C. K. Aggarwal and . Reddy, Data clustering: algorithms and applications Data classification: algorithms and applications, 2013.

. Agg, Fast Algorithms for Projected Clustering, ACM SIGMOD Record, vol.28, issue.2, pp.61-72, 1999.

A. Aggarwal, D. A. Hinneburg, and . Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Space, Database Theory -ICDT 2001, J. Van den Bussche and V. Vianu, pp.420-434, 1973.
DOI : 10.1007/3-540-44503-X_27

. Agg, A framework for clustering evolving data streams, Proceedings of the 29th international conference on Very large data bases, pp.81-92, 2003.

M. J. Agu, R. Aguilar-martín, and . Lopez-de-mantaras, The process of classification and learning the meaning of linguistic descriptors of concepts, Approximate reasoning, pp.165-175, 1982.

. Agu, Situation assessment in autonomous systems, 2012 Global Information Infrastructure and Networking Symposium (GIIS), pp.1-6, 2012.

M. J. Alc, Y. Alcock, and . Manolopoulos, Time-series similarity queries employing a feature-based approach, Proceedings of the 7 th Hellenic Conference on Informatics, 1999.

D. Alu, ]. R. Alur, and D. L. Dill, A theory of timed automata, Theoretical Computer Science, vol.126, issue.2, pp.183-235, 1994.

M. Amo, ]. R. De-amorim, and B. Mirkin, Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering, Pattern Recognition, vol.45, issue.3, pp.1061-1075, 2012.

A. , G. , ]. G. Anagnostopoulos, and M. Georgiopoulos, Ellipsoid ART and ARTMAP for incremental unsupervised and supervised learning, Aerospace/Defense Sensing, Simulation, and Controls, pp.293-304, 2001.
DOI : 10.1117/12.421180

X. Angelov and . Zhou, Evolving Fuzzy-Rule-Based Classifiers From Data Streams. Fuzzy Systems, IEEE Transactions on, vol.16, issue.6, pp.1462-1475, 2008.
DOI : 10.1109/tfuzz.2008.925904

]. P. Ang-11 and . Angelov, Fuzzily Connected Multimodel Systems Evolving Autonomously From Data Streams, Systems, Man, and Cybernetics Part B: Cybernetics, IEEE Transactions on, vol.41, issue.4, pp.898-910, 2011.

A. Kafka, A high-throughput, distributed messaging system, 2016.

. Bar, A multi-user remote academic laboratory system, Computers & Education, vol.62, pp.111-122, 2013.

. Bar, Trend-Based Dynamic Classification for on-line Diagnosis of Time-Varying Dynamic Systems, SAFEPROCESS 2015, Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, pp.1224-1231, 2015.

. Bar, DyClee: Dynamic clustering for tracking evolving environments, Pattern Recognition, 2016.

. Bar, Dynamic Clustering as a Tool for Monitoring Evolving Systems, DX-2016, Proceedings of the 27th International Workshop on Principles of Diagnosis. DX, 2016.

. Bar, Dynamic clustering for process supervision, XVII CLCA, Latin American Conference of Automatic Control. IFAC, 2016.

. Bar, A novel algorithm for dynamic clustering: properties and performance, ICMLA 2016, 15th IEEE International Conference on Machine Learning and Applications, 2016.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The R*-tree: An Efficient and Robust Access Method for Points and Rectangles, Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, SIGMOD '90, pp.322-331, 1990.

]. J. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM, vol.18, issue.9, pp.509-517, 1975.
DOI : 10.1145/361002.361007

. Ben, Density-based indexing for approximate nearest-neighbor queries, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.233-243, 1999.

. Ber, ]. J. Hül-06, E. Beringer, and . Hüllermeier, Online clustering of parallel data streams, Data & Knowledge Engineering, vol.58, issue.2, pp.180-204, 2006.

