. La-représentation-de-l, OCV en fonction du SOC est par conséquent sensible à la définition de l'état de charge de la cellule. Toutefois, cette sensibilité est réduite lorsque l'OCV est

I. 1. Sommaire and .. Mécanismes-et-facteurs-de-vieillissement, 91 III.1.1. Mécanismes d'origine physico-chimique

A. De and M. , 102 III.2.1. Modèles de cinétique chimique 102 III.2.2. Modèles semi-empiriques

I. 3. Exemples and L. De, 109 III.3.1. Contributions élémentaires des facteurs influents au vieillissement total, p.111

.. Au-niveau-de-l-'assemblage and .. Et-de-la-recharge, 166 V.1.3. Simulation de décharges à puissance constante pour un module de six cellules Kokam 12 Ah 173 V.2, 176 V.2.2. Simulateur de la température autour du pack batteries, 0198.

M. Torregrossa, Mars) automobile-propre, 2017.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, pp.359-367, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

P. T. Coma, E. C. Darcy, C. T. Veje, and R. E. White, Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations, Journal of The Electrochemical Society, vol.164, issue.4, pp.587-593, 2017.
DOI : 10.1039/C3RA45748F

J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, Performance of Bellcore's plastic rechargeable Li-ion batteries, Solid State Ionics, vol.86, issue.88, pp.86-88, 1996.
DOI : 10.1016/0167-2738(96)00330-X

M. D. Levi, Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li[sub 1???x]CoO[sub 2]: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS, Journal of The Electrochemical Society, vol.146, issue.4, pp.1279-1289, 1999.
DOI : 10.1149/1.1391759

S. Brown, Diagnosis of the Lifetime Performance Degradation of Lithium-Ion Batteries : Focus on Power-Assist Hybrid Electric Vehicle and Low-Earth-Orbit Satellite Applications, Thèse de Doctorat, 2008.

F. Gao and Z. Tang, Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries, Electrochimica Acta, vol.53, issue.15, pp.5071-5075, 2008.
DOI : 10.1016/j.electacta.2007.10.069

M. Gauthier, Électrodes négatives à base de silicium pour accumulateurs au lithium: mécanisme réactionnel à l'échelle nanométrique et optimisation des performances, Thèse de doctorat de l, 2013.

T. Zheng and J. R. Dahn, Applications of Carbon in Lithium-Ion Batteries, Carbon Materials for Advanced Technologies, pp.341-388, 1999.
DOI : 10.1016/B978-008042683-9/50013-3

N. Takami, High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications, Journal of Power Sources, vol.244, pp.469-475, 2013.
DOI : 10.1016/j.jpowsour.2012.11.055

L. Yuan, cathode material for lithium-ion batteries, Energy Environ. Sci., vol.48, issue.22, pp.269-284, 2011.
DOI : 10.1021/ic8015723

H. Wang, Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium???Sulfur Battery Cathode Material with High Capacity and Cycling Stability, Nano Letters, vol.11, issue.7, pp.2644-2647, 2011.
DOI : 10.1021/nl200658a

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4418, 2004.
DOI : 10.1021/cr030203g

A. Jossen, Fundamentals of battery dynamics, Journal of Power Sources, vol.154, issue.2, pp.530-538, 2006.
DOI : 10.1016/j.jpowsour.2005.10.041

M. Chen and G. A. Rincon-mora, Accurate Electrical Battery Model Capable of Predicting Runtime and I???V Performance, IEEE Transactions on Energy Conversion, vol.21, issue.2, pp.504-511, 2006.
DOI : 10.1109/TEC.2006.874229

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.9343

V. H. Johnson, A. A. Pesaran, and T. Sack, Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries, 17th Electric Vehicle Symposium, 2000.

