4⁺CD25⁺Foxp3⁺ Treg cells in splenocytes (n=4) when incubated alone or with MSCs and 25 ng of Exo or MP. Representative flow cytometric pictures are shown (right). (C) Proliferation of Concanavalin A-activated sorted CD4⁺ (left) and CD8⁺ (right) T lymphocytes cultured alone for 3 days (Ctrl) or incubated with 50 ng of Exo or MP from naïve or IFN-γ primed MSCs (n=3). *: p<0.05 compared to Ctrl.

Figure 4 MP and Exo exert immunosuppressive function on B lymphocytes. (A) Percentage of CD138⁺ plasmablasts obtained after activation (Ctrl) or cultured with MSCs or 50 ng Exo or MP from naïve or IFN-γ primed MSCs (n=5). Representative flow cytometric pictures are shown (right). (B) Concentration of total IgG, TNFα, IL6, IL10 in supernatants from plasmablasts in (A) as expressed in arbitrary unit (a.u.) or pg/mL (n=5). (C) Amounts of TGF-β1, PGE2, IL-6, IL1-RA in 1 µg of Exo or MP as evaluated by ELISA (n=5). *: p<0.05 compared to Ctrl or the indicated group.

Figure 5 MP and Exo suppress inflammation in the DTH and CIA models. (A) Inhibition of inflammation in the Delayed-Type Hypersensitivity (DTH) model with increasing doses of MP or Exo from IFN-γ primed MSCs as measured by paw swelling of hind paws (n=7). (B) Incidence of mice with inflammation in the collagen-induced arthritis (CIA) model (n=15). (C) Inhibition of inflammation as measured by clinical score in same mice than in (B). (D) Representative 3D reconstruction images of hind paws by µCT analysis showing bone degradation in foot (top) or ankles (bottom) from a Ctrl mouse (left), MP-treated mouse (middle) and Exo-treated mouse (right). (E) Mean thickness of cuneiform bone from Ctrl mice or mice treated with MP or Exo as evaluated by histomorphometric µCT analysis. (F) Mean bone degradation of cuneiform bone as evaluated by area/volume parameter by µCT. *: p<0.05 or **: p<0.01 compared to Ctrl.

Figure 6 Exo are efficient immunosuppressive agents in CIA by decreasing plasmablast differentiation and generating Breg cells. (A) Effect of 250 ng Exo or 600 ng MP on inflammation in the CIA model as measured by hind paw swelling, fore paw score and global clinical score. (B) Determination of the percentage of CD4⁺IFNγ⁺ Th1 cells, CD4⁺IL17⁺
Th17 cells, CD4⁺Foxp3⁺ Treg cells, CD4⁺IL10⁺ Tr1 cells, CD138⁺ plasmablasts and CD19⁺IL10⁺ Breg cells in lymph nodes from control CIA mice and mice treated with Exo or MP. (C) Quantification of IL-6, TNF-α, IL-1β and IL-10 in supernatants from resting lymph nodes (NA), activated with specific type II collagen (bC2) or ConA. (D) Type II collagen-specific IgG2a/IgG1 antibody ratios in sera of CIA Ctrl mice or mice treated with Exo or MP at the indicated time points during CIA. n=15; *: p<0.05; **: p<0.001 or ****: p<0.00001 compared to CIA Ctrl.
Figure 1

A. Preparation of conditioned medium:
- 300g, 10min: Cells
- 2500g, 25min: Cell debris, Apoptotic Bodies
- 100,000g, 120min: EV pellet

B. Proliferation (%): Ctrl, Pr, Po, Pr, Po, MSC

C. Proliferation (%) vs. Vesicles (equivalent ng total proteins): Ctrl, 50, 25, 10, 50, 25, 10

D. Proliferation (%): Ctrl, fresh, thawed
Figure 2

A

Conditioned medium
300g; 10min → cells
Supernatant
2500g; 25min → debris
Supernatant
18,000g; 60min → MP pellet
Supernatant Filtration 0.22μm
100,000g; 120min → Exo pellet

B

μg protein/10⁶ cells

naive
primed

MP
Exo

C

MP
Exo

naive
primed

D

Particle number

10⁷
20⁷

size (nm)

A/B
C/D/E

E

Particles/μg protein

3×10⁶
2×10⁶
1×10⁶

size (nm)

F

Size (nm)

A/B
C/D/E

G

% total particles

100
80
60
40
20

H

Counts

Scal. CD44 CD29 CD9 CD81

Counts

Scal. CD44 CD29 CD9 CD81
Figure 3

A

B

C
Figure 5

A. Paw swelling (mm) over different treatments. Ctrl, MSC, and MP groups show significant differences in paw swelling compared to the Exo group.

B. Incidence (%) over time post-immunization. The incidence curves for CIA and EV show a trend towards increased incidence over time, with Exo and MP showing lower incidence.

C. Clinical score over time post-immunization. The clinical scores for CIA and EV increase over time, while Exo and MP show lower scores.

D. Radiographic images showing joint changes over time.

E. Joint thickness (mm^3) over time post-immunization. Ctrl, MP, and Exo groups show differences in joint thickness, with Ctrl having the highest and Exo having the lowest.

F. Joint area/volume over time post-immunization. Ctrl, MP, and Exo groups show differences in area/volume, with Ctrl having the highest and Exo having the lowest.
Figure 6

A

Paw swelling (mm)

Day post-immunization

Fore paw score

Clinical score

B

%CD4^+IFN-γ^+ cells

%CD4^+IL17^+ cells

%CD4^+FoxP3^+ cells

C

IL-6 (pg/ml)

TNF-α (pg/ml)

IL-1 (pg/ml)

IL-10 (pg/ml)

D

IgG2a/IgG1 (d22)

IgG2a/IgG1 (d28)

IgG2a/IgG1 (d30)
2. Effets chondroprotecteurs des exosomes et des microparticules dérivés des cellules souches mésenchymateuses in vitro et in vivo dans un modèle d’arthrose (article 4)

Introduction

Les CSMs exercent des fonctions trophiques : elles sont anti-fibrotiques, anti-apoptotiques, anti-inflammatoires et pro-régénératives. Grâce à ce potentiel, leur effet thérapeutique a été testé dans plusieurs modèles pré-cliniques de maladies ostéo-articulaires, et notamment dans l’arthrose. Plusieurs essais cliniques sont en cours et montrent des premiers résultats prometteurs. Les effets bénéfiques des CSMs sont assurés par la sécrétion de facteurs solubles mais le rôle des EVs dans le transport de ces facteurs est encore peu connu. Dans cette étude, nous proposons pour la première fois de tester l’implication des exosomes et des MPs isolées de CSMs murines dans un modèle murin d’arthrose induite à la collagénase (CIOA). Au préalable, nous testons les effets de ces EVs in vitro sur les chondrocytes murins.

Résultats

1) Les exosomes et les MPs dérivés des CSMs sont chondroprotecteurs.

Afin de reproduire le phénotype des chondrocytes retrouvés dans les articulations atteintes d’arthrose, des chondrocytes murins ont été cultivés en présence d’IL-1β afin d’induire un phénotype arthrosique caractérisé par un déséquilibre de la balance entre activité anabolique et activité catabolique. Les résultats que nous avons obtenus indiquent qu’en présence d’exosomes ou de MPs, le profil des chondrocytes est rééquilibré : les marqueurs de dégradation ADAMTS5 et MMP13 et d’inflammation iNOS sont inhibés et les marqueurs anaboliques collagène 2B et Aggrekan sont induits, et ce de manière dose dépendante.

2) Les exosomes exercent des effets anti-apoptotiques
L’apoptose étant une voie impliquée dans la pathogénèse de l’arthrose, nous avons testé l’effet des vésicules sur des chondrocytes engagés dans des voies apoptotiques par stimulation à la staurosporine. Les exosomes et les MPs sont capables de diminuer le pourcentage de chondrocytes apoptotiques mais moins efficacement que les CSMs.

3) **Exosomes et MPs exercent des effets immunosuppresseurs sur les macrophages.**

Le tissu synovial étant constitué de macrophages résidents et de fibroblastes qui deviennent inflammatoires au cours de l’arthrose, nous avons testé les effets des EVs sur les macrophages. Les macrophages ont été stimulés avec du LPS afin de les orienter vers un profil inflammatoire M1 et cultivés en présence d’exosomes ou de MPs. Dans ces conditions, les deux types de vésicules sont capables d’inhiber l’activation des macrophages. Les marqueurs d’activation (CD40, CD86 et CMHII) sont diminués tout comme la synthèse de la cytokine inflammatoire TNF-α. De plus, ils induisent une expression d’IL-10 suggérant un switch vers un phénotype anti-inflammatoire de type M2.