. Bey, When Is " Nearest Neighbor, Database Theory ? ICDT'99: 7th International Conference, pp.217-235, 1999.

. Bez, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, vol.10, issue.2, pp.191-203, 1984.

. Bob, . Bez-91-]-l, J. C. Bobrowski, and . Bezdek, c-means clustering with the l 1 and l ? norms, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.3, pp.545-554, 1991.

. Bor, . Bha-07-]-b, D. K. Borah, and . Bhattacharyya, A Clustering Technique using Density Difference, 2007 International Conference on Signal Processing, Communications and Networking, pp.585-588, 2007.
DOI : 10.1109/ICSCN.2007.350675

. Bot, Automaton based on fuzzy clustering methods for monitoring industrial processes, Engineering Applications of Artificial Intelligence, vol.26, issue.4, pp.1211-1220, 2013.
DOI : 10.1016/j.engappai.2012.11.003

. Bou, ]. A. Van-11, C. Bouchachia, and . Vanaret, Incremental learning based on growing gaussian mixture models, Machine Learning and Applications and Workshops (ICMLA), 2011 10th International Conference on, pp.47-52, 2011.

W. Ester, A. Qian, and . Zhou, Density-based Clustering over an Evolving Data Stream with Noise, SDM, pp.326-337, 2006.

. Car, . A. Gro-10-]-g, S. Carpenter, and . Grossberg, Adaptive resonance theory, Encyclopedia of Machine Learning, pp.22-35, 2010.

. Rosen and A. Fuzzy, A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks, vol.3, issue.5, pp.698-713, 1992.

C. and D. Yeung, Robust path-based spectral clustering, Pattern Recognition, vol.41, issue.1, pp.191-203, 2008.

G. Cheung and . Stephanopoulos, Representation of process trends???Part I. A formal representation framework, Computers & Chemical Engineering, vol.14, issue.4-5, pp.495-510, 1990.
DOI : 10.1016/0098-1354(90)87023-I

C. and L. Tu, Density-based clustering for real-time stream data, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and data mining, pp.133-142, 2007.

. Chi, Fault detection and diagnosis in industrial systems, 2001.

A. Cordier and . Grastien, Exploiting Independence in a Decentralised and Incremental Approach of Diagnosis, IJCAI, pp.292-297, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00086617

F. Dasgupta and . Nino, A comparison of negative and positive selection algorithms in novel pattern detection, SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and their Complex Interactions' (Cat. No.00CH37166), pp.125-130, 2000.
DOI : 10.1109/ICSMC.2000.884976

S. Dash, M. R. Maurya, V. Venkatasubramanian, and R. Rengaswamy, A novel interval-halving framework for automated identification of process trends, AIChE Journal, vol.26, issue.1, pp.149-162, 2004.
DOI : 10.1080/02564602.2000.11416919

. Dav, Informationtheoretic Metric Learning Model-based fault diagnosis techniques: design schemes, algorithms , and tools, Proceedings of the 24th International Conference on Machine Learning, ICML '07 ACM. [Din 08] S. DingDin 14] S. Ding. Data-driven design of fault diagnosis and fault-tolerant control systems, pp.209-216, 2007.

M. Djeziri, B. O. Bouamama, and R. Merzouki, Modelling and robust FDI of steam generator using uncertain bond graph model, Journal of Process Control, vol.19, issue.1, pp.149-162, 2009.
DOI : 10.1016/j.jprocont.2007.12.009

URL : https://hal.archives-ouvertes.fr/hal-00758142

R. Doherty, N. Adams, and . Davey, Non-Euclidean norms and data normalisation, Proceedings of the European Symposium on Artificial Neural Networks (ESANN), pp.181-186, 2004.

S. Elnekave, M. Last, and O. Maimon, Incremental Clustering of Mobile Objects, 2007 IEEE 23rd International Conference on Data Engineering Workshop, pp.585-592, 2007.
DOI : 10.1109/ICDEW.2007.4401044

URL : http://ccs.njit.edu/inst/source/07STDM09.pdf

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, KDD, pp.226-231, 1996.