M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw, Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge, Journal of Power Sources, vol.174, issue.2, pp.1121-1125, 2007.
DOI : 10.1016/j.jpowsour.2007.06.185

C. R. Birkl, E. Mcturk, M. R. Roberts, P. G. Bruce, and D. A. Howey, A Parametric Open Circuit Voltage Model for Lithium Ion Batteries, Journal of The Electrochemical Society, vol.162, issue.12, pp.2271-2280, 2015.
DOI : 10.1149/2.0331512jes

M. Dubarry, Evaluation of Commercial Lithium-Ion Cells Based on Composite Positive Electrode for Plug-In Hybrid Electric Vehicle Applications: III. Effect of Thermal Excursions without Prolonged Thermal Aging, Journal of the Electrochemical Society, vol.160, issue.1, pp.191-199, 2013.
DOI : 10.1149/2.063301jes

M. Dubarry, Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging, Journal of Power Sources, vol.196, issue.23, pp.10336-10343, 2011.
DOI : 10.1016/j.jpowsour.2011.08.078

M. A. Roscher and D. U. Sauer, Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries, Journal of Power Sources, vol.196, issue.1, pp.331-336, 2011.
DOI : 10.1016/j.jpowsour.2010.06.098

W. Waag, Adaptive algorithms for monitoring of lithium-ion batteries in electric vehicles, Thèse de doctorat de "Fakultat fur Elektrotechnik und Informationstechnik der Rheinisch-Westfalischen, 2014.

V. Me?ter, Conception optimale systemique des composants des chaines de traction electrique, Thèse de Doctorat de EC-Lille -USTL, 2007.

P. Caillard, Conception par optimisation d'une chaine de traction électrique et de son contrôle par modélisation multi-physique, Thèse de Doctorat de l, 2015.

V. Ramadesigan, Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective, Journal of the Electrochemical Society, vol.1002, issue.3, pp.31-35, 2012.
DOI : 10.1149/1.1492286

A. A. Franco, Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges, RSC Advances, vol.1, issue.23, 2013.
DOI : 10.1016/j.procs.2010.04.082

URL : https://hal.archives-ouvertes.fr/hal-00838007

Y. Ongueng, Simulation atomistique Monte Carlo Cinétique des processus de croissance de couches passives sur alliage m´etalliques : cas des alliages Fer-Chrome, Thèse de Doctorat de l'université Pierre et Marie Curie, p.26, 2013.

J. Newman and W. Tiedemann, Porous-electrode theory with battery applications, AIChE Journal, vol.21, issue.1, pp.24-41, 1975.
DOI : 10.1002/aic.690210103

R. C. Kroeze and P. T. Krein, Electrical battery model for use in dynamic electric vehicle simulations, 2008 IEEE Power Electronics Specialists Conference, pp.15-19, 2008.
DOI : 10.1109/PESC.2008.4592119

T. S. Dao, C. P. Vyasarayani, and J. Mcphee, Simplification and order reduction of lithium-ion battery model based on porous-electrode theory, Journal of Power Sources, vol.198, pp.329-337, 2012.
DOI : 10.1016/j.jpowsour.2011.09.034

L. Cai and R. E. White, Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software, Journal of Power Sources, vol.196, issue.14, pp.5985-5989, 2011.
DOI : 10.1016/j.jpowsour.2011.03.017

M. D. Levi and D. Aurbrach, Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes, The Journal of Physical Chemistry B, vol.101, issue.23, 1997.
DOI : 10.1021/jp9701911

C. Delmas, M. Maccario, L. Ccroguennec, F. L. Cras, and F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nature Materials, vol.129, issue.8, pp.665-671, 2008.
DOI : 10.1107/S0567740869003220

URL : https://hal.archives-ouvertes.fr/hal-00324979

T. R. Ferguson and M. Z. Bazant, Phase Transformation Dynamics in Porous Battery Electrodes, Electrochimica Acta, vol.146, pp.89-97, 2014.
DOI : 10.1016/j.electacta.2014.08.083

W. Lai and F. Ciucci, Mathematical modeling of porous battery electrodes???Revisit of Newman's model, Electrochimica Acta, vol.56, issue.11, pp.4369-4377, 2011.
DOI : 10.1016/j.electacta.2011.01.012

R. E. White and Q. Zhang, Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model, Journal of Power Sources, vol.165, pp.880-886, 2007.