4) **Effets des Exosomes et des MPs dans un modèle murin d’arthrose.**

Nous avons ensuite évalué l’effet des exosomes et des MPs *in vivo* dans le modèle d’arthrose induite à la collagénase après injection intra-articulaire à J7 après induction de l’arthrose. En utilisant des analyses histomorphométriques du cartilage et de l’os sous-chondral reconstruits en 3D après microscopie laser confocale et μCT respectivement, nous montrons que les exosomes et les MPs protègent l’articulation. Le volume et l’épaisseur du cartilage des souris traitées sont significativement augmentés par rapport aux souris contrôles alors que la dégradation de surface est diminuée. Ceci est corroboré par l’analyse histologique et le score d’arthrose OARSI, technique de référence. Le volume de l’os sous-chondral est supérieur et sa dégradation réduite. La surface d’ostéophytes aux extrémités du cartilage articulaire ainsi que le volume et la surface des calcifications observées au niveau des ménièrues et ligaments externes sont réduits.

Conclusion
Les exosomes et MPs dérivés des CSMs exercent des effets chondroprotecteurs, anti-apoptotiques et anti-inflammatoires in vitro. In vivo, les analyses histomorphométriques montrent une protection du cartilage, de l’os, des ménisques et des ligaments chez les souris traitées par les exosomes et MPs, sans différence significative avec les CSMs.

Article 4 : mesenchymal stem cells derived exosomes and microvesicles protect cartilage and bone from degradatation in osteoarthritis.

Auteurs: S Cosenza, M Ruiz, K Toupet, C Jorgensen, D Noël
Mesenchymal stem cells derived exosomes and microvesicles protect cartilage and bone from degradation in osteoarthritis

Stella Cosenzaa, Maxime Ruiza, Karine Toupeta, Christian Jorgensena,b,*,

Danièle Noëla,b,*

aIRMB, INSERM, Montpellier University, Montpellier, France; bClinical immunology and osteoarticular diseases Therapeutic Unit, Hôpital Lapeyronie, Montpellier, France

*: equally contributing authors

\textit{Corresponding author:}

D. Noël, Inserm U1183, IRMB, Hôpital Saint-Eloi,

80 avenue Augustin Fliche, 34295 Montpellier cedex 5, France

Tel: +33 4 67 33 04 73 – Fax: +33 4 67 33 01 13 – E-mail: danielle.noel@inserm.fr
ABSTRACT

Objective. Mesenchymal stem or stromal cells (MSCs) exert chondroprotective effects in preclinical models of osteoarthritis (OA). Most of their therapeutic effects are mediated via soluble mediators, which can be conveyed within extracellular vesicles (EVs). The objective of the present study was to evaluate the respective role of exosomes (Exos) or microvesicles/microparticles (MPs), the two major types of vesicles, in OA.

Methods. MPs and Exos were isolated from bone marrow murine MSCs through differential centrifugation. MPs or Exos were added onto IL-1β-treated murine chondrocytes for 24h and chondrocyte markers were quantified by RT-qPCR. CD11b+ macrophages were isolated from spleen and activated by LPS. Activation markers were assayed by flow cytometry. In vivo, Exos or MPs were injected at day 7 in the collagenase-induced OA (CIOA) model. Histomorphometric analyses of joints were performed by μCT and confocal laser microscopy.

Results. In OA-like chondrocytes, MSC-derived MPs and Exos could reinduce the expression of chondrocyte markers (type II collagen, aggrecan) while inhibiting catabolic (MMP-13, ADAMTSS) and inflammatory (iNOS) markers. They were shown to protect chondrocytes from apoptosis and to polarize macrophages towards an M2 anti-inflammatory phenotype. In the CIOA model, MSCs, MPs and Exos equally protected mice from joint damage.

Conclusion. MPs and Exos exerted similar chondroprotective and anti-inflammatory function in vitro and protected mice from developing OA in vivo, suggesting that either Exos or MPs reproduced the main therapeutic effect of MSCs.

Keywords: mesenchymal stem cells, extracellular vesicles, trophic factors, cell therapy, osteoarthritis, histomorphometric analysis, μCT.
INTRODUCTION

Osteoarthritis (OA) is the most prevalent rheumatic disease, which is characterized by cartilage degradation, sub-chondral bone sclerosis, osteophyte formation, synovial inflammation and calcification of ligaments. The main risks factors are age, obesity, genetics and joint injuries following traumas. Its prevalence is constantly increasing, making this disease among the main causes of years lived with disability (1). It induces enormous public health resources devoted to the cure, prevention and amelioration of sequelae of this non-fatal disease. Current treatments are only symptomatic relying on the use of antalgics and non-steroid anti-inflammatory drugs (NSAID). Because these treatments are palliative and not curative, other therapeutic strategies have to be developed. In recent years, mesenchymal stem/stromal cell (MSC)-based therapies have emerged as a novel opportunity to positively impact on the outcome of OA. We and others have shown in pre-clinical models that intra-articular injection of MSCs, either from bone marrow or adipose tissue, could protect cartilage from degeneration and at least delay OA progression (2-5). MSC-based therapy for OA is also being evaluated in the clinics and encouraging results on pain and inflammation reduction have been reported (6, 7). Most of the therapeutic effects are attributed to the secretion of mediators with anti-inflammatory and chondroprotective functions (8, 9). However, some recent evidence suggests that those mediators are conveyed within extracellular vesicles (EVs) released by MSCs.

EVs are a heterogeneous population of particles released by virtually all cell types and involved in cell to cell communication pathways. There are three main classes: exosomes or small-size vesicles, microparticles or microvesicles and apoptotic bodies. They are characterized by their size, biogenesis and expression of membrane markers. Exosomes (Exos) are generated via the endosomal compartment in multivesicular bodies and express endosomal markers (CD9, CD61, CD83, ALIX, TSG101) while microparticles (MPs) are released by cell membrane budding and express markers from the parental cell (for review, see (10)). The therapeutic effect of MSC-derived EVs in OA has been recently described in two studies with contradictory results. In the first one, MSC-derived Exos were shown to decrease the anabolic function of chondrocytes, except when MSCs were engineered to express miR-140-5p (11). In the second one, Exos isolated from iPS-derived MSCs or
synovial MSCs successfully decreased OA symptoms in vivo but Exos from iPS-derived MSCs were more efficient (12). However, none of these studies reported the effect of other types of vesicles. The objectives of the present study were first to characterize in vitro the functional role of either Exos or MPs isolated from MSCs on the function of joint cells, chondrocytes and monocytes/macrophages and second, to accurately characterize in vivo the therapeutic effect of both EVs in OA using quantitative histomorphometric parameters of bone and cartilage tissues.

MATERIALS AND METHODS

Mesenchymal stem cell culture and EV production. Murine MSCs were isolated from bone marrow of C57BL/6 mice and previously characterized by phenotyping and trilineage differentiation potential as described in (13). They were expanded in proliferative medium consisting in DMEM, 100μg/mL penicillin/streptomycin, 2mmol/mL glutamine and supplemented with 10% foetal calf serum (FCS).

For EV production, MSCs were seeded in proliferative medium at 2x10^4 cells/cm². Depending on the experiments, MSCs were maintained in proliferative medium containing or not TGF-β3 (10 ng/mL) for 24h. Medium was then replaced by production medium consisting of proliferative medium supplemented with 3% EVs-free FCS, obtained by ultracentrifugation of DMEM plus 20% FCS at 100,000g overnight. After 24h, MSC-conditioned medium (CM) was centrifuged at 300g for 10min to eliminate cells and 2,500g for 25min to remove debris and apoptotic bodies. For MP isolation, CM was centrifuged at 18,000g for 1h in polyallomer tubes, suspended in PBS and submitted to a second round of centrifugation. For Exos, supernatant from MP fraction was filtered on 0.22μm porous membrane and centrifuged at 100,000g for 2h. Pellet was suspended in PBS and centrifuged again at 100,000g for 2h. Both MP and Exo pellets were suspended in 100μL of PBS and freshly used for in vitro and in vivo functional experiments.

EV characterization. Production of EVs was normalized to the content in total protein as quantified by Bradford Colorimetric Assay (BCA) assay. Size distribution of EVs was determined by Nanoparticle Tracking Analysis in a NanoSight LM10-12 instrument as advised by manufacturer (Malvern) and by Dynamic Light Scattering (DLS).
In vitro model of OA like chondrocytes. Murine chondrocytes were isolated from 3 days old C57BL/6 mice as described in (14) and, induced to express an OA-like phenotype by addition of IL-1β as described elsewhere (Ruiz et al, submitted). Briefly, IL-1β (1ng/mL) was added to chondrocytes while in parallel, MSC-CM was prepared from MSCs cultured in proliferative medium supplemented or not with 10 ng/mL TGF-β3. After 24h, chondrocyte media were replaced by different amounts of MPs or Exos (0.1X; 1X; 10X equivalent to 1 mL MSC-CM), MSC-CM (1 mL) or MSCs (10^5 cells) on top of a transwell membrane. Following another 24h of incubation, chondrocytes were then recovered and processed for RT-qPCR analysis.