M. Leeser, J. Theiler, and J. J. Szymanski, Algorithmic Transformations in the Implementation of K-Means Clustering on Reconfigurable Hardware, Proceedings of the 2001 ACM/SIGDA Ninth International Symposium on Field Programmable Gate Arrays, FPGA '01, pp.103-110, 2001.

. Fah, Scalable Varied Density Clustering Algorithm for Large Datasets, Journal of Software Engineering and Applications, vol.3, issue.06, p.593, 2010.

G. Friedman, M. Nair, A. Rys, and . Schmid, Spatial Indexing in Microsoft SQL Server, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD '08, pp.1207-1216, 2008.

F. Filev and . Tseng, Novelty Detection Based Machine Health Prognostics, 2006 International Symposium on Evolving Fuzzy Systems, pp.193-199, 2006.
DOI : 10.1109/ISEFS.2006.251161

B. Fischer, T. Zöller, and J. Buhmann, Path Based Pairwise Data Clustering with Application to Texture Segmentation, Lecture Notes in Computer Science, vol.2134, pp.235-250, 2001.
DOI : 10.1007/3-540-44745-8_16

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Fra, The Concentration of Fractional Distances, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.7, pp.873-886, 2007.

. I. Ga-12-]-f, . Gamero, and . Argüello, Pattern recognition based on qualitative representation of signals. Application to situation assessment of dynamic systems, 2012.

. Ga, Qualtras: a Tool for Qualitative Trend Representations

. Gam, A survey on concept drift adaptation, ACM Computing Surveys, vol.46, issue.4, p.44, 2014.
DOI : 10.1109/TNNLS.2012.2236570

. Gam, Process diagnosis based on qualitative trend similarities using a sequence matching algorithm, Journal of Process Control, vol.24, issue.9, pp.1412-1424, 2014.

D. Garcia, Robust smoothing of gridded data in one and higher dimensions with missing values, Computational Statistics & Data Analysis, vol.54, issue.4, pp.1167-1178, 2010.
DOI : 10.1016/j.csda.2009.09.020

. Gau, Hybrid Particle Petri Nets for Systems Health Monitoring under Uncertainty, International Journal of Prognostics and Health Management, vol.6, 2015.

. Gou, Strategies to face imbalanced and unlabelled data in PHM applications, Chemical Engineering Transactions, vol.33, pp.115-120, 2013.

K. Gus, ]. D. Gustafson, and W. C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Decision and Control including the 17th Symposium on Adaptive Processes IEEE Conference on, pp.761-766, 1978.

P. Haa, E. Haasdonk, and . P¸ekalskap¸ekalska, Classification with Kernel Mahalanobis Distance Classifiers In Advances in Data Analysis, Data Handling and Business Intelligence, Studies in Classification, Data Analysis, and Knowledge Organization, pp.351-361, 2010.

. Hat, Generalized fuzzy c-means clustering strategies using Lp norm distances, IEEE Transactions on Fuzzy Systems, vol.8, issue.5, pp.576-582, 2000.

. Hed, Sensor placement and fault detection using an efficient fuzzy feature selection approach, Decision and Control (CDC), 2010 49th, IEEE Conference on, pp.6827-6832, 2010.

D. Yang and . Li, Class-incremental fisher discriminant analysis with principal component analysis for process monitoring, Asian Control Conference, pp.830-834, 2009.

C. C. Hinneburg, D. A. Aggarwal, and . Keim, What Is the Nearest Neighbor in High Dimensional Spaces, Proceedings of the 26th International Conference on Very Large Data Bases, VLDB '00, pp.506-515, 2000.

. Hou, Can shared-neighbor distances defeat the curse of dimensionality?, Scientific and Statistical Database Management: 22nd International Conference, SS- DBM 2010. Proceedings, M. Gertz and B. Ludäscher, pp.482-500, 2010.