M. M. Majdabadi, S. Farhad, M. Farkhondeh, R. A. Fraser, and M. Fowler, Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries, Journal of Power Sources, vol.275, pp.633-643, 2015.
DOI : 10.1016/j.jpowsour.2014.11.066

D. Hyup and J. , Numerical modeling of lithium ion battery for predicting thermal behavior in a cylindrical cell, Current Applied Physics, vol.14, issue.196, 2014.

R. Liu, J. Chen, J. Xun, K. Jiao, and Q. Diu, Numerical investigation of thermal behaviors in lithium-ion battery stack discharge, Applied Energy, vol.132, pp.288-297, 2014.
DOI : 10.1016/j.apenergy.2014.07.024

R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, and K. Albe, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, vol.192, pp.3-25, 2015.
DOI : 10.1016/j.mseb.2014.11.014

M. Broussely, Main aging mechanisms in Li ion batteries, Journal of Power Sources, vol.146, issue.1-2, pp.90-96, 2005.
DOI : 10.1016/j.jpowsour.2005.03.172

M. Bettge, Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density, Journal of the Electrochemical Society, vol.160, issue.11, pp.2046-2055, 2013.
DOI : 10.1149/2.034311jes

J. Christensen and J. Newman, A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase, Journal of The Electrochemical Society, vol.2, issue.6, p.p
DOI : 10.1149/1.1804812

E. Prada, Modélisation du vieillissement et optimisation de la durée de vie des batteries Li-ion de technologie LiFePO4-graphite suivant l'usage véhicule, pp.23-2012

A. Delaille, SIMCAL Project: calendar aging results obtained on a panel of 6 commercial Li-ion cells, 224ème Electrochemical Energy, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920366

F. Thomas-dylan, Battery Degradation Modeling For Vehicle Applications, 2014.

C. Edouard, M. Petit, C. Forgez, J. Bernard, and R. , Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging, Journal of Power Sources, vol.325, pp.482-494, 2016.
DOI : 10.1016/j.jpowsour.2016.06.030

URL : https://hal.archives-ouvertes.fr/hal-01449617

A. Li, Analyse expérimentale et modélisation d'éléments de batterie et de leurs assemblages ? Application aux véhicules électriques et hybrides, 2013.

A. Cordoba-arenas, S. Onori, and G. Rizzoni, A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management, Journal of Power Sources, vol.279, pp.791-808, 2015.
DOI : 10.1016/j.jpowsour.2014.12.048

Y. S. Choi and D. M. Kang, Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles, Journal of Power Sources, vol.270, pp.273-280, 2014.
DOI : 10.1016/j.jpowsour.2014.07.120

T. Wang, K. J. Tseng, J. Zhao, and Z. Wei, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Applied Energy, vol.134, pp.229-238, 2014.
DOI : 10.1016/j.apenergy.2014.08.013

B. Y. Liaw, R. G. Jungst, G. Nagasubramanian, H. L. Case, and D. H. Doughty, Modeling capacity fade in lithium-ion cells, Journal of Power Sources, vol.140, issue.1, pp.157-161, 2005.
DOI : 10.1016/j.jpowsour.2004.08.017

C. De-boor, A Practical Guide to Splines, 1978.
DOI : 10.1007/978-1-4612-6333-3

A. Eddahech, O. Briat, and J. M. Vinassa, Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes, Energy, vol.61, pp.432-439, 2013.
DOI : 10.1016/j.energy.2013.09.028

URL : https://hal.archives-ouvertes.fr/hal-00950541

F. Kreith and M. S. Bohn, Principles of Heat Transfer, Harper and Row, 1986.

C. Hémery, Etude des phénomènes thermiques dans les batteries Li-ion, Thèse de l, 2013.

A. Eddahech, O. Briat, and J. M. Vinassa, Lithium-ion battery performance improvement based on capacity recovery exploitation, Electrochimica Acta, vol.114, pp.750-757, 2013.
DOI : 10.1016/j.electacta.2013.10.101

URL : https://hal.archives-ouvertes.fr/hal-00950535

L. Pei, T. Wang, R. Lu, and C. Zhu, Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries, Journal of Power Sources, vol.253, pp.412-418, 2014.
DOI : 10.1016/j.jpowsour.2013.12.083

I. Baghdadi, O. Briat, A. Eddahech, P. Gyan, and J. M. Vinassa, Electro-thermal model of lithiu-ion batteries for electrified vehicles applications, IEEE, 2015.