Apoptosis induction. Murine articular chondrocytes were isolated and plated in 12 wells culture plates as described above. After 5 days, when required, confluent MSCs (10^5 cells) on top of a transwell membrane (0.4 μm) were added in some chondrocytes-containing wells for 24h. Afterwards, all media (chondrocytes alone or chondrocytes/MSCs cocultures) were replaced by fresh medium containing staurosporine (150 ng in 1 mL/well). At the same time, different doses of MPs or Exos (1X equivalent to 1 mL MSC-CM or 2X) were added to the wells containing chondrocytes alone. After 6 hours, cells were trypsinized and labelled for flow cytometry analysis.

Macrophage isolation and differentiation. Macrophages were isolated from spleens using the positive selection CD11b kit as recommended (Miltenyi, Paris, France). CD11b+ cells (2x10^5 cells/cm^2) were activated by lipopolysaccharides (LPS) as described in (15). When indicated, MSCs (ratio 1MSC/5cells) or 50ng of MPs or Exos were added for 3 days. Cells were recovered for flow cytometry analysis and supernatants for cytokine quantification by ELISA.

Flow cytometry analysis. For EVs, suspensions of MPs or Exos (1μg equivalent proteins) were coated onto 4μm aldehyde/sulfate latex beads by incubation at 4°C overnight and free reactive sites on beads were filled by adding 100mM glycine. Beads coated with EVs were then washed 3 times in PBS and 1μL of specific antibodies for CD9, CD29, CD44, CD81, SCA-1 were added for 30min.

For macrophage analysis, cells were suspended in PBS supplemented with 0.2% bovine serum albumin (BSA) and incubated with antibodies specific for F4/80, MHCII, CD40, CD80, CD86, or respective isotype controls at 4°C for 20 min. For apoptosis detection, cells were incubated with the Annexin V-PE apoptosis detection kit following
manufacturer’s instructions (eBioscience). Data acquisition was performed by flow
cytometry using a FACSCanto cytometer and analysis of data was done with Diva software.

Collagenase-induced arthritis model. Collagenase-induced OA (CIOA) model was
performed as previously described (16) and in accordance with the Ethical Committee for
animal experimentation of the Languedoc-Roussillon (Approval 5349-2016050918198875).
Briefly, 1U type VII collagenase in 5 µL saline was administered intra-articularly (IA) in the
knee joint of 10 weeks old C57BL/6 mice at day 0 and 2. Groups of 15 mice received IA
injections of either MSCs (2.5x10⁵ cells/5 µL saline), MPs (500 ng/5 µL) or Exos
(250 ng/5 µL) at day 7. Mice were euthanatized at day 42 and paws recovered for fixation
in 4% formaldehyde and further analysis.

Bone parameter analyses. Hind paws were dissected to carefully remove smooth
tissues and scanned in a microCT scanner SkyScan 1176 (Bruker, Belgium, 0.5 mm
aluminium filter, 45 kV, 500 µA, resolution of 18 µm, 0.5° rotation angle). Scans were
reconstructed using NRecon software (Bruker, Belgium). Misalignment compensation, ring
artifacts and beam-hardening were adjusted to obtain a correct reconstruction of each
paw. Bone degradation was quantified in subchondral bone and epiphysis region of medial
plateau for each tibia (CTAn software, Bruker, Belgium). Osteophyte formation on joint
edges and meniscal/ligament calcification were quantified on the entire knee joint.
Reconstructed 3D images of joints were obtained using Avizo software (Avizo Lite 9.3.0,
FEI, France).

Confocal laser scanning microscopy. Articular cartilage of tibia medial plateau was
scanned through their depth in XYZ-mode, with a confocal laser scanning microscope
(CLSM; TCS SP5-II, Leica Microsystems, Nanterre, France) with a voxel size of 6 µm, a 5× dry
objective and a UV laser light source (λx 405 nm). Stacks of images were then done and
analyzed to quantitatively evaluate several parameters of articular cartilage. Assessment of
cartilage morphometric parameters was performed in medial plateau of each tibia using
Avizo software (FEI Visualization Sciences Group, Lyon).

Histological analysis. Hind paws were decalcified using a solution of formic acid 5%
for 2 weeks and then embedded in paraffin. Frontal sections of tibias were cut (3 slices of
7 µm each 100 µm; first section at 50 µm below the cartilage surface) and stained with
safranin O fast green staining. Cartilage degradation was quantified on medial plateau
using the modified Pritzker OARSI score as described (3). Osteophyte size at the edges of tibia cartilage was scored using an arbitrary score from 0 to 3 as described (2).

Statistical analyses. Statistical analysis was performed with GraphPad 6 Prism Software. Data were compared using the Mann-Whitney’s test for nonparametric values (in vitro experiments) or a student’s t test for animal experimentation (n=15/group). A p value < 0.05 was considered significant.

RESULTS

Isolation and characterization of MPs and Exos from MSC-conditioned medium. MPs and Exos were isolated from 48h-conditioned medium of bone marrow-derived murine MSCs. MPs-containing pellets were isolated a centrifugation step at 18,000g while Exos were recovered from MP-deprived supernatants filtered onto a 0.22 μm membrane and centrifuged at 100,000g (Fig. 1A). Size of both EV preparations was measured by DLS and found to peak at 488 nm for MPs and 96 nm for Exos (Fig. 1B). To check size homogeneity of EV populations, we then performed Nano Tracking Analysis and confirmed a homogeneous population of Exos whose size was 112 ± 6.6 nm (Fig. 1C). However for MPs, a heterogeneous population of particles was observed ranging from 150 to 600 nm; size of the majority of particles being 223 ± 15.6 nm. Membrane marker profile identified expression of the MSC markers CD29, CD44 and Sca-1 on MPs while endosomal markers were not detected (Fig. 1D). By contrast, the endosomal markers CD9, CD81 were expressed on Exos but membrane markers of MSCs were absent. These data indicated a huge enrichment of MPs and Exos by centrifugation at 18,000g and 100,000g respectively, supporting the feasibility to investigate the respective role of MPs and Exos in the following experiments.

Both MPs and Exos restored the anabolic/catabolic equilibrium in OA-like chondrocytes. To investigate a possible role of MSC-derived MPs and Exos in OA, we first evaluated in vitro their capacity to restore cartilage homeostasis. We relied on a model of OA-like murine chondrocytes developed in our laboratory (Ruiz, manuscript submitted). In this model, incubation of chondrocytes with IL-1β resulted in down-regulation of the anabolic markers COL2A, ACAN, COL1 and up-regulation of catabolic MMP-13, ADAMTS5

174
and inflammatory iNOS markers (Fig. 2). Addition of MSCs, either conditioned medium (CM) or cultured on top of a transwell membrane, induced the expression of ACAN and COL2B while MSC-CM reduced expression of iNOS and MMP-13. MSCs cocultured in transwell did not greatly change the chondrocyte expression profile. In these conditions, addition of different amounts of MPs or Exos partly reproduced the effect of MSC-CM but without a clear dose-dependent effect.

Because TGF-β is a potent inducer of chondrocyte anabolism, we evaluated the effect of MSC pre-activation by TGF-β3 during the production of CM or in coculture experiments. TGF-β3 pre-activation did not modify expression of anabolic markers but pre-activated MSCs in coculture significantly decreased the expression of catabolic markers MMP-13, ADAMTS5, iNOS and activated COL1 expression (Fig. 3). Interestingly, addition of both MPs and Exos greatly enhanced expression of anabolic markers and down-regulated that of catabolic markers, in a dose-dependent manner. Supply of the highest dose of MPs and Exos exerted similar modulation on anabolic and catabolic chondrocyte markers as MSCs in coculture. MSC-derived MPs and Exos reproduced to a large extent the anabolic and chondroprotective effect of MSCs.

Both MPs and Exos exerted an anti-apoptotic effect on OA-like chondrocytes and inhibited macrophage differentiation. A characteristic of OA cartilage is enhanced apoptosis. We therefore investigated the impact of MPs and Exos on apoptosis induction in chondrocytes. We used a model of staurosporine-induced apoptosis previously described (8). Coculture of MSCs with murine chondrocytes prevented apoptosis and reduced the percentage of apoptotic chondrocytes to 68% (Fig. 4A). Similarly, MPs and Exos reduced in a dose-dependent manner the level of apoptotic chondrocytes but Exos were more efficient than MPs. In addition, the anti-apoptotic activity of MPs and Exos, at the tested doses, was significantly lower than that of MSCs.