A. Hub, ]. L. Hubert, and P. Arabie, Comparing partitions, Journal of Classification, vol.2, issue.1, pp.193-218, 1985.

]. M. Ven-91, V. Janusz, and . Venkatasubramanian, Automatic generation of qualitative descriptions of process trends for fault detection and diagnosis, Engineering Applications of Artificial Intelligence, vol.4, issue.5, pp.329-339, 1991.

M. Jay, ]. S. Jayousi, and M. S. Muhammad, A Survey of Contact Testing Techniques for the Diagnosis of Printed Circuit Boards, International Journal of Scientific & Engineering Research, vol.5, issue.4, 2014.

. Kae, Reinforcement learning: A survey, Journal of artificial intelligence research, pp.237-285, 1996.

. Kar, Chameleon: A Hierarchical clustering Algorithm using Dynamic Modeling, EECS Bldg, pp.4-192, 1999.

. Kar, Chameleon: Hierarchical clustering using dynamic modeling, Computer, vol.32, issue.8, pp.68-75, 1999.

. Kem, Process situation assessment: From a fuzzy partition to a finite state machine, Engineering Applications of Artificial Intelligence, vol.19, issue.5, pp.461-477, 2006.

M. Keogh and . Pazzani, Scaling up dynamic time warping for data mining applications, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.285-289, 2000.
DOI : 10.1145/347090.347153

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Kra, The ClusTree: indexing micro-clusters for any stream mining, Knowledge and information systems, vol.29, issue.2, pp.249-272, 2011.

. Kri, Outlier detection in axis-parallel subspaces of high dimensional data, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.831-838, 2009.

. Kri, Density-based clustering, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.1, issue.3, pp.231-240, 2011.

. Kwa, An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data, IEEE Transactions on Semiconductor Manufacturing, vol.28, issue.3, pp.318-328, 2015.

P. J. Li, L. Li, and . Peng, Human expression recognition based on feature block 2DPCA and Manhattan distance classifier, 7th World Congress on Intelligent Control and Automation, pp.5941-5945, 2008.

. Li, An online clustering algorithm, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.1104-1108, 2011.
DOI : 10.1109/FSKD.2011.6019762

. Lun, ]. J. Sup-02, P. Lunze, and . Supavatanakul, Diagnosis of discrete?event system described by timed automata, IFAC Proceedings Volumes, pp.77-82, 2002.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

J. Mao, ]. J. Mao, and A. K. Jain, A self-organizing network for hyperellipsoidal clustering (HEC), IEEE Transactions on Neural Networks, vol.7, issue.1, pp.16-29, 1996.

S. Singh, Novelty detection: a review?part 1: statistical approaches and part 2: neural network based approaches, Signal processing, vol.83, issue.12, pp.2481-2497, 2003.

. Mau, Qualitative trend analysis of the principal components: application to fault diagnosis, 8th International Symposium on Process Systems Engineering, pp.968-973, 2003.

. Mau, Fault Diagnosis by Qualitative Trend Analysis of the Principal Components, Chemical Engineering Research and Design, vol.83, issue.9, pp.1122-1132, 2005.

. Mau, Fault diagnosis using dynamic trend analysis: A review and recent developments, Special Issue on Applications of Artificial Intelligence in Process Systems Engineering, pp.133-146, 2007.

. Mau, A framework for on-line trend extraction and fault diagnosis, Engineering Applications of Artificial Intelligence, vol.23, issue.6, pp.950-960, 2010.

J. Mazel, P. Casas, Y. Labit, and P. Owezarski, Sub-space clustering, inter-clustering results association & anomaly correlation for unsupervised network anomaly detection, Proceedings of the 7th International Conference on Network and Services Management International Federation for Information Processing, pp.73-80, 2011.

. Me, A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning, Computers & Geosciences, vol.73, pp.132-141, 2014.