J. Vetter, Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.1-2, pp.269-281, 2005.
DOI : 10.1016/j.jpowsour.2005.01.006

R. Yazami, Surface chemistry and lithium storage capability of the graphite???lithium electrode, Electrochimica Acta, vol.45, issue.1-2, pp.87-97, 1999.
DOI : 10.1016/S0013-4686(99)00195-4

K. Edstrom, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, vol.153, issue.2, pp.380-384, 2006.
DOI : 10.1016/j.jpowsour.2005.05.062

Y. He, Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries, Journal of Power Sources, vol.239, pp.269-276, 2013.
DOI : 10.1016/j.jpowsour.2013.03.141

M. Fleischhammer, T. Waldmann, G. Bisle, B. I. Hogg, and M. Wohlfhrt-mehrens, Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries, Journal of Power Sources, vol.274, pp.432-439, 2015.
DOI : 10.1016/j.jpowsour.2014.08.135

H. P. Lin, Low-Temperature Behavior of Li-Ion Cells, Electrochemical and Solid-State Letters, vol.140, issue.6, pp.71-73, 2001.
DOI : 10.1103/PhysRevB.44.9170

M. Petzl, M. Kasper, and M. A. Danzer, Lithium plating in a commercial lithium-ion battery ??? A low-temperature aging study, Journal of Power Sources, vol.275, pp.799-807, 2015.
DOI : 10.1016/j.jpowsour.2014.11.065

X. B. Cheng, R. Zhang, C. Z. Zhao, J. G. Zhang, and Q. Zhang, A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Advanced Science, vol.51, issue.98, 2015.
DOI : 10.1016/j.elecom.2014.12.008

J. Cannarella and C. B. Arnold, Stress evolution and capacity fade in constrained lithium-ion pouch cells, Journal of Power Sources, vol.245, pp.745-751, 2014.
DOI : 10.1016/j.jpowsour.2013.06.165

J. H. Lee, H. M. Lee, and S. Ahn, Battery dimensional changes occurring during charge/discharge cycles???thin rectangular lithium ion and polymer cells, Journal of Power Sources, vol.119, issue.121, pp.191-121, 2003.
DOI : 10.1016/S0378-7753(03)00281-7

R. Yazami and Y. Reynier, Thermodynamics and crystal structure anomalies in lithium-intercalated graphite, Journal of Power Sources, vol.153, issue.2, pp.312-318, 2006.
DOI : 10.1016/j.jpowsour.2005.05.087

URL : https://hal.archives-ouvertes.fr/hal-00386397

D. Linden and T. B. Reddy, Handbook of Batteries, 2002.

N. K?z?lta?-yavuz, Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol???gel method using table sugar as chelating agent, Electrochimica Acta, vol.113, pp.313-321, 2013.
DOI : 10.1016/j.electacta.2013.09.065

C. De, W. Casas, and . Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, vol.208, pp.74-85, 2012.

J. P. Maranchi, A. F. Hepp, and P. N. Kumta, High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, vol.293, issue.295, pp.198-201, 2003.
DOI : 10.1149/1.1596918

H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol.7, issue.5, pp.414-429, 2012.
DOI : 10.1016/j.nantod.2012.08.004

M. A. Miner, Cumulative Damage in Fatigue, J. of Appli. Mech, pp.195-164, 1945.

Q. Badey, Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d'un usage automobile, Thèse de Doctorat de l, 2012.

Q. Badey, Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d'un usage automobile, pp.22-2012

I. Laresgoiti, S. Käbitz, M. Ecker, and D. U. Sauer, Modeling mechanical degradation in lithium ion batteries during cycling: Solid electrolyte interphase fracture, Journal of Power Sources, vol.300, pp.112-122, 2015.
DOI : 10.1016/j.jpowsour.2015.09.033