Another feature of OA is synovial inflammation, notably characterized by activation of monocytes and macrophages. One major immunosuppressive effect of MSCs is to inhibit macrophage activation and to induce a shift from M1 pro-inflammatory to M2 anti-inflammatory phenotypes (17). We therefore activated spleen-derived macrophages by LPS and investigated expression of activation markers. Addition of MSCs, MPs or Exos resulted in high inhibition of macrophage activation, as shown by low percentages of F4/80*
macrophages expressing CD86, MHCII or CD40 markers (Fig. 4B). Reduced activation of macrophages was confirmed by down-regulation of TNF-α and up-regulation of IL-10; although TNF-α was only significantly reduced by MSCs (Fig. 4C). Indeed, both MPs, Exos and MSCs inhibited in vitro macrophage activation to a similar extent.

MPs and Exos are both potent to protect cartilage and bone from degradation in the collagenase-induced OA murine model. We next aimed at evaluating whether MPs and Exos displayed similar effects in an inflammatory model of OA, where MSCs were already shown to exert a therapeutic function (2). We injected 250 ng Exos or 500 ng MPs (equivalent of 48h production by plated 2.5x10^5 MSCs) at day 7 after OA induction. At day 42 we evaluated cartilage degradation in the medial plateau, which is the most affected tibia part in the CIOA model, using CLSM analysis. We demonstrated a significant improvement of all parameters of articular cartilage, including volume, cartilage degradation (surface/volume ratio) and thickness in treated mice (Fig. 5A-B). No difference was observed between treated groups or healthy mice. These results were confirmed by histological analysis of tibias sections and OA scoring, which indicated protection of cartilage degradation for treated mice and nice reduction of osteophyte formation although significant only for Exos (Fig. 5C-D).

We also assessed effect of treatments on histomorphometric parameters of bone by μCT. We evaluated bone parameters of epiphyseal bone and sub-chondral bone in the median part of treated and OA joints. At the epiphyseal level, we measured significantly higher bone volume (BV/TV pararem) in MP- and MSC-treated mice as well as less bone degradation (BS/BV parameter) in MP-treated mice compared to OA control mice (Fig. 6A-B). At the sub-chondral bone levels, results were even more significant with higher Bone volume and lower bone degradation for all treated mice as compared to OA controls (Fig. 6C). We also noticed calcification of the median ligaments and menisci in OA control mice that were not observed in healthy mice or to a lesser extent in treated mice (Fig. 6D). Indeed although not significant, bone volumes and bone areas of ligaments and menisci were lower in all treated mice, including MP-, Exos- and MSC-treated joints (Fig. 6E). Altogether, accurate analyses of histomorphometric parameters of the entire articular cartilages and epiphyses of mice demonstrated a chondroprotective role of relatively low doses of both MPs and Exos isolated from MSCs.
DISCUSSION

In the present study, we demonstrated that MPs and Exos isolated from bone marrow-derived murine MSCs exert a similar chondroprotective effect in the collagenase-induced OA model. This is the first demonstration that extracellular vesicles generated from different cell compartments and pathways (exocytosis of multivesicular bodies from the endosomal compartment or release of microvesicles by cell membrane budding) exhibit a similar function in vivo in osteoarthritis.

We recently described the interest of using murine bone marrow MSC-derived Exos or MPs to reduce clinical symptoms in the collagen-induced arthritis inflammatory model (Cosenza et al, manuscript submitted). In this study, we showed that both Exos and MPs were able to inhibit in vitro activation of CD4$^+$ and CD8$^+$ T lymphocytes and B lymphocytes. In vivo, clinical signs of arthritis were slow down following injection of Exos but not MPs through inhibition of plasmablast differentiation and IL-10 expressing Breg cell induction. Although this was the first study reporting the therapeutic efficacy of MSC-derived Exos in inflammatory arthritis, previous studies demonstrated the interest of using Exos from genetically engineered dendritic cells or neutrophils-derived Exos in the collagen-induced arthritis model (18-21).

Beneficial effect of MSC-derived exosomes has been recently reported in the CIOA model using human synovium MSCs or iPS-derived MSCs (12). The authors reported improvement of OARSI score and increased migration and proliferation potential of chondrocytes incubated with Exos. In the second publication, Exos from human synovial MSCs protected cartilage from degradation in a rat model of OA, although far less efficiently than Exos isolated from miR-140-5p-over-expressing MSCs (11). These are the two unique publications on the therapeutic effect of MSC-derived extracellular vesicles in osteo-articular diseases since no literature is available in preclinical models of rheumatoid arthritis or other rheumatic diseases. In concordance with those pre-clinical studies, we here demonstrated that murine MSC-derived Exos could efficiently protect cartilage and bone from degradation using histomorphometric analyses by CLSM and μCT, respectively, that allowed accurate quantitative measures after 3D reconstruction of the entire tissues and not only of representative sections of parts of joints (22). These analyses
demonstrated that Exos and MPs were equally efficacious to protect mice from developing OA suggesting that both EVs share common mechanisms for cartilage and bone protection.

Indeed, we demonstrated in vitro that both Exos and MPs from MSCs exerted similar functions as the parental cells. They were able to reinduce the expression of markers of mature articular chondrocytes (type II collagen and aggrecan) while decreasing catabolic (MMP-13, ADAMTS5) and inflammatory (iNOS) markers, in a dose-dependent manner. These results are not in line with those recently described using human OA chondrocytes and MSC-derived Exos (11). The authors described in vitro down-regulation of type II collagen, aggrecan and Sox9 but increased proliferation and migration of chondrocytes. The explanation for this discrepancy is not known but may be related to the use of human synovium-derived MSCs that may display different functions than bone marrow-derived MSCs. It is however more likely that Exos produced by synovial MSCs recovered from patients conveyed inflammatory or catabolic mediators that were detrimental for chondrocytes. This is supported by a study showing that MPs derived from RA synovial fibroblasts contained high levels of ADAMTS5 promoting aggrecan destruction (23). Another study reported hexosaminidase D activities in EVs from RA and OA patients that could contribute to cartilage degradation (24, 25). This pointed out the importance of using MSCs isolated from cartilage degradation that could display beneficial and not detrimental effects on targets cells or tissues.

We also showed that MPs and Exos protected chondrocytes from induced apoptosis, which is another feature of OA chondrocytes. Anti-apoptotic role of MSC-derived Exos was already reported and recently reviewed for cardiovascular diseases (26). Finally, we provided in vitro evidence that MSC-derived MPs and Exos inhibited macrophage activation and induced a M2-like anti-inflammatory macrophage phenotype. Monocytes and macrophages, which are recruited in the synovial membrane via CCL2/CCR2 signalling, are thought to be main actors of inflammation and tissue damage by producing pro-inflammatory and catabolic mediators in the OA (27, 28). We previously reported that MSCs induced the polarisation of macrophages towards an anti-inflammatory phenotype thereby reducing the inflammatory activation of synovium (9, 29). Macrophage polarization induced by MSCs was shown to be mediated by PGE2 and we have detected PGE2 in MSC-derived MPs and Exos (Cosenza et al, submitted). We may therefore hypothesize that PGE2 conveyed by MPs and Exos isolated from MSCs is at least partly
responsible for macrophage polarization in vitro and in vivo after IA injection. This is further supported by a recent study showing that IL1β-pretreated MSCs could induce macrophage polarization toward a M2 phenotype more efficiently than naïve MSCs and that miR-146a-containing Exos contributed to this effect (30).

In conclusion, we provided evidence that MPs and Exos from murine bone marrow MSCs exerted similar functional effect in vitro by re-establishing chondrocyte homeostatic state, protecting chondrocytes from apoptosis and stimulating macrophage polarization towards anti-inflammatory phenotype. All of these functions displayed by MSC-derived MPs and Exos might explain their beneficial effect in the CIOA model where treated mice were partly protected from cartilage and bone degradation.

Acknowledgements We thank Géraldine Pénarier (SANOFI, Montpellier) for providing access and useful advice for Nano Tracking Analysis of EVs and Marc Piechaczyc for providing access to the ultracentrifuge from IGMM (Montpellier, France). Thanks to the “Réseau des Animaleries de Montpellier” animal facility and the “Réseau d’Histologie Expérimentale de Montpellier” histology facility for processing our animal tissues.

