. Bibliographie, EMCCD for Spectroscopy' URL: http://www.andor.com/learning- academy/emccds-for-spectroscopy-emccd-technology-in-spectroscopy

G. Bonanno, M. Belluso, S. Billotta, and P. Finocchiaro, Geiger Avalanche Photodiodes (G-APDs) and Their Characterization, 2005.
DOI : 10.5772/18889

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.455.8070

E. Charbon, M. Fisshburn, R. Walker, R. K. Henderson, and C. Niclass, SPAD Based Sensors', in TOF Range-Imaging CamerasSelf-quenching single photon avalanche photodiodes for nearinfrared detection, Thèse de doct, pp.11-38, 2012.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection, Applied Optics, vol.35, issue.12, pp.1956-76, 1996.
DOI : 10.1364/AO.35.001956

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, Evolution and prospects for single-photon avalanche diodes and quenching circuits, Journal of Modern Optics, vol.32, issue.9-10, pp.1267-1288, 2004.
DOI : 10.1063/1.1146551

C. Mcintyre, P. P. Trottier, and . Webb, Photon-counting techniques with silicon avalanche photodiodes, Applied Optics, vol.32, pp.3894-3900, 1993.

M. J. Finkelstein, S. Hsu, and . Esener, An ultrafast Geiger-mode single-photon avalanche diode in 0.18-??m CMOS technology, Advanced Photon Counting Techniques, p.63720, 2006.
DOI : 10.1117/12.705259

. Grant, A Single Photon Detector Implemented in a 130 nm CMOS Imaging Process, 38 th European Solid-State Device Research Conference (ESSDERC), 2008.

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, Junctions. II. Structurally Perfect Junctions, Journal of Applied Physics, vol.7, issue.6, pp.1591-1600, 1963.
DOI : 10.1103/PhysRev.109.1537

[. Guille, Rapport de Travaux d'Études et de Recherches Simulation de systèmes de particules en interaction, 2011.

R. A. Harrison, S. Abram, and . Brand, Characteristics of impact ionization rates in direct and indirect gap semiconductors, Journal of Applied Physics, vol.10, issue.12
DOI : 10.1088/0268-1242/8/8/010

[. Kazma, O. Rossetto, and G. Sicard, High level model of SPAD based pixel, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2015.
DOI : 10.1109/PRIME.2015.7251350

URL : https://hal.archives-ouvertes.fr/in2p3-01176814

R. Kazma, O. Rossetto, and G. Sicard, High dynamic range readout architecture for SPAD arrayTime-of-Flight 3D Imaging based on a SPAD-TDC Pixel Array in Standard 65 nm CMOS Technology, Design of Circuits and Integrated Systems (DCIS) Thèse de doctLodha_12] : N. Lodha, 'Monolithic Integration of LEDs and SPADs in Standard CMOS Technology for Optical Joystick Application Thèse de doct, 2012.

[. Mita and G. Palumbo, High-Speed and Compact Quenching Circuit for Single-Photon Avalanche Diodes, IEEE Transactions on Instrumentation and Measurement, vol.57, issue.3, pp.543-547, 2008.
DOI : 10.1109/TIM.2007.911691

C. Niclass, P. Besse, and E. Charbon, Arrays of Single Photon Avalanche Diodes in CMOS Technology : Picosecond Timing Resolution for Range Imaging ( INVITED )'. 1 st Range Imaging Research Day, 2005.

E. Sergio and . Charbon, A Single Photon Avalanche Diode Array Fabricated in 0.35µm CMOS and based on an Event-Driven Readout for TCSPC Experiments, SPIE Optics East, 2006.

M. Niclass, E. Sergio, and . Charbon, A Single Photon Avalanche Diode Array Fabricated on Deep-Submicron CMOS Technology, Design and Test in Europe (DATE), 2006.
DOI : 10.1109/date.2006.243987

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.4, 2007.
DOI : 10.1109/JSTQE.2007.903854

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.6754&rep=rep1&type=pdf

F. Osaka, T. Mikawa, and O. Wada, Analysis of Impact Ionization Phenomena in InP by Monte Carlo Simulatio, Japanese Journal of Applied Physics, vol.25, issue.3

D. Palubiak, M. M. El-desouki, O. Marinov, M. J. Deen, and Q. Fang, High-Speed, Single-Photon Avalanche-Photodiode Imager for Biomedical Applications, IEEE Sensors Journal, vol.11, issue.10, p.10, 2011.
DOI : 10.1109/JSEN.2011.2123090

M. Repich, D. Stoppa, L. Pancheri, and G. F. Betta, Simulation modelling for the analysis and the optimal design of SPAD detectors for time-resolved fluorescence measurements, Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing II, 2009.
DOI : 10.1117/12.820430

S. Tisa, F. Guerrieri, and F. Zappa, Monolithic Array Of 32 SPAD Pixels For Single-Photon Imaging At High Frame-Rates', New Developments in Photodetection, 2008.

S. Tisa, F. Guerrieri, and F. Zappa, Variable-load quenching circuit for singlephoton avalanche diodes', Optics Express, pp.2232-2244
DOI : 10.1364/oe.16.002232

R. Belluso, R. Saletti, and . Roncella, Pushing technologies: single-photon avalanche diode arrays', presented at Advancements in Adaptive Optics, 2004.

D. Xiao, R. S. Pantic, and . Popovic, A New Single Photon Avalanche Diode in CMOS High-Voltage Technology, TRANSDUCERS 2007, 2007 International Solid-State Sensors, Actuators and Microsystems Conference, 2007.
DOI : 10.1109/SENSOR.2007.4300396

R. Kazma, O. Rossetto, and G. Sicard, High level model of SPAD based pixel, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2015.
DOI : 10.1109/PRIME.2015.7251350

URL : https://hal.archives-ouvertes.fr/in2p3-01176814

R. Kazma, O. Rossetto, and G. Sicard, High dynamic range readout architecture for SPAD array, 2015 Conference on Design of Circuits and Integrated Systems (DCIS), 2015.
DOI : 10.1109/DCIS.2015.7388588

URL : https://hal.archives-ouvertes.fr/in2p3-01376501

R. Kazma, O. Rossetto, and G. Sicard, Reducing quantization error in time measurement technique for SPAD readout circuit, 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2016.
DOI : 10.1109/ICECS.2016.7841141

URL : https://hal.archives-ouvertes.fr/in2p3-01419296

R. Kazma, O. Rossetto, and G. Sicard, Les photodiodes à avalanches polarisées en mode Geiger (Single Photon Avalanche Diode, SPAD) CMOS à grande dynamique, 18th Journées Nationales du Réseau Doctoral en Micro-nanoélectronique (JNRDM), 2015.