A. Nuhic, T. Terzimehic, T. Soczka-guth, M. Buchholz, and K. Dietmayer, Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods, Journal of Power Sources, vol.239, pp.680-688, 2013.
DOI : 10.1016/j.jpowsour.2012.11.146

M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, Life-Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue Approach, Journal of The Electrochemical Society, vol.12, issue.6, pp.713-720, 2010.
DOI : 10.1016/S0927-0256(00)00221-4

M. T. Todinov, Necessary and sufficient condition for additivity in the sense of the Palmgren???Miner rule, Computational Materials Science, vol.21, issue.1, pp.101-110, 2001.
DOI : 10.1016/S0927-0256(00)00221-4

M. Petit, E. Prada, and V. Sauvant-moynot, Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime, Applied Energy, vol.172, pp.398-407, 2016.
DOI : 10.1016/j.apenergy.2016.03.119

T. W. Dakin, Electrical Insulation Deterioration Treated as a Chemical Rate Phenomenon, Transactions of the American Institute of Electrical Engineers, vol.67, issue.1, pp.113-122, 1948.
DOI : 10.1109/T-AIEE.1948.5059649

G. Mares, Accelerated thermal ageing of an EVA compound, Proceedings:Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference, pp.29-32, 1995.
DOI : 10.1109/EEIC.1995.482510

P. Cygan and L. Laghari, Models for insulation aging under electrical and thermal multistess, IEEE Transactions on Electrical Insulation, vol.25, issue.5, 1990.
DOI : 10.1109/14.59867

M. Broussely, Aging mechanism in Li-ion cells and calendar life predictions, Journal of Power Sources, pp.97-98, 2001.
DOI : 10.1016/s0140-6701(02)86277-4

K. Smith, E. Neubauer, M. Wood, A. Jun, and . Pesaran, Models for Battery Reliability and Lifetime: Applications in Design and Health Management, Battery Congress, 2013.

W. Liu, C. Delacourt, C. Forgez, and S. Pelissier, Study of graphite/NCA Li-ion cell degradation during accelerated aging tests — Data analysis of the SIMSTOCK project, 2011 IEEE Vehicle Power and Propulsion Conference, 2011.
DOI : 10.1109/VPPC.2011.6043110

S. Grolleau, Calendar aging of commercial graphite/LiFePO4 cell ??? Predicting capacity fade under time dependent storage conditions, Journal of Power Sources, vol.255, pp.450-458, 2014.
DOI : 10.1016/j.jpowsour.2013.11.098

URL : https://hal.archives-ouvertes.fr/hal-01002804

E. Sarasketa-zabala, I. Gandiaga, E. Martinez-laserna, L. M. Rodriguez-martinez, and I. Villarreal, Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions, Journal of Power Sources, vol.275, pp.573-587, 2015.
DOI : 10.1016/j.jpowsour.2014.10.153

M. Ecker, Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data, Journal of Power Sources, vol.215, pp.248-257, 2012.
DOI : 10.1016/j.jpowsour.2012.05.012

J. Schmalstieg, S. Käbitz, M. Ecker, and D. U. Sauer, A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries, Journal of Power Sources, vol.257, pp.325-334, 2014.
DOI : 10.1016/j.jpowsour.2014.02.012

J. Wang, J. Purewal, and M. W. Verbrugge, Degradation of lithium ion batteries employing graphite negatives and nickel???cobalt???manganese oxide??+??spinel manganese oxide positives: Part 1, aging mechanisms and life estimation, Journal of Power Sources, vol.269, pp.937-948, 2014.
DOI : 10.1016/j.jpowsour.2014.07.030

R. Spotnitz, Simulation of capacity fade in lithium-ion batteries, Journal of Power Sources, vol.113, issue.1, pp.72-80, 2003.
DOI : 10.1016/S0378-7753(02)00490-1

A. Eddahech, Modélisation du vieillissement et determination de l'état de santé de batteries lithium-ion pour application vehicule electrique et hybride, Thèse de, 2013.