Contributors DN, CJ designed the experiments. Experimental work was performed by SC, MR, KT. SC, MR, KT, DN analyzed the data and prepared the manuscript. SC, MR, KT, CJ, DN contributing to writing of the manuscript and final approval.

Funding Work in the laboratory Inserm U1183 was supported by the Inserm Institute and the University of Montpellier. This project has received funding from the European Union’s Horizon 2020 Programme (project ADIPOA2, grant agreement no: 643809). The materials presented and views expressed here are the responsibility of the authors only. The EU Commission takes no responsibility for any use made of the information set out. We thank the Agence Nationale pour la Recherche for support of the national infrastructure: "ECELLFRANCE: Development of a national adult mesenchymal stem cell based therapy platform" (ANR-11-INSB-005).

Competing interest statement The authors disclose any financial or personal conflict of interest.
References

Figure legends

Figure 1. Isolation and characterization of extracellular vesicles isolated from murine MSCs. (A) Experimental protocol for isolation of microparticles (MPs) and exosomes (Exos) using differential ultracentrifugation. (B) Size of MPs (up) and Exos (down) detected in 200 μL by Dynamic Light Scattering analysis. (C) Number and size of MPs (up) and Exos (down) detected in 1 mL (corresponding to 1 μg EV equivalent proteins) by Nano Tracking Analysis. (D) Expression of MSC membrane markers (Sca-1, CD44, CD29) and of exosomal markers (CD9, CD81) on MPs (top) and Exos (bottom) isolated from naïve MSCs as analysed by flow cytometry.

Figure 2. MSC-derived MPs and Exos exerted chondroprotective effect on OA-like chondrocytes. Primary murine chondrocytes were pretreated with 1 ng/mL IL-1β (IL) or not (NT) for 24h before addition of different amounts of MPs or Exos (0.1X; 1X; 10X equivalent to 1 mL MSC-conditioned medium (CM)), 1 mL CM or MSCs (10^5 cells) on top of a transwell membrane (TW). Expression of chondrocyte markers was quantified by RT-qPCR after 24h (n=13). *: p<0.05 as compared to IL1-β-treated OA-like chondrocytes.

Figure 3. MPs and Exos isolated from TGFβ3-pretreated MSCs exerted higher chondroprotective effect on OA-like chondrocytes. Primary murine chondrocytes were pretreated with 1 ng/mL IL-1β (IL) or not (NT) for 24h before addition of different amounts of MPs or Exos (0.1X; 1X; 10X equivalent to 1 mL conditioned medium from MSCs treated with 10 ng/mL TGF β3 for 24h before isolation (CM)), 1 mL TGFβ3-pretreated CM or TGFβ3-pretreated MSCs (10^5 cells) on top of a transwell membrane (TW). Expression of chondrocyte markers was quantified by RT-qPCR after 24h (n=10). *: p<0.05 as compared to IL1-β-treated OA-like chondrocytes.

Figure 4. MSC-derived MPs and Exos exerted anti-apoptotic effect on chondrocytes and immunosuppressive function on macrophages. (A) Percentage of annexin V^+^ apoptotic chondrocytes under non activated conditions (NA), staurosporine–induced apoptosis (ST) and cultured with Exos or MPs (1X or 2X equivalent of 1mL MSC-conditioned medium) or...
1 mL MSC-conditioned medium (n=5). p<0.05 as compared to ST group (*), to MSC group (#) or to MP group of same amount ($). (B) Expression of differentiation markers on non-activated CD11b⁺ macrophages (NA), on macrophages after LPS-induced activation cultured alone (LPS) or with 50 ng MPs, Exos or MSCs (1 MSC/5 macrophages) for 3 days (n=4). (C) Quantification of cytokines produced by macrophages after 3 days as described in (B). *: p<0.05 as compared to LPS.

Figure 5. MSC-derived MPs and Exos protected mice from osteoarthritic damages in the collagenase-induced OA model. (A) Representative 3D reconstructed images of articular cartilage after confocal laser scanning microscopy analysis. Images from control mice (Ctrl), collagenase-treated mice (Col) and Col mice that received intra-articular injection of 500 ng MPs or 250 ng Exos or 2.5x10⁵ MSCs. (B) Histomorphometric analysis of 3D images of articular cartilages as described in (A) (n=15). (C) Representative histological sections of tibias from mice described in (A) after Safranin O-Fast green staining. (D) OA score and osteophyte score expressed as arbitrary unit (a.u.) on histological sections of mice. *: p<0.05 as compared to Col group.

Figure 6. MSC-derived MPs and Exos protected mice from osteoarthritic damages in the collagenase-induced OA model. (A) Representative 3D reconstructed images of epiphyseal bone in tibias after μCT analysis. Images from control mice (Ctrl), collagenase-treated mice (Col) and Col mice that received intra-articular injection of 500 ng MPs or 250 ng Exos or 2.5x10⁵ MSCs. (B) Histomorphometric analysis of 3D images of epiphyseal bone: Bone volume/tissue volume (BV/TV) and bone surface/bone volume (BS/BV) parameters (n=15). (C) Histomorphometric analysis of sub-chondral bone. (D) Histomorphometric analysis of osteophytes at the edges of joint bone. (E) Representative 3D reconstructed images of bone knee joints. (F) Bone volume and bone area as measured in the menisci and external ligaments. *: p<0.05 as compared to Col group.
Figure 1

(A) Conditioned medium → 300g 10min → Dead cells → 2500g 25min → Debris and apoptotic bodies → 18,000g 60min x2 → MP pellet (0.22μm) → 100,000g 120min x2 → Exo pellet.

(B) Intensity vs. Size (nm)

(C) Particles/mL vs. Size (nm)

(D) Counts for CD9, CD81, CD44, CD29, Sca-1
Figure 2
Figure 3
Figure 4

A

B

C
Figure 5

A

480 μm

B

C

D

Figure 5

A

480 μm

B

C

D
Figure 6

A

Ctrl
Col
M
Exo
MSC

B

BV/TV (%)

Ctrl Col MP Exo MSC

BSBV (mm²)

Ctrl Col MP Exo MSC

C

BV/TV (%)

Ctrl Col MP Exo MSC

BSBV (mm²)

Ctrl Col MP Exo MSC

D

BV (mm²)

Ctrl Col MP Exo MSC

BS (mm²)

Ctrl Col MP Exo MSC

E

Ctrl Col MP Exo MSC

F

Bone volume (mm³)

Ctrl Col MP Exo MSC

Bone surface (mm²)

Ctrl Col MP Exo MSC
Conclusion générale et discussion
Les recherches basées sur l’étude des vésicules extracellulaires sont vastes, complexes et encore insuffisantes. Nous avons tenté d’apporter notre contribution avec ce travail de thèse basé sur les vésicules extracellulaires dérivées des cellules souches mésenchymateuses, cellules d’intérêt pour diverses applications cliniques de par leur potentiel de différenciation et d’action trophique. Cette activité trophique est assurée de façon paracrine, par la libération de nombreux facteurs solubles. Ces facteurs sécrétés peuvent également être encapsulés au sein de vésicules extracellulaires et notamment au sein d’exosomes, dont l’étude suscite un intérêt majeur et grandissant. La mise en évidence que de nombreuses fonctions des CSMs sont associées à ces vésicules extracellulaires a changé les perspectives d’utilisations thérapeutiques des CSMs en médecine régénératrice. Connaissant les limites de la thérapie cellulaire, la question d’injecter les facteurs actifs ou les vésicules extracellulaires des CSMs aux patients, au lieu des cellules vivantes peut se poser. En 2010, le groupe de SK Lim a été parmi les premiers à explorer le potentiel des exosomes pour des applications thérapeutiques dans des modèles d’atteintes cardiaques (Lai et al. 2010). Par la suite, d’autres groupes ont à leur tour testé le potentiel des exosomes sécrétés par les CSMs dans des modèles d’atteintes rénales, hépatiques, cérébrales, pulmonaires, ou encore cancéreuses.

En 2013 à mon arrivée au laboratoire, aucune équipe ne s’était intéressée au potentiel des exosomes de CSMs dans les maladies ostéo-articulaires. Et de façon surprenante, aucune équipe ne s’était encore intéressée au potentiel des MPs dérivées des CSMs, population d’EVs pourtant bien décrite pour de certains autres types cellulaires, notamment les plaquettes. Ma thèse s’est donc construite autour de ces deux questions. Nos objectifs principaux étaient d’identifier et de caractériser les exosomes et les MPs dérivées de CSMs, d’étudier le potentiel in vitro respectif de ces deux populations d’EVs ainsi que leur rôle dans des modèles d’atteintes ostéo-articulaires.