. Mil, TIGER: real-time situation assessment of dynamic systems, Intelligent Systems Engineering, vol.3, issue.3, pp.103-124, 1994.

. Mit, Non-convex clustering using expectation maximization algorithm with rough set initialization, Pattern Recognition Letters, vol.24, issue.6, pp.863-873, 2003.

. Mon, Processing measure uncertainty into fuzzy classifier, 26th International Workshop on Principles of Diagnosis, 2015.

S. M. Omohundro, Five Balltree Construction Algorithms, 1989.

. Ora, Selection of sensors by a new methodology coupling a classification technique and entropy criteria, Chemical Engineering Research and Design, vol.8, issue.6, pp.825-836, 2007.

B. O. Bouamama, Contrôle en ligne d'une installation de générateur de vapeur par Bond Graph, base documentaire : TIB521DUO., no. ref. article : ag3551, 2014.

M. Paterson and V. Dan?ík, Longest common subsequences, International Symposium on Mathematical Foundations of Computer Science, pp.127-142, 1994.
DOI : 10.1007/3-540-58338-6_63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Grisel, P. Blondel, R. Prettenhofer, V. Weiss, J. Dubourg et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. Cordier, A formal framework for the decentralised diagnosis of large scale discrete event systems and its application to telecommunication networks, Artificial Intelligence, vol.164, issue.1, pp.121-170, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00511104

. Pyo, Service improvement by business process management using customer complaints in financial service industry, Expert Systems with Applications, vol.38, issue.4, pp.3267-3279, 2011.

. Ram, . Gou-14-]-e, R. Ramasso, and . Gouriveau, Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions, IEEE Transactions on Reliability, vol.63, issue.2, pp.555-566, 2014.

. Ren, A qualitative shape analysis formalism for monitoring control loop performance, Engineering Applications of Artificial Intelligence, vol.14, issue.1, pp.23-33, 2001.

]. L. Ribeiro and J. Barata, Re-thinking diagnosis for future automation systems: An analysis of current diagnostic practices and their applicability in emerging IT based production paradigms, Computers in Industry, vol.62, issue.7, pp.639-659, 2011.
DOI : 10.1016/j.compind.2011.03.001

J. Rubner, C. Puzicha, J. M. Tomasi, and . Buhmann, Empirical Evaluation of Dissimilarity Measures for Color and Texture, Computer Vision and Image Understanding, vol.84, issue.1, pp.25-43, 2001.
DOI : 10.1006/cviu.2001.0934

C. Yoshikawa and . Faloutsos, FTW: Fast Similarity Search Under the Time Warping Distance, Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '05, pp.326-337, 2005.

. Sam, Failure diagnosis using discrete-event models, IEEE transactions on control systems technology, vol.4, issue.2, pp.105-124, 1996.

M. C. Silverman, . E. Jones, J. L. Fix, and . Hodges, E. Fix and J.L. Hodges (1951): An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation: Commentary on Fix and Hodges (1951), International Statistical Review / Revue Internationale de Statistique, vol.57, issue.3, pp.233-238, 1951.
DOI : 10.2307/1403796

R. M. De-souza and F. A. De-carvalho, Dynamic clustering of interval data based on adaptive Chebyshev distances, Electronics Letters, vol.40, issue.11, pp.658-660, 2004.
DOI : 10.1049/el:20040440

M. Steinbach, G. Karypis, and V. Kumar, A comparison of document clustering techniques, KDD workshop on text mining, pp.525-526, 2000.

. Sub, Learning chronicles signing multiple scenario instances, {IFAC} Proceedings Volumes 19th {IFAC} World Congress, pp.10397-10402, 2014.

. Sup, Diagnosis of timed automata: Theory and application to the DAMADICS actuator benchmark problem, Control Engineering Practice, vol.14, issue.6, pp.609-619, 2006.