O. Gérard, J. Patillon, and F. Buc, Neural network adaptive modeling of battery discharge behavior, Artificial Neural Networks?ICANN'97, 1997.
DOI : 10.1007/BFb0020299

A. Mellit, M. Benghanem, and S. A. Kalogirou, Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure, Renewable Energy, vol.32, issue.2, pp.285-313
DOI : 10.1016/j.renene.2006.01.002

Z. Zhang, J. Wang, and X. Wang, An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling, Energy Conversion and Management, vol.105, pp.675-684, 2015.
DOI : 10.1016/j.enconman.2015.07.079

T. M. Layadi, G. Champenois, M. Mostefai, and D. Abbes, Lifetime estimation tool of lead???acid batteries for hybrid power sources design, Simulation Modelling Practice and Theory, vol.54, pp.36-48, 2015.
DOI : 10.1016/j.simpat.2015.03.001

J. Dambrowski, S. Pichlmaier, and A. Jossen, Mathematical methods for classification of state-of-charge time series for cycle lifetime prediction, Advanced Automotive Battery Conference Europe, 2012.

P. Gyan, Experimental Assessment of Battery Cycle Life Within the SIMSTOCK Research Program, Oil and Gas Science and Technology, pp.137-147, 2013.
DOI : 10.2516/ogst/2013106

URL : https://hal.archives-ouvertes.fr/hal-00832426

M. Makdessi, A. Sari, and P. Venet, Metallized polymer film capacitors ageing law based on capacitance degradation, Microelectronics Reliability, vol.54, issue.9-10, pp.1823-1827, 2014.
DOI : 10.1016/j.microrel.2014.07.103

L. Su, Path dependence of lithium ion cells aging under storage conditions, Journal of Power Sources, vol.315, pp.35-46, 2016.
DOI : 10.1016/j.jpowsour.2016.03.043

G. Suri and S. Onori, A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries, Energy, vol.96, pp.644-653, 2016.
DOI : 10.1016/j.energy.2015.11.075

K. J. Laidler, S. Glasstone, and H. E. Eyring, The theory of rate processes, 1941.

P. H. Allen and A. Tustin, The Aging Process in Electrical Insulation: A Tutorial Summary, IEEE Transactions On Electrical Insulation, vol.7, issue.3, 1972.

I. Baghdadi, O. Briat, J. Y. Delétage, P. Gyan, and J. M. Vinassa, Lithium battery aging model based on Dakin???s degradation approach, Journal of Power Sources, vol.325, pp.273-285, 2016.
DOI : 10.1016/j.jpowsour.2016.06.036

S. Paul, C. Diegelmann, H. Kabza, and W. Tillmetz, Analysis of ageing inhomogeneities in lithium-ion battery systems, Journal of Power Sources, vol.239, pp.642-650, 2013.
DOI : 10.1016/j.jpowsour.2013.01.068

T. Waldmann, M. Wilka, M. Kasper, M. Fleichhammer, and M. Wohlfahrt-mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries ??? A Post-Mortem study, Journal of Power Sources, vol.262, pp.129-135, 2014.
DOI : 10.1016/j.jpowsour.2014.03.112

I. Baghdadi, O. Briat, J. Y. Delétage, P. Gyan, and J. M. Vinassa, Chemical rate phenomenon approach applied to lithium battery capacity fade estimation, Microelectronics Reliability, vol.64, pp.134-139, 2016.
DOI : 10.1016/j.microrel.2016.07.058

I. Baghdadi, O. Briat, P. Gyan, and J. M. Vinassa, Lithium Battery Aging Model Based on Chemical Rate Approach, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), 2016.
DOI : 10.1109/VPPC.2016.7791720

R. A. Fisher, Tests of Significance in Harmonic Analysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.125, issue.796, pp.54-59
DOI : 10.1098/rspa.1929.0151

T. Tevi and A. Takshi, Modeling and simulation study of the self-discharge in supercapacitors in presence of a blocking layer, Journal of Power Sources, vol.273, pp.857-862, 2015.
DOI : 10.1016/j.jpowsour.2014.09.133