A l’issue de ces quatre années de thèse, nos objectifs ont été atteints. Nous avons été les premiers à comparer in vitro les effets immunomodulateurs et chondroprotecteurs des deux populations d’EVs, exosomes et MPVs, sécrétées par les CSMs. Ce travail a également permis de valider pour la première fois un rôle in vivo de ces deux populations d’EVs dans un modèle d’arthrose et dans un modèle de polyarthrite rhumatoïde, deux atteintes ostéo-articulaires étant considérées comme problèmes majeurs de santé publique.
D’une part, ce travail de thèse nous permet aujourd’hui de dire que :

- Les CSMs sécrètent au moins deux populations de vésicules extracellulaires : des exosomes originaires du compartiment endosomal de la cellule, et des microparticules issues du bourgeonnement direct de la membrane plasmique de la cellule. Chacune de ces populations vésiculaires a été caractérisée par leur taille, leur structure et par l’expression de marqueurs spécifiques. Les exosomes que nous avons isolés ont une taille inférieure à 150 nm et expriment les marqueurs du compartiment endosomal CD9, CD81, ALIX et TSG101 mais pas les marqueurs membranaires des CSMs. Les MPs ont une taille supérieure, comprise entre 150 nm et 600 nm, mais 80% des vésicules de la fraction microparticulaire ont une taille inférieure à 200 nm. Les MPs expriment les marqueurs de la membrane plasmique des CSMs : SCA-1, CD29 et CD44 mais n’expriment pas ou peu les marqueurs endosomaux.

- La fonction des exosomes et des MPs est très similaire, au moins in vitro sur les tests fonctionnels que nous avons mis en œuvre.

- Nous avons tenté d’élucider certains effets fonctionnels exercés par ces deux populations vésiculaires. Exosomes et MPs issus de CSMs activées ou non par culture dans un environnement pro-inflammatoire exercent des activités immunosuppressives similaires. Ils inhibent de manière indirecte et dose dépendante la prolifération des cellules T activées et sont capables d’induire des réponses régulatrices. Ils interagissent directement avec les lymphocytes B et les macrophages et sont capables d’inhiber leur différenciation et leur maturation.

- Exosomes et MPs exercent des activités chondroprotectrices dans un modèle de chondrocytes arthrosiques développé au laboratoire. Nous avons montré que l’incubation des EVs avec les cellules modifie leur phénotype ; la balance entre activités anaboliques et cataboliques des chondrocytes est ré-équilibrée et les marqueurs d’inflammation sont inhibés.
Enfin, exosomes et MPs exercent des effets anti-apoptotiques sur les chondrocytes.

Bien que ces effets soient plus importants pour les exosomes que pour les MPs, notre technique d’isolement des sous-populations d’EVs qui peut être qualifiée d’enrichissement plutôt que de purification ne permet pas de conclure définitivement.

L’existence de populations d’EVs distinctes sécrétées par un même type cellulaire et la possibilité que chacune exerce une fonction différente est une question de plus en plus posée dans la littérature. Depuis 2016, quelques publications comparent les effets des sous-populations d’EVs sécrétées par les CSMs. Aliotta et al ont ainsi comparé les effets des exosomes et des microparticules dans un modèle murin d’hypertension pulmonaire et montré que seuls les exosomes sont efficaces (Aliotta et al. 2016). Dans la même année, une autre étude menée par Wen et al a comparé les effets fonctionnels des exosomes et des MPs de CSMs dans un modèle murin d’irradiation (Wen et al. 2016). Dans cette étude, les auteurs montrent que les deux populations restaurent les dommages causés par l’irradiation et stimulent la prolifération des cellules progénitrices avec la même efficacité. De plus, les auteurs montrent une efficacité encore plus importante lorsqu’exosomes et MPs sont injectés ensemble, suggérant des mécanismes d’action bénéfiques et complémentaires des deux populations d’EVs. Enfin, une autre étude a récemment tenté de caractériser les différentes fractions d’EVs sécrétées par les CSMs. Pour cela, les auteurs ont utilisé les méthodes de centrifugation avec gradient de densité sur iodixanol et ont séparé les milieux conditionnés obtenus en 12 fractions différentes. Ils ont obtenu des vésicules de taille hétérogène allant de 50 à 390 nm. Cependant, deux pics principaux d’EVs ont été mis en évidence : un pic à 90-110 nm et un pic à 170-190nm (Collino et al. 2017). Les auteurs ont comparé ces deux populations et montré que la première est enrichie en exosomes et la seconde enrichie en MPs. Ils ont ensuite conduit un ensemble d’expériences pour valider un rôle fonctionnel des deux fractions sur des cellules épithéliales rénales et montré que la fraction exosomale stimule de manière significative leur prolifération et les protège de l’apoptose, contrairement à la fraction enrichie en MPs.
Tous les effets in vitro des EVs que nous avons décrits ci-dessus ont été obtenus à partir de préparations fraîches, c'est-à-dire utilisées directement après les étapes de purification, sans congélation. En effet, nous avons observé une inefficacité fonctionnelle des EVs après congélation/décongélation, au moins pour leur capacité immunosuppressive. Quelques publications ont comparé les moyens de conservation des EVs, et la plupart sont d'accord pour dire que les cycles de congélation/décongélation perturbent l'intégrité membranaire des EVs et diminuent également leur concentration et leur qualité (Bosch et al. 2016; Jayachandran et al. 2012). Par ailleurs, nous pouvons nous interroger sur les résultats parfois contradictoires retrouvés dans la littérature, notamment sur les effets imunosuppresseurs de ces EVs. En plus de toutes les variabilités induites par les conditions de production des EVs déjà discutées tout au long de ce manuscrit, les moyens de conservation peuvent également être pointés du doigt. L'utilisation d’EVs décongelées dans les tests fonctionnels pourrait expliquer l’existence de publications contradictoires dans la littérature.

D'autre part, ce travail de thèse a également permis de comparer et de valider fonctionnellement in vivo le rôle des différentes populations d’EVs dans deux modèles d’atteintes ostéo-articulaires. Nous pouvons affirmer que :

- Exosomes et MPs exercent des effets anti-inflammatoires similaires dans un modèle d’inflammation, le modèle DTH. Dans ce modèle, nous avons montré que les exosomes et les MPs diminuent l’inflammation avec la même efficacité et ce, de manière dose dépendante.

- Exosomes et MPs exercent des effets anti-inflammatoires différents dans un modèle de polyarthrite rhumatoïde, le modèle d’arthrite induite au collagène. Bien que les MPs diminuent légèrement le score clinique des souris traitées, aucune amélioration significative n’a été démontrée. En revanche, les exosomes diminuent de manière significative le score clinique en inhibant la différenciation des lymphocytes B en plasmablastes et en induisant un phénotype B régulateur. Ces différences entre modèles inflammatoires peuvent être liées à l’intensité et
l’étendue de la réponse inflammatoire et donc à la quantité d’EVs à injecter pour inhiber cette inflammation.

- Enfin, exosomes et MPs exercent des effets chondroprotecteurs dans un modèle d’arthrose avec la même efficacité que les CSMs. Nous montrons que ces deux types d’EVs protègent le cartilage articulaire et l’os sous-chondral de la dégradation observée chez les souris contrôles et protègent les ménisques et ligaments de la calcification associée au phénotype arthrosique.

A l’issue de cette thèse, nos données concernant les effets fonctionnels des différentes sous-populations d’EVs dérivées de CSMs dans les atteintes ostéo-articulaires sont originales. Aucune autre étude n’a encore démontré de rôle fonctionnel des EVs dans les modèles de polyarthrite rhumatoïde. En revanche et très récemment, deux équipes ont publié des travaux sur les effets des exosomes dérivés de CSMs dans des modèles d’arthrose et montrent des résultats bénéfiques et cohérents avec ceux que nous avons obtenus. Zhu et al ont montré que les exosomes sécrétés par les CSMs humaines de la membrane synoviale et ceux sécrétés par des CSMs produites à partir d’iPS (iCSMs) atténuent la pathogénèse de la maladie avec une efficacité plus importante pour les exosomes dérivés des iCSMs (Y. Zhu et al. 2017). Dans une seconde étude, Tao et al ont montré que les exosomes dérivés de CSMs synoviales humaines protègent également contre la dégradation du cartilage (Tao et al. 2017). Nos études sont les premières à montrer le rôle fonctionnel d’exosomes et de MPs issus de CSMs murines dans les modèles pré-cliniques d’arthrose et de polyarthrite rhumatoïde.

De manière générale, les résultats que nous avons obtenus sont encourageants pour les perspectives d’utilisation des EVs en clinique, mais ils amènent de nombreuses interrogations.

Est-ce que le protocole d’isolement des EVs que nous avons choisi est optimal et permet de conclure sur le rôle respectif des deux sous-populations testées? Les moyens de purification des EVs sont variés et chaque équipe possède plus ou moins son propre protocole. Cela souligne encore une fois la nécessité d’une standardisation des protocoles d’isolement des exosomes mais également des MPs. En ce qui nous concerne, les
ultracentrifugations différentielles nous sont apparues comme le mode d’isolement le plus adapté pour nos grands volumes de surnageant de culture (supérieurs à 150 mL), et nos productions hebdomadaires afin d’éviter d’avoir recours à la congélation des EVs. Il est d’ailleurs important de rappeler que l’ultracentrifugation reste la technique d’isolement la plus populaire. Selon une étude récente menée par Gardiner, 81% des équipes travaillant sur les EVs utilisent l’ultracentrifugation pour les isoler, malgré le risque de contamination par des agrégats macromoléculaires ou des vésicules de grande taille (Gardiner et al. 2016). Cette méthode d’isolement est d’autant plus délicate que l’objectif principal de nos travaux était de comparer deux populations d’EVs aux tailles relativement proches. Le risque de contamination des MPs par les exosomes et également l’inverse n’est pas à exclure, même si une étape de filtration sur une membrane de 0,22µm permet théoriquement d’exclure des vésicules de taille supérieure lors de la production des exosomes. Durant ma première année de thèse, nous avons disposé de la technologie DLS afin de caractériser nos populations d’EVs. Les profils de taille de nos deux types de populations étaient rassurants, avec des moyennes de taille pour chaque population relativement distinctes (exosomes à 100 nm et MPs à 400 nm). Or, nous savons que la DLS n’est pas une méthode optimale pour obtenir la taille précise des EVs et que la technologie NTA est beaucoup plus adaptée. Nous avons eu accès à cette technologie il y a un an seulement. Les résultats ont montré que les exosomes ont une taille moyenne de 120 nm, comme attendue. En revanche, le profil des MPs était plus hétérogène. Elles sont largement enrichies en petites vésicules de 150 nm. MPs de 150 nm et exosomes de 120 nm sont-elles vraiment deux populations d’EVs distinctes ? Grâce à d’autres méthodes de caractérisation basées sur l’expression de marqueurs spécifiques, nous avons montré que nos deux populations d’EVs sont globalement distinctes avec des profils phénotypiques différents et cohérents avec leur origine supposée. Nous pouvons donc être confiants sur le fait que notre protocole permet d’enrichir, et pas purifier, les MPs et les exosomes avec suffisamment d’efficacité pour répondre aux questions que nous avions posées. Cependant, afin de poursuivre ce projet, l’utilisation combinée d’au moins deux moyens de purification semblerait plus adaptée. Les ultracentrifugations couplées avec des gradients de densité me semblent être l’une des meilleures façons d’enrichir de manière efficace la fraction exosomale.

Quels sont les mécanismes d’action des EVs ?

196
Au cours de ma thèse, nous avons décrit de nombreux effets médiés par les EVs sur diverses populations cellulaires ; notamment les cellules immunitaires et les chondrocytes. Cependant, toutes nos données sont majoritairement, comme de nombreuses autres publications basées sur les EVs, descriptives. Nous avons montré que les exosomes et les MPs agissent sur les différentes sous-populations de cellules immunitaires mais sans préciser leur mécanisme d’action. Quelles sont les molécules transportées et délivrées par les EVs dans ces cellules? Le contenu des exosomes et des MPs est-il comparable? Les moyens d’interaction entre exosomes, MPs et cellule cible sont-ils les mêmes? Nous savons que les EVs contiennent un vaste éventail d’éléments potentiellement bio-actifs : des protéines, des microARNs, des ARNms, des IncARNs … et tous peuvent contribuer aux effets bénéfiques assurés par les EVs. De plus en plus de publications s’intéressent au contenu des EVs de CSMs, les analyses de protéomique et de génomique s’intensifient. Bien que certaines publications pointent du doigt l’implication d’un microARN ou d’une protéine dans un modèle donné, nous savons que les mécanismes sont plus complexes et que l’action combinée de plusieurs médiateurs conduit probablement aux effets bénéfiques observés. On pourrait penser que les médiateurs solubles sécrétés par les CSMs sont présents au sein des EVs. Mais en identifiant au sein des EVs les protéines déjà décrites dans la littérature comme impliquées dans les effets immunomodulateurs des CSMs, nous avons montré que les EVs transportent du TGF-β1, PGE2, et IL-1RA mais pas IL-6. Nous savons aujourd’hui que certains ARNms et protéines sécrétées par les CSMs sont absents des EVs et que l’inverse est vrai; certains médiateurs sont spécifiquement adressés au compartiment vésiculaire et absents des cellules. Afin d’envisager une utilisation thérapeutique des EVs en clinique, il est indispensable d’élucider et de comprendre les processus précis qui régissent les interactions EV-cellule cible et la libération du contenu des EVs au sein des cellules cibles.

Comment envisager l’utilisation des EVs dérivées de CSMs en clinique?
Avant d’envisager une utilisation clinique des EVs pour les pathologies ostéo-articulaires, la reproductibilité de nos résultats avec des EVs issues de CSMs d’origine humaine est nécessaire. A priori, les CSMs humaines sécrètent des exosomes et des MPs. La majorité des publications scientifiques concernant le potentiel thérapeutique des EVs-CSMs sont basées sur l’utilisation de CSMs humaines isolées depuis la moelle osseuse ou le tissu

197
adipeux et les résultats sont concordants avec nos résultats de thèse. L’intérêt de développer une thérapie acellulaire centrée sur les EVs de CSMs a été discuté tout au long de ce mémoire et n’est plus à prouver. Cependant, l’utilisation clinique des EVs doit respecter les normes de bonnes pratiques de production (ou GMP « good manufacturing practices ») ainsi que de conservation pour obtenir des EVs thérapeutiques de grade clinique. Les quantités et la qualité des EVs produites doivent être uniformes et reproductibles. Or, quiconque travaillant sur les EVs sait que les moyens de production des vésicules sont complexes, et que leur composition et leur nombre sont variables. Elles sont variables entre deux laboratoires de par les diversités de cellules utilisées (primaires, lignées, origine) et les diversités des conditions de culture (compositions des milieux de culture, nombre de passages des cellules, confluence des cellules, protocoles d’isolement d’EVs...). Mais elles sont également variables au sein même d’une équipe utilisant les mêmes cellules et les mêmes conditions d’une production d’EVs à l’autre. D’où vient une telle variabilité reste une question sans réponse.

A l’heure actuelle, un unique essai clinique (NCT02138331) évalue l’effet des EVs de CSMs dans le diabète de type I et est actuellement en phase 2/3.

Pour conclure, bien que les EVs dérivées des CSMs suscitent encore de nombreuses questions, leur large potentiel démontré dans la littérature et dans cette thèse les positionne comme une stratégie thérapeutique innovante pour les maladies ostéo-articulaires.
Références bibliographiques

Type-Specific Apoptotic Bodies by Fluorescence-Activated Cell Sorting ». *Scientific Reports* 7 (janvier): 39846. doi:10.1038/srep39846.

Plasma». *International Immunology* 17 (7): 879-87.

doi:10.4049/jimmunol.1103466.

Che, Nan, Xia Li, Lu Zhang, Rui Liu, Haifeng Chen, Xiang Gao, Songtao Shi, Wanjun Chen, et Lingyun Sun. 2014. «Impaired B Cell Inhibition by Lupus Bone Marrow Mesenchymal Stem Cells Is Caused by Reduced CCL2 Expression». *Journal of Immunology (Baltimore, Md.: 1950)* 193 (10): 5306-14.
doi:10.4049/jimmunol.1400036.

doi:10.1152/ajprenal.00434.2006.

Cho, Dong-Im, Mi Ra Kim, Hye-yun Jeong, Hae Chang Jeong, Myung Ho Jeong, Sung Ho Yoon, Yong Sook Kim, et Youngkeun Ahn. 2014. «Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages». *Experimental & Molecular Medicine* 46 (1): e70.

Conforti, Antonella, Marco Scarsella, Nadia Starc, Ezio Giorda, Simone Biagini, Alessandra Proia, Rita Carsetti, Franco Locatelli, et Maria Ester Bernardo. 2014. « Microvesicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro ». Stem cells and development, n° ja. http://online.liebertpub.com/doi/abs/10.1089/scd.2014.0091.

Cutolo, Maurizio, Barbara Villaggio, Chiara Craviotto, Carmen Pizzorni, Bruno Seriolo, et Alberto Sulli. 2002. « Sex Hormones and Rheumatoid Arthritis ».
Autoimmunity Reviews 1 (5): 284–89.

doi:10.3727/096368915X687543.

Deregibus, Maria Chiara, Vincenzo Cantaluppi, Raffaele Calogero, Marco Lo Iacono, Ciro Tetta, Luigi Biancone, Stefania Bruno, Benedetta Bussolati, et Giovanni Camussi. 2007. « Endothelial Progenitor Cell Derived Microvesicles Activate an Angiogenic Program in Endothelial Cells by a Horizontal Transfer of mRNA ».

Gezer, Uğur, Emre Özgür, Merve Cetinkaya, Mustafa Isin, et Nejat Dalay. 2014. « Long Non-Coding RNAs with Low Expression Levels in Cells Are Enriched in Secreted
Exosomes ». *Cell Biology International* 38 (9): 1076-79.

doi:10.4049/jimmunol.0902007.

Kim, Jaehyup, et Peiman Hematti. 2009. « Mesenchymal Stem Cell–educated Macrophages: A Novel Type of Alternatively Activated Macrophages ».

216
Experimental Hematology 37 (12): 1445-53.
Kosaka, Nobuyoshi, Haruhisa Iguchi, Yusuke Yoshioka, Fumitaka Takeshita, Yasushi Matsuki, et Takahiro Ochiya. 2010. « Secretory Mechanisms and Intercellular

Li, Yan, Qiupeng Zheng, Chunyang Bao, Shuyi Li, Weijie Guo, Jiang Zhao, Di Chen, Jianren Gu, Xianghuo He, et Shenglin Huang. 2015. « Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis ». Cell research 25 (8): 981.

Lin, Ruei-Zeng, Rafael Moreno-Luna, Bin Zhou, William T. Pu, et Juan M. Meler-Martin. 2012. « Equal Modulation of Endothelial Cell Function by Four Distinct Tissue-

220
« Mesenchymal Stem Cells Repress Th17 Molecular Program through the PD-1 Pathway ». *PloS One* 7 (9): e45272. doi:10.1371/journal.pone.0045272.

doi:10.1002/1529-0131(200001)43:1<30::AID-ANR5>3.0.CO;2-B.

doi:10.1371/journal.pone.0009252.

Mias, Céline, Olivier Lairez, Elodie Trouche, Jérome Roncalli, Denis Calise, Marie-Hélène Seguelas, Catherine Ordener, et al. 2009. « Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac

Record, Michel, Kevin Carayon, Marc Poirot, et Sandrine Silvente-Poirot. 2014. « Exosomes as New Vesicular Lipid Transporters Involved in Cell-Cell

Schena, Francesca, Claudio Gambini, Andrea Gregorio, Manuela Mosconi, Daniele Reverberi, Marco Gattorno, Simona Casazza, et al. 2010. « Interferon-γ-Dependent Inhibition of B Cell Activation by Bone Marrow-Derived Mesenchymal Stem Cells in a Murine Model of Systemic Lupus Erythematosus ». *Arthritis and Rheumatism* 62 (9): 2776-86. doi:10.1002/art.27560.

Schwartz, Robert E., Morayma Reyes, Lisa Koodie, Yuehua Jiang, Mark Blackstad, Troy Lund, Todd Lenvik, Sandra Johnson, Wei-Shou Hu, et Catherine M. Verfaillie.

Phosphatidylinerse and Hemorrhagic Complications, Is an Inherited Disorder ».

Wang, Hao, Feng Qi, Xiangchen Dai, Weijun Tian, Tong Liu, Hongqiu Han, Bai Zhang, Hongyue Li, Zhixiang Zhang, et Caigan Du. 2014. « Requirement of B7-H1 in Mesenchymal Stem Cells for Immune Tolerance to Cardiac Allografts in Combination Therapy with Rapamycin ». Transplant Immunology 31 (2): 65-74. doi:10.1016/j.trim.2014.06.005.

Annexes
COSENZA Stella
1 rue François Mitterrand,
Domaine des muses, appt B13
34920 LE CRES
☎: stella.cosenza@yahoo.fr
☎: (+33) 778104045

COURS UNIVERSITY :

- **2013 à aujourd’hui :** Préparation d’un doctorat de biologie, UM1 Montpellier.
- **2014 :** Diplôme d’expérimentation animale de niveau 2.
- **2013 :** Obtention d’un master 2 en biologie santé, parcours interactions hôtes-agents infectieux et mécanismes de défense, UM2 Montpellier. (Mention Bien)
- **2012 :** Obtention d’un master 1 de pathologie humaine, faculté de médecine La Timone, Marseille. (mention Bien)
- **2011 :** Obtention d’une licence de biologie spécialité Immunologie-Microbiologie, UM2 Montpellier. (mention Assez Bien)

EXPERIENCES DE LABORATOIRE :

- **2013 à aujourd’hui (4ans) :** Inserm U1183, Institut de médecine régénératrice et biothérapies (IRMB), Montpellier
 Etude des vésicules extracellulaires (exosomes et microparticules) dérivées des cellules souches mésenchymateuses et utilisation dans les modèles d’atteintes ostéo-articulaires.
 Sous la direction de Danièle Noël et Christian Jorgensen.
- **Janvier à juin 2013 (6mois) :** Inserm U1040, Institut de recherche en médecine régénératrice et biothérapies (IRMB), Montpellier
 Impact du prion sur la neurogenèse adulte.
 Sous la direction de Carole Crozet et Sylvain Lehmann.
- **Avril à juin 2012 (3mois) :** Unité TransVIHMI, institut de recherche et de développement (IRD), Montpellier
 Etude de la variabilité génétique des souches du VIH-1
 Sous la direction de Martine Peeters.

EXPERIENCES D’ENSEIGNEMENT ET D’ENCADREMENT :

- **2017 (6 mois) :** Encadrement d’un stagiaire de master 2
• Année scolaire 2016/2017 : Vacations en biologie cellulaire HLBI101, UM2 Montpellier
 26h de travaux dirigés (TD)

• Année scolaire 2015/2016 : Monitorat en biologie cellulaire HLBI101, UM2 Montpellier
 64h de travaux dirigés et travaux pratiques (TD/TP)

• Année scolaire 2014-2015 : Monitorat en biologie cellulaire HLBI101 et biochimie HLBI304, UM2 Montpellier
 64h de travaux pratiques (TP)

COMPETENCES SCIENTIFIQUES :

• Biologie moléculaire : extraction et purification d’ARN, PCR, RT PCR, qPCR, séquençage Sanger

• Biologie cellulaire : culture cellulaire, Western Blot, ELISA, cytométrie en flux, ultracentrifugation, immunofluorescence, culture en laboratoire de confinement P3

• In vivo : travail sur la souris : injection, euthanasie et dissection

• Microscopie : optique et confocale

• Logiciels : Image J, Photoshop, Microsoft Office, GraphPad Prism

PUBLICATIONS :

• Cosenza S, Ruiz M, Toupet K, Bony C, Jorgensen C, Noel D. Mesenchymal stem cells derived exosomes and microparticles are chondroprotective in osteoarthritis (article en cours d’écriture)

COMMUNICATIONS ORALES:

- **colloque REM (club de recherches expérimentales sur les maladies articulaires)** - SOREZE, France - 9 et 10 juin 2017 «Exosomes and microparticles released by mesenchymal stem cells exert a chondroprotective effect in osteoarthritis”

- **ISEV (international society of extracellular vesicles)** - Toronto, Canada - 18 au 21 mai 2017 “Exosomes and microparticles released by mesenchymal stem cells exert a chondroprotective effect in osteoarthritis”

- **EWRR** - Athènes, Grèce - avril 2017 “Mesenchymal stem cell-derived exosomes and microvesicles exert similar immunomodulatory effect in collagen-induced arthritis”

- **ICRS** - Sorrento Italie - septembre 2016 “Exosomes and microparticles released by mesenchymal stem cells exert a chondroprotective effect in osteoarthritis”

- **Colloque REM** - Castelnau-le-Lez, France - juin 2015 “Differential effects of exosomes and microparticles derived from MSC on T cell proliferation and experimental arthritis”

- **ADIPOA Meeting project** - Montpellier, France - juin 2015 “Differential effects of exosomes and microparticles derived from MSC on T cell proliferation and experimental arthritis”

- **ISEV** - Washington, USA - avril 2015 “exosomes et microparticles derived from mesenchymal stem cells exert immunomodulatory effect in collagen-induced arthritis”

INTERETS PERSONNELS:

- **Sports** pratiquante de crossfit et de course à pied
- **Musique, lecture, théâtre**
- **Voyages**