. Tha, A Hybrid Clustering Algorithm: The FastDBSCAN, 2015 International Conference on Engineering and Telecommunication (EnT), pp.69-74, 2015.

S. C. Thornhill, S. L. Patwardhan, and . Shah, A continuous stirred tank heater simulation model with applications, Journal of Process Control, vol.18, issue.3-4, pp.347-360, 2008.
DOI : 10.1016/j.jprocont.2007.07.006

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/14363/2/ThornhillPatwardhan%26ShahCSTH_JPC2008.pdf

L. Travé-massuyès, Bridging control and artificial intelligence theories for diagnosis: A survey, Engineering Applications of Artificial Intelligence, vol.27, pp.1-16, 2014.
DOI : 10.1016/j.engappai.2013.09.018

R. Massuyès and . Milne, Gas-turbine condition monitoring using qualitative model-based diagnosis, IEEE Expert, vol.12, issue.3, pp.22-31, 1997.
DOI : 10.1109/64.590070

P. Traverse, I. Lacaze, and J. Souyris, Airbus Fly-By-Wire: A Total Approach To Dependability, Building the Information Society: IFIP 18th World Computer Congress Topical Sessions 22?27, pp.191-212, 2004.
DOI : 10.1007/978-1-4020-8157-6_18

D. L. Le, M. Ngo, Y. Kubo, K. Yamada, and . Satou, D-IMPACT: A Data Preprocessing Algorithm to Improve the Performance of Clustering, Journal of Software Engineering and Applications, vol.2014, 2014.

C. Tu, ]. L. Tu, and Y. Chen, Stream data clustering based on grid density and attraction, ACM Transactions on Knowledge Discovery from Data, vol.3, issue.3, pp.1-1227, 2009.
DOI : 10.1145/1552303.1552305

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Tuffery, Data mining and statistics for decision making, 2011.
DOI : 10.1002/9780470979174

. Tur, The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things, 2014.

. Vac, Intelligent fault diagnosis and prognosis for engineering systems, 2007.

. Vee, A maximum variance cluster algorithm. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.9, pp.1273-1280, 2002.

R. Venkatasubramanian, K. Rengaswamy, S. Yin, and . Kavuri, A review of process fault detection and diagnosis, Computers & Chemical Engineering, vol.27, issue.3, pp.293-311, 2003.
DOI : 10.1016/S0098-1354(02)00160-6

J. Vik, ]. V. Vikjord, and R. Jenssen, Information theoretic clustering using a k-nearest neighbors approach, Pattern Recognition, vol.47, issue.9, pp.3070-3081, 2014.

. Wai, Wastewater treatment process supervision by means of a fuzzy automaton model, Intelligent Control Proceedings of the 2000 IEEE International Symposium on, pp.163-168, 2000.

. Wei, Distance metric learning for large margin nearest neighbor classification, Advances in neural information processing systems, pp.1473-1480, 2005.

D. Wu, A. Agrawal, and . Abbadi, A comparison of DFT and DWT based similarity search in time-series databases, Proceedings of the ninth international conference on Information and knowledge management , CIKM '00, pp.488-495, 2000.
DOI : 10.1145/354756.354857

W. Yueh, Eigenvalues of several tridiagonal matrices, Applied Mathematics E-Notes, vol.5, pp.66-74, 2005.

Z. Zhang and . Zhou, ML-KNN: A lazy learning approach to multi-label learning, Pattern Recognition, vol.40, issue.7, pp.2038-2048, 2007.
DOI : 10.1016/j.patcog.2006.12.019

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Zha, BIRCH: A New Data Clustering Algorithm and Its Applications, Data Mining and Knowledge Discovery, vol.1, issue.2, pp.141-182, 1997.

. Zim, Space shuttle GN & C development history and evolution, AIAA SPACE 2011 Conference & Exposition SPACE Conferences and Exposition. Long Beach, pp.27-29, 2011.