W. Waag, C. Fleischer, and D. U. Sauer, Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles, Journal of Power Sources, vol.258, pp.321-339, 2014.
DOI : 10.1016/j.jpowsour.2014.02.064

J. T. Kessels, B. Rosca, H. J. Bergveld, P. P. Van-den, and . Bosch, On-line battery identification for electric driving range prediction, 2011 IEEE Vehicle Power and Propulsion Conference, 2011.
DOI : 10.1109/VPPC.2011.6043022

H. Dong, X. Jin, Y. Lou, and C. Wang, Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter, Journal of Power Sources, vol.271, pp.114-123, 2014.
DOI : 10.1016/j.jpowsour.2014.07.176

G. Bai, P. Wanga, C. Hub, and M. Pecht, A generic model-free approach for lithium-ion battery health management, Applied Energy, vol.135, pp.247-260, 2014.
DOI : 10.1016/j.apenergy.2014.08.059

C. Hu, G. Jain, P. Tamirisa, and T. Gorka, Method for estimating capacity and predicting remaining useful life of lithium-ion battery, Applied Energy, vol.126, pp.182-189, 2014.
DOI : 10.1016/j.apenergy.2014.03.086

Y. Zou, X. Hu, H. Ma, and S. E. Li, Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles, Journal of Power Sources, vol.273, pp.793-803, 2015.
DOI : 10.1016/j.jpowsour.2014.09.146

M. Dubarry, V. Svoboda, R. Hwu, and B. Y. Liaw, Incremental Capacity Analysis and Closeto-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries, Electrochemical and Solid-State Letters, vol.10, pp.454-457, 2006.

P. Liu, Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses, Journal of The Electrochemical Society, vol.175, pp.499-507, 2010.

Y. Zheng, L. Lu, X. Han, J. Li, and M. Ouyang, LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation, Journal of Power Sources, vol.226, pp.33-41, 2013.
DOI : 10.1016/j.jpowsour.2012.10.057

E. Riviere, Caractérisation de l'état de santé de batteries lithium à partir de l'observation du comportement de la batterie durant les sollicitations fonctionnelles d'un véhicule électrique, Thèse de l, 2016.

A. Eddahech, O. Briat, and J. M. Vinassa, Determination of lithium-ion battery state-of-health based on constant-voltage charge phase, Journal of Power Sources, vol.258, pp.218-227, 2014.
DOI : 10.1016/j.jpowsour.2014.02.020

URL : https://hal.archives-ouvertes.fr/hal-00964082

I. Baghdadi, O. Briat, and J. M. Vinassa, Procédé d'évaluation de l'état de santé d'une batterie électrochimique, 2015.

I. Baghdadi, O. Briat, P. Gyan, and J. M. Vinassa, State of health assessment for lithium batteries based on voltage???time relaxation measure, Electrochimica Acta, vol.194, pp.461-472, 2016.
DOI : 10.1016/j.electacta.2016.02.109

URL : https://hal.archives-ouvertes.fr/hal-01308702

I. Baghdadi, O. Briat, P. Gyan, and J. M. Vinassa, Dynamic Battery Aging Model: Representation of Reversible Capacity Losses Using First Order Model Approach, 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015.
DOI : 10.1109/VPPC.2015.7352932

URL : https://hal.archives-ouvertes.fr/hal-01308647

S. Hmam, Méthodologie de conception optimale de chaines de conversion et de stockage de l'énergie électrique, Thèse de Doctorat de l'Université de Nantes, 2016.

S. Hmam, J. Olivier, S. Bourguet, and L. Loron, A cycle-based and multirate approach for power system simulation application to the ageing estimation of a supercapacitor-based ferry, Journal of Energy Storage, vol.8, pp.175-184, 2016.
DOI : 10.1016/j.est.2016.08.003

J. Benjamin and . Yurkovich, Electrothermal Battery Pack Modeling and Simulation Master en sciences de l, 2010.

H. Park, A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles, Journal of Power Sources, vol.239, pp.30-36, 2013.
DOI : 10.1016/j.jpowsour.2013.